TWI616078B - Communication system, communication device and method thereof for d2d communications - Google Patents

Communication system, communication device and method thereof for d2d communications Download PDF

Info

Publication number
TWI616078B
TWI616078B TW105109995A TW105109995A TWI616078B TW I616078 B TWI616078 B TW I616078B TW 105109995 A TW105109995 A TW 105109995A TW 105109995 A TW105109995 A TW 105109995A TW I616078 B TWI616078 B TW I616078B
Authority
TW
Taiwan
Prior art keywords
pdu
rlc
mac
pdus
rlc pdu
Prior art date
Application number
TW105109995A
Other languages
Chinese (zh)
Other versions
TW201735585A (en
Inventor
邱俊淵
馬若飛
夏年
陳曉華
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW105109995A priority Critical patent/TWI616078B/en
Priority to CN201610659226.1A priority patent/CN107295459B/en
Publication of TW201735585A publication Critical patent/TW201735585A/en
Application granted granted Critical
Publication of TWI616078B publication Critical patent/TWI616078B/en

Links

Abstract

一種在一無線網路中用以傳送複數數據封包的方法。上述方法包括:接收一或多個第一媒體存取控制(MAC)協定數據單元(PDU),其包括複數無線電鏈路控制(RLC)PDU,上述RLC PDU來自一來源端使用者設備(UE)且預計傳送至一目的端UE;根據每一第一MAC PDU的一標頭欄位解多工操作上述第一MAC PDU以擷取上述RLC PDU;根據一或多個MAC PDU大小由一或多個上述RLC PDU中產生複數RLC PDU分段或由所有上述RLC PDU中產生複數中繼RLC(RRLC)PDU,其中上述RRLC係為介於一MAC層及一RLC層之間的一協定層;多工操作上述RLC PDU及上述RLC PDU分段或上述RRLC PDU為一或多個第二MAC PDU;以及傳送上述第二MAC PDU至上述目的端UE。 A method for transmitting complex data packets in a wireless network. The method includes receiving one or more first Medium Access Control (MAC) Protocol Data Units (PDUs) including a plurality of Radio Link Control (RLC) PDUs from a source user equipment (UE) And transmitting to a destination UE; demultiplexing the first MAC PDU according to a header field of each first MAC PDU to retrieve the RLC PDU; according to one or more MAC PDU sizes by one or more Multiple RLC PDU segments are generated in the foregoing RLC PDUs or a plurality of relay RLC (RRLC) PDUs are generated from all the foregoing RLC PDUs, where the RRLC is a protocol layer between a MAC layer and an RLC layer; And operating the RLC PDU and the RLC PDU segment or the RRLC PDU as one or more second MAC PDUs; and transmitting the second MAC PDU to the destination UE.

Description

用於D2D通訊的通訊系统、通訊裝置及其方法 Communication system, communication device and method for D2D communication

本揭露係有關於一種通訊裝置、一種傳送複數數據封包及接收複數數據封包的方法、一種分配用於複數使用者設備(User Equipment,UE)裝置間(Device-to-Device,D2D)通訊資源的方法,以及一種用於D2D通訊的通訊系統。 The disclosure relates to a communication device, a method for transmitting a complex data packet and receiving a plurality of data packets, and a device for allocating a User-to-User (UE) device-to-device (D2D) communication resource. Method, and a communication system for D2D communication.

現今,由於智慧型手機和平板電腦廣泛使用及高容量多媒體通訊被啟動,因此行動傳輸量迅速增加。行動傳輸量預計將在未來持續增加,每年增加一倍。由於大多數行動傳輸量係透過一基地台傳送,通訊服務供應商目前面臨嚴重的網路過載。為了處理傳輸量的增加,通訊服務供應商增加網路設備投資及將下一代行動通訊標準(例如,WiMAX和長期演進技術(Long Term Evolution,LTE)等)商業化以渴望有效地處理傳輸量的高容量。然而,為了更迅速地承載所預期傳輸量的增加,是時候尋求其他的解決方案。 Nowadays, mobile phones and tablets are widely used and high-capacity multimedia communication is activated, so the amount of mobile transmission is rapidly increasing. The amount of mobile traffic is expected to continue to increase in the future, doubling each year. Since most mobile transmissions are transmitted through a base station, communication service providers are currently facing severe network overload. In order to handle the increase in transmission volume, communication service providers have increased investment in network equipment and commercialized next-generation mobile communication standards (such as WiMAX and Long Term Evolution (LTE), etc.) in an effort to efficiently handle the transmission volume. high capacity. However, in order to more quickly carry the expected increase in throughput, it is time to seek other solutions.

裝置間(Device-to-Device,D2D)通訊是一種相鄰節點間直接傳輸的通訊技術。在一D2D通訊環境中,每一節點像是一行動終端等裝置搜尋實際上鄰近對應節點的另一使用者設備,建 立一通訊會話,接著傳送傳輸量。因此,由於D2D通訊可幫助解決分佈在一基地台的傳輸量過載的問題,故D2D通訊被被關注為後4G、下一代行動通訊的基本技術。此標準組織3GPP、IEEE等基於LTE-A或Wi-Fi推動一D2D通訊標準的制定。許多公司也正在開發獨立的D2D通訊技術。 Device-to-Device (D2D) communication is a communication technology that is directly transmitted between adjacent nodes. In a D2D communication environment, each node, such as a mobile terminal, searches for another user device that is actually adjacent to the corresponding node. Establish a communication session and then transfer the amount of transmission. Therefore, since D2D communication can help solve the problem of overloaded transmission on a base station, D2D communication is concerned as the basic technology of the latter 4G, the next generation of mobile communication. This standard organization 3GPP, IEEE, etc. promotes the development of a D2D communication standard based on LTE-A or Wi-Fi. Many companies are also developing independent D2D communication technologies.

以下發明內容僅為示例性的,且不意指以任何方式加以限制。示例性實施例更在以下揭露中被進一步描述。因此,以下發明內容並不旨在標識所要求保護主題的必要特徵,也不旨在用於限制所要求保護主題的範圍。 The following summary is merely exemplary and is not intended to be limiting in any way. The exemplary embodiments are further described in the following disclosure. Therefore, the following summary is not intended to identify essential features of the claimed subject matter, and is not intended to limit the scope of the claimed subject matter.

本揭露提供一種通訊裝置、一種傳送複數數據封包及接收複數數據封包的方法、一種分配用於複數使用者設備(User Equipments,UEs)裝置間(Device-to-Device,D2D)通訊資源的方法,以及一種用於D2D通訊的通訊系統。 The disclosure provides a communication device, a method for transmitting a plurality of data packets and receiving a plurality of data packets, and a method for allocating a device-to-device (D2D) communication resource for a plurality of user equipments (UEs). And a communication system for D2D communication.

在一示範的實施例中,本揭露係有關於一種在一無線網路中用以傳送複數數據封包的通訊裝置。上述通訊裝置至少包括一控制電路、一處理器及一記憶體。上述處理器設置於上述控制電路中。上述記憶體設置於上述控制電路中並耦接上述處理器。上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:接收一或多個第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其包括複數無線電鏈路控制(Radio Link Control,RLC)PDU,上述RLC PDU來自上述無線網路之一來源端使用者設備(User Equipment,UE)且預計傳送至一目的端UE;根據每一第一MAC PDU的一標頭欄位解 多工操作(demultiplex)上述第一MAC PDU以擷取上述RLC PDU;根據一或多個MAC PDU大小由一或多個上述RLC PDU中產生複數RLC PDU分段或由所有上述RLC PDU中產生複數中繼RLC(Relay RLC,RRLC)PDU,其中上述RRLC係為介於一MAC層及一RLC層之間的一協定層;多工操作(multiplex)上述RLC PDU及上述RLC PDU分段或上述RRLC PDU為一或多個第二MAC PDU;以及傳送上述第二MAC PDU至上述目的端UE。 In an exemplary embodiment, the present disclosure is directed to a communication device for transmitting a plurality of data packets in a wireless network. The communication device includes at least a control circuit, a processor and a memory. The above processor is provided in the above control circuit. The memory is disposed in the control circuit and coupled to the processor. The processor is configured to execute a code stored in the memory to perform: receiving one or more first Medium Access Control (MAC) Protocol Data Units (PDUs), a radio link control (RLC) PDU, the RLC PDU is from a source device (UE) of the wireless network, and is expected to be transmitted to a destination UE; A header field solution for the MAC PDU Demultiplexing the first MAC PDU to retrieve the RLC PDU; generating a plurality of RLC PDU segments from one or more of the RLC PDUs according to one or more MAC PDU sizes or generating a plurality of the foregoing RLC PDUs Relay RLC (RRLC) PDU, wherein the RRLC is a protocol layer between a MAC layer and an RLC layer; multiplexing the RLC PDU and the RLC PDU segment or the RRLC The PDU is one or more second MAC PDUs; and the foregoing second MAC PDU is transmitted to the destination UE.

在一些實施例中,上述RLC PDU分段其中之一係根據上述MAC PDU大小其中之一重新分割上述RLC PDU其中之一之一數據欄位且增加一重新分割資訊至上述RLC PDU其中之一的一標頭欄位中所產生。在一些實施例中,上述RRLC PDU係根據上述MAC PDU大小分割及連結(concatenate)上述RLC PDU且增加包括一分割及連結資訊的一標頭至每一RRLC PDU中所產生。在一些實施例中,上述MAC PDU大小係根據由一基地台所傳送之一或多個資源授與(resource grant)來取得。在一些實施例中,上述RLC PDU及上述RLC PDU分段或上述RRLC PDU根據一優先順序被多工操作為上述第二MAC PDU。在一些實施例中,上述優先順序係基於一先進先出(First-in First-out,FIFO)原則或服務品質(Quality of Service,QoS)參數。 In some embodiments, one of the foregoing RLC PDU segments re-segmentates one of the RLC PDUs according to one of the MAC PDU sizes and adds a re-segmentation information to one of the RLC PDUs. Produced in a header field. In some embodiments, the RRLC PDU is generated by concatenating and concatenating the RLC PDU according to the MAC PDU size and adding a header including a split and link information to each RRLC PDU. In some embodiments, the MAC PDU size is obtained based on one or more resource grants transmitted by a base station. In some embodiments, the RLC PDU and the RLC PDU segment or the RRLC PDU are multiplexed into the second MAC PDU according to a priority order. In some embodiments, the prioritization is based on a First-in First-out (FIFO) principle or a Quality of Service (QoS) parameter.

在一示範的實施例中,本揭露係有關於一種在一無線網路中用以傳送複數數據封包的方法。上述方法用於一通訊裝置中。上述方法包括以下步驟:接收一或多個第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其包括複數無線電鏈路控制(Radio Link Control,RLC)PDU, 上述RLC PDU來自上述無線網路之一來源端使用者設備(User Equipment,UE)且預計傳送至一目的端使用者設備(User Equipment,UE);根據每一第一MAC PDU的一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RLC PDU;根據一或多個MAC PDU大小由一或多個上述RLC PDU中產生複數RLC PDU分段或由所有上述RLC PDU中產生複數中繼RLC(Relay RLC,RRLC)PDU,其中上述RRLC係為介於一MAC層及一RLC層之間的一協定層;多工操作(multiplex)上述RLC PDU及上述RLC PDU分段或上述RRLC PDU為一或多個第二MAC PDU;以及傳送上述第二MAC PDU至上述目的端UE。 In an exemplary embodiment, the present disclosure is directed to a method for transmitting a plurality of data packets in a wireless network. The above method is used in a communication device. The method includes the steps of: receiving one or more first Medium Access Control (MAC) Protocol Data Units (PDUs) including a plurality of Radio Link Control (RLC) PDUs , The RLC PDU is sent from a source device (User Equipment, UE) of the wireless network and is expected to be transmitted to a user equipment (User Equipment, UE); according to a header column of each first MAC PDU. Demultiplexing the first MAC PDU to retrieve the RLC PDU; generating a plurality of RLC PDU segments from one or more of the RLC PDUs according to one or more MAC PDU sizes or from all of the foregoing RLC PDUs Generating a Relay RLC (RRLC) PDU, wherein the RRLC is a protocol layer between a MAC layer and an RLC layer; multiplexing the RLC PDU and the RLC PDU segment or The RRLC PDU is one or more second MAC PDUs; and the foregoing second MAC PDU is transmitted to the destination UE.

在一些實施例中,上述RLC PDU分段其中之一係根據上述MAC PDU大小其中之一重新分割上述RLC PDU其中之一之一數據欄位且增加一重新分割資訊至上述RLC PDU其中之一的一標頭欄位中所產生。在一些實施例中,上述RRLC PDU係根據上述MAC PDU大小分割及連結(concatenate)上述RLC PDU且增加包括一分割及連結資訊的一標頭至每一RRLC PDU中所產生。在一些實施例中,上述MAC PDU大小係根據由一基地台所傳送之一或多個資源授與(resource grant)來取得。在一些實施例中,上述RLC PDU及上述RLC PDU分段或上述RRLC PDU根據一優先順序被多工操作為上述第二MAC PDU。在一些實施例中,上述優先順序係基於一先進先出(First-in First-out,FIFO)原則或服務品質(Quality of Service,QoS)參數。 In some embodiments, one of the foregoing RLC PDU segments re-segmentates one of the RLC PDUs according to one of the MAC PDU sizes and adds a re-segmentation information to one of the RLC PDUs. Produced in a header field. In some embodiments, the RRLC PDU is generated by concatenating and concatenating the RLC PDU according to the MAC PDU size and adding a header including a split and link information to each RRLC PDU. In some embodiments, the MAC PDU size is obtained based on one or more resource grants transmitted by a base station. In some embodiments, the RLC PDU and the RLC PDU segment or the RRLC PDU are multiplexed into the second MAC PDU according to a priority order. In some embodiments, the prioritization is based on a First-in First-out (FIFO) principle or a Quality of Service (QoS) parameter.

在一示範的實施例中,本揭露係有關於一種在一無線網路中用以傳送複數數據封包的通訊裝置。上述通訊裝置至少 包括一控制電路、一處理器及一記憶體。上述處理器設置於上述控制電路中。上述記憶體設置於上述控制電路中並耦接上述處理器。上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:透過一中繼使用者設備(User Equipment,UE)、一基地台接收並直接接收來自上述無線網路之一來源端UE的一或多個媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述MAC PDU係由複數無線電鏈路控制(Radio Link Control,RLC)PDU及複數RLC PDU分段所組成;根據每一MAC PDU之一標頭欄位解多工操作(demultiplex)上述MAC PDU以擷取上述RLC PDU及上述RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RLC PDU及上述RLC PDU分段,並執行上述RLC PDU及上述RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括於上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述RLC PDU及上述RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 In an exemplary embodiment, the present disclosure is directed to a communication device for transmitting a plurality of data packets in a wireless network. The above communication device is at least The utility model comprises a control circuit, a processor and a memory. The above processor is provided in the above control circuit. The memory is disposed in the control circuit and coupled to the processor. The processor is configured to execute a code stored in the memory to perform: receiving and directly receiving a source from the wireless network through a relay user equipment (User Equipment, UE) One or more Medium Access Control (MAC) Protocol Data Units (PDUs) of the UE, wherein the MAC PDUs are composed of a Radio Link Control (RLC) PDU and a plurality of RLCs. PDU segmentation; demultiplexing the MAC PDU according to a header field of each MAC PDU to retrieve the RLC PDU and the RLC PDU segment; according to Transmission Sequence Numbers (TSNs) Reordering the RLC PDU and the RLC PDU segment, and performing a repetition detection of the RLC PDU and the RLC PDU segment, wherein each transmission sequence number is included in each RLC PDU and one of each RLC PDU segment And merging the RLC PDU and the RLC PDU segment into the plurality of RLC service data by using the information included in each of the RLC PDUs and the foregoing header field of each of the RLC PDU segments Yuan (Service Data Unit, SDU).

在一示範的實施例中,本揭露係有關於一種在一無線網路中用以傳送複數數據封包的通訊裝置。上述通訊裝置至少包括一控制電路、一處理器及一記憶體。上述處理器設置於上述控制電路中。上述記憶體設置於上述控制電路中並耦接上述處理器。上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:透過一中繼使用者設備(User Equipment,UE)及一基地台接收來自上述無線網路之一來源端UE的複數第一媒體存取控制 (Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述第一MAC PDU係由複數中繼RLC(Relay RLC,RRLC)PDU所組成,其中上述RRLC PDU係為介於一MAC層及RLC層之間一協定層的PDU,並直接接收來自上述來源端UE的複數第二MAC PDU,其中上述第二MAC PDU係由複數第一RLC PDU及複數第一RLC PDU分段所組成;根據每一第一MAC PDU之一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RRLC PDU,並根據每一第二MAC PDU之一標頭欄位解多工操作上述第二MAC PDU以擷取上述第一RLC PDU及上述第一RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RRLC PDU,並執行上述RRLC PDU的一重複偵測,其中每一傳輸序號被包括在每一RRLC PDU之一標頭欄位中;使用包括於上述每一RRLC PDU中之上述標頭欄位之資訊來重組上述RRLC PDU至複數第二RLC PDU及複數第二RLC PDU分段;根據上述傳輸序號重新排序上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段,並執行上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括在上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 In an exemplary embodiment, the present disclosure is directed to a communication device for transmitting a plurality of data packets in a wireless network. The communication device includes at least a control circuit, a processor and a memory. The above processor is provided in the above control circuit. The memory is disposed in the control circuit and coupled to the processor. The processor is configured to execute a code stored in the memory to perform: receiving, by a relay user equipment (UE) and a base station, a plurality of UEs from the source UE of the wireless network. First media access control (Medium Access Control, MAC) protocol data unit (PDU), wherein the first MAC PDU is composed of a plurality of relay RLC (RRLC) PDUs, wherein the RRLC PDU is a MAC a PDU of a protocol layer between the layer and the RLC layer, and directly receiving a plurality of second MAC PDUs from the source UE, wherein the second MAC PDU is composed of a plurality of first RLC PDUs and a plurality of first RLC PDU segments Demultiplexing the first MAC PDU according to a header field of each first MAC PDU to retrieve the RRLC PDU, and demultiplexing according to a header field of each second MAC PDU The second MAC PDU is operated to capture the first RLC PDU and the first RLC PDU segment; the RRLC PDU is reordered according to Transmission Sequence Numbers (TSNs), and a repeated detection of the RRLC PDU is performed, Each of the transmission sequence numbers is included in a header field of each of the RRLC PDUs; the RRLC PDU is reassembled to the plurality of second RLC PDUs and the plurality of bits using the information of the header fields included in each of the RRLC PDUs Second RLC PDU segment; according to the above Retrieving the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment, and performing the foregoing first RLC PDU, the first RLC PDU segment, and the foregoing a repeated detection of the second RLC PDU and the second RLC PDU segment, wherein each transmission sequence number is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment; and the use is included in each of the above Recombining the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment into an RLC PDU and information in the foregoing header field of each RLC PDU segment Complex RLC Service Data Unit (SDU).

在一示範的實施例中,本揭露係有關於一種在一無 線網路中用以接收複數數據封包的方法。上述方法用於一通訊裝置中。上述方法包括以下步驟:透過一中繼使用者設備(User Equipment,UE)、一基地台接收並直接接收來自上述無線網路之一來源端UE的一或多個媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述MAC PDU係由複數無線電鏈路控制(Radio Link Control,RLC)PDU及複數RLC PDU分段所組成;根據每一MAC PDU之一標頭欄位解多工操作(demultiplex)上述MAC PDU以擷取上述RLC PDU及上述RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RLC PDU及上述RLC PDU分段,並執行上述RLC PDU及上述RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括於上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述RLC PDU及上述RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 In an exemplary embodiment, the disclosure relates to a A method of receiving a plurality of data packets in a line network. The above method is used in a communication device. The method includes the following steps: receiving, by a user equipment (UE), a base station, and directly receiving one or more media access control (Medium Access Control) from a source UE of the wireless network. , MAC) Protocol Data Unit (PDU), wherein the MAC PDU is composed of a plurality of Radio Link Control (RLC) PDUs and a plurality of RLC PDU segments; according to one of each MAC PDU The header field demultiplexes the MAC PDU to retrieve the RLC PDU and the RLC PDU segment; reorders the RLC PDU and the RLC PDU segment according to Transmission Sequence Numbers (TSNs), and performs a repetition detection of the RLC PDU and the RLC PDU segment, wherein each transmission sequence number is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment; and the use is included in each of the RLCs The PDU and the information in the header field of each of the RLC PDU segments are used to reassemble the RLC PDU and the RLC PDU segment into a plurality of RLC Service Data Units (SDUs).

在一示範的實施例中,本揭露係有關於一在一無線網路中用以接收複數數據封包的方法。上述方法用於一通訊裝置中。上述方法包括以下步驟:透過一中繼使用者設備(User Equipment,UE)及一基地台接收來自上述無線網路之一來源端UE的複數第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述第一MAC PDU係由複數中繼RLC(Relay RLC,RRLC)PDU所組成,其中上述RRLC PDU係為介於一MAC層及RLC層之間一協定層的PDU,並直接接收來自上述來源端UE的複數第二MAC PDU,其中上述第二MAC PDU係由複數第一RLC PDU及複數第一RLC PDU分段所組成;根據每一第一MAC PDU之一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RRLC PDU,並根據每一第二MAC PDU之一標頭欄位解多工操作上述第二MAC PDU以擷取上述第一RLC PDU及上述第一RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RRLC PDU,並執行上述RRLC PDU的一重複偵測,其中每一傳輸序號被包括在每一RRLC PDU之一標頭欄位中;使用包括於上述每一RRLC PDU中之上述標頭欄位之資訊來重組上述RRLC PDU至複數第二RLC PDU及複數第二RLC PDU分段;根據上述傳輸序號重新排序上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段,並執行上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括在上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 In an exemplary embodiment, the present disclosure is directed to a method for receiving a plurality of data packets in a wireless network. The above method is used in a communication device. The method includes the following steps: receiving, by a relay user equipment (UE) and a base station, a plurality of first medium access control (MAC) protocols from a source UE of the wireless network. a data unit (PDU), wherein the first MAC PDU is composed of a plurality of relay RLC (RRLC) PDUs, wherein the RRLC PDU is a protocol between a MAC layer and an RLC layer. Layer PDU, and directly receiving a plurality of second MAC PDUs from the source UE, where the second MAC The PDU is composed of a plurality of first RLC PDUs and a plurality of first RLC PDU segments; demultiplexing the first MAC PDU according to a header field of each first MAC PDU to retrieve the RRLC PDU And multiplexing the second MAC PDU according to a header field of each second MAC PDU to retrieve the first RLC PDU and the first RLC PDU segment; according to the transmission sequence number (TSNs) Reordering the above RRLC PDUs and performing a repeat detection of the RRLC PDUs described above, wherein each transmission sequence number is included in one of the header fields of each RRLC PDU; using the above-mentioned labels included in each of the RRLC PDUs described above The header field information is used to recombine the RRLC PDU to the plurality of second RLC PDUs and the plurality of second RLC PDU segments; and reordering the first RLC PDU, the first RLC PDU segment, and the second RLC PDU according to the foregoing transmission sequence number And the second RLC PDU segment, and performing a repeated detection of the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment, wherein each transmission sequence number is Included in each RLC PDU and each RLC PDU Recombining the first RLC PDU, the first RLC PDU segment, in a header field of one of the segments; and using information included in each of the RLC PDUs and the header field of each of the RLC PDU segments And the second RLC PDU and the second RLC PDU are segmented into a plurality of RLC Service Data Units (SDUs).

在一示範的實施例中,本揭露係有關於一種分配用於複數使用者設備(User Equipment,UE)之裝置間(Device-to-Device,D2D)通訊資源的方法。上述方法用於一基地台中。上述方法包括以下步驟:接收由上述UE所報告的通道狀態資訊;根據上述通道狀態資訊估計所有D2D通訊對的鏈路品質;根據上述鏈路品質決定每一D2D通訊對的一適合的D2D通訊模式; 以及根據上述鏈路品質分配物理資源塊(Physical Resource Blocks,PRBs)。 In an exemplary embodiment, the present disclosure is directed to a method of allocating Device-to-Device (D2D) communication resources for a plurality of User Equipments (UEs). The above method is used in a base station. The method includes the following steps: receiving channel state information reported by the UE; estimating link quality of all D2D communication pairs according to the channel state information; determining a suitable D2D communication mode of each D2D communication pair according to the link quality ; And allocating physical resource blocks (Physical Resource Blocks, PRBs) according to the above link quality.

在一些實施例中,上述方法更包括:判斷是否具有未分配任何PRB的至少一D2D通訊對;以及當判斷具有未分配任何PRB的上述至少一D2D通訊對時,根據一數據率增加與上述至少一D2D通訊對分享上述已分配PRB。在一些實施例中,上述適合的D2D通訊模式係在一來源端UE及一目的端UE之間、透過一中繼UE在上述來源端UE及上述目的端UE之間或透過上述基地台在上述來源端UE及上述目的端UE之間的一連接組合。 In some embodiments, the method further includes: determining whether there is at least one D2D communication pair to which no PRB is allocated; and when determining the at least one D2D communication pair having no PRB assigned, increasing according to a data rate and the foregoing A D2D communication pair shares the above allocated PRB. In some embodiments, the above-mentioned suitable D2D communication mode is between a source UE and a destination UE, and between the source UE and the destination UE through a relay UE or through the base station. A connection combination between the source UE and the destination UE.

在一示範的實施例中,本揭露係有關於一種在一無線網路中用於裝置間(Device-to-Device,D2D)通訊的通訊系統。上述通訊系統至少包括一來源端使用者設備(User Equipment,UE)、一目的端UE、一中繼UE以及一基地台。上述基地台接收由上述來源端UE、上述目的端UE及上述中繼UE所報告的通道狀態資訊。上述基地台根據上述通道狀態資訊估計所有D2D通訊對的鏈路品質,根據上述鏈路品質決定從上述來源端UE到上述目的端UE的一適合的D2D通訊模式,並傳送一資源授與(resource grant)至上述來源端UE以指示上述來源端UE在上述適合的D2D通訊模式中傳送數據封包至上述目的端UE;其中上述適合的D2D通訊模式係在上述來源端UE及上述目的端UE之間、透過上述中繼UE在上述來源端UE及上述目的端UE之間或透過上述基地台在上述來源端UE及上述目的端UE之間的一連接組合。 In an exemplary embodiment, the present disclosure is directed to a communication system for Device-to-Device (D2D) communication in a wireless network. The communication system includes at least one source device (User Equipment, UE), a destination UE, a relay UE, and a base station. The base station receives channel status information reported by the source UE, the destination UE, and the relay UE. The base station estimates the link quality of all D2D communication pairs according to the channel state information, determines a suitable D2D communication mode from the source UE to the destination UE according to the link quality, and transmits a resource grant (resource) Granting to the source UE to indicate that the source UE transmits a data packet to the destination UE in the suitable D2D communication mode; wherein the suitable D2D communication mode is between the source UE and the destination UE And connecting, by the relay UE, a connection between the source UE and the destination UE or the base station between the source UE and the destination UE.

在一些實施例中,上述適合的D2D通訊模式係為透過上述中繼UE在上述來源端UE及上述目的端UE之間的上述連接組 合,上述中繼UE更至少包括:一控制電路、一處理器以及一記憶體。上述處理器設置於上述控制電路中。上述記憶體設置於上述控制電路中並耦接上述處理器。上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:接收一或多個第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其包括複數無線電鏈路控制(Radio Link Control,RLC)PDU,上述PDU來自上述無線網路之上述來源端UE且預計傳送至上述目的端UE;根據每一第一MAC PDU的一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RLC PDU;根據一或多個MAC PDU大小由一或多個上述RLC PDU中產生複數RLC PDU分段或由所有上述RLC PDU中產生複數中繼RLC(Relay RLC,RRLC)PDU,其中上述RRLC係為介於一MAC層及一RLC層之間的一協定層;根據一先進先出(First-in First-out,FIFO)原則多工操作(multiplex)上述RLC PDU及上述RLC PDU分段或上述RRLC PDU為一或多個第二MAC PDU;以及傳送上述第二MAC PDU至上述目的端UE。在一些實施例中,上述目的端UE更至少包括:一控制電路、一處理器及一記憶體。上述處理器設置於上述控制電路中。上述記憶體設置於上述控制電路中並耦接上述處理器。上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:透過上述中繼UE、上述基地台接收並直接接收來自上述來源端UE的一或多個媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述MAC PDU係由複數無線電鏈路控制(Radio Link Control,RLC)PDU及複數RLC PDU分段所組成;根據每一MAC PDU之一標頭欄 位解多工操作上述MAC PDU以擷取上述RLC PDU及上述RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RLC PDU及上述RLC PDU分段,並執行上述RLC PDU及上述RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括於上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述RLC PDU及上述RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。在一些實施例中,上述目的端UE更至少包括:一控制電路、一處理器及一記憶體。上述處理器設置於上述控制電路中。上述記憶體設置於上述控制電路中並耦接上述處理器。上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:透過上述中繼UE及上述基地台接收來自上述來源端UE的複數第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述第一MAC PDU係由複數中繼RLC(Relay RLC,RRLC)PDU所組成,其中上述RRLC PDU係為介於一MAC層及RLC層之間一協定層的PDU,並直接接收來自上述來源端UE的複數第二MAC PDU,其中上述第二MAC PDU係由複數第一RLC PDU及複數第一RLC PDU分段所組成;根據每一第一MAC PDU之一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RRLC PDU,並根據每一第二MAC PDU之一標頭欄位解多工操作上述第二MAC PDU以擷取上述第一RLC PDU及上述第一RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RRLC PDU,並執行上述RRLC PDU的一重複偵測,其中每一傳輸 序號被包括在每一RRLC PDU之一標頭欄位中;使用包括於上述每一RRLC PDU中之上述標頭欄位之資訊來重組上述RRLC PDU至複數第二RLC PDU及複數第二RLC PDU分段;根據上述傳輸序號重新排序上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段,並執行上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括在上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。在一些實施例中,上述適合的D2D通訊模式係為透過上述基地台在上述來源端UE及上述目的端UE之間的上述連接組合,上述基地台更至少包括:一控制電路、一處理器以及一記憶體。上述處理器設置於上述控制電路中。上述記憶體設置於上述控制電路中並耦接上述處理器;其中上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:接收一或多個第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其包括複數無線電鏈路控制(Radio Link Control,RLC)PDU,上述RLC PDU來自上述無線網路之一來源端使用者設備(User Equipment,UE)且預計傳送至一目的端UE;根據每一第一MAC PDU的一標頭欄位解多工操作上述第一MAC PDU以擷取上述RLC PDU;根據一或多個MAC PDU大小由一或多個上述RLC PDU中產生複數RLC PDU分段或由所有上述 RLC PDU中產生複數中繼RLC(Relay RLC,RRLC)PDU,其中上述RRLC係為介於一MAC層及一RLC層之間的一協定層;根據一先進先出(First-in First-out,FIFO)原則或服務品質(Quality of Service,QoS)參數多工操作(multiplex)上述RLC PDU及上述RLC PDU分段或上述RRLC PDU為一或多個第二MAC PDU;以及傳送上述第二MAC PDU至上述目的端UE。 In some embodiments, the foregoing suitable D2D communication mode is the foregoing connection group between the source UE and the destination UE through the relay UE. The relay UE further includes at least: a control circuit, a processor, and a memory. The above processor is provided in the above control circuit. The memory is disposed in the control circuit and coupled to the processor. The processor is configured to execute a code stored in the memory to perform: receiving one or more first Medium Access Control (MAC) Protocol Data Units (PDUs), Including a plurality of Radio Link Control (RLC) PDUs from the source UE of the wireless network and expected to be transmitted to the destination UE; according to a header field solution of each first MAC PDU Demultiplexing the first MAC PDU to retrieve the RLC PDU; generating a plurality of RLC PDU segments from one or more of the RLC PDUs according to one or more MAC PDU sizes or generating a plurality of the foregoing RLC PDUs Relay RLC (RRLC) PDU, wherein the RRLC is a protocol layer between a MAC layer and an RLC layer; and is multiplexed according to a first-in first-out (FIFO) principle. And multiplexing the RLC PDU and the RLC PDU segment or the RRLC PDU as one or more second MAC PDUs; and transmitting the second MAC PDU to the destination UE. In some embodiments, the destination UE further includes at least: a control circuit, a processor, and a memory. The above processor is provided in the above control circuit. The memory is disposed in the control circuit and coupled to the processor. The processor is configured to execute a code stored in the memory to perform: receiving, by the relay UE, the base station, and directly receiving one or more media access control from the source UE (Medium Access Control, MAC) Protocol Data Unit (PDU), wherein the MAC PDU is composed of a plurality of Radio Link Control (RLC) PDUs and a plurality of RLC PDU segments; according to one of each MAC PDU Header bar Demultiplexing the MAC PDU to extract the RLC PDU and the RLC PDU segment; reordering the RLC PDU and the RLC PDU segment according to Transmission Sequence Numbers (TSNs), and executing the RLC PDU and the foregoing a repeat detection of RLC PDU segments, wherein each transmission sequence number is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment; and the use of each of the RLC PDUs included in each of the above The information in the above header field of the RLC PDU segment reassembles the RLC PDU and the RLC PDU segment into a plurality of RLC Service Data Units (SDUs). In some embodiments, the destination UE further includes at least: a control circuit, a processor, and a memory. The above processor is provided in the above control circuit. The memory is disposed in the control circuit and coupled to the processor. The processor is configured to execute a code stored in the memory to perform: receiving, by the relay UE and the base station, a plurality of first medium access control (MAC) from the source UE a protocol data unit (PDU), wherein the first MAC PDU is composed of a plurality of relay RLC (RRLC) PDUs, wherein the RRLC PDU is between a MAC layer and an RLC layer. a PDU of the protocol layer, and directly receiving a plurality of second MAC PDUs from the source UE, wherein the second MAC PDU is composed of a plurality of first RLC PDUs and a plurality of first RLC PDU segments; Decoding a first MAC PDU to retrieve the RRLC PDU, and demultiplexing the second MAC PDU according to a header field of each second MAC PDU. Extracting the first RLC PDU and the first RLC PDU segment; reordering the RRLC PDU according to Transmission Sequence Numbers (TSNs), and performing a repeated detection of the RRLC PDU, where each transmission The sequence number is included in a header field of one of the RRLC PDUs; the RRLC PDU is reassembled to the second and second RLC PDUs using the information of the header field included in each of the RRLC PDUs Segmenting; reordering the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment according to the foregoing transmission sequence number, and executing the first RLC PDU and the first RLC PDU a repeating detection of the segment, the second RLC PDU, and the second RLC PDU segment, wherein each transmission sequence number is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment; Recombining the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second by using information included in each of the RLC PDUs and each of the foregoing header fields of each RLC PDU segment The RLC PDU is segmented into a plurality of RLC Service Data Units (SDUs). In some embodiments, the suitable D2D communication mode is the foregoing connection combination between the source UE and the destination UE through the base station, and the base station further includes: a control circuit, a processor, and A memory. The above processor is provided in the above control circuit. The memory is disposed in the control circuit and coupled to the processor; wherein the processor is configured to execute a code stored in the memory to perform: receiving one or more first media access controls (Medium) Access Control (MAC) protocol data unit (PDU), which includes a plurality of Radio Link Control (RLC) PDUs, and the RLC PDUs are from a source device of the wireless network (User Equipment) And UE) is expected to be transmitted to a destination UE; the first MAC PDU is multiplexed according to a header field of each first MAC PDU to retrieve the RLC PDU; according to one or more MAC PDU sizes Generating multiple RLC PDU segments in one or more of the above RLC PDUs or by all of the above A plurality of relay RLC (Relay RLC, RRLC) PDUs are generated in the RLC PDU, wherein the RRLC is a protocol layer between a MAC layer and an RLC layer; according to a first-in first-out (First-in First-out, FIFO) principle or quality of service (QoS) parameter multiplexing (multiplex) the above RLC PDU and the above RLC PDU segment or the RRLC PDU as one or more second MAC PDUs; and transmitting the second MAC PDU To the above-mentioned destination UE.

下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiments are described in detail with reference to the accompanying drawings.

200‧‧‧通訊裝置 200‧‧‧Communication device

202‧‧‧輸入裝置 202‧‧‧ Input device

204‧‧‧輸出裝置 204‧‧‧Output device

206‧‧‧控制電路 206‧‧‧Control circuit

208‧‧‧中央處理器 208‧‧‧Central Processing Unit

210‧‧‧記憶體 210‧‧‧ memory

212‧‧‧程式碼 212‧‧‧ Code

214‧‧‧收發器 214‧‧‧ transceiver

300‧‧‧應用層 300‧‧‧Application layer

302‧‧‧第三層 302‧‧‧ third floor

304‧‧‧第二層 304‧‧‧ second floor

306‧‧‧第一層 306‧‧‧ first floor

400‧‧‧訊息流程圖 400‧‧‧Information flow chart

S405、S410、S415、S420、S425、S430‧‧‧步驟 S405, S410, S415, S420, S425, S430‧‧ steps

500‧‧‧無線電協定棧 500‧‧‧ Radio Protocol Stack

510‧‧‧來源端UE 510‧‧‧Source UE

520‧‧‧目的端UE 520‧‧‧ destination UE

512、522‧‧‧PDCP 512, 522‧‧‧PDCP

514、524‧‧‧RLC 514, 524‧‧‧RLC

516、526‧‧‧MAC 516, 526‧‧‧MAC

518、528‧‧‧PHY 518, 528‧‧‧PHY

800‧‧‧無線電協定棧 800‧‧‧RF protocol stack

830‧‧‧中繼UE 830‧‧‧Relay UE

832‧‧‧RRLC 832‧‧‧RRLC

834‧‧‧MAC 834‧‧‧MAC

1000‧‧‧無線電協定棧 1000‧‧‧Radio Protocol Stack

1030‧‧‧中繼UE 1030‧‧‧Relay UE

1032、1022‧‧‧RRLC 1032, 1022‧‧‧RRLC

1036‧‧‧MAC 1036‧‧‧MAC

1200‧‧‧無線電協定棧 1200‧‧‧ Radio Protocol Stack

1240‧‧‧eNB 1240‧‧‧eNB

1232‧‧‧RRLC 1232‧‧‧RRLC

1246‧‧‧MAC 1246‧‧‧MAC

1300‧‧‧無線電協定棧 1300‧‧‧ Radio Protocol Stack

1340‧‧‧eNB 1340‧‧‧eNB

1332、1322‧‧‧RRLC 1332, 1322‧‧‧RRLC

1346‧‧‧MAC 1346‧‧‧MAC

1400‧‧‧流程圖 1400‧‧‧flow chart

S1405、S1410、S1415、S1420、S1425‧‧‧步驟 S1405, S1410, S1415, S1420, S1425‧‧‧ steps

1500‧‧‧流程圖 1500‧‧‧flow chart

S1505、S1510、S1515、S1520‧‧‧步驟 S1505, S1510, S1515, S1520‧‧‧ steps

1600‧‧‧流程圖 1600‧‧‧flow chart

S1605、S1610、S1615、S1620、S1625‧‧‧步驟 S1605, S1610, S1615, S1620, S1625‧‧‧ steps

1700‧‧‧小區 1700‧‧‧Community

1900‧‧‧功能方塊圖 1900‧‧‧ functional block diagram

1910、1905、1915、1920‧‧‧方塊 1910, 1905, 1915, 1920‧‧‧ squares

2300 2300

S2305、S2310、S2315、S2320‧‧‧步驟 S2305, S2310, S2315, S2320‧‧‧ steps

第1A圖係顯示未有中間節點參與的D2D通訊直接路徑模式的示例。 Figure 1A shows an example of a D2D communication direct path mode without the participation of intermediate nodes.

第1B圖係顯示D2D通訊之一中繼路徑模式的示例。 Figure 1B shows an example of one of the relay path modes of D2D communication.

第1C圖係顯示D2D通訊之一本地路由模式的示例。 Figure 1C shows an example of one of the local routing modes of D2D communication.

第2圖係以另一方式表示根據本揭露一實施例所述之通訊裝置之簡化功能方塊圖。 FIG. 2 is a simplified functional block diagram of a communication device according to an embodiment of the present disclosure.

第3圖係根據本揭露一實施例中表示第2圖中執行程式碼之簡化功能方塊圖。 Figure 3 is a simplified functional block diagram showing the execution of code in Figure 2, in accordance with an embodiment of the present disclosure.

第4圖係顯示根據本揭露一實施例所述之一來源端UE透過不同D2D通訊模式傳送數據封包至一目的端UE之訊息流程圖。 FIG. 4 is a flow chart showing the message that a source UE transmits a data packet to a destination UE through different D2D communication modes according to an embodiment of the disclosure.

第5圖係顯示根據本揭露一實施例所述之用於在一來源端UE及一目的端UE之間傳輸數據封包直接路徑模式的無線電協定棧(Radio Protocol Stack)。 FIG. 5 is a diagram showing a Radio Protocol Stack for transmitting a data packet direct path mode between a source UE and a destination UE according to an embodiment of the present disclosure.

第6圖係顯示根據本揭露一實施例所述之RLC SDU連結及分割之一示意圖。 FIG. 6 is a schematic diagram showing one of RLC SDU connection and segmentation according to an embodiment of the present disclosure.

第7圖係顯示根據本揭露一實施例所述之一RLC PDU重新分割之一示意圖。 Figure 7 is a diagram showing one of the re-segmentation of one of the RLC PDUs according to an embodiment of the present disclosure.

第8圖係顯示根據本揭露一實施例所述之藉由使用一中繼UE在一來源端UE及一目的端UE之間傳輸數據封包之中繼路徑模式的無線電協定棧。 Figure 8 is a diagram showing a radio protocol stack in a relay path mode for transmitting data packets between a source UE and a destination UE by using a relay UE according to an embodiment of the present disclosure.

第9圖係顯示根據本揭露一實施例之由中繼UE處理數據封包的例子。 Figure 9 is a diagram showing an example of processing a data packet by a relay UE in accordance with an embodiment of the present disclosure.

第10圖係顯示根據本揭露一實施例所述之藉由使用一中繼UE在一來源端UE及一目的端UE之間傳輸數據封包之中繼路徑模式的無線電協定棧。 Figure 10 is a diagram showing a radio protocol stack in a relay path mode for transmitting data packets between a source UE and a destination UE by using a relay UE according to an embodiment of the present disclosure.

第11圖係顯示根據本揭露另一實施例由中繼UE處理數據封包的另一例子。 Figure 11 is a diagram showing another example of processing a data packet by a relay UE in accordance with another embodiment of the present disclosure.

第12圖係顯示根據本揭露一實施例所述之經由eNB在一來源端UE及一目的端UE之間傳輸數據封包之中繼路徑模式的無線電協定棧。 Figure 12 is a diagram showing a radio protocol stack of a relay path pattern for transmitting data packets between a source UE and a destination UE via an eNB according to an embodiment of the present disclosure.

第13圖係顯示根據本揭露一實施例所述之經由eNB在一來源端UE及一目的端UE之間傳輸數據封包之中繼路徑模式的無線電協定棧。 Figure 13 is a diagram showing a radio protocol stack of a relay path pattern for transmitting data packets between a source UE and a destination UE via an eNB according to an embodiment of the present disclosure.

第14圖係顯示根據本揭露一實施例所述之在一無線網路中傳輸用以傳送複數數據封包方法之一流程圖。 Figure 14 is a flow chart showing a method for transmitting a plurality of data packets in a wireless network according to an embodiment of the present disclosure.

第15圖係顯示根據本揭露一實施例所述之在一無線網路中傳輸用以接收複數數據封包方法之一流程圖。 Figure 15 is a flow chart showing a method for transmitting a plurality of data packets in a wireless network according to an embodiment of the present disclosure.

第16圖係顯示根據本揭露一實施例所述之在一無線網路中傳輸用以接收複數數據封包方法之一流程圖。 Figure 16 is a flow chart showing a method for transmitting a plurality of data packets in a wireless network according to an embodiment of the present disclosure.

第17圖係顯示根據本揭露一實施例所述之在LTE-A系統中具有通訊模式的D2D通訊之一示意圖。 Figure 17 is a diagram showing one of D2D communication having a communication mode in an LTE-A system according to an embodiment of the present disclosure.

第18圖係顯示根據本揭露一實施例所述之在每一子訊框期間三種D2D通訊模式下傳輸數據速率估計的原則。 Figure 18 is a diagram showing the principle of transmission data rate estimation in three D2D communication modes during each subframe according to an embodiment of the present disclosure.

第19圖係顯示根據本揭露一實施例所述之排程程序之功能方塊圖。 Figure 19 is a functional block diagram showing a scheduling procedure according to an embodiment of the present disclosure.

第20圖係顯示根據本揭露一實施例所述之由eNB所執行所有D2D通訊對的模式選擇程序之流程圖。 Figure 20 is a flow chart showing a mode selection procedure for all D2D communication pairs performed by an eNB according to an embodiment of the present disclosure.

第21圖係顯示根據本揭露一實施例所述之在排程演算法中第一階段PRB分配之一流程圖。 Figure 21 is a flow chart showing a first stage PRB allocation in a scheduling algorithm according to an embodiment of the present disclosure.

第22圖係顯示根據本揭露一實施例所述之在第二階段資源分配中由eNB執行之二維最佳重新使用夥伴尋找程序之一示例。 Figure 22 is a diagram showing an example of a two-dimensional optimal reuse partner seeking procedure performed by an eNB in a second-stage resource allocation according to an embodiment of the present disclosure.

第23圖係顯示根據本揭露一實施例所述之複數使用者設備(UE)用於分配D2D通訊資源之方法的一流程圖。 Figure 23 is a flow chart showing a method for a plurality of user equipments (UEs) for allocating D2D communication resources according to an embodiment of the present disclosure.

本揭露內容的示範性實施例被充分詳細描述如下,以使本領域之技術人士來實現和實施本揭露內容。重要且需了解的是,本揭露的示範性實施例可按照許多替換形式實施,並不應 被解釋為只侷限於這裡所提出本揭露的示範性實施例。 Exemplary embodiments of the present disclosure are described in sufficient detail to enable those skilled in the art to implement and practice the disclosure. It is important to understand that the exemplary embodiments of the present disclosure can be implemented in many alternative forms and should not be It is to be construed as being limited only by the exemplary embodiments disclosed herein.

因此,儘管本揭露可受到各種修改和替換形式的影響,但是其特定實施例在圖中作為示例示出並將在這裡詳細描述。然而,應理解的是,不意旨將本揭露限於所公開的特定形式。相反地,本揭露將涵蓋本揭露精神和範圍內的所有修改、等效、和替換。相同的附圖標記在圖的描述中係表示相同元件。 Accordingly, while the present disclosure may be susceptible to various modifications and alternative forms, the specific embodiments are illustrated in the drawings and are described in detail herein. It should be understood, however, that the invention is not limited to the specific forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives. The same reference numerals are used in the drawings to refer to the same elements.

將理解的是,儘管術語第一、第二、A、B等可被使用於此作為本揭露元件的參考,但此些元件不應受到這些術語的限制。舉例來說,第一元件可被稱為第二元件,第二元件可被稱為第一元件,而不脫離本揭露的範圍。如本文中所使用的術語「和/或」包括一或多個對象的任一及所有組合。 It will be understood that, although the terms first, second, A, B, etc. may be used as a reference to the present disclosure, such elements are not limited by these terms. For example, a first element could be termed a second element, and a second element could be termed a first element without departing from the scope of the disclosure. The term "and/or" as used herein includes any and all combinations of one or more of the objects.

將理解的是,當元件被稱為與另一元件「連接」或「耦接」時,其可與另一元件直接連接或耦接,或者可存在介於中間的元件。相反地,當元件被稱為與另一元件「直接連接」或「直接耦接」時,不存在介於中間的元件。用來描述元件之間關係的其他詞語應按照類似的方式解釋(即,「之間」相對「直接之間」、「相鄰」相對「直接相鄰」等)。 It will be understood that when an element is referred to as "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or the intervening element can be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there is no intervening element. Other words used to describe the relationship between components should be interpreted in a similar manner (ie, "between" and "directly", "adjacent" versus "directly adjacent", etc.).

這裡使用的術語僅為了描述特定實施例的目的並不用以限制本揭露。本文使用的冠詞「一(a)」、「一(an)」及「該(the)」在它們具有單個指示物件時是單數,但是本文中單數形式的使用不應排除多於一個指示物件的存在。換言之,除非上下文清晰地指示相反的情況,以單數指代的元素可以計數一個或多個。還將理解的是,術語「包括(comprises)」、「包括(comprising)」、「包含(includes)」和/或「包含(including)」在本文中使用時指定了所 陳述的特徵、項、步驟、操作、元件和/或部件的存在,但並不排除一或多個其他特徵、項、步驟、操作、元件、部件和/或其群組的存在或增加。 The terminology used herein is for the purpose of describing particular embodiments and is not intended to The articles "a", "an" and "the" are used in the singular, and the singular singular presence. In other words, the elements referred to in the singular can refer to one or more unless the context clearly indicates the contrary. It will also be understood that the terms "comprises", "comprising", "includes" and/or "including" are used in this document. The existence of the features, the items, the steps, the operations, the elements and/or the components of the present invention, but does not exclude the presence or addition of one or more other features, items, steps, operations, elements, components and/or groups thereof.

除非另有定義,本文所使用的所有術語(包括技術和科學術語)將被解釋為本領域所慣用的。還將理解的是,常用的術語也應被解釋為相關領域所慣用的,而並非理想化的或過於正式的含意,除非本文明確地加以定義。 All terms (including technical and scientific terms) used herein are to be interpreted as being used in the art unless otherwise defined. It will also be understood that commonly used terms should also be interpreted as being used in the relevant art and not intended to be ideal or too formal, unless explicitly defined herein.

第三代合作夥伴計畫(The 3rd Generation Partnership Project),也被稱為「3GPP」,是一項合作協議,旨在定義適用於全球的第三代和第四代無線通信系統的技術規範和技術報告。第三代合作夥伴計畫定義了下一代移動網路、系統及設備的規格。 The 3rd Generation Partnership Project, also known as "3GPP", is a collaborative agreement to define technical specifications for third- and fourth-generation wireless communication systems worldwide. Technical Reports. The third-generation partner program defines specifications for next-generation mobile networks, systems, and devices.

第三代合作夥伴計畫長期演進技術(Long Term Evolution,LTE)係用以提高通用移動通信系統(Universal Mobile Telecommunications System,UMTS)手機或移動裝置的標準,以面對未來的需求。在一個方面,通用移動通信系統已被修改,以提供支持及演進統一陸地無線接取(Evolved Universal Terrestrial Radio Access,E-UTRA)和演進統一陸地無線接取網路(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)的規格。 The third generation of partners plans Long Term Evolution (LTE) to improve the standards of Universal Mobile Telecommunications System (UMTS) mobile phones or mobile devices to meet future needs. In one aspect, a universal mobile communication system has been modified to provide support and evolution of Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (Evolved Universal Terrestrial Radio Access Network, E-UTRAN) specifications.

本揭露的通訊系統及方法所描述的至少某些部分可能有關於第三代合作夥伴計畫長期演進技術(LTE),進化版長期演進技術(LTE Advanced,LTE-A)及其它標準(例如,第三代合作夥伴計畫所推出第8、9、10及/或11版)。然而,本揭露的範圍不應被侷限於這些方面。至少在某些方面,本文所公開的通訊系統及方法可以用在其他類型的無線通訊系統中。 At least some portions of the communication systems and methods disclosed herein may be related to 3rd Generation Partnership Project Long Term Evolution (LTE), Evolution Long Term Evolution (LTE Advanced, LTE-A) and other standards (eg, The third generation of partner programs is available in versions 8, 9, 10 and/or 11). However, the scope of the disclosure should not be limited in these respects. In at least some aspects, the communication systems and methods disclosed herein can be used in other types of wireless communication systems.

無線通訊裝置可以為用於通信語音及/或傳輸數據至一基地台的電子裝置,其可與一網路裝置互相通訊(例如,公共交換電話網路(Public Switched Telephone Network,PSTN)、網際網路(Internet)等)。在本揭露所描述的通訊系統及方法,無線通訊裝置可被稱為移動台、使用者設備(User Equipment,UE)、存取終端、使用者使用用戶端(Subscriber Station)、移動終端、使用者終端、終端、使用者使用單元等。舉例來說,無線通訊裝置可以為蜂窩式手持裝置、智慧型手持裝置、個人數位助理(PDA)、筆記本電腦、上網本(Netbook)、電子閱讀器(e-reader)、無線數據機(Wireless Modem)等裝置。在第三代合作夥伴計畫規格中,無線通訊裝置通常被稱為使用者設備(UE)。然而,作為本揭露之範圍不應被侷限在第三代合作夥伴計畫標準中,用語「使用者設備(UE)」、「無線通訊裝置」可以在本揭露中互換使用,皆表示為「無線通訊裝置」普通的用語。 The wireless communication device can be an electronic device for communicating voice and/or transmitting data to a base station, which can communicate with a network device (for example, Public Switched Telephone Network (PSTN), Internet) Road (Internet), etc.). In the communication system and method described in the disclosure, the wireless communication device may be referred to as a mobile station, a user equipment (User Equipment, UE), an access terminal, a user using a subscriber station (Subscriber Station), a mobile terminal, and a user. The terminal, the terminal, the user use the unit, and the like. For example, the wireless communication device can be a cellular handheld device, a smart handheld device, a personal digital assistant (PDA), a notebook computer, a netbook, an e-reader, and a wireless modem (Wireless Modem). And other devices. In the third generation of partner program specifications, wireless communication devices are commonly referred to as user equipment (UE). However, the scope of this disclosure should not be limited to the third-generation partner program standards. The terms "user equipment (UE)" and "wireless communication device" can be used interchangeably in this disclosure. Communication device" common language.

在第三代合作夥伴計畫規格中,基地台通常被稱為B節點(Node B)、進化B節點(evolved Node B,eNB)、增強型B節點(enhanced eNB)、家庭進化B節點(home evolved Node B,HeNB)、家庭增強型B節點(home enhanced Node B,HeNB)或其他類似的用語。由於本揭露的範圍不應只侷限於第三代合作夥伴計畫標準,因此用語「基地台」、「節點B」、「基站」和「家庭基地台」可以互換使用,皆表示為本揭露中「基地台」之普通用語。此外,用語「基地台」可被用來表示一接存取點。存取點可以是一電子裝置,提供一用於無線通訊的設備至一網路(例如,區域網路(Local Area Network,LAN)、網際網路(Internet)等)的存取。也可以使 用的用語「通訊設備」來表示的無線通訊裝置和/或基地台。 In the third-generation partner program specification, the base station is generally referred to as a Node B, an evolved Node B (eNB), an enhanced Node B (enhanced eNB), and a family evolved Node B (home). Evolved Node B, HeNB), home enhanced Node B (HeNB) or other similar terms. Since the scope of this disclosure should not be limited to the third-generation partner program standards, the terms "base station", "node B", "base station" and "home base station" are used interchangeably and are indicated as being disclosed. The general term for "base station." In addition, the term "base station" can be used to mean an access point. The access point can be an electronic device that provides access to a network for wireless communication (eg, a local area network (LAN), an Internet, etc.). Can also make A wireless communication device and/or a base station, which is represented by the term "communication device".

第1A~1C圖係為三種不同D2D通訊模式的示意圖。第1A圖係顯示未有中間節點參與的D2D通訊直接路徑模式的示例。如第1A圖所示,一eNB傳送控制資訊至一來源端UE(例如,UE1)和一目的端UE(例如,UE 2)。在D2D通訊配置完成後,UE1可直接透過直接路徑發送數據封包至UE2。第1B圖係顯示D2D通訊之一中繼路徑模式的示例。如第1B圖所示,eNB也可傳送控制資訊至除了UE1和UE2之外的一或多個中繼UE(例如,UE3)。在D2D通訊配置完成後,UE1可藉由使用UE3透過中繼路徑傳送數據封包至UE2。第1C圖係顯示D2D通訊之一本地路由模式的示例。如第1C圖所示,eNB可傳送控制資訊至UE1和UE2。在D2D通訊配置完成後,UE1可透過上行鏈路(Uplink,UL)傳送數據封包至eNB。在eNB接收數據封包後,無須傳送數據封包至核心網路(Core Network,CN)可直接轉傳數據封包至UE2。UE2可透過下行鏈路(Downlink,DL)接收來自eNB的數據封包。 The 1A~1C diagram is a schematic diagram of three different D2D communication modes. Figure 1A shows an example of a D2D communication direct path mode without the participation of intermediate nodes. As shown in FIG. 1A, an eNB transmits control information to a source UE (for example, UE1) and a destination UE (for example, UE 2). After the D2D communication configuration is completed, UE1 can directly send a data packet to UE2 through the direct path. Figure 1B shows an example of one of the relay path modes of D2D communication. As shown in FIG. 1B, the eNB may also transmit control information to one or more relay UEs (eg, UE3) other than UE1 and UE2. After the D2D communication configuration is completed, the UE1 can transmit the data packet to the UE2 through the relay path by using the UE3. Figure 1C shows an example of one of the local routing modes of D2D communication. As shown in FIG. 1C, the eNB may transmit control information to UE1 and UE2. After the D2D communication configuration is completed, UE1 can transmit data packets to the eNB through an uplink (UL). After the eNB receives the data packet, it does not need to transmit the data packet to the core network (Core Network, CN) to directly forward the data packet to UE2. UE2 can receive data packets from the eNB through a downlink (DL).

接下來,參閱第2圖,第2圖係以另一方式表示根據本揭露一實施例所述之通訊裝置200之簡化功能方塊圖。如第2圖中所示,在一無線通訊系統中之通訊裝置200可用以具體化第1圖中之eNB、UE1、UE2及UE3,並且此通訊裝置可用於長期演進技術(LTE)系統,長期演進進階技術(LTE-A)系統,或其它與上述兩者近似之系統為佳。通訊裝置200可包括一輸入裝置202、一輸出裝置204、一控制電路206、一中央處理器(Central Processing Unit,CPU)208、一記憶體210、一程式碼212、一收發器214。控制電路206在記憶體210中透過中央處理器208執行程式碼212,並以此控 制在通訊裝置200中所進行之作業。通訊裝置200可利用輸入裝置202(例如鍵盤或數字鍵)接收使用者輸入訊號;也可由輸出裝置204(例如螢幕或喇叭)輸出圖像及聲音。收發器214在此用作接收及發送無線訊號,將接收之信號送往控制電路206,以及以無線方式輸出控制電路206所產生之信號。 Next, referring to FIG. 2, FIG. 2 is a simplified functional block diagram of a communication device 200 according to an embodiment of the present disclosure. As shown in FIG. 2, the communication device 200 in a wireless communication system can be used to embody the eNB, UE1, UE2, and UE3 in FIG. 1, and the communication device can be used in a Long Term Evolution (LTE) system for a long period of time. The Evolution Advanced Technology (LTE-A) system, or other systems similar to the above, are preferred. The communication device 200 can include an input device 202, an output device 204, a control circuit 206, a central processing unit (CPU) 208, a memory 210, a code 212, and a transceiver 214. The control circuit 206 executes the code 212 in the memory 210 through the central processing unit 208, and controls The work performed in the communication device 200 is performed. The communication device 200 can receive the user input signal by using the input device 202 (such as a keyboard or a numeric keypad); the image and sound can also be output by the output device 204 (such as a screen or a speaker). The transceiver 214 is here used to receive and transmit wireless signals, to send received signals to the control circuit 206, and to wirelessly output signals generated by the control circuit 206.

第3圖係根據本揭露一實施例中表示第2圖中執行程式碼212之簡化功能方塊圖。此實施例中,執行程式碼212包括一應用層300、一第三層302、一第二層304、並且與第一層306耦接。第三層302一般執行無線資源控制。第二層304一般執行鏈路控制。第一層306一般負責實體連接。 Figure 3 is a simplified functional block diagram showing execution of code 212 in Figure 2, in accordance with an embodiment of the present disclosure. In this embodiment, the execution code 212 includes an application layer 300, a third layer 302, a second layer 304, and is coupled to the first layer 306. The third layer 302 generally performs radio resource control. The second layer 304 generally performs link control. The first layer 306 is generally responsible for physical connections.

由於UE移動性及無線通道條件快速地變動,故在來源端UE和目的端UE之間一適合的D2D通訊模式也隨之改變。因此,本揭露提供一無線電資源排程演算法以動態決定適當適合的D2D通訊模式並配置無線電資源。另一方面,如何在不同D2D通訊模式中在不同節點,如來源端UE、中繼UE及目的端UE,處理數據封包並未提及在LTE標準中。因此,本揭露介紹了用於不同D2D通訊模式中最新的操作。此技術被詳細描述如下。 Since the UE mobility and wireless channel conditions change rapidly, a suitable D2D communication mode between the source UE and the destination UE also changes. Accordingly, the present disclosure provides a radio resource scheduling algorithm to dynamically determine an appropriately suitable D2D communication mode and configure radio resources. On the other hand, how to process data packets at different nodes, such as source UE, relay UE, and destination UE, in different D2D communication modes is not mentioned in the LTE standard. Therefore, the present disclosure describes the latest operations for different D2D communication modes. This technique is described in detail as follows.

第4圖係顯示根據本揭露一實施例所述之一來源端UE透過不同D2D通訊模式傳送數據封包至一目的端UE之訊息流程圖400。如第4圖所示,當eNB知道來源端UE欲傳送數據封包至目的端UE時,eNB可根據網路策略的需求或UE的需求決定使用D2D通訊。在步驟S405中,eNB可與來源端UE、目的端UE執行一D2D通訊設定程序以配置D2D配置,像是測量參數。接著,在步驟S410中,來源端UE、目的端UE及一中繼UE可執行通道品質測 量並向eNB報告結果。 FIG. 4 is a message flow diagram 400 showing a source UE transmitting data packets to a destination UE through different D2D communication modes according to an embodiment of the disclosure. As shown in FIG. 4, when the eNB knows that the source UE wants to transmit the data packet to the destination UE, the eNB may decide to use the D2D communication according to the requirements of the network policy or the needs of the UE. In step S405, the eNB may perform a D2D communication setting procedure with the source UE and the destination UE to configure a D2D configuration, such as a measurement parameter. Then, in step S410, the source UE, the destination UE, and a relay UE can perform channel quality measurement. And report the results to the eNB.

根據通道品質測量的結果,eNB在步驟S415中可執行一無線電資源排程演算法以決定在來源端UE和目的端UE之間一適合的D2D通訊模式,並配置無線電資源。無線電資源排程演算法的詳細說明將在描述於下方。在步驟S420、S425及S430中,eNB可透過實體下行鏈路控制通道(Physical Downlink Control Channel,PDCCH)在不同時間分別向來源端UE、目的端UE和中繼UE傳送一資源授與(resource grant)以通知在來源端UE和目的端UE之間適合的D2D通訊模式。 Based on the result of the channel quality measurement, the eNB may perform a radio resource scheduling algorithm in step S415 to determine a suitable D2D communication mode between the source UE and the destination UE, and configure radio resources. A detailed description of the radio resource scheduling algorithm will be described below. In steps S420, S425, and S430, the eNB may transmit a resource grant (resource grant) to the source UE, the destination UE, and the relay UE at different times through a physical downlink control channel (PDCCH). ) to inform the appropriate D2D communication mode between the source UE and the destination UE.

例如,在第一時間點,eNB可透過PDCCH向來源端UE和目的端UE分別傳送用於直接路徑模式的資源授與,以分配無線電資源給來源端UE和目的端UE(在步驟S420中的虛線),使得來源端UE可透過直接路徑直接傳送第一數據封包到目的端UE(在步驟S420中的實線)。在第二時間點,eNB可透過PDCCH分別傳送用於中繼路徑模式的資源授與至來源端UE、目的端UE和中繼UE,以分配無線電資源給來源端UE、目的端UE和中繼UE(在步驟S425中的虛線),使得來源端UE可使用中繼UE透過中繼路徑傳送第二數據封包到目的端UE(在步驟S425中的實線)。在第三時間點,eNB可透過PDCCH分別傳送用於本地路由模式的資源授與至來源端UE及目的端UE,以分配無線電資源給來源端UE和目的端UE(在步驟S430中的虛線),使得來源端UE可藉由eNB透過本地路由傳送第三數據封包到目的端UE(在步驟S430中的實線)。應注意的是,傳送至來源端UE、中繼UE和目的端UE的資源授與是不同的。 For example, at a first time point, the eNB may separately transmit resource grants for the direct path mode to the source UE and the destination UE through the PDCCH to allocate radio resources to the source UE and the destination UE (in step S420). The dotted line enables the source UE to directly transmit the first data packet to the destination UE through the direct path (the solid line in step S420). At a second time point, the eNB may separately transmit resources for the relay path mode to the source UE, the destination UE, and the relay UE through the PDCCH to allocate radio resources to the source UE, the destination UE, and the relay. The UE (dashed line in step S425) enables the source UE to transmit the second data packet to the destination UE through the relay path using the relay UE (the solid line in step S425). At a third time point, the eNB may separately transmit the resources for the local routing mode to the source UE and the destination UE through the PDCCH to allocate radio resources to the source UE and the destination UE (the dotted line in step S430). So that the source UE can transmit the third data packet to the destination UE through the local route by the eNB (the solid line in step S430). It should be noted that the resource grants transmitted to the source UE, the relay UE, and the destination UE are different.

本揭露的一些實施例係呈現不同的D2D通訊模式中用於傳送/重組數據封包之技術。此外,無線電資源排程演算法之詳細說明將在下方描述。 Some embodiments of the present disclosure present techniques for transmitting/recombining data packets in different D2D communication modes. In addition, a detailed description of the radio resource scheduling algorithm will be described below.

直接路徑模式Direct path mode

第5圖係顯示根據本揭露一實施例所述之用於在一來源端UE 510及一目的端UE 520之間傳輸數據封包直接路徑模式的無線電協定棧(Radio Protocol Stack)500。來源端UE 510的協定棧可包括封包數據匯聚協定(Packet Data Convergence Protocol,PDCP)層512、無線電鏈路控制(Radio Link Control,RLC)層514、一媒體存取控制(Medium Access Control,MAC)層516和實體(Physical,PHY)層518。目的端UE 520的協定棧可包括一PDCP層522、RLC層524、MAC層526和PHY層528。每一層接收從一較高層的複數服務數據單元(Service Data Unit,SDU),增加標頭至SDU以產生協定數據單元(Protocol Data Unit,PDU),並傳送PDU到一較低層。PDU在較下層被視為SDU。 FIG. 5 is a diagram showing a Radio Protocol Stack 500 for transmitting a data packet direct path mode between a source UE 510 and a destination UE 520 according to an embodiment of the present disclosure. The protocol stack of the source UE 510 may include a Packet Data Convergence Protocol (PDCP) layer 512, a Radio Link Control (RLC) layer 514, and a Medium Access Control (MAC). Layer 516 and Physical (PHY) layer 518. The protocol stack of the destination UE 520 may include a PDCP layer 522, an RLC layer 524, a MAC layer 526, and a PHY layer 528. Each layer receives a higher level Service Data Unit (SDU), adds a header to the SDU to generate a Protocol Data Unit (PDU), and transmits the PDU to a lower layer. The PDU is considered an SDU at a lower layer.

一PDCP實體和一RLC實體可被稱為無線承載(Radio Bearer,RB)。當RB在建立時,每一RB可配置對應的一組服務品質(Quality of Service,QoS)參數。UE可具有許多對應不同QoS請求的RB。eNB可根據通道品質測量結果及緩衝狀態報告(Buffer Status Report,BSR)動態決定每毫秒(millisecond)的無線電資源配置,並透過PDCCH傳送資源授與至來源端UE 510,以指示來源端UE 510在適合的D2D通訊模式中傳送數據封包至目的端UE 520。資源授與可包括目前這一毫秒無線電資源在哪裡以及相關的傳輸參數。此外,在來源端UE 510內多個RB之間的優先級處理係由來 源端UE內的MAC層516之MAC實體來決定。在PDCP層、RLC層和MAC層中處理數據封包之過程將說明如下。 A PDCP entity and an RLC entity may be referred to as a Radio Bearer (RB). When the RB is established, each RB may be configured with a corresponding set of Quality of Service (QoS) parameters. A UE may have many RBs corresponding to different QoS requests. The eNB may dynamically determine the radio resource configuration per millisecond according to the channel quality measurement result and the Buffer Status Report (BSR), and transmit the resource to the source UE 510 through the PDCCH transmission resource to indicate that the source UE 510 is The data packet is transmitted to the destination UE 520 in a suitable D2D communication mode. The resource grant can include where the current millisecond radio resource is and the associated transmission parameters. In addition, the priority processing between multiple RBs in the source UE 510 is derived from The MAC entity of the MAC layer 516 within the source UE determines. The process of processing data packets in the PDCP layer, the RLC layer, and the MAC layer will be described below.

在PDCP層512傳送端的PDCP實體執行IP封包的IP標頭壓縮,以節省用於傳送IP封包的無線電資源。在PDCP層522接收端的PDCP實體執行IP封包的IP標頭解壓縮,以擷取原始的IP封包。PDCP實體也執行加密/解密IP數據封包,以提供數據加密,避免資訊外洩。 The PDCP entity at the transmitting end of the PDCP layer 512 performs IP header compression of the IP packet to save radio resources for transmitting the IP packet. The PDCP entity at the receiving end of the PDCP layer 522 performs IP header decompression of the IP packet to retrieve the original IP packet. The PDCP entity also performs encryption/decryption of IP data packets to provide data encryption to avoid information leakage.

在RLC層514傳送端的RLC實體負責藉由分割及連結(concatenate)一或多個連續的SDU重建具有一適合大小的RLC PDU,如第6圖中所示。在RLC層524接收端的RLC實體係負責根據在一RLC標頭中分割及連結資訊重組RLC SDU。此外,一序號(Sequence Number,SN)被分配至每一RLC PDU並由每一RLC標報所攜帶。在RLC層524接收端的RLC實體可根據SN執行RLC PDU的重新排序和重複偵測。此外,在RLC層524接收端的RLC實體可通知在RLC層514傳送端的RLC實體哪個RLC PDU已丟失,以使RLC層514傳送端的RLC實體可重傳丟失的RLC PDU。如果重傳的RLC PDU大小不適合由MAC層516的MAC實體所決定新的大小時,RLC層514傳送端的RLC實體藉由重新分割已重傳RLC PDU的數據欄位來重建具有適合大小的多個RLC PDU分段,如第7圖所示,其中,每一RLC PDU分段的標頭中所攜帶的SN等於原本重傳RLC PDU的SN,且每一RLC PDU分段的標頭還攜帶所需的重新分割資訊,例如,分段偏移(Segment Offset,SO)。 The RLC entity at the transmitting end of the RLC layer 514 is responsible for reconstructing an RLC PDU having a suitable size by concatenating and concatenating one or more consecutive SDUs, as shown in FIG. The RLC real system at the receiving end of the RLC layer 524 is responsible for reassembling the RLC SDU based on splitting and concatenating information in an RLC header. In addition, a Sequence Number (SN) is assigned to each RLC PDU and carried by each RLCgram. The RLC entity at the receiving end of the RLC layer 524 can perform reordering and repeated detection of RLC PDUs according to the SN. In addition, the RLC entity at the receiving end of the RLC layer 524 can inform the RLC entity at the transmitting end of the RLC layer 514 which RLC PDU has been lost, so that the RLC entity at the transmitting end of the RLC layer 514 can retransmit the lost RLC PDU. If the retransmitted RLC PDU size is not suitable for the new size determined by the MAC entity of the MAC layer 516, the RLC entity at the transmitting end of the RLC layer 514 reconstructs multiple data of the appropriate size by re-segmenting the data field of the retransmitted RLC PDU. RLC PDU segmentation, as shown in Figure 7, wherein the SN carried in the header of each RLC PDU segment is equal to the SN of the original retransmitted RLC PDU, and the header of each RLC PDU segment carries Re-segmentation information required, for example, Segment Offset (SO).

在MAC層516傳送端的MAC實體可報告緩衝封包(即,BSR)的數量給eNB。當來源端UE 510接收來自eNB的一資源授與 時,來源端UE 510的MAC實體可根據QoS請求決定有多少位元可以由每一RLC實體所攜帶。由eNB所傳送之資源授與可指示授與至來源端UE 510的無線電資源和傳輸參數,其中授與至來源端UE 510的無線電資源和傳輸參數可由eNB根據在第4圖中步驟S410所取得之通道品質測量及BSR執行排程演算法所決定。 The MAC entity at the transmitting end of the MAC layer 516 can report the number of buffered packets (ie, BSRs) to the eNB. When the source UE 510 receives a resource grant from the eNB At the time, the MAC entity of the source UE 510 can determine how many bits can be carried by each RLC entity according to the QoS request. The resource grants transmitted by the eNB may indicate the radio resources and transmission parameters that are granted to the source UE 510, wherein the radio resources and transmission parameters granted to the source UE 510 may be obtained by the eNB according to step S410 in FIG. The channel quality measurement and BSR execution scheduling algorithm are determined.

在MAC層516發送端的MAC實體可藉由多工操作由不同RLC實體所遞送的MAC SDU(其等於RLC PDU或RLC PDU分段)建構一MAC PDU,其中每一MAC PDU的標頭攜帶每一MAC SDU大小及每一MAC SDU相應的RLC識別(Identification,ID)。在MAC層526接收端的MAC實體可根據MAC標頭中所攜帶之資訊解多工操作(demultiplex)MAC PDU以擷取MAC SDU。 The MAC entity at the sender of MAC layer 516 may construct a MAC PDU by multiplexing the MAC SDUs (which are equal to RLC PDUs or RLC PDU segments) delivered by different RLC entities, where the header of each MAC PDU carries each MAC SDU size and corresponding RLC identification (ID) for each MAC SDU. The MAC entity at the receiving end of the MAC layer 526 can demultiplex the MAC PDU according to the information carried in the MAC header to retrieve the MAC SDU.

中繼路徑模式Relay path mode

第8圖係顯示根據本揭露一實施例所述之藉由使用一中繼UE830在一來源端UE 510及一目的端UE 520之間傳輸數據封包之中繼路徑模式的無線電協定棧800。與第5圖中之相同方塊可由相同的參考數字表示。 FIG. 8 shows a radio protocol stack 800 for transmitting a relay path pattern of data packets between a source UE 510 and a destination UE 520 by using a relay UE 830 according to an embodiment of the present disclosure. The same blocks as in Fig. 5 can be denoted by the same reference numerals.

應注意的是,在此實施例中,一中繼RLC(RRLC)層832係配置於中繼UE 830中,其中在RRLC層832的一RRLC實體僅提供一重新分割功能。更具體地說明,來自來源端UE 510的MAC SDU可被視為重傳的RLC PDU。在RRLC層832的RRLC實體可藉由重新分割上述重傳的RLC PDU建構具有合適大小的多個RLC PDU分段,如第7圖所示。 It should be noted that in this embodiment, a relay RLC (RRLC) layer 832 is configured in the relay UE 830, wherein an RRLC entity at the RRLC layer 832 provides only a re-segmentation function. More specifically, the MAC SDU from the source UE 510 can be considered a retransmitted RLC PDU. The RRLC entity at the RRLC layer 832 can construct a plurality of RLC PDU segments of suitable size by re-segmenting the retransmitted RLC PDUs as shown in FIG.

此外,由於中繼UE 830的MAC實體不知道相應的QoS參數集合,因此在中繼UE 830的MAC層834中的MAC實體係基於 一先進先出(First-in First-out,FIFO)原則執行優先級處理。 Furthermore, since the MAC entity of the relay UE 830 does not know the corresponding QoS parameter set, the MAC real system in the MAC layer 834 of the relay UE 830 is based on A first-in first-out (FIFO) principle performs priority processing.

在中繼UE 830的RRLC層及MAC層中處理數據封包程序將在下方描述。 Processing the data packet procedure in the RRLC layer and the MAC layer of the relay UE 830 will be described below.

在中繼UE 830的RRLC層832的RRLC實體僅提供一重新分段的功能。如果來自來源端UE 510的一RLC PDU藉由在MAC層834中MAC實體的優先級處理指示RLC PDU無須重新分割而被傳送時,則RRLC實體直接傳送上述RLC PDU至MAC層834。如果來自來源端UE 510的一RLC PDU藉由在MAC層834中MAC實體的優先級處理指示RLC PDU須重新分割傳送時,則RRLC實體可藉由重新分割上述RLC PDU建構具有合適大小的由多個RLC PDU分段,如第7圖所示。在每一RLC PDU分段標頭所攜帶的SN等於原來RLC PDU的SN。每一RLC PDU分段的標頭還攜帶所需重新分割資訊,例如,分段偏移(Segment Offset,SO)。RRLC實體傳送第一RLC PDU分段至MAC層834中的MAC實體。 The RRLC entity at the RRLC layer 832 of the relay UE 830 provides only a re-segmentation function. If an RLC PDU from the source UE 510 is transmitted by the priority processing of the MAC entity in the MAC layer 834 indicating that the RLC PDU does not need to be re-segmented, then the RRLC entity directly transmits the above RLC PDU to the MAC layer 834. If an RLC PDU from the source UE 510 indicates that the RLC PDU has to be re-segmented by the priority processing of the MAC entity in the MAC layer 834, the RRLC entity can construct a suitable size by re-segmenting the above RLC PDU. Segments of RLC PDUs, as shown in Figure 7. The SN carried in each RLC PDU segment header is equal to the SN of the original RLC PDU. The header of each RLC PDU segment also carries the required re-segmentation information, for example, Segment Offset (SO). The RRLC entity transmits the first RLC PDU segment to the MAC entity in the MAC layer 834.

當中繼UE 830接收來自來源端UE 510的一MAC PDU後,在中繼UE 830的MAC層834中MAC實體可根據在MAC標頭中所攜帶的資訊解多工操作MAC PDU以擷取RLC PDU。此外,在中繼UE 830的MAC層834中之MAC實體可以記錄接收來自來源端UE 510的RLC PDU5之大小、相應的RLC ID及接收序列。當中繼UE 830接收來自從eNB的一資源授與後,中繼UE 830的MAC層834中之MAC實體可計算能被MAC層834所攜帶之位元總數量。eNB所傳送的資源授與指示用於中繼UE 830的授與無線電資源及傳輸參數,其中用於中繼UE 830的授與無線電資源及傳輸參數係藉由eNB基於第4圖之步驟S410中所取得之通道品質測量及BSR執 行排程演算法所決定。 After the relay UE 830 receives a MAC PDU from the source UE 510, the MAC entity in the MAC layer 834 of the relay UE 830 may demultiplex the MAC PDU according to the information carried in the MAC header to retrieve the RLC PDU. . In addition, the MAC entity in the MAC layer 834 of the relay UE 830 can record the size of the RLC PDU 5 received from the source UE 510, the corresponding RLC ID, and the received sequence. When the relay UE 830 receives a resource grant from the eNB, the MAC entity in the MAC layer 834 of the relay UE 830 can calculate the total number of bits that can be carried by the MAC layer 834. The resource granting by the eNB indicates the granting radio resource and transmission parameters for relaying the UE 830, wherein the granting radio resources and transmission parameters for the relaying UE 830 are determined by the eNB based on step S410 of FIG. Channel quality measurement and BSR implementation Determined by the row scheduling algorithm.

在中繼UE 830的MAC層834中之MAC實體通知在RRLC層中一或多個RRLC實體哪些RLC PDU可無需分割而被傳送或哪一RLC PDU需重新分割而根據先進先出原理傳送。 The MAC entity in the MAC layer 834 of the relay UE 830 notifies which one or more RRLC PDUs in the RRLC layer can be transmitted without splitting or which RLC PDU needs to be re-segmented and transmitted according to the first in first out principle.

第9圖係顯示根據本揭露一實施例之由中繼UE處理數據封包的例子。在第9圖中之中繼UE可用以具體化第8圖中之中繼UE 830。 Figure 9 is a diagram showing an example of processing a data packet by a relay UE in accordance with an embodiment of the present disclosure. The relay UE in FIG. 9 can be used to embody the relay UE 830 in FIG.

在時間點1中,中繼UE接收來自來源端UE的一MAC PDU,並擷取RLC PDU1~3,其中RLC PDU1~3相應的RLC ID分別是A~C。RLC PDU1~3分別被傳遞到相應的RRLC實體A~C。 In time point 1, the relay UE receives a MAC PDU from the source UE and retrieves the RLC PDUs 1~3, where the corresponding RLC IDs of the RLC PDUs 1~3 are A~C, respectively. RLC PDUs 1~3 are respectively delivered to the corresponding RRLC entities A~C.

在時間點2時,中繼UE接收來自來源端UE的另一MAC PDU,並擷取RLC PDU 4,其中RLC PDU 4相應的RLC ID為B。RLC PDU 4被傳遞至相應的RRLC實體B。 At time 2, the relay UE receives another MAC PDU from the source UE and retrieves the RLC PDU 4, where the corresponding RLC ID of the RLC PDU 4 is B. The RLC PDU 4 is passed to the corresponding RRLC entity B.

在時間點3時,中繼UE接收來自eNB的一資源授與且可由資源授與所攜帶的MAC SDU的總字元為2360個字元。基於先進先出原則,在MAC層中的MAC實體通知在RRLC層中相應的RRLC實體指示RLC PDU1~3可無需重新分割而被傳送,及RLC PDU 4需重新分割而被傳送。接著,相應的RRLC實體傳遞RLC PDU 1~3至MAC層中的MAC實體作為MAC SDU的5~7,藉由重新分割RLC PDU4建構具有合適大小的一RLC PDU分段,且傳遞RLC PDU分段至MAC層中的MAC實體作為MAC SDU 8。最後,在MAC層中的MAC實體藉由多工操作MAC SDU 5~8建構一MAC PDU,並傳遞上述MAC PDU至中繼UE的PHY層中之PHY實體。 At time point 3, the relay UE receives a resource grant from the eNB and the total character of the MAC SDU carried by the resource grant is 2360 characters. Based on the FIFO principle, the MAC entity in the MAC layer informs that the corresponding RRLC entity in the RRLC layer indicates that the RLC PDUs 1-3 can be transmitted without re-segmentation, and the RLC PDU 4 needs to be re-segmented and transmitted. Then, the corresponding RRLC entity passes the RLC PDU 1~3 to the MAC entity in the MAC layer as 5~7 of the MAC SDU, constructs an RLC PDU segment with an appropriate size by re-segmenting the RLC PDU4, and delivers the RLC PDU segment. The MAC entity in the MAC layer acts as the MAC SDU 8. Finally, the MAC entity in the MAC layer constructs a MAC PDU by multiplexing the MAC SDUs 5-8, and delivers the MAC PDU to the PHY entity in the PHY layer of the relay UE.

第10圖係顯示根據本揭露一實施例所述之藉由使用 一中繼UE1030在一來源端UE 510及一目的端UE 520之間傳輸數據封包之中繼路徑模式的無線電協定棧1000。與第5圖中之相同方塊可由相同的參考數字表示。 Figure 10 is a diagram showing the use according to an embodiment of the present disclosure. A relay UE 1030 transmits a radio protocol stack 1000 of a relay path mode of a data packet between a source UE 510 and a destination UE 520. The same blocks as in Fig. 5 can be denoted by the same reference numerals.

應注意的是,在此實施例中,一中繼RLC(RRLC)層1032係配置於中繼UE 1030中,且一RRLC層1022係配置於目的端UE 520中,其中在中繼UE 1030的RRLC層1032中的一RRLC實體僅提供連結(concatenate)及分割功能,而在目的端UE 520的RRLC層1022中之一RRLC實體提供重組、重新排序和重複偵測的功能。在中繼UE 1030和目的端UE 520的RRLC層和MAC層中處理數據封包之過程將說明如下。 It should be noted that, in this embodiment, a relay RLC (RRLC) layer 1032 is configured in the relay UE 1030, and an RRLC layer 1022 is configured in the destination UE 520, where the UE 1030 is relayed. An RRLC entity in the RRLC layer 1032 provides only concatenate and split functions, and one of the RRLC layers in the RRLC layer 1022 of the destination UE 520 provides reassembly, reordering, and retransmission. The process of processing data packets in the RRLC layer and the MAC layer of the relay UE 1030 and the destination UE 520 will be explained as follows.

在中繼UE 1030的RRLC層1032中的RRLC實體可藉由分割和連接一或多個連續的RRLC SDU建構具有一適合大小的一RRLC PDU。RRLC PDU的大小係由中繼UE 1030的MAC層1036中MAC實體的優先級處理所決定,其中RRLC標頭攜帶所需的分割及連結資訊。 The RRLC entity in the RRLC layer 1032 of the relay UE 1030 can construct an RRLC PDU having a suitable size by splitting and connecting one or more consecutive RRLC SDUs. The size of the RRLC PDU is determined by the priority processing of the MAC entity in the MAC layer 1036 of the relay UE 1030, where the RRLC header carries the required split and link information.

在目的端UE 520的RRLC層1022中之RRLC實體可根據在RRLC標頭中攜帶的分割及連結資訊重組RRLC SDU。此外,在目的端UE 520的RRLC層1022中之RRLC實體可根據SN更進一步地執行RRLC PDU的重新排序和重複偵測。 The RRLC entity in the RRLC layer 1022 of the destination UE 520 may reassemble the RRLC SDU based on the split and link information carried in the RRLC header. In addition, the RRLC entity in the RRLC layer 1022 of the destination UE 520 can perform reordering and repeated detection of the RRLC PDUs further according to the SN.

當中繼UE 1030接收來自來源端UE 510的一MAC PDU後,在中繼UE 1030的MAC層1036中的MAC實體可根據MAC標頭中所攜帶的資訊解多工操作MAC PDU以擷取RLC PDU。此外,在中繼UE 1030的MAC層1036中之MAC實體可以記錄接收來自來源端UE 510的RLC PDU之大小、相應的RLC ID和接收順序。當中 繼UE 1030接收來自eNB的資源授與後,在中繼UE 1030的MAC層1036中之MAC實體可基於先進先出原則決定有多少位元可由RRLC層1032中的每一RRLC實體所攜帶。資源授與指示用於中繼UE 1030的授與無線電資源和傳輸參數,其中用於中繼UE 1030的授與無線電資源和傳輸參數可由eNB根據在第4圖中步驟S410所取得之通道品質測量及BSR執行排程演算法所決定。 After the relay UE 1030 receives a MAC PDU from the source UE 510, the MAC entity in the MAC layer 1036 of the relay UE 1030 may demultiplex the MAC PDU according to the information carried in the MAC header to retrieve the RLC PDU. . In addition, the MAC entity in the MAC layer 1036 of the relay UE 1030 can record the size of the RLC PDU received from the source UE 510, the corresponding RLC ID, and the receiving order. among After the UE 1030 receives the resource grant from the eNB, the MAC entity in the MAC layer 1036 of the relay UE 1030 can determine how many bits can be carried by each RRLC entity in the RRLC layer 1032 based on the first in first out principle. The resource grant indication is used to relay the granting radio resources and transmission parameters of the UE 1030, wherein the granting radio resources and transmission parameters for relaying the UE 1030 can be measured by the eNB according to the channel quality obtained in step S410 in FIG. And the BSR performs the scheduling algorithm as determined.

第11圖係顯示根據本揭露另一實施例由中繼UE處理數據封包的另一例子。在第11圖中之中繼UE可用以具體化第10圖中之中繼UE 1030。 Figure 11 is a diagram showing another example of processing a data packet by a relay UE in accordance with another embodiment of the present disclosure. The relay UE in FIG. 11 can be used to embody the relay UE 1030 in FIG.

在時間點1中,中繼UE接收來自來源端UE的一MAC PDU,並擷取RLC PDU1~3,其中RLC PDU1~3相應的RLC ID分別是A~C。RLC PDU1~3分別被傳遞到相應的RRLC實體A~C。 In time point 1, the relay UE receives a MAC PDU from the source UE and retrieves the RLC PDUs 1~3, where the corresponding RLC IDs of the RLC PDUs 1~3 are A~C, respectively. RLC PDUs 1~3 are respectively delivered to the corresponding RRLC entities A~C.

在時間點2時,中繼UE接收來自來源端UE的另一MAC PDU,並擷取RLC PDU 4,其中RLC PDU 4相應的RLC ID為B。RLC PDU 4被傳遞至相應的RRLC實體B。 At time 2, the relay UE receives another MAC PDU from the source UE and retrieves the RLC PDU 4, where the corresponding RLC ID of the RLC PDU 4 is B. The RLC PDU 4 is passed to the corresponding RRLC entity B.

在時間點3時,中繼UE接收來自eNB的一資源授與且可由資源授與所攜帶的MAC SDU的總字元為2360個字元。基於先進先出原則,在中繼UE的MAC層中的MAC實體決定有多少位元可由每一RRLC實體所攜帶。RRLC實體A建構包括無連結其他(複數)RRLC PDU或(複數)RRLC PDU分段整個RRLC SDU 1的一RRLC PDU 1。RRLC實體B藉由分割RRLC SDU 4和連結整個RRLC SDU 2及RRLC SDU 4的分段來建構一RRLC PDU2。RRLC實體C建構包括無連結其他(複數)RRLC PDU或(複數)RRLC PDU分段之整體RRLC SDU 3的一RRLC PDU 3。RRLC實體A~C遞送 RRLC PDU 1~3至在中繼UE的MAC層中之MAC實體作為MAC SDU 5~7。最後,在中繼UE的MAC層中之MAC實體藉由多工操作MAC SDU 5~7建構一MAC PDU,遞送該MAC PDU至在中繼UE的PHY層中之PHY實體。 At time point 3, the relay UE receives a resource grant from the eNB and the total character of the MAC SDU carried by the resource grant is 2360 characters. Based on the FIFO principle, the MAC entity in the MAC layer of the relay UE determines how many bits are carried by each RRLC entity. The RRLC entity A construct includes an RRLC PDU 1 that does not link other (complex) RRLC PDUs or (complex) RRLC PDU segments to the entire RRLC SDU 1. The RRLC entity B constructs an RRLC PDU 2 by dividing the RRLC SDU 4 and the segments joining the entire RRLC SDU 2 and the RRLC SDU 4. The RRLC entity C construct includes an RRLC PDU 3 that does not link other (complex) RRLC PDUs or (multiple) RRLC PDU segments to the overall RRLC SDU 3. RRLC entity A~C delivery The RRLC PDU 1~3 to the MAC entity in the MAC layer of the relay UE is used as the MAC SDU 5~7. Finally, the MAC entity in the MAC layer of the relay UE constructs a MAC PDU by multiplexing the MAC SDU 5~7, and delivers the MAC PDU to the PHY entity in the PHY layer of the relay UE.

本地路由模式Local routing mode

第12~13圖係顯示根據本揭露一實施例所述之經由eNB在一來源端UE 510及一目的端UE 520之間傳輸數據封包之本地路由模式的無線電協定棧1200。與第8圖及第10圖中之相同方塊可由相同的參考數字表示。 12 to 13 show a radio protocol stack 1200 for transmitting a local packet mode of a data packet between a source UE 510 and a destination UE 520 via an eNB according to an embodiment of the present disclosure. The same blocks as those in Figs. 8 and 10 can be denoted by the same reference numerals.

如第12~13圖中所示,本地路由模式的架構基本上與中繼路徑模式的架構相同。本地路由模式的架構和中繼路徑模式的架構之間區別在於eNB係用以來取代中繼UE。因此,在第12圖中在eNB 1240的RRLC層1232中之一RRLC實體、在eNB 1240的MAC層1246中之一MAC實體和其它相關技術與第8圖中所描述之實施例說明相同,故相關之系統技術細節將不再贅述。同樣地,在第13圖中在eNB 1340的RRLC層1342中之一RRLC實體、在eNB 1340的MAC層1346中之一MAC實體和其它相關技術與第10圖中所描述之實施例說明相同,故相關之系統技術細節將不再贅述。 As shown in Figures 12-13, the architecture of the local routing mode is basically the same as the architecture of the relay path mode. The difference between the architecture of the local routing mode and the architecture of the relay path mode is that the eNB has replaced the relay UE since its use. Therefore, in FIG. 12, one RRLC entity in the RRLC layer 1232 of the eNB 1240, one MAC entity in the MAC layer 1246 of the eNB 1240, and other related technologies are the same as the embodiment described in FIG. 8, The technical details of the relevant systems will not be described again. Similarly, in FIG. 13, one RRLC entity in the RRLC layer 1342 of the eNB 1340, one MAC entity in the MAC layer 1346 of the eNB 1340, and other related technologies are the same as the embodiment described in FIG. 10, Therefore, the technical details of the relevant system will not be described again.

然而,由於當RB被建立時,eNB知道相應的QoS參數組,因此eNB 1240和eNB 1340的MAC實體可基於相應的QoS參數組執行優先級處理。在另一實施例中,eNB 1240和eNB 1340的MAC實體也可基於先進先出原則執行優先級處理。 However, since the eNB knows the corresponding QoS parameter set when the RB is established, the MAC entity of the eNB 1240 and the eNB 1340 can perform priority processing based on the corresponding QoS parameter set. In another embodiment, the MAC entity of eNB 1240 and eNB 1340 may also perform priority processing based on a first in first out principle.

第14圖係顯示根據本揭露一實施例所述之在一無線網路中傳輸用以傳送複數數據封包方法之一流程圖1400。此方法 用於一通訊裝置,像是一中繼UE,其中上述通訊裝置可啟用裝置間(Device-to-Device,D2D)通訊。在步驟S1405中,通訊裝置接收一或多個第一MAC PDU,其包括來自無線網路之一來源端UE預計傳送至一目的端UE之複數RLC PDU。接著,在步驟S1410中,通訊裝置根據每一第一MAC PDU的一標頭欄位解多工操作上述第一MAC PDU以擷取RLC PDU。 Figure 14 is a flow diagram 1400 showing one method of transmitting a plurality of data packets in a wireless network in accordance with an embodiment of the present disclosure. This method For a communication device, such as a relay UE, wherein the communication device can enable Device-to-Device (D2D) communication. In step S1405, the communication device receives one or more first MAC PDUs including a plurality of RLC PDUs from a source end UE of the wireless network that are expected to be transmitted to a destination UE. Next, in step S1410, the communication device demultiplexes the first MAC PDU according to a header field of each first MAC PDU to retrieve the RLC PDU.

在步驟S1415中,通訊裝置根據一或多個MAC PDU大小由一或多個RLC PDU中產生複數RLC PDU分段或由所有RLC PDU中產生複數中繼RLC(Relay RLC,RRLC)PDU,其中RRLC係為介於一MAC層及一RLC層之間的一協定層。接著,在步驟S1420中,通訊裝置多工操作RLC PDU及RLC PDU分段或RRLC PDU為一或多個第二MAC PDU。在步驟S1425中,通訊裝置傳送第二MAC PDU至目的端UE。 In step S1415, the communication device generates a plurality of RLC PDU segments from one or more RLC PDUs according to one or more MAC PDU sizes or generates a Multiple Relay RLC (RRLC) PDU from all RLC PDUs, where RRLC It is a protocol layer between a MAC layer and an RLC layer. Next, in step S1420, the communication device multiplexes the RLC PDU and the RLC PDU segment or the RRLC PDU into one or more second MAC PDUs. In step S1425, the communication device transmits the second MAC PDU to the destination UE.

在一實施例中,在步驟S1415中,通訊裝置可根據MAC PDU大小其中之一重新分割RLC PDU其中之一之一數據欄位且增加一重新分割資訊至RLC PDU其中之一的一標頭欄位中來產生RLC PDU分段其中之一。 In an embodiment, in step S1415, the communication device may re-segment one of the RLC PDUs according to one of the MAC PDU sizes and add a re-segmentation information to a header column of one of the RLC PDUs. One of the RLC PDU segments is generated in the bit.

在另一實施例中,在步驟S1415中,通訊裝置可藉由分割及連結(concatenate)RLC PDU且根據MAC PDU大小增加包括一分割及連結資訊的一標頭至每一RRLC PDU中來產生RRLC PDU。 In another embodiment, in step S1415, the communication device can generate the RRLC by segmenting and concatenating the RLC PDU and adding a header including a split and link information to each RRLC PDU according to the MAC PDU size. PDU.

在一實施例中,MAC PDU大小係根據由一基地台所傳送之一或多個資源授與來取得。在另一實施例中,在步驟S1420中之RLC PDU及RLC PDU分段或RRLC PDU係根據一先進先出 (First-in First-out,FIFO)原則被多工操作為上述第二MAC PDU。 In an embodiment, the MAC PDU size is obtained based on one or more resources transmitted by a base station. In another embodiment, the RLC PDU and the RLC PDU segment or the RRLC PDU in step S1420 are based on a first in first out. The (First-in First-out, FIFO) principle is multiplexed to operate as the second MAC PDU described above.

在一實施例中,如第14圖所適中之方法也可用於一通訊裝置,像是一基地台。應需注意的是,在步驟S1420中,基地台可以根據一優先順序多工操作RLC PDU及RLC PDU分段或RRLC PDU為第二MAC PDU,其中上述優先順序係基於一先進先出(First-in First-out,FIFO)原則或服務品質(Quality of Service,QoS)參數。 In one embodiment, the method as described in FIG. 14 can also be applied to a communication device such as a base station. It should be noted that, in step S1420, the base station may operate the RLC PDU and the RLC PDU segment or the RRLC PDU as the second MAC PDU according to a priority order, wherein the priority order is based on a first in first out (First- In First-out, FIFO) principle or Quality of Service (QoS) parameters.

第15圖係顯示根據本揭露一實施例所述之在一無線網路中傳輸用以接收複數數據封包方法之一流程圖1500。此方法用於一通訊裝置,可以是一目的端UE,其中通訊裝置可啟用裝置間(Device-to-Device,D2D)通訊。在步驟S1505中,通訊裝置透過一中繼UE及一基地台接收並直接接收來自無線網路之一來源端UE的一或多個MAC PDU,其中上述MAC PDU係由複數RLC PDU及複數RLC PDU分段所組成。接著,在步驟S1510中,通訊裝置根據每一MAC PDU之一標頭欄位解多工操作上述MAC PDU以擷取上述RLC PDU及上述RLC PDU分段。在步驟S1515中,通訊裝置根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RLC PDU及上述RLC PDU分段,並執行上述RLC PDU及上述RLC PDU分段的一重複偵測,其中每一TSN被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中。在步驟S1520中,通訊裝置使用包括於上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述RLC PDU及上述RLC PDU分段至複數RLC SDU。 Figure 15 is a flow diagram 1500 showing one method of transmitting a plurality of data packets in a wireless network in accordance with an embodiment of the present disclosure. The method is used for a communication device, which may be a destination UE, wherein the communication device can enable Device-to-Device (D2D) communication. In step S1505, the communication device receives and directly receives one or more MAC PDUs from a source UE of the wireless network through a relay UE and a base station, wherein the MAC PDU is composed of a plurality of RLC PDUs and a plurality of RLC PDUs. Segmented by. Next, in step S1510, the communication device demultiplexes the MAC PDU according to a header field of each MAC PDU to retrieve the RLC PDU and the RLC PDU segment. In step S1515, the communication device reorders the RLC PDU and the RLC PDU segment according to Transmission Sequence Numbers (TSNs), and performs a repeated detection of the RLC PDU and the RLC PDU segment, wherein each TSN It is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment. In step S1520, the communication device reassembles the RLC PDU and the RLC PDU segment into a plurality of RLC SDUs using information included in each of the RLC PDUs and the header field of each of the RLC PDU segments.

第16圖係顯示根據本揭露一實施例所述之在一無線 網路中傳輸用以接收複數數據封包方法之一流程圖1600。此方法用於一通訊裝置,像是一目的端UE,其中通訊裝置可啟用裝置間(Device-to-Device,D2D)通訊。在步驟S1605中,通訊裝置透過一中繼UE及一基地台接收來自來源端UE的複數第一MAC PDU,其中上述第一MAC PDU係由複數中繼RLC(Relay RLC,RRLC)PDU所組成,其上述RRLC PDU係為介於一MAC層及RLC層之間一協定層的PDU,並直接接收來自來源端UE的複數第二MAC PDU,其中上述第二MAC PDU係由複數第一RLC PDU及複數第一RLC PDU分段所組成。接著,在步驟S1610,通訊裝置根據每一第一MAC PDU之一標頭欄位解多工操作上述第一MAC PDU以擷取上述RRLC PDU,並根據每一第二MAC PDU之一標頭欄位解多工操作上述第二MAC PDU以擷取上述第一RLC PDU及上述第一RLC PDU分段。在步驟S1615中,通訊裝置根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RRLC PDU,並執行上述RRLC PDU的一重複偵測,其中每一傳輸序號被包括在每一RRLC PDU之一標頭欄位中。在步驟S1620中,通訊裝置使用包括於上述每一RRLC PDU中之上述標頭欄位之資訊來重組上述RRLC PDU至複數第二RLC PDU及複數第二RLC PDU分段。在步驟S1625中,通訊裝置根據傳輸序號重新排序上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段,並執行上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中。在步驟S1630中,通訊裝置使用包括在上述每一RLC PDU及上述每 一RLC PDU分段之標頭欄位中之資訊來重組上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段至複數RLC SDU。 Figure 16 is a diagram showing a wireless device according to an embodiment of the present disclosure. Flowchart 1600 for transmitting a method for receiving a plurality of data packets in a network. The method is used for a communication device, such as a destination UE, wherein the communication device can enable Device-to-Device (D2D) communication. In step S1605, the communication device receives a plurality of first MAC PDUs from the source UE through a relay UE and a base station, where the first MAC PDU is composed of a plurality of relay RLC (RRLC) PDUs. The RRLC PDU is a PDU of a protocol layer between the MAC layer and the RLC layer, and directly receives a plurality of second MAC PDUs from the source UE, wherein the second MAC PDU is composed of a plurality of first RLC PDUs and The first plurality of RLC PDU segments are composed. Next, in step S1610, the communication device demultiplexes the first MAC PDU according to a header field of each first MAC PDU to retrieve the RRLC PDU, and according to a header column of each second MAC PDU. The bit multiplexing operates the second MAC PDU to retrieve the first RLC PDU and the first RLC PDU segment. In step S1615, the communication device reorders the RRLC PDUs according to Transmission Sequence Numbers (TSNs), and performs a repetition detection of the RRLC PDUs, wherein each transmission sequence number is included in one of the headers of each RRLC PDU. In the field. In step S1620, the communication device reassembles the RRLC PDU to the plurality of second RLC PDUs and the plurality of second RLC PDU segments using information of the header fields included in each of the RRLC PDUs. In step S1625, the communication device reorders the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment according to the transmission sequence, and executes the first RLC PDU, the foregoing a repetition detection of an RLC PDU segment, the foregoing second RLC PDU, and the second RLC PDU segment, wherein each transmission sequence number is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment in. In step S1630, the communication device uses each of the RLC PDUs included above and each of the above Information in a header field of an RLC PDU segment to reassemble the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment into a plurality of RLC SDUs.

無線電資源排程演算法Radio resource scheduling algorithm

第17圖係顯示根據本揭露一實施例所述之在LTE-A系統中具有通訊模式的D2D通訊之一示意圖。 Figure 17 is a diagram showing one of D2D communication having a communication mode in an LTE-A system according to an embodiment of the present disclosure.

如第17圖所示,此為在LTE-A系統中具有D2D及中繼通訊能力UE的單一小區(cell)場景。欲彼此互相通訊的兩個具有D2D能力的UE被視為具有D2D能力的通訊對。舉例來說,七對D2D通訊對如第17圖所示,即,D2D通訊對#1、#2、#3、#4、#5、#6和#7。假設總共具有K對D2D通訊對在小區1700中,且D2D通訊對藉由k來編號。因此,k,j

Figure TWI616078BD00001
[1,2,...,K]。D2D通訊對#k的來源端UE和目的端UE可分別表示為k(s)和k(d)。中繼UE的總數為N。UE被用於所有D2D通訊對的候選中繼輔助模式中。被選作為D2D通訊對#k之中繼點的中繼UE以k(r)來表示。在小區1700中每一D2D通訊對具有三個候選通訊模式,即直接路徑模式、中繼路徑模式、和本地路由模式。用於分配的無線電資源為LTE-A上行鏈路無線電資源,且無線電資源的總量係描述為物理資源塊(Physical Resource Blocks,PRBs)的數量。假設可由eNB排程的PRB總數量為M。 As shown in FIG. 17, this is a single cell scenario with D2D and relay communication capability UEs in the LTE-A system. Two D2D capable UEs that want to communicate with each other are considered to be D2D capable communication pairs. For example, seven pairs of D2D communication pairs are shown in Figure 17, that is, D2D communication pairs #1, #2, #3, #4, #5, #6, and #7. It is assumed that a total of K pairs of D2D communication pairs are in cell 1700, and D2D communication pairs are numbered by k . Therefore, k , j
Figure TWI616078BD00001
[1,2,..., K ]. The source UE and the destination UE of the D2D communication pair #k can be represented as k ( s ) and k ( d ), respectively. The total number of relayed UEs is N. The UE is used in the candidate relay assist mode for all D2D communication pairs. The relay UE selected as the relay point of the D2D communication pair #k is represented by k ( r ). Each D2D communication pair in cell 1700 has three candidate communication modes, a direct path mode, a relay path mode, and a local routing mode. The radio resources used for allocation are LTE-A uplink radio resources, and the total amount of radio resources is described as the number of physical resource blocks (PRBs). Assume that the total number of PRBs that can be scheduled by the eNB is M.

為了確保本地路由模式中的上行鏈路通道條件並提高頻譜效率,以下具體說明無線電資源分配的規則。首先,一PRB可分配至在本地路由模式中僅一D2D通訊對,其意指若一PRB被分配至在本地路由模式中的一D2D通訊對中時,eNB不能分配PRB 至在本地路由模式或直接路徑/中繼路徑模式中的其他D2D通訊對。第二,當PRB的總傳輸速率可被提高時,無論是在直接路徑模式或在中繼路徑模式下,一PRB可被分配給一或兩個D2D通訊對。第三,如果一D2D通訊對在中繼路徑模式下運作時,D2D通訊對的來源端至中繼間鏈路及中繼至目的端間鏈路被分配了相同的無線電資源,即相同的PRB。最後,考慮到在LTE-A系統中上行鏈路無線電資源排程通常係基於單載波分頻多工存取(Single-Carrier Frequency-Division Multiple Access,SC-FDMA)技術來執行,而分配至D2D通訊對的PRB應為連續的。根據這些規則,當干擾被分配相同PRB時,潛在干擾應視為在直接路徑/中繼路徑模式中不同D2D通訊對之間的干擾。潛在干擾鏈路也示於第17圖中。 In order to ensure uplink channel conditions in the local routing mode and to improve spectral efficiency, the rules for radio resource allocation are specifically described below. First, a PRB can be assigned to only one D2D communication pair in the local routing mode, which means that if a PRB is assigned to a D2D communication pair in the local routing mode, the eNB cannot allocate a PRB. To other D2D communication pairs in local routing mode or direct path/relay path mode. Second, when the total transmission rate of the PRB can be increased, either in the direct path mode or in the relay path mode, a PRB can be assigned to one or two D2D communication pairs. Third, if a D2D communication pair operates in the relay path mode, the source-to-inter-relay link and the relay-to-destination link of the D2D communication pair are assigned the same radio resource, that is, the same PRB. . Finally, considering that the uplink radio resource scheduling in the LTE-A system is usually performed based on Single-Carrier Frequency-Division Multiple Access (SC-FDMA) technology, and is allocated to D2D. The PRB of the communication pair should be continuous. According to these rules, when interference is assigned the same PRB, the potential interference should be considered as interference between different D2D communication pairs in the direct path/relay path mode. The potential interference link is also shown in Figure 17.

此外,在無線電資源排程程序中也具有兩個傳輸功率限制。第一個為在一D2D通訊對中且分配至來源端UE所有PRB上之來源端UE的總傳輸功率不應大於所允許的最大傳輸功率。第二個是在D2D通訊對中來源端UE的總傳輸功率應平均分佈在分配給來源端UE的所有PRB上。 In addition, there are two transmission power limits in the radio resource scheduling procedure. The first one is in a D2D communication pair and the total transmission power of the source UE allocated to all PRBs of the source UE should not be greater than the maximum transmission power allowed. The second is that the total transmission power of the source UE in the D2D communication pair should be evenly distributed on all PRBs allocated to the source UE.

無線電資源排程演算法係在機eNB中所操作。舉例來說,eNB可被視為一中央排程器,其負責在全部小區1700中所有D2D通訊對的模式選擇、PRB分配和功率協調。在每一LTE-A子訊框(1毫秒(ms))中所執行的排程目的是將在全部小區1700中所有D2D通訊對的總吞吐量最大化。最佳排程決定係基於所有所參與鏈路的CSI所決定,而這些CSI係由來自在每一子訊框中所有參與UE的反饋中取得。對於在直接路徑模式中的D2D通訊對而言,一 完整的端點至端點數據傳輸可在一子訊框中進行。對於在中繼路徑模式中的D2D通訊對而言,一完整的端點至端點數據傳輸係由第一跳(hop)傳輸和第二跳傳輸所組成,其分別對應至來源端至中繼之間的傳輸和中繼至目的端之間的傳輸。明顯地,第一跳和第二跳傳輸無法同時進行,這意味著第一跳和第二跳傳輸必須在兩個時槽中執行。因此,對於在中繼路徑D2D模式中D2D通訊對而言,其可被認為來源端至中繼之間的傳輸在一子幀的前半部中進行,而中繼至目的端之間的傳輸係在子幀的後半部中進行。對於在本地路由模式中的D2D通訊對而言,執行端點至端點之間數據傳輸與上行鏈路傳輸和下行鏈路傳輸中一般的蜂窩通訊相同,例如,在來源端至eNB之間的傳輸及eNB至目的端之間的傳輸係在兩個分開的訊框中所進行。第18圖係顯示根據本揭露一實施例所述之在每一子訊框期間三種D2D通訊模式下傳輸數據速率估計的原則。 The radio resource scheduling algorithm is operated in the machine eNB. For example, an eNB can be viewed as a central scheduler that is responsible for mode selection, PRB allocation, and power coordination for all D2D communication pairs in all cells 1700. The purpose of the scheduling performed in each LTE-A subframe (1 millisecond (ms)) is to maximize the total throughput of all D2D communication pairs in all cells 1700. The optimal scheduling decision is based on the CSI of all participating links, and these CSIs are taken from feedback from all participating UEs in each subframe. For D2D communication pairs in direct path mode, one The complete endpoint-to-endpoint data transfer can be done in a subframe. For a D2D communication pair in the relay path mode, a complete endpoint-to-endpoint data transmission consists of a first hop transmission and a second hop transmission, which respectively correspond to the source to the relay. The transmission between the relay and the relay to the destination. Obviously, the first hop and the second hop transmission cannot be performed simultaneously, which means that the first hop and the second hop transmission must be performed in two time slots. Therefore, for a D2D communication pair in the relay path D2D mode, it can be considered that the transmission from the source to the relay is performed in the first half of the subframe, and the transmission between the relay and the destination is This is done in the second half of the subframe. For D2D communication pairs in local routing mode, performing endpoint-to-endpoint data transmission is the same as general cellular communication in uplink and downlink transmissions, for example, from source to eNB. The transmission and transmission between the eNB and the destination are performed in two separate frames. Figure 18 is a diagram showing the principle of transmission data rate estimation in three D2D communication modes during each subframe according to an embodiment of the present disclosure.

根據上述的D2D系統,在模式選擇、PRB分配和功率協調中的排程程序可以公式表示一算術最佳化問題,目標係使在一子訊框中所有D2D通訊對總吞吐量最大化。此最佳化問題的解決方案絕對是最佳排程決策。然而,為了以數學方式取得絕對最佳解而解決最佳化問題是非常複雜的。因此,在模式選擇和資源分配上執行排程程序以得到在每一子訊框中一接近最佳化排程決策的啟發方法在本揭露中研究。第19圖係顯示根據本揭露一實施例所述之排程程序之功能方塊圖1900。 According to the D2D system described above, the scheduling procedure in mode selection, PRB allocation, and power coordination can formulate an arithmetic optimization problem that maximizes the total throughput of all D2D communication in a subframe. The solution to this optimization problem is definitely the best scheduling decision. However, solving the optimization problem in order to mathematically obtain an absolutely optimal solution is very complicated. Therefore, heuristics that perform scheduling procedures on mode selection and resource allocation to obtain a near-optimized scheduling decision in each subframe are studied in this disclosure. Figure 19 is a functional block diagram 1900 showing a scheduling procedure in accordance with an embodiment of the present disclosure.

在每一子訊框中,eNB的排程器在方塊1910中根據在三種通訊模式下D2D通訊對的與測數據速率先對小區1700中每一 D2D通訊對作模式選擇決策。在子訊框中,數據速率係根據在方塊1905中來自所有參與UE所回報之CSI而預測。根據模式選擇結果,在方塊1910中,PRB為了使每一PRB上之數據傳輸速率最大化為目的而被指定,並且當PRB重新使用在不同D2D通訊對之間出現時,執行功率協調。如何執行模式選擇和PRB分配之細節將描述如下。 In each subframe, the eNB scheduler first compares each of the cells 1700 according to the measured data rate of the D2D communication pair in the three communication modes in block 1910. D2D communication is the mode selection decision. In the subframe, the data rate is predicted based on the CSI reported from all participating UEs in block 1905. Based on the mode selection results, in block 1910, the PRB is specified for the purpose of maximizing the data transmission rate on each PRB, and power coordination is performed when PRB reuse occurs between different D2D communication pairs. The details of how to perform mode selection and PRB allocation will be described below.

基於數據速率預測的模式選擇Mode selection based on data rate prediction

排程目的係為了使在每一子訊框中所有D2D通訊對的總吞吐量最大化。因此,對於每一D2D通訊對而言,在子訊框中相應最大數據速率的通訊模式應被選擇。對一特定的D2D通訊對#k,在本揭露排程方案中的模式選擇程序步驟可透過下列步驟進行說明。 The purpose of scheduling is to maximize the total throughput of all D2D communication pairs in each subframe. Therefore, for each D2D communication pair, the communication mode of the corresponding maximum data rate in the subframe should be selected. For a particular D2D communication pair #k , the mode selection procedure steps in the disclosed scheduling scheme can be illustrated by the following steps.

步驟1:eNB使用直接來源端至目的端間鏈路的CSI(通道增益)和UE的最大傳輸功率以估計在一PRB上可達到的數據速率。估計程序可以數學表示為

Figure TWI616078BD00002
其中
Figure TWI616078BD00003
表示在直接路徑模式下D2D通訊對#k的估計數據速率,而B表示一PRB的頻寬,即B=180千赫(kHz)。P max表示每一UE的最大傳輸功率,而
Figure TWI616078BD00004
表示D2D通訊對#k直接傳輸鏈路的通道增益,以及σ 2表示在一PRB中的雜訊功率。 Step 1: The eNB uses the CSI (channel gain) of the direct source-to-destination link and the maximum transmission power of the UE to estimate the data rate achievable on a PRB. The estimation program can be expressed mathematically as
Figure TWI616078BD00002
among them
Figure TWI616078BD00003
Indicates the estimated data rate of the D2D communication pair #k in the direct path mode, and B represents the bandwidth of a PRB, that is, B = 180 kilohertz (kHz). P max represents the maximum transmission power of each UE, and
Figure TWI616078BD00004
Indicates the channel gain of the D2D communication pair #k direct transmission link, and σ 2 represents the noise power in a PRB.

步驟2:eNB估計在一PRB的中繼路徑模式下D2D通訊對#k可實現的端點至端點間數據速率。為了執行此估計,eNB先執行中繼選擇操作以找尋用於D2D通訊對#k的最佳中繼UE,其中可使中繼路徑的端點至端點間數據速率最大化的中繼UE被選為中繼UE k(r)。在中繼選擇和可達成的數據速率估計程序兩者中,D2D通訊對#k的來源端UE和所有參與的中繼UE使用相同的傳輸功率P max。在一PRB中D2D通訊對#k的可達成端點至端點間數據速率的估計程序可以數學表示為

Figure TWI616078BD00005
其中
Figure TWI616078BD00006
表示在中繼路徑模式下D2D通訊對#k的估計可達成端 點至端點間數據速率。
Figure TWI616078BD00007
Figure TWI616078BD00008
分別表示中繼路徑模式第一跳及第二跳鏈路的通道增益。在方程式(2)的「min」函式中,第一項為來源端至中繼之間鏈路的信噪比(Signal-to-noise ratio,SNR),而第二項為中繼至目的端之間鏈路的SNR。應注意的是,在中繼路徑模式下,端點至端點數據傳輸需要在一子訊框內兩個時槽中完成且最大可達成的數據速率是由具有最差通道條件的跳中繼(hop relay)所決定。因此,可達成的端點至端點數據速率等於可在具有最差通道條件的跳中繼中可達成數據速率的一半,其已在第18圖中所示。 Step 2: The eNB estimates the end-to-endpoint data rate achievable by the D2D communication pair #k in the relay path mode of a PRB. In order to perform this estimation, the eNB first performs a relay selection operation to find the best relay UE for the D2D communication pair #k , wherein the relay UE that maximizes the endpoint-to-endpoint data rate of the relay path is Selected as relay UE k ( r ). Both estimation procedure, D2D communication source terminal UE and the UE # k all relay participation using the same transmission power P max and the relay selection can achieve data rates. The estimation procedure of the reachable endpoint-to-endpoint data rate of the D2D communication pair #k in a PRB can be mathematically expressed as
Figure TWI616078BD00005
among them
Figure TWI616078BD00006
Indicates that the D2D communication pair #k estimate in the relay path mode can achieve an endpoint-to-endpoint data rate.
Figure TWI616078BD00007
and
Figure TWI616078BD00008
The channel gains of the first hop and the second hop link of the relay path mode are respectively indicated. In the "min" function of equation (2), the first term is the signal-to-noise ratio (SNR) of the link from the source to the relay, and the second is the relay to the destination. The SNR of the link between the ends. It should be noted that in the relay path mode, the endpoint-to-endpoint data transmission needs to be completed in two time slots in one subframe and the maximum achievable data rate is the hop relay with the worst channel condition. (hop relay) decided. Thus, the achievable endpoint-to-endpoint data rate is equal to half of the data rate achievable in a hop relay with the worst channel conditions, which is shown in Figure 18.

步驟3:在一PRB的本地路由模式下eNB估計D2D通訊對#k的可達成端點至端點間數據速率。在本地路由模式中,僅 上行鏈路傳輸可在一子訊框中完成,如第18圖所示。假設下行鏈路傳輸總可成功,這意味著下行鏈路數據速率總大於上行鏈路數據速率,其因eNB係一下行鏈路發射器且具有能力以確保用於下行鏈路傳輸的成功。因此,可認定在一PRB的本地路由模式下D2D通訊對#k的可達成端點至端點間數據速率可由上行鏈路數據速率來決定。根據第18圖中所給定的計算原理,上述估計可在數學上描述為

Figure TWI616078BD00009
Step 3: The eNB estimates the reachable end-to-endpoint data rate of the D2D communication pair #k in a local routing mode of the PRB. In local routing mode, only uplink transmissions can be done in a subframe, as shown in Figure 18. It is assumed that the downlink transmission is always successful, which means that the downlink data rate is always greater than the uplink data rate, which is due to the eNB being a downlink transmitter and capable of ensuring success for downlink transmission. Therefore, it can be determined that the reachable endpoint-to-endpoint data rate of the D2D communication pair #k in a local routing mode of a PRB can be determined by the uplink data rate. According to the calculation principle given in Fig. 18, the above estimation can be mathematically described as
Figure TWI616078BD00009

其中

Figure TWI616078BD00010
表示在一PRB上本地路由模式下用於D2D通訊對 #k中估計可達成端點至端點間數據速率。
Figure TWI616078BD00011
表示在一PRB的D2D通訊對#k的上行鏈路通道增益。其它參數的定義類似在方程式(1)的參數。由於在本地路由模式中一完整端點至端點間傳輸需兩個子訊框才能完成,因此需將在一子訊框中可達成端點至端點間數據速率可表達為其上行鏈路數據速率的一半。 among them
Figure TWI616078BD00010
Indicates that the end-to-endpoint data rate can be achieved for the D2D communication pair #k in the local routing mode on a PRB.
Figure TWI616078BD00011
Indicates the uplink channel gain of the D2D communication pair #k in a PRB. The definition of other parameters is similar to the parameter in equation (1). Since a complete endpoint-to-endpoint transmission requires two subframes in the local routing mode, the endpoint-to-endpoint data rate can be expressed in a subframe to be expressed as its uplink. Half the data rate.

步驟4:在三種不同D2D通訊模式下D2D通訊對#k的可達成端點至端點間數據速率的估計後,eNB將估計的結果進行比較。相應最大估計端點至端點間數據速率的D2D通訊模式被選為D2D通訊對#k的通訊模式。例子如下所示:-當

Figure TWI616078BD00012
時,選擇直接路徑模式;-當
Figure TWI616078BD00013
時,選擇中繼路徑模式;或 -當
Figure TWI616078BD00014
時,選擇本地路由模式。 Step 4: After estimating the end-to-endpoint data rate of the D2D communication pair #k in three different D2D communication modes, the eNB compares the estimated results. The corresponding maximum estimated endpoint-to-endpoint data rate D2D communication mode is selected as the communication mode of the D2D communication pair #k . Examples are as follows: - When
Figure TWI616078BD00012
When choosing the direct path mode; - when
Figure TWI616078BD00013
When selecting the relay path mode; or - when
Figure TWI616078BD00014
When you choose local routing mode.

根據此原理,eNB可為每一D2D通訊對作模式選擇決定,並取得每一D2D通訊對最大端點至端點間數據速率。第20圖係顯示根據本揭露一實施例所述之由eNB所執行所有D2D通訊對的模式選擇程序之流程圖2000。 According to this principle, the eNB can make a mode selection decision for each D2D communication pair and obtain the maximum endpoint-to-endpoint data rate for each D2D communication pair. Figure 20 is a flow chart 2000 showing a mode selection procedure for all D2D communication pairs performed by an eNB in accordance with an embodiment of the present disclosure.

PRB分配和功率協調PRB allocation and power coordination

無線電資源(PRBs)分配係根據所有D2D通訊對最大端點至端點間數據速率所執行,其已在模式選擇決定程序中估計。PRB分配應確認分配給D2D通訊對的PRB為鄰接的,且在一D2D通訊對中一來源端UE的傳送功率應平均分佈在分配到D2D通訊對的所有PRB。 Radio Resource (PRBs) allocations are performed on the maximum endpoint-to-endpoint data rate for all D2D communications, which has been estimated in the mode selection decision procedure. The PRB allocation should confirm that the PRBs assigned to the D2D communication pair are contiguous, and the transmit power of a source UE in a D2D communication pair should be evenly distributed among all PRBs assigned to the D2D communication pair.

提出的PRB分配策略的核心概念為具有較高端點至端點間數據速率的D2D通訊對將在PRB分配中具有較高的優先級且也對應較高機率以被分配更多的PRB。目的係為將在M個PRB上之總端點至端點間數據速率最大化。應需注意的是,所提出的PRB分配策略係為一兩階段分配策略。如果所有D2D通訊對在第一階段中均被分配用於數據傳輸的PRB,則無線電資源分配將停止。相反地,如果在直接路徑/中繼路徑模式中仍有D2D通訊對在第一階段中未被分配任何PRB時,則將啟動第二階段的PRB分配,其中eNB將決定這些D2D通訊對是否共享已分配給其他D2D通訊對的PRB。 The core concept of the proposed PRB allocation strategy is that a D2D communication pair with a higher endpoint-to-endpoint data rate will have a higher priority in the PRB allocation and also a higher probability to be assigned more PRBs. The goal is to maximize the data rate between the endpoints to the endpoints on the M PRBs. It should be noted that the proposed PRB allocation strategy is a one-two-stage allocation strategy. If all D2D communication pairs are allocated PRBs for data transmission in the first phase, the radio resource allocation will stop. Conversely, if there are still D2D communication pairs in the direct path/relay path mode that are not assigned any PRBs in the first phase, then the second phase of PRB allocation will be initiated, where the eNB will decide whether these D2D communication pairs are shared. PRBs that have been assigned to other D2D communication pairs.

I. 第一階段的PRB分配I. Phase 1 PRB allocation

第一階段PRB分配係根據K個D2D通訊對的單一PRB端點至端點間數據速率所執行,其中上述K個D2D通訊對係在其最 佳的D2D通訊模式下運作。假設R 1,R 2,...,R k ,...,R K 分別表示K個D2D通訊對的數據速率。所提出排程方案的第一階段PRB分配策略可詳述如下。 The first stage PRB allocation system based on a single endpoint PRB for the K D2D communication between endpoints to perform data rate, wherein said K for D2D communication system operating at its best D2D communication mode. Let R 1 , R 2 ,..., R k ,..., R K represent the data rates of the K D2D communication pairs, respectively. The first stage PRB allocation strategy of the proposed scheduling scheme can be detailed as follows.

步驟1:eNB基於其數據速率的遞減順序對K個D2D通訊對重新排列。K個D2D通訊對在重新排列後的順序可表示為p 1,p 2,...,p k ,...,p K ,其在數據速率中對應的關係為

Figure TWI616078BD00015
,
Figure TWI616078BD00016
,...,
Figure TWI616078BD00017
,...,
Figure TWI616078BD00018
。 Step 1: The eNB rearranges the K D2D communication pairs based on the decreasing order of their data rates. The order of the K D2D communication pairs after rearrangement can be expressed as p 1 , p 2 ,..., p k ,..., p K , whose corresponding relationship in the data rate is
Figure TWI616078BD00015
,
Figure TWI616078BD00016
,...,
Figure TWI616078BD00017
,...,
Figure TWI616078BD00018
.

步驟2:eNB分配第一PRB至D2D通訊對p 1,並使用等於P max/2的一減低傳輸功率再次計算D2D通訊對p 1的端點至端點間數據速率。接著,eNB比較並判斷D2D通訊對p 1在全部D2D通訊對中是否仍具有最大端點至端點間數據速率。如果是,則程序前進至下一步驟,即步驟3。否則,程序前進至步驟4。 Step 2: The eNB allocates the first PRB to D2D communication pair p 1 and calculates the endpoint-to-endpoint data rate of the D2D communication pair p 1 again using a reduced transmission power equal to P max /2. Next, the eNB compares and determines whether the D2D communication pair p 1 still has the maximum endpoint-to-endpoint data rate in all D2D communication pairs. If so, the program proceeds to the next step, step 3. Otherwise, the program proceeds to step 4.

步驟3:eNB分配第二PRB至D2D通訊對p 1,並使用等於P max/3的一減低傳輸功率再次計算D2D通訊對p 1的端點至端點間數據速率。接著,eNB再次比較並判斷D2D通訊對p 1在全部D2D通訊對中是否仍具有最大端點至端點間數據速率。如果是,則程序前進至步驟5。否則,程序前進至步驟6。 Step 3: The eNB allocates the second PRB to the D2D communication pair p 1 and calculates the endpoint-to-endpoint data rate of the D2D communication pair p 1 again using a reduced transmission power equal to P max /3. Next, the eNB compares again and determines if the D2D communication pair p 1 still has the maximum endpoint-to-endpoint data rate in all D2D communication pairs. If yes, the program proceeds to step 5. Otherwise, the program proceeds to step 6.

步驟4:eNB停止PRB分配至D2D通訊對p 1,且分配第二PRB至D2D通訊對p 2。接著,eNB使用等於P max/2的一減低傳輸功率再次計算D2D通訊對p 2的端點至端點間數據速率,並再次比較以判斷D2D通訊對p 2在全部D2D通訊對中是否仍具有最大端點至端點間數據速率。如果是,則程序前進至步驟7。否則,程序前進至步驟8。 Step 4: The eNB stops the PRB allocation to the D2D communication pair p 1 and allocates the second PRB to the D2D communication pair p 2 . Subsequently, the eNB using a reduced transmission power is equal to P max / 2 is calculated again D2D communication endpoint p 2 to the data rate between the endpoints, and compared again to determine whether the D2D communication of p 2 still has all of the D2D communication Maximum endpoint to inter-endpoint data rate. If yes, the program proceeds to step 7. Otherwise, the program proceeds to step 8.

步驟5:eNB分配第三PRB至D2D通訊對p 1,並使用等於P max/4的一減低傳輸功率再次計算D2D通訊對p 1的端點至端點 間數據速率。eNB再次比較以判斷D2D通訊對p 1在全部D2D通訊對中是否仍具有最大端點至端點間數據速率。如果是,則下一PRB(即,第四PRB)將分配至D2D通訊對p 1。否則,eNB將停止PRB分配至D2D通訊對p 1,並分配下一PRB至D2D通訊對p 2。應需注意的是,分配程序將持續直到所有M個PRB分配完成。 Step 5: The eNB allocates the third PRB to the D2D communication pair p 1 and calculates the endpoint-to-endpoint data rate of the D2D communication pair p 1 again using a reduced transmission power equal to P max /4. Again eNB D2D communications for comparison to determine whether p 1 still has a maximum endpoint in all of the D2D communication between endpoints to the data rate. If so, the next PRB (ie, the fourth PRB) will be assigned to the D2D communication pair p 1 . Otherwise, the eNB will stop the PRB assignment to the D2D communication pair p 1 and assign the next PRB to the D2D communication pair p 2 . It should be noted that the allocation procedure will continue until all M PRB assignments are completed.

步驟6:eNB停止PRB分配至D2D通訊對p 1,且分配第三PRB至D2D通訊對p 2。接著,eNB使用等於P max/2的一減低傳輸功率再次計算D2D通訊對p 2的端點至端點間數據速率,並再次比較以判斷D2D通訊對p 2在除了D2D通訊對p 1外的全部D2D通訊對中是否仍具有最大端點至端點間數據速率。如果是,則下一PRB(即,第四PRB)將分配至D2D通訊對p 2。否則,eNB將停止PRB分配至D2D通訊對p 2,並分配下一PRB至D2D通訊對p 3。應需注意的是,分配程序將持續直到所有M個PRB分配完成。 Step 6: The eNB stops the PRB allocation to the D2D communication pair p 1 and allocates the third PRB to the D2D communication pair p 2 . Subsequently, the eNB using equal P max / 2 to reduce a transmission power calculating again D2D communication endpoint p 2 to the data rate between the endpoints, and compared again to determine whether the D2D communication in addition to p 2 p 1 D2D communication outside of Whether there is still a maximum endpoint-to-endpoint data rate for all D2D communication pairs. If so, the next PRB (ie, the fourth PRB) will be assigned to the D2D communication pair p 2 . Otherwise, the eNB will stop the PRB assignment to the D2D communication pair p 2 and assign the next PRB to the D2D communication pair p 3 . It should be noted that the allocation procedure will continue until all M PRB assignments are completed.

步驟7:eNB分配第三PRB至D2D通訊對p 2,並使用等於P max/3的一減低傳輸功率再次計算D2D通訊對p 2的端點至端點間數據速率。eNB再次比較以判斷D2D通訊對p 2在除了D2D通訊對p 1外的全部D2D通訊對中是否仍具有最大端點至端點間數據速率。如果是,則下一PRB(即,第四PRB)將分配至D2D通訊對p 2。否則,eNB將停止PRB分配至D2D通訊對p 2,並分配下一PRB至D2D通訊對p 3。應需注意的是,分配程序將持續直到所有M個PRB分配完成。 Step 7: eNB D2D communication to the PRB allocated for the third p 2, using equal P max / 3 is a reduced transmission power is recalculated endpoint D2D communication between endpoints p 2 to the data rate. eNB D2D communication compared again to determine whether the addition of p 2 p 1 D2D communication outside of all whether the D2D communication terminal still has a maximum data rate to between endpoints. If so, the next PRB (ie, the fourth PRB) will be assigned to the D2D communication pair p 2 . Otherwise, the eNB will stop the PRB assignment to the D2D communication pair p 2 and assign the next PRB to the D2D communication pair p 3 . It should be noted that the allocation procedure will continue until all M PRB assignments are completed.

步驟8:eNB停止PRB分配至D2D通訊對p 2,且分配第三PRB至D2D通訊對p 3。接著,eNB使用等於P max/2的一減低傳輸功率再次計算D2D通訊對p 3的端點至端點間數據速率,並再次比 較以判斷D2D通訊對p 3在除了D2D通訊對p 1p 2外的全部D2D通訊對中是否仍具有最大端點至端點間數據速率。如果是,則下一PRB(即,第四PRB)將分配至D2D通訊對p 3。否則,eNB將停止PRB分配至D2D通訊對p 3,並分配下一PRB至D2D通訊對p 4。應需注意的是,分配程序將持續直到所有M個PRB分配完成。 Step 8: The eNB stops the PRB allocation to the D2D communication pair p 2 and allocates the third PRB to the D2D communication pair p 3 . Subsequently, the eNB using a reduced transmission power is equal to P max / 2 is calculated again D2D communication endpoint p 3 to a data rate between the endpoints, and compared again to determine whether the D2D communication in addition to p 3 p 1 and of the D2D communications p Whether all D2D communication pairs outside of 2 still have the maximum endpoint-to-endpoint data rate. If so, then the next PRB (ie, fourth PRB) allocated to the D2D communication to p 3. Otherwise, eNB will stop the PRB allocated to the D2D communication to p 3, and assigned to the next PRB D2D communication to p 4. It should be noted that the allocation procedure will continue until all M PRB assignments are completed.

此PRB分配程序將持續直到所有M個PRB被分配到D2D通訊對為止。舉例來說,當所有PRB已被分配時,第一階段的PRB分配則被終止。如果所有PRB可在第一階段分配中被分配至具有D2D能力的D2D通訊對中,則eNB將停止排程演算法。否則,eNB將判斷是否仍具有在第一階段分配中未被分配任何PRB在直接路徑/中繼路徑模式中的D2D通訊對。如果是,則eNB將開始第二階段的PRB分配。如果不是,例如,未在第一階段中被分配任何PRB本地路由模式下的D2D通訊,則eNB也將停止排程演算法。第21圖係顯示根據本揭露一實施例所述之在排程演算法中第一階段PRB分配之一流程圖2100。 This PRB allocation procedure will continue until all M PRBs are assigned to the D2D communication pair. For example, when all PRBs have been assigned, the PRB allocation for the first phase is terminated. If all PRBs can be assigned to a D2D capable D2D communication pair in the first phase allocation, the eNB will stop the scheduling algorithm. Otherwise, the eNB will determine if there are still D2D communication pairs that are not assigned any PRBs in the direct path/relay path mode in the first phase allocation. If so, the eNB will begin the second phase of PRB allocation. If not, for example, the D2D communication in any of the PRB local routing modes is not assigned in the first phase, then the eNB will also stop the scheduling algorithm. Figure 21 is a flow chart 2100 showing a first stage PRB allocation in a scheduling algorithm in accordance with an embodiment of the present disclosure.

II. 第二階段的PRB分配II. Phase II PRB allocation

第二階段PRB分配係根據無線電資源共享的想法來執行,其允許已分配到一D2D通訊對的PRB由其他還未被分配任何PRB的D2D通訊對來重新使用。PRB重新使用的目的在於增加在這些PRB之一子訊框中所傳送的總數據量。第二階段PRB分配可依照下面步驟來進行。 The second stage PRB allocation is performed in accordance with the idea of radio resource sharing, which allows the PRBs that have been assigned to a D2D communication pair to be reused by other D2D communication pairs that have not been assigned any PRBs. The purpose of PRB reuse is to increase the total amount of data transmitted in one of these PRB subframes. The second stage PRB allocation can be performed according to the following steps.

步驟1:eNB列出所有在第一輪PRB分配程序中已被分配PRB的D2D通訊對,及其餘還未分配任何PRB的D2D通訊對。所有在第一輪分配中已被分配PRB的D2D通訊對,即重新使用候 選D2D通訊對,分別建立索引為1、2、…、u、…、U。在第一階段分配中未被分配任何PRB的D2D通訊對,即其餘D2D通訊對,分別建立索引為1、2、…、u、…、UStep 1: The eNB lists all D2D communication pairs that have been assigned PRBs in the first round of PRB allocation procedures, and the remaining D2D communication pairs that have not been assigned any PRBs. All D2D communication pairs that have been assigned PRBs in the first round of allocation, ie, reuse candidate D2D communication pairs, respectively, indexed as 1, 2, ..., u , ..., U. In the first stage allocation, the D2D communication pair that is not assigned any PRB, that is, the remaining D2D communication pairs, respectively, is indexed as 1, 2, ..., u , ..., U.

步驟2:eNB建立一二維表格以在重新使用候選D2D通訊對及其餘D2D通訊對中尋找最佳重新使用夥伴,其目標係將M個PRB的總數據速率最大化。表格中的一維係為重新使用候選D2D通訊對的索引值,而表格中的另一維係為其餘D2D通訊對的索引值。 Step 2: The eNB establishes a two-dimensional table to find the best reuse partner in reusing the candidate D2D communication pair and the remaining D2D communication pairs, the goal of which is to maximize the total data rate of the M PRBs. One dimension in the table is the index value for reusing the candidate D2D communication pair, and the other dimension in the table is the index value of the remaining D2D communication pairs.

表格內容的元素係為由在重新使用候選D2D通訊對之PRB上資源共享所造成的端點至端點間數據速率增量,其也為被用以選擇最佳重新使用夥伴的矩陣。對於每一其餘D2D通訊對來說,相應最大數據速率增量的重新使用候選D2D通訊對將被選為其重新使用夥伴。 The elements of the table content are the endpoint-to-endpoint data rate increments caused by resource sharing on the PRB of the candidate D2D communication pair, which is also the matrix used to select the best reuse partner. For each of the remaining D2D communication pairs, the corresponding maximum data rate increment reuse candidate D2D communication pair will be selected as its reuse partner.

端點至端點數據速率增量定義如下。如果一D2D通訊對u,其在第一階段分配期間已被分配至PRB時,可無須資源重新使用而達成在其PRB上的一端點至端點間數據速率,則無須資源重新使用且在這些PRB上的總端點至端點間數據速率可被定義等於R u 。然而,在第二階段PRB分配中,如果D2D通訊對u的PRB由一其餘D2D通訊對v(其未在第一階段PRB分配中分配到任何PRB)所重新使用時,D2D通訊對u的可達成數據速率因由PRB重新使用之因素在其PRB中將改為R v,u 。而D2D通訊對v在同一PRB中也可達成R v,u 的數據速率。因此,在重新使用情況下這些PRB的總數據速率為兩個D2D通訊對之數據速率的總和,即總數據速率等於R u,v +R v,u 。因此,由這些PRB中資源重新使用所造成之端點至端點 間數據速率增量等於:α v,u =(R u,v +R v,u )-R u Endpoint to endpoint data rate increments are defined as follows. If a D2D communication pair u , which has been assigned to the PRB during the first phase of allocation, can achieve an end-to-endpoint data rate on its PRB without resource reuse, then no resource reuse is required and The total endpoint-to-endpoint data rate on the PRB can be defined equal to R u . However, in the second stage PRB allocation, if the PRB of the D2D communication pair u is reused by a remaining D2D communication pair v (which is not assigned to any PRB in the first stage PRB allocation), the D2D communication can be used for u The data rate achieved will be changed to R v,u in its PRB due to the factor being reused by the PRB. The D2D communication pair v can also achieve the data rate of R v, u in the same PRB. Therefore, the total data rate of these PRBs in the case of reuse is the sum of the data rates of the two D2D communication pairs, ie the total data rate is equal to R u,v + R v,u . Therefore, the endpoint-to-endpoint data rate increment caused by resource reuse in these PRBs is equal to: α v,u =( R u,v + R v,u )- R u

此外,在第二階段PRB分配中,eNB可為每一其餘D2D通訊對設置三個傳輸功率水平以執行功率協調,以達到確保在PRB重新使用數據速率增益的目的。三個傳輸功率水平可包括一高功率水平、中間功率水平及一低功率水平,其分別對應的最大傳輸功率、中強度傳輸功率及最小傳輸功率。 Moreover, in the second stage PRB allocation, the eNB can set three transmission power levels for each of the remaining D2D communication pairs to perform power coordination to achieve the goal of ensuring that the data rate gain is reused in the PRB. The three transmission power levels may include a high power level, an intermediate power level, and a low power level, which respectively correspond to a maximum transmission power, a medium intensity transmission power, and a minimum transmission power.

第22圖係顯示根據本揭露一實施例所述之在第二階段資源分配中由eNB執行之二維最佳重新使用夥伴尋找程序之一示例。假設有5個重新使用候選D2D通訊對,即U=5,且有兩個其餘D2D通訊對,即,V=2。對於具有每一傳輸功率水平的每一其餘D2D通訊對,在不同候選夥伴下取得數據速率增量,其中

Figure TWI616078BD00019
表示在具有最大傳輸功率之其餘D2D通訊對v共享重新使用候選D2D通訊對u的PRB之情況下的數據速率增量。
Figure TWI616078BD00020
表示在具有中間水平傳輸功率之其餘D2D通訊對v共享重新使用候選D2D通訊對u的PRB之情況下的數據速率增量,而
Figure TWI616078BD00021
表示在具有最小水平傳輸功率之其餘D2D通訊對v共享重新使用候選D2D通訊對u的PRB之情況下的數據速率增量。對於一其餘D2D通訊對,最佳重新使用夥伴對及其餘D2D通訊對的最佳傳輸功率水平皆明確對應最大端點至端點間數據速率增量。舉例來說,在如第22圖所示的尋找程序中,對應其餘D2D通訊對1的最大數據速率增量為
Figure TWI616078BD00022
,這意指其餘D2D通訊對1的最佳重新使用夥伴為重新使用候選 D2D通訊對2,且其餘D2D通訊對1的最佳傳輸功率水平為中間功率水平。類似地,其餘D2D通訊對2的最大數據速率增量為
Figure TWI616078BD00023
,這意指其餘D2D通訊對2的最佳重新使用夥伴為重新使用候選D2D通訊對4,且其餘D2D通訊對2的最佳傳輸功率水平為高功率水平。 Figure 22 is a diagram showing an example of a two-dimensional optimal reuse partner seeking procedure performed by an eNB in a second-stage resource allocation according to an embodiment of the present disclosure. Suppose there are 5 re-use candidate D2D communication pairs, ie U = 5, and there are two remaining D2D communication pairs, ie, V = 2. For each of the remaining D2D communication pairs with each transmission power level, a data rate increment is obtained under different candidate partners, where
Figure TWI616078BD00019
Represents the data rate increment in the case where the remaining D2D communication pair v with the largest transmission power shares the PRB of the candidate D2D communication pair u reused.
Figure TWI616078BD00020
Representing the data rate increment in the case where the remaining D2D communication pair v with the intermediate horizontal transmission power shares the PRB of the candidate D2D communication pair u
Figure TWI616078BD00021
Represents the data rate increment in the case where the remaining D2D communication pair v with the smallest horizontal transmission power shares the PRB of the candidate D2D communication pair u reused. For a remaining pair of D2D communication pairs, the optimal reuse power level for the best reuse partner pair and the remaining D2D communication pairs is explicitly corresponding to the maximum endpoint-to-endpoint data rate increment. For example, in the seek program as shown in FIG. 22, the maximum data rate increment corresponding to the remaining D2D communication pair 1 is
Figure TWI616078BD00022
This means that the best reuse partner for the remaining D2D communication pair 1 is to reuse the candidate D2D communication pair 2, and the optimal transmission power level of the remaining D2D communication pair 1 is the intermediate power level. Similarly, the maximum data rate increment for the remaining D2D communication pair 2 is
Figure TWI616078BD00023
This means that the best reuse partner for the remaining D2D communication pair 2 is to reuse the candidate D2D communication pair 4, and the optimal transmission power level of the remaining D2D communication pair 2 is a high power level.

雖然可能有一些D2D通訊對在第二階段分配程序中未被分配任何PRB,但當第二階段的PRB分配程序完成後,則完成整個排程程序。 Although there may be some D2D communication pairs that are not assigned any PRBs in the second stage allocation procedure, when the second stage PRB allocation procedure is completed, the entire scheduling procedure is completed.

第23圖係顯示根據本揭露一實施例所述之複數使用者設備(UE)用於分配D2D通訊資源之方法的一流程圖2300。此方法用於一基地台中。在步驟S2305中,基地台接收由UE所報告的通道狀態資訊(Channel State Information,CSI)。接著,在步驟S2310中,基地台根據通道狀態資訊估計所有D2D通訊對的鏈路品質,其中上述鏈路品質可為所有D2D通訊對的端點至端點間數據速率。在步驟S2315中,基地台根據上述鏈路品質決定每一D2D通訊對一適合的D2D通訊模式,其中上述適合的D2D通訊模式係在一來源端UE及一目的端UE之間、透過一中繼UE在上述來源端UE及上述目的端UE之間或透過上述基地台在上述來源端UE及上述目的端UE之間的一連接組合。在步驟S2320中,基地台根據鏈路品質來分配物理資源塊(Physical Resource Blocks,PRBs)。 Figure 23 is a flow chart 2300 showing a method for a plurality of user equipments (UEs) for allocating D2D communication resources according to an embodiment of the present disclosure. This method is used in a base station. In step S2305, the base station receives Channel State Information (CSI) reported by the UE. Next, in step S2310, the base station estimates the link quality of all D2D communication pairs based on the channel status information, wherein the link quality may be the end-to-endpoint data rate of all D2D communication pairs. In step S2315, the base station determines, according to the link quality, a suitable D2D communication mode for each D2D communication pair, wherein the suitable D2D communication mode is between a source UE and a destination UE, through a relay. The UE combines a connection between the source UE and the destination UE between the source UE and the destination UE. In step S2320, the base station allocates physical resource blocks (Physical Resource Blocks, PRBs) according to the link quality.

在一實施例中,基地台可使用在第20圖中所示的第一階段分配根據鏈路品質來分配所有D2D通訊對的PRB。當基地台判斷有未分配到任何PRB的至少一D2D通訊對時,基地台可使用在第21圖中所示的第二階段分配以取得一數據速率增量並根據 數據速率增量與D2D通訊對共享所分配的PRB。 In an embodiment, the base station may allocate the PRBs of all D2D communication pairs according to the link quality using the first phase shown in FIG. When the base station determines that there is at least one D2D communication pair that is not assigned to any PRB, the base station may use the second phase allocation shown in FIG. 21 to obtain a data rate increment and according to The data rate increment is shared with the D2D communication pair by the assigned PRB.

此外,中央處理器208可執行程式碼212以執行上述實施例所述之動作和步驟,或其它在說明書中所描述之內容。 In addition, central processor 208 can execute program code 212 to perform the acts and steps described in the above-described embodiments, or otherwise described in the specification.

以上實施例使用多種角度描述。顯然此處之教示可以多種方式呈現,而在範例中揭露之任何特定架構或功能僅為一代表性之狀況。根據本文之教示,任何熟知此技藝之人士應理解在本文呈現之內容可獨立利用其他某種型式或綜合多種型式作不同呈現。舉例說明,可遵照前文中提到任何方式利用某種裝置或某種方法實現。一裝置之實施或一種方式之執行可用任何其他架構、或功能性、又或架構及功能性來實現在前文所討論的一種或多種型式上。 The above embodiments are described using a variety of angles. It will be apparent that the teachings herein can be presented in a variety of ways, and that any particular architecture or function disclosed in the examples is merely representative. In light of the teachings herein, anyone skilled in the art will appreciate that the content presented herein can be independently rendered in various different types or in a variety of different forms. By way of example, it may be implemented by some means or by some means in any manner as mentioned in the foregoing. The implementation of one device or the execution of one mode may be implemented in any one or more of the types discussed above with any other architecture, or functionality, or architecture and functionality.

熟知此技藝之人士將了解訊息及信號可用多種不同科技及技巧展現。舉例,在以上描述所有可能引用到之數據、指令、命令、訊息、信號、位元、符號、以及碼片(chip)可以伏特、電流、電磁波、磁場或磁粒、光場或光粒、或以上任何組合所呈現。 Those skilled in the art will understand that messages and signals can be presented in a variety of different technologies and techniques. For example, all of the data, instructions, commands, messages, signals, bits, symbols, and chips that may be referenced above may be volts, current, electromagnetic waves, magnetic or magnetic particles, light fields or light particles, or Any combination of the above is presented.

熟知此技術之人士更會了解在此描述各種說明性之邏輯區塊、模組、處理器、裝置、電路、以及演算步驟與以上所揭露之各種情況可用的電子硬體(例如用來源編碼或其他技術設計之數位實施、類比實施、或兩者之組合)、各種形式之程式或與指示作為連結之設計碼(在內文中為方便而稱作「軟體」或「軟體模組」)、或兩者之組合。為清楚說明此硬體及軟體間之可互換性,多種具描述性之元件、方塊、模組、電路及步驟在以上之描述大致上以其功能性為主。不論此功能以硬體或軟體型式呈現, 將視加注在整體系統上之特定應用及設計限制而定。熟知此技藝之人士可為每一特定應用將描述之功能以各種不同方法作實現,但此實現之決策不應被解讀為偏離本文所揭露之範圍。 Those skilled in the art will appreciate that various illustrative logic blocks, modules, processors, devices, circuits, and logic steps are described herein for use with the electronic hardware (eg, source coded or Digital implementation of other technical designs, analogy implementation, or a combination of both), various forms of programming or design codes linked to instructions (referred to as "software" or "software modules" for convenience in the text), or a combination of the two. To clearly illustrate the interchangeability of the hardware and software, a variety of descriptive elements, blocks, modules, circuits, and steps are generally described above in terms of functionality. Whether this feature is presented in hardware or software, It will depend on the specific application and design constraints imposed on the overall system. The person skilled in the art can implement the described functions in a variety of different ways for each particular application, but the implementation of this decision should not be interpreted as deviating from the scope disclosed herein.

此外,多種各種說明性之邏輯區塊、模組、及電路以及在此所揭露之各種情況可實施在積體電路(Integrated circuit,IC)、存取終端、存取點;或由積體電路、存取終端、存取點執行。積體電路可由一般用途處理器、數位信號處理器(Digital Signal Processor,DSP)、特定應用積體電路(Application Specific Integrated Circuit,ASIC)、現場可編程閘列(Field Programmable Gate Array,FPGA)或其他可編程邏輯裝置、離散閘(Discrete Gate)或電晶體邏輯(Transistor Logic)、離散硬體元件、電子元件、光學元件、機械元件、或任何以上之組合之設計以完成在此文內描述之功能;並可能執行存在於積體電路內、積體電路外、或兩者皆有之執行碼或指令。一般用途處理器可能是微處理器,但也可能是任何常規處理器、控制器、微控制器、或狀態機。處理器可由電腦設備之組合所構成,例如:數位訊號處理器及一微電腦之組合、多組微電腦、一組至多組微電腦以及一數位訊號處理器核心、或任何其他類似之配置。 In addition, various illustrative logical blocks, modules, and circuits, and various aspects disclosed herein may be implemented in an integrated circuit (IC), an access terminal, an access point, or an integrated circuit. , access terminal, access point execution. The integrated circuit can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programmable logic device, Discrete Gate or Transistor Logic, discrete hardware components, electronic components, optical components, mechanical components, or any combination of the above to perform the functions described herein And may execute an execution code or instruction that exists in the integrated circuit, outside the integrated circuit, or both. A general purpose processor may be a microprocessor, but could be any conventional processor, controller, microcontroller, or state machine. The processor may be comprised of a combination of computer devices, such as a combination of a digital signal processor and a microcomputer, a plurality of sets of microcomputers, a set of at most one set of microcomputers, and a digital signal processor core, or any other similar configuration.

在此所揭露程序之任何具體順序或分層之步驟純為一舉例之方式。基於設計上之偏好,必須了解到程序上之任何具體順序或分層之步驟可在此文件所揭露的範圍內被重新安排。伴隨之方法權利要求以一示例順序呈現出各種步驟之元件,也因此不應被此所展示之特定順序或階層所限制。 Any specific sequence or layering of the procedures disclosed herein is by way of example only. Based on design preferences, it must be understood that any specific order or hierarchy of steps in the program may be rearranged within the scope of the disclosure. The accompanying claims are intended to be illustrative of a

在申請專利範圍中用以修飾元件之「第一」、「第二」」、 「第三」等序數詞之使用本身未暗示任何的優先權、優先次序、各元件之間之先後次序、或方法所執行之步驟之次序,而僅用作標識,以區分具有相同名稱(具有不同序數詞)之不同元件。 In the scope of the patent application, the "first" and "second" used to modify the components, The use of ordinal numbers such as "third" does not imply any prioritization, prioritization, prioritization between elements, or the order in which the method is performed, but only as an identifier to distinguish between having the same name. Different components of different ordinal numbers).

雖然本揭露已以實施範例揭露如上,然其並非用以限定本案,任何熟悉此項技藝者,在不脫離本揭露之精神和範圍內,當可做些許更動與潤飾,因此本案之保護範圍當視後附之申請專利範圍所界定者為準。 Although the disclosure has been described above by way of example, it is not intended to limit the scope of the present invention, and the scope of protection of the present invention can be made without departing from the spirit and scope of the disclosure. This is subject to the definition of the scope of the patent application.

400‧‧‧訊息流程圖 400‧‧‧Information flow chart

S405、S410、S415、S420、S425、S430‧‧‧步驟 S405, S410, S415, S420, S425, S430‧‧ steps

Claims (24)

一種在一無線網路中用以傳送複數數據封包的通訊裝置,至少包括:一控制電路;一處理器,設置於上述控制電路中;以及一記憶體,設置於上述控制電路中並耦接上述處理器;其中上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:接收一或多個第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其包括複數無線電鏈路控制(Radio Link Control,RLC)PDU,上述RLC PDU來自上述無線網路之一來源端使用者設備(User Equipment,UE)且預計傳送至一目的端UE;根據每一第一MAC PDU的一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RLC PDU;根據一或多個MAC PDU大小由一或多個上述RLC PDU中產生複數RLC PDU分段或由所有上述RLC PDU中產生複數中繼RLC(Relay RLC,RRLC)PDU,其中上述RRLC係為介於一MAC層及一RLC層之間的一協定層;多工操作(multiplex)上述RLC PDU及上述RLC PDU分段或上述RRLC PDU為一或多個第二MAC PDU;以及傳送上述第二MAC PDU至上述目的端UE。 A communication device for transmitting a plurality of data packets in a wireless network includes at least: a control circuit; a processor disposed in the control circuit; and a memory disposed in the control circuit and coupled to the foregoing The processor is configured to execute a code stored in the memory to perform: receiving one or more first Medium Access Control (MAC) protocol data units (Protocol Data Units, a PDU), which includes a plurality of Radio Link Control (RLC) PDUs, the RLC PDUs are from a source device (User Equipment, UE) of the wireless network, and are expected to be transmitted to a destination UE; Deactivating a first MAC PDU of the first MAC PDU to demultiplex the first MAC PDU to retrieve the RLC PDU; generating a plurality of one or more of the foregoing RLC PDUs according to one or more MAC PDU sizes RLC PDU segmentation or a plurality of relay RLC (RRLC) PDUs generated by all the foregoing RLC PDUs, wherein the RRLC is a protocol layer between a MAC layer and an RLC layer; multiplex operation (mul Tiplex) the foregoing RLC PDU and the foregoing RLC PDU segment or the RRLC PDU are one or more second MAC PDUs; and transmitting the second MAC PDU to the destination UE. 如申請專利範圍第1項所述之通訊裝置,其中上述RLC PDU分段其中之一係根據上述MAC PDU大小其中之一重新分割上述RLC PDU其中之一之一數據欄位且增加一重新分割資訊至上述RLC PDU其中之一的一標頭欄位中所產生。 The communication device of claim 1, wherein one of the RLC PDU segments re-segmentates one of the RLC PDUs according to one of the MAC PDU sizes and adds a re-segmentation information. Generated in a header field of one of the above RLC PDUs. 如申請專利範圍第1項所述之通訊裝置,其中上述RRLC PDU係根據上述MAC PDU大小分割及連結(concatenate)上述RLC PDU且增加包括一分割及連結資訊的一標頭至每一RRLC PDU中所產生。 The communication device of claim 1, wherein the RRLC PDU divides and concatenates the RLC PDU according to the MAC PDU size, and adds a header including a split and link information to each RRLC PDU. Produced. 如申請專利範圍第1項所述之通訊裝置,其中上述MAC PDU大小係根據由一基地台所傳送之一或多個資源授與(reSource grant)來取得。 The communication device of claim 1, wherein the MAC PDU size is obtained according to one or more resource re-deliverys transmitted by a base station. 如申請專利範圍第1項所述之通訊裝置,其中上述RLC PDU及上述RLC PDU分段或上述RRLC PDU根據一優先順序被多工操作為上述第二MAC PDU。 The communication device of claim 1, wherein the RLC PDU and the RLC PDU segment or the RRLC PDU are multiplexed into the second MAC PDU according to a priority order. 如申請專利範圍第5項所述之通訊裝置,其中上述優先順序係基於一先進先出(First-in First-out,FIFO)原則或服務品質(Quality of Service,QoS)參數。 The communication device of claim 5, wherein the prioritization is based on a First-in First-out (FIFO) principle or a Quality of Service (QoS) parameter. 一種在一無線網路中用以傳送複數數據封包的方法,用於一通訊裝置中,上述方法包括以下步驟:接收一或多個第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其包括複數無線電鏈路控制(Radio Link Control,RLC)PDU,上述RLC PDU來自上述無線網路之一來源端使用者設備(User Equipment,UE)且預計傳送至一目的端使用者設備(User Equipment,UE);根據每一第一MAC PDU的一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RLC PDU;根據一或多個MAC PDU大小由一或多個上述RLC PDU中產生複數RLC PDU分段或由所有上述RLC PDU中產生複數中繼RLC(Relay RLC,RRLC)PDU,其中上述RRLC係為介於一MAC層及一RLC層之間的一協定層;多工操作(multiplex)上述RLC PDU及上述RLC PDU分段或上述RRLC PDU為一或多個第二MAC PDU;以及傳送上述第二MAC PDU至上述目的端UE。 A method for transmitting a plurality of data packets in a wireless network for use in a communication device, the method comprising the steps of: receiving one or more first Medium Access Control (MAC) protocol data units (Protocol Data Unit, PDU), which includes a plurality of Radio Link Control (RLC) PDUs, the above RLC The PDU is from a source device (UE) of the wireless network and is expected to be transmitted to a user equipment (User Equipment, UE); according to a header field solution of each first MAC PDU Demultiplexing the first MAC PDU to retrieve the RLC PDU; generating a plurality of RLC PDU segments from one or more of the RLC PDUs according to one or more MAC PDU sizes or generating a plurality of the foregoing RLC PDUs Relay RLC (RRLC) PDU, wherein the RRLC is a protocol layer between a MAC layer and an RLC layer; multiplexing the RLC PDU and the RLC PDU segment or the RRLC The PDU is one or more second MAC PDUs; and the foregoing second MAC PDU is transmitted to the destination UE. 如申請專利範圍第7項所述之用以傳送複數數據封包的方法,其中上述RLC PDU分段其中之一係根據上述MAC PDU大小其中之一重新分割上述RLC PDU其中之一之一數據欄位且增加一重新分割資訊至上述RLC PDU其中之一的一標頭欄位中所產生。 The method for transmitting a plurality of data packets as described in claim 7, wherein one of the RLC PDU segments re-segmentates one of the RLC PDUs according to one of the MAC PDU sizes. And adding a re-segmentation information to a header field of one of the RLC PDUs mentioned above. 如申請專利範圍第7項所述之用以傳送複數數據封包的方法,其中上述RRLC PDU係根據上述MAC PDU大小分割及連結(concatenate)上述RLC PDU且增加包括一分割及連結資訊的一標頭至每一RRLC PDU中所產生。 The method for transmitting a plurality of data packets according to claim 7, wherein the RRLC PDU divides and concatenates the RLC PDU according to the MAC PDU size and adds a header including a split and link information. Generated in each RRLC PDU. 如申請專利範圍第7項所述之用以傳送複數數據封包的方法,其中上述MAC PDU大小係根據由一基地台所傳送之一或多個資源授與(resource grant)來取得。 The method for transmitting a plurality of data packets as described in claim 7, wherein the MAC PDU size is obtained according to one or more resource grants transmitted by a base station. 如申請專利範圍第7項所述之用以傳送複數數據封包的方法,其中上述RLC PDU及上述RLC PDU分段或上述RRLC PDU根據一優先順序被多工操作為上述第二MAC PDU。 The method for transmitting a plurality of data packets as described in claim 7, wherein the RLC PDU and the RLC PDU segment or the RRLC PDU are multiplexed into the second MAC PDU according to a priority order. 如申請專利範圍第11項所述之用以傳送複數數據封包的方法,其中上述優先順序係基於一先進先出(First-in First-out,FIFO)原則或服務品質(Quality of Service,QoS)參數。 The method for transmitting a plurality of data packets as described in claim 11 wherein the prioritization is based on a First-in First-out (FIFO) principle or Quality of Service (QoS). parameter. 一種在一無線網路中用以接收複數數據封包的通訊裝置,至少包括:一控制電路;一處理器,設置於上述控制電路中;以及一記憶體,設置於上述控制電路中並耦接上述處理器;其中上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:透過一中繼使用者設備(User Equipment,UE)、一基地台接收並直接接收來自上述無線網路之一來源端UE的一或多個媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述MAC PDU係由複數無線 電鏈路控制(Radio Link Control,RLC)PDU及複數RLC PDU分段所組成;根據每一MAC PDU之一標頭欄位解多工操作(demultiplex)上述MAC PDU以擷取上述RLC PDU及上述RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RLC PDU及上述RLC PDU分段,並執行上述RLC PDU及上述RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括於上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述RLC PDU及上述RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 A communication device for receiving a plurality of data packets in a wireless network, comprising: at least: a control circuit; a processor disposed in the control circuit; and a memory disposed in the control circuit and coupled to the The processor is configured to execute a code stored in the memory to perform: receiving and directly receiving a wireless network from the user equipment through a relay user equipment (User Equipment, UE) One or more Medium Access Control (MAC) Protocol Data Units (PDUs) of the source UE, where the MAC PDU is composed of multiple wireless a Radio Link Control (RLC) PDU and a plurality of RLC PDU segments; demultiplexing the MAC PDU according to a header field of each MAC PDU to retrieve the RLC PDU and the foregoing RLC PDU segmentation; reordering the RLC PDU and the RLC PDU segment according to Transmission Sequence Numbers (TSNs), and performing a repeated detection of the RLC PDU and the RLC PDU segment, wherein each transmission sequence number is Included in each of the RLC PDUs and one of the header fields of each RLC PDU segment; and reassembling the information using the information included in each of the RLC PDUs and each of the above-described header fields of each RLC PDU segment The RLC PDU and the above RLC PDU are segmented into a plurality of RLC Service Data Units (SDUs). 一種在一無線網路中用以接收複數數據封包的通訊裝置,至少包括:一控制電路;一處理器,設置於上述控制電路中;以及一記憶體,設置於上述控制電路中並耦接上述處理器;其中上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:透過一中繼使用者設備(User Equipment,UE)及一基地台接收來自上述無線網路之一來源端UE的複數第一媒體存取控 制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述第一MAC PDU係由複數中繼RLC(Relay RLC,RRLC)PDU所組成,其中上述RRLC PDU係為介於一MAC層及RLC層之間一協定層的PDU,並直接接收來自上述來源端UE的複數第二MAC PDU,其中上述第二MAC PDU係由複數第一RLC PDU及複數第一RLC PDU分段所組成;根據每一第一MAC PDU之一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RRLC PDU,並根據每一第二MAC PDU之一標頭欄位解多工操作上述第二MAC PDU以擷取上述第一RLC PDU及上述第一RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RRLC PDU,並執行上述RRLC PDU的一重複偵測,其中每一傳輸序號被包括在每一RRLC PDU之一標頭欄位中;使用包括於上述每一RRLC PDU中之上述標頭欄位之資訊來重組上述RRLC PDU至複數第二RLC PDU及複數第二RLC PDU分段;根據上述傳輸序號重新排序上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段,並執行上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段的一重複偵測,其 中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括在上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 A communication device for receiving a plurality of data packets in a wireless network, comprising: at least: a control circuit; a processor disposed in the control circuit; and a memory disposed in the control circuit and coupled to the The processor is configured to execute a code stored in the memory to perform: receiving a source from the wireless network through a relay user equipment (User Equipment, UE) and a base station Multiple first media access control of the UE A Medium Access Control (MAC) protocol data unit (PDU), wherein the first MAC PDU is composed of a plurality of relay RLC (RRLC) PDUs, wherein the RRLC PDU is one a PDU of a protocol layer between the MAC layer and the RLC layer, and directly receiving a plurality of second MAC PDUs from the source UE, wherein the second MAC PDU is segmented by the plurality of first RLC PDUs and the plurality of first RLC PDUs Composing: demultiplexing the first MAC PDU according to a header field of each first MAC PDU to retrieve the RRLC PDU, and decoding according to one of the header fields of each second MAC PDU The second MAC PDU is operated to capture the first RLC PDU and the first RLC PDU segment; the RRLC PDU is reordered according to Transmission Sequence Numbers (TSNs), and a repetition detection of the RRLC PDU is performed. Each of the transmission sequence numbers is included in a header field of each of the RRLC PDUs; the RRLC PDU is reassembled to the plurality of second RLC PDUs using information of the header fields included in each of the RRLC PDUs a plurality of second RLC PDU segments; Retransmitting the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment, and performing the foregoing first RLC PDU, the first RLC PDU segment, and the foregoing a repeated detection of the second RLC PDU and the second RLC PDU segment, Each of the transmission sequence numbers is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment; and the above-mentioned header field included in each of the RLC PDUs and each of the RLC PDU segments described above is used. And the information is used to reassemble the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment into a plurality of RLC Service Data Units (SDUs). 一種在一無線網路中用以接收複數數據封包的方法,用於一通訊裝置中,上述方法包括以下步驟:透過一中繼使用者設備(User Equipment,UE)、一基地台接收並直接接收來自上述無線網路之一來源端UE的一或多個媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述MAC PDU係由複數無線電鏈路控制(Radio Link Control,RLC)PDU及複數RLC PDU分段所組成;根據每一MAC PDU之一標頭欄位解多工操作(demultiplex)上述MAC PDU以擷取上述RLC PDU及上述RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RLC PDU及上述RLC PDU分段,並執行上述RLC PDU及上述RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及 使用包括於上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述RLC PDU及上述RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 A method for receiving a plurality of data packets in a wireless network for use in a communication device, the method comprising the steps of: receiving and directly receiving through a relay user equipment (User Equipment, UE), a base station One or more Medium Access Control (MAC) Protocol Data Units (PDUs) from one of the above-mentioned wireless networks, wherein the MAC PDUs are controlled by a plurality of radio links (Radio) a Link Control (RLC) PDU and a plurality of RLC PDU segments; demultiplexing the MAC PDU according to a header field of each MAC PDU to retrieve the RLC PDU and the RLC PDU segment; Transmit Sequence Numbers (TSNs) reorder the RLC PDUs and the RLC PDU segments, and perform a repetition detection of the RLC PDUs and the RLC PDU segments, where each transmission sequence number is included in each RLC PDU. And one of the header fields of each RLC PDU segment; The RLC PDU and the RLC PDU segment are reassembled into a plurality of RLC Service Data Units (SDUs) using information included in each of the RLC PDUs and the header field of each of the RLC PDU segments. 一種在一無線網路中用以接收複數數據封包的方法,用於一通訊裝置中,上述方法包括以下步驟:透過一中繼使用者設備(User Equipment,UE)及一基地台接收來自上述無線網路之一來源端UE的複數第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述第一MAC PDU係由複數中繼RLC(Relay RLC,RRLC)PDU所組成,其中上述RRLC PDU係為介於一MAC層及RLC層之間一協定層的PDU,並直接接收來自上述來源端UE的複數第二MAC PDU,其中上述第二MAC PDU係由複數第一RLC PDU及複數第一RLC PDU分段所組成;根據每一第一MAC PDU之一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RRLC PDU,並根據每一第二MAC PDU之一標頭欄位解多工操作上述第二MAC PDU以擷取上述第一RLC PDU及上述第一RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RRLC PDU,並執行上述RRLC PDU的一重複偵測,其中每一傳輸序號被包括在每一RRLC PDU之一標頭欄位中; 使用包括於上述每一RRLC PDU中之上述標頭欄位之資訊來重組上述RRLC PDU至複數第二RLC PDU及複數第二RLC PDU分段;根據上述傳輸序號重新排序上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段,並執行上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括在上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 A method for receiving a plurality of data packets in a wireless network for use in a communication device, the method comprising the steps of: receiving, by a relay user equipment (User Equipment, UE) and a base station, the wireless a first medium access control (MAC) protocol data unit (PDU) of the source UE of the network, wherein the first MAC PDU is a multiple relay RLC (Relay RLC, RRLC) a PDU, wherein the RRLC PDU is a PDU of a protocol layer between a MAC layer and an RLC layer, and directly receives a plurality of second MAC PDUs from the source UE, wherein the second MAC PDU is Composing a plurality of first RLC PDUs and a plurality of first RLC PDU segments; demultiplexing the first MAC PDU according to a header field of each first MAC PDU to retrieve the RRLC PDU, and according to Decoding a header field of each second MAC PDU to operate the second MAC PDU to retrieve the first RLC PDU and the first RLC PDU segment; and reorder according to Transmission Sequence Numbers (TSNs) The above RRLC PDU, And performing a repeated detection of the RRLC PDU, where each transmission sequence number is included in one of the header fields of each RRLC PDU; Recombining the RRLC PDU into the plurality of second RLC PDUs and the plurality of second RLC PDU segments by using the information of the foregoing header fields included in each of the RRLC PDUs; reordering the first RLC PDU according to the transmission sequence number, a first RLC PDU segment, the foregoing second RLC PDU, and the second RLC PDU segment, and performing the foregoing first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment Repeat detection, wherein each transmission sequence number is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment; and the segmentation used in each of the RLC PDUs and each of the RLC PDU segments described above The information in the header field to reassemble the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment into a plurality of RLC service data units (SDUs) ). 一種分配用於複數使用者設備(User Equipment,UE)之裝置間(Device-to-Device,D2D)通訊資源的方法,用於一基地台中,上述方法包括以下步驟:接收由上述UE所報告的通道狀態資訊;根據上述通道狀態資訊估計所有D2D通訊對的鏈路品質;根據上述鏈路品質決定每一D2D通訊對的一適合的D2D通訊模式;以及 根據上述鏈路品質分配物理資源塊(Physical Resource Blocks,PRBs)。 A method for allocating Device-to-Device (D2D) communication resources for a plurality of User Equipments (UEs) for use in a base station, the method comprising the steps of: receiving the report reported by the UE Channel status information; estimating link quality of all D2D communication pairs according to the channel status information; determining a suitable D2D communication mode of each D2D communication pair according to the link quality; and Physical Resource Blocks (PRBs) are allocated according to the above link quality. 如申請專利範圍第17項所述之分配用於複數使用者設備之裝置間通訊資源的方法,上述方法更包括:判斷是否具有未分配任何PRB的至少一D2D通訊對;以及當判斷具有未分配任何PRB的上述至少一D2D通訊對時,根據一數據率增加與上述至少一D2D通訊對分享上述已分配PRB。 The method for allocating an inter-device communication resource for a plurality of user equipments as described in claim 17, the method further comprising: determining whether there is at least one D2D communication pair to which no PRB is allocated; and when determining that there is unallocated When the at least one D2D communication pair of any of the PRBs is paired, the allocated PRB is shared with the at least one D2D communication pair according to a data rate increase. 如申請專利範圍第17項所述之分配用於複數使用者設備之裝置間通訊資源的方法,其中上述適合的D2D通訊模式係在一來源端UE及一目的端UE之間、透過一中繼UE在上述來源端UE及上述目的端UE之間或透過上述基地台在上述來源端UE及上述目的端UE之間的一連接組合。 The method for allocating inter-device communication resources for a plurality of user equipments as described in claim 17, wherein the suitable D2D communication mode is between a source UE and a destination UE, through a relay The UE combines a connection between the source UE and the destination UE between the source UE and the destination UE. 一種在一無線網路中用於裝置間(Device-to-Device,D2D)通訊的通訊系統,至少包括:一來源端使用者設備(User Equipment,UE);一目的端UE;一中繼UE;以及一基地台,接收由上述來源端UE、上述目的端UE及上述中繼UE所報告的通道狀態資訊;其中上述基地台根據上述通道狀態資訊估計所有D2D通訊對的鏈路品質,根據上述鏈路品質決定從上述來源端UE到 上述目的端UE的一適合的D2D通訊模式,並傳送一資源授與(resource grant)至上述來源端UE以指示上述來源端UE在上述適合的D2D通訊模式中傳送數據封包至上述目的端UE;其中上述適合的D2D通訊模式係在上述來源端UE及上述目的端UE之間、透過上述中繼UE在上述來源端UE及上述目的端UE之間或透過上述基地台在上述來源端UE及上述目的端UE之間的一連接組合。 A communication system for device-to-device (D2D) communication in a wireless network, comprising at least: a source device (User Equipment, UE); a destination UE; a relay UE And a base station receiving channel status information reported by the source UE, the destination UE, and the relay UE; wherein the base station estimates link quality of all D2D communication pairs according to the channel status information, according to the foregoing Link quality is determined from the above source UE a suitable D2D communication mode of the destination UE, and transmitting a resource grant to the source UE to instruct the source UE to transmit a data packet to the destination UE in the suitable D2D communication mode; The above-mentioned suitable D2D communication mode is between the source UE and the destination UE, and between the source UE and the destination UE through the relay UE or through the base station at the source UE and the foregoing A connection combination between UEs at the destination end. 如申請專利範圍第20項所述之用於裝置間通訊的通訊系統,其中上述適合的D2D通訊模式係為透過上述中繼UE在上述來源端UE及上述目的端UE之間的上述連接組合,上述中繼UE更至少包括:一控制電路;一處理器,設置於上述控制電路中;以及一記憶體,設置於上述控制電路中並耦接上述處理器;其中上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:接收一或多個第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其包括複數無線電鏈路控制(Radio Link Control,RLC)PDU,上述PDU來自上述無線網路之上述來源端UE且預計傳送至上述目的端UE; 根據每一第一MAC PDU的一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RLC PDU;根據一或多個MAC PDU大小由一或多個上述RLC PDU中產生複數RLC PDU分段或由所有上述RLC PDU中產生複數中繼RLC(Relay RLC,RRLC)PDU,其中上述RRLC係為介於一MAC層及一RLC層之間的一協定層;根據一先進先出(First-in First-out,FIFO)原則多工操作(multiplex)上述RLC PDU及上述RLC PDU分段或上述RRLC PDU為一或多個第二MAC PDU;以及傳送上述第二MAC PDU至上述目的端UE。 The communication system for inter-device communication according to claim 20, wherein the suitable D2D communication mode is the connection combination between the source UE and the destination UE through the relay UE. The relay UE further includes: a control circuit; a processor disposed in the control circuit; and a memory disposed in the control circuit and coupled to the processor; wherein the processor is configured to execute a The code stored in the memory is configured to: receive one or more first Medium Access Control (MAC) Protocol Data Units (PDUs) including multiple radio link control (Radio) a Link Control (RLC) PDU, the PDU is from the source UE of the wireless network and is expected to be transmitted to the destination UE; Demultiplexing the first MAC PDU to retrieve the RLC PDU according to a header field of each first MAC PDU; generating one or more of the foregoing RLC PDUs according to one or more MAC PDU sizes Multiple RLC PDU segments or a plurality of relay RLC (RRLC) PDUs generated by all of the foregoing RLC PDUs, wherein the RRLC is a protocol layer between a MAC layer and an RLC layer; First-in First-out (FIFO) principle multiplexes the RLC PDU and the RLC PDU segment or the RRLC PDU as one or more second MAC PDUs; and transmits the second MAC PDU to the foregoing Destination UE. 如申請專利範圍第20項所述之用於裝置間通訊的通訊系統,其中上述目的端UE更至少包括:一控制電路;一處理器,設置於上述控制電路中;以及一記憶體,設置於上述控制電路中並耦接上述處理器;其中上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:透過上述中繼UE、上述基地台接收並直接接收來自上述來源端UE的一或多個媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述MAC PDU係由複數無線電鏈路控制(Radio Link Control,RLC)PDU及複數RLC PDU分段所組成; 根據每一MAC PDU之一標頭欄位解多工操作上述MAC PDU以擷取上述RLC PDU及上述RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RLC PDU及上述RLC PDU分段,並執行上述RLC PDU及上述RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及使用包括於上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述RLC PDU及上述RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 The communication system for inter-device communication according to claim 20, wherein the destination UE further comprises at least: a control circuit; a processor disposed in the control circuit; and a memory disposed on the The processor is coupled to the processor, wherein the processor is configured to execute a code stored in the memory to perform: receiving, by the relay UE, the base station, and directly receiving, from the source UE One or more Medium Access Control (MAC) Protocol Data Units (PDUs), wherein the MAC PDUs are composed of a plurality of Radio Link Control (RLC) PDUs and a plurality of RLC PDUs. Composed of segments; Demultiplexing the MAC PDU according to a header field of each MAC PDU to retrieve the RLC PDU and the RLC PDU segment; and reordering the RLC PDU and the RLC PDU according to Transmission Sequence Numbers (TSNs) Segmenting and performing a repeated detection of the RLC PDU and the RLC PDU segment, wherein each transmission sequence number is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment; Recombining the RLC PDU and the RLC PDU segment into a plurality of RLC Service Data Units (SDUs) in each of the RLC PDUs and the information in the header field of each of the RLC PDU segments. 如申請專利範圍第20項所述之用於裝置間通訊的通訊系統,其中上述目的端UE更至少包括:一控制電路;一處理器,設置於上述控制電路中;以及一記憶體,設置於上述控制電路中並耦接上述處理器;其中上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:透過上述中繼UE及上述基地台接收來自上述來源端UE的複數第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其中上述第一MAC PDU係由複數中繼RLC(Relay RLC,RRLC)PDU所組成,其中上述RRLC PDU係為介於一MAC層及RLC層之間一協定層的PDU, 並直接接收來自上述來源端UE的複數第二MAC PDU,其中上述第二MAC PDU係由複數第一RLC PDU及複數第一RLC PDU分段所組成;根據每一第一MAC PDU之一標頭欄位解多工操作(demultiplex)上述第一MAC PDU以擷取上述RRLC PDU,並根據每一第二MAC PDU之一標頭欄位解多工操作上述第二MAC PDU以擷取上述第一RLC PDU及上述第一RLC PDU分段;根據傳輸序號(Transmission Sequence Numbers,TSNs)重新排序上述RRLC PDU,並執行上述RRLC PDU的一重複偵測,其中每一傳輸序號被包括在每一RRLC PDU之一標頭欄位中;使用包括於上述每一RRLC PDU中之上述標頭欄位之資訊來重組上述RRLC PDU至複數第二RLC PDU及複數第二RLC PDU分段;根據上述傳輸序號重新排序上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段,並執行上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段的一重複偵測,其中每一傳輸序號被包括在每一RLC PDU及每一RLC PDU分段之一標頭欄位中;以及 使用包括在上述每一RLC PDU及上述每一RLC PDU分段之上述標頭欄位中之資訊來重組上述第一RLC PDU、上述第一RLC PDU分段、上述第二RLC PDU及上述第二RLC PDU分段至複數RLC服務數據單元(Service Data Unit,SDU)。 The communication system for inter-device communication according to claim 20, wherein the destination UE further comprises at least: a control circuit; a processor disposed in the control circuit; and a memory disposed on the The processor is coupled to the processor, wherein the processor is configured to execute a code stored in the memory to perform: receiving, by the relay UE and the base station, a plurality of bits from the source UE A medium access control (MAC) protocol data unit (PDU), wherein the first MAC PDU is composed of a plurality of relay RLC (RRLC) PDUs, wherein the RRLC PDU system is a PDU between a MAC layer and an RLC layer, And directly receiving the plurality of second MAC PDUs from the source UE, wherein the second MAC PDU is composed of a plurality of first RLC PDUs and a plurality of first RLC PDU segments; according to one of each first MAC PDU header The field demultiplexes the first MAC PDU to retrieve the RRLC PDU, and multiplexes the second MAC PDU according to a header field of each second MAC PDU to obtain the first RLC PDU and the first RLC PDU segment; reordering the RRLC PDU according to Transmission Sequence Numbers (TSNs), and performing a repeated detection of the RRLC PDU, where each transmission sequence number is included in each RRLC PDU In one of the header fields, recombining the RRLC PDU into the plurality of second RLC PDUs and the plurality of second RLC PDU segments by using the information of the foregoing header fields included in each of the RRLC PDUs; Sorting the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second RLC PDU segment, and performing the foregoing first RLC PDU, the first RLC PDU segment, and the second RLC PDU And the second RLC PDU segmentation described above a repeat detection in which each transmission sequence number is included in each of the RLC PDUs and one of the header fields of each RLC PDU segment; Recombining the first RLC PDU, the first RLC PDU segment, the second RLC PDU, and the second by using information included in each of the RLC PDUs and each of the foregoing header fields of each RLC PDU segment The RLC PDU is segmented into a plurality of RLC Service Data Units (SDUs). 如申請專利範圍第20項所述之用於裝置間通訊的通訊系統,其中上述適合的D2D通訊模式係為透過上述基地台在上述來源端UE及上述目的端UE之間的上述連接組合,上述基地台更至少包括:一控制電路;一處理器,設置於上述控制電路中;以及一記憶體,設置於上述控制電路中並耦接上述處理器;其中上述處理器配置用以執行一儲存於上述記憶體之程式碼,以執行:接收一或多個第一媒體存取控制(Medium Access Control,MAC)協定數據單元(Protocol Data Unit,PDU),其包括複數無線電鏈路控制(Radio Link Control,RLC)PDU,上述RLC PDU來自上述無線網路之一來源端使用者設備(User Equipment,UE)且預計傳送至一目的端UE;根據每一第一MAC PDU的一標頭欄位解多工操作上述第一MAC PDU以擷取上述RLC PDU;根據一或多個MAC PDU大小由一或多個上述RLC PDU中產生複數RLC PDU分段或由所有上述RLC PDU中產生複數中 繼RLC(Relay RLC,RRLC)PDU,其中上述RRLC係為介於一MAC層及一RLC層之間的一協定層;根據一先進先出(First-in First-out,FIFO)原則或服務品質(Quality of Service,QoS)參數多工操作(multiplex)上述RLC PDU及上述RLC PDU分段或上述RRLC PDU為一或多個第二MAC PDU;以及傳送上述第二MAC PDU至上述目的端UE。 The communication system for inter-device communication according to claim 20, wherein the suitable D2D communication mode is the connection combination between the source UE and the destination UE through the base station, The base station further includes: a control circuit; a processor disposed in the control circuit; and a memory disposed in the control circuit and coupled to the processor; wherein the processor is configured to perform a The code of the memory is configured to: receive one or more first Medium Access Control (MAC) Protocol Data Units (PDUs) including multiple radio link control (Radio Link Control) , RLC) PDU, the RLC PDU is from a source device (User Equipment, UE) of the foregoing wireless network and is expected to be transmitted to a destination UE; and according to a header field of each first MAC PDU Operating the first MAC PDU to retrieve the RLC PDU; generating a plurality of RLC PDU segments from one or more of the RLC PDUs according to one or more MAC PDU sizes or by all of the foregoing RLCs Generated in the PDU Following a RLC (Relay RLC, RRLC) PDU, wherein the RRLC is a protocol layer between a MAC layer and an RLC layer; according to a first-in first-out (FIFO) principle or service quality (Quality of Service, QoS) parameter multiplexing (multiplex) the RLC PDU and the RLC PDU segment or the RRLC PDU as one or more second MAC PDUs; and transmitting the second MAC PDU to the destination UE.
TW105109995A 2016-03-30 2016-03-30 Communication system, communication device and method thereof for d2d communications TWI616078B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105109995A TWI616078B (en) 2016-03-30 2016-03-30 Communication system, communication device and method thereof for d2d communications
CN201610659226.1A CN107295459B (en) 2016-03-30 2016-08-12 Communication system, communication device, base station and method for D2D communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105109995A TWI616078B (en) 2016-03-30 2016-03-30 Communication system, communication device and method thereof for d2d communications

Publications (2)

Publication Number Publication Date
TW201735585A TW201735585A (en) 2017-10-01
TWI616078B true TWI616078B (en) 2018-02-21

Family

ID=61021712

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105109995A TWI616078B (en) 2016-03-30 2016-03-30 Communication system, communication device and method thereof for d2d communications

Country Status (1)

Country Link
TW (1) TWI616078B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090034507A1 (en) * 2007-08-01 2009-02-05 Broadcom Corporation High-speed uplink packet access (hsupa) cipher multiplexing engine
TW201338437A (en) * 2011-12-08 2013-09-16 Interdigital Patent Holdings Method, apparatus and system for direct communication between wireless transmit/receive units (WTRUs) in advanced topology (AT) applications
TW201429295A (en) * 2012-12-07 2014-07-16 Alcatel Lucent Method and apparatus for use in user equipment configured with EPDCCH for providing downlink radio link condition
US20140286234A1 (en) * 2008-12-17 2014-09-25 Blackberry Limited System and Method for Multi-User Multiplexing
CN102595534B (en) * 2011-01-10 2014-12-03 华为技术有限公司 Method and device for releasing user equipment context related resource

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090034507A1 (en) * 2007-08-01 2009-02-05 Broadcom Corporation High-speed uplink packet access (hsupa) cipher multiplexing engine
US20140286234A1 (en) * 2008-12-17 2014-09-25 Blackberry Limited System and Method for Multi-User Multiplexing
CN102595534B (en) * 2011-01-10 2014-12-03 华为技术有限公司 Method and device for releasing user equipment context related resource
TW201338437A (en) * 2011-12-08 2013-09-16 Interdigital Patent Holdings Method, apparatus and system for direct communication between wireless transmit/receive units (WTRUs) in advanced topology (AT) applications
TW201429295A (en) * 2012-12-07 2014-07-16 Alcatel Lucent Method and apparatus for use in user equipment configured with EPDCCH for providing downlink radio link condition

Also Published As

Publication number Publication date
TW201735585A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
US10524162B2 (en) Communication device and method thereof for D2D communications
RU2683977C1 (en) Managing multiple transmissions of direct connection during period of managing direct connection
JP6379214B2 (en) Interference parameter signaling for effective cancellation and suppression of interference
EP2698026B1 (en) Scheduling data packet and control information in a telecommunication network
KR102067589B1 (en) Method and system for parallelizing packet processing in wireless communication
EP2815616B1 (en) A transmitting radio node, a receiving radio node, and methods therein for handling data packets within a radio bearer
CN112368966A (en) Flexible repetition of PUSCH mini-slots within a slot
KR100967224B1 (en) Downlink traffic channel resource allocating method and data transmitting method for multi-carrier hsdpa
US9380572B2 (en) Base station, mobile station, coordinated mobile station, transmission method and reception method
JP5237468B2 (en) Method and configuration in a wireless communication system
CN107295459B (en) Communication system, communication device, base station and method for D2D communication
JP7053823B2 (en) Methods, equipment, computer program products and computer programs
TW201731250A (en) Techniques for indicating a dynamic subframe type
JPWO2016185895A1 (en) Wireless terminal, base station, and processor
EP3737183A1 (en) Communication method and device
JP7231692B2 (en) Persistent indication of acknowledgment resource
WO2013172106A1 (en) Base station in mobile communication system and control method
TWI616078B (en) Communication system, communication device and method thereof for d2d communications
CN113271614B (en) Apparatus and method for handling physical uplink control channel collision
JP2020065289A (en) Short latency fast retransmission triggering
CN109906646B (en) Information transmission method, base station and terminal equipment
KR20160140098A (en) Method and Apparatus of scheduling for wireless packet network
JP5824586B1 (en) Base station, radio communication system, and communication control method
WO2018000247A1 (en) Data transmission method and device
CN116318525A (en) Data transmission method and device and communication equipment