TWI611181B - Sensor array, manufacturing method thereof, and sensing method - Google Patents

Sensor array, manufacturing method thereof, and sensing method Download PDF

Info

Publication number
TWI611181B
TWI611181B TW105133636A TW105133636A TWI611181B TW I611181 B TWI611181 B TW I611181B TW 105133636 A TW105133636 A TW 105133636A TW 105133636 A TW105133636 A TW 105133636A TW I611181 B TWI611181 B TW I611181B
Authority
TW
Taiwan
Prior art keywords
sensing
sensor array
electrode
circuit board
sensing material
Prior art date
Application number
TW105133636A
Other languages
Chinese (zh)
Other versions
TW201816395A (en
Inventor
何羽軒
吳怡德
陳育民
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW105133636A priority Critical patent/TWI611181B/en
Application granted granted Critical
Publication of TWI611181B publication Critical patent/TWI611181B/en
Publication of TW201816395A publication Critical patent/TW201816395A/en

Links

Abstract

一種感測器陣列包括線路板、多個第一感測單元以及至少一個第二感測單元。線路板具有相對的上表面與下表面。第一感測單元位於線路板的上表面上。第一感測單元包括多個第一電極以及多個感測材料層。感測材料層分別位於第一電極的表面上,其中上述感測材料層是藉由非接觸式印刷法所製得。第二感測單元位於線路板的上表面上。第二感測單元包括第二電極,其與第一電極彼此分離。感測材料層分別覆蓋第一電極的表面,而第二電極暴露於大氣環境中。A sensor array includes a circuit board, a plurality of first sensing units, and at least one second sensing unit. The circuit board has opposing upper and lower surfaces. The first sensing unit is located on an upper surface of the circuit board. The first sensing unit includes a plurality of first electrodes and a plurality of layers of sensing material. The sensing material layers are respectively located on the surface of the first electrode, wherein the sensing material layer is produced by a non-contact printing method. The second sensing unit is located on the upper surface of the circuit board. The second sensing unit includes a second electrode that is separated from the first electrode from each other. The sensing material layers respectively cover the surface of the first electrode, and the second electrode is exposed to the atmospheric environment.

Description

感測器陣列、其製造方法及感測方法Sensor array, manufacturing method thereof and sensing method

本發明是有關於一種感測器陣列、其製造方法及感測方法,特別是指一種藉由非接觸式印刷法所製得感測器陣列、其製造方法及感測方法。The invention relates to a sensor array, a manufacturing method thereof and a sensing method, in particular to a sensor array prepared by a non-contact printing method, a manufacturing method thereof and a sensing method.

氣體感測器的應用範圍相當廣泛,不論是工業安全維護、環境污染偵測還是疾病早期診斷都可以看到氣體感測器的貢獻。然而,習知在分辨與偵測多種氣體時,往往需要透過氣相層析儀(Gas chromatograph,GC)以及質譜儀(Mass spectrometry,MS)才能達成氣體感測。但是由於氣相層析儀與質譜儀具有價格昂貴、不便攜帶、且需專業人士操作等限制,因此,感測過程相當耗費成本與時間。Gas sensors are used in a wide range of applications, from industrial safety maintenance to environmental contamination detection to early diagnosis of gas sensors. However, it is customary to distinguish and detect multiple gases, and it is often necessary to pass gas chromatograph (GC) and mass spectrometry (MS) to achieve gas sensing. However, because the gas chromatograph and the mass spectrometer are expensive, not portable, and require professional operation, the sensing process is quite costly and time consuming.

另外,由於單一感測器並不具有氣體選擇性。傳統上,為了達成氣體選擇,需要在感測器的前端加置氣體分離系統,如微流道等,以達成氣體種類之辨別。然而,此種感測器的體積過於龐大,不利於微型化的感測器的發展。In addition, since a single sensor does not have gas selectivity. Traditionally, in order to achieve gas selection, a gas separation system, such as a microfluidic channel, needs to be placed at the front end of the sensor to achieve gas type discrimination. However, the size of such a sensor is too large, which is detrimental to the development of miniaturized sensors.

本發明為一種感測器陣列、其製造方法及感測方法,其目的是提供一種體積小,利於微型化發展的感測器陣列;同時,此小體積之感測器陣列可直接感測少量且多種的待測物(test samples)。The invention is a sensor array, a manufacturing method thereof and a sensing method, and the object thereof is to provide a sensor array with small volume and facilitating miniaturization development; at the same time, the small-sized sensor array can directly sense a small amount. And a variety of test samples.

本發明提供一種感測器陣列、其製造方法及感測方法,其可整合多種感測單元,以達到感測少量且多種待測物的特性,並可相容於傳統半導體製程。The invention provides a sensor array, a manufacturing method thereof and a sensing method, which can integrate a plurality of sensing units to sense characteristics of a small amount and a plurality of objects to be tested, and can be compatible with a conventional semiconductor process.

本發明提供一種感測器陣列、其製造方法及感測方法,其可具有更多的感測材料選擇性,並可微型化所述感測器陣列,以具有更多的使用或應用空間。The present invention provides a sensor array, a method of fabricating the same, and a sensing method that can have more sensing material selectivity and can miniaturize the sensor array to have more use or application space.

本發明提供一種感測器陣列包括線路板、多個第一感測單元以及至少一個第二感測單元。線路板具有相對的上表面與下表面。第一感測單元位於線路板的上表面上。第一感測單元包括多個第一電極以及多個感測材料層。感測材料層分別位於第一電極的表面上,其中上述感測材料層是藉由非接觸式印刷法所製得。第二感測單元位於線路板的上表面上。第二感測單元包括第二電極,其與第一電極彼此分離。感測材料層分別覆蓋第一電極的表面,而第二電極暴露於大氣環境中。The invention provides a sensor array comprising a circuit board, a plurality of first sensing units and at least one second sensing unit. The circuit board has opposing upper and lower surfaces. The first sensing unit is located on an upper surface of the circuit board. The first sensing unit includes a plurality of first electrodes and a plurality of layers of sensing material. The sensing material layers are respectively located on the surface of the first electrode, wherein the sensing material layer is produced by a non-contact printing method. The second sensing unit is located on the upper surface of the circuit board. The second sensing unit includes a second electrode that is separated from the first electrode from each other. The sensing material layers respectively cover the surface of the first electrode, and the second electrode is exposed to the atmospheric environment.

在本發明的一實施例中,上述感測材料層的材料包括金屬、金屬氧化物、石墨烯、石墨烯氧化物、碳奈米管、富勒烯、金簇、聚合物、金屬硫化物、量子點、鈣鈦礦或其組合。In an embodiment of the invention, the material of the sensing material layer comprises a metal, a metal oxide, a graphene, a graphene oxide, a carbon nanotube, a fullerene, a gold cluster, a polymer, a metal sulfide, Quantum dots, perovskites or combinations thereof.

在本發明的一實施例中,上述感測器陣列更包括晶片位於線路板的下表面上。上述晶片藉由打線接合(wire bonding)或覆晶接合(flip-chip bonding)的方式與線路板電性連接。In an embodiment of the invention, the sensor array further includes a wafer on a lower surface of the circuit board. The wafer is electrically connected to the wiring board by wire bonding or flip-chip bonding.

在本發明的一實施例中,上述感測器陣列更包括多個晶片。上述晶片相互堆疊以構成堆疊晶片結構。In an embodiment of the invention, the sensor array further includes a plurality of wafers. The above wafers are stacked on each other to constitute a stacked wafer structure.

在本發明的一實施例中,上述第一電極包括指叉型電極、堆疊式電極或其組合。第一感測單元用以感測氣體、光、濕度或其組合。In an embodiment of the invention, the first electrode comprises an interdigitated electrode, a stacked electrode or a combination thereof. The first sensing unit is configured to sense gas, light, humidity, or a combination thereof.

在本發明的一實施例中,上述第二電極為蛇狀電極。第二感測單元用以感測溫度。In an embodiment of the invention, the second electrode is a serpentine electrode. The second sensing unit is configured to sense the temperature.

在本發明的一實施例中,上述第二感測單元不具有感測材料(sensing material-free)。In an embodiment of the invention, the second sensing unit does not have a sensing material-free.

在本發明的一實施例中,上述線路板的上表面或下表面為分別為曲面、凹面、斜面、或其組合的表面。In an embodiment of the invention, the upper surface or the lower surface of the circuit board is a surface which is a curved surface, a concave surface, a sloped surface, or a combination thereof.

在本發明的一實施例中,上述感測材料層的區域面積介於1平方微米至10 6平方微米之間,該感測器陣列的區域面積介於1平方微米至10 6平方微米之間。 In an embodiment of the invention, the area of the sensing material layer is between 1 square micrometer and 10 6 square micrometer, and the area of the sensor array is between 1 square micrometer and 10 6 square micrometer. .

本發明提供一種感測器陣列的製造方法,其步驟如下。提供線路板。線路板具有相對的上表面與下表面。於線路板的上表面上形成多個第一電極與至少一個第二電極,其中第一電極與第二電極彼此分離。藉由非接觸式印刷法,於第一電極的表面上分別形成多個感測材料層,而不在第二電極的表面上形成感測材料層。The present invention provides a method of fabricating a sensor array, the steps of which are as follows. Provide a circuit board. The circuit board has opposing upper and lower surfaces. A plurality of first electrodes and at least one second electrode are formed on an upper surface of the circuit board, wherein the first electrodes and the second electrodes are separated from each other. A plurality of sensing material layers are respectively formed on the surface of the first electrode by a non-contact printing method without forming a sensing material layer on the surface of the second electrode.

在本發明的一實施例中,上述非接觸式印刷法包括噴墨印刷法(Ink Jet Printing)或氣溶膠噴塗印刷法(Aerosol Jet Printing)。In an embodiment of the invention, the non-contact printing method includes ink jet printing (Ink Jet Printing) or aerosol spray printing (Aerosol Jet Printing).

本發明提供一種感測方法如下。藉由上述感測器陣列來感測混合氣體。上述感測器陣列中的感測材料層與混合氣體中的多種氣體反應,以產生多個反應訊號。從反應資料庫接收參數資料,並且依據參數資料以及反應訊號來量測氣體的濃度。The present invention provides a sensing method as follows. The mixed gas is sensed by the above-described sensor array. The sensing material layer in the sensor array reacts with a plurality of gases in the mixed gas to generate a plurality of reaction signals. The parameter data is received from the reaction database, and the concentration of the gas is measured based on the parameter data and the reaction signal.

在本發明的一實施例中,依據上述參數資料以及上述反應訊號來量測氣體的濃度的方法如下。將參數資料與反應訊號代入式1,藉此得到氣體的濃度,

Figure TWI611181BD00001
式1, R w、R t、R z為反應訊號, S wm、S tm、S zm、S we、S te、S ze、S wt、S tt、S zt為參數資料, C m、C e、C t為氣體的濃度。 In an embodiment of the invention, the method for measuring the concentration of the gas based on the parameter data and the reaction signal is as follows. Substituting the parameter data and the reaction signal into Equation 1, thereby obtaining the concentration of the gas,
Figure TWI611181BD00001
Equation 1, R w , R t , R z are reaction signals, S wm , S tm , S zm , S we , S te , S ze , S wt , S tt , S zt are parameter data, C m , C e C t is the concentration of the gas.

基於上述,本發明之具有多個第一感測單元的感測器陣列可藉由不同的感測材料層,以與不同的待測物反應,進而達到感測少量且多種的待測物的特性。另外,本發明之至少一個第二感測單元不具有任何感測材料,因此,其可用以感測大氣環境中的溫度。換言之,本發明可藉由溫度補償,消除環境溫度變化所造成的誤差,使得所得到量測數據更為精準。另一方面,本發明可藉由非接觸式印刷法以於線路板的背面上形成多種感測材料層,相較於傳統半導體製程,本發明具有更多的感測材料選擇性。且非接觸式印刷法亦可與半導體製程整合,進而提升生產速度。另一方面,非接觸式印刷法更可製作出體積小,而利於微型化發展的感測器陣列。此外,本發明不需要額外加置氣體分離系統即可達到氣體選擇性的功效。相較於習知技術,本發明可將整個感測器陣列微型化,以具有更多的使用或應用空間,進而達到產品商業化的需求。Based on the above, the sensor array with the plurality of first sensing units of the present invention can react with different analytes by different sensing material layers, thereby achieving sensing of a small amount and a plurality of analytes. characteristic. Additionally, the at least one second sensing unit of the present invention does not have any sensing material and, therefore, can be used to sense the temperature in the atmospheric environment. In other words, the present invention can eliminate the error caused by the change of the ambient temperature by temperature compensation, so that the obtained measurement data is more accurate. On the other hand, the present invention can form a plurality of sensing material layers on the back surface of the wiring board by the non-contact printing method, and the invention has more sensing material selectivity than the conventional semiconductor manufacturing process. And the non-contact printing method can also be integrated with the semiconductor process to increase the production speed. On the other hand, the non-contact printing method can produce a sensor array that is small in size and facilitates miniaturization. In addition, the present invention does not require additional gas separation systems to achieve gas selectivity. Compared with the prior art, the present invention can miniaturize the entire sensor array to have more use or application space, thereby achieving the commercialization of the product.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。The invention will be more fully described with reference to the drawings of the embodiments. However, the invention may be embodied in a variety of different forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings will be exaggerated for clarity. The same or similar reference numbers indicate the same or similar elements, and the following paragraphs will not be repeated.

首先,需注意的是,雖然本文中的感測器陣列100、200、300、400皆以感測氣體為例來進行說明,但本發明不以此為限。在其他實施例中,本文中的感測器陣列100、200、300、400亦可用以感測光、濕度或溫度等其他環境因素。或者是可同時感測氣體、光、濕度以及溫度等其他環境因素。First, it should be noted that although the sensor arrays 100, 200, 300, and 400 are all described by taking a sensing gas as an example, the present invention is not limited thereto. In other embodiments, the sensor arrays 100, 200, 300, 400 herein can also be used to sense other environmental factors such as light, humidity, or temperature. Or it can simultaneously sense other environmental factors such as gas, light, humidity and temperature.

請參考圖1,從上視圖來看,第一實施例的感測器陣列100包括線路板102、多個第一感測單元103以及至少一個第二感測單元203。線路板102具有相互堆疊的線路層與介電層(未繪示)。在一實施例中,線路板102可例如是軟性線路板、硬性線路板或軟硬線路板。軟性線路板可具有軟性介電層,其材料包括聚醯亞胺(Polyimide,PI)、聚苯二甲酸乙二酯(Polyethylene Terephthalate,PET)或聚萘二甲酸乙二醇酯(Polythylene Naphthalate,PEN)等材料。軟性線路板具有可撓性,也就是說,由軟性線路板所構成的線路板102的表面可以是非平面。另外,硬性線路板可具有硬性介電層,其材料包括可固化樹脂片(prepreg)。Referring to FIG. 1 , the sensor array 100 of the first embodiment includes a circuit board 102 , a plurality of first sensing units 103 , and at least one second sensing unit 203 . The circuit board 102 has a wiring layer and a dielectric layer (not shown) stacked on each other. In an embodiment, the circuit board 102 can be, for example, a flexible circuit board, a rigid circuit board, or a hard and soft circuit board. The flexible circuit board may have a soft dielectric layer, and the material thereof includes Polyimide (PI), Polyethylene Terephthalate (PET) or Polythylene Naphthalate (PEN). ) and other materials. The flexible circuit board has flexibility, that is, the surface of the circuit board 102 composed of a flexible circuit board may be non-planar. In addition, the rigid wiring board may have a hard dielectric layer, and the material thereof includes a prepreg.

第一感測單元103位於線路板102上。在一實施例中,第一感測單元103可例如是陣列排列(array)。第一感測單元103彼此分離且不接觸,以感測多種待測物。也就是說,當第一感測單元103的數量愈多,則可感測待測物的種類愈多。在一實施例中,第一感測單元103的數量可大於或等於待測物的種類。另外,雖然圖1中僅繪示3×3陣列排列(亦即8個第一感測單元103加上1個第二感測單元203),但本發明不以此為限。在其他實施例中,第一感測單元103的數量可依需求來調整。The first sensing unit 103 is located on the circuit board 102. In an embodiment, the first sensing unit 103 can be, for example, an array array. The first sensing units 103 are separated from each other and are not in contact to sense a plurality of objects to be tested. That is to say, as the number of the first sensing units 103 increases, the number of types of the object to be tested can be sensed. In an embodiment, the number of the first sensing units 103 may be greater than or equal to the type of the object to be tested. In addition, although only the 3×3 array arrangement is illustrated in FIG. 1 (that is, the eight first sensing units 103 plus one second sensing unit 203), the present invention is not limited thereto. In other embodiments, the number of first sensing units 103 can be adjusted as needed.

具體來說,每一個第一感測單元103包括第一電極104以及感測材料層106。第一電極104位於線路板102上。詳細地說,每一個第一電極104包括兩個子電極105a、105b。如圖1右上角的放大圖所示,子電極105a、105b皆為指叉型電極,彼此分離且不相互接觸。但本發明不限制子電極105a、105b的形狀,只要子電極105a、105b可相距一預定距離、彼此分離且不相互接觸皆為本發明的範疇。在替代實施例中,第一電極104亦可例如是堆疊式電極。立體的堆疊式電極的設置可有效增加感測陣列的密度,並縮小整體元件體積。詳細地說,堆疊式電極可以是將多個電極層與多個介電層(未繪示)垂直且交替堆疊於線路板102上。也就是說,至少一介電層配置於相鄰兩個電極層之間,以電性隔離相鄰兩個電極層。在一實施例中,上述電極層包括導體材料。導體材料可以是摻雜或未摻雜的多晶矽材料、金屬材料或其組合。上述介電層的材料可以是氧化矽、氮化矽或其組合。Specifically, each of the first sensing units 103 includes a first electrode 104 and a sensing material layer 106. The first electrode 104 is located on the circuit board 102. In detail, each of the first electrodes 104 includes two sub-electrodes 105a, 105b. As shown in the enlarged view in the upper right corner of Fig. 1, the sub-electrodes 105a, 105b are all finger-type electrodes which are separated from each other and do not contact each other. However, the present invention does not limit the shape of the sub-electrodes 105a, 105b as long as the sub-electrodes 105a, 105b are separated by a predetermined distance apart from each other and are not in contact with each other. In an alternate embodiment, the first electrode 104 can also be, for example, a stacked electrode. The arrangement of the three-dimensional stacked electrodes can effectively increase the density of the sensing array and reduce the overall component volume. In detail, the stacked electrodes may be formed by vertically stacking a plurality of electrode layers and a plurality of dielectric layers (not shown) on the circuit board 102. That is, at least one dielectric layer is disposed between two adjacent electrode layers to electrically isolate adjacent two electrode layers. In an embodiment, the electrode layer comprises a conductor material. The conductor material can be a doped or undoped polysilicon material, a metal material, or a combination thereof. The material of the above dielectric layer may be tantalum oxide, tantalum nitride or a combination thereof.

在一實施例中,多個感測材料層106分別位於第一電極104上。更具體地說,感測材料層106覆蓋子電極105a、105b的表面並填入子電極105a、105b之間的間隙。雖然圖1中所繪示的感測材料層106並未完全覆蓋子電極105a、105b(或第一電極104)的所有表面,但本發明不以此為限。在其他實施例中,感測材料層106亦可完全覆蓋子電極105a、105b(或第一電極104)的所有表面(其包括頂面與側面)。值得注意的是,當待測物吸附或接觸感測材料層106的表面時,待測物可與感測材料層106進行反應,使得子電極105a、105b之間的感測材料層106的電容值或電阻值等電特性改變。In an embodiment, a plurality of sensing material layers 106 are respectively located on the first electrode 104. More specifically, the sensing material layer 106 covers the surfaces of the sub-electrodes 105a, 105b and fills the gap between the sub-electrodes 105a, 105b. Although the sensing material layer 106 illustrated in FIG. 1 does not completely cover all surfaces of the sub-electrodes 105a, 105b (or the first electrode 104), the invention is not limited thereto. In other embodiments, the sensing material layer 106 may also completely cover all surfaces of the sub-electrodes 105a, 105b (or the first electrode 104) including the top and sides. It should be noted that when the object to be tested adsorbs or contacts the surface of the sensing material layer 106, the object to be tested may react with the sensing material layer 106 such that the capacitance of the sensing material layer 106 between the sub-electrodes 105a, 105b The isoelectric value of the value or resistance value changes.

舉例來說,感測器陣列100為一氣體感測器陣列。如圖1所示,感測器陣列100至少包括3個第一感測單元103a、103b、103c。當待測物為具有3種氣體的混合氣體時,此混合氣體中的3種氣體會與感測材料層106a、106b、106c反應,使得感測材料層106a、106b、106c的電容值或電阻值等電特性改變。接著,上述電容值或電阻值等電特性改變的資料便可藉由感測材料層106a、106b、106c下方的第一電極104a、104b、104c傳輸至線路板102,以進行後續的資料處理。如此一來,本實施例之感測器陣列100便可同時感測3種不同氣體,以達到氣體選擇性,而不需要額外加置氣體分離系統。另外,當感測器陣列100為一紫外光感測器陣列時,紫外光線可與感測材料層106反應,以改變感測材料層106的電阻值。藉此,感測器陣列100便可感測環境中的紫外光的強度是否過量,進而提醒使用者遮陽或是塗抹防曬品。For example, sensor array 100 is a gas sensor array. As shown in FIG. 1, the sensor array 100 includes at least three first sensing units 103a, 103b, 103c. When the analyte is a mixed gas having three gases, the three gases in the mixed gas react with the sensing material layers 106a, 106b, 106c such that the capacitance values or resistances of the sensing material layers 106a, 106b, 106c The value of the isoelectric characteristic changes. Then, the data of the capacitance value or the electrical resistance change of the resistance value can be transmitted to the circuit board 102 through the first electrodes 104a, 104b, 104c under the sensing material layers 106a, 106b, 106c for subsequent data processing. In this way, the sensor array 100 of the present embodiment can simultaneously sense three different gases to achieve gas selectivity without requiring an additional gas separation system. Additionally, when the sensor array 100 is an ultraviolet sensor array, ultraviolet light can be reacted with the sensing material layer 106 to change the resistance value of the sensing material layer 106. Thereby, the sensor array 100 can sense whether the intensity of the ultraviolet light in the environment is excessive, thereby reminding the user to shade or apply the sunscreen.

值得注意的是,感測材料層106的形成方法可例如是非接觸式印刷法。在一實施例中,非接觸式印刷法包括噴墨印刷法或氣溶膠噴塗印刷法。以氣溶膠噴塗印刷法為例,其是使用氣溶噴嘴沉積頭(aerosol jet deposition head),以形成由外部的鞘流(outer sheath flow)和內部的充滿氣溶的載體流(inner aerosol-laden carrier flow)構成的環狀傳播噴嘴。在環狀氣溶噴射製程中,將具有感測材料的氣溶流(aerosol stream)集中且沈積在平面或非平面的線路板102上。接著,經過熱處理或光化學處理,以於第一電極104上形成感測材料層106。上述步驟可稱為無罩幕中尺度材料沈積(Maskless Mesoscale Material Deposition,M3D),也就是說,其可在不使用罩幕的情況下進行沈積,使得沈積後的材料層具有1微米至10微米之間的線寬(linewidth)。It should be noted that the method of forming the sensing material layer 106 may be, for example, a non-contact printing method. In an embodiment, the non-contact printing method includes an inkjet printing method or an aerosol spray printing method. An aerosol spray printing method is exemplified by using an aerosol jet deposition head to form an outer sheath flow and an inner gas-filled carrier flow (inner aerosol-laden). Carrier flow) A ring-shaped propagating nozzle. In an annular aerosol spray process, an aerosol stream having a sensing material is concentrated and deposited on a planar or non-planar circuit board 102. Next, a heat treatment or photochemical treatment is performed to form the sensing material layer 106 on the first electrode 104. The above steps may be referred to as Maskless Mesoscale Material Deposition (M3D), that is, it may be deposited without using a mask such that the deposited material layer has a size of 1 micrometer to 10 micrometers. Linewidth between the lines.

在一實施例中,所形成的感測材料層106的尺寸或是覆蓋在第一電極104上的感測材料層106的區域面積可以是1平方微米至10 6平方微米之間,例如是10平方微米。換言之,隨著感測材料層106的尺寸的縮小,具有感測材料層106的感測器陣列100的尺寸亦可縮小至1平方微米至10 6平方微米之間。相較於習知的感測器陣列(其尺寸約為10 8平方微米),本發明之感測器陣列100具有較小的尺寸,其可應用在越來越輕薄的可攜式電子裝置上,例如是手機、平板電腦、音樂播放器、上述組合或其類似可攜式電子裝置上。 In one embodiment, the size of the formed sensing material layer 106 or the area of the sensing material layer 106 overlying the first electrode 104 may be between 1 square micrometer and 10 6 square micrometers, for example, 10 Square micron. In other words, as the size of the sensing material layer 106 is reduced, the size of the sensor array 100 with the sensing material layer 106 can also be reduced to between 1 square micron and 10 6 square micron. Compared to the conventional sensor array (which measures about 10 8 square micrometers), the sensor array 100 of the present invention has a small size, which can be applied to increasingly thin and portable electronic devices. For example, it is a mobile phone, a tablet computer, a music player, the above combination or the like portable electronic device.

另外,本實施例之非接觸式印刷法可使得不相容於半導體製程的材料(例如是奈米金簇、磁性材料或是類生物有機材料等)形成在線路板102上。因此,相較於傳統半導體製程,本實施例具有更多的感測材料選擇性。具體來說,除了金屬與金屬氧化物之外,大部分的感測材料皆無法以傳統半導體製程形成在感測器陣列上。因此,本實施例之非接觸式印刷法不僅可將多種感測材料(包括相容於半導體製程的感測材料以及不相容於半導體製程的感測材料)應用在感測器陣列上,還可與半導體製程整合在一起,進而提升生產速度,以達到產品商業化的需求。此外,相較於習知的製造方法僅能將感測材料形成在平面上,本實施例的非接觸式印刷法還能將感測材料層106形成在曲面、凹面、斜面、其組合或類似的表面上,此為習知的製造方法所難以達成。In addition, the non-contact printing method of the present embodiment can form a material that is incompatible with the semiconductor process (for example, a nano-cluster, a magnetic material, or a bio-organic material, etc.) on the wiring board 102. Therefore, this embodiment has more sensing material selectivity than conventional semiconductor processes. In particular, most of the sensing materials except the metal and metal oxides cannot be formed on the sensor array in a conventional semiconductor process. Therefore, the non-contact printing method of the embodiment can apply not only a plurality of sensing materials (including sensing materials compatible with a semiconductor process and sensing materials not compatible with a semiconductor process) to the sensor array, but also Can be integrated with semiconductor processes to increase production speed to meet the needs of commercialization of products. In addition, the non-contact printing method of the present embodiment can also form the sensing material layer 106 on a curved surface, a concave surface, a slope surface, a combination thereof or the like, compared to a conventional manufacturing method in which a sensing material can be formed only on a plane. On the surface, this is difficult to achieve by conventional manufacturing methods.

在一實施例中,感測材料層106的材料包括金屬、金屬氧化物、石墨烯、石墨烯氧化物、碳奈米管、富勒烯、金簇、聚合物、金屬硫化物、量子點、鈣鈦礦或其組合。金屬可例如是鎳、銅或其他適合材料。金屬氧化物可例如是氧化鋅、氧化錫、氧化鎢、氧化鎂、氧化鈦、氧化鐵、氧化鋯或其他適合材料。聚合物可例如是聚-3,4-亞乙二氧基噻吩(poly-3, 4-ethylenedioxythiophene,PEDOT)或其他適合材料。In an embodiment, the material of the sensing material layer 106 includes a metal, a metal oxide, a graphene, a graphene oxide, a carbon nanotube, a fullerene, a gold cluster, a polymer, a metal sulfide, a quantum dot, Perovskite or a combination thereof. The metal can be, for example, nickel, copper or other suitable material. The metal oxide can be, for example, zinc oxide, tin oxide, tungsten oxide, magnesium oxide, titanium oxide, iron oxide, zirconium oxide or other suitable materials. The polymer may, for example, be poly-3,4-ethylenedioxythiophene (PEDOT) or other suitable material.

請繼續參照圖1,第一實施例的感測器陣列100包括位於線路板102上的第二感測單元203。第二感測單元203包括第二電極204。如圖1右下角的放大圖所示,第二電極204可例如是蛇狀電極。所述蛇狀電極是指電極在相對兩點之間盤旋配置,以減少佔用面積並增加有效表面積。但本發明不以此為限,在其他實施例中,第二電極204亦可以是其他形狀。With continued reference to FIG. 1 , the sensor array 100 of the first embodiment includes a second sensing unit 203 on the circuit board 102 . The second sensing unit 203 includes a second electrode 204. As shown in the enlarged view of the lower right corner of FIG. 1, the second electrode 204 can be, for example, a serpentine electrode. The serpentine electrode means that the electrode is spirally arranged between opposite points to reduce the occupied area and increase the effective surface area. However, the present invention is not limited thereto. In other embodiments, the second electrode 204 may have other shapes.

值得注意的是,在進行上述氣體感測時,會需要依據環境的濕度與溫度來調整數據。所述濕度感測可藉由在第一電極104的其中之一上形成水氣感測材料來進行。而所述溫度感測則是將第二電極204暴露在大氣環境中,藉此感測大氣環境中的溫度。換言之,第二感測單元203中並未具有任何感測材料。具體來說,第二感測單元203是利用未被任何感測材料所覆蓋的第二電極204的電阻值隨著環境溫度改變而改變的特性,進而感測大氣環境中的溫度。相較於市售的溫度感測器,本實施例之第二電極204(或第二感測單元203)的靈敏度較高、面積較小且製造成本較低,並可藉由印刷法形成在各種基材上。因此,本實施例之第二電極204(或第二感測單元203)可廣泛地應用在各種電子元件上。It is worth noting that when performing the above gas sensing, it is necessary to adjust the data according to the humidity and temperature of the environment. The humidity sensing can be performed by forming a moisture sensing material on one of the first electrodes 104. The temperature sensing is to expose the second electrode 204 to the atmosphere, thereby sensing the temperature in the atmospheric environment. In other words, the second sensing unit 203 does not have any sensing material. Specifically, the second sensing unit 203 is a characteristic that changes the resistance value of the second electrode 204 that is not covered by any sensing material as the ambient temperature changes, thereby sensing the temperature in the atmospheric environment. Compared with the commercially available temperature sensor, the second electrode 204 (or the second sensing unit 203) of the embodiment has higher sensitivity, smaller area, lower manufacturing cost, and can be formed by printing. On a variety of substrates. Therefore, the second electrode 204 (or the second sensing unit 203) of the present embodiment can be widely applied to various electronic components.

以金屬氧化物感測材料為例來說明,環境中的水氣會吸附於金屬氧化物感測材料的表面,形成額外的導電通路,使得電阻下降以及等效電容上升。也就是說,濕度越高則電阻降低越多;電容上升越高。當環境溫度改變時,溫度上升會使得金屬氧化物感測材料的電阻下降;反之,溫度下降時則會使電阻上升。因此,溫度與濕度可視為感測器陣列之基礎電性準位(level)。換言之,本實施例之感測器陣列100可額外感測環境的濕度與溫度,使得氣體感測的數據更為準確。Taking the metal oxide sensing material as an example, the water vapor in the environment will adsorb on the surface of the metal oxide sensing material, forming an additional conductive path, causing the resistance to drop and the equivalent capacitance to rise. That is to say, the higher the humidity, the more the resistance decreases; the higher the capacitance rises. When the ambient temperature changes, the temperature rise causes the resistance of the metal oxide sensing material to decrease; conversely, when the temperature drops, the resistance rises. Therefore, temperature and humidity can be considered as the basic electrical level of the sensor array. In other words, the sensor array 100 of the present embodiment can additionally sense the humidity and temperature of the environment, so that the gas sensed data is more accurate.

請參考圖2,其可例如是圖1之A-A’切線的剖面示意圖,第二實施例的感測器陣列200包括線路板102、多個第一感測單元103以及至少一個第二感測單元203。線路板102具有相對的上表面102a與下表面102b。在一實施例中,線路板102的上表面102a可以是線路板102的背面;而線路板102的下表面102b可以是線路板102的正面。第一感測單元103與第二感測單元203皆位於線路板102的上表面102a上。第一感測單元103包括多個第一電極104以及多個感測材料層106。感測材料層106覆蓋第一電極104的表面並填入第一電極104之間的間隙。雖然圖2中所繪示的感測材料層106並未覆蓋第一電極104的側面,但本發明不以此為限。在其他實施例中,感測材料層106亦可完全覆蓋第一電極104的頂面與側面。而第二感測單元203包括第二電極204。第二感測單元203並未具有任何感測材料覆蓋第二電極204的表面。由於圖2的線路板102、第一感測單元103以及第二感測單元203的材料與圖1的線路板102、第一感測單元103以及第二感測單元203的材料相似,且已於上述段落說明過,於此便不再贅述。Please refer to FIG. 2 , which may be, for example, a cross-sectional view taken along line A-A′ of FIG. 1 . The sensor array 200 of the second embodiment includes a circuit board 102 , a plurality of first sensing units 103 , and at least one second sense. Measurement unit 203. The circuit board 102 has opposing upper and lower surfaces 102a, 102b. In an embodiment, the upper surface 102a of the circuit board 102 may be the back side of the circuit board 102; and the lower surface 102b of the circuit board 102 may be the front side of the circuit board 102. The first sensing unit 103 and the second sensing unit 203 are both located on the upper surface 102a of the circuit board 102. The first sensing unit 103 includes a plurality of first electrodes 104 and a plurality of sensing material layers 106. The sensing material layer 106 covers the surface of the first electrode 104 and fills the gap between the first electrodes 104. Although the sensing material layer 106 illustrated in FIG. 2 does not cover the side of the first electrode 104, the invention is not limited thereto. In other embodiments, the sensing material layer 106 may also completely cover the top and sides of the first electrode 104. The second sensing unit 203 includes a second electrode 204. The second sensing unit 203 does not have any sensing material covering the surface of the second electrode 204. The materials of the circuit board 102, the first sensing unit 103, and the second sensing unit 203 of FIG. 2 are similar to those of the circuit board 102, the first sensing unit 103, and the second sensing unit 203 of FIG. As explained in the above paragraphs, it will not be repeated here.

另外,第二實施例的感測器陣列200更包括晶片202位於線路板102的下表面102b上。詳細地說,晶片202可藉由覆晶接合的方式與線路板102電性連接。所謂覆晶接合的方式是指晶片202藉由位於線路板102與晶片202之間的多個凸塊(bump)214與線路板102電性連接。另外,再藉由底膠(underfill)206填入線路板102與晶片202之間的空間,以包覆凸塊214。In addition, the sensor array 200 of the second embodiment further includes the wafer 202 on the lower surface 102b of the circuit board 102. In detail, the wafer 202 can be electrically connected to the circuit board 102 by flip chip bonding. The manner of flip-chip bonding means that the wafer 202 is electrically connected to the circuit board 102 by a plurality of bumps 214 located between the circuit board 102 and the wafer 202. In addition, the space between the circuit board 102 and the wafer 202 is filled by an underfill 206 to cover the bumps 214.

在一實施例中,晶片202可例如微處理單元(micro control unit,MCU)或藍芽晶片等其他適合晶片。晶片202可接收由第一感測單元103與第二感測單元203所量測或感測到之資料(即感測材料層106的電容值或電阻值等電特性改變的資料以及第二電極204的電阻值變化的資料),並進行資料處理或資料傳輸。雖然圖2中僅繪示一個晶片202,但本發明不以此為限。在其他實施例中,晶片202的數量與種類可依需求來調整。In one embodiment, wafer 202 may be other suitable wafers such as a micro control unit (MCU) or a Bluetooth chip. The wafer 202 can receive the data measured or sensed by the first sensing unit 103 and the second sensing unit 203 (ie, the data of the capacitance value or the resistance value of the sensing material layer 106, and the second electrode) 204 changes in the resistance value), and data processing or data transmission. Although only one wafer 202 is illustrated in FIG. 2, the invention is not limited thereto. In other embodiments, the number and type of wafers 202 can be adjusted as desired.

請參照圖3,其可例如是圖1之A-A’切線的剖面示意圖。第三實施例的感測器陣列300與第二實施例的感測器陣列200相似,上述兩者不同之處在於感測器陣列300是藉由打線接合的方式與線路板102電性連接。所謂打線接合的方式是指晶片302藉由多條導線308電性連接線路板102與晶片202。另外,再藉由封膠體(encapsulant)310覆蓋晶片202與線路板102的部分下表面102b,並包覆導線308。Please refer to FIG. 3, which may be, for example, a schematic cross-sectional view taken along line A-A' of FIG. The sensor array 300 of the third embodiment is similar to the sensor array 200 of the second embodiment. The difference between the two is that the sensor array 300 is electrically connected to the circuit board 102 by wire bonding. The wire bonding method means that the wafer 302 is electrically connected to the circuit board 102 and the wafer 202 by a plurality of wires 308. In addition, the wafer 202 and a portion of the lower surface 102b of the wiring board 102 are covered by an encapsulant 310, and the wires 308 are covered.

請參照圖4,其可例如是圖1之A-A’切線的剖面示意圖。第四實施例的感測器陣列400與第二實施例的感測器陣列200相似,上述兩者不同之處在於感測器陣列400的堆疊晶片結構402包括相互堆疊的晶片402a、402b。晶片402a位於線路板102與晶片402b之間。晶片402a藉由覆晶接合的方式與線路板102電性連接。也就是說,晶片402a藉由凸塊414與線路板102電性連接。之後,再藉由底膠406填入線路板102與晶片402a之間的空間,以包覆凸塊414。而晶片402b是藉由打線接合的方式與線路板102電性連接。也就是說,感測器陣列400藉由導線408電性連接線路板102與晶片402b。另外,再藉由封膠體410覆蓋晶片402a、402b、底膠406以及線路板102的部分下表面102b,並包覆導線408。雖然圖4中的堆疊晶片結構402僅繪示兩個晶片402a、402b,但本發明不以此為限。在其他實施例中,晶片的數量與種類可依需求來調整。Please refer to FIG. 4, which may be, for example, a schematic cross-sectional view taken along line A-A' of FIG. The sensor array 400 of the fourth embodiment is similar to the sensor array 200 of the second embodiment, except that the stacked wafer structure 402 of the sensor array 400 includes wafers 402a, 402b stacked on one another. Wafer 402a is located between circuit board 102 and wafer 402b. The wafer 402a is electrically connected to the wiring board 102 by flip chip bonding. That is, the wafer 402a is electrically connected to the circuit board 102 by the bumps 414. Thereafter, the space between the circuit board 102 and the wafer 402a is filled by the primer 406 to cover the bumps 414. The wafer 402b is electrically connected to the circuit board 102 by wire bonding. That is, the sensor array 400 is electrically connected to the circuit board 102 and the wafer 402b by wires 408. In addition, the wafers 402a, 402b, the primer 406, and a portion of the lower surface 102b of the wiring board 102 are covered by the encapsulant 410, and the wires 408 are covered. Although the stacked wafer structure 402 in FIG. 4 only shows two wafers 402a, 402b, the invention is not limited thereto. In other embodiments, the number and type of wafers can be adjusted as needed.

本發明亦提供一種感測方法,其步驟如下。藉由感測器陣列100、200、300、400中的任一種感測器陣列(以下簡稱為感測器陣列100-400)來感測混合氣體。感測器陣列100-400中的感測材料層106與混合氣體中的多種氣體反應,以產生多個反應訊號。從反應資料庫接收參數資料,並且依據參數資料以及反應訊號來量測上述氣體的濃度。具體來說,依據參數資料以及反應訊號來量測氣體的濃度的方法如下。將參數資料與反應訊號代入式1,藉此得到氣體的濃度。

Figure TWI611181BD00002
式1, R w、R t、R z為反應訊號, S wm、S tm、S zm、S we、S te、S ze、S wt、S tt、S zt為參數資料, C m、C e、C t為氣體的濃度。 The invention also provides a sensing method, the steps of which are as follows. The mixed gas is sensed by any one of the sensor arrays 100, 200, 300, 400 (hereinafter simply referred to as the sensor array 100-400). The sensing material layer 106 in the sensor array 100-400 reacts with a plurality of gases in the mixed gas to generate a plurality of reaction signals. The parameter data is received from the reaction database, and the concentration of the gas is measured based on the parameter data and the reaction signal. Specifically, the method of measuring the concentration of the gas based on the parameter data and the reaction signal is as follows. The parameter data and the reaction signal are substituted into Equation 1, thereby obtaining the concentration of the gas.
Figure TWI611181BD00002
Equation 1, R w , R t , R z are reaction signals, S wm , S tm , S zm , S we , S te , S ze , S wt , S tt , S zt are parameter data, C m , C e C t is the concentration of the gas.

此外,本實施例亦可利用感測器陣列100-400中的第二電極204(或第二感測單元203)感測大氣環境中的溫度,藉此調整上述反應訊號,使得所得到的氣體的濃度更為準確。也就是說,本實施例之感測器陣列100-400可同時感測氣體與包括濕度、溫度等環境因素,以消除濕度、溫度等環境因素的影響,進而提升數據的準確性。In addition, the second electrode 204 (or the second sensing unit 203) in the sensor array 100-400 can also sense the temperature in the atmospheric environment, thereby adjusting the reaction signal to make the obtained gas. The concentration is more accurate. That is to say, the sensor array 100-400 of the present embodiment can simultaneously sense the gas and environmental factors including humidity and temperature to eliminate the influence of environmental factors such as humidity and temperature, thereby improving the accuracy of the data.

在一實施例中,上述氣體包括揮發性有機物或無機氣體。揮發性有機物可例如是烷類、芳烴類、烯類、鹵代烴類、酯類、醛類、酮類或其組合。此外,上述無機氣體可例如是一氧化碳、二氧化碳、氨氣、一氧化氮、二氧化氮、硫化氫或其組合。In an embodiment, the gas comprises a volatile organic or inorganic gas. The volatile organic compounds may be, for example, alkanes, aromatic hydrocarbons, alkenes, halogenated hydrocarbons, esters, aldehydes, ketones or combinations thereof. Further, the above inorganic gas may be, for example, carbon monoxide, carbon dioxide, ammonia, nitrogen monoxide, nitrogen dioxide, hydrogen sulfide, or a combination thereof.

為了證明本發明的可實現性,以下列舉多個實例來對本發明之感測器陣列做更進一步地說明。雖然描述了以下實驗,但是在不逾越本發明範疇的情況下,可適當改變所用材料、其量及比率、處理細節以及處理流程等等。因此,不應根據下文所述的實驗對本發明作出限制性的解釋。In order to demonstrate the achievability of the present invention, a plurality of examples are listed below to further illustrate the sensor array of the present invention. Although the following experiments are described, the materials used, the amounts and ratios thereof, the processing details, the processing flow, and the like can be appropriately changed without departing from the scope of the invention. Therefore, the invention should not be construed restrictively based on the experiments described below.

實例Instance 1-31-3

以圖2的感測器陣列為例,分別將氧化鎢(即實例1)、氧化鈦(即實例2)、氧化鋅(即實例3)當作感測材料層,以形成3個感測單元。接著,將含有甲醇m、乙醇e以及甲苯t的混合氣體與實例1-3的感測材料層進行反應,藉此產生氣體反應訊號R w、R t、R z,其結果如圖5-7所示。 Taking the sensor array of FIG. 2 as an example, tungsten oxide (ie, Example 1), titanium oxide (ie, Example 2), and zinc oxide (ie, Example 3) were respectively used as a sensing material layer to form three sensing units. . Next, a mixed gas containing methanol m, ethanol e, and toluene t is reacted with the sensing material layers of Examples 1-3, thereby generating gas reaction signals R w , R t , R z , and the results are shown in Figures 5-7. Shown.

圖5是實例1之氣體反應對氣體濃度的關係圖。圖6是實例2之氣體反應對氣體濃度的關係圖。圖7是實例3之氣體反應對氣體濃度的關係圖。Figure 5 is a graph of gas reaction versus gas concentration for Example 1. Figure 6 is a graph showing the relationship between the gas reaction of Example 2 and the gas concentration. Figure 7 is a graph showing the relationship of gas reaction to gas concentration for Example 3.

如圖5-7所示,在氣體濃度為0-6000 ppm之間,氣體反應與氣體濃度呈線性關係。也就是說,當實例1-3的感測材料層對混合氣體的反應為R w、R t、R z,並從反應資料庫得到混合氣體(即甲醇m、乙醇e以及甲苯t)的參數資料,其可列出3條聯立方程式。接著,從上述3條聯立方程式可解出3個未知數,即可得到混合氣體中的甲醇m、乙醇e以及甲苯t的濃度。 As shown in Figure 5-7, the gas reaction is linear with the gas concentration between 0 and 6000 ppm. That is, when the sensing material layers of Examples 1-3 react to the mixed gas are R w , R t , R z , and the parameters of the mixed gas (ie, methanol m, ethanol e, and toluene t) are obtained from the reaction database. Information, which can list 3 simultaneous equations. Next, three unknown numbers can be solved from the above three simultaneous equations to obtain the concentrations of methanol m, ethanol e, and toluene t in the mixed gas.

另外,上述3條聯立方程式可以式1來表示:

Figure TWI611181BD00003
式1, R w、R t、R z為實例1-3的感測材料層對混合氣體的反應訊號, S wm、S tm、S zm、S we、S te、S ze、S wt、S tt、S zt為參數資料, C m、C e、C t分別為甲醇m、乙醇e以及甲苯t的濃度。 In addition, the above three simultaneous equations can be expressed by Equation 1:
Figure TWI611181BD00003
Formula 1, R w , R t , R z are the reaction signals of the sensing material layer of Examples 1-3 to the mixed gas, S wm , S tm , S zm , S we , S te , S ze , S wt , S Tt and S zt are parameter data, and C m , C e and C t are the concentrations of methanol m, ethanol e and toluene t, respectively.

綜上所述,本發明之具有多個第一感測單元的感測器陣列可藉由不同的感測材料層,以與不同的待測物反應,進而達到感測少量且多種的待測物的特性。另外,本發明之至少一個第二感測單元可不具有任何感測材料,因此,其可用以感測大氣環境中的溫度。換言之,本發明可藉由溫度補償,以消除環境溫度變化所造成的誤差,使得所得到量測數據更為精準。另一方面,本發明可藉由非接觸式印刷法以於線路板的背面上形成多種感測材料層。相較於傳統半導體製程,本發明具有更多的感測材料選擇性,且非接觸式印刷法亦可與半導體製程整合在一起,進而提升生產速度。此外,本發明不需要額外加置氣體分離系統即可達到氣體選擇性的功效。相較於習知技術,本發明可將整個感測器陣列微型化,以具有更多的使用或應用空間,進而達到產品商業化的需求。In summary, the sensor array with the plurality of first sensing units of the present invention can react with different analytes by different sensing material layers, thereby achieving sensing of a small amount and a plurality of types to be tested. The characteristics of the object. Additionally, the at least one second sensing unit of the present invention may not have any sensing material and, therefore, may be used to sense the temperature in the atmospheric environment. In other words, the present invention can compensate for errors caused by changes in ambient temperature by temperature compensation, so that the measured data obtained is more accurate. On the other hand, the present invention can form a plurality of sensing material layers on the back surface of the wiring board by a non-contact printing method. Compared with the conventional semiconductor process, the present invention has more sensing material selectivity, and the non-contact printing method can also be integrated with the semiconductor process, thereby increasing the production speed. In addition, the present invention does not require additional gas separation systems to achieve gas selectivity. Compared with the prior art, the present invention can miniaturize the entire sensor array to have more use or application space, thereby achieving the commercialization of the product.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100、200、300、400‧‧‧感測器陣列
102‧‧‧線路板
102a‧‧‧上表面
102b‧‧‧下表面
103、103a、103b、103c‧‧‧第一感測單元
104、104a、104b、104c‧‧‧第一電極
105a、105b‧‧‧子電極
106、106a、106b、106c‧‧‧感測材料層
202、302、402a、402b‧‧‧晶片
203‧‧‧第二感測單元
204‧‧‧第二電極
214、414‧‧‧凸塊
206、406‧‧‧底膠
308、408‧‧‧導線
310、410‧‧‧封膠體
402‧‧‧堆疊晶片結構
m‧‧‧甲醇
e‧‧‧乙醇
t‧‧‧甲苯
100, 200, 300, 400‧‧‧ sensor arrays
102‧‧‧PCB
102a‧‧‧ upper surface
102b‧‧‧ lower surface
103, 103a, 103b, 103c‧‧‧ first sensing unit
104, 104a, 104b, 104c‧‧‧ first electrode
105a, 105b‧‧‧ subelectrode
106, 106a, 106b, 106c‧‧‧ sensing material layer
202, 302, 402a, 402b‧‧‧ wafer
203‧‧‧Second sensing unit
204‧‧‧second electrode
214, 414‧‧ ‧ bumps
206, 406‧‧ ‧ primer
308, 408‧‧‧ wires
310, 410‧‧‧ Sealant
402‧‧‧Stacked wafer structure
M‧‧‧Methanol
E‧‧‧Ethanol
T‧‧‧toluene

圖1是依照本發明第一實施例的感測器陣列的上視圖。 圖2是依照本發明第二實施例的感測器陣列的剖面示意圖。 圖3是依照本發明第三實施例的感測器陣列的剖面示意圖。 圖4是依照本發明第四實施例的感測器陣列的剖面示意圖。 圖5是實例1之氣體反應對氣體濃度的關係圖。 圖6是實例2之氣體反應對氣體濃度的關係圖。 圖7是實例3之氣體反應對氣體濃度的關係圖。1 is a top view of a sensor array in accordance with a first embodiment of the present invention. 2 is a cross-sectional view of a sensor array in accordance with a second embodiment of the present invention. 3 is a cross-sectional view of a sensor array in accordance with a third embodiment of the present invention. 4 is a cross-sectional view of a sensor array in accordance with a fourth embodiment of the present invention. Figure 5 is a graph of gas reaction versus gas concentration for Example 1. Figure 6 is a graph showing the relationship between the gas reaction of Example 2 and the gas concentration. Figure 7 is a graph showing the relationship of gas reaction to gas concentration for Example 3.

100‧‧‧感測器陣列 100‧‧‧sensor array

102‧‧‧線路板 102‧‧‧PCB

103、103a、103b、103c‧‧‧第一感測單元 103, 103a, 103b, 103c‧‧‧ first sensing unit

104、104a、104b、104c‧‧‧第一電極 104, 104a, 104b, 104c‧‧‧ first electrode

105a、105b‧‧‧子電極 105a, 105b‧‧‧ subelectrode

106、106a、106b、106c‧‧‧感測材料層 106, 106a, 106b, 106c‧‧‧ sensing material layer

203‧‧‧第二感測單元 203‧‧‧Second sensing unit

204‧‧‧第二電極 204‧‧‧second electrode

Claims (13)

一種感測器陣列,包括: 一線路板,具有相對的一上表面與一下表面; 多個第一感測單元,位於該線路板的該上表面上,該些第一感測單元包括: 多個第一電極;以及 多個感測材料層,分別位於該些第一電極的表面上,其中該些感測材料層是藉由一非接觸式印刷法所製得;以及 至少一個第二感測單元,位於該線路板的該上表面上,該第二感測單元包括一第二電極,其與該些第一電極彼此分離,其中該些感測材料層分別覆蓋該些第一電極的表面,而該第二電極暴露於大氣環境中。An array of sensors includes: a circuit board having an upper surface and a lower surface; a plurality of first sensing units located on the upper surface of the circuit board, the first sensing units including: a first electrode; and a plurality of sensing material layers respectively on the surfaces of the first electrodes, wherein the sensing material layers are formed by a non-contact printing method; and at least one second feeling The second sensing unit includes a second electrode separated from the first electrodes, wherein the sensing material layers respectively cover the first electrodes The surface, while the second electrode is exposed to the atmosphere. 如申請專利範圍第1項所述的感測器陣列,其中該些感測材料層的材料包括金屬、金屬氧化物、石墨烯、石墨烯氧化物、碳奈米管、富勒烯、金簇、聚合物、金屬硫化物、量子點、鈣鈦礦或其組合。The sensor array of claim 1, wherein the materials of the sensing material layer comprise a metal, a metal oxide, a graphene, a graphene oxide, a carbon nanotube, a fullerene, a gold cluster , polymers, metal sulfides, quantum dots, perovskites or combinations thereof. 如申請專利範圍第1項所述的感測器陣列,更包括一晶片位於該線路板的該下表面上,且該晶片藉由打線接合或覆晶接合的方式與該線路板電性連接。The sensor array of claim 1, further comprising a wafer on the lower surface of the circuit board, and the wafer is electrically connected to the circuit board by wire bonding or flip chip bonding. 如申請專利範圍第1項所述的感測器陣列,更包括多個晶片位於該線路板的該下表面上,該些晶片相互堆疊以構成一堆疊晶片結構。The sensor array of claim 1, further comprising a plurality of wafers on the lower surface of the circuit board, the wafers being stacked on each other to form a stacked wafer structure. 如申請專利範圍第1項所述的感測器陣列,其中該些第一電極包括指叉型電極、堆疊式電極或其組合,且該些第一感測單元用以感測氣體、光、濕度或其組合。The sensor array of claim 1, wherein the first electrodes comprise an interdigitated electrode, a stacked electrode or a combination thereof, and the first sensing unit is configured to sense gas, light, Humidity or a combination thereof. 如申請專利範圍第1項所述的感測器陣列,其中該第二電極為蛇狀電極,且該第二感測單元用以感測溫度。The sensor array of claim 1, wherein the second electrode is a serpentine electrode, and the second sensing unit is configured to sense a temperature. 如申請專利範圍第6項所述的感測器陣列,其中該第二感測單元不具有感測材料。The sensor array of claim 6, wherein the second sensing unit does not have a sensing material. 如申請專利範圍第1項所述的感測器陣列,其中該線路板的該上表面或該下表面為曲面、凹面、斜面、或其組合的表面。The sensor array of claim 1, wherein the upper surface or the lower surface of the wiring board is a surface of a curved surface, a concave surface, a sloped surface, or a combination thereof. 如申請專利範圍第1項所述的感測器陣列,其中該感測材料層的區域面積介於1平方微米至10 6平方微米之間,該感測器陣列的區域面積介於1平方微米至10 6平方微米之間。 The sensor array of claim 1, wherein the area of the sensing material layer is between 1 square micrometer and 10 6 square micrometers, and the area of the sensor array is 1 square micrometer. Between 10 6 square microns. 一種感測器陣列的製造方法,包括: 提供一線路板,該線路板具有相對的一上表面與一下表面; 於該線路板的該上表面上形成多個第一電極與至少一個第二電極,其中該些第一電極與該第二電極彼此分離;以及 藉由一非接觸式印刷法,於該些第一電極的表面上分別形成多個感測材料層,而不在該第二電極的表面上形成感測材料層。A method of manufacturing a sensor array, comprising: providing a circuit board having an opposite upper surface and a lower surface; forming a plurality of first electrodes and at least one second electrode on the upper surface of the circuit board The first electrode and the second electrode are separated from each other; and a plurality of sensing material layers are respectively formed on the surfaces of the first electrodes by a non-contact printing method, and not at the second electrode A layer of sensing material is formed on the surface. 如申請專利範圍第10項所述的感測器陣列的製造方法,其中該非接觸式印刷法包括噴墨印刷法或氣溶膠噴塗印刷法。The method of manufacturing a sensor array according to claim 10, wherein the non-contact printing method comprises an inkjet printing method or an aerosol spray printing method. 一種感測方法,包括: 藉由如申請專利範圍第1項至第9項中任一項所述的感測器陣列來感測一混合氣體,其中該感測器陣列中的該些感測材料層與該混合氣體中的多種氣體反應,以產生多個反應訊號;以及 從一反應資料庫接收一參數資料,並且依據該參數資料以及該些反應訊號來量測該些氣體的濃度。A sensing method, comprising: sensing a mixed gas by the sensor array according to any one of claims 1 to 9, wherein the sensing in the sensor array The material layer reacts with a plurality of gases in the mixed gas to generate a plurality of reaction signals; and receives a parameter data from a reaction database, and measures the concentration of the gases according to the parameter data and the reaction signals. 如申請專利範圍第12項所述的感測方法,其中依據該參數資料以及該些反應訊號來量測該些氣體的濃度的方法包括: 將該參數資料與該些反應訊號代入式1,藉此得到該些氣體的濃度, 式1, R w、R t、R z為該些反應訊號, S wm、S tm、S zm、S we、S te、S ze、S wt、S tt、S zt為該參數資料, C m、C e、C t為該些氣體的濃度。 The sensing method of claim 12, wherein the method for measuring the concentration of the gas according to the parameter data and the reaction signals comprises: substituting the parameter data and the reaction signals into Equation 1, This gives the concentration of these gases, Equation 1, R w , R t , R z are the reaction signals, S wm , S tm , S zm , S we , S te , S ze , S wt , S tt , S zt are the parameter data, C m , C e , C t are the concentrations of these gases.
TW105133636A 2016-10-19 2016-10-19 Sensor array, manufacturing method thereof, and sensing method TWI611181B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105133636A TWI611181B (en) 2016-10-19 2016-10-19 Sensor array, manufacturing method thereof, and sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105133636A TWI611181B (en) 2016-10-19 2016-10-19 Sensor array, manufacturing method thereof, and sensing method

Publications (2)

Publication Number Publication Date
TWI611181B true TWI611181B (en) 2018-01-11
TW201816395A TW201816395A (en) 2018-05-01

Family

ID=61728371

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133636A TWI611181B (en) 2016-10-19 2016-10-19 Sensor array, manufacturing method thereof, and sensing method

Country Status (1)

Country Link
TW (1) TWI611181B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530934B (en) * 2019-08-29 2022-05-10 业成科技(成都)有限公司 Humidity sensor and method for manufacturing the same
US11913926B2 (en) * 2019-11-04 2024-02-27 Honeywell Analytics Inc. Multi-sensor gas detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056447C (en) * 1993-11-11 2000-09-13 金星电子株式会社 Gas sensor and manufacturing method of the same
TWI314989B (en) * 2006-06-23 2009-09-21 Fego Prec Ind Co Ltd Humidity sensor having temperature compensation self-comparing and manufacturing method therefore
TWI354783B (en) * 2003-11-12 2011-12-21 Du Pont System and method for sensing and analyzing gases
CN104914138A (en) * 2015-07-03 2015-09-16 深圳市共进电子股份有限公司 Humidity sensor, humidity sensor array and preparation method thereof
TW201634918A (en) * 2014-12-24 2016-10-01 英特爾股份有限公司 Metal oxide gas sensor array devices, systems, and associated methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056447C (en) * 1993-11-11 2000-09-13 金星电子株式会社 Gas sensor and manufacturing method of the same
TWI354783B (en) * 2003-11-12 2011-12-21 Du Pont System and method for sensing and analyzing gases
TWI314989B (en) * 2006-06-23 2009-09-21 Fego Prec Ind Co Ltd Humidity sensor having temperature compensation self-comparing and manufacturing method therefore
TW201634918A (en) * 2014-12-24 2016-10-01 英特爾股份有限公司 Metal oxide gas sensor array devices, systems, and associated methods
CN104914138A (en) * 2015-07-03 2015-09-16 深圳市共进电子股份有限公司 Humidity sensor, humidity sensor array and preparation method thereof

Also Published As

Publication number Publication date
TW201816395A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
US20180106774A1 (en) Sensor array, manufacturing method thereof, and sensing method
US7061061B2 (en) Techniques and systems for analyte detection
EP2755023B1 (en) Capacitive sensor integrated onto semiconductor circuit
US9164052B1 (en) Integrated gas sensor
US7911010B2 (en) Apparatus and method for microfabricated multi-dimensional sensors and sensing systems
US20170030876A1 (en) Combinational Array Gas Sensor
US9594041B2 (en) Capacitive humidity sensor
US20020005580A1 (en) Techniques and system for analyte detection
WO2012160806A1 (en) Capacitive humidity sensor
TWI611181B (en) Sensor array, manufacturing method thereof, and sensing method
US9395318B2 (en) Electrochemical sensor device
EP2952885B1 (en) Gas sensor
US11674916B2 (en) Gas sensor
KR102408209B1 (en) A sensor
US11598742B2 (en) Semiconductor device for sensing impedance changes in a medium
CN108012416A (en) A kind of self-powered multifunction flexible circuit board
US20220276192A1 (en) Sensor
KR20170131105A (en) Humidity sensor
US20200371056A1 (en) Gas sensing device and manufacturing method thereof
JP2006084231A (en) Capacity type humidity sensor and its manufacturing method
JP7462586B2 (en) Sensors
EP1555527B1 (en) Array of chemically sensitive capacitors
CN114646419B (en) Gas pressure sensor, preparation method thereof and gas pressure detection method
EP3726208A1 (en) High surface area electrode for electrochemical sensor
CN107960008B (en) Integrated circuit board