TWI598880B - Non-volatile semiconductor memory device and erasure method thereof - Google Patents

Non-volatile semiconductor memory device and erasure method thereof Download PDF

Info

Publication number
TWI598880B
TWI598880B TW105128372A TW105128372A TWI598880B TW I598880 B TWI598880 B TW I598880B TW 105128372 A TW105128372 A TW 105128372A TW 105128372 A TW105128372 A TW 105128372A TW I598880 B TWI598880 B TW I598880B
Authority
TW
Taiwan
Prior art keywords
voltage
data
memory device
word line
memory cell
Prior art date
Application number
TW105128372A
Other languages
Chinese (zh)
Other versions
TW201735043A (en
Inventor
馬蒂亞斯 培爾
Original Assignee
力晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 filed Critical 力晶科技股份有限公司
Application granted granted Critical
Publication of TWI598880B publication Critical patent/TWI598880B/en
Publication of TW201735043A publication Critical patent/TW201735043A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/20Initialising; Data preset; Chip identification
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/344Arrangements for verifying correct erasure or for detecting overerased cells
    • G11C16/3445Circuits or methods to verify correct erasure of nonvolatile memory cells

Description

非揮發性半導體記憶裝置及其抹除方法Non-volatile semiconductor memory device and its erasing method

本發明是有關於一種例如快閃記憶體(flash memory)等非揮發性記憶裝置及其抹除方法。The present invention relates to a non-volatile memory device such as a flash memory and an erase method thereof.

在近來的快閃記憶體等非揮發性記憶裝置中,為了大容量高密度的半導體微影,而採用雙重圖案化(double patterning)技術。雙重圖案化技術是作為解析度例如為42 nm以下的微影技術來使用,已知有例如以2倍的節距(pitch)使圖案曝光之後使其偏離僅其1/2的節距而使其曝光的方法、以及利用間隔件製程(spacer process)等製程技巧(process trick)之後去除不需要的圖案等多個方法。 [現有技術文獻] [專利文獻]In recent non-volatile memory devices such as flash memory, double patterning technology is employed for large-capacity and high-density semiconductor lithography. The double patterning technique is used as a lithography technique having a resolution of, for example, 42 nm or less, and it is known that, for example, a pattern is exposed by a pitch of 2 times and then shifted from a pitch of only 1/2 thereof. A method of exposing the same, and a method of removing an unnecessary pattern after using a process trick such as a spacer process. [Prior Art Document] [Patent Literature]

[專利文獻1]日本專利特開2007-250186號公報 [專利文獻2]美國專利申請公開第2008/0165585號公報 [專利文獻3]美國專利申請公開第2013/0163359號公報 [專利文獻4]美國專利申請公開第2011/0069543號公報 [專利文獻5]美國專利申請公開第2012/0008412號公報 [發明所欲解決之課題][Patent Document 1] Japanese Patent Laid-Open Publication No. 2007-250186 [Patent Document 2] US Patent Application Publication No. 2008/0165585 [Patent Document 3] US Patent Application Publication No. 2013/0163359 (Patent Document 4) Patent Application Publication No. 2011/0069543 [Patent Document 5] US Patent Application Publication No. 2012/0008412 [Problem to be Solved by the Invention]

由於如上所述的快閃記憶體的大容量高密度,故而各字元線的間隔以及各位元線的間隔變得非常窄,從而對鄰接的字元線間或鄰接的位元線間的資料編程(data program)(寫入)或抹除時的特性造成大幅影響。因此,例如在專利文獻1~專利文獻5等的習知技術中,提出有用以使資料抹除特性最佳化的方法。Due to the large capacity and high density of the flash memory as described above, the interval between the word lines and the interval between the bit lines become very narrow, so that data between adjacent word lines or adjacent bit lines The characteristics of the data program (write) or erase have a large impact. For this reason, for example, in a conventional technique such as Patent Document 1 to Patent Document 5, a method for optimizing data erasing characteristics has been proposed.

圖1是表示習知例的快閃記憶體的資料抹除時的各電極的施加電壓的縱剖面圖。1 is a longitudinal cross-sectional view showing an applied voltage of each electrode at the time of erasing data of a flash memory of a conventional example.

圖1中,藉由在P型半導體基板1上例如注入磷而形成N阱(well)2,藉由在N阱2的上部例如注入硼而形成P阱3。其次,藉由在P阱3上形成以下的電極,對各電極及N阱2、P阱3如圖1所示施加預定的電壓(圖1中各括弧內的電壓)來進行資料抹除。再者,FL為浮動(floating)狀態。 (1)源極線SL; (2)選擇閘極線SGS、選擇閘極線SGD; (3)虛擬字元線DWLS、虛擬字元線DWLD; (4)字元線WL0~字元線WL31; (5)位元線GBL。In FIG. 1, an N well 2 is formed by, for example, implanting phosphorus on a P-type semiconductor substrate 1, and a P well 3 is formed by, for example, implanting boron on the upper portion of the N well 2. Next, by forming the following electrodes on the P well 3, the respective electrodes, the N well 2, and the P well 3 are applied with a predetermined voltage (voltage in each bracket in FIG. 1) as shown in FIG. Furthermore, FL is in a floating state. (1) source line SL; (2) select gate line SGS, select gate line SGD; (3) virtual word line DWLS, virtual word line DWLD; (4) word line WL0 to word line WL31 (5) Bit line GBL.

此處,VDWL是對虛擬字元線DWLS、虛擬字元線DWLD施加的電壓,對與各虛擬字元線DWLS、虛擬字元線DWLD分別鄰接的例如兩根邊緣區域側字元線WL0、邊緣區域側字元線WL1、邊緣區域側字元線WL30、邊緣區域側字元線WL31分別施加電壓Vea、電壓Veb、電壓Veb、電壓Vea。又,對邊緣區域以外的中央部的字元線WL2~字元線WL29施加電壓Vee,對N阱2及P阱3施加電壓VERS。該些施加電壓的一例如下。Here, VDWL is a voltage applied to the virtual word line DWLS and the virtual word line DWLD, and is adjacent to each of the virtual word line DWLS and the virtual word line DWLD, for example, two edge area side character lines WL0 and edges. The area side word line WL1, the edge area side word line WL30, and the edge area side word line WL31 are respectively applied with a voltage Vea, a voltage Veb, a voltage Veb, and a voltage Vea. Further, a voltage Vee is applied to the word line WL2 to the word line WL29 at the center portion other than the edge region, and a voltage VERS is applied to the N well 2 and the P well 3. An example of such applied voltages is as follows.

Vea=Veb≒0 V Vee=0.3 V~0.5 V VERS=15 V~25 VVea=Veb≒0 V Vee=0.3 V~0.5 V VERS=15 V~25 V

根據圖1的習知例的抹除方法,所述邊緣區域由於在製造製程中並非週期性的,故而是特異性的區域。通常,邊緣區域的字元線是以慢於其他區域的字元線的抹除速度加以抹除,故而對邊緣區域的字元線通常施加0 V,另一方面,對邊緣區域以外的字元線施加大於0 V的電壓。以如此方式進行調整以降低抹除速度快的字元線的抹除速度,使所有字元線的抹除速度相一致,從而使抹除後的記憶胞元的臨限值分佈窄帶化。然而,在雙重圖案化技術中,在中央部的字元線上亦無法保證均勻的線寬或間隔,因此,存在無法使邊緣區域以外的字元線上的抹除動作最佳化的問題。According to the erasing method of the conventional example of Fig. 1, the edge region is a region that is specific because it is not periodic in the manufacturing process. Usually, the word line of the edge area is erased by the erasing speed of the word line slower than the other area, so the word line of the edge area is usually applied with 0 V, and on the other hand, the character outside the edge area is applied. The line applies a voltage greater than 0 V. The adjustment is performed in such a manner as to reduce the erasing speed of the word line with a fast erasing speed, so that the erasing speeds of all the word lines are identical, so that the threshold distribution of the erased memory cells is narrowed. However, in the double patterning technique, a uniform line width or space cannot be ensured on the word line at the center portion, and therefore there is a problem that the erasing operation on the word line other than the edge area cannot be optimized.

本發明的目的在於提供一種與習知技術相比可使非揮發性半導體記憶裝置的抹除動作最佳化的非揮發性半導體記憶裝置及其抹除方法。 [解決課題之手段]It is an object of the present invention to provide a non-volatile semiconductor memory device and an erase method thereof that can optimize the erasing operation of a non-volatile semiconductor memory device as compared with the prior art. [Means for solving the problem]

第1發明的非揮發性半導體記憶裝置包括控制電路,所述控制電路藉由對包含設置在多個字元線與多個位元線的各交叉點上的記憶胞元的記憶胞元陣列的規定區域施加規定的抹除電壓來進行資料的抹除,且所述非揮發性半導體記憶裝置的特徵在於: 所述控制電路藉由對所述記憶胞元陣列的緣端部以外的偶數的字元線及奇數的字元線施加互不相同的字元線電壓,在所述記憶胞元陣列的緣端部施加與所述字元線電壓不同的電壓,將所述抹除電壓施加至記憶胞元來抹除資料。A nonvolatile semiconductor memory device according to a first aspect of the invention includes a control circuit that is configured by a memory cell array including memory cells disposed at respective intersections of a plurality of word lines and a plurality of bit lines The predetermined area is applied with a prescribed erase voltage to erase the data, and the non-volatile semiconductor memory device is characterized in that: the control circuit has an even number of words other than the edge end of the memory cell array The meta-line and the odd-numbered word line apply mutually different word line voltages, and a voltage different from the word line voltage is applied to the edge end of the memory cell array, and the erase voltage is applied to the memory. The cell is used to erase the data.

在所述非揮發性半導體記憶裝置中,其特徵在於:針對所述記憶胞元陣列的緣端部以外的奇數的字元線的字元線電壓設定為高於或低於針對所述記憶胞元陣列的緣端部以外的偶數的字元線的字元線電壓。In the non-volatile semiconductor memory device, a word line voltage for an odd number of word lines other than an edge end portion of the memory cell array is set higher or lower than the memory cell The word line voltage of an even number of word lines other than the edge of the element array.

又,在所述非揮發性半導體記憶裝置中,其特徵在於:所述記憶胞元陣列的緣端部的字元線分別是與兩端的選擇閘極線或虛擬字元線鄰接的至少一根的字元線。Further, in the nonvolatile semiconductor memory device, the word line at the edge of the memory cell array is at least one adjacent to a selected gate line or a virtual word line at both ends. The word line.

此外,在所述非揮發性半導體記憶裝置中,其特徵在於:所述控制電路對偶數的位元線的記憶胞元及奇數的位元線的記憶胞元在不同的驗證(verify)條件下進行所述資料抹除的驗證。Furthermore, in the non-volatile semiconductor memory device, the control circuit has different verifying conditions for memory cells of even bit lines and memory cells of odd bit lines. The verification of the data erasure is performed.

又進而,在所述非揮發性半導體記憶裝置中,其特徵在於:所述驗證條件設定為針對偶數的位元線的記憶胞元及奇數的位元線的記憶胞元使如下條件之中的至少一個不同: (1)字元線電壓; (2)對位元線進行預充電而讀取資料的資料讀取時的位元線的放電時間; (3)自源極線充電而進行與所述資料讀取相反的資料讀取時的位元線的充電時間; (4)對位元線進行預充電而讀取資料的資料讀取時的位元線的預充電時間;以及 (5)對位元線進行預充電而讀取資料的資料讀取時的位元線的感測(sense)電壓。Further, in the nonvolatile semiconductor memory device, the verification condition is set such that memory cells for even bit lines and memory cells of odd bit lines are among the following conditions At least one difference: (1) word line voltage; (2) discharge time of the bit line when the bit line is precharged and the data of the read data is read; (3) charging from the source line The data reads the charging time of the bit line when the opposite data is read; (4) the pre-charging time of the bit line when the bit line is precharged and the data of the read data is read; and (5) The sense voltage of the bit line when the bit line is precharged to read the data of the read data.

又,在所述非揮發性半導體記憶裝置中,其特徵在於:互不相同的所述字元線電壓是基於所述非揮發性半導體記憶裝置的晶圓測試中所測定的資料抹除時的臨限值電壓來確定。Further, in the nonvolatile semiconductor memory device, the word line voltages different from each other are based on data erased in a wafer test of the nonvolatile semiconductor memory device. The threshold voltage is determined.

此外,在所述非揮發性半導體記憶裝置中,其特徵在於:互不相同的所述字元線電壓是基於賦予與所述非揮發性半導體記憶裝置的晶圓測試中所測定的資料抹除時相同的臨限值電壓的抹除電壓來確定。Further, in the non-volatile semiconductor memory device, the word line voltages different from each other are based on data erased in a wafer test given to the non-volatile semiconductor memory device. The same threshold voltage is used to erase the voltage to determine.

又進而,在所述非揮發性半導體記憶裝置中,其特徵在於:所述晶圓測試中所測定的資料抹除時的臨限值電壓是對如下四種實例(case)進行測定: (1)偶數的字元線及偶數的位元線的實例; (2)偶數的字元線及奇數的位元線的實例; (3)奇數的字元線及偶數的位元線的實例;以及 (4)奇數的字元線及奇數的位元線的實例。Further, in the nonvolatile semiconductor memory device, the threshold voltage at the time of erasing the data measured in the wafer test is measured in the following four cases: (1) Examples of even-numbered word lines and even-numbered bit lines; (2) examples of even-numbered word lines and odd-numbered bit lines; (3) examples of odd-numbered word lines and even-numbered bit lines; (4) Examples of odd-numbered word lines and odd-numbered bit lines.

又,在所述非揮發性半導體記憶裝置中,其特徵在於:所述抹除電壓是施加至所述記憶胞元陣列的阱。Further, in the nonvolatile semiconductor memory device, the erase voltage is a well applied to the memory cell array.

此外,在所述非揮發性半導體記憶裝置中,其特徵在於:經確定的互不相同的所述字元線電壓資料被儲存至所述記憶胞元陣列的一部分區域,並且在將所述非揮發性半導體記憶裝置的電源導通時自所述記憶胞元陣列讀取而在所述資料的抹除時使用。Furthermore, in the non-volatile semiconductor memory device, the determined word line voltage data different from each other is stored to a portion of the memory cell array, and the non- The power of the volatile semiconductor memory device is read from the memory cell array when turned on and used during erasing of the data.

此外,在所述非揮發性半導體記憶裝置中,其特徵在於:在進行所述抹除的程序(sequence)之前,對所述規定區域的所有記憶胞元進行寫入。Further, in the nonvolatile semiconductor memory device, all of the memory cells of the predetermined area are written before the erasing sequence is performed.

第2發明的非揮發性半導體記憶裝置的抹除方法是如下非揮發性半導體記憶裝置的抹除方法,所述非揮發性半導體記憶裝置包括控制電路,所述控制電路藉由對包含設置在多個字元線與多個位元線的各交叉點上的記憶胞元的記憶胞元陣列的規定的區域施加規定的抹除電壓來進行資料的抹除,所述非揮發性半導體記憶裝置的抹除方法的特徵在於: 所述控制電路藉由對所述記憶胞元陣列的緣端部以外的偶數的字元線及奇數的字元線施加互不相同的字元線電壓,對所述記憶胞元陣列的緣端部的字元線施加與所述字元線電壓不同的電壓,將所述抹除電壓施加至記憶胞元來抹除資料。The erasing method of the nonvolatile semiconductor memory device according to the second aspect of the present invention is an erasing method of a nonvolatile semiconductor memory device including a control circuit, the control circuit being disposed by being included in a plurality of Data is erased by applying a predetermined erase voltage to a predetermined area of the memory cell array of the memory cells at each intersection of the plurality of bit lines, the non-volatile semiconductor memory device The erasing method is characterized in that: the control circuit applies mutually different word line voltages to even-numbered word lines and odd-numbered word lines other than the edge end portion of the memory cell array, A word line at the edge of the memory cell array applies a voltage different from the word line voltage, and the erase voltage is applied to the memory cell to erase the data.

在所述非揮發性半導體記憶裝置的抹除方法中,其特徵在於:針對所述記憶胞元陣列的緣端部以外的奇數的字元線的字元線電壓設定為高於或低於針對所述記憶胞元陣列的緣端部以外的偶數的字元線的字元線電壓。 [發明的效果]In the erasing method of the non-volatile semiconductor memory device, the word line voltage for an odd number of word lines other than the edge end portion of the memory cell array is set to be higher or lower than A word line voltage of an even number of word lines other than the edge of the memory cell array. [Effects of the Invention]

因此,可提供一種與本發明的習知技術相比可使非揮發性半導體記憶裝置的抹除動作最佳化的非揮發性半導體記憶裝置及其抹除方法。Accordingly, it is possible to provide a nonvolatile semiconductor memory device and an erase method thereof that can optimize the erasing operation of a nonvolatile semiconductor memory device as compared with the prior art of the present invention.

以下,參照圖式對本發明的實施形態進行說明。再者,在以下的各實施形態中,針對相同的構成要素標註相同的符號。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same components are denoted by the same reference numerals.

本發明的藉由測定而得出的見解. 圖2是表示本發明的反及(NAND)型快閃記憶體的測定結果,即相對於頁號的臨限值電壓Vth的圖。又,圖3是表示本發明的NAND型快閃記憶體的測定結果,即相對於奇數的字元線及偶數的字元線的記憶胞元的臨限值分佈的曲線圖。The findings obtained by the measurement of the present invention. Fig. 2 is a view showing the measurement result of the (NAND) type flash memory of the present invention, that is, the threshold voltage Vth with respect to the page number. 3 is a graph showing the measurement results of the NAND flash memory of the present invention, that is, the distribution of the threshold values of the memory cells with respect to odd-numbered word lines and even-numbered word lines.

圖2中,NAND型快閃記憶體的頁面P0及頁面P1的記憶胞元位於偶數的字元線WL0上,頁面P2及頁面P3的記憶胞元位於奇數的字元線WL1上。並且,頁面P0、頁面P2、頁面P4等位於偶數的位元線GBL上,頁面P1、頁面P3、頁面P5等位於奇數的位元線GBL上。即,頁面數與字元線編號、位元線編號的關係如下。In FIG. 2, the memory cells of the page P0 and the page P1 of the NAND type flash memory are located on the even word line WL0, and the memory cells of the page P2 and the page P3 are located on the odd word line WL1. Further, the page P0, the page P2, the page P4, and the like are located on the even bit line GBL, and the page P1, the page P3, the page P5, and the like are located on the odd bit line GBL. That is, the relationship between the number of pages, the word line number, and the bit line number is as follows.

[表1] <TABLE border="1" borderColor="#000000" width="_0001"><TBODY><tr><td> 頁面 </td><td> 字元線 </td><td> 位元線 </td></tr><tr><td> P0 </td><td> WL0 </td><td> 偶數 </td></tr><tr><td> P1 </td><td> WL0 </td><td> 奇數 </td></tr><tr><td> P2 </td><td> WL1 </td><td> 偶數 </td></tr><tr><td> P3 </td><td> WL1 </td><td> 奇數 </td></tr><tr><td> P4 </td><td> WL2 </td><td> 偶數 </td></tr><tr><td> P5 </td><td> WL2 </td><td> 奇數 </td></tr><tr><td> …… </td><td> …… </td><td> …… </td></tr></TBODY></TABLE>[Table 1]         <TABLE border="1" borderColor="#000000" width="_0001"><TBODY><tr><td> page</td><td> character line</td><td> bit line< /td></tr><tr><td> P0 </td><td> WL0 </td><td> Even </td></tr><tr><td> P1 </td>< Td> WL0 </td><td> odd number</td></tr><tr><td> P2 </td><td> WL1 </td><td> even number</td></tr> <tr><td> P3 </td><td> WL1 </td><td> odd </td></tr><tr><td> P4 </td><td> WL2 </td> <td> Even </td></tr><tr><td> P5 </td><td> WL2 </td><td> Odd </td></tr><tr><td> ... ... </td><td> ...... </td><td> ...... </td></tr></TBODY></TABLE>

如自圖2及圖3的圖所表明,可知以下事項。As shown in the figures of Fig. 2 and Fig. 3, the following matters are known.

(1)相對於偶數的字元線或奇數的字元線,臨限值電壓Vth具有大致相同的值,但因半導體晶片製造上的差異而稍有不同。 (2)針對位元線GBL,相對於相互鄰接的偶數或奇數的位元線,臨限值電壓Vth週期性地發生變化。 (3)相對於頁號,臨限值電壓Vth週期性地發生變化。 本發明基於該些見解,提出本實施形態的抹除方法如下。(1) The threshold voltages Vth have substantially the same value with respect to even-numbered word lines or odd-numbered word lines, but are slightly different due to differences in semiconductor wafer fabrication. (2) With respect to the bit line GBL, the threshold voltage Vth periodically changes with respect to the even or odd bit lines adjacent to each other. (3) The threshold voltage Vth periodically changes with respect to the page number. Based on these findings, the present invention proposes an erasing method of the present embodiment as follows.

圖4是表示本發明的一實施形態的NAND型快閃記憶體的構成例的方塊圖。在圖4中,本實施形態的NAND型快閃記憶體的構成包括記憶胞元陣列10、控制所述記憶胞元陣列10的動作的控制電路11、列解碼器(row decoder)12、高電壓產生電路13、頁面緩衝電路(PB)14、行解碼器(column decoder)15、記憶暫存器(memory register)16、命令暫存器(command register)17、位址暫存器(address register)18、動作邏輯控制器19、資料輸入輸出緩衝器50、資料輸入輸出端子51及控制信號輸入端子53。再者,52為資料線。4 is a block diagram showing an example of the configuration of a NAND flash memory according to an embodiment of the present invention. In FIG. 4, the NAND type flash memory of the present embodiment includes a memory cell array 10, a control circuit 11 for controlling the operation of the memory cell array 10, a row decoder 12, and a high voltage. Generating circuit 13, page buffer circuit (PB) 14, column decoder 15, memory register 16, command register 17, address register 18. The operation logic controller 19, the data input/output buffer 50, the data input/output terminal 51, and the control signal input terminal 53. Furthermore, 52 is the data line.

頁面緩衝電路14包括為了進行規定的頁面單位的資料寫入及讀取,針對位元線GBL的每組(GBLe、GBLo)而設置的感測放大電路(SA)及資料鎖存電路(data latch circuit)。再者,感測放大電路(SA)包括包含鎖存電路(L2)在內的若干個元件。The page buffer circuit 14 includes a sense amplifier circuit (SA) and a data latch circuit (data latch) provided for each group (GBLe, GBLo) of the bit line GBL in order to perform data writing and reading in a predetermined page unit. Circuit). Furthermore, the sense amplification circuit (SA) includes a number of components including a latch circuit (L2).

記憶胞元陣列10的各記憶胞元串(string)連接於選擇閘極線SGD與位元線GBL的各交叉點,記憶胞元串MC的各記憶胞元連接於多個字元線WL,為了進行記憶胞元陣列10的字元線WL及位元線GBL的選擇,分別設置有列解碼器12及行解碼器15。控制電路11進行資料寫入、抹除及讀取的程序控制。記憶暫存器16連接於控制電路11,預先儲存有讀取、寫入及抹除的動作所需要的參數(模型資料(mode set data)),在電源導通時藉由控制電路11自記憶胞元陣列中的熔絲資料儲存區域讀取而加以設定。由控制電路11控制的高電壓產生電路13產生用於資料改寫、抹除、讀取的經升壓的高電壓或中間電壓。Each memory cell string of the memory cell array 10 is connected to each intersection of the selection gate line SGD and the bit line GBL, and each memory cell of the memory cell string MC is connected to the plurality of word lines WL. In order to select the word line WL and the bit line GBL of the memory cell array 10, a column decoder 12 and a row decoder 15 are provided, respectively. The control circuit 11 performs program control of data writing, erasing, and reading. The memory register 16 is connected to the control circuit 11, and pre-stores parameters (mode set data) required for the operations of reading, writing, and erasing, and is self-memory by the control circuit 11 when the power is turned on. The fuse data storage area in the element array is read and set. The high voltage generating circuit 13 controlled by the control circuit 11 generates a boosted high voltage or intermediate voltage for data rewriting, erasing, and reading.

資料輸入輸出緩衝器50用於資料的輸入輸出及命令與位址信號的輸入。即,經由輸入輸出緩衝器50、資料線52及鎖存電路(L2)14b,在輸入輸出端子51與頁面緩衝電路14之間進行資料的轉送。自輸入輸出端子51輸入的位址信號保持在位址暫存器18中,並發送至列解碼器12及行解碼器15加以解碼。自輸入輸出端子51亦輸入動作控制的命令。所輸入的命令經解碼而保持在命令暫存器17,由此對控制電路11進行控制。將晶片致能信號CEB、命令鎖存致能信號CLE、位址鎖存致能信號ALE、寫入致能信號WEB、讀取致能信號REB等外部控制信號經由控制信號輸入端子53擷取至動作邏輯控制器19,並根據動作模式產生內部控制信號。內部控制信號是用於輸入輸出緩衝器50中的資料鎖存、轉送等的控制,其被發送至控制電路11,進而進行動作控制。The data input/output buffer 50 is used for input and output of data and input of commands and address signals. That is, data is transferred between the input/output terminal 51 and the page buffer circuit 14 via the input/output buffer 50, the data line 52, and the latch circuit (L2) 14b. The address signal input from the input/output terminal 51 is held in the address register 18 and sent to the column decoder 12 and the row decoder 15 for decoding. A command for operation control is also input from the input/output terminal 51. The input command is decoded and held in the command register 17, thereby controlling the control circuit 11. An external control signal such as the wafer enable signal CEB, the command latch enable signal CLE, the address latch enable signal ALE, the write enable signal WEB, and the read enable signal REB is extracted to the control signal input terminal 53 via the control signal input terminal 53 to The logic controller 19 is actuated and generates an internal control signal in accordance with the action mode. The internal control signal is control for data latching, transfer, and the like in the input/output buffer 50, and is sent to the control circuit 11 to perform operation control.

圖5是表示圖4的快閃記憶體的資料抹除時的各電極的施加電壓的縱剖面圖。圖5中,P型半導體基板1、N阱2及P阱3以及各電極是與圖1同樣地形成,但特徵為在以下方面不同。 (1)對虛擬字元線DWLS施加電壓VDWL1來代替電壓VDWL。 (2)對虛擬字元線DWLD施加電壓VDWL2來代替電壓VDWL。 (3)對邊緣區域的字元線WL0、字元線WL1施加電壓Vea、電壓Veb,對邊緣區域的字元線WL30、字元線WL31施加電壓Vec、電壓Ved。 (4)對邊緣區域以外的偶數的字元線WL2、字元線WL4、……、字元線WL28施加電壓Vee。 (5)對邊緣區域以外的奇數的字元線WL1、字元線WL3、……、字元線WL29施加電壓Veo。Fig. 5 is a vertical cross-sectional view showing an applied voltage of each electrode when the data of the flash memory of Fig. 4 is erased. In FIG. 5, the P-type semiconductor substrate 1, the N well 2, the P well 3, and the respective electrodes are formed in the same manner as in FIG. 1, but are different in the following points. (1) A voltage VDWL1 is applied to the dummy word line DWLS instead of the voltage VDWL. (2) A voltage VDWL2 is applied to the dummy word line DWLD instead of the voltage VDWL. (3) The voltage Vea and the voltage Veb are applied to the word line WL0 and the word line WL1 in the edge region, and the voltage Vec and the voltage Ved are applied to the word line WL30 and the word line WL31 in the edge region. (4) A voltage Vee is applied to the even-numbered word line WL2, the word line WL4, ..., the word line WL28 other than the edge region. (5) A voltage Veo is applied to the odd word line WL1, the word line WL3, ..., the word line WL29 other than the edge region.

此處,施加電壓的一例如下。Here, an example of the applied voltage is as follows.

Vea=Ved=0 V~0.5 V Veb=Vec=0 V~0.5 V Vee=0.3 V~0.5 V Veo=0.3 V~0.5 V VERS=15 V~25 VVea=Ved=0 V~0.5 V Veb=Vec=0 V~0.5 V Vee=0.3 V~0.5 V Veo=0.3 V~0.5 V VERS=15 V~25 V

因此,鑒於圖2及圖3的見解,奇數的字元線用施加電壓Veo較佳為以較偶數的字元線用施加電壓Vee例如低0.1 V~0.5 V的方式而設定。在圖1的習知例中,電壓Vea是用於邊緣區域中的最邊緣的兩根字元線WL0、字元線WL31,邊緣區域以外的字元線的施加電壓是在偶數或奇數上無電壓差地施加有電壓Vee,但在本實施形態中,則考慮到圖2及圖3的見解的效果,特徵在於邊緣區域以外的中央區域的字元線的施加電壓是依存於偶數或奇數具有電壓差而施加有電壓Vee、電壓Veo。Therefore, in view of the findings of FIGS. 2 and 3, the odd-numbered word line applied voltage Veo is preferably set such that the even-numbered word line is applied with a voltage Vee of, for example, 0.1 V to 0.5 V. In the conventional example of FIG. 1, the voltage Vea is the two word line WL0 and the word line WL31 for the outermost edge in the edge region, and the applied voltage of the word line other than the edge region is not on the even or odd number. The voltage Vee is applied to the voltage difference. However, in the present embodiment, considering the effects of the findings of FIGS. 2 and 3, the voltage applied to the word line in the central region other than the edge region is dependent on the even or odd number. A voltage Vee and a voltage Veo are applied to the voltage difference.

又,在本實施形態中,在記憶體陣列的緣端部的兩邊緣區域的各兩根字元線WL0、字元線WL1、字元線WL30、字元線WL31上,分別使用與中央區域的字元線的施加電壓Vee、施加電壓Veo不同的施加電壓。此處,是設為記憶體陣列的緣端部的兩邊緣區域的各兩根字元線WL0、字元線WL1、字元線WL30、WL31,但本發明並不限定於此,亦可在各兩端在一根或三根字元線上使用與中央區域的字元線的施加電壓Vee、施加電壓Veo不同的施加電壓。在本實施形態中已揭示在記憶胞元串MC上連接32記憶胞元的情況,但並不限定於此,亦可為64記憶胞元等更大的串聯數,此時邊緣區域亦變大。再者,如圖5所示,字元線WL0是經由虛擬字元線DWLS與選擇閘極線SGS鄰接而設置,字元線WL31是經由虛擬字元線DWLD與選擇閘極線SGD鄰接而設置。並且,緣端部的字元線亦可如本實施形態般除了WL0、WL31以外,亦可包含字元線WL1、字元線WL30。Further, in the present embodiment, each of the two word lines WL0, the word line WL1, the word line WL30, and the word line WL31 in the both edge regions of the edge portion of the memory array are respectively used and the central region. The applied voltage Vee of the word line and the applied voltage Veo are different applied voltages. Here, the two word lines WL0, the word line WL1, the word lines WL30, and WL31 in the both edge regions of the edge portion of the memory array are used, but the present invention is not limited thereto, and may be Each of the two ends uses an applied voltage different from the applied voltage Vee and the applied voltage Veo of the word line of the central region on one or three word lines. In the present embodiment, the case where 32 memory cells are connected to the memory cell string MC has been disclosed. However, the present invention is not limited thereto, and may be a larger number of series cells such as 64 memory cells, and the edge region is also enlarged. . Further, as shown in FIG. 5, the word line WL0 is provided adjacent to the selection gate line SGS via the dummy word line DWLS, and the word line WL31 is set adjacent to the selection gate line SGD via the dummy word line DWLD. . Further, the word line at the edge end portion may include the word line WL1 and the word line WL30 in addition to WL0 and WL31 as in the present embodiment.

圖6是表示圖4的快閃記憶體的資料抹除程序時的驗證動作的電路圖。在圖6中,MC是NAND型記憶胞元串,BLSe是偶數的位元線GBL0、位元線GBL2、……的選擇信號,BLSo是奇數的位元線GBL1、位元線GBL3、……的選擇信號。Fig. 6 is a circuit diagram showing a verification operation when the data erase program of the flash memory of Fig. 4 is used. In FIG. 6, MC is a NAND type memory cell string, BLSe is a selection signal of an even bit line GBL0, bit line GBL2, ..., BLSo is an odd bit line GBL1, a bit line GBL3, ... Selection signal.

此處,記憶胞元串MC的活性層區域的寬度及浮動閘極的寬度存在如上所述,因雙重圖案化而具有偶數及奇數的依存性的差異,此差異亦會對抹除時的臨限值電壓Vth造成影響。圖2的圖的資料雖然其差異小,但大大依存於快閃記憶體晶片的晶圓及/或晶圓批組(lot)。所述差由於字元線WL為共用,故而無法藉由抹除時的字元線電壓VWL來補償。所述差可藉由改變驗證的條件設定來補償。例如,驗證時的字元線電壓VWL較佳為在偶數頁面與奇數頁面之間進行變更。作為其他方法,可利用通常的資料讀取時(使源極線接地,自頁面緩衝電路14對位元線進行預充電而讀取資料)的位元線GBL的放電時間、或逆向讀取時(在GBL=0 V時自源極線SL對位元線進行充電)的位元線GBL的充電時間來實質上補償所述差。或者,亦可利用對位元線進行預充電而讀取資料的資料讀取時的位元線的預充電時間,或利用對位元線進行預充電而讀取資料的資料讀取時的位元線的感測電壓來補償所述差。Here, the width of the active layer region of the memory cell string MC and the width of the floating gate exist as described above, and there is a difference in the dependence of even and odd numbers due to double patterning, and this difference also occurs when erasing The limit voltage Vth has an effect. The data in the graph of Figure 2, although small in difference, is heavily dependent on the wafer and/or wafer lot of the flash memory wafer. Since the difference is common to the word line WL, it cannot be compensated by the word line voltage VWL at the time of erasing. The difference can be compensated by changing the condition setting of the verification. For example, the word line voltage VWL at the time of verification is preferably changed between an even page and an odd page. As another method, it is possible to use the discharge time of the bit line GBL at the time of normal data reading (grounding the source line and pre-charging the bit line from the page buffer circuit 14) or reverse reading. The charging time of the bit line GBL (which charges the bit line from the source line SL when GBL = 0 V) substantially compensates for the difference. Alternatively, the pre-charging time of the bit line at the time of reading the data of the read data by pre-charging the bit line or the bit reading the data of the read data by pre-charging the bit line may be used. The sense voltage of the line is used to compensate for the difference.

即,在本實施形態中,在抹除資料程序時的驗證條件亦可以如下方式來設定,即,針對偶數的位元線的記憶胞元與奇數的位元線的記憶胞元使如下條件之中的至少一個不同: (1)字元線電壓VWL; (2)對位元線進行預充電而讀取資料的資料讀取時的位元線的放電時間; (3)在逆向資料讀取時當自源極線進行充電而進行資料讀取的位元線的充電時間; (4)對位元線進行預充電而讀取資料的資料讀取時的位元線的預充電時間;以及 (5)對位元線進行預充電而讀取資料的資料讀取時的位元線的感測電壓。That is, in the present embodiment, the verification condition at the time of erasing the data program can be set as follows, that is, the memory cell for the even-numbered bit line and the memory cell of the odd bit line make the following conditions At least one of the differences is: (1) the word line voltage VWL; (2) the discharge time of the bit line when the bit line is precharged and the data of the read data is read; (3) the reverse data reading The charging time of the bit line when the data is read from the source line; (4) the pre-charging time of the bit line when the bit line is precharged and the data of the read data is read; (5) The sensing voltage of the bit line when the bit line is precharged and the data of the read data is read.

圖6表示藉由所述逆向讀取而進行的奇數頁面的驗證,抹除時的驗證(資料已抹除時的確認)是分成奇數頁面的驗證與偶數頁面的驗證兩個動作。例如,將某字元線電壓VWL設定為0 V以進行偶數頁面的驗證,且設定為例如0.2 V以進行奇數頁面的驗證。即,其原因在於根據圖2的圖的特性,奇數頁面的抹除慢於偶數頁面的抹除。Fig. 6 shows the verification of the odd-numbered pages by the reverse reading, and the verification at the time of erasing (confirmation when the data has been erased) is two actions of verifying the odd-numbered pages and verifying the even-numbered pages. For example, a word line voltage VWL is set to 0 V for verification of even pages, and is set to, for example, 0.2 V for verification of odd pages. That is, the reason is that the erasure of odd pages is slower than the erasure of even pages according to the characteristics of the graph of FIG.

圖7是表示用於圖4的快閃記憶體的晶圓測試處理的流程圖。以下,一面參照圖7來記載電壓設定的一例,一面對所述晶圓測試處理進行說明。FIG. 7 is a flow chart showing a wafer test process for the flash memory of FIG. 4. Hereinafter, an example of voltage setting will be described with reference to FIG. 7, and the wafer test processing will be described.

在圖7的步驟S1中,對所有記憶胞元串MC編程為資料「0」而測定寫入時間。本步驟兼作用以在下一個步驟中測定抹除特性的前處理,但所述寫入時間資料是用於確定寫入條件設定的參數,與抹除的參數無關。In step S1 of Fig. 7, the write time is measured by programming all the memory cell strings MC as data "0". This step also serves to determine the pre-processing of the erase characteristic in the next step, but the write time data is a parameter for determining the write condition setting, regardless of the erased parameter.

具體而言,利用增量階躍脈波編程(Incremental Step Pulse Program,ISPP)法,對記憶胞元陣列10之中的若干個塊的所有頁面測定以下各項而計算出實際使用的寫入開始電壓Vstart。此處,記錄記憶胞元最初的10位元的臨限值超過驗證電壓PV時的字元線電壓Vpn,開始電壓Vstart是由例如開始電壓Vstart=電壓Vpn的平均值-2 V來確定。再者,在本例中是使用所有頁面的電壓Vpn的平均值,但本發明並不限定於此,亦可使用所有頁面的電壓Vpn的最小值。Specifically, using the Incremental Step Pulse Program (ISPP) method, the following items are determined for all pages of a plurality of blocks in the memory cell array 10 to calculate the actual use of the write start. Voltage Vstart. Here, the threshold value of the initial 10-bit of the memory cell is exceeded by the word line voltage Vpn when the verification voltage PV is exceeded, and the start voltage Vstart is determined by, for example, the start voltage Vstart=the average value of the voltage Vpn−2 V. Furthermore, in this example, the average value of the voltages Vpn of all the pages is used, but the present invention is not limited thereto, and the minimum value of the voltage Vpn of all the pages may be used.

在步驟S2中抹除若干個塊的記憶胞元串MC的資料(Vth<0 V)而對四個實例A~實例D測定臨限值電壓Vth。此處,四個實例如下。 (實例A)偶數的字元線、偶數的位元線。 (實例B)偶數的字元線、奇數的位元線。 (實例C)奇數的字元線、偶數的位元線。 (實例D)奇數的字元線、奇數的位元線。The data of the memory cell string MC of a plurality of blocks (Vth < 0 V) is erased in step S2, and the threshold voltage Vth is measured for the four examples A to D. Here, four examples are as follows. (Example A) Even number of word lines, even number of bit lines. (Example B) Even number of word lines, odd number of bit lines. (Example C) Odd number of word lines, even number of bit lines. (Example D) Odd number of word lines, odd number of bit lines.

具體而言,針對若干個塊測定以下各項並利用其平均值計算出實際使用的偏位(offset)值。首先,利用增量階躍脈波抹除(Incremental Step Pulse Erase,ISPE)法,例如利用開始電壓Vstart=14 V、階躍電壓Vstep=0.2 V、抹除驗證電壓EV=0 V消除資料,直至頁面32(記憶體串的中央的WL線)的50%的位元的臨限值電壓Vth達到0 V以下為止。然後,對所述四個實例測定位元的臨限值電壓Vth,所述位元具有第10大的臨限值電壓Vth。具體順序如下。Specifically, the following items are measured for a plurality of blocks and the average value of the offset used is calculated using the average value thereof. First, use the Incremental Step Pulse Erase (ISPE) method, for example, using the starting voltage Vstart=14 V, the step voltage Vstep=0.2 V, and erasing the verification voltage EV=0 V to eliminate the data until The threshold voltage Vth of the 50% bit of the page 32 (the WL line at the center of the memory string) reaches 0 V or less. Then, the threshold voltage Vth of the bit is measured for the four examples, and the bit has the 10th largest threshold voltage Vth. The specific order is as follows.

(1)讀取頁面0的資料,測定所述第10大的臨限值電壓Vth的平均值作為Vth0。此處,可獲得若干個塊的頁面0的資料,故而加入取平均值的操作。(以下相同) (2)讀取頁面1的資料,測定所述第10大的臨限值電壓Vth的平均值作為Vth1。 (3)讀取頁面2的資料,測定所述第10大的臨限值電壓Vth的平均值作為Vth2。 (4)讀取頁面3的資料,測定所述第10大的臨限值電壓Vth的平均值作為vth3。 (5)讀取頁面4、頁面8、頁面12、……、頁面56的資料,測定所述第10大的臨限值電壓Vth的平均值作為實例A的臨限值電壓Vthee。 (6)讀取頁面5、頁面9、頁面13、……、頁面57的資料,測定所述第10大的臨限值電壓Vth的平均值作為實例B的臨限值電壓Vtheo。 (7)讀取頁面6、頁面10、頁面14、……、頁面58的資料,測定所述第10大的臨限值電壓Vth的平均值作為實例C的臨限值電壓Vthoe。 (8)讀取頁面7、頁面11、頁面15、……、頁面59的資料,測定所述第10大的臨限值電壓Vth的平均值作為實例D的臨限值電壓Vthoo。 (9)讀取頁面60的資料,測定所述第10大的臨限值電壓Vth的平均值作為Vth60。 (10)讀取頁面61的資料,測定所述第10大的臨限值電壓Vth的平均值作為Vth61。 (11)讀取頁面62的資料,測定所述第10大的臨限值電壓Vth的平均值作為Vth62。 (12)讀取頁面63的資料,測定所述第10大的臨限值電壓Vth的平均值作為Vth63。(1) The data of page 0 is read, and the average value of the 10th largest threshold voltage Vth is measured as Vth0. Here, the data of the page 0 of several blocks can be obtained, so the operation of averaging is added. (Same as the following) (2) The data of the page 1 is read, and the average value of the 10th largest threshold voltage Vth is measured as Vth1. (3) The data of the page 2 is read, and the average value of the tenth largest threshold voltage Vth is measured as Vth2. (4) The data of page 3 is read, and the average value of the 10th largest threshold voltage Vth is measured as vth3. (5) The data of page 4, page 8, page 12, ..., page 56 is read, and the average value of the 10th largest threshold voltage Vth is measured as the threshold voltage Vthee of the example A. (6) The data of page 5, page 9, page 13, ..., page 57 is read, and the average value of the 10th largest threshold voltage Vth is measured as the threshold voltage Vtheo of the example B. (7) The data of page 6, page 10, page 14, ..., page 58 is read, and the average value of the 10th largest threshold voltage Vth is measured as the threshold voltage Vthoe of the example C. (8) The data of page 7, page 11, page 15, ..., page 59 is read, and the average value of the 10th largest threshold voltage Vth is measured as the threshold voltage Vthoo of the example D. (9) The data of the page 60 is read, and the average value of the 10th largest threshold voltage Vth is measured as Vth60. (10) The data of the page 61 is read, and the average value of the 10th largest threshold voltage Vth is measured as Vth61. (11) The data of the page 62 is read, and the average value of the 10th largest threshold voltage Vth is measured as Vth62. (12) The data of the page 63 is read, and the average value of the 10th largest threshold voltage Vth is measured as Vth63.

其次,基於在步驟S3中所測定的臨限值電壓Vth確定偏位值,在步驟S4中將確定的偏位值作為抹除電壓等模型資料的一部分儲存至記憶暫存器16,並且結束所述處理。然後,在寫入、抹除及讀取的動作參數(模型資料)全部聚齊之後,將記憶暫存器16的資料寫入至記憶胞元陣列的熔絲資料儲存區域。Next, the offset value is determined based on the threshold voltage Vth measured in step S3, and the determined offset value is stored as a part of the model data such as the erase voltage in the memory register 16 in step S4, and the end is ended. Said processing. Then, after all the operation parameters (model data) written, erased, and read are gathered, the data of the memory register 16 is written to the fuse data storage area of the memory cell array.

具體而言,例如,當測定資料為Vth1=Vth63=0.5 V,Vth0=Vth62=0.6 V,Vth2=Vth3=Vth60=Vth61=1.2 V,Vthee=0.8 V,Vtheo=0.9 V,Vthoe=1.1 V,Vthoo=0.95 V時,所述偏位值可獲得Vea=0.6 V,Veb=0.0 V,Vee=0.3 V,Veo=0.1 V,Vec=0.0 V,Ved=0.6 V,若施加該些電壓而進行抹除,則可在大致抹除後使臨限值電壓Vth均衡化,從而將不均抑制在大致0.1 V。(可去除圖3中的臨限值的偏離。)Specifically, for example, when the measured data is Vth1=Vth63=0.5 V, Vth0=Vth62=0.6 V, Vth2=Vth3=Vth60=Vth61=1.2 V, Vthee=0.8 V, Vtheo=0.9 V, Vthoe=1.1 V, When Vthoo=0.95 V, the bias value can be obtained by Vea=0.6 V, Veb=0.0 V, Vee=0.3 V, Veo=0.1 V, Vec=0.0 V, Ved=0.6 V, if these voltages are applied By erasing, the threshold voltage Vth can be equalized after the substantially erasing, thereby suppressing the unevenness to approximately 0.1 V. (The deviation of the threshold in Figure 3 can be removed.)

這意味著抹除最慢的是Vth2、Vth3、Vth60、Vth61=1.2 V,且Vthee=0.8 V的抹除速度快0.4 V,故而相反地對電壓Vee施加0.3 V而使抹除變慢。並非0.4 V的原因在於,相同字元線的臨限值電壓Vtheo的記憶胞元的抹除會變淺,故而與此方面相適應。This means that the slowest erase is Vth2, Vth3, Vth60, Vth61=1.2 V, and the erase speed of Vthee=0.8 V is 0.4 V faster, so instead 0.3 V is applied to the voltage Vee to make the erase slower. The reason why it is not 0.4 V is that the erase of the memory cell of the threshold voltage Vtheo of the same word line becomes shallow, so it is compatible with this aspect.

此處,例如,若考慮相同字元線上的Vth0及Vth1,則當設為Vea=0.6 V時在抹除後臨限值電壓Vth1(字元線WL0、奇數的位元線、頁面1)加深0.1 V,但若對此進行補償,則只要將頁面1的驗證電壓設為0.1 V而非0 V即可。Here, for example, when Vth0 and Vth1 on the same word line are considered, when the setting is Vea=0.6 V, the threshold voltage Vth1 (word line WL0, odd bit line, page 1) is deepened after erasing. 0.1 V, but if you compensate for this, just set the verification voltage of page 1 to 0.1 V instead of 0 V.

接著,代入該些條件而進行資料抹除,測定針對若干個塊的通過抹除驗證電壓EV的抹除電壓Vep,並且將抹除開始電壓Vstart例如設為Vep-4 V。然後,將所述偏位值及抹除開始電壓Vstart儲存至記憶暫存器,從而結束抹除的特性測定及參數設定。Then, data erasing is performed by substituting these conditions, and the erasing voltage Vep for erasing the verification voltage EV for a plurality of blocks is measured, and the erasing start voltage Vstart is set to, for example, Vep-4 V. Then, the offset value and the erase start voltage Vstart are stored in the memory register, thereby ending the characteristic measurement and parameter setting of the erase.

此處,抹除特性測定是以頁面32的50%的位元的臨限值Vth達到0 V以下的點為基準,測定各頁面的位元的臨限值,所述位元具有第10大的臨限值,但本發明並不限定於此,例如,亦可以抹除最快的頁面的99%的位元達到例如臨限值0 V以下的點為基準,或針對各頁面測定相當於3σ的位元達到臨限值0 V以下的抹除電壓而使用。又,是將階躍電壓設為0.2 V,但如下方法亦較佳,即,首先以0.5 V開始,在接近於目標值之後變為0.1 V而提高精度。Here, the erasing characteristic measurement is based on the point at which the threshold value Vth of 50% of the page 32 reaches 0 V or less, and the threshold value of the bit of each page is measured, and the bit has the 10th largest. The present invention is not limited thereto, and for example, it is also possible to erase the 99% of the fastest page to a point such as a threshold of 0 V or less, or to measure the equivalent for each page. The 3σ bit is used to reach the erase voltage below the threshold of 0 V. Further, the step voltage is set to 0.2 V, but the following method is also preferable, that is, starting with 0.5 V first, and becoming 0.1 V after approaching the target value to improve the accuracy.

圖8是表示用於圖4的快閃記憶體的電源導通時處理的流程圖。在圖8的步驟S11中,當將電源導通時,控制電路11自記憶胞元陣列的熔絲資料儲存區域讀取模型資料,並轉送至記憶暫存器16加以儲存。然後,在步驟S12中,自記憶暫存器16讀取抹除電壓等的模型資料,將所讀取的模型資料設定為動作條件而使記憶體運行。Fig. 8 is a flow chart showing the processing when the power supply for the flash memory of Fig. 4 is turned on. In step S11 of FIG. 8, when the power is turned on, the control circuit 11 reads the model data from the fuse data storage area of the memory cell array and transfers it to the memory register 16 for storage. Then, in step S12, the model data such as the erase voltage is read from the memory register 16, and the read model data is set as the operating condition to cause the memory to operate.

如以上所說明,根據本實施形態,在偶數的字元線及奇數的字元線上利用不同的字元線電壓來抹除資料,故而可根據資料抹除的臨限值電壓特性進行資料抹除,從而與習知技術相比能夠以高精度最佳化地抹除資料。As described above, according to the present embodiment, data is erased by using different word line voltages on even-numbered word lines and odd-numbered word lines, so that data erasing can be performed based on the threshold voltage characteristics of data erasing. Therefore, it is possible to optimally erase data with high precision compared to conventional techniques.

此處,習知的抹除是對已寫有資料的塊施加抹除電壓,即,記憶胞元是在資料為1(抹除狀態)的胞元及資料為0(寫入狀態)的胞元混合存在的狀態下施加有抹除電壓。在FN隧道效應中,雖說抹除後的臨限值不依存於初始的臨限值來確定,但殘留有浮動閘極間的耦合的效應,故而並不完善。因此,如圖9的抹除前預先寫入處理所示,進行抹除前寫入(S21),並施加抹除電壓並反覆進行驗證(S22)。由此,使抹除電壓施加前的臨限值大概相一致,藉此可進一步提高抹除後的臨限值分佈的均勻性。抹除前寫入不需要驗證,並且是選擇所有字元線來進行,故而大約100微秒即可完成,抹除為2毫秒左右,故而大致不成問題。Here, the conventional erasing is to apply an erase voltage to a block in which data has been written, that is, a memory cell is a cell in which the data is 1 (erased state) and a cell whose data is 0 (write state). An erase voltage is applied in a state in which the element mixture exists. In the FN tunneling effect, although the threshold after erasing is not determined by the initial threshold, the effect of the coupling between the floating gates remains, so it is not perfect. Therefore, as shown in the pre-erase write processing of FIG. 9, writing is performed before erasing (S21), and the erase voltage is applied and verification is repeated (S22). Thereby, the threshold value before the application of the erasing voltage is approximately coincident, whereby the uniformity of the threshold distribution after erasing can be further improved. The pre-erase write does not require verification, and all word lines are selected for processing, so that it can be completed in about 100 microseconds, and the erasure is about 2 milliseconds, so it is not a problem.

在以上的實施形態中,已對NAND型快閃記憶體進行了說明,但本發明並不限定於此,而可應用於應用有雙重圖案化技術的或非(not or,NOR)型快閃記憶體等各種非揮發性半導體記憶裝置中。In the above embodiments, the NAND flash memory has been described. However, the present invention is not limited thereto, and can be applied to a non-no or non-no flash type using a double patterning technique. In various non-volatile semiconductor memory devices such as memory.

在以上的實施形態中,控制電路10是藉由對記憶胞元陣列的規定的塊施加規定的抹除電壓來進行資料的抹除,但本發明並不限定於此,在例如NOR型快閃記憶體等各種非揮發性半導體記憶裝置中,亦可藉由對記憶胞元陣列的規定區域施加規定的抹除電壓來進行資料的抹除。In the above embodiment, the control circuit 10 erases the data by applying a predetermined erase voltage to a predetermined block of the memory cell array. However, the present invention is not limited thereto, and for example, a NOR flash is used. In various nonvolatile semiconductor memory devices such as a memory, data can be erased by applying a predetermined erase voltage to a predetermined area of the memory cell array.

在以上的實施形態中,亦可針對抹除時的位元線的施加電壓,將偶數的位元線設為偶數的全局位元線,將奇數的位元線設為奇數的全局位元線。In the above embodiment, an even number of bit lines may be an even number of global bit lines and an odd number of bit lines may be an odd number of global bit lines for the applied voltage of the bit lines at the time of erasing. .

本發明與專利文獻1~專利文獻5的不同點. 本發明的特徵在於在偶數的字元線及奇數的字元線上利用不同的字元線電壓來對資料進行抹除動作,但在專利文獻1~專利文獻5中關於所述特徵,既無揭示亦無暗示。 [產業上之可利用性]The present invention is different from Patent Document 1 to Patent Document 5. The present invention is characterized in that data is erased by using different word line voltages on even-numbered word lines and odd-numbered word lines, but in the patent document 1 to 5, the features described in the patent document 5 are neither disclosed nor implied. [Industrial availability]

如以上所詳述,與本發明的習知技術相比可使應用有雙重圖案化技術的非揮發性半導體記憶裝置的抹除動作最佳化。As described in detail above, the erasing action of the non-volatile semiconductor memory device to which the double patterning technique is applied can be optimized as compared with the prior art of the present invention.

1‧‧‧半導體基板1‧‧‧Semiconductor substrate

2‧‧‧N阱2‧‧‧N well

3‧‧‧P阱3‧‧‧P trap

10‧‧‧記憶胞元陣列10‧‧‧Memory cell array

11‧‧‧控制電路11‧‧‧Control circuit

12‧‧‧列解碼器12‧‧‧ column decoder

13‧‧‧高電壓產生電路13‧‧‧High voltage generating circuit

14‧‧‧頁面緩衝電路(PB)14‧‧‧Page Buffer Circuit (PB)

14b‧‧‧鎖存電路(L2)14b‧‧‧Latch Circuit (L2)

15‧‧‧行解碼器15‧‧‧ line decoder

16‧‧‧記憶暫存器16‧‧‧Memory Register

17‧‧‧命令暫存器17‧‧‧Command register

18‧‧‧位址暫存器18‧‧‧ address register

19‧‧‧動作邏輯控制器19‧‧‧Action Logic Controller

50‧‧‧資料輸入輸出緩衝器50‧‧‧ Data input and output buffer

51‧‧‧資料輸入輸出端子51‧‧‧ Data input and output terminals

52‧‧‧資料線52‧‧‧Information line

53‧‧‧控制信號輸入端子53‧‧‧Control signal input terminal

BLSe、GBL0、GBL2、GBL4‧‧‧偶數的位元線BLSe, GBL0, GBL2, GBL4‧‧‧ even bit lines

BLSo、GBL1、GBL3、GBL5‧‧‧奇數的位元線BLSo, GBL1, GBL3, GBL5‧‧‧ odd bit lines

DWLD、DWLS‧‧‧虛擬字元線DWLD, DWLS‧‧‧ virtual character line

FL‧‧‧浮動狀態FL‧‧‧Floating state

GBL‧‧‧位元線GBL‧‧‧ bit line

MC‧‧‧NAND型記憶胞元串MC‧‧‧NAND type memory cell string

P0、P1、Pn、Pn+1、P62、P63‧‧‧頁面P0, P1, Pn, Pn+1, P62, P63‧‧‧ pages

S1~S4、S11、S12、S21、S22‧‧‧步驟S1~S4, S11, S12, S21, S22‧‧‧ steps

SGD、SGS‧‧‧選擇閘極線SGD, SGS‧‧‧ select gate line

SL‧‧‧源極線SL‧‧‧ source line

VDWL、VDWL1、VDWL2、Vea、Veb、Vec、Ved、Vee、Veo、VERS‧‧‧電壓VDWL, VDWL1, VDWL2, Vea, Veb, Vec, Ved, Vee, Veo, VERS‧‧ ‧ voltage

WL、WL0~WL31‧‧‧字元線WL, WL0~WL31‧‧‧ character line

圖1是表示習知例的快閃記憶體的資料抹除時的各電極的施加電壓的縱剖面圖。 圖2是表示藉由雙重圖案化的快閃記憶體的抹除特性,即相對於頁號的臨限值電壓Vth的圖。 圖3是表示藉由雙重圖案化的快閃記憶體的抹除特性,即相對於奇數的字元線及偶數的字元線的記憶胞元的臨限值的分佈曲線圖。 圖4是表示本發明的一實施形態的快閃記憶體的構成例的方塊圖。 圖5是表示圖4的快閃記憶體的資料抹除時的各電極的施加電壓的縱剖面圖。 圖6是表示圖4的快閃記憶體的資料抹除時的驗證動作的電路圖。 圖7是表示用於圖4的快閃記憶體的晶圓測試處理的流程圖。 圖8是表示用於圖4的快閃記憶體的電源導通時處理的流程圖。 圖9是表示用於圖4的快閃記憶體的抹除前預先寫入處理的流程圖。1 is a longitudinal cross-sectional view showing an applied voltage of each electrode at the time of erasing data of a flash memory of a conventional example. Fig. 2 is a view showing the erasing characteristic of the flash memory by double patterning, that is, the threshold voltage Vth with respect to the page number. 3 is a graph showing a distribution characteristic of a memory cell by double patterning, that is, a threshold value of a memory cell with respect to an odd number of word lines and an even number of word lines. 4 is a block diagram showing an example of the configuration of a flash memory according to an embodiment of the present invention. Fig. 5 is a vertical cross-sectional view showing an applied voltage of each electrode when the data of the flash memory of Fig. 4 is erased. Fig. 6 is a circuit diagram showing a verification operation at the time of erasing data of the flash memory of Fig. 4; FIG. 7 is a flow chart showing a wafer test process for the flash memory of FIG. 4. Fig. 8 is a flow chart showing the processing when the power supply for the flash memory of Fig. 4 is turned on. Fig. 9 is a flow chart showing the pre-erase write processing for the flash memory of Fig. 4.

1‧‧‧半導體基板 1‧‧‧Semiconductor substrate

2‧‧‧N阱 2‧‧‧N well

3‧‧‧P阱 3‧‧‧P trap

DWLD、DWLS‧‧‧虛擬字元線 DWLD, DWLS‧‧‧ virtual character line

FL‧‧‧浮動狀態 FL‧‧‧Floating state

GBL‧‧‧位元線 GBL‧‧‧ bit line

SGD、SGS‧‧‧選擇閘極線 SGD, SGS‧‧‧ select gate line

SL‧‧‧源極線 SL‧‧‧ source line

VDWL1、VDWL2、Vea、Veb、Vec、Ved、Vee、Veo、VERS‧‧‧電壓 VDWL1, VDWL2, Vea, Veb, Vec, Ved, Vee, Veo, VERS‧‧‧ voltage

WL0~WL31‧‧‧字元線 WL0~WL31‧‧‧ character line

Claims (13)

一種非揮發性半導體記憶裝置,包括控制電路,所述控制電路藉由對包含設置在多個字元線與多個位元線的各交叉點上的記憶胞元的記憶胞元陣列的規定區域施加規定的抹除電壓來進行資料的抹除,且所述非揮發性半導體記憶裝置的特徵在於:所述控制電路藉由對所述記憶胞元陣列的緣端部以外的偶數的字元線及奇數的字元線施加互不相同的字元線電壓,對所述記憶胞元陣列的緣端部的字元線施加與所述字元線電壓不同的電壓且對所述記憶胞元陣列兩端的緣端部的字元線所施加的電壓相同,將所述抹除電壓施加至所述記憶胞元來抹除資料。 A non-volatile semiconductor memory device includes a control circuit for defining a region of a memory cell array including memory cells disposed at respective intersections of a plurality of word lines and a plurality of bit lines Applying a prescribed erase voltage to erase the data, and the non-volatile semiconductor memory device is characterized in that the control circuit has an even number of word lines other than the edge end of the memory cell array Applying mutually different word line voltages to the odd word lines, applying a voltage different from the word line voltage to the word lines at the edge of the memory cell array, and applying the voltage to the memory cell array The voltage applied to the word line at the edge of both ends is the same, and the erase voltage is applied to the memory cell to erase the data. 如申請專利範圍第1項所述的非揮發性半導體記憶裝置,其中針對所述記憶胞元陣列的緣端部以外的奇數的字元線的字元線電壓設定為高於或低於針對所述記憶胞元陣列的緣端部以外的偶數的字元線的字元線電壓。 The non-volatile semiconductor memory device according to claim 1, wherein a word line voltage for an odd number of word lines other than an edge end portion of the memory cell array is set higher or lower than The word line voltage of an even number of word lines other than the edge of the memory cell array. 如申請專利範圍第1項所述的非揮發性半導體記憶裝置,其中所述記憶胞元陣列的緣端部的字元線分別是與兩端的選擇閘極線或虛擬字元線鄰接的至少一根的字元線。 The non-volatile semiconductor memory device of claim 1, wherein the word lines of the edge portions of the memory cell array are at least one adjacent to a selected gate line or a virtual word line at both ends. The root of the word line. 如申請專利範圍第1項所述的非揮發性半導體記憶裝置,其中所述控制電路針對偶數的位元線的記憶胞元及奇數的位元線的記憶胞元在不同的驗證條件下進行所述資料抹除的驗證。 The non-volatile semiconductor memory device of claim 1, wherein the control circuit performs the memory cells of the even-numbered bit lines and the memory cells of the odd-numbered bit lines under different verification conditions. Verification of the data erasure. 如申請專利範圍第4項所述的非揮發性半導體記憶裝置,其中 所述驗證條件設定為針對偶數的位元線的記憶胞元及奇數的位元線的記憶胞元使如下條件之中的至少一個不同:(1)字元線電壓;(2)對位元線進行預充電而讀取資料的資料讀取時的位元線的放電時間;(3)在逆向資料讀取時當自源極線進行充電而進行資料讀取的位元線的充電時間;(4)對位元線進行預充電而讀取資料的資料讀取時的位元線的預充電時間;以及(5)對位元線進行預充電而讀取資料的資料讀取時的位元線的感測電壓。 The non-volatile semiconductor memory device of claim 4, wherein The verification condition is set such that memory cells for even bit lines and memory cells of odd bit lines make at least one of the following conditions different: (1) word line voltage; (2) bit bit The discharge time of the bit line when the line is precharged to read the data of the read data; (3) the charging time of the bit line for reading the data when the source line is charged during the reverse data reading; (4) pre-charging time of the bit line when the bit line is precharged to read the data of the read data; and (5) the bit at the time of reading the data of the read data by precharging the bit line The sense voltage of the line. 如申請專利範圍第1項所述的非揮發性半導體記憶裝置,其中互不相同的所述字元線電壓是基於所述非揮發性半導體記憶裝置的晶圓測試中所測定的資料抹除時的臨限值電壓來確定。 The non-volatile semiconductor memory device according to claim 1, wherein the word line voltages different from each other are based on data erased in a wafer test of the non-volatile semiconductor memory device. The threshold voltage is determined. 如申請專利範圍第1項所述的非揮發性半導體記憶裝置,其中互不相同的所述字元線電壓是基於賦予與所述非揮發性半導體記憶裝置的晶圓測試中所測定的資料抹除時相同的臨限值電壓的抹除電壓來確定。 The non-volatile semiconductor memory device of claim 1, wherein the word line voltages different from each other are based on data measured in a wafer test applied to the non-volatile semiconductor memory device. The erase voltage of the same threshold voltage is determined in addition to the time. 如申請專利範圍第6項所述的非揮發性半導體記憶裝置,其中所述晶圓測試中所測定的資料抹除時的所述臨限值電壓是針對如下四個實例來測定: (1)偶數的字元線及偶數的位元線的實例;(2)偶數的字元線及奇數的位元線的實例;(3)奇數的字元線及偶數的位元線的實例;以及(4)奇數的字元線及奇數的位元線的實例。 The non-volatile semiconductor memory device according to claim 6, wherein the threshold voltage at the time of erasing the data measured in the wafer test is determined by the following four examples: (1) Examples of even-numbered word lines and even-numbered bit lines; (2) Examples of even-numbered word lines and odd-numbered bit lines; (3) Examples of odd-numbered word lines and even-numbered bit lines And (4) examples of odd-numbered word lines and odd-numbered bit lines. 如申請專利範圍第1項所述的非揮發性半導體記憶裝置,其中所述抹除電壓是施加至所述記憶胞元陣列的阱。 The non-volatile semiconductor memory device of claim 1, wherein the erase voltage is a well applied to the array of memory cells. 如申請專利範圍第6項所述的非揮發性半導體記憶裝置,其中經確定的互不相同的所述字元線電壓是在儲存至所述記憶胞元陣列的一部分區域之後,將所述非揮發性半導體記憶裝置的電源導通時自所述記憶胞元陣列讀取而在所述資料的抹除時使用。 The non-volatile semiconductor memory device of claim 6, wherein the determined mutually different word line voltages are after being stored in a portion of the memory cell array, the non- The power of the volatile semiconductor memory device is read from the memory cell array when turned on and used during erasing of the data. 如申請專利範圍第1項所述的非揮發性半導體記憶裝置,其中在進行所述抹除的程序之前,對所述規定區域的所有記憶胞元進行寫入。 The non-volatile semiconductor memory device according to claim 1, wherein all memory cells of the predetermined area are written before the erasing process is performed. 一種非揮發性半導體記憶裝置的抹除方法,所述非揮發性半導體記憶裝置包括控制電路,所述控制電路藉由對包含設置在多個字元線與多個位元線的各交叉點上的記憶胞元的記憶胞元陣列的規定的區域施加規定的抹除電壓來進行資料的抹除,且所述非揮發性半導體記憶裝置的抹除方法的特徵在於:所述控制電路藉由對所述記憶胞元陣列的緣端部以外的偶數的字元線及奇數的字元線施加互不相同的字元線電壓,對所述記憶胞元陣列的緣端部的字元線施加與所述字元線電壓不同的電壓 且對所述記憶胞元陣列兩端的緣端部的字元線所施加的電壓相同,將所述抹除電壓施加至記憶胞元來抹除資料。 A method for erasing a non-volatile semiconductor memory device, the non-volatile semiconductor memory device comprising a control circuit, the control circuit comprising a plurality of word lines and a plurality of bit lines at each intersection a prescribed area of the memory cell array of the memory cell applies a prescribed erase voltage to erase the data, and the erase method of the non-volatile semiconductor memory device is characterized in that the control circuit is Even-numbered word lines and odd-numbered word lines other than the edge end portion of the memory cell array are applied with mutually different word line voltages, and the word lines of the edge portions of the memory cell array are applied to The voltage of the word line voltage is different And the voltage applied to the word line at the edge of the edge of the memory cell array is the same, and the erase voltage is applied to the memory cell to erase the data. 如申請專利範圍第12項所述的非揮發性半導體記憶裝置的抹除方法,其中針對所述記憶胞元陣列的緣端部以外的奇數的字元線的字元線電壓設定為高於或低於針對所述記憶胞元陣列的緣端部以外的偶數的字元線的字元線電壓。The erasing method of the nonvolatile semiconductor memory device according to claim 12, wherein a word line voltage of an odd number of word lines other than an edge end portion of the memory cell array is set to be higher than or A word line voltage lower than an even number of word lines other than the edge end of the memory cell array.
TW105128372A 2016-03-24 2016-09-02 Non-volatile semiconductor memory device and erasure method thereof TWI598880B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060570A JP2017174482A (en) 2016-03-24 2016-03-24 Non-volatile semiconductor memory device and erasure method thereof

Publications (2)

Publication Number Publication Date
TWI598880B true TWI598880B (en) 2017-09-11
TW201735043A TW201735043A (en) 2017-10-01

Family

ID=59257045

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105128372A TWI598880B (en) 2016-03-24 2016-09-02 Non-volatile semiconductor memory device and erasure method thereof

Country Status (4)

Country Link
US (1) US9704579B1 (en)
JP (1) JP2017174482A (en)
CN (1) CN107230498B (en)
TW (1) TWI598880B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580506B2 (en) * 2017-12-07 2020-03-03 Micron Technology, Inc. Semiconductor memory device and erase method including changing erase pulse magnitude for a memory array
US10482985B2 (en) 2018-02-05 2019-11-19 Sandisk Technologies Llc Dynamic erase loop dependent bias voltage
KR102509909B1 (en) 2018-03-09 2023-03-15 삼성전자주식회사 Nonvolatile memory device and memory system including nonvolatile memory device
CN109243516B (en) * 2018-08-28 2021-08-10 长江存储科技有限责任公司 Erasing method and device and computer readable storage medium
JP6741811B1 (en) 2019-03-07 2020-08-19 力晶積成電子製造股▲ふん▼有限公司Powerchip Semiconductor Manufacturing Corporation Erase control circuit and method for nonvolatile semiconductor memory device, and nonvolatile semiconductor memory device
CN111951853B (en) * 2019-05-14 2023-05-05 兆易创新科技集团股份有限公司 Method and device for controlling erasing operation and Nand flash memory
US10861571B1 (en) * 2019-06-05 2020-12-08 Sandisk Technologies Llc Wordline voltage overdrive methods and systems
KR20210025249A (en) 2019-08-27 2021-03-09 삼성전자주식회사 Memory system, and operating method of the memory system
US11069417B2 (en) * 2019-08-27 2021-07-20 Samsung Electronics Co., Ltd. Memory system and method of operating the same
CN112634965B (en) * 2019-11-13 2022-11-04 长江存储科技有限责任公司 Method for performing programming operation and related memory device
US11574690B2 (en) * 2021-06-01 2023-02-07 Micron Technology, Inc. Sequential wordline erase verify schemes
US11901015B2 (en) * 2022-01-10 2024-02-13 Sandisk Technologies Llc Voltage kick for improved erase efficiency in a memory device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749737B1 (en) * 2006-01-25 2007-08-16 삼성전자주식회사 NOR FlASH MEMORY AND ERASE METHOD THEREOF
US7414891B2 (en) 2007-01-04 2008-08-19 Atmel Corporation Erase verify method for NAND-type flash memories
KR101371522B1 (en) * 2007-02-27 2014-03-12 삼성전자주식회사 Nonvolatile memory device and driving method thereof
US7675783B2 (en) * 2007-02-27 2010-03-09 Samsung Electronics Co., Ltd. Nonvolatile memory device and driving method thereof
JP2008262623A (en) * 2007-04-11 2008-10-30 Toshiba Corp Nonvolatile semiconductor memory device
JP4712769B2 (en) 2007-07-09 2011-06-29 ルネサスエレクトロニクス株式会社 Nonvolatile semiconductor memory device
KR101489885B1 (en) 2007-11-21 2015-02-06 삼성전자주식회사 Charge Trap Nonvolatile Memory Device With Enhanced Reliability And Method Of Operating The Same
US7952927B2 (en) 2007-12-05 2011-05-31 Micron Technology, Inc. Adjusting program and erase voltages in a memory device
US7978527B2 (en) * 2008-06-03 2011-07-12 Sandisk Technologies Inc. Verification process for non-volatile storage
JP5238734B2 (en) * 2010-02-10 2013-07-17 株式会社東芝 Semiconductor device and control method thereof
US8468370B2 (en) * 2009-09-16 2013-06-18 Seagate Technology Llc Systems, methods and devices for control of the operation of data storage devices using solid-state memory and monitoring energy used therein
KR101691088B1 (en) * 2010-02-17 2016-12-29 삼성전자주식회사 Nonvolatile memory device, operating method thereof and memory system including the same
KR20120005848A (en) * 2010-07-09 2012-01-17 주식회사 하이닉스반도체 Non volatile memory device and erasing method therefor
JP5341965B2 (en) * 2011-09-02 2013-11-13 株式会社東芝 Nonvolatile semiconductor memory device
KR20130072665A (en) * 2011-12-22 2013-07-02 에스케이하이닉스 주식회사 Semiconductor memory device and operating method thereof
KR20140094278A (en) 2013-01-22 2014-07-30 에스케이하이닉스 주식회사 Semiconductor apparatus and method of operating the same
US9042181B2 (en) 2013-03-15 2015-05-26 SanDisk Technologies, Inc. Periodic erase operation for a non-volatile medium
CN104347117B (en) * 2013-08-06 2018-07-06 华邦电子股份有限公司 Semiconductor storage and its method for deleting

Also Published As

Publication number Publication date
US9704579B1 (en) 2017-07-11
CN107230498B (en) 2020-11-10
TW201735043A (en) 2017-10-01
JP2017174482A (en) 2017-09-28
CN107230498A (en) 2017-10-03

Similar Documents

Publication Publication Date Title
TWI598880B (en) Non-volatile semiconductor memory device and erasure method thereof
TWI656530B (en) Semiconductor memory device
JP5090712B2 (en) Programming method for flash memory device
JP4005895B2 (en) Nonvolatile semiconductor memory device
JP5072723B2 (en) Nonvolatile semiconductor memory device
JP5565948B2 (en) Semiconductor memory
JP2010009733A (en) Nonvolatile semiconductor memory device
TWI614760B (en) Semiconductor memory device
JP5992983B2 (en) Nonvolatile semiconductor memory device
JP2012084207A (en) Nonvolatile semiconductor memory device
US9779830B2 (en) Non-volatile semiconductor memory device and erase method thereof
JP2013045478A (en) Nonvolatile semiconductor memory device
JP5805162B2 (en) Semiconductor memory device
JP6144741B2 (en) Nonvolatile semiconductor memory
JP6154879B2 (en) NAND flash memory and programming method thereof
JP2012155798A (en) Nonvolatile semiconductor memory device
JP2012069203A (en) Nonvolatile semiconductor memory device and driving method for nonvolatile semiconductor memory device
JP2004206829A (en) Data erasing method of nonvolatile semiconductor memory device
US9786380B2 (en) Semiconductor memory device
KR20130101858A (en) Semiconductor memory device and operating method thereof
KR20120005831A (en) Memory device and method for operating the same
JP2011065687A (en) Nonvolatile semiconductor memory device
KR102153017B1 (en) Semiconductor memory device and operation method thereof
JP5081755B2 (en) Nonvolatile semiconductor memory device and reading method thereof
KR20120078839A (en) Semiconductor memory device and erase method thereof