TWI586171B - Image sensor with shared column readout circuis - Google Patents

Image sensor with shared column readout circuis Download PDF

Info

Publication number
TWI586171B
TWI586171B TW105126075A TW105126075A TWI586171B TW I586171 B TWI586171 B TW I586171B TW 105126075 A TW105126075 A TW 105126075A TW 105126075 A TW105126075 A TW 105126075A TW I586171 B TWI586171 B TW I586171B
Authority
TW
Taiwan
Prior art keywords
pixels
bit line
column
transmission gate
image sensor
Prior art date
Application number
TW105126075A
Other languages
Chinese (zh)
Other versions
TW201807997A (en
Inventor
王佳祥
Original Assignee
恆景科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恆景科技股份有限公司 filed Critical 恆景科技股份有限公司
Priority to TW105126075A priority Critical patent/TWI586171B/en
Application granted granted Critical
Publication of TWI586171B publication Critical patent/TWI586171B/en
Publication of TW201807997A publication Critical patent/TW201807997A/en

Links

Description

共用行讀取電路的影像感測器Image sensor for shared line read circuit

本發明係關於影像感測器,係指一種具有共用行讀取電路架構的影像感測器。The present invention relates to an image sensor and refers to an image sensor having a shared line read circuit architecture.

互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS)影像感測器在讀取像素資料的時候,是以逐列讀取的方式進行。當讀取一個列的像素時,每個像素會被連接至一個對應的行讀取電路(column readout circuit),其中,行讀取電路主要包含有類比至數位轉換模組(Analog-to-digital converter,ADC),用以將像素上的訊號由類比形式轉換成數位形式,以便後端的影像訊號處理器(Image signal processor)進行處理。以一個具有M x N個像素的像素陣列為例,該像素陣列需要N個行讀取電路來處理N個像素上的訊號。由於行讀取電路在CMOS影像感測器上佔據相當可觀的面積,因此,在部份設計中採用共用行讀取電路的架構。也就是,每一列像素中有數個像素共用同一個行讀取電路。請參考第1圖所示的範例。在第1圖的(a)部分中,每列像素中相鄰的兩個像素共用一個行讀取電路,則具有M x N個像素P的像素陣列需要N/2個行讀取電路。另外,在第1圖的(b)部分中,每列像素中每四個像素共用一個行讀取電路,則具有M x N個像素的像素陣列僅需要N/4個行讀取電路。透過這種架構,可有效降低行讀取電路的數量。然而,由於共用行讀取電路的緣故,因此需要透過具有不同時序的傳輸閘控制訊號,控制每個像素中的傳輸閘,錯開連接至行讀取電路的時機。以(a)部分的範例來說,每列像素需要兩種不同時序的傳輸閘控制訊號(TG_i_1與TG_i_2);以(b)部分的範例來說,每列像素需要四種不同時序的傳輸閘控制訊號(TG_i_1~TG_i_4)。然而,現今的CMOS影像感測器的像素密度越來越高,使得像素與像素之間的間距相當小,想在像素列之間置入更多的訊號線變得相當困難。另一方面來說,當需要越多不同時序的訊號,也意味著相關的訊號產生電路更為複雜且面積更大,這點對整體的設計也是相當不利的。Complementary Metal-Oxide-Semiconductor (CMOS) image sensors are read in a column-by-column manner when reading pixel data. When reading a column of pixels, each pixel is connected to a corresponding column readout circuit, wherein the row read circuit mainly includes an analog to digital conversion module (Analog-to-digital) The converter (ADC) is used to convert the signal on the pixel into an analog form for processing by the back end image signal processor. Taking a pixel array having M x N pixels as an example, the pixel array requires N row read circuits to process signals on N pixels. Since the row read circuit occupies a considerable area on the CMOS image sensor, the architecture of the shared row read circuit is employed in some designs. That is, several pixels in each column of pixels share the same row read circuit. Please refer to the example shown in Figure 1. In part (a) of Fig. 1, in which two adjacent pixels in each column of pixels share one row reading circuit, a pixel array having M x N pixels P requires N/2 row reading circuits. Further, in part (b) of Fig. 1, each row of pixels in each column shares one row reading circuit, and a pixel array having M x N pixels requires only N/4 row reading circuits. Through this architecture, the number of row read circuits can be effectively reduced. However, due to the shared row read circuit, it is necessary to control the transfer gate in each pixel through the transfer gate control signals having different timings, staggering the timing of the connection to the row read circuit. In the example of part (a), each column of pixels requires two different timing transmission gate control signals (TG_i_1 and TG_i_2); in the example of part (b), each column of pixels requires four different timing transmission gates. Control signal (TG_i_1~TG_i_4). However, today's CMOS image sensors have increasingly higher pixel densities, making the spacing between pixels and pixels quite small, and it is quite difficult to place more signal lines between pixel columns. On the other hand, when more different timing signals are needed, it means that the related signal generating circuits are more complicated and larger in area, which is quite unfavorable for the overall design.

為了解決上述問題,本發明提供一種創新的共用行讀取電路架構,可有效降低每列像素所需之傳輸閘控制訊號的需求。此外,結合本發明架構與特別的控制訊號時序,亦可降低行讀取電路中所需的緩衝記憶體的容量。In order to solve the above problems, the present invention provides an innovative shared line read circuit architecture, which can effectively reduce the need for transmission gate control signals required for each column of pixels. In addition, combined with the architecture of the present invention and the special control signal timing, the capacity of the buffer memory required in the row read circuit can also be reduced.

本發明之一實施例提供一種影像感測器,該影像感測器包含:一像素陣列,具有M列像素,每一列像素又包含有N個像素,每一個像素包含有一傳輸閘;一訊號產生器,用以產生M組傳輸閘控制訊號,每組具有不同時序的一第一傳輸閘控制訊號與一第二傳輸閘控制訊號,分別用以控制每一列像素中的傳輸閘,其中,該第一傳輸閘控制訊號與該第二傳輸閘控制訊號分別讓每一列像素中不同的N/2個像素的傳輸閘導通;複數條位元線,每一條位元線選擇性地耦接至每一列像素中兩個像素中一者的傳輸閘;以及複數個行讀取電路,每一者選擇性地耦接於該複數條位元線中兩條位元線之一,並且讀取所耦接之位元線上的訊號,得到一像素的一積分資料,其中,每一個行讀取電路在該第一傳輸閘控制訊號導通該N/2個像素的傳輸閘之後,連續讀取出該N/2個像素中的兩個像素的積分資料。An embodiment of the present invention provides an image sensor, the image sensor includes: a pixel array having M columns of pixels, each column of pixels further comprising N pixels, each pixel including a transmission gate; a signal generation For generating M sets of transmission gate control signals, each group having a first transmission gate control signal and a second transmission gate control signal having different timings, respectively, for controlling the transmission gates in each column of pixels, wherein the a transmission gate control signal and the second transmission gate control signal respectively cause a transmission gate of a different N/2 pixels in each column of pixels to be turned on; a plurality of bit lines, each of which is selectively coupled to each column a transfer gate of one of the two pixels in the pixel; and a plurality of row read circuits, each of which is selectively coupled to one of the two bit lines of the plurality of bit lines, and the read is coupled The signal on the bit line obtains an integral data of one pixel, wherein each row reading circuit continuously reads the N/ after the first transmission gate control signal turns on the transmission gate of the N/2 pixels. Two of the 2 pixels Integration of pixel data.

在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及後續的申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提及的「包含」係為一開放式的用語,故應解釋成「包含但不限定於」。此外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或透過其他裝置或連接手段間接地電氣連接至該第二裝置。Certain terms are used throughout the description and following claims to refer to particular elements. Those of ordinary skill in the art should understand that a hardware manufacturer may refer to the same component by a different noun. The scope of this specification and the subsequent patent application do not use the difference of the names as the means for distinguishing the elements, but the difference in function of the elements as the criterion for distinguishing. The term "including" as used throughout the specification and subsequent claims is an open term and should be interpreted as "including but not limited to". In addition, the term "coupled" is used herein to include any direct and indirect electrical connection. Therefore, if a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device or indirectly electrically connected to the second device through other devices or connection means.

第2圖為本發明之影像感測器的一實施例的示意圖,該圖繪示本發明如何只使用兩種不同時序的傳輸閘控制訊號,從而在像素陣列中,讓每列像素中四個像素共用一個行讀取電路的架構。請一併參考第3圖所示的時序圖。當讀取第i列的像素120_i_0~120_i_3時,首先拉起選擇訊號SEL_0,使得像素120_i_0與120_i_1的共同端點A透過源極隨耦器130_0連接上位元線BL0,以及使得像素120_i_2與120_i_3的共同端點B透過源極隨耦器130_1連接上位元線BL1。在時間點T1時,重置訊號RST_0被升起,導通重置開關140_0,此時將端點A與端點B分別充電至參考電壓VDD。一段時間過後,完成充電,降下重置訊號RST_0。切換訊號SW0接著導通位元線開關160_0,讓行讀取電路150_0從位元線BL0讀取到相關於像素120_i_0之重置資料。再接著,切換訊號SW1導通位元線開關160_1,讓行讀取電路150_0從位元線BL1讀取到像素120_i_2的重置資料。當像素120_i_0與120_i_2的重置資料讀取完之後,傳輸閘控制訊號TG_i_0被拉起,讓傳輸閘170_i_0與170_i_2導通。積分電荷由像素120_i_0與120_i_2之中,轉移至端點A與端點B。當傳輸閘控制訊號 TG_i_0降下後,傳輸閘170_i_0與170_i_2關閉,像素120_i_0與120_i_2的電荷轉移結束。端點A與端點B上的訊號透過源極隨耦器130_0與130_1分別傳送至位元線BL0與BL1。接著,依序讓切換訊號SW0導通位元線開關160_0以及讓切換訊號SW1導通位元線開關160_1,那麼就可以先後讓像素120_i_0與120_i_2的積分資料被行讀取電路150_0讀出,完成像素120_i_0與120_i_2的讀取。2 is a schematic diagram of an embodiment of an image sensor of the present invention, which illustrates how the present invention uses only two different timing transmission gate control signals, thereby allowing four pixels per column in the pixel array. The pixels share the architecture of a row read circuit. Please refer to the timing diagram shown in Figure 3. When the pixels 120_i_0~120_i_3 of the i-th column are read, the selection signal SEL_0 is first pulled up, so that the common terminal A of the pixels 120_i_0 and 120_i_1 is connected to the upper bit line BL0 through the source follower 130_0, and the pixels 120_i_2 and 120_i_3 are made. The common terminal B is connected to the upper bit line BL1 through the source follower 130_1. At the time point T1, the reset signal RST_0 is raised, turning on the reset switch 140_0, and at this time, the terminal A and the end point B are respectively charged to the reference voltage VDD. After a period of time, the charging is completed and the reset signal RST_0 is lowered. The switching signal SW0 then turns on the bit line switch 160_0, causing the row read circuit 150_0 to read the reset data associated with the pixel 120_i_0 from the bit line BL0. Then, the switching signal SW1 turns on the bit line switch 160_1, and causes the row read circuit 150_0 to read the reset data from the bit line BL1 to the pixel 120_i_2. After the reset data of the pixels 120_i_0 and 120_i_2 are read, the transfer gate control signal TG_i_0 is pulled up, and the transfer gates 170_i_0 and 170_i_2 are turned on. The integrated charge is transferred from the pixels 120_i_0 and 120_i_2 to the endpoint A and the endpoint B. When the transfer gate control signal TG_i_0 is lowered, the transfer gates 170_i_0 and 170_i_2 are turned off, and the charge transfer of the pixels 120_i_0 and 120_i_2 is ended. The signals on the endpoints A and B are transmitted to the bit lines BL0 and BL1 through the source followers 130_0 and 130_1, respectively. Then, the switching signal SW0 is turned on to turn on the bit line switch 160_0, and the switching signal SW1 is turned on to the bit line switch 160_1. Then, the integrated data of the pixels 120_i_0 and 120_i_2 can be read out by the line reading circuit 150_0 to complete the pixel 120_i_0. Read with 120_i_2.

在時間點T7時,重置訊號RST_0再次被升起,又一次導通重置開關140_0與重置開關140_1,將端點A與B充電至參考電壓VDD。然後,重置訊號RST_0降下。切換訊號SW0接著導通位元線開關160_0,讓行讀取電路150_0讀取到像素120_i_1的重置資料。再接著,切換訊號SW1導通位元線開關160_1,讓行讀取電路150_0讀取到像素120_i_3的重置資料。當像素120_i_1與120_i_3的重置資料讀取完之後,傳輸閘控制訊號TG_i_1被升起,讓傳輸閘170_i_1與170_i_3導通,使像素120_i_1與120_i_3開始進行電荷轉移。當傳輸閘控制訊號TG_i_1降下後,電荷轉移結束。端點A與端點B上的積分結果分別透過源極隨耦器130_0與130_1轉移至位元線BL0與BL1。接著,依序讓切換訊號SW0導通位元線開關160_0以及讓切換訊號SW1導通位元線開關160_1,那麼就可以讓像素120_i_1與120_i_3的積分資料分別被行讀取電路150_0讀出,從而完成像素120_i_1與120_i_3的讀取。At time T7, the reset signal RST_0 is again raised, turning on the reset switch 140_0 and the reset switch 140_1 again, charging the terminals A and B to the reference voltage VDD. Then, the reset signal RST_0 is lowered. The switching signal SW0 then turns on the bit line switch 160_0, causing the row read circuit 150_0 to read the reset data of the pixel 120_i_1. Then, the switching signal SW1 turns on the bit line switch 160_1, and causes the line read circuit 150_0 to read the reset data of the pixel 120_i_3. After the reset data of the pixels 120_i_1 and 120_i_3 are read, the transfer gate control signal TG_i_1 is raised, and the transfer gates 170_i_1 and 170_i_3 are turned on, so that the pixels 120_i_1 and 120_i_3 start to perform charge transfer. When the transfer gate control signal TG_i_1 is lowered, the charge transfer ends. The integration results on Endpoint A and Endpoint B are transferred to bit lines BL0 and BL1 through source followers 130_0 and 130_1, respectively. Then, the switching signal SW0 is turned on by the bit line switch 160_0 and the switching signal SW1 is turned on by the bit line switch 160_1, so that the integrated data of the pixels 120_i_1 and 120_i_3 can be read by the line reading circuit 150_0, thereby completing the pixel. Reading of 120_i_1 and 120_i_3.

透過以上的方式,每個列的像素只需透過兩種不同時序的傳輸閘控制訊號,如,訊號TG_i_0與TG_i_1控制第i列的像素,或者訊號TG_i+1_0與TG_ i+1_1控制第i+1列的像素,便可讓每列像素中的四個像素共用一個行讀取電路。如此一來,可減少傳輸閘控制訊號之訊號線的布局面積。應當注意的是,由於像素120_i_0與120_i_1以及像素120_i+1_0與120_ i+1_1透過同一個源極隨耦器130_0連接至位元線BL0。因此,儘管像素120_i_0與120_i_1以及像素120_i+1_0與120_ i+1_1分別屬於不同列,但傳輸閘控制訊號TG_i_0與TG_i_1的時序仍需不同於傳輸閘控制訊號TG_i+1_0與TG_i+1_1的時序,避免訊號讀取上的衝突。另外,由於每列像素所需的傳輸閘控制訊號數量的減少,產生傳輸閘控制訊號的訊號產生電路190的電路面積以及功耗也只有習知的訊號產生電路的一半。透過以上說明應可得知,若像素陣列中一列像素的像素個數為N,則整個像素陣列所需的行讀取電路的數目為N/4,而所需的位元線的數量為N/2。In the above manner, the pixels of each column need only pass through two different timing transmission gate control signals, for example, the signals TG_i_0 and TG_i_1 control the pixels of the ith column, or the signals TG_i+1_0 and TG_i+1_1 control the i+th A column of pixels allows four pixels in each column of pixels to share a row read circuit. In this way, the layout area of the signal line for transmitting the gate control signal can be reduced. It should be noted that since the pixels 120_i_0 and 120_i_1 and the pixels 120_i+1_0 and 120_i+1_1 are connected to the bit line BL0 through the same source follower 130_0. Therefore, although the pixels 120_i_0 and 120_i_1 and the pixels 120_i+1_0 and 120_i+1_1 belong to different columns, respectively, the timings of the transmission gate control signals TG_i_0 and TG_i_1 need to be different from the timings of the transmission gate control signals TG_i+1_0 and TG_i+1_1. Avoid conflicts on signal reading. In addition, due to the reduction in the number of transmission gate control signals required for each column of pixels, the circuit area and power consumption of the signal generation circuit 190 which generates the transmission gate control signal is only half that of the conventional signal generation circuit. It should be understood from the above description that if the number of pixels of a column of pixels in the pixel array is N, the number of row read circuits required for the entire pixel array is N/4, and the number of required bit lines is N. /2.

另外,雖然以上僅以像素陣列中第i列的四個像素進行說明,但是第i列中的其他像素的積分操作與結果讀取,可透過相同的傳輸閘控制訊號TG_i_0與TG_i_1進行控制。另外,重置訊號RST_0亦可控制第i列的其餘像素進行重置,而選擇訊號SEL_0同時可讓第i列以及第i+1列的像素透過各自對應的源極隨耦器連接至對應的位元線。本領域之技術人士應可透過以上說明,而得知其他列像素具有的相同操作方式,從而瞭解本發明的全貌。In addition, although the above description is only for the four pixels of the i-th column in the pixel array, the integration operation and the result reading of the other pixels in the i-th column can be controlled by the same transmission gate control signals TG_i_0 and TG_i_1. In addition, the reset signal RST_0 can also control the remaining pixels of the i-th column to be reset, and the selection signal SEL_0 can also allow the pixels of the i-th column and the i+1th column to be connected to corresponding corresponding sources through their respective source followers. Bit line. Those skilled in the art should be able to understand the same operation mode of other column pixels through the above description, so as to understand the overall view of the present invention.

在上述說明中,係假設像素資料的讀取是基於數位相關雙重取樣(digital correlated double sampling)的取樣架構進行。這種架構會對每個像素的訊號進行過兩次取樣,經過相關計算,最後得到像素的感光值,如此可有效消除雜訊。在這種架構下,行讀取電路會讀取重置開關對端點充電後,端點上的訊號作為重置資料,以及像素在積分期間時在端點上產生的訊號,作為積分資料。之後,再將兩筆資料透過影像感測器進行相關處理,得到像素的感光值。當本發明的像素陣列應用在這種取樣架構下時,相較於傳統架構,可減少緩衝記憶體的容量。關於具體說明請同時參考第2圖的像素陣列、第3圖的時序圖以及第4圖所示的行讀取電路之實施例的架構圖。In the above description, it is assumed that the reading of the pixel data is performed based on a digital correlation double sampling sampling architecture. This architecture will sample the signal of each pixel twice, after relevant calculations, and finally get the sensitivity value of the pixel, which can effectively eliminate the noise. In this architecture, the row read circuit reads the reset switch to charge the endpoint, the signal on the endpoint as the reset data, and the signal generated by the pixel at the endpoint during the integration period as the integral data. After that, the two data are processed through the image sensor to obtain the sensitivity value of the pixel. When the pixel array of the present invention is applied under such a sampling architecture, the capacity of the buffer memory can be reduced compared to the conventional architecture. For details, please refer to the pixel array of FIG. 2, the timing chart of FIG. 3, and the architectural diagram of the embodiment of the row read circuit shown in FIG.

在時間點T1時,重置訊號RST_0被升起,分別讓端點A與B充電至參考電壓VDD。在重置訊號RST_0被降下後,在位元線BL0與BL1上分別可得到對應於像素120_i_0與120_i_2之重置資料的訊號。接著,在時間點T2,切換訊號SW0導通位元線開關160_0,將位元線BL0連接至行讀取電路150_0。行讀取電路150_0會透過內部的類比至數位轉換處理模組150_0_1,將位元線BL0上的訊號轉換成數位形式。從而得到對應於像素120_i_0的重置資料,並且儲存於緩衝記憶體150_0_2之中。在時間點T21時,掃描訊號hscan被升起,從而將緩衝記憶體150_0_2內像素120_i_0的重置資料讀入至影像訊號處理器200。相似地,在時間點T3,切換訊號SW1導通導通位元線開關160_1後,類比至數位轉換處理模組150_0_1可以得到關於像素120_i_2的重置資料,並儲存入關於緩衝記憶體150_0_2內,等掃描訊號hscan再一次被升起後,讀入像素120_i_2的重置資料至影像訊號處理器200。At the time point T1, the reset signal RST_0 is raised to charge the terminals A and B to the reference voltage VDD, respectively. After the reset signal RST_0 is lowered, signals corresponding to the reset data of the pixels 120_i_0 and 120_i_2 are respectively obtained on the bit lines BL0 and BL1. Next, at time point T2, the switching signal SW0 turns on the bit line switch 160_0, and connects the bit line BL0 to the row read circuit 150_0. The row read circuit 150_0 converts the signal on the bit line BL0 into a digital form through the internal analog to digital conversion processing module 150_0_1. Thereby, the reset data corresponding to the pixel 120_i_0 is obtained and stored in the buffer memory 150_0_2. At the time point T21, the scan signal hscan is raised, thereby reading the reset data of the pixel 120_i_0 in the buffer memory 150_0_2 into the image signal processor 200. Similarly, at time T3, after the switching signal SW1 turns on the turn-on bit line switch 160_1, the analog-to-digital conversion processing module 150_0_1 can obtain the reset data about the pixel 120_i_2, and store it in the buffer memory 150_0_2, etc. After the signal hscan is once again raised, the reset data of the pixel 120_i_2 is read to the image signal processor 200.

在時間點T4時,傳輸閘控制訊號TG_i_0被升起,這時像素120_i_0以及120_i_2開始對端點A與端點B進行電荷轉移,在傳輸閘控制訊號TG0被降下時,電荷轉移結束,可分別在位元線BL0與BL1上得到相關於像素120_i_0以及120_i_2之積分資料的訊號。接著在時間點T5,切換訊號SW0導通位元線開關160_0,類比至數位轉換處理模組150_0_1將位元線BL0上的訊號轉換成數位訊號。從而得到對應於像素120_i_0的積分資料,並且儲存於緩衝記憶體150_0_2之中,等到掃描訊號hscan被升起時,將緩衝記憶體150_0_2內關於像素120_i_0的積分資料讀入至影像訊號處理器200。相似地,在時間點T6,切換訊號SW1導通導通位元線開關160_1後,行讀取電路150_0可以得到關於像素120_i_2的積分資料,並儲存入關於緩衝記憶體150_0_2內,等掃描訊號hscan被升起後,讀入120_i_2的積分資料至影像訊號處理器200。如此一來,便可完成像素120_i_0與120_i_2的讀取,得到各別的重置資料與積分資料。之後,影像訊號處理器200進行相關計算得到像素120_i_0與120_i_2的感光值。這邊應當注意的是,以上說明中是透過行讀取電路150_0的觀點來說明,但整個影像感測器實際上還包含有其他的行讀取電路150_1~150_(N-1)/4(假設每列有N個像素),每次掃描訊號hscan被升起時,每個行讀取電路中的緩衝記憶體所儲存的資料都會被讀入影像訊號處理器200。因此,掃描訊號hscan的升起會讓每列像素中的N/2個像素的重置資料或積分資料被讀入至影像訊號處理器200。At the time point T4, the transmission gate control signal TG_i_0 is raised. At this time, the pixels 120_i_0 and 120_i_2 start to perform charge transfer on the terminal A and the end point B. When the transmission gate control signal TG0 is lowered, the charge transfer ends, respectively. Signals relating to the integrated data of the pixels 120_i_0 and 120_i_2 are obtained on the bit lines BL0 and BL1. Then at time point T5, the switching signal SW0 turns on the bit line switch 160_0, and the analog-to-digital conversion processing module 150_0_1 converts the signal on the bit line BL0 into a digital signal. The integral data corresponding to the pixel 120_i_0 is obtained and stored in the buffer memory 150_0_2. When the scan signal hscan is raised, the integral data of the pixel 120_i_0 in the buffer memory 150_0_2 is read into the image signal processor 200. Similarly, at time T6, after the switching signal SW1 turns on the turn-on bit line switch 160_1, the row read circuit 150_0 can obtain the integral data about the pixel 120_i_2, and store it in the buffer memory 150_0_2, and the scan signal hscan is boosted. After that, the credit data of 120_i_2 is read into the video signal processor 200. In this way, the reading of the pixels 120_i_0 and 120_i_2 can be completed, and the respective reset data and integral data are obtained. Thereafter, the image signal processor 200 performs correlation calculation to obtain the photosensitive values of the pixels 120_i_0 and 120_i_2. It should be noted here that the above description is explained by the viewpoint of the row reading circuit 150_0, but the entire image sensor actually includes other row reading circuits 150_1~150_(N-1)/4 ( Assuming that each column has N pixels, each time the scan signal hscan is raised, the data stored in the buffer memory in each row read circuit is read into the image signal processor 200. Therefore, the rise of the scan signal hscan causes the reset data or credit data of N/2 pixels in each column of pixels to be read into the image signal processor 200.

另外,為了維持行讀取電路之輸入端的訊號穩定,從而確保輸入端上的訊號的安定時間(settling time)可以處在理想範圍。因此,在一實施例中,本發明另外設計了準位維持電路,請參考第3圖的時序圖以及第4圖的架構圖。在訊號SW0與SW1降下時,訊號SW_dmy將導通準位維持電路210中的開關212,使得行讀取電路150_0的輸入端IN的準位可維持一定值。其中,準位維持電路210中的開關212透過電阻214連接至參考電壓VREF,從而令輸入端IN之準位得以維持。另外,在進行準位維持時,輸入端IN的準位可能會觸發類比至數位轉換處理模組150_0_1進行訊號轉換,並將結果寫入緩衝記憶體150_0_2,導致緩衝記憶體150_0_2內的緩衝資料被破壞,因此,隔離訊號dis_trig在進行準位維持時被拉起,斷開類比至數位轉換處理模組150_0_1以及緩衝記憶體150_0_2之間的開關150_0_3,以保護緩衝資料。In addition, in order to maintain signal stability at the input of the line read circuit, it is ensured that the settling time of the signal on the input can be in a desired range. Therefore, in an embodiment, the present invention additionally designs a level maintaining circuit, please refer to the timing diagram of FIG. 3 and the architecture diagram of FIG. When the signals SW0 and SW1 are lowered, the signal SW_dmy will turn on the switch 212 in the level maintaining circuit 210, so that the level of the input terminal IN of the line reading circuit 150_0 can maintain a certain value. The switch 212 in the level maintaining circuit 210 is connected to the reference voltage VREF through the resistor 214, so that the level of the input terminal IN is maintained. In addition, when the level is maintained, the level of the input terminal IN may trigger the analog to digital conversion processing module 150_0_1 to perform signal conversion, and the result is written into the buffer memory 150_0_2, causing the buffered data in the buffer memory 150_0_2 to be buffered. Destruction, therefore, the isolation signal dis_trig is pulled up while maintaining the level, and the switch 150_0_3 between the analog to digital conversion processing module 150_0_1 and the buffer memory 150_0_2 is disconnected to protect the buffered data.

在本發明中,行讀取電路150_0的緩衝記憶體150_0_2的容量僅需要與類比至數位轉換模組150_0_1每次輸出的資料量一致即可。請參考第5A圖,該圖繪示類比至數位轉換模組150_0_1的輸出與掃描訊號hscan之間的時序關係。由圖示的關係可看出,每當得到一個像素的重置資料或積分資料(RST#1、RST#2、SIG#1、SIG#2)後,掃描訊號hscan就立刻升起,將緩衝記憶體150_0_2的緩衝資料讀入影像處理電路200。因此,緩衝記憶體150_0_2僅需依序儲存120_i_0的重置資料(RST#1)、120_i_2的重置資料(RST#2)、120_i_0的積分資料(SIG#1)、以及120_i_2的積分資料(SIG#2)。因若類比至數位轉換模組150_0_1具有12位元的解析度,那麼緩衝記憶體150_0_2只需要12位元寬即可。In the present invention, the capacity of the buffer memory 150_0_2 of the row read circuit 150_0 only needs to coincide with the amount of data outputted each time by the analog to digital conversion module 150_0_1. Please refer to FIG. 5A, which illustrates the timing relationship between the output of the analog-to-digital conversion module 150_0_1 and the scan signal hscan. As can be seen from the relationship shown in the figure, every time a reset data or integral data (RST#1, RST#2, SIG#1, SIG#2) of one pixel is obtained, the scan signal hscan rises immediately and will be buffered. The buffered data of the memory 150_0_2 is read into the image processing circuit 200. Therefore, the buffer memory 150_0_2 only needs to sequentially store 120_i_0 reset data (RST#1), 120_i_2 reset data (RST#2), 120_i_0 integral data (SIG#1), and 120_i_2 credit data (SIG). #2). If the analog to digital conversion module 150_0_1 has a resolution of 12 bits, the buffer memory 150_0_2 only needs 12 bits wide.

在習知共用行讀取電路的架構中,由於多個像素共用一條位元線相連至行讀取電路,每次當共用行讀取電路對位元線上的訊號進行讀取時,便會破壞位元線上的訊號,因此,不同像素的重置或不同像素的積分必須在不同時間進行,導致無法像本發明一樣連續讀取不同像素的重置資料與積分資料(請參考第3圖的時間點T1與T4,共用同一個行讀取電路150_0的像素120_i_0~120_i_03中,分別有兩個像素開始進行重置與積分)。第5B圖繪示在習知共用架構下,類比至數位轉換模組輸出與掃描訊號之間的時序關係。在第5B圖中,類比至數位轉換模組逐次輸出一個像素的重置資料(RST#1),接著是積分資料(SIG#1),再來是另一個像素的重置資料(RST#2)與積分資料(SIG#1),與本發明的時序有所不同。本發明之所以可以連續讀取像素的重置資料與積分資料的原因在於,不同像素(如:120_i_0與120_i_2)的重置資料分別被放在不同的位元線(BL0與BL1)上,所以在連續讀取之間不需要再一次的重置,而積分資料也是放在不同的位元線上,所以在連續讀取之間不需要再一次的積分。在習知的架構中,緩衝記憶體需要四個記憶體槽(BANK0~3),分別儲存第一個像素的重置資料與積分資料以及第二個像素的的重置資料與積分資料。在掃描訊號hscan升起後,第一個像素的重置資料與積分資料被讀到影像訊號處理器,而第二個像素的的重置資料與積分資料搬移至原本儲存第一個像素的重置資料與積分資料的記憶體槽(BANK2~3),並且繼續在緩衝記憶體(BANK0~1)中寫入第三個像素的重置資料與積分資料,如此反覆進行。由此可知,本案的緩衝記憶體容量僅僅是習知架構的1/4。In the architecture of the conventional shared line read circuit, since a plurality of pixels share a bit line connected to the row read circuit, each time the shared line read circuit reads the signal on the bit line, it will be destroyed. The signal on the bit line, therefore, the reset of different pixels or the integration of different pixels must be performed at different times, resulting in the inability to continuously read the reset data and integral data of different pixels as in the present invention (please refer to the time in Figure 3). Points T1 and T4 share the pixels 120_i_0 to 120_i_03 of the same row read circuit 150_0, and two pixels respectively start to be reset and integrated. Figure 5B illustrates the timing relationship between the analog-to-digital conversion module output and the scan signal under the conventional shared architecture. In Figure 5B, the analog-to-digital conversion module outputs one pixel of reset data (RST#1), followed by the integral data (SIG#1), and then another pixel's reset data (RST#2). ) and the point data (SIG#1) are different from the timing of the present invention. The reason why the present invention can continuously read the reset data and the integral data of the pixel is that the reset data of different pixels (eg, 120_i_0 and 120_i_2) are respectively placed on different bit lines (BL0 and BL1), so There is no need to reset again between successive reads, and the credit data is placed on different bit lines, so there is no need to integrate again between consecutive reads. In the conventional architecture, the buffer memory requires four memory slots (BANK0~3), which store the reset data and integral data of the first pixel and the reset data and integral data of the second pixel, respectively. After the scan signal hscan rises, the reset data and the integral data of the first pixel are read to the image signal processor, and the reset data and the integral data of the second pixel are moved to the weight of the first pixel stored. Set the data slot of the data and integral data (BANK2~3), and continue to write the reset data and integral data of the third pixel in the buffer memory (BANK0~1), and then repeat. It can be seen that the buffer memory capacity of this case is only 1/4 of the conventional architecture.

在上述說明中,儘管是針對基於數位相關雙重取樣的取樣架構進行說明,但此非本發明在應用上之限制,在本發明其他實施例中,行讀取電路也可以略過讀取重置資料的步驟,僅讀取積分資料。In the above description, although the description is based on the digital correlation double sampling sampling architecture, this is not a limitation of the application of the present invention. In other embodiments of the present invention, the row reading circuit may also skip the read reset. The steps of the data, only the point data is read.

總結來說,本發明在共用行讀取電路的架構中,有效地控制每一列像素所需的傳輸閘控制訊號的數量,並且也能縮小行讀取電路中所需的緩衝記憶體容量,而這些在架構上的簡化,也有能效地降低影像感測器的整體功耗。In summary, the present invention effectively controls the number of transmission gate control signals required for each column of pixels in the architecture of the shared row read circuit, and also reduces the buffer memory capacity required in the row read circuit. These architectural simplifications also effectively reduce the overall power consumption of the image sensor.

以上文中所提及之「一實施例」代表針對該實施例所描述之特定特徵、結構或者是特性係包含於本發明之至少一實施方式中。再者,文中不同段落中所出現之「一實施例」並非代表相同的實施例。因此,儘管以上對於不同實施例描述時,分別提及了不同的結構特徵或是方法性的動作,但應當注意的是,這些不同特徵可透過適當的修改而同時實現於同一特定實施方式中。   以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The "an embodiment" referred to above means that a particular feature, structure or characteristic described for the embodiment is included in at least one embodiment of the invention. Furthermore, "an embodiment" as used in the different paragraphs herein does not represent the same embodiment. Therefore, while the various structural features or methodological acts are described above, respectively, for the various embodiments, it should be noted that these various features can be implemented in the same particular embodiment. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

120_i_0、120_i_1、120_i_2、120_i_3、120_i+1_0、120_ i+1_1、120_ i+1_2、120_ i+1_3‧‧‧像素
110_i_0、110_i_1、110_i_2、110_i_3、110_ i+1_0、110_ i+1_1、110_ i+1_2、110_ i+1_3‧‧‧感光元件
130_0、130_1‧‧‧源極隨耦器
BL0、BL1‧‧‧位元線
140_0、140_1‧‧‧重置開關
150_0、150_1‧‧‧行讀取電路
150_0_1‧‧‧類比至數位轉換處理模組
150_0_2‧‧‧緩衝記憶體
150_0_3、180_0、180_1‧‧‧開關
160_0、160_1‧‧‧位元線開關
170_i_0、170_i_1、170_i_2、170_i_3‧‧‧傳輸閘
190‧‧‧訊號產生器
200‧‧‧影像訊號處理器
210‧‧‧準位穩定電路
212‧‧‧開關
214‧‧‧電阻
120_i_0, 120_i_1, 120_i_2, 120_i_3, 120_i+1_0, 120_i+1_1, 120_i+1_2, 120_i+1_3‧‧ ‧ pixels
110_i_0, 110_i_1, 110_i_2, 110_i_3, 110_i+1_0, 110_i+1_1, 110_i+1_2, 110_i+1_3‧‧‧ photosensitive element
130_0, 130_1‧‧‧ source follower
BL0, BL1‧‧‧ bit line
140_0, 140_1‧‧‧Reset switch
150_0, 150_1‧‧‧ lines read circuit
150_0_1‧‧‧ Analog to Digital Conversion Processing Module
150_0_2‧‧‧Buffered memory
150_0_3, 180_0, 180_1‧‧ switch
160_0, 160_1‧‧‧ bit line switch
170_i_0, 170_i_1, 170_i_2, 170_i_3‧‧‧ transmission gate
190‧‧‧Signal Generator
200‧‧‧Image Signal Processor
210‧‧‧Standing Stabilization Circuit
212‧‧‧ switch
214‧‧‧resistance

第1圖解釋習知具有共用行讀取電路架構的像素陣列。 第2圖為本發明之一實施例的影像感測器的架構圖。 第3圖為第2圖中每個控制訊號對應的時序圖。 第4圖為本發明之一實施例的行讀取電路的架構圖。 第5A圖與第5B圖分別繪示本發明架構與習知架構之緩衝記憶體配置方式以及資料輸出時序。Figure 1 illustrates a conventional pixel array having a shared row read circuit architecture. 2 is a block diagram of an image sensor according to an embodiment of the present invention. Figure 3 is a timing diagram corresponding to each control signal in Figure 2. Figure 4 is a block diagram of a row read circuit in accordance with one embodiment of the present invention. The 5A and 5B diagrams respectively show the buffer memory configuration mode and the data output timing of the architecture of the present invention and the conventional architecture.

120_i_0、120_i_1、120_i_2、120_i_3、120_i+1_0、120_i+1_1、120_i+1_2、120_i+1_3‧‧‧像素 120_i_0, 120_i_1, 120_i_2, 120_i_3, 120_i+1_0, 120_i+1_1, 120_i+1_2, 120_i+1_3‧‧ ‧ pixels

110_i_0、110_i_1、110_i_2、110_i_3、110_i+1_0、110_i+1_1、110_i+1_2、110_i+1_3‧‧‧感光元件 110_i_0, 110_i_1, 110_i_2, 110_i_3, 110_i+1_0, 110_i+1_1, 110_i+1_2, 110_i+1_3‧‧‧ photosensitive element

130_0、130_1‧‧‧源極隨耦器 130_0, 130_1‧‧‧ source follower

BL0、BL1‧‧‧位元線 BL0, BL1‧‧‧ bit line

140_0、140_1‧‧‧重置開關 140_0, 140_1‧‧‧Reset switch

150_0‧‧‧行讀取電路 150_0‧‧‧ line read circuit

160_0、160_1‧‧‧位元線開關 160_0, 160_1‧‧‧ bit line switch

170_i_0、170_i_1、170_i_2、170_i_3‧‧‧傳輸閘 170_i_0, 170_i_1, 170_i_2, 170_i_3‧‧‧ transmission gate

190‧‧‧訊號產生器 190‧‧‧Signal Generator

Claims (10)

一種影像感測器,包含: 一像素陣列,具有M列像素,每一列像素又包含有N個像素,每一個像素包含有一傳輸閘; 一訊號產生器,用以產生M組傳輸閘控制訊號,每組具有不同時序的一第一傳輸閘控制訊號與一第二傳輸閘控制訊號,分別用以控制每一列像素中的傳輸閘,其中,該第一傳輸閘控制訊號與該第二傳輸閘控制訊號分別讓每一列像素中不同的N/2個像素的傳輸閘導通; 複數條位元線,每一條位元線選擇性地耦接至每一列像素中兩個像素中一者的傳輸閘;以及 複數個行讀取電路,每一者選擇性地耦接於該複數條位元線中兩條位元線之一,並且讀取所耦接之位元線上的訊號,得到一像素的至少一積分資料,其中,每一個行讀取電路在該第一傳輸閘控制訊號導通該N/2個像素的傳輸閘之後,連續讀取出該N/2個像素中的兩個像素的積分資料。An image sensor comprising: a pixel array having M columns of pixels, each column of pixels further comprising N pixels, each pixel comprising a transmission gate; a signal generator for generating M sets of transmission gate control signals, Each of the first transmission gate control signal and the second transmission gate control signal having different timings are respectively used to control the transmission gates in each column of pixels, wherein the first transmission gate control signal and the second transmission gate control The signals respectively cause the transmission gates of different N/2 pixels in each column of pixels to be turned on; the plurality of bit lines, each of the bit lines being selectively coupled to the transmission gate of one of the two pixels in each column of pixels; And a plurality of row read circuits, each of which is selectively coupled to one of the two bit lines of the plurality of bit lines, and reads signals of the coupled bit lines to obtain at least one pixel An integral data, wherein each row reading circuit continuously reads out the integral data of two pixels of the N/2 pixels after the first transmission gate control signal turns on the transmission gate of the N/2 pixels . 如請求項1所述的影像感測器,另包含: 複數個重置開關,每一者耦接於每一列像素中的兩個像素以及每一欄像素中的兩個像素,該重置開關導通時,對所連接的四個像素的一共同端點進行充電。The image sensor of claim 1, further comprising: a plurality of reset switches, each coupled to two pixels in each column of pixels and two pixels in each column of pixels, the reset switch When turned on, a common endpoint of the four connected pixels is charged. 如請求項2所述的影像感測器,其中每一個行讀取電路在該重置開關導通後,以及該第一傳輸閘控制訊號導通一列像素中的該N/2個像素的傳輸閘之前,連續讀取出該N/2個像素中的兩個像素的重置資料。The image sensor of claim 2, wherein each row reading circuit is after the reset switch is turned on, and before the first transmission gate control signal turns on the transmission gate of the N/2 pixels in a column of pixels And resetting the reset data of two of the N/2 pixels in succession. 如請求項1所述的影像感測器,另包含: 複數個位元線開關,每一個位元線開關耦接於該複數個位元線中的一者,且每兩個位元線開關連接至一個行讀取電路,使該行讀取電路得以自所耦接之兩條位元線中選擇一者,讀取該位元線上的訊號。The image sensor of claim 1, further comprising: a plurality of bit line switches, each of the bit line switches being coupled to one of the plurality of bit lines, and each of the two bit line switches Connected to a row read circuit, the row read circuit can select one of the two bit lines coupled, and read the signal on the bit line. 如請求項4所述的影像感測器,其中每一行讀取電路包含: 一類比至數位轉換模組,耦接於該複數個位元線開關中不同之一組位元線開關,每組位元線開關包含一第一位元線開關與一第二位元線開關,其中該第一位元線開關與該第二位元線開關於不同時間導通,使得該類比至數位轉換模組於不同時間內連接至該複數條位元線中之不同位元線,並根據所連接之位元線上的訊號產生一轉換輸出,該轉換輸出包含該像素之該積分資料;以及 一緩衝記憶體,耦接於該類比至數位轉換模組,用以暫存該轉換輸出,其中該緩衝記憶體的容量與該轉換輸出之資料量一致。The image sensor of claim 4, wherein each row of the read circuit comprises: an analog to digital conversion module coupled to the different one of the plurality of bit line switches, each group of bit line switches, each group The bit line switch includes a first bit line switch and a second bit line switch, wherein the first bit line switch and the second bit line switch are turned on at different times, so that the analog to digital conversion module Connecting to different bit lines in the plurality of bit lines at different times, and generating a conversion output according to the signal on the connected bit line, the conversion output includes the integral data of the pixel; and a buffer memory The analog output to the digital conversion module is configured to temporarily store the converted output, wherein the buffer memory has the same capacity as the converted output data. 如請求項5所述的影像感測器,另包含: 一影像訊號處理器,耦接於該複數個行讀取電路,每當該行讀取電路中之類比至數位轉換模組產生該轉換輸出後,該影像訊號處理器便自該緩衝記憶體讀取暫存的該轉換輸出。The image sensor of claim 5, further comprising: an image signal processor coupled to the plurality of row read circuits, each time the analog input to the digital conversion module in the row of the read circuit generates the conversion After outputting, the image signal processor reads the temporarily stored conversion output from the buffer memory. 如請求項1所述的影像感測器,其中該複數個行讀取電路的數目為N/4。The image sensor of claim 1, wherein the number of the plurality of row read circuits is N/4. 如請求項1所述的影像感測器,其中該複數條位元線的數目為N/2。The image sensor of claim 1, wherein the number of the plurality of bit lines is N/2. 如請求項1所述的影像感測器,另包含: 複數個準位維持電路,每一個準位維持電路分別選擇性地耦接於該複數個行讀取電路中的一者,用以在該行讀取電路未連接至任何位元線時,維持該行讀取電路之一輸入端的訊號準位。The image sensor of claim 1, further comprising: a plurality of level maintaining circuits, each of the level maintaining circuits being selectively coupled to one of the plurality of line reading circuits, respectively When the row read circuit is not connected to any bit line, the signal level of one of the input circuits of the row is maintained. 如請求項1所述的影像感測器,另包含: 複數個源極隨耦器,每一者耦接於每一列像素中的兩個像素以及每一欄像素中的兩個像素,用以將該四個像素所耦接之一共同端點上的訊號轉移到於該複數條位元線中的一者。The image sensor of claim 1, further comprising: a plurality of source followers, each coupled to two pixels in each column of pixels and two pixels in each column of pixels Transmitting a signal on one of the common endpoints coupled to the four pixels to one of the plurality of bitlines.
TW105126075A 2016-08-16 2016-08-16 Image sensor with shared column readout circuis TWI586171B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105126075A TWI586171B (en) 2016-08-16 2016-08-16 Image sensor with shared column readout circuis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105126075A TWI586171B (en) 2016-08-16 2016-08-16 Image sensor with shared column readout circuis

Publications (2)

Publication Number Publication Date
TWI586171B true TWI586171B (en) 2017-06-01
TW201807997A TW201807997A (en) 2018-03-01

Family

ID=59688335

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105126075A TWI586171B (en) 2016-08-16 2016-08-16 Image sensor with shared column readout circuis

Country Status (1)

Country Link
TW (1) TWI586171B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1246121A2 (en) * 2001-03-28 2002-10-02 Canon Kabushiki Kaisha Dynamically reconfigurable signal processing circuit, pattern recognition apparatus, and image processing apparatus
EP2629510A1 (en) * 2008-08-13 2013-08-21 Thomson Licensing CMOS image sensor with selectable hard-wired binning
EP2639579A1 (en) * 2006-12-14 2013-09-18 Life Technologies Corporation Apparatus for measuring analytes using large scale FET arrays
TWI525307B (en) * 2015-02-10 2016-03-11 聯詠科技股份有限公司 Light sensing unit and light sensing circuit for image sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1246121A2 (en) * 2001-03-28 2002-10-02 Canon Kabushiki Kaisha Dynamically reconfigurable signal processing circuit, pattern recognition apparatus, and image processing apparatus
EP2639579A1 (en) * 2006-12-14 2013-09-18 Life Technologies Corporation Apparatus for measuring analytes using large scale FET arrays
EP2629510A1 (en) * 2008-08-13 2013-08-21 Thomson Licensing CMOS image sensor with selectable hard-wired binning
TWI525307B (en) * 2015-02-10 2016-03-11 聯詠科技股份有限公司 Light sensing unit and light sensing circuit for image sensor

Also Published As

Publication number Publication date
TW201807997A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US7667752B2 (en) Semiconductor imaging sensor array devices with dual-port digital readout
US8625017B2 (en) CMOS image sensor with shared sensing mode
US9019411B2 (en) Image sensors and methods with pipelined readout
US8605182B2 (en) Driving method of solid-state imaging apparatus with successive clamping
US6885331B2 (en) Ramp generation with capacitors
US7230558B2 (en) Column analog-to-digital conversion apparatus and method supporting a high frame rate in a sub-sampling mode
US20090273694A1 (en) Image sensors and methods with column readout circuits
US6525304B1 (en) Circuitry for converting analog signals from pixel sensor to a digital and for storing the digital signal
US8547461B2 (en) Analog-to-digital converter having a comparison signal generation unit and image sensor including the same
US8754956B2 (en) Pseudo-digital average sub sampling method and apparatus
US20080129851A1 (en) Solid-state imaging device and imaging system
US9848154B2 (en) Comparator with correlated double sampling scheme and operating method thereof
JP2011526088A (en) Imaging array with improved dynamic range
US10728483B2 (en) Comparator with correlated double sampling scheme, CMOS image sensor including the same, and operating method thereof
US9900538B2 (en) Phase delay counting analog-to-digital converter circuitry
JP2001203936A (en) Image recording device
KR20080013495A (en) Image sensor for sharing a read out circuit and method for sharing the read out circuit
JP4487248B2 (en) Image sensor with active reset and randomly addressable pixels
US10062724B1 (en) Image sensor and sensing pixel array for reading out charge of sensing signal and charge of reset signal of one sensing pixel unit after another
KR20170111103A (en) Apparatus for controlling pixel output level and cmos image sensor thereof using that
US10896701B2 (en) High-speed data readout apparatus and CMOS image sensor using the same
JP2006186467A (en) Method and device for acquiring physical information
JP4419681B2 (en) Solid-state imaging device
TWI586171B (en) Image sensor with shared column readout circuis
US20090046181A1 (en) Method and apparatus providing improved successive approximation analog-to-digital conversion for imagers