TWI585375B - Ultrasonic sensor and manufacturing method thereof - Google Patents

Ultrasonic sensor and manufacturing method thereof Download PDF

Info

Publication number
TWI585375B
TWI585375B TW103142514A TW103142514A TWI585375B TW I585375 B TWI585375 B TW I585375B TW 103142514 A TW103142514 A TW 103142514A TW 103142514 A TW103142514 A TW 103142514A TW I585375 B TWI585375 B TW I585375B
Authority
TW
Taiwan
Prior art keywords
electrode
piezoelectric material
material layer
ultrasonic sensor
substrate
Prior art date
Application number
TW103142514A
Other languages
Chinese (zh)
Other versions
TW201629441A (en
Inventor
王娟
Original Assignee
麥克思股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 麥克思股份有限公司 filed Critical 麥克思股份有限公司
Priority to TW103142514A priority Critical patent/TWI585375B/en
Publication of TW201629441A publication Critical patent/TW201629441A/en
Application granted granted Critical
Publication of TWI585375B publication Critical patent/TWI585375B/en

Links

Description

超音波感測器及其製造方法 Ultrasonic sensor and manufacturing method thereof

本發明涉及一種超音波感測器及超音波感測器的製造方法。 The invention relates to a method for manufacturing an ultrasonic sensor and an ultrasonic sensor.

採用壓電薄膜等材料作為壓電材料的物質波式感測元件已廣泛地應用於工業、國防、消防、電子等不同領域。一種典型的物質波式感測元件為超音波感測器。其中超音波感測器因其操作性不易環境溫度、濕度的影響,且具有壽命長、解析度高等特點而在公共場所等惡劣環境下受到廣泛應用。超音波感測器一般包括透明電極層用於發射及接收電壓、壓電材料層用於產生超音波,該透明電極層的第一電極與壓電材料層在超音波感測器的邊緣區域通過一導電膜連接,在塗布導電膜時由於壓電材料的表面張力較大而使薄膜的邊緣缺角導致觸控精度下降。 Material wave sensing elements using piezoelectric films and the like as piezoelectric materials have been widely used in various fields such as industry, national defense, fire protection, and electronics. A typical matter wave sensing element is an ultrasonic sensor. Among them, ultrasonic sensors are widely used in harsh environments such as public places because of their operability, environmental temperature and humidity, long life and high resolution. The ultrasonic sensor generally includes a transparent electrode layer for emitting and receiving a voltage, and a piezoelectric material layer for generating an ultrasonic wave, and the first electrode and the piezoelectric material layer of the transparent electrode layer pass through an edge region of the ultrasonic sensor. A conductive film is connected, and when the conductive film is coated, the edge of the film is not sharp due to the large surface tension of the piezoelectric material, resulting in a decrease in touch precision.

有鑑於此,有必要提供一種超音波感測器及其製造方法。 In view of the above, it is necessary to provide an ultrasonic sensor and a method of manufacturing the same.

一種超音波感測器,包括:基板;第一電極與第一壓電材料層層疊設置於該基板一側;第二電極與第二壓電材料層層疊設置於該基板的另一側;及該第一壓電材料層設置一缺口;導電膜塗布該缺口用於連接該第一電極與第一壓電材料層。 An ultrasonic sensor includes: a substrate; a first electrode and a first piezoelectric material layer are stacked on one side of the substrate; and a second electrode and a second piezoelectric material layer are stacked on the other side of the substrate; The first piezoelectric material layer is provided with a notch; the conductive film is coated with the notch for connecting the first electrode and the first piezoelectric material layer.

一種超音波感測器的製造方法,包括: 提供一基板,在基板兩側貼合形成第一電極與第二電極;在該第一電極上塗布第一壓電材料層,在該第二電極上塗布第二壓電材料層;在該第一壓電材料層上定義一缺口;及在該缺口處塗布導電膜連接該第一電極與第一壓電材料層。 A method of manufacturing an ultrasonic sensor, comprising: Providing a substrate, a first electrode and a second electrode are formed on both sides of the substrate; a first piezoelectric material layer is coated on the first electrode, and a second piezoelectric material layer is coated on the second electrode; A gap is defined on a layer of piezoelectric material; and a conductive film is coated on the gap to connect the first electrode and the first layer of piezoelectric material.

相較於先前技術,本發明的超音波感測器及製造方法在第二壓電材料層上設置一缺口,並在缺口處通過導電膜連接第一電極與第一壓電材料層,從而解決由於壓電材料表面張大較大而引起的導電膜塗布缺角的現象以增加超音波感測器的感測精度。 Compared with the prior art, the ultrasonic sensor and the manufacturing method of the present invention provide a notch on the second piezoelectric material layer, and connect the first electrode and the first piezoelectric material layer through the conductive film at the notch, thereby solving The phenomenon that the conductive film is coated with a corner due to a large surface of the piezoelectric material increases the sensing accuracy of the ultrasonic sensor.

100‧‧‧超音波感測器 100‧‧‧Ultrasonic Sensor

10‧‧‧第一壓電材料層 10‧‧‧First piezoelectric material layer

11‧‧‧第一電極 11‧‧‧First electrode

12‧‧‧第一膠體層 12‧‧‧First colloid layer

13‧‧‧基板 13‧‧‧Substrate

14‧‧‧第二膠體層 14‧‧‧Second colloid layer

15‧‧‧第二電極 15‧‧‧second electrode

16‧‧‧第二壓電材料層 16‧‧‧Second piezoelectric material layer

17‧‧‧導電膜 17‧‧‧Electrical film

102‧‧‧缺口 102‧‧‧ gap

S201~S207‧‧‧步驟 S201~S207‧‧‧Steps

圖1是本發明超音波感測器的俯視圖。 1 is a top plan view of an ultrasonic sensor of the present invention.

圖2是圖1所示超音波感測器的側視結構的立體示意圖。 2 is a perspective view showing the side view structure of the ultrasonic sensor shown in FIG. 1.

圖3是圖1所示超音波感測器沿III-III線的剖面示意圖。 3 is a cross-sectional view of the ultrasonic sensor of FIG. 1 taken along line III-III.

圖4-圖7是本發明超音波感測器各製造步驟之結構示意圖。 4 to 7 are structural diagrams showing the manufacturing steps of the ultrasonic sensor of the present invention.

圖8是本發明超音波感測器製造方法流程圖。 Figure 8 is a flow chart of a method of manufacturing the ultrasonic sensor of the present invention.

請一併參閱圖1、圖2及圖3,圖1是本發明超音波感測器100的俯視圖,圖2圖1所示超音波感測器100的一側結構的立體示意圖。圖3是超音波感測器100沿III-III線的剖面示意圖。該超音波感測器100包括依次層疊的第一壓電材料層10、第一電極11、第一膠體層12、基板13、第二膠體層14、第二電極15、第二壓電材料層16及用於連接該第一電極11與第一壓電材料層10的導電膜17。該第一電極11通過該第一膠體層12貼合至該基板13的一側。該第二電極15通過該第二膠體層14貼合至該基板13相對的另一側。在本實施方式中,該第一膠體層12與第二膠體層14為光固化膠。 Please refer to FIG. 1 , FIG. 2 and FIG. 3 . FIG. 1 is a top view of the ultrasonic sensor 100 of the present invention, and FIG. 2 is a perspective view showing the structure of one side of the ultrasonic sensor 100 of FIG. 1 . 3 is a schematic cross-sectional view of the ultrasonic sensor 100 taken along line III-III. The ultrasonic sensor 100 includes a first piezoelectric material layer 10, a first electrode 11, a first colloid layer 12, a substrate 13, a second colloid layer 14, a second electrode 15, and a second piezoelectric material layer which are sequentially stacked. 16 and a conductive film 17 for connecting the first electrode 11 and the first piezoelectric material layer 10. The first electrode 11 is bonded to one side of the substrate 13 through the first colloid layer 12 . The second electrode 15 is bonded to the opposite side of the substrate 13 through the second colloid layer 14. In this embodiment, the first colloid layer 12 and the second colloid layer 14 are photocurable adhesives.

該基板13為一透明基板,如玻璃基板、石英基板、藍寶石基板或柔性透明基板。在本實施方式中,該基板13為玻璃基板。 The substrate 13 is a transparent substrate such as a glass substrate, a quartz substrate, a sapphire substrate or a flexible transparent substrate. In the present embodiment, the substrate 13 is a glass substrate.

在一種變更實施方式中,該第一電極11及第二電極15可直接形成於該基板13上。該第一電極11及第二電極15的材質為單層透明導電材料或多層複合透明導電材料。該單層透明導電材料包括但不限於氧化銦錫(Indium Tin Oxide,ITO)、氧化鋅(ZnO)、聚乙撐二氧噻吩(PEDOT)、碳奈米管(CNT)、銀奈米線(AgNW)以及石墨烯。該多層複合透明導電材料包括但不限於由依次層疊的氧化銦錫、銀、氧化銦錫組成的三層複合結構導電材料。 In a modified embodiment, the first electrode 11 and the second electrode 15 may be directly formed on the substrate 13. The material of the first electrode 11 and the second electrode 15 is a single layer transparent conductive material or a multilayer composite transparent conductive material. The single-layer transparent conductive material includes, but is not limited to, Indium Tin Oxide (ITO), zinc oxide (ZnO), polyethylene dioxythiophene (PEDOT), carbon nanotube (CNT), silver nanowire ( AgNW) and graphene. The multilayer composite transparent conductive material includes, but is not limited to, a three-layer composite structure conductive material composed of indium tin oxide, silver, indium tin oxide which are sequentially laminated.

該第一壓電材料層10塗布於該第一電極11上。該第一壓電材料層10的材質為為聚二氟亞乙烯(Polyvinylidene Fluoride,PVDF)。在一變更實施方式中,該第一壓電材料層10的材質氮化鋁、鋯鈦酸鉛(lead zirconium titanate,PZT)、鉭酸鋰(LiTaO3)、二氧化矽(SiO2)、氧化鋅(ZnO)等。該第一壓電材料層10為單層結構或多層複合材料結構。該第一壓電材料層10於一側邊緣區域定義一導電部,該導電部設置為一缺口102。該缺口102的截面形狀為但不限於梯形。在本實施方式中,該第一壓電材料層10的厚度大於5μm。 The first piezoelectric material layer 10 is coated on the first electrode 11. The material of the first piezoelectric material layer 10 is Polyvinylidene Fluoride (PVDF). In a modified embodiment, the first piezoelectric material layer 10 is made of aluminum nitride, lead zirconium titanate (PZT), lithium niobate (LiTaO 3 ), cerium oxide (SiO 2 ), and oxidation. Zinc (ZnO) and the like. The first piezoelectric material layer 10 is a single layer structure or a multilayer composite material structure. The first piezoelectric material layer 10 defines a conductive portion on one edge region, and the conductive portion is disposed as a notch 102. The cross-sectional shape of the notch 102 is, but not limited to, a trapezoid. In the present embodiment, the thickness of the first piezoelectric material layer 10 is greater than 5 μm.

該導電膜17用於連接該第一壓電材料層10及該第一電極11,且該導電膜17設置於該缺口102處。該導電膜17的材質為銀漿,且該銀漿中的導電微粒的直徑大於0.01μm且小於10μm。在本實施方式中,該導電膜17的厚度小於10μm,且該導電膜17材質的內聚力大於該壓電材料的表面張力。 The conductive film 17 is used to connect the first piezoelectric material layer 10 and the first electrode 11 , and the conductive film 17 is disposed at the gap 102 . The material of the conductive film 17 is a silver paste, and the diameter of the conductive particles in the silver paste is larger than 0.01 μm and smaller than 10 μm. In the present embodiment, the thickness of the conductive film 17 is less than 10 μm, and the cohesive force of the material of the conductive film 17 is greater than the surface tension of the piezoelectric material.

該第二壓電材料層16塗布於該第二電極15上。該第二壓電材料層16的材質為為聚二氟亞乙烯(Polyvinylidene Fluoride,PVDF)。在一變更實施方式中,該第二壓電材料層16的材質氮化鋁、鋯鈦酸鉛(lead zirconium titanate,PZT)、鉭酸鋰(LiTaO3)、二氧化矽(SiO2)、氧化鋅(ZnO)等。該第二壓電材料層16為單層結構或多層複合材料結構。 The second piezoelectric material layer 16 is coated on the second electrode 15. The material of the second piezoelectric material layer 16 is Polyvinylidene Fluoride (PVDF). In a modified embodiment, the second piezoelectric material layer 16 is made of aluminum nitride, lead zirconium titanate (PZT), lithium niobate (LiTaO 3 ), cerium oxide (SiO 2 ), and oxidation. Zinc (ZnO) and the like. The second piezoelectric material layer 16 is a single layer structure or a multilayer composite material structure.

在本實施方式中,該第二電極15為輸出電壓至該第二壓電材料層16之發送電極,該第一電極11為接收該第一壓電材料層10輸出之電壓之接收電極。該超音波感測器100工作時,該第二電極15對該第二壓電材料層16施加電壓,該第二壓電材料層16在電壓作用下產生振動從面發出超音波。當手指或觸控筆等其他物體接觸該超音波感測器100時,該超音波被手指反射至該第一 壓電材料層10,該第一壓電材料層10將該超音波轉化為電信號,並將電信號通過該導電膜17傳輸至晶片以確定觸控位置、大小及壓力參數等。 In the present embodiment, the second electrode 15 is an output voltage to the transmitting electrode of the second piezoelectric material layer 16, and the first electrode 11 is a receiving electrode that receives the voltage output from the first piezoelectric material layer 10. When the ultrasonic sensor 100 is in operation, the second electrode 15 applies a voltage to the second piezoelectric material layer 16, and the second piezoelectric material layer 16 generates vibrations under the action of a voltage to emit ultrasonic waves from the surface. When a finger or a stylus or the like contacts the ultrasonic sensor 100, the ultrasonic wave is reflected by the finger to the first The piezoelectric material layer 10 converts the ultrasonic wave into an electrical signal, and transmits an electrical signal to the wafer through the conductive film 17 to determine a touch position, a size, a pressure parameter, and the like.

該超音波感測器100還包括一絕緣層覆蓋該壓電材料層以保護該壓電材料層。該絕緣層的材質可為氮化硼、絕緣性類金剛石或其組合等。 The ultrasonic sensor 100 further includes an insulating layer covering the piezoelectric material layer to protect the piezoelectric material layer. The material of the insulating layer may be boron nitride, insulating diamond-like carbon or a combination thereof.

請一併參閱圖4-圖8,圖4-圖7是本發明超音波感測器各製造步驟之結構示意圖。圖8是本發明超音波感測器製造方法流程圖。 Please refer to FIG. 4 to FIG. 8 together. FIG. 4 to FIG. 7 are schematic structural diagrams of manufacturing steps of the ultrasonic sensor of the present invention. Figure 8 is a flow chart of a method of manufacturing the ultrasonic sensor of the present invention.

步驟S201,請參閱圖4,提供一基板13,在基板13兩側貼合形成第一電極11與第二電極15。該第一電極11通過該第一膠體層12貼合至該基板13的一側。該第二電極15通過該第二膠體層14貼合至該基板13相對的另一側。該基板13為一透明基板,如玻璃基板、石英基板、藍寶石基板或柔性透明基板。在本實施方式中,該基板13為玻璃基板。該第一電極11與第二電極15的材質為單層透明導電材料或多層複合透明導電材料。該單層透明導電材料包括但不限於氧化銦錫(Indium Tin Oxide,ITO)、氧化鋅(ZnO)、聚乙撐二氧噻吩(PEDOT)、碳奈米管(CNT)、銀奈米線(AgNW)以及石墨烯。該多層複合透明導電材料包括但不限於由依次層疊的氧化銦錫、銀、氧化銦錫組成的三層複合結構導電材料。在本實施方式中,可利用濺射法、真空蒸鍍法、脈衝鐳射沉積法、離子電鍍法、有機金屬氣相生長法、等離子體CVD等沉積方法沉積透明導電材料,並圖案化該透明導電材料形成第一電極11與第二電極15。 Step S201, referring to FIG. 4, a substrate 13 is provided, and the first electrode 11 and the second electrode 15 are formed on both sides of the substrate 13. The first electrode 11 is bonded to one side of the substrate 13 through the first colloid layer 12 . The second electrode 15 is bonded to the opposite side of the substrate 13 through the second colloid layer 14. The substrate 13 is a transparent substrate such as a glass substrate, a quartz substrate, a sapphire substrate or a flexible transparent substrate. In the present embodiment, the substrate 13 is a glass substrate. The material of the first electrode 11 and the second electrode 15 is a single layer transparent conductive material or a multilayer composite transparent conductive material. The single-layer transparent conductive material includes, but is not limited to, Indium Tin Oxide (ITO), zinc oxide (ZnO), polyethylene dioxythiophene (PEDOT), carbon nanotube (CNT), silver nanowire ( AgNW) and graphene. The multilayer composite transparent conductive material includes, but is not limited to, a three-layer composite structure conductive material composed of indium tin oxide, silver, indium tin oxide which are sequentially laminated. In the present embodiment, a transparent conductive material may be deposited by a deposition method such as a sputtering method, a vacuum evaporation method, a pulsed laser deposition method, an ion plating method, an organometallic vapor phase epitaxy method, or a plasma CVD method, and the transparent conductive layer may be patterned. The material forms the first electrode 11 and the second electrode 15.

步驟S203,請參閱圖5,在該第一電極11上塗布第一壓電材料層10;在該第二電極15上塗布第二壓電材料層16。該第一壓電材料層10與第二壓電材料層16的材質為為聚二氟亞乙烯(Polyvinylidene Fluoride,PVDF)。在一變更實施方式中,該第一壓電材料層10與第二壓電材料層16的材質氮化鋁、鋯鈦酸鉛(lead zirconium titanate,PZT)、鉭酸鋰(LiTaO3)、二氧化矽(SiO2)、氧化鋅(ZnO)等。該第一壓電材料層10與第二壓電材料層16為單層結構或多層複合材料結構。在本實施方式中,該第一壓電材料層10的厚度大於5μm。具體地,可利用濺射法、真空蒸鍍法、脈衝鐳射沉積法、離子電鍍法、有機金屬氣相生長法、等離子體CVD等沉積方法在該第二電極15及第一電極11上形成一壓電材料,並圖案化該壓電材料形成第一壓電材料層10及第二壓電材料層16。 Step S203, referring to FIG. 5, the first piezoelectric material layer 10 is coated on the first electrode 11, and the second piezoelectric material layer 16 is coated on the second electrode 15. The material of the first piezoelectric material layer 10 and the second piezoelectric material layer 16 is Polyvinylidene Fluoride (PVDF). In a modified embodiment, the first piezoelectric material layer 10 and the second piezoelectric material layer 16 are made of aluminum nitride, lead zirconium titanate (PZT), lithium niobate (LiTaO 3 ), Cerium oxide (SiO 2 ), zinc oxide (ZnO), and the like. The first piezoelectric material layer 10 and the second piezoelectric material layer 16 are a single layer structure or a multilayer composite material structure. In the present embodiment, the thickness of the first piezoelectric material layer 10 is greater than 5 μm. Specifically, a deposition method such as a sputtering method, a vacuum evaporation method, a pulsed laser deposition method, an ion plating method, an organometallic vapor phase epitaxy method, or a plasma CVD method can be used to form a second electrode 15 and a first electrode 11 . A piezoelectric material is patterned and the piezoelectric material is patterned to form a first piezoelectric material layer 10 and a second piezoelectric material layer 16.

步驟S205,請參閱圖6,在該第一壓電材料層10上定義一缺口102。該缺口102的截面形狀為但不限於梯形。 Step S205, referring to FIG. 6, a notch 102 is defined on the first piezoelectric material layer 10. The cross-sectional shape of the notch 102 is, but not limited to, a trapezoid.

步驟S207,請參閱圖7,在該缺口102處塗布導電膜17連接該第一電極11及該第一壓電材料層10。該導電膜17的材質為銀漿,且該銀漿中的導電微粒的直徑大於0.01μm且小於10μm。在本實施方式中,該導電膜17的厚度小於10μm,且該導電膜17材質中導電微粒的內聚力大於該壓電材料的表面張力。 Step S207, referring to FIG. 7, a conductive film 17 is applied to the notch 102 to connect the first electrode 11 and the first piezoelectric material layer 10. The material of the conductive film 17 is a silver paste, and the diameter of the conductive particles in the silver paste is larger than 0.01 μm and smaller than 10 μm. In the present embodiment, the thickness of the conductive film 17 is less than 10 μm, and the cohesive force of the conductive particles in the material of the conductive film 17 is greater than the surface tension of the piezoelectric material.

本案的超音波感測器100及製造方法在第一壓電材料層10設置一缺口102通過導電膜17連接該透明電極,從而減小第一壓電材料層10的缺口處的表面張力以解決由於壓電材料表面張大較大而引起的導電膜塗布缺角的現象以增加超音波感測器的感測精度。 The ultrasonic sensor 100 and the manufacturing method of the present invention are provided with a notch 102 in the first piezoelectric material layer 10 to connect the transparent electrode through the conductive film 17, thereby reducing the surface tension at the notch of the first piezoelectric material layer 10 to solve The phenomenon that the conductive film is coated with a corner due to a large surface of the piezoelectric material increases the sensing accuracy of the ultrasonic sensor.

雖然本發明以優選實施例揭示如上,然其並非用以限定本發明,任何本領域技術人員,在不脫離本發明的精神和範圍內,當可做各種的變化,這些依據本發明精神所做的變化,都應包含在本發明所要求的保護範圍之內。 While the invention has been described above in terms of a preferred embodiment thereof, it is not intended to limit the invention, and various modifications may be made by those skilled in the art without departing from the spirit and scope of the invention. Changes are intended to be included within the scope of the claimed invention.

100‧‧‧超音波感測器 100‧‧‧Ultrasonic Sensor

10‧‧‧第一壓電材料層 10‧‧‧First piezoelectric material layer

11‧‧‧第一電極 11‧‧‧First electrode

12‧‧‧第一膠體層 12‧‧‧First colloid layer

13‧‧‧基板 13‧‧‧Substrate

14‧‧‧第二膠體層 14‧‧‧Second colloid layer

15‧‧‧第二電極 15‧‧‧second electrode

16‧‧‧第二壓電材料層 16‧‧‧Second piezoelectric material layer

17‧‧‧導電膜 17‧‧‧Electrical film

102‧‧‧缺口 102‧‧‧ gap

Claims (9)

一種超音波感測器,包括:基板;第一電極與第一壓電材料層層疊設置於該基板一側;第二電極與第二壓電材料層層疊設置於該基板的另一側;該第二電極為輸出電壓至該第二壓電材料層之發送電極,該第一電極為接收該第一壓電材料層輸出之電壓之接收電極;及該第一壓電材料層設置一缺口;導電膜塗布該缺口用於連接該第一電極與第一壓電材料層。 An ultrasonic sensor includes: a substrate; a first electrode and a first piezoelectric material layer are stacked on one side of the substrate; and a second electrode and a second piezoelectric material layer are stacked on the other side of the substrate; The second electrode is an output voltage to the transmitting electrode of the second piezoelectric material layer, the first electrode is a receiving electrode that receives the voltage outputted by the first piezoelectric material layer; and the first piezoelectric material layer is provided with a notch; The conductive film coats the gap for connecting the first electrode and the first piezoelectric material layer. 如請求項1所述之超音波感測器,其中,該導電膜的材質為銀漿。 The ultrasonic sensor according to claim 1, wherein the conductive film is made of silver paste. 如請求項2所述之超音波感測器,其中,該銀漿中的導電微粒的直徑大於0.01μm且小於10μm。 The ultrasonic sensor of claim 2, wherein the conductive particles in the silver paste have a diameter greater than 0.01 μm and less than 10 μm. 如請求項1所述之超音波感測器,其中,該導電膜的厚度小於10μm。 The ultrasonic sensor according to claim 1, wherein the conductive film has a thickness of less than 10 μm. 如請求項1所述之超音波感測器,其中,該導電膜內導電微粒的內聚力大於壓電材料層的表面張力。 The ultrasonic sensor according to claim 1, wherein the cohesive force of the conductive particles in the conductive film is greater than the surface tension of the piezoelectric material layer. 如請求項1所述之超音波感測器,其中,該第一電極與第二電極的材質為單層透明導電材料。 The ultrasonic sensor of claim 1, wherein the first electrode and the second electrode are made of a single layer of transparent conductive material. 如請求項6所述之超音波感測器,其中,該單層透明導電材料包括氧化銦錫、氧化鋅、聚乙撐二氧噻吩、碳奈米管、銀奈米線以及石墨烯。 The ultrasonic sensor according to claim 6, wherein the single-layer transparent conductive material comprises indium tin oxide, zinc oxide, polyethylene dioxythiophene, carbon nanotubes, silver nanowires, and graphene. 如請求項1所述之超音波感測器,其中,該第一、第二壓電材料層的材質為聚二氟亞乙烯。 The ultrasonic sensor according to claim 1, wherein the first and second piezoelectric material layers are made of polydifluoroethylene. 一種超音波感測器的製造方法,包括:提供一基板,在基板兩側貼合形成第一電極與第二電極;在該第一電極上塗布第一壓電材料層,在該第二電極上塗布第二壓電材料層;在該第一壓電材料層上定義一缺口;及在該缺口處塗布導電膜連接該第一電極與第一壓電材料層。 A method for manufacturing an ultrasonic sensor, comprising: providing a substrate, forming a first electrode and a second electrode on both sides of the substrate; applying a first piezoelectric material layer on the first electrode, the second electrode Coating a second piezoelectric material layer; defining a notch on the first piezoelectric material layer; and coating a conductive film on the notch to connect the first electrode and the first piezoelectric material layer.
TW103142514A 2014-12-05 2014-12-05 Ultrasonic sensor and manufacturing method thereof TWI585375B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103142514A TWI585375B (en) 2014-12-05 2014-12-05 Ultrasonic sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103142514A TWI585375B (en) 2014-12-05 2014-12-05 Ultrasonic sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201629441A TW201629441A (en) 2016-08-16
TWI585375B true TWI585375B (en) 2017-06-01

Family

ID=57182145

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103142514A TWI585375B (en) 2014-12-05 2014-12-05 Ultrasonic sensor and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI585375B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656384A (en) * 1984-10-25 1987-04-07 Siemens Aktiengesellschaft Ultrasonic detection sensor in hybrid structure with appertaining electronic circuit
JP2003153389A (en) * 2001-11-16 2003-05-23 Seiko Instruments Inc Piezoelectric transducer, manufacturing method thereof and sphygmograph
JP2004046500A (en) * 2002-07-11 2004-02-12 Seiko Instruments Inc Ultrasonic touch panel and method of calculating position of ultrasonic touch panel
US7582333B2 (en) * 2003-03-11 2009-09-01 Seiko Epson Corporation Pattern forming method, pattern forming apparatus, method of manufacturing device, conductive film wiring, electro-optical device, and electronic apparatus
TW201203056A (en) * 2010-03-25 2012-01-16 Tyco Electronics Corp Bezel-less acoustic touch apparatus
US20140198072A1 (en) * 2013-01-11 2014-07-17 Paul J. Schuele In-Pixel Ultrasonic Touch Sensor for Display Applications
WO2014144923A1 (en) * 2013-03-15 2014-09-18 Sonovia Holdings Llc Light and ultrasonic transducer device
US20140352440A1 (en) * 2013-06-03 2014-12-04 Qualcomm Mems Technologies, Inc. Ultrasonic sensor with bonded piezoelectric layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656384A (en) * 1984-10-25 1987-04-07 Siemens Aktiengesellschaft Ultrasonic detection sensor in hybrid structure with appertaining electronic circuit
JP2003153389A (en) * 2001-11-16 2003-05-23 Seiko Instruments Inc Piezoelectric transducer, manufacturing method thereof and sphygmograph
JP2004046500A (en) * 2002-07-11 2004-02-12 Seiko Instruments Inc Ultrasonic touch panel and method of calculating position of ultrasonic touch panel
US7582333B2 (en) * 2003-03-11 2009-09-01 Seiko Epson Corporation Pattern forming method, pattern forming apparatus, method of manufacturing device, conductive film wiring, electro-optical device, and electronic apparatus
TW201203056A (en) * 2010-03-25 2012-01-16 Tyco Electronics Corp Bezel-less acoustic touch apparatus
US20140198072A1 (en) * 2013-01-11 2014-07-17 Paul J. Schuele In-Pixel Ultrasonic Touch Sensor for Display Applications
WO2014144923A1 (en) * 2013-03-15 2014-09-18 Sonovia Holdings Llc Light and ultrasonic transducer device
US20140352440A1 (en) * 2013-06-03 2014-12-04 Qualcomm Mems Technologies, Inc. Ultrasonic sensor with bonded piezoelectric layer

Also Published As

Publication number Publication date
TW201629441A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP6065950B2 (en) Touch sensor
CN104681711B (en) Ultrasonic sensor and its manufacture method
US9547787B2 (en) Fingerprint identification unit and device
KR20100008704A (en) Non-contact touch panel using nanowire
TW201246033A (en) Input device and method for manufacturing the same
JP6879826B2 (en) Touch sensor
WO2019056658A1 (en) Flexible touch panel and preparation method therefor and touch device
TWI746560B (en) Touch sensor
JP2017216451A (en) Piezoelectric film with transparent electrode, and pressure sensor
TW201543015A (en) Pressure detection apparatus
KR20100065816A (en) Transparent touch panel using piezoelectric substrate and manufacturing method thereof
TWI621982B (en) Fingerprint identification device, manufacturing method thereof and display device
JP2019096680A (en) Piezoelectric film and piezoelectric sensor
TWI580933B (en) Ultrasonic sensor
TWI585375B (en) Ultrasonic sensor and manufacturing method thereof
TWI581192B (en) Fingerprint identification unit and device
WO2017209081A1 (en) Piezoelectric film with transparent electrode, and pressure sensor
US10564755B2 (en) Flexible touch panel, manufacturing method thereof, and touch device with the same
WO2020066936A1 (en) Piezoelectric device and method of manufacturing piezoelectric device
TWI668507B (en) Touch display device
WO2017209082A1 (en) Piezoelectric sensor and display using said piezoelectric sensor
JP2019125084A (en) Touch sensor
JP2017215319A (en) Piezoelectric sensor and display using piezoelectric sensor
KR102568647B1 (en) Piezoelectric sensor and method for manufacturing piezoelectric sensor
WO2020228523A1 (en) Ultrasonic sensor, display panel, and display device