TWI584287B - Device and method for improved threshold voltage distribution for non-volatile memory - Google Patents

Device and method for improved threshold voltage distribution for non-volatile memory Download PDF

Info

Publication number
TWI584287B
TWI584287B TW104133423A TW104133423A TWI584287B TW I584287 B TWI584287 B TW I584287B TW 104133423 A TW104133423 A TW 104133423A TW 104133423 A TW104133423 A TW 104133423A TW I584287 B TWI584287 B TW I584287B
Authority
TW
Taiwan
Prior art keywords
group
memory cells
voltage
string
memory
Prior art date
Application number
TW104133423A
Other languages
Chinese (zh)
Other versions
TW201714178A (en
Inventor
程政憲
李致維
古紹泓
呂文彬
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW104133423A priority Critical patent/TWI584287B/en
Publication of TW201714178A publication Critical patent/TW201714178A/en
Application granted granted Critical
Publication of TWI584287B publication Critical patent/TWI584287B/en

Links

Description

用以改善非揮發性記憶體之閥電壓分布之裝置及方法 Apparatus and method for improving valve voltage distribution of non-volatile memory

本發明實施例係關於半導體裝置,尤其是,用以改善程式化閥電壓(Vt)分布的方法以及半導體記憶裝置的操作。 Embodiments of the present invention relate to semiconductor devices, and more particularly to methods for improving the distribution of programmed valve voltage (Vt) and operation of semiconductor memory devices.

半導體裝置典型地被分類成揮發性半導體裝置(需電源以維持資料的儲存)或非揮發性半導體裝置(即便移除電源亦可保持資料)。非揮發性半導體裝置例如是快閃記憶裝置,其通常可分為NOR或NAND快閃記憶裝置。這樣的快閃記憶裝置可以3D架構的形式在彼此間的頂部堆疊記憶胞或層。當需要較快的程式化及抹除速度,典型上係採用3D NAND快閃記憶體,有較大的一部分是因為,其串化連續(serialized)的結構可讓程式化及抹除操作執行於整串的記憶胞。在垂直NAND串中,因為非標準的蝕刻角,故各層具有不同的直徑。 Semiconductor devices are typically classified as volatile semiconductor devices (which require a power supply to maintain the storage of data) or non-volatile semiconductor devices (which retain data even when the power supply is removed). Non-volatile semiconductor devices are, for example, flash memory devices, which are generally classified into NOR or NAND flash memory devices. Such flash memory devices can stack memory cells or layers on top of each other in the form of a 3D architecture. When faster programming and erasing speeds are required, 3D NAND flash memory is typically used, in large part because its serialized serialized structure allows programmatic and erase operations to be performed on A whole string of memory cells. In vertical NAND strings, the layers have different diameters because of the non-standard etch angle.

至於與圓形記憶胞關聯的3D NAND快閃記憶體,直徑差異包括不同的程式化性能,其傳統上會導致較寬的程式化閥電壓(Vt)分布。當記憶胞的直徑越大,所對應的程式化時間也 越長。關於此點,大直徑所呈現的挑戰會例如像是程式化時間上的程式化效率不足。此外,當一串中包括不同直徑的記憶胞,對該串的程式化時間將難以掌控。因此,如何改善3D NAND裝置的程式化閥電壓分布,進而改善(例如減少)程式化時間,乃目前業界所致力的課題之一。 As for the 3D NAND flash memory associated with circular memory cells, the difference in diameter includes different stylized performance, which traditionally results in a wider stylized valve voltage (Vt) distribution. When the diameter of the memory cell is larger, the corresponding stylized time is also The longer it is. In this regard, the challenges presented by large diameters are, for example, insufficiently stylized in stylized time. In addition, when a string of memory cells of different diameters is included, the stylized time of the string will be difficult to control. Therefore, how to improve the programmed valve voltage distribution of 3D NAND devices and improve (for example, reduce) the programming time is one of the current topics in the industry.

本發明實施例提出改善的半導體裝置操作,尤其是,用以控制對應於一非揮發性記憶裝置,像是3D NAND快閃記憶體,之程式化閥電壓分布的方法。 Embodiments of the present invention provide improved semiconductor device operation, and in particular, a method for controlling a programmed valve voltage distribution corresponding to a non-volatile memory device, such as a 3D NAND flash memory.

本發明之一方面,係提出一種用以控制對應於一非揮發性記憶裝置之程式化閥電壓分布的方法。在一實施例中,該方法包括提供非揮發性記憶裝置。該非揮發性記憶裝置包括一或多個串,各串包括多個記憶胞,該些記憶胞包括一第一記憶胞以及一第二記憶胞。該方法更包括透過對第一記憶胞施加第一功能電壓並對第二記憶胞施加第二功能電壓,以執行該非揮發性記憶裝置之一功能。該第一功能電壓與該第二功能電壓相異。 In one aspect of the invention, a method for controlling a voltage distribution of a programmed valve corresponding to a non-volatile memory device is presented. In an embodiment, the method includes providing a non-volatile memory device. The non-volatile memory device includes one or more strings, each string including a plurality of memory cells, the memory cells including a first memory cell and a second memory cell. The method further includes performing a function of the non-volatile memory device by applying a first functional voltage to the first memory cell and applying a second functional voltage to the second memory cell. The first functional voltage is different from the second functional voltage.

本發明之另一方面,係提出一種程式化閥電壓分布被控制的非揮發性記憶裝置。該非揮發性記憶裝置包括沿著一串的多個記憶胞。該串包括一通道區域。各記憶胞包括位在該串處的一字元線。該些記憶胞包括具有一第一字元線的一第一記憶胞,以及具有一第二字元線的一第二記憶胞。透過經由該第一字元線對第一記憶胞施加第一功能電壓並經由該第二字元線對第 二記憶胞施加第二功能電壓,該第一記憶胞與該第二記憶胞使一功能執行於其上。該第一功能電壓與該第二功能電壓相異。 In another aspect of the invention, a non-volatile memory device in which a programmed valve voltage distribution is controlled is provided. The non-volatile memory device includes a plurality of memory cells along a string. The string includes a channel area. Each memory cell includes a word line located at the string. The memory cells include a first memory cell having a first word line and a second memory cell having a second word line. Applying a first functional voltage to the first memory cell via the first word line and via the second word line pair The second memory cell applies a second functional voltage to which the first memory cell and the second memory cell perform a function. The first functional voltage is different from the second functional voltage.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

100、200‧‧‧串 100, 200‧‧‧ string

10a、10b、10c、10d、WL1~WLN‧‧‧字元線 10a, 10b, 10c, 10d, WL1~WLN‧‧‧ character lines

θ‧‧‧外角 Θ‧‧‧outer corner

RTOP‧‧‧頂部半徑 R TOP ‧‧‧ top radius

RBOT‧‧‧底部半徑 R BOT ‧‧‧ bottom radius

DA、DB、DC、DD‧‧‧通道寬度 D A , D B , D C , D D ‧‧‧ channel width

50‧‧‧通道區域 50‧‧‧Channel area

40‧‧‧穿隧層 40‧‧‧Through tunnel

30‧‧‧捕捉層 30‧‧‧ Capture layer

20‧‧‧阻隔或介電層 20‧‧‧Barrier or dielectric layer

210、220、230‧‧‧記憶胞 210, 220, 230‧‧‧ memory cells

PV‧‧‧program verify threshold(程式化檢驗臨界) PV‧‧‧program verify threshold

EV‧‧‧erase verify threshold(抹除檢驗臨界) EV‧‧‧erase verify threshold

VWL_1~VWL_n‧‧‧WL1~WLN字元線所對應外加之電壓 V WL_1 ~V WL_n ‧‧‧ WL1~WLN word line corresponding to the applied voltage

Vg‧‧‧程式化電壓 V g ‧‧‧stylized voltage

△Vg‧‧‧程式化電壓變化 △V g ‧‧‧stylized voltage change

5、6‧‧‧閥電壓變異 5, 6‧‧‧ valve voltage variation

P‧‧‧點 P‧‧‧ points

400‧‧‧程序 400‧‧‧Program

410、420、430、440、450‧‧‧步驟 410, 420, 430, 440, 450 ‧ ‧ steps

第1A圖繪示依據本發明實施例之一例非揮發性記憶裝置之一例串之透視圖。 FIG. 1A is a perspective view showing an example of a non-volatile memory device according to an embodiment of the present invention.

第1B圖為第1A圖所示之該串之剖視圖。 Fig. 1B is a cross-sectional view of the string shown in Fig. 1A.

第2A及2B圖繪示傳統上串之一部分的操作以及導致沿著該串之記憶胞的寬閥電壓變異。 Figures 2A and 2B illustrate the operation of one of the conventional strings and the wide valve voltage variation that results in memory cells along the string.

第3A及3B圖繪示依據本發明實施例之串之一部分的例示性操作,以及沿著該串之記憶胞的閥電壓變異的對應改善(減小)。 3A and 3B are diagrams showing an exemplary operation of a portion of a string in accordance with an embodiment of the present invention, and a corresponding improvement (decrease) in valve voltage variation along the memory cells of the string.

第4A及4B圖繪示依據本發明不同實施例之程式化演算法例子。 4A and 4B illustrate examples of stylized algorithms in accordance with various embodiments of the present invention.

第5圖繪示依據本發明之一實施例之基於一群組的一例改善後程式化閥電壓分布圖。 FIG. 5 is a diagram showing an example of an improved post-programmed valve voltage distribution based on a group according to an embodiment of the present invention.

第6圖係一流程圖,其繪示依據本發明之一實施例之用以控制電壓分布之程序。 Figure 6 is a flow chart showing a procedure for controlling voltage distribution in accordance with an embodiment of the present invention.

在本文中,參照所附圖式仔細地描述本發明的一些實施例,但不是所有實施例都有表示在圖示中。實際上,這些發明可使用多種不同的變形,且並不限於本文中的實施例。相對的, 本揭露提供這些實施例以滿足應用的法定要求。圖式中相同的參考符號用來表示相同或相似的元件。 In the present description, some embodiments of the invention are described in detail with reference to the drawings, but not all embodiments are illustrated in the drawings. In fact, these inventions may use a variety of different variations and are not limited to the embodiments herein. relatively, The disclosure provides these embodiments to meet the statutory requirements of the application. The same reference symbols are used in the drawings to refer to the same or similar elements.

雖然於此採用特定之用語,但它們只以一通用且描述性的意義使用且並非為了限制之目的。除非用語已以其他方式被定義,否則本文所使用包括技術及科學用語之所有用語具有與該本發明具有通常知識者所通常理解的相同意思。將更進一步理解,例如在常用字典中所定義的那些用語應被解釋成具有如熟習本發明所屬之本項技藝者所通常理解之意思。將更進一步理解,例如在常用字典中所定義的那些用語應被解釋成具有與相關技藝與本揭露書之上下文中,其意思相符之解釋。除非在此揭露書明確地如此定義,否則這些一般使用的用語不會以一理想化的或過於正式的意義解釋。 Although specific terms are employed herein, they are used in a generic and descriptive sense and not for the purpose of limitation. Unless the terms have been defined in other ways, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those of ordinary skill in the art. It will be further understood that those terms, such as those defined in commonly used dictionaries, should be interpreted as having the meaning commonly understood by those skilled in the art to which the invention pertains. It will be further understood that those terms, such as those defined in commonly used dictionaries, should be interpreted as having an explanation consistent with the meaning of the related art and the disclosure. Unless generally stated so in this disclosure, these commonly used terms are not to be interpreted in an idealized or overly formal sense.

本文所述的「閘極結構」,係指半導體裝置中的元件,像是記憶裝置。記憶裝置的非限制性例子包括快閃記憶裝置(例如NAND快閃記憶裝置)。可抹除程式化唯讀記憶體(Erasable Programmable Read-Only Memory,EPROM)以及電性可抹除程式化唯讀記憶體(Electrically Erasable Programmable Read-Only Memory,EEPROM)係快閃記憶裝置的非限定例子。本發明之閘極結構可以是一閘極結構集合,可於記憶裝置中操作,或是所述閘極結構的一或多個元件的一子集合。 As used herein, "gate structure" refers to an element in a semiconductor device, such as a memory device. Non-limiting examples of memory devices include flash memory devices (e.g., NAND flash memory devices). Undefined Erasable Programmable Read-Only Memory (EPROM) and Electrically Erasable Programmable Read-Only Memory (EEPROM) flash memory devices example. The gate structure of the present invention can be a collection of gate structures that can operate in a memory device or a subset of one or more components of the gate structure.

本文所述的「非揮發性記憶體裝置」,係指即使移除電源後,仍可儲存資訊的半導體裝置。非揮發性記憶體裝置包括 但不受限於,罩幕式唯讀記憶體(Mask Read-Only Memory)、可程式化唯讀記憶體(Programmable Read-Only Memory)、可抹除程式化唯讀記憶體(Erasable Programmable ROM)、電性可抹除程式化唯讀記憶體(Electrically Erasable Programmable Read-Only Memory),以及快閃記憶體,像是NAND及NOR快閃記憶體。 The term "non-volatile memory device" as used herein refers to a semiconductor device that can store information even after the power is removed. Non-volatile memory devices include But not limited to, Mask Read-Only Memory, Programmable Read-Only Memory, Erasable Programmable ROM Electrically Erasable Programmable Read-Only Memory, and flash memory, such as NAND and NOR flash memory.

本文所述之「基底(substrate)」,可包括任何底層材質,其上可形成裝置,電路,磊晶層或半導體。一般來說,基底可用以定義位於半導體裝置底下的層,或者是形成半導體裝置的基層。基底可包括矽、摻雜矽(doped silicon)、鍺、矽鍺(silicon germanium)、半導體複合物(semiconductor compound),或其他半導體材質之一或任何組合。 A "substrate" as used herein may include any underlying material on which devices, circuits, epitaxial layers or semiconductors may be formed. In general, the substrate can be used to define a layer underlying the semiconductor device or to form a base layer of the semiconductor device. The substrate can comprise one or any combination of germanium, doped silicon, germanium, silicon germanium, semiconductor compound, or other semiconductor materials.

本發明之閘極結構(例如非揮發性記憶裝置)及方法改善了用於隨機存取的非揮發性記憶裝置,像是3D NAND快閃記憶體,的程式化閥電壓分布。為此,非揮發性記憶裝置的程式化速度將基於非均勻程式化電壓而增加。 The gate structure (e.g., non-volatile memory device) and method of the present invention improves the programmed valve voltage distribution of a non-volatile memory device, such as a 3D NAND flash memory, for random access. To this end, the stylized speed of the non-volatile memory device will increase based on the non-uniformly programmed voltage.

本發明係關於多種功能,包括程式化(例如PGM)、抹除(例如ERS)、讀取(例如READ)或任何施加電壓至同一串上多個記憶胞的其他功能。本發明可實施於不同類型的裝置及/或記憶胞,包括3D NAND快閃記憶體、其它的非揮發性記憶裝置(像是3D NOR、3D ROM、2D NAND或2D NOR)、規則配置下的MOS記憶胞或任何其它用以在規則配置下進行電壓控制的裝置。為了說明的目的,本文提供程式化3D NAND快閃記憶體的例子。本 領域具有通常知識者基於本文所提供之揭露內容,可瞭解如何將本發明應用置其它功能記其它類型的裝置上。 The present invention is directed to a variety of functions, including stylization (e.g., PGM), erasure (e.g., ERS), reading (e.g., READ), or any other function that applies voltage to multiple cells on the same string. The invention can be implemented in different types of devices and/or memory cells, including 3D NAND flash memory, other non-volatile memory devices (such as 3D NOR, 3D ROM, 2D NAND or 2D NOR), under regular configuration MOS memory cells or any other device for voltage control in a regular configuration. For illustrative purposes, this article provides an example of stylized 3D NAND flash memory. this Those of ordinary skill in the art will understand how to apply other functions to other types of devices based on the disclosure provided herein.

第1A及1B圖繪示非揮發性記憶裝置(例如3D NAND快閃記憶體)之一部份。1B圖為延著1A圖A-A”連線為切線,所繪製的截面圖式。所繪示之非揮發性記憶裝置之該部分包括垂直串100,其包括多個記憶胞。所繪示之串100包括四個記憶胞,然而在不同實施例中,串100可基於應用的不同而包括多於四個或小於四個記憶胞。一般來說,串100通常包括有字元線10a、10b、10c及10d(例如,對應於各記憶胞的字元線)包覆其週圍的圓柱部分。需注意,儘管串100一般來說是圓柱型,其實際上是輕微的圓錐形。蝕刻該串多層的製程使得該串輕微地偏離標準。因此,外角θ係小於90°。這使得串頂部的半徑RTOP會比串底部的半徑RBOT來得大。因此,串100中各記憶胞的通道寬度係與鄰近的記憶胞通道寬度相異(例如DA>DB>DC>DD)。 Figures 1A and 1B illustrate a portion of a non-volatile memory device, such as a 3D NAND flash memory. 1B is a cross-sectional view drawn along line 1A of the AA" line, and the portion of the non-volatile memory device shown includes a vertical string 100 comprising a plurality of memory cells. 100 includes four memory cells, however in various embodiments, string 100 can include more than four or less than four memory cells, depending on the application. In general, string 100 typically includes word lines 10a, 10b, 10c and 10d (e.g., word lines corresponding to respective memory cells) envelop the cylindrical portion around them. Note that although the string 100 is generally cylindrical, it is actually a slightly conical shape. The process causes the string to deviate slightly from the standard. Therefore, the outer angle θ is less than 90. This causes the radius R TOP of the string top to be larger than the radius R BOT at the bottom of the string. Therefore, the channel width of each memory cell in the string 100 is It is different from the adjacent memory cell width (for example, D A > D B > D C > D D ).

一般來說,NAND串100包括環繞通道區域50的穿隧層40、捕捉層30以及阻隔層或介電層20。在不同實施例中,穿隧層40可由氧化物所組成,並具有約5nm的厚度。在部分實施例中。阻隔或介電層20可由氧化物所組成並具有約7nm的厚度。通道區域50可包括多晶矽材料或其它合適材料。字元線(例如10a、10b、10c及10d)環繞阻隔或介電層20,使得每一記憶胞有一字元線。字元線(例如10a、10b、10c及10d)可由多晶矽材料、金屬或其它合適材料所組成。 In general, NAND string 100 includes a tunneling layer 40 surrounding the channel region 50, a capture layer 30, and a barrier layer or dielectric layer 20. In various embodiments, tunneling layer 40 can be composed of an oxide and have a thickness of about 5 nm. In some embodiments. The barrier or dielectric layer 20 can be composed of an oxide and have a thickness of about 7 nm. Channel region 50 may comprise a polysilicon material or other suitable material. The word lines (e.g., 10a, 10b, 10c, and 10d) surround the barrier or dielectric layer 20 such that each memory cell has a word line. The word lines (e.g., 10a, 10b, 10c, and 10d) may be comprised of a polycrystalline germanium material, metal, or other suitable material.

第2A及2B圖繪示具有三個記憶胞210、220及230的NAND串200的正常操作。在此例中,記憶胞210的通道直徑或寬度W1為100nm,記憶胞220的通道直徑或寬度W2為90nm,記憶胞230的通道直徑或寬度W3為80nm。在執行程式化功能的過程中,均勻電壓Vg=20V經由各記憶胞各自的字元線而施加至各記憶胞上。當程式化功能被執行,程式化閥電壓分布因為記憶胞間速度的差異而變寬,其中該記憶胞速度差異是因為記憶胞的通道直徑或寬度的差異所造成。因此,依據本例,當施加均勻電壓20V,因為三個記憶胞210、220、230的寬度差異,需注意,儘管記憶胞串200一般來說是圓柱型,其實際上是輕微的圓錐形。蝕刻該串多層的製程使得該串輕微地偏離標準。因此,外角α係小於90°。程式化電壓在時間上導致了寬的程式化閥電壓變異5。如圖所示,當一記憶胞的通道寬度越大,對該記憶胞的程式化時間就越長。反之,當一記憶胞的通道寬度越小,對該記憶胞的程式化時間就越短。如第2B圖所示,在時間1 x 10-5秒時,三個記憶胞的程式化閥電壓變異5大約是1~1.5V。由於此三個記憶胞間通道寬度的差異,此三個記憶胞間的變異大約是各記憶胞閥電壓的20%。 2A and 2B illustrate the normal operation of NAND string 200 having three memory cells 210, 220, and 230. In this example, the channel diameter or width W1 of the memory cell 210 is 100 nm, the channel diameter or width W2 of the memory cell 220 is 90 nm, and the channel diameter or width W3 of the memory cell 230 is 80 nm. During the execution of the stylized function, a uniform voltage V g = 20 V is applied to each memory cell via the respective word line of each memory cell. When the stylized function is executed, the stylized valve voltage distribution is broadened due to the difference in memory cell velocity, which is caused by the difference in channel diameter or width of the memory cell. Therefore, according to the present example, when a uniform voltage of 20 V is applied, because of the difference in width of the three memory cells 210, 220, 230, it is noted that although the memory cell string 200 is generally cylindrical, it is actually slightly conical. The process of etching the string of layers causes the string to deviate slightly from the standard. Therefore, the external angle α is less than 90°. The stylized voltage causes a wide stylized valve voltage variation over time5. As shown, the larger the channel width of a memory cell, the longer the stylization time for that memory cell. Conversely, when the channel width of a memory cell is smaller, the programming time for the memory cell is shorter. As shown in Fig. 2B, at a time of 1 x 10 -5 seconds, the stylized valve voltage variation 5 of the three memory cells is approximately 1 to 1.5V. Due to the difference in the width of the three memory channels, the variation between the three memory cells is approximately 20% of the voltage of each memory cell.

本發明提出降低沿著串之記憶胞之閥電壓變異的方法,藉此使閥電壓分佈變得緊密。第3A及3B圖繪示本方法之一例。第3A圖繪示串200包括記憶胞210、220及230的例子,其中,在此例子中,記憶胞210的通道直徑或寬度為100nm,記憶 胞220的通道直徑或寬度為90nm,記憶胞230的通道直徑或寬度為80nm。非均勻電壓係被施加,而非經由對應字元線施加20V的均勻電壓至各記憶胞。因此,記憶胞210的字元線係對記憶胞210施加程式化電壓Vg=20V,記憶胞220的字元線係對記憶胞220施加程式化電壓Vg=19.5V,而記憶胞230的字元線係對記憶胞230施加程式化電壓Vg=19V。因此,相較於施加至具有較大通道直徑或寬度之記憶胞的程式化電壓,施加至具有較小通道直徑或寬度的記憶胞的程式化電壓較小。第3B圖繪示當以非均勻程式化電壓操作時,以時間作為函數的該三個記憶胞的閥電壓變異。尤其,在時間為1 x 10-5秒時,該三個記憶胞的閥電壓變異6為最小。為此,施加非均勻電壓可減少各記憶胞間的程式化閥電壓變異並降低程式化時間。 The present invention proposes a method of reducing valve voltage variation along a memory cell of a string whereby the valve voltage distribution is made tight. Figures 3A and 3B illustrate an example of the method. FIG. 3A illustrates an example in which the string 200 includes memory cells 210, 220, and 230. In this example, the channel diameter or width of the memory cell 210 is 100 nm, and the channel diameter or width of the memory cell 220 is 90 nm. The memory cell 230 The channel diameter or width is 80 nm. A non-uniform voltage is applied instead of applying a uniform voltage of 20V to the respective memory cells via the corresponding word line. Therefore, the word line of the memory cell 210 applies a stylized voltage V g = 20 V to the memory cell 210, and the word line of the memory cell 220 applies a stylized voltage V g = 19.5 V to the memory cell 220, while the memory cell 230 stylized character line is applied a voltage V g = 19V to the memory cell 230. Thus, the stylized voltage applied to a memory cell having a smaller channel diameter or width is smaller than a programmed voltage applied to a memory cell having a larger channel diameter or width. Figure 3B illustrates the valve voltage variation of the three memory cells as a function of time when operating at a non-uniformly programmed voltage. In particular, the valve voltage variation 6 of the three memory cells is minimal at a time of 1 x 10 -5 seconds. For this reason, applying a non-uniform voltage reduces the stylized valve voltage variation between memory cells and reduces the stylization time.

在不同實施例中,經由對應字元線而施加至一串中各記憶胞的程式化電壓可用來最小化該串上記憶胞的閥電壓變異。舉例來說,對該串中各記憶胞的程式化電壓,Vg,可以是不相同的。在其他實施例中,該串可被分成兩個區段或是群組,其中第一程式化電壓係被施加至通道直徑或寬度等於或大於一閥值的記憶胞,第二程式化電壓係被施加至通道直徑或寬度小於該閥值的記憶胞。在此例中,第一程式化電壓可比第二程式化電壓來得大。在不同實施例中,可利用多個閥值寬度將該串分成多個區段或群組,其中各區段或群組中的記憶胞係被提供一特定程式化電壓。 In various embodiments, the stylized voltage applied to each of the cells in a string via the corresponding word line can be used to minimize the valve voltage variation of the memory cells on the string. For example, the voltage of each memory cell programmable string, V g, may not be the same. In other embodiments, the string can be divided into two segments or groups, wherein the first stylized voltage is applied to a memory cell having a channel diameter or width equal to or greater than a threshold, and a second stylized voltage system A memory cell applied to a channel diameter or width that is less than the threshold. In this example, the first stylized voltage can be greater than the second stylized voltage. In various embodiments, the string can be divided into a plurality of segments or groups using a plurality of threshold widths, wherein the memory cells in each segment or group are provided with a particular stylized voltage.

在不同實施例中,施加至兩記憶胞的程式化電壓差異可能是基於該兩記憶胞之間的通道寬度差異。在其他實施例中,兩鄰近記憶胞間的程式化電壓差異可以是預先決定的,而不是基於該兩鄰近記憶胞之間的通道寬度差異。舉例來說,在一些實施例中,任兩對鄰近記憶胞之間的程式化電壓差異皆相同。此係指一規則程式化電壓分布。因此,在上述例子中,施加至記憶胞210、220的程式化電壓間的差異與施加至記憶胞220、230的程式化電壓間的差異相同。在其他實施例中,第一對鄰近記憶胞和第二對鄰近記憶胞間的程式化電壓可以是不同的。此係指一不規則程式化電壓分布。舉例來說,施加至記憶胞210、220的程式化電壓間的差異與施加至記憶胞220、230的程式化電壓間的差異不同。 In various embodiments, the stylized voltage difference applied to the two memory cells may be based on a difference in channel width between the two memory cells. In other embodiments, the stylized voltage difference between two adjacent memory cells may be predetermined rather than based on the difference in channel width between the two adjacent memory cells. For example, in some embodiments, the stylized voltage differences between any two pairs of adjacent memory cells are the same. This refers to a regular stylized voltage distribution. Therefore, in the above example, the difference between the stylized voltages applied to the memory cells 210, 220 is the same as the difference between the stylized voltages applied to the memory cells 220, 230. In other embodiments, the stylized voltages between the first pair of adjacent memory cells and the second pair of adjacent memory cells may be different. This refers to an irregular stylized voltage distribution. For example, the difference between the stylized voltages applied to the memory cells 210, 220 is different from the difference between the stylized voltages applied to the memory cells 220, 230.

本發明領域具有通常知識者可瞭解,在考慮其他操作限制的情況下,施加至一特定串之記憶胞的程式化電壓分布可用來使該串記憶胞的閥電壓變異最小化。舉例來說,可將相同的程式化電壓分布施加至包括半導體裝置的各串上。在另一例子中,裝置可被限制為沿著各串提供k(k為正整數)個不同的程式化電壓,但串可包括n(n為正整數)個不同的記憶胞。 Those skilled in the art will appreciate that the programmed voltage distribution applied to a particular string of memory cells can be used to minimize valve voltage variations of the string of memory cells, taking into account other operational constraints. For example, the same stylized voltage distribution can be applied to each of the strings including the semiconductor device. In another example, the device can be limited to provide k (k is a positive integer) different stylized voltages along the strings, but the string can include n (n is a positive integer) different memory cells.

第4A及4B圖繪式施加至一串中n個記憶胞的兩例程式化電壓分布,其中△Vg係一程式化電壓變化。舉例來說,在第3A和3B圖所示的例子中,施加至記憶胞210及220的程式化電壓間的差異以及施加至記憶胞220及230的程式化電壓間的差 異△Vg皆為0.5V。如上所指,在不同實施例中,程式化電壓分布可以是規則的(例如,任兩鄰近記憶胞或組之間的△Vg可以是常數),或者,程式化電壓分布可以是不規則的(例如,鄰近記憶胞或組之間的△Vg可以是不同的)。 Figures 4A and 4B depict two programmed voltage distributions applied to n memory cells in a string, where ΔV g is a stylized voltage change. For example, in the examples shown in FIGS. 3A and 3B, the difference between the stylized voltages applied to the memory cells 210 and 220 and the difference ΔV g between the stylized voltages applied to the memory cells 220 and 230 are 0.5V. As indicated above, in various embodiments, the stylized voltage distribution may be regular (eg, ΔV g between any two adjacent memory cells or groups may be constant), or the stylized voltage distribution may be irregular (For example, ΔV g between adjacent memory cells or groups may be different).

第5圖繪示包括N(N為正整數)個記憶胞的一例串。各記憶胞對應一字元線,如所示之標記WL1、WL2、WL3、...、WLN。該N個記憶胞被分成n(n為小於或等於N的正整數)個組。在一些實施例中,各組中的多個記憶胞是相同的。在其他實施例中,一些組可當中可包括不同數量的記憶胞。然而,各組中包括至少一記憶胞。各組係被施加一特定的程式化電壓。舉例來說,組1可包括沿著該串的所有記憶胞中具有最大通道寬度的5個記憶胞,組2可包括沿著該串的所有記憶胞中具有最小通道寬度的4個記憶胞。第一程式化電壓可經由組1之記憶胞所各自對應的字元線而施加至組1之該些記憶胞上,第二程式化電壓可經由組2之記憶胞所各自對應的字元線而施加至組2之該些記憶胞上。在此例子中,第一程式化電壓大於第二程式化電壓。 Fig. 5 is a diagram showing an example of a string including N (N is a positive integer) memory cells. Each memory cell corresponds to a word line, such as the marks WL1, WL2, WL3, ..., WLN. The N memory cells are divided into n (n is a positive integer less than or equal to N) groups. In some embodiments, multiple memory cells in each group are identical. In other embodiments, some groups may include different numbers of memory cells. However, each group includes at least one memory cell. Each group is applied with a specific stylized voltage. For example, group 1 can include 5 memory cells having the largest channel width among all of the memory cells of the string, and group 2 can include 4 memory cells having the smallest channel width among all of the memory cells along the string. The first stylized voltage can be applied to the memory cells of the group 1 via the corresponding word lines of the memory cells of the group 1, and the second stylized voltage can be corresponding to the word lines corresponding to the memory cells of the group 2. And applied to the memory cells of group 2. In this example, the first stylized voltage is greater than the second stylized voltage.

第5圖之右側圖繪示沿著串之n組記憶胞的組數量對閥電壓分布所產生的效應,其中各組係被施加一特定程式化電壓,且各組係被施加一不同的特定程式化電壓。舉例來說,組1中所有的記憶胞皆被施加第一程式化電壓,組2中所有的記憶胞皆被施加第二程式化電壓,第一程式化電壓與第二程式化電壓不相等。當沿著串之n組記憶胞的組數量是少的,相較於將沿著該 串的記憶胞分成n組,將沿著該串的記憶胞分成n+1組可顯著地降低閥電壓分布的寬度。然而,在點P之後,增加組數量只會和緩地降低閥電壓分布的寬度。因此,在一實施例中,所使用的組數量會與點P一致,使得閥電壓分布被減小,施加非均勻程式化電壓對記憶裝置的其他性能特徵的影響得以最小化。 The right side of Figure 5 shows the effect of the number of groups of n groups of memory cells along the string on the valve voltage distribution, where each group is applied with a specific stylized voltage and each group is applied a different specific Stylized voltage. For example, all of the memory cells in group 1 are applied with a first stylized voltage, and all of the memory cells in group 2 are applied with a second stylized voltage, the first stylized voltage being unequal to the second stylized voltage. When the number of groups of memory cells along the n-group of the string is small, compared to The memory cells of the string are divided into n groups, and dividing the memory cells along the string into n+1 groups can significantly reduce the width of the valve voltage distribution. However, after point P, increasing the number of groups only gently reduces the width of the valve voltage distribution. Thus, in one embodiment, the number of groups used will coincide with point P such that the valve voltage distribution is reduced and the effect of applying a non-uniform stylized voltage on other performance characteristics of the memory device is minimized.

第6圖繪示依據本發明之一實施例之用以控制非揮發性記憶裝置所對應之程式化閥電壓分布的程序400的流程圖。程序400始於步驟410,係提供一記憶裝置(例如3D NAND快閃記憶裝置)。記憶裝置可包括一或多個串,各串包括多個記憶胞,例如第1A及1B圖所示。各記憶胞對應於該串之通道區域的一部分。通道區域的該部分具有與其關聯的一特定通道寬度。在步驟420,係決定各串中所使用的組數量。舉例來說,在一實施例中,可完成類似於第5圖所示的分析以決定各組的最佳組數量。在其他實施例中,可用操作限制或其他限制來決定各串中的組數量。在步驟430,串中的記憶胞被分配至該些組中。舉例來說,一串中開頭的五個記憶胞可被分配至組1,沿著該串的接下來五個記憶胞可被分配至組2,以此類推。 FIG. 6 is a flow chart showing a routine 400 for controlling a programmed valve voltage distribution corresponding to a non-volatile memory device in accordance with an embodiment of the present invention. The process 400 begins at step 410 by providing a memory device (e.g., a 3D NAND flash memory device). The memory device can include one or more strings, each string including a plurality of memory cells, such as shown in Figures 1A and 1B. Each memory cell corresponds to a portion of the channel region of the string. This portion of the channel region has a particular channel width associated with it. At step 420, the number of groups used in each string is determined. For example, in one embodiment, an analysis similar to that shown in Figure 5 can be performed to determine the optimal number of groups for each group. In other embodiments, operational limits or other restrictions may be used to determine the number of groups in each string. At step 430, the memory cells in the string are assigned to the groups. For example, the first five memory cells in a string can be assigned to group 1, the next five memory cells along the string can be assigned to group 2, and so on.

在步驟440,係決定施加至各組的程式化電壓分布。在不同實施例中,此步驟可包括分析組中記憶胞的通道寬度(例如,比較組1記憶胞的平均通道寬度與組2記憶胞的平均通道寬度,以決定組1和組2間的程式化電壓差)。在不同實施例中,串之記憶胞不會被分組,針對各記憶胞的程式化電壓係被決定。 在一些實施例中,程式化電壓的分布可基於操作限制及/或其它限制而決定。 At step 440, the stylized voltage distribution applied to each group is determined. In various embodiments, this step can include analyzing the channel width of the memory cells in the group (eg, comparing the average channel width of the group 1 memory cells with the average channel width of the group 2 memory cells to determine the program between group 1 and group 2) Voltage difference). In various embodiments, the memory cells of the string are not grouped, and the stylized voltage system for each memory cell is determined. In some embodiments, the distribution of stylized voltages may be determined based on operational constraints and/or other limitations.

在步驟450,係實現程式化功能。舉例來說,可經由對應字元線對各記憶胞施加程式化電壓以對串之記憶胞進行程式化。施加至各記憶胞的程式化電壓可以是基於程式化電壓的預定分布。實際上,程式化電壓分布係被施加至沿著串的記憶胞,使得施加至串上之一記憶胞的程式化電壓與施加至串上之一第二記憶胞的程式化電壓相異,藉此降低沿著串之記憶胞之閥電壓變異。本發明技術領域具有通常知識者應可瞭解,如上所指,本方法可用於各種功能,包括程式化、抹除、讀取以及其他電壓係施加至同一串之記憶胞的功能。此外,應可理解本發明可用於各種類型的半導體裝置,包括非揮發性記憶裝置,像是3D NOR、3D ROM、2D NAND、3D NAND、2D NOR、在規則配置下的MOS記憶胞、或是在規則配置下用於電壓控制的任何其他裝置。 At step 450, a stylized function is implemented. For example, a stylized voltage can be applied to each memory cell via a corresponding word line to program the memory cells of the string. The stylized voltage applied to each memory cell can be a predetermined distribution based on the stylized voltage. In effect, the stylized voltage distribution is applied to the memory cells along the string such that the stylized voltage applied to one of the memory cells on the string is different from the programmed voltage applied to one of the second memory cells on the string. This reduces the valve voltage variation along the memory cells of the string. It will be appreciated by those of ordinary skill in the art that, as indicated above, the method can be used for a variety of functions, including stylization, erasing, reading, and the application of other voltage systems to the same string of memory cells. In addition, it should be understood that the present invention can be applied to various types of semiconductor devices, including non-volatile memory devices such as 3D NOR, 3D ROM, 2D NAND, 3D NAND, 2D NOR, MOS memory cells in a regular configuration, or Any other device used for voltage control in a regular configuration.

在不同實施例中,可針對裝置完成一次的步驟420~440。接著,在執行功能(例如PGM,ERS,Read,等等)的各時間,係如本文所述地施加預定的電壓分布,以控制沿著各串之記憶胞之閥電壓變異。舉例來說,預定的電壓分布可被存取並施加,而不是在每次功能要被執行時,才完成步驟420~440以決定電壓分布。 In various embodiments, steps 420-440 may be performed once for the device. Next, at various times during which functions (e.g., PGM, ERS, Read, etc.) are performed, a predetermined voltage distribution is applied as described herein to control valve voltage variations along the memory cells of the strings. For example, a predetermined voltage distribution can be accessed and applied, rather than completing steps 420-440 to determine the voltage distribution each time a function is to be performed.

本發明之一方面係提供一非揮發性記憶裝置,其依據本發明之一方法而被規劃。 One aspect of the present invention provides a non-volatile memory device that is planned in accordance with one of the methods of the present invention.

熟習本發明所屬領域之技藝者將想到,於此提出之本發明之多數修改及其他實施例,係具有上述說明及相關圖式中所提供之教導的益處。因此,應理解本發明並非受限於所揭露的具體實施例,且修改及其他實施例係包括於以下的申請專利範圍之範疇內。此外,雖然上述說明及相關圖式描述在元件及/或功能之某些例示組合之上下文中的實施例,但應可理解到元件及/或功能之不同組合,可在不違背以下的申請專利範圍之範疇下由替代實施例所提供。於此,舉例而言,不同於上面詳述的元件及/或功能的組合,亦被考慮為可在某些以下的申請專利範圍中提出。雖然於此採用特定之用語,但它們僅以一通用且描述性的意義使用,不具有限制之目的。 Numerous modifications and other embodiments of the inventions set forth herein will be apparent to those skilled in the <RTIgt; Therefore, it is to be understood that the invention is not intended to be In addition, although the above description and related drawings are described in the context of some illustrative combinations of elements and/or functions, it should be understood that different combinations of elements and/or functions may be made without departing from the following claims. The scope of the scope is provided by alternative embodiments. Here, for example, combinations of elements and/or functions that are different from those detailed above are also considered to be possible in certain of the following claims. Although specific terms are employed herein, they are used in a generic and descriptive sense and are not limiting.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

400‧‧‧程序 400‧‧‧Program

410、420、430、440、450‧‧‧步驟 410, 420, 430, 440, 450 ‧ ‧ steps

Claims (8)

一種控制對應於非揮發性記憶裝置之一閥電壓分布的方法,包括:提供該非揮發性記憶裝置,該非揮發性記憶裝置包括一串,該串包括一第一群組及一第二群組,該第一群組及該第二群組各包括沿著單一之該串依序排列之複數個記憶胞;以及執行該非揮發性記憶裝置的一功能,其中該功能的執行包括對該第一群組之所有該些記憶胞施加相同的一第一功能電壓,以及對該第二群組之所有該些記憶胞施加相同的一第二功能電壓,該第一功能電壓與該第二功能電壓相異。 A method of controlling a valve voltage distribution corresponding to a non-volatile memory device, comprising: providing the non-volatile memory device, the non-volatile memory device comprising a string, the string comprising a first group and a second group, The first group and the second group each include a plurality of memory cells sequentially arranged along the single string; and a function of executing the non-volatile memory device, wherein execution of the function includes the first group All of the memory cells of the group apply the same first functional voltage, and apply the same second functional voltage to all of the memory cells of the second group, the first functional voltage and the second functional voltage different. 如申請專利範圍第1項所述之方法,其中該第一群組之該些記憶胞包括一第一記憶胞,該第二群組之該些記憶胞包括一第二記憶胞,該第一記憶胞包括由一第一寬度定義的一通道區域,該第二記憶胞包括由一第二寬度定義的一通道區域,該第一寬度與該第二寬度相異。 The method of claim 1, wherein the memory cells of the first group comprise a first memory cell, and the memory cells of the second group comprise a second memory cell, the first The memory cell includes a channel region defined by a first width, the second memory cell including a channel region defined by a second width, the first width being different from the second width. 如申請專利範圍第2項所述之方法,其中該第一寬度大於該第二寬度,該第一功能電壓大於該第二功能電壓。 The method of claim 2, wherein the first width is greater than the second width, and the first functional voltage is greater than the second functional voltage. 如申請專利範圍第1項所述之方法,其中該第一功能電壓透過關聯於該第一群組之該些記憶胞的數個第一字元線施加至該第一群組之該些記憶胞,該第二功能電壓透過關聯於該第二群組之該些記憶胞的數個第二字元線施加至該第二群組之該些記憶胞。 The method of claim 1, wherein the first functional voltage is applied to the memories of the first group through a plurality of first word lines associated with the memory cells of the first group The second functional voltage is applied to the memory cells of the second group through a plurality of second word lines associated with the memory cells of the second group. 如申請專利範圍第1項所述之方法,其中該第一功能電壓與該第二功能電壓係與一預定功能電壓分布一致。 The method of claim 1, wherein the first functional voltage and the second functional voltage are consistent with a predetermined functional voltage distribution. 一種非揮發性記憶裝置,包括:一串,該串包括一第一群組及一第二群組,該第一群組及該第二群組各包括沿著單一之該串依序排列的複數的記憶胞,該第一群組的該些記憶胞包括數個第一字元線,該第二群組的該些記憶胞包括數個第二字元線,相同的一第一功能電壓經由該些第一字元線施加至該第一群組之所有該些記憶胞,及相同的一第二功能電壓經由該些第二字元線施加至該第二群組之所有該些記憶胞,以執行一功能於該非揮發性記憶裝置上,以及該第一功能電壓與該第二功能電壓相異。 A non-volatile memory device includes: a string comprising a first group and a second group, the first group and the second group each being arranged along a single string a plurality of memory cells, the memory cells of the first group comprise a plurality of first word lines, and the memory cells of the second group comprise a plurality of second word lines, the same first functional voltage All of the memory cells applied to the first group via the first word lines, and the same second function voltage is applied to all of the memories of the second group via the second word lines And performing a function on the non-volatile memory device, and the first functional voltage is different from the second functional voltage. 如申請專利範圍第6項所述之非揮發性記憶裝置,其中該串包括一通道區域,該第一群組之該些記憶胞包括一第一記憶胞,該第二群組之該些記憶胞包括一第二記憶胞,該通道區域對應該第一記憶胞的一部分係由一第一通道寬度定義,該通道區域對應該第二記憶胞的一部分係由一第二通道寬度定義,該第一通道寬度大於該第二通道寬度,該第一功能電壓大於該第二功能電壓。 The non-volatile memory device of claim 6, wherein the string comprises a channel region, the memory cells of the first group comprise a first memory cell, and the memory of the second group The cell includes a second memory cell, the channel region corresponding to a portion of the first memory cell being defined by a first channel width, the channel region corresponding to a portion of the second memory cell being defined by a second channel width, the first The width of one channel is greater than the width of the second channel, and the first functional voltage is greater than the second functional voltage. 如申請專利範圍第6項所述之非揮發性記憶裝置,其中該串包括一通道區域,該通道區域係半錐形,且該串更包括:一穿隧層,設置在該通道區域處, 一捕捉層,設置在該穿隧層處,以及一阻隔層,設置在該捕捉層處,該些第一字元線及該些第二字元線設置在該阻隔層之一部分處。 The non-volatile memory device of claim 6, wherein the string comprises a channel region, the channel region is semi-tapered, and the string further comprises: a tunneling layer disposed at the channel region, A capture layer disposed at the tunneling layer and a barrier layer disposed at the capture layer, the first word lines and the second word lines being disposed at a portion of the barrier layer.
TW104133423A 2015-10-12 2015-10-12 Device and method for improved threshold voltage distribution for non-volatile memory TWI584287B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104133423A TWI584287B (en) 2015-10-12 2015-10-12 Device and method for improved threshold voltage distribution for non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104133423A TWI584287B (en) 2015-10-12 2015-10-12 Device and method for improved threshold voltage distribution for non-volatile memory

Publications (2)

Publication Number Publication Date
TW201714178A TW201714178A (en) 2017-04-16
TWI584287B true TWI584287B (en) 2017-05-21

Family

ID=59256927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104133423A TWI584287B (en) 2015-10-12 2015-10-12 Device and method for improved threshold voltage distribution for non-volatile memory

Country Status (1)

Country Link
TW (1) TWI584287B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199833A1 (en) * 2010-02-17 2011-08-18 Samsung Electronics Co., Ltd. Non-volatile memory devices, operating methods thereof and memory systems including the same
US20120250415A1 (en) * 2010-03-25 2012-10-04 Eran Sharon Simultaneous multi-state read or verify in non-volatile storage
US20130170297A1 (en) * 2012-01-04 2013-07-04 Sang-Wan Nam Nonvolatile memory device and memory system including the same
US20140149641A1 (en) * 2012-11-29 2014-05-29 Sandisk Technologies Inc. Optimized Configurable NAND Parameters
US20150016190A1 (en) * 2012-10-05 2015-01-15 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199833A1 (en) * 2010-02-17 2011-08-18 Samsung Electronics Co., Ltd. Non-volatile memory devices, operating methods thereof and memory systems including the same
US20130242667A1 (en) * 2010-02-17 2013-09-19 Samsung Electronics Co., Ltd. Non-volatile memory devices, operating methods thereof and memory systems including the same
US20120250415A1 (en) * 2010-03-25 2012-10-04 Eran Sharon Simultaneous multi-state read or verify in non-volatile storage
US20130170297A1 (en) * 2012-01-04 2013-07-04 Sang-Wan Nam Nonvolatile memory device and memory system including the same
US20150016190A1 (en) * 2012-10-05 2015-01-15 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US20140149641A1 (en) * 2012-11-29 2014-05-29 Sandisk Technologies Inc. Optimized Configurable NAND Parameters

Also Published As

Publication number Publication date
TW201714178A (en) 2017-04-16

Similar Documents

Publication Publication Date Title
US7414889B2 (en) Structure and method of sub-gate and architectures employing bandgap engineered SONOS devices
US7492636B2 (en) Methods for conducting double-side-biasing operations of NAND memory arrays
JP5376414B2 (en) Memory array operation method
US7471568B2 (en) Multi-level cell memory structures with enlarged second bit operation window
US20060245246A1 (en) Inversion bit line, charge trapping non-volatile memory and method of operating same
JP2004529448A (en) Higher program VT and faster program speed based on improved erase method
JP2008085196A (en) Semiconductor nonvolatile memory, data writing method, method of manufacturing semiconductor nonvolatile memory, and data writing program
JP2006079802A (en) Method and device for operating single line charge-trapping memory cell
JP4907173B2 (en) Nonvolatile memory cell, memory array having the same, and cell and array operating method
JP2006079801A (en) Detecting method and device in charge-trapping nonvolatile memory
US7548458B2 (en) Methods of biasing a multi-level-cell memory
TWI386941B (en) Operation method of nitride-based flash memory and method of reducing coupling interference
US9564230B2 (en) Semiconductor memory device and method of operating the same
KR100776901B1 (en) Method of recovering the NAND type flash memory device
TWI633552B (en) Semiconductor memory device and method of controlling the same
JP2010040125A (en) Erasing method in nonvolatile semiconductor memory device
TWI584287B (en) Device and method for improved threshold voltage distribution for non-volatile memory
US8233326B2 (en) Semiconductor non-volatile memory, charge accumulating method for semiconductor non-volatile memory, charge accumulating program storage medium
US9524784B1 (en) Device and method for improved threshold voltage distribution for non-volatile memory
JP2005197737A (en) Non-volatile memory element
KR20100013956A (en) Flash memory device and method of program thereof
US7936607B2 (en) Non-volatile memory
TWI795926B (en) 3d flash memory and operation thereof
TWI594239B (en) Method and apparatus for improving data retention and read-performance of a non-volatile memory device
US9136009B1 (en) Method to improve accuracy of a low voltage state in flash memory cells