TWI582832B - Method of fabricating an epitaxial layer - Google Patents

Method of fabricating an epitaxial layer Download PDF

Info

Publication number
TWI582832B
TWI582832B TW100113908A TW100113908A TWI582832B TW I582832 B TWI582832 B TW I582832B TW 100113908 A TW100113908 A TW 100113908A TW 100113908 A TW100113908 A TW 100113908A TW I582832 B TWI582832 B TW I582832B
Authority
TW
Taiwan
Prior art keywords
epitaxial layer
epitaxial
fabricating
substrate
layer according
Prior art date
Application number
TW100113908A
Other languages
Chinese (zh)
Other versions
TW201243914A (en
Inventor
呂佐文
賴一銘
侯宗佑
林建良
鄧文儀
王韶韋
王俞仁
簡金城
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100113908A priority Critical patent/TWI582832B/en
Publication of TW201243914A publication Critical patent/TW201243914A/en
Application granted granted Critical
Publication of TWI582832B publication Critical patent/TWI582832B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

磊晶層的製作方法Method for manufacturing epitaxial layer

本發明係有關一種磊晶層的製作方法,特別係有關一種在不含氫以及小於800℃下進行磊晶製程的磊晶層的製作方法,其可使磊晶層與基底的介面具有方角狀。The invention relates to a method for fabricating an epitaxial layer, in particular to a method for fabricating an epitaxial layer which is subjected to an epitaxial process without hydrogen and less than 800 ° C, which can have a square angle of the interface between the epitaxial layer and the substrate .

隨著半導體製程進入到深次微米時代,半導體製程之線寬已發展至瓶頸,如何提升載子遷移率以增加MOS電晶體之速度以及提升電晶體元件的驅動電流(drive current)已更顯重要。為了改善元件的效能,目前業界已發展出所謂的「應變矽(strained-silicon)技術」,其原理主要是使閘極通道部分的矽晶格產生應變,例如利用矽鍺(SiGe)或矽碳(SiC)的晶格常數與單晶矽(single crystal Si)不同的特性,使閘極通道承受兩側因晶格應變所產生的張力或壓力,進而使載子通過閘極通道時的移動力增加,而使PMOS或NMOS電晶體運作更快。As the semiconductor process enters the deep micron era, the line width of the semiconductor process has developed to the bottleneck. How to increase the carrier mobility to increase the speed of the MOS transistor and increase the drive current of the transistor component has become more important. . In order to improve the performance of components, the so-called "strained-silicon technology" has been developed in the industry. The principle is mainly to strain the germanium lattice of the gate channel portion, for example, using germanium (SiGe) or germanium carbon. The lattice constant of (SiC) is different from that of single crystal Si, so that the gate channel is subjected to the tension or pressure generated by the lattice strain on both sides, and thus the moving force of the carrier when passing through the gate channel Increase, and make PMOS or NMOS transistors work faster.

目前使閘極通道的矽晶格產生應變的方法之一即結合選擇性磊晶成長(SEG)技術,其先於閘極結構兩側的基底中形成凹槽,然後利用磊晶製程於凹槽中形成一晶格排列與基底相同之磊晶層,例如矽鍺(SiGe)層或矽碳(SiC)層等,以對閘極通道產生應力。One of the methods for straining the germanium lattice of the gate channel is to combine the selective epitaxial growth (SEG) technique, which forms a groove in the substrate on both sides of the gate structure, and then uses an epitaxial process in the groove. An epitaxial layer having the same crystal lattice as the substrate, such as a germanium (SiGe) layer or a germanium carbon (SiC) layer, is formed to stress the gate channel.

第1圖例示習知採用磊晶技術的MOS電晶體的剖面示意圖。如第1圖所示,MOS電晶體100的形成方式:先於基底110上形成一閘極結構120。閘極結構120可包含一閘極介電層122、一閘極電極124以及一蓋層126。而後,一間隙壁130形成於閘極結構120的側邊,其中間隙壁130例如為氧化矽層或氮化矽層等單層或多層複合結構。接著,利用間隙壁130與閘極結構120作為遮罩,來自動對準並蝕刻定義出凹槽140。之後,再進行一通入氫的800℃磊晶前烘烤製程用以進一步清洗凹槽140表面。最後,進行例如矽晶種沈積製程、矽質磊晶製程以及矽蓋層製程等,以於凹槽140中形成磊晶層150。此外,MOS電晶體100的外圍一般形成有溝渠隔離結構10以使各MOS電晶體彼此電性絕緣。Fig. 1 is a schematic cross-sectional view showing a conventional MOS transistor using epitaxial technology. As shown in FIG. 1, the MOS transistor 100 is formed in such a manner that a gate structure 120 is formed on the substrate 110. The gate structure 120 can include a gate dielectric layer 122, a gate electrode 124, and a cap layer 126. Then, a spacer 130 is formed on the side of the gate structure 120, wherein the spacer 130 is, for example, a single layer or a multilayer composite structure such as a hafnium oxide layer or a tantalum nitride layer. Next, the spacers 140 are automatically aligned and etched using the spacers 130 and the gate structures 120 as masks. Thereafter, an 800 ° C epitaxial pre-baking process is introduced to further clean the surface of the recess 140. Finally, an epitaxial layer 150 is formed in the recess 140 by, for example, a germanium seed deposition process, a tantalum epitaxial process, and a capping process. In addition, the periphery of the MOS transistor 100 is generally formed with a trench isolation structure 10 to electrically insulate the MOS transistors from each other.

呈上,在現今製程中,MOS電晶體100在形成間隙壁130時,會通入前驅物例如為六氯基矽烷(hexachlorosilane,HCD)等的含氯氣體,其在製程時會將氯附著於間隙壁130及凹槽140表面,導致在進行通入氫的800℃磊晶前烘烤製程後所形成的磊晶層150與基底110的介面會鈍化為圓弧狀。鈍化致使閘極通道160縮減而增加磊晶層150對其施加的應力。實作上,吾人卻難以控制其鈍化程度導致MOS電晶體100的電性品質沒有穩定的再現性。In the present process, the MOS transistor 100, when forming the spacers 130, introduces a chlorine-containing gas such as hexachlorosilane (HCD) into the precursor, which will adhere to the chlorine during the process. The surfaces of the spacers 130 and the recesses 140 cause the interface between the epitaxial layer 150 and the substrate 110 formed after the 800° C epitaxial prebaking process to pass hydrogen to be passivated into an arc shape. Passivation causes the gate channel 160 to be reduced to increase the stress applied by the epitaxial layer 150 thereto. In practice, it is difficult for us to control the degree of passivation, resulting in no stable reproducibility of the electrical quality of the MOS transistor 100.

本發明之目的係在提供一磊晶層的製作方法,以形成一磊晶層,其與基底介面具有方角狀。The object of the present invention is to provide a method for fabricating an epitaxial layer to form an epitaxial layer having a square angle with the substrate interface.

根據本發明一較佳實施例,本發明提供一種磊晶層的製作方法,包含有:首先,提供一基底。接著,蝕刻基底,以於基底中形成至少一凹槽。接續,表面處理凹槽,以形成一含Si-OH的表面。續之,進行一原位磊晶製程,其中磊晶製程在不含氫以及小於800℃下進行,以於凹槽中形成一磊晶層。According to a preferred embodiment of the present invention, the present invention provides a method for fabricating an epitaxial layer, comprising: first, providing a substrate. Next, the substrate is etched to form at least one recess in the substrate. Successively, the grooves are surface treated to form a Si-OH containing surface. Further, an in-situ epitaxial process is performed in which the epitaxial process is performed without hydrogen and less than 800 ° C to form an epitaxial layer in the recess.

基於上述,本發明提供一磊晶層的製作方法,係先經由表面處理凹槽以形成一含Si-OH的表面,接著再進行原位磊晶製程以於凹槽中形成磊晶層,其中原位磊晶製程必須在不含氫以及小於800℃下進行。以此方法形成之磊晶層,其與基底之介面可具有一方角狀。如此,可解決習知磊晶層與基底之介面在磊晶製程後鈍化為圓弧狀的問題。Based on the above, the present invention provides a method for fabricating an epitaxial layer by first processing a recess to form a surface containing Si—OH, and then performing an in-situ epitaxial process to form an epitaxial layer in the recess, wherein The in-situ epitaxial process must be carried out without hydrogen and at less than 800 °C. The epitaxial layer formed in this way may have an angular shape with the interface of the substrate. In this way, the problem that the interface between the conventional epitaxial layer and the substrate is passivated into an arc shape after the epitaxial process can be solved.

第2-4圖例示本發明一較佳實施例之磊晶層的製作方法。請參考第2-4圖,首先提供一基底210,基底210例如為一矽基底、含矽基底或矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。接著,形成一圖案化遮罩220於基底210上(如第2圖所示)。在本實施例中,遮罩220可為一氮化矽層,且特別為以六氯基矽烷(HCD)為前驅物所形成之氮化矽層,而遮罩220係由例如蝕刻微影的方式圖案化,但本發明不以此為限。在其他實施例中遮罩220亦可為其他材質,且遮罩220可以含氯材料為前驅物或者是製程中含有氯原子者所形成者。如此一來,基底210之表面則附著有氯成分,而形成一含氯基底。接續,利用遮罩220自動對準以於基底210中定義並蝕刻出凹槽230。凹槽230例如以乾蝕刻方式形成。繼之,在凹槽230中進行一表面處理P以形成一含Si-OH的表面,而且是一富含Si-OH(Si-OH rich)的表面(如第3圖所示)。在本實施例中,表面處理P包含一清洗製程,以去除基底210中的氯、原生氧化物或雜質等,並形成一含Si-OH的表面。接著,進行一原位磊晶製程以於凹槽230中形成一磊晶層240(如第4圖所示),其中磊晶製程可包含一矽磊晶製程、一矽鍺磊晶製程或一矽碳磊晶製程。2-4 illustrate a method of fabricating an epitaxial layer in accordance with a preferred embodiment of the present invention. Referring to Figures 2-4, a substrate 210 is first provided. The substrate 210 is, for example, a germanium substrate, a germanium-containing substrate, or a semiconductor substrate such as a silicon-on-insulator (SOI) substrate. Next, a patterned mask 220 is formed on the substrate 210 (as shown in FIG. 2). In this embodiment, the mask 220 may be a tantalum nitride layer, and particularly a tantalum nitride layer formed by using hexachlorodecane (HCD) as a precursor, and the mask 220 is made of, for example, etched lithography. The pattern is patterned, but the invention is not limited thereto. In other embodiments, the mask 220 may be of other materials, and the mask 220 may be formed of a chlorine-containing material as a precursor or a chlorine atom in the process. As a result, the surface of the substrate 210 is adhered with a chlorine component to form a chlorine-containing substrate. Next, the mask 220 is automatically aligned to define and etch the recess 230 in the substrate 210. The groove 230 is formed, for example, by dry etching. Next, a surface treatment P is performed in the recess 230 to form a Si-OH-containing surface, and is a Si-OH rich surface (as shown in Fig. 3). In the present embodiment, the surface treatment P includes a cleaning process for removing chlorine, native oxide or impurities, etc. in the substrate 210, and forming a Si-OH-containing surface. Then, an in-situ epitaxial process is performed to form an epitaxial layer 240 in the recess 230 (as shown in FIG. 4 ), wherein the epitaxial process may include an epitaxial process, an epitaxial process, or a矽 Carbon epitaxial process.

在此強調,本發明之原位磊晶製程係在不含氫以及小於800℃下進行,如此即使凹槽230為一Si-OH的表面,亦可使磊晶層240與基底210的介面維持為一方角狀。換言之,本發明之原位磊晶製程可避免磊晶層240與基底210的介面鈍化為圓弧狀。It is emphasized herein that the in-situ epitaxial process of the present invention is carried out in the absence of hydrogen and less than 800 ° C, so that even if the recess 230 is a Si-OH surface, the interface between the epitaxial layer 240 and the substrate 210 can be maintained. It is horny. In other words, the in-situ epitaxial process of the present invention can prevent the interface between the epitaxial layer 240 and the substrate 210 from being passivated into an arc shape.

值得注意的是,在本實施例中,原位磊晶製程係特別排除進行習知之磊晶前烘烤製程以達到上述目的。因為現今產業上一800℃且同時通入氫之磊晶前烘烤製程為形成磊晶層240之必要步驟,以作為進一步清洗凹槽230之用,但此磊晶前烘烤製程將使所形成之磊晶層240與基底210之介面鈍化為圓弧狀而影響電性品質,是以本實施例中特別排除進行磊晶前烘烤製程。此外,第9圖例示本發明一較佳實施例之MOS電晶體的實驗數據圖。由第9圖得知,排除磊晶前烘烤製程所形成之MOS電晶體,其具有較習知(進行磊晶前烘烤製程)低的臨限電壓(Vt),因而具有較高的開啟電流,故具有良好之電性品質。It should be noted that in the present embodiment, the in-situ epitaxial process specifically excludes the conventional epitaxial pre-baking process to achieve the above object. Because the current epitaxial baking process of 800 ° C and simultaneous hydrogen introduction is a necessary step for forming the epitaxial layer 240, as a further cleaning of the groove 230, but the epitaxial pre-baking process will make the The interface between the epitaxial layer 240 and the substrate 210 is formed into an arc shape and affects the electrical quality. In this embodiment, the pre-ebending pre-baking process is specifically excluded. Further, Fig. 9 is a view showing experimental data of a MOS transistor of a preferred embodiment of the present invention. It can be seen from Fig. 9 that the MOS transistor formed by the pre-epitaxial baking process is excluded, which has a lower threshold voltage (Vt) than the conventional (pre-epitaxial baking process), and thus has a high opening. Current, so it has good electrical quality.

上述之磊晶層的製作方法可適用於各式具有磊晶結構之半導體元件的製程。例如形成一PMOS電晶體或一NMOS電晶體等,但本發明不以此為限。The above-described method for fabricating the epitaxial layer can be applied to a process of various semiconductor elements having an epitaxial structure. For example, a PMOS transistor or an NMOS transistor is formed, but the invention is not limited thereto.

第5-7圖例示本發明之磊晶層的製作方法應用於製作MOS電晶體之一較佳實施例。請參考第5-7圖,本較佳實施例之一製作MOS電晶體300的方法,首先,如第5圖所示,提供一基底310,其例如為一矽基底等半導體基底。接著,於基底310上形成一閘極結構320,其可依序包含一閘極介電層322、閘極電極324以及一蓋層326,詳細的形成方法及材質為本領域所熟知,故不在此贅述。5-7 illustrate a preferred embodiment of the method of fabricating the epitaxial layer of the present invention for fabricating a MOS transistor. Referring to FIGS. 5-7, a method of fabricating the MOS transistor 300 in one of the preferred embodiments, first, as shown in FIG. 5, a substrate 310 is provided, which is, for example, a semiconductor substrate such as a germanium substrate. Then, a gate structure 320 is formed on the substrate 310, which may include a gate dielectric layer 322, a gate electrode 324 and a cap layer 326. The detailed formation method and material are well known in the art, so This statement.

接續,在本實施例中可先選擇性地形成一側壁子330於閘極結構320的側壁,而後以閘極結構320與側壁子330作為硬遮罩進行一輕摻雜離子佈植,以在閘極結構320兩側的基底310中自動對準並定義出輕摻雜源/汲極區340,其中側壁子330例如為氮化矽層或氧化矽層等單層或多層複合層。接續,形成一間隙壁350於閘極結構320的側壁。在本實施例中間隙壁350為一氮化矽層,尤其是由六氯基矽烷(HCD)為前驅物所形成者,但在其他實施例中間隙壁350亦可為其他材質,且間隙壁350可由含氯材料為前驅物或者是製程中含有氯原子者所形成者,如此因氯附著於基底310中而形成一含氯基底。In the embodiment, a sidewall spacer 330 is selectively formed on the sidewall of the gate structure 320, and then a lightly doped ion implantation is performed by using the gate structure 320 and the sidewall spacer 330 as a hard mask. The lightly doped source/drain regions 340 are automatically aligned and defined in the substrate 310 on both sides of the gate structure 320, wherein the sidewall spacers 330 are, for example, a single layer or a multilayer composite layer such as a tantalum nitride layer or a hafnium oxide layer. Next, a spacer 350 is formed on the sidewall of the gate structure 320. In the present embodiment, the spacer 350 is a tantalum nitride layer, especially formed of hexachlorodecane (HCD) as a precursor, but in other embodiments, the spacer 350 may be other materials and spacers. 350 may be formed by a chlorine-containing material as a precursor or a chlorine atom in the process, such that chlorine is attached to the substrate 310 to form a chlorine-containing substrate.

接續,如第6圖所示,以閘極結構320與間隙壁350為硬遮罩而於閘極結構320側邊的基底310中自動對準形成凹槽360,其中凹槽360可例如以蝕刻製程形成。而後,進行一表面處理P以於凹槽360表面形成一含Si-OH的表面,而且是一富含Si-OH(Si-OH rich)的表面。在本實施例中,表面處理P可包含一清洗製程以在移除原生氧化物等雜質的過程中同時在基底310表面形成Si-OH鍵結。Continuing, as shown in FIG. 6, the gate 360 is automatically aligned with the spacer 350 and the spacer 350 as a hard mask in the substrate 310 on the side of the gate structure 320, wherein the recess 360 can be etched, for example, by etching. Process formation. Then, a surface treatment P is performed to form a Si-OH-containing surface on the surface of the groove 360, and is a surface rich in Si-OH (Si-OH rich). In the present embodiment, the surface treatment P may include a cleaning process to simultaneously form Si-OH bonds on the surface of the substrate 310 in the process of removing impurities such as native oxide.

隨後,如第7圖所示,進行一原位磊晶製程以於凹槽360中形成一磊晶層370,其中依MOS電晶體特性的不同,磊晶層370可包含一矽鍺磊晶層,或一矽碳磊晶層等。例如,原位磊晶製程可包含矽晶種沈積製程、矽鍺磊晶製程以及矽蓋層製程等。但必須強調的是,本發明之原位磊晶製程是在不含氫以及小於800℃下進行,如此即使基底310中仍含有氯,磊晶層370以及基底310的介面亦可維持為一方角狀。換言之,磊晶層370以及基底310的介面不會在磊晶製程後鈍化為圓弧狀。如此,方可解決習知技術中含氯表面及800℃高溫的磊晶前烘烤製程,所造成磊晶層370以及基底310的介面鈍化為圓弧狀的問題,因而避免磊晶層150的間距增加,致使磊晶層150對閘極結構320下方之閘極通道所施加的應力減低,以致電晶體載子的傳遞速度變慢,影響MOS電晶體300的電性品質。換言之,本實施例係排除習知中慣用之磊晶製程的一必要步驟─通入氫及800℃的磊晶前烘烤製程,以使磊晶層370可在不含氫以及小於800℃的環境下形成,但本發明不以此為限。Subsequently, as shown in FIG. 7, an in-situ epitaxial process is performed to form an epitaxial layer 370 in the recess 360, wherein the epitaxial layer 370 may comprise a germanium epitaxial layer depending on the characteristics of the MOS transistor. , or a carbon epitaxial layer. For example, the in-situ epitaxial process may include a germanium seed deposition process, a germanium epitaxial process, and a capping process. However, it must be emphasized that the in-situ epitaxial process of the present invention is carried out in the absence of hydrogen and less than 800 ° C, so that even if the substrate 310 still contains chlorine, the interface of the epitaxial layer 370 and the substrate 310 can be maintained at one angle. shape. In other words, the interface between the epitaxial layer 370 and the substrate 310 is not passivated into an arc shape after the epitaxial process. In this way, the epitaxial pre-baking process of the chlorine-containing surface and the high temperature of 800 ° C in the prior art can be solved, and the interface of the epitaxial layer 370 and the substrate 310 is passivated into an arc shape, thereby avoiding the epitaxial layer 150. The increase in pitch causes the stress applied by the epitaxial layer 150 to the gate channel under the gate structure 320 to be reduced, so that the transfer speed of the crystal carrier is slowed down, affecting the electrical quality of the MOS transistor 300. In other words, this embodiment eliminates a necessary step of the conventional epitaxial process in which hydrogen is introduced and an epitaxial pre-baking process at 800 ° C is applied so that the epitaxial layer 370 can be free of hydrogen and less than 800 ° C. It is formed under the environment, but the invention is not limited thereto.

最後,可再移除間隙壁350以完成MOS電晶體300的製作。當然,磊晶層370可形成於已摻雜的源/汲極區域中,或與源/汲極的導電摻質同時形成,或者,亦可在形成磊晶層370後再進行摻雜以形成源/汲極。並且,於形成磊晶層370之後亦可再於磊晶層370上形成金屬矽化物,或者是再形成具有應力的接觸洞蝕刻停止層(CESL)等,皆應屬本發明實施態樣之涵蓋範圍。Finally, the spacers 350 can be removed to complete the fabrication of the MOS transistor 300. Of course, the epitaxial layer 370 may be formed in the doped source/drain region or simultaneously with the source/drain conductive dopant, or may be doped after forming the epitaxial layer 370 to form Source / bungee. Moreover, after the epitaxial layer 370 is formed, a metal germanide may be formed on the epitaxial layer 370, or a contact hole etch stop layer (CESL) having stress may be formed, which should be covered by the embodiment of the present invention. range.

呈上,第5-7圖係以單一MOS電晶體的製作方法為例來加以說明,因此以六氯基矽烷(HCD)為前驅物所形成之間隙壁350即為MOS電晶體300的主間隙壁,但在一般CMOS電晶體的製程中,此利用六氯基矽烷(HCD)為前驅物所形成之硬遮罩,係可同時用以作為保護一第一導電型MOS電晶體不受蝕刻影響的硬遮罩以及另一第二導電型MOS電晶體的間隙壁以蝕刻出矽質磊晶所需的凹槽。In the above, the 5-7 diagram is described by taking a method of fabricating a single MOS transistor as an example. Therefore, the spacer 350 formed by using hexachlorodecane (HCD) as a precursor is the main gap of the MOS transistor 300. Wall, but in the general CMOS transistor process, the hard mask formed by using hexachlorodecane (HCD) as a precursor can be used simultaneously to protect a first conductivity type MOS transistor from etching. The hard mask and the spacer of another second conductivity type MOS transistor are used to etch the grooves required for the enamel epitaxy.

第8圖即例示本發明一較佳實施例之CMOS電晶體的剖面示意圖,其採用本發明之磊晶層的製作方法。如第8圖所示,進行一六氯基矽烷(HCD)為前驅物的沉積製程與一圖案化製程,以於第二導電型之MOS電晶體420上順應地覆蓋一遮罩層422,並同時將第一導電型之MOS電晶體410上所覆蓋之遮罩層(圖未示)蝕刻形成一間隙壁412。如此,便可利用遮罩層422以及間隙壁412為硬遮罩來形成一凹槽414。在一實施例中,第二導電型之MOS電晶體420可為一N型電晶體,而第一導電型之MOS電晶體410可為一P型電晶體,故磊晶層可為一矽鍺(SiGe)層;但在其他實施例中,MOS電晶體420亦可為一P型電晶體而MOS電晶體410為一N型電晶體,則磊晶層則可為一矽碳(SiC)層。此外,遮罩層422以及間隙壁412可包含由六氯基矽烷(HCD)為前驅物所形成之氮化矽層,但其他實施例中亦可為其他材質,且遮罩層422以及間隙壁412可由含氯氣體為前驅物或者是製程中含有氯原子所形成者。Fig. 8 is a schematic cross-sectional view showing a CMOS transistor according to a preferred embodiment of the present invention, which employs a method of fabricating an epitaxial layer of the present invention. As shown in FIG. 8, a deposition process of a hexachlorodecane (HCD) as a precursor and a patterning process are performed to conformally cover a mask layer 422 on the second conductivity type MOS transistor 420, and At the same time, a mask layer (not shown) covered on the first conductivity type MOS transistor 410 is etched to form a spacer 412. Thus, a mask 422 can be formed by using the mask layer 422 and the spacer 412 as a hard mask. In one embodiment, the MOS transistor 420 of the second conductivity type may be an N-type transistor, and the MOS transistor 410 of the first conductivity type may be a P-type transistor, so the epitaxial layer may be a 矽锗(SiGe) layer; but in other embodiments, the MOS transistor 420 can also be a P-type transistor and the MOS transistor 410 is an N-type transistor, and the epitaxial layer can be a silicon-on-silicon (SiC) layer. . In addition, the mask layer 422 and the spacer 412 may include a tantalum nitride layer formed of hexachlorodecane (HCD) as a precursor, but other materials may be used in other embodiments, and the mask layer 422 and the spacers 412 may be formed by a chlorine-containing gas as a precursor or a chlorine atom in the process.

總上所述,本發明提供一磊晶層的製作方法,其可適用於MOS電晶體製程等之各式半導體製程。此磊晶層的製作方法係先經由表面處理凹槽以形成一富含Si-OH的表面,接著再進行原位磊晶製程以於凹槽中形成磊晶層,其中原位磊晶製程必須在不含氫以及小於800℃下進行。以此方法形成之磊晶層,其與基底之介面可具有一方角狀。如此,可解決習知磊晶層與基底之介面在磊晶製程後鈍化為圓弧狀的問題。更進一步而言,本發明之一實施態樣排除習知慣用的通入氫的800℃磊晶前烘烤製程,以有效使磊晶層與基底的介面維持一方角狀。In summary, the present invention provides a method for fabricating an epitaxial layer that can be applied to various semiconductor processes such as MOS transistor processes. The epitaxial layer is formed by surface treating the recess to form a Si-OH-rich surface, and then performing an in-situ epitaxial process to form an epitaxial layer in the recess, wherein the in-situ epitaxial process must be performed. It is carried out without hydrogen and at less than 800 °C. The epitaxial layer formed in this way may have an angular shape with the interface of the substrate. In this way, the problem that the interface between the conventional epitaxial layer and the substrate is passivated into an arc shape after the epitaxial process can be solved. Furthermore, an embodiment of the present invention eliminates the conventional 800 ° C epitaxial pre-baking process for introducing hydrogen to effectively maintain the interface between the epitaxial layer and the substrate at an angle.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10...溝渠隔離結構10. . . Ditch isolation structure

100、300、410、420...MOS電晶體100, 300, 410, 420. . . MOS transistor

110、210、310...基底110, 210, 310. . . Base

120、320...閘極結構120, 320. . . Gate structure

122、322...閘極介電層122, 322. . . Gate dielectric layer

124、324...閘極電極124, 324. . . Gate electrode

126、326...蓋層126, 326. . . Cover

130、350、412...間隙壁130, 350, 412. . . Clearance wall

140、230、360、414...凹槽140, 230, 360, 414. . . Groove

150、240、370...磊晶層150, 240, 370. . . Epitaxial layer

160...閘極通道160. . . Gate channel

220...遮罩220. . . Mask

330...側壁子330. . . Side wall

340...輕摻雜源/汲極區340. . . Lightly doped source/drain region

422...遮罩層422. . . Mask layer

P...表面處理P. . . Surface treatment

第1圖例示習知採用磊晶技術的MOS電晶體的剖面示意圖。Fig. 1 is a schematic cross-sectional view showing a conventional MOS transistor using epitaxial technology.

第2-4圖例示本發明一較佳實施例之磊晶層的製作方法。2-4 illustrate a method of fabricating an epitaxial layer in accordance with a preferred embodiment of the present invention.

第5-7圖例示本發明一較佳實施例之MOS電晶體之製作方法,其採用本發明之磊晶層的製作方法。5-7 illustrate a method of fabricating a MOS transistor according to a preferred embodiment of the present invention, which employs a method of fabricating an epitaxial layer of the present invention.

第8圖例示本發明一較佳實施例之CMOS電晶體的剖面示意圖,其採用本發明之磊晶層的製作方法。Fig. 8 is a cross-sectional view showing a CMOS transistor according to a preferred embodiment of the present invention, which employs a method of fabricating an epitaxial layer of the present invention.

第9圖例示本發明一較佳實施例之MOS電晶體的實驗數據圖。Fig. 9 is a view showing experimental data of a MOS transistor of a preferred embodiment of the present invention.

210...基底210. . . Base

220...遮罩220. . . Mask

240...磊晶層240. . . Epitaxial layer

Claims (13)

一種磊晶層的製作方法,包含有:提供一基底,為一含氯基底;蝕刻該基底,以於該基底中形成至少一凹槽;表面處理該凹槽,其中包含一清洗製程,以去除該基底中的氯、原生氧化物或雜質,並且形成一含Si-OH的表面;該清洗製程後,進行一原位磊晶製程,其中該原位磊晶製程包含一矽鍺磊晶製程或一矽碳磊晶製程,並且在不含氫以及小於800℃下進行,以於該凹槽中形成一磊晶層。 A method for fabricating an epitaxial layer, comprising: providing a substrate as a chlorine-containing substrate; etching the substrate to form at least one groove in the substrate; surface treating the groove, wherein the cleaning process comprises a cleaning process to remove a chlorine, a primary oxide or an impurity in the substrate, and forming a surface containing Si—OH; after the cleaning process, performing an in-situ epitaxial process, wherein the in-situ epitaxial process comprises an epitaxial process or A carbon epitaxial process is performed and is carried out in the absence of hydrogen and less than 800 ° C to form an epitaxial layer in the recess. 如申請專利範圍第1項所述之磊晶層的製作方法,其中該磊晶層的製作方法所形成之該磊晶層,其係形成於一PMOS電晶體或一NMOS電晶體之中。 The method for fabricating an epitaxial layer according to the first aspect of the invention, wherein the epitaxial layer formed by the method for fabricating the epitaxial layer is formed in a PMOS transistor or an NMOS transistor. 如申請專利範圍第1項所述之磊晶層的製作方法,其中該基底上包含一圖案化之遮罩。 The method for fabricating an epitaxial layer according to claim 1, wherein the substrate comprises a patterned mask. 如申請專利範圍第3項所述之磊晶層的製作方法,其中該遮罩包含以六氯基矽烷(HCD)為前驅物所形成。 The method for fabricating an epitaxial layer according to claim 3, wherein the mask comprises a precursor of hexachlorodecane (HCD). 如申請專利範圍第3項所述之磊晶層的製作方法,其中該遮罩包含以含氯材料為前驅物所形成。 The method for fabricating an epitaxial layer according to claim 3, wherein the mask comprises a precursor containing a chlorine-containing material. 如申請專利範圍第3項所述之磊晶層的製作方法,其中該遮罩包括一氮化矽層。 The method for fabricating an epitaxial layer according to claim 3, wherein the mask comprises a tantalum nitride layer. 如申請專利範圍第1項所述之磊晶層的製作方法,其中該原位磊晶製程不包含一磊晶前烘烤製程。 The method for fabricating an epitaxial layer according to claim 1, wherein the in-situ epitaxial process does not include an epitaxial pre-baking process. 如申請專利範圍第1項所述之磊晶層的製作方法,其中該基底上包含一閘極結構。 The method for fabricating an epitaxial layer according to claim 1, wherein the substrate comprises a gate structure. 如申請專利範圍第8項所述之磊晶層的製作方法,其中該閘極結構包括一閘極介電層、一閘極電極層、一蓋層以及一間隙壁。 The method for fabricating an epitaxial layer according to claim 8, wherein the gate structure comprises a gate dielectric layer, a gate electrode layer, a cap layer, and a spacer. 如申請專利範圍第9項所述之磊晶層的製作方法,其中該間隙壁包含以六氯基矽烷(HCD)為前驅物所形成。 The method for fabricating an epitaxial layer according to claim 9, wherein the spacer comprises a precursor of hexachlorodecane (HCD). 如申請專利範圍第9項所述之磊晶層的製作方法,其中該間隙壁包含以含氯材料為前驅物所形成。 The method for fabricating an epitaxial layer according to claim 9, wherein the spacer comprises a precursor containing a chlorine-containing material. 如申請專利範圍第9項所述之磊晶層的製作方法,其中該間隙壁包括一氮化矽層。 The method for fabricating an epitaxial layer according to claim 9, wherein the spacer comprises a tantalum nitride layer. 如申請專利範圍第1項所述之磊晶層的製作方法,其中該 磊晶層與該基底的介面具有一方角狀。 The method for fabricating an epitaxial layer according to claim 1, wherein the method The epitaxial layer and the interface of the substrate have an angular shape.
TW100113908A 2011-04-21 2011-04-21 Method of fabricating an epitaxial layer TWI582832B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100113908A TWI582832B (en) 2011-04-21 2011-04-21 Method of fabricating an epitaxial layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100113908A TWI582832B (en) 2011-04-21 2011-04-21 Method of fabricating an epitaxial layer

Publications (2)

Publication Number Publication Date
TW201243914A TW201243914A (en) 2012-11-01
TWI582832B true TWI582832B (en) 2017-05-11

Family

ID=48093960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100113908A TWI582832B (en) 2011-04-21 2011-04-21 Method of fabricating an epitaxial layer

Country Status (1)

Country Link
TW (1) TWI582832B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040222490A1 (en) * 2001-06-21 2004-11-11 Ivo Raaijmakers Trench isolation structures for integrated circuits
TW200746438A (en) * 2006-04-28 2007-12-16 Advanced Micro Devices Inc An SOI transistor having an embedded strain layer and a reduced floating body effect and a method for forming the same
TW200945448A (en) * 2008-04-21 2009-11-01 United Microelectronics Corp Semiconductor device and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040222490A1 (en) * 2001-06-21 2004-11-11 Ivo Raaijmakers Trench isolation structures for integrated circuits
TW200746438A (en) * 2006-04-28 2007-12-16 Advanced Micro Devices Inc An SOI transistor having an embedded strain layer and a reduced floating body effect and a method for forming the same
TW200945448A (en) * 2008-04-21 2009-11-01 United Microelectronics Corp Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
TW201243914A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US9330980B2 (en) Semiconductor process
US9331200B1 (en) Semiconductor device and method for fabricating the same
US9390982B2 (en) CMOS devices with reduced leakage and methods of forming the same
KR100844933B1 (en) Transistor in semiconductor device and method for manufacturing the same
JP4361886B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP5009611B2 (en) Method for forming a structure in a FINFET device
JP5795735B2 (en) Transistor with buried Si / Ge material with reduced offset to channel region
US9214395B2 (en) Method of manufacturing semiconductor devices
US8390073B2 (en) Transistor structure
KR20130092346A (en) Methods and apparatus for doped sige source/drain stressor deposition
KR20080015891A (en) Transistor with improved tip profile and method of manufacture thereof
US9691901B2 (en) Semiconductor device
US9601390B2 (en) Silicon germanium fin formation via condensation
US7968920B2 (en) Semiconductor device and manufacturing method thereof
JP2009065020A (en) Semiconductor device and its manufacturing method
JP2009283527A (en) Semiconductor device and production method thereof
US9117925B2 (en) Epitaxial process
US9093473B2 (en) Method for fabricating metal-oxide semiconductor transistor
KR20070101058A (en) Method of forming a fin field effect transistor
TWI624948B (en) Methods of forming strained channel regions on finfet devices
TWI582832B (en) Method of fabricating an epitaxial layer
US9847393B2 (en) Semiconductor device
US8445363B2 (en) Method of fabricating an epitaxial layer
JP2009094113A (en) Semiconductor apparatus
TW202410162A (en) Semiconductor device and method of fabricating the same