TWI557822B - Mask inspecting method - Google Patents

Mask inspecting method Download PDF

Info

Publication number
TWI557822B
TWI557822B TW100130923A TW100130923A TWI557822B TW I557822 B TWI557822 B TW I557822B TW 100130923 A TW100130923 A TW 100130923A TW 100130923 A TW100130923 A TW 100130923A TW I557822 B TWI557822 B TW I557822B
Authority
TW
Taiwan
Prior art keywords
parameter value
reticle
detecting
region
location
Prior art date
Application number
TW100130923A
Other languages
Chinese (zh)
Other versions
TW201310560A (en
Inventor
羅偉銓
鄭永豐
陳明瑞
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100130923A priority Critical patent/TWI557822B/en
Publication of TW201310560A publication Critical patent/TW201310560A/en
Application granted granted Critical
Publication of TWI557822B publication Critical patent/TWI557822B/en

Links

Description

檢測光罩的方法Method of detecting a mask

本發明係關於一種檢測光罩的方法,特別係關於一種以相同能量之光線照射光罩,進而模擬光罩圖案投射於晶圓中所產生的影像等光學行為的檢測光罩的方法。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method of detecting a reticle, and more particularly to a method of illuminating a reticle with light of the same energy, thereby simulating an optical behavior such as an image produced by the reticle pattern being projected onto the wafer.

習知的半導體製程係使用光罩來將晶圓及半導體基底等圖案化以形成各種半導體裝置。隨著積體電路等技術的進步,促使產品微小化,因而於半導體裝置中之電路佈局密度及特徵線將更趨精密。當然,隨著此趨勢的進展,對於光罩中之光罩圖案的缺陷容忍度則更低。因此,如何偵測光罩圖案中的缺陷,並將會對於半導體製程中造成良率下降的缺陷排除,即成為半導體產業中一重大課題。Conventional semiconductor processes use a mask to pattern wafers, semiconductor substrates, and the like to form various semiconductor devices. With the advancement of technologies such as integrated circuits and the miniaturization of products, the circuit layout density and characteristic lines in semiconductor devices will become more sophisticated. Of course, as this trend progresses, the defect tolerance for the reticle pattern in the reticle is lower. Therefore, how to detect defects in the mask pattern and eliminate defects that cause yield degradation in the semiconductor process has become a major issue in the semiconductor industry.

一般在發現缺陷時,可能對缺陷進行修補,但無法或不易修補的缺陷則只能得將光罩直接捨棄,並且一些缺陷所造成的問題可能在修補過程中更加惡化,是以排除缺陷的過程是必須耗費大量的時間及成本的。然而,光罩圖案中的缺陷並非全部是需要排除的,其實只有在曝光時會轉移到晶圓上之缺陷,其對於製程確實有造成負面影響,才須要被排除。再者,由於在不同製程參數下,同一光罩圖案轉移到晶圓中的影像以及對於晶圓所造成的影響皆不相同,因此如何正確地模擬在特定參數下之光罩圖案的轉移結果,以及對於晶圓所造成的影響,有其重要性及困難性。Generally, when a defect is found, the defect may be repaired, but the defect that cannot be repaired or not easily can only be discarded directly, and the problem caused by some defects may be worsened during the repair process, which is a process of eliminating the defect. It takes a lot of time and cost. However, not all of the defects in the reticle pattern need to be eliminated. In fact, only defects that are transferred to the wafer during exposure have a negative impact on the process and need to be eliminated. Furthermore, since the images transferred to the wafer and the effects on the wafer are different under different process parameters, how to correctly simulate the transfer result of the mask pattern under specific parameters, And the impact on the wafer, its importance and difficulty.

本發明即提出一種檢測光罩的方法,其能準確地模擬光罩圖案投射於晶圓上之影像,使能以更低製程成本及製程時間解決光罩缺陷的問題。The invention provides a method for detecting a reticle, which can accurately simulate the image of the reticle pattern projected on the wafer, so that the problem of the reticle defect can be solved with lower process cost and process time.

本發明提供一種檢測光罩的方法,包含有下述步驟。首先,定義一製程參數值。接著,以此製程參數值決定一入射光。然後,使入射光的至少一部份穿過一光罩的一第一區域的一第一位置及一第二位置,以分別偵測對應第一位置及對應第二位置之一第一參數值及一第二參數值,並比較第一參數值及第二參數值的差異。並且,使入射光的至少一部份穿過一光罩的一第二區域的一第三位置及一第四位置,以分別偵測對應第三位置及對應第四位置之一第三參數值及一第四參數值,並比較第三參數值及第四參數值的差異。The present invention provides a method of detecting a reticle comprising the following steps. First, define a process parameter value. Then, an incident light is determined by the process parameter value. Then, at least a portion of the incident light is passed through a first position and a second position of a first region of the reticle to detect a first parameter value corresponding to one of the first position and the corresponding second position, respectively. And a second parameter value, and comparing the difference between the first parameter value and the second parameter value. And passing at least a portion of the incident light through a third position and a fourth position of a second region of the reticle to detect a third parameter value corresponding to one of the third position and the corresponding fourth position, respectively. And a fourth parameter value, and compare the difference between the third parameter value and the fourth parameter value.

基於上述,本發明提供一種檢測光罩的方法,其採用同一光線(能量)偵測同一光罩上之不同區域中之不同位置的缺陷,以準確地判定此些缺陷,在晶圓或半導體基底上顯影圖案時,是否確實會對製程或後續形成的半導體裝置造成負面影響。Based on the above, the present invention provides a method of detecting a reticle that uses the same light (energy) to detect defects at different locations in different regions on the same reticle to accurately determine such defects on a wafer or semiconductor substrate. When the upper development pattern is applied, it does not adversely affect the process or the subsequently formed semiconductor device.

第1圖繪示本發明一實施例之檢測光罩的裝置之示意圖。如第1圖所示,一裝置100例如為一模擬成像測量系統(Aerial Image Measurement System,AIMS)的裝置。裝置100包含一光源110、一光罩120以及一光感測器130。FIG. 1 is a schematic view of an apparatus for detecting a reticle according to an embodiment of the invention. As shown in FIG. 1, a device 100 is, for example, a device of an Analog Image Measurement System (AIMS). The device 100 includes a light source 110, a reticle 120, and a light sensor 130.

光源110用以提供一光線10,入射至光罩120,以成為光罩120之入射光。光源110可包含一波長為365奈米之水銀燈、一波長為193奈米之氟化氬準分子雷射、一波長為248奈米之氟化氪準分子雷射等,用以提供所需能量或者所需波段之光線10。光線10可例如一紫外光(UV)、一深紫外光(DUV)、一X光、一波長365奈米(I-line)之光束、一波長248奈米之光束、一波長193奈米之光束等。光線10之選擇係以光罩120的性質以及所模擬的曝光製程環境而定。The light source 110 is configured to provide a light 10 incident on the reticle 120 to become incident light of the reticle 120. The light source 110 can include a mercury lamp having a wavelength of 365 nm, a argon fluoride excimer laser having a wavelength of 193 nm, and a fluorinated germanium excimer laser having a wavelength of 248 nm to provide the required energy. Or light 10 of the desired band. The light 10 can be, for example, an ultraviolet (UV) light, a deep ultraviolet light (DUV), an X-ray, a 365 nm I-line beam, a 248 nm beam, and a wavelength of 193 nm. Beam, etc. The choice of ray 10 is based on the nature of reticle 120 and the simulated exposure process environment.

入射至光罩120的光線10則至少一部份穿過光罩120而形成一透射的光線20。光罩120具有光罩圖案設計於其中,而光罩圖案則是依據欲在一半導體基底上形成之積體電路圖案來設計。在一實施例中,光罩120可包含一吸收層、一金屬膜、一無機膜、一二元強度光罩、一相位轉移光罩或一光學鄰近修正光罩(OPC)等。如此,依據光罩120的性質,可使光線20與光線10具有不同或相同之相位、振幅、方向、波長等,視所需情形而定。At least a portion of the light 10 incident on the reticle 120 passes through the reticle 120 to form a transmitted ray 20. The reticle 120 has a reticle pattern designed therein, and the reticle pattern is designed in accordance with an integrated circuit pattern to be formed on a semiconductor substrate. In an embodiment, the reticle 120 may include an absorbing layer, a metal film, an inorganic film, a binary intensity reticle, a phase transfer reticle, or an optical proximity correction reticle (OPC). Thus, depending on the nature of the reticle 120, the ray 20 and the ray 10 may have different or identical phases, amplitudes, directions, wavelengths, etc., depending on the desired situation.

光線20照射至光感測器130,其設於光線20之光路徑(光線10穿過光罩120後之光路徑)上,而使光線20被光感測器130所接收,以感測光罩圖案之相對應的影像或參數,其中光感測器130可例如為一光反應性膜、粒子感測器、互補金屬半導體影像感測器、電耦裝置影像感測器等。The light 20 is incident on the light sensor 130, which is disposed on the light path of the light 20 (the light path after the light 10 passes through the mask 120), and the light 20 is received by the light sensor 130 to sense the mask. The corresponding image or parameter of the pattern, wherein the photo sensor 130 can be, for example, a photoreactive film, a particle sensor, a complementary metal semiconductor image sensor, an electrical coupling device image sensor, or the like.

再者,裝置100可更包含一處理器140,連接光感測器130並接收光感測器130的感測資料,以進行分析,而判斷光罩120上之光罩圖案是否存在須要修正之缺陷。Furthermore, the device 100 further includes a processor 140, connected to the photo sensor 130 and receiving the sensing data of the photo sensor 130 for analysis, and determining whether the reticle pattern on the reticle 120 needs to be corrected. defect.

本發明提出一檢測光罩的方法,其應用上述之檢測光罩的裝置100,以檢測光罩120上之光罩圖案的缺陷。第2圖繪示本發明一實施例之檢測光罩的方法之流程圖。如第2圖所示,首先,根據光罩120的特性及出廠預設設定來定義一製程參數值P(步驟K1)。舉例而言,可根據光罩120上的一測試圖案,例如臨限尺寸條(CD-bar,critical dimension bar),中之臨限尺寸,作為一製程參數值P,但本發明不以此為限,其中臨限尺寸條係為設定於各產品或者介層上之測試圖案(一般設於切割道上),其標示有各產品或者介層之臨限尺寸等最小特徵值。接著,即可以製程參數值P來決定入射的光線10之能量(步驟K2)。在本實施例中,則是以臨限尺寸對應之臨限能量作為光線10之能量。然後,在決定入射的光線10之能量之後,使光線10入射至光罩120的各區域,並使光線10的至少一部份穿過光罩120而達光感測器130,以分別偵測光罩120之各區域的圖案在光線10之照射下所對應的參數值,並比較各參數值之間的差異(步驟K3)。The present invention provides a method of detecting a reticle that applies the above-described apparatus 100 for detecting a reticle to detect defects in the reticle pattern on the reticle 120. 2 is a flow chart showing a method of detecting a reticle according to an embodiment of the present invention. As shown in Fig. 2, first, a process parameter value P is defined in accordance with the characteristics of the reticle 120 and the factory preset settings (step K1). For example, according to a test pattern on the reticle 120, such as a critical dimension bar (CD-bar, critical dimension bar), the threshold size is used as a process parameter value P, but the present invention does not The limit size strip is a test pattern (generally disposed on a scribe line) set on each product or layer, and is marked with a minimum eigenvalue such as a threshold size of each product or layer. Next, the process parameter value P can be used to determine the energy of the incident light 10 (step K2). In this embodiment, the threshold energy corresponding to the threshold size is used as the energy of the light 10 . Then, after determining the energy of the incident light 10, the light 10 is incident on each area of the reticle 120, and at least a portion of the light 10 is passed through the reticle 120 to reach the photo sensor 130 for detecting separately. The pattern of each region of the mask 120 corresponds to a parameter value corresponding to the illumination of the light 10, and the difference between the respective parameter values is compared (step K3).

舉例而言,第3圖繪示本發明一實施例之光罩圖案的圖案密集(dense pattern)區域。第4圖所示繪示本發明一實施例之光罩圖案的孤立圖案(isolated pattern)區域。如第3圖所示,當發現光罩120之第一區域120A的一第一位置S1包含有一缺陷d1(如第3圖中之右邊所示)時,則將光線10入射至第一位置S1以偵測出其所對應的一第一參數值P1。然後,將光線10入射至一第二位置S2,其為無缺陷區域(如第3圖中之左邊所示),以偵測出其所對應的一第二參數值P2。而後,比較第一參數值P1及第二參數值P2的差異。當第一參數值P1與第二參數值P2的差異大於製程之預設容忍度(variation tolerance)時,則表示此缺陷區域中之缺陷d1須進行修補。當然,如第一參數值P1與第二參數值P2的差異小於製程中之預設容忍度(variation tolerance),表示此缺陷d1在預設的製程環境下不會對製程造成負面之影響,因此可忽略此缺陷d1。For example, FIG. 3 illustrates a pattern pattern area of a reticle pattern according to an embodiment of the present invention. Fig. 4 is a view showing an isolated pattern region of a reticle pattern according to an embodiment of the present invention. As shown in FIG. 3, when it is found that a first position S1 of the first region 120A of the reticle 120 includes a defect d1 (as shown on the right side in FIG. 3), the ray 10 is incident on the first position S1. To detect a corresponding first parameter value P1. Then, the light 10 is incident on a second position S2, which is a defect-free area (as shown on the left in FIG. 3) to detect a second parameter value P2 corresponding thereto. Then, the difference between the first parameter value P1 and the second parameter value P2 is compared. When the difference between the first parameter value P1 and the second parameter value P2 is greater than the preset tolerance of the process, it indicates that the defect d1 in the defect area has to be repaired. Of course, if the difference between the first parameter value P1 and the second parameter value P2 is less than the variation tolerance in the process, it indicates that the defect d1 does not adversely affect the process in the preset process environment, so This defect d1 can be ignored.

接著,以相同入射的光線10之能量來檢測光罩120上不同光學特性的區域。如第4圖所示,當發現光罩120之一第二區域120B的一第三位置S3包含有一缺陷d2(如第4圖中之右邊所示)時,則將相同之光線10入射至第三位置S3以偵測出其所對應的一第三參數值P3。然後,將光線10入射至第四位置S4,其包含一無缺陷區域(如第4圖中之左邊所示),以偵測出其所對應的一第四參數值P4。而後,比較第三參數值P3及第四參數值P4的差異。當第三參數值P3與第四參數值P4的差異大於製程中之預設容忍度(variation tolerance)時,則表示此缺陷區域中之缺陷d2需進行修補。當然,如第三參數值P3與第四參數值P4的差異小於製程中之預設容忍度(variation tolerance),表示此缺陷d2在預設的製程環境下不會對製程造成負面之影響,因此可忽略此缺陷d2。Next, regions of different optical properties on the reticle 120 are detected with the energy of the same incident light 10 . As shown in FIG. 4, when it is found that a third position S3 of the second region 120B of the reticle 120 includes a defect d2 (as shown on the right side in FIG. 4), the same ray 10 is incident on the first The three positions S3 are detected to correspond to a third parameter value P3. Then, the ray 10 is incident on the fourth position S4, which includes a defect-free area (as shown on the left in FIG. 4) to detect a fourth parameter value P4 corresponding thereto. Then, the difference between the third parameter value P3 and the fourth parameter value P4 is compared. When the difference between the third parameter value P3 and the fourth parameter value P4 is greater than the preset tolerance in the process, it indicates that the defect d2 in the defect area needs to be repaired. Of course, if the difference between the third parameter value P3 and the fourth parameter value P4 is smaller than the variation tolerance in the process, it indicates that the defect d2 does not adversely affect the process in the preset process environment, so This defect d2 can be ignored.

本實施例之第一參數值P1、第二參數值P2、第三參數值P3及第四參數值P4係以各位置之光罩圖案所對應之臨限尺寸為例,但本發明不以此為限。此外,本實施例中是以與第一區域120A具有不同之光學特性的第二區域120B為例,但本發明不以此無限。例如,第一區域120A與第二區域120B具有不同之圖案密集度。在本實施例中,第3圖所示之第一區域120A為一圖案密集區域,第4圖所示之第二區域120B可為一孤立圖案區域。在晶圓圖案中,圖案密集區域中各相鄰的圖案之間具有最小的分隔距離,而孤立圖案區域中各相鄰的圖案之間則具有最大的分隔距離。換言之,圖案密集區域及孤立圖案區域分別代表晶圓中圖案密度最高及最低的區域,因此確認過這兩個區域,則晶圓中所有區域之臨限尺寸皆會落在此範圍內。The first parameter value P1, the second parameter value P2, the third parameter value P3, and the fourth parameter value P4 in this embodiment are exemplified by the threshold size corresponding to the reticle pattern at each position, but the present invention does not Limited. In addition, in the present embodiment, the second region 120B having different optical characteristics from the first region 120A is taken as an example, but the present invention is not limited thereto. For example, the first region 120A and the second region 120B have different pattern densities. In the present embodiment, the first region 120A shown in FIG. 3 is a pattern dense region, and the second region 120B shown in FIG. 4 may be an isolated pattern region. In the wafer pattern, there is a minimum separation distance between adjacent patterns in the dense region of the pattern, and a maximum separation distance between adjacent patterns in the isolated pattern region. In other words, the pattern-dense area and the isolated pattern area represent the regions with the highest and lowest pattern density in the wafer, respectively. Therefore, after confirming these two areas, the threshold size of all areas in the wafer will fall within this range.

當然,光線10照射之順序可任意對調,例如可先照射第二位置S2再照射第一位置S1,先照射第四位置S4再照射第三位置S3,本發明不以此為限。另外,光線10並非僅限於照射光罩120上之第一區域120A的第一位置S1及第二位置S2,其亦可照射第一區域120A中的其他位置(其他位置包含單一位置或複數個位置),以分別偵測對應此些位置之參數值,並比較這些參數值與第一參數值P1或第二參數值P2的差異;第二區域120B亦同。當然,本發明之光線10亦不限於照射光罩120的第一區域120A及第二區域120B,其亦可照射光罩120的其他區域的複數個位置以量測其他區域的缺陷,本發明不以此為限。Of course, the order of the illumination of the light 10 can be arbitrarily reversed. For example, the second position S2 can be irradiated to the first position S1, and then the fourth position S4 can be irradiated to the third position S3. The present invention is not limited thereto. In addition, the light 10 is not limited to the first position S1 and the second position S2 of the first region 120A on the reticle 120, and may illuminate other positions in the first region 120A (other positions include a single position or a plurality of positions) And detecting the parameter values corresponding to the positions, and comparing the difference between the parameter values and the first parameter value P1 or the second parameter value P2; the second region 120B is also the same. Of course, the light 10 of the present invention is not limited to the first region 120A and the second region 120B of the reticle 120, and may also illuminate a plurality of locations of other regions of the reticle 120 to measure defects in other regions. This is limited to this.

但值得注意的是,本發明係採用同一光線10,尤其係指具有同一能量之光線10,照射光罩120之不同區域(例如第一區域120A及第二區域120B),以分別偵測不同區域之缺陷。因為,在現今製程中,均係採用單一曝光能量(曝光光線)照射光罩,以對於同一晶圓或同一半導體基底進行曝光,因此本發明事先依據光罩之種類及製程參數決定光線10之能量,然後再固定此光線10(能量)來分別照射光罩120上之所有區域,尤其是不同光學特性的區域,例如密集圖案(dense pattern)、孤立圖案(isolated pattern)等。如此一來,本發明的模擬結果可更貼近曝光製程之曝光結果,因而能更準確地判定光罩120中的缺陷(例如d1及d2)是否會在曝光製程中影響晶圓或半導體基底上之顯影圖案,進而有效檢測光罩是否堪用。It should be noted, however, that the present invention employs the same ray 10, and in particular, ray 10 having the same energy, illuminating different regions of the reticle 120 (eg, the first region 120A and the second region 120B) to detect different regions, respectively. Defects. Because in the current process, the illuminating mask is irradiated with a single exposure energy (exposure light) to expose the same wafer or the same semiconductor substrate, the present invention determines the energy of the ray 10 according to the type of the reticle and the process parameters. Then, the light 10 (energy) is fixed to illuminate all regions on the reticle 120, especially regions of different optical characteristics, such as a dense pattern, an isolated pattern, and the like. In this way, the simulation result of the present invention can be closer to the exposure result of the exposure process, thereby more accurately determining whether defects (such as d1 and d2) in the mask 120 affect the wafer or the semiconductor substrate in the exposure process. The pattern is developed to effectively detect whether the mask is available.

綜上所述,本發明提供一種檢測光罩的方法,其採用同一光線(能量),偵測同一光罩上之不同區域中之不同位置的缺陷,以判定此些缺陷,是否會在製程中對於晶圓或半導體基底上之顯影圖案造成負面影響。換言之,由於曝光製程中係採用同一曝光能量進行曝光,是以本發明採用同一光線(能量)進行檢測,更能模擬出實際的曝光結果。如此一來,則可省去因模擬的誤差,而對於曝光製程實際上不會造成負面影響之缺陷進行修補,或者沒篩選到對於曝光製程會造成負面影響之缺陷。因而,本發明可提升製程良率及降低因缺陷問題所耗費之製程成本。In summary, the present invention provides a method for detecting a reticle that uses the same light (energy) to detect defects at different positions in different regions on the same reticle to determine whether the defects are in the process. Negative effects on the development pattern on a wafer or semiconductor substrate. In other words, since the same exposure energy is used for exposure in the exposure process, the same light (energy) is used for the detection of the present invention, and the actual exposure result can be simulated. In this way, the errors due to the simulation can be eliminated, and the defects that do not actually have a negative impact on the exposure process can be repaired, or the defects that have a negative impact on the exposure process are not screened. Therefore, the present invention can improve the process yield and reduce the process cost incurred due to the defect problem.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10、20...光線10, 20. . . Light

100...裝置100. . . Device

110...光源110. . . light source

120...光罩120. . . Mask

120A...第一區域120A. . . First area

120B...第二區域120B. . . Second area

130...光感測器130. . . Light sensor

140...處理器140. . . processor

d1、d2...缺陷D1, d2. . . defect

K1、K2、K3...步驟K1, K2, K3. . . step

P...製程參數值P. . . Process parameter value

P1...第一參數值P1. . . First parameter value

P2...第二參數值P2. . . Second parameter value

P3...第三參數值P3. . . Third parameter value

P4...第四參數值P4. . . Fourth parameter value

S1...第一位置S1. . . First position

S2...第二位置S2. . . Second position

S3...第三位置S3. . . Third position

S4...第四位置S4. . . Fourth position

第1圖繪示本發明一實施例之檢測光罩的裝置之示意圖。FIG. 1 is a schematic view of an apparatus for detecting a reticle according to an embodiment of the invention.

第2圖繪示本發明一實施例之檢測光罩的方法之流程圖。2 is a flow chart showing a method of detecting a reticle according to an embodiment of the present invention.

第3圖繪示本發明一實施例之光罩圖案的圖案密集區域。FIG. 3 illustrates a pattern dense region of a reticle pattern according to an embodiment of the present invention.

第4圖繪示本發明一實施例之光罩圖案的孤立圖案區域。Fig. 4 is a view showing an isolated pattern area of a reticle pattern according to an embodiment of the present invention.

K1、K2、K3...步驟K1, K2, K3. . . step

Claims (17)

一種檢測光罩的方法,包含有:定義一製程參數值;以該製程參數值決定一入射光;使該入射光的至少一部份穿過一光罩的一第一區域的一第一位置及一第二位置,以分別偵測對應該第一位置及對應該第二位置之一第一參數值及一第二參數值,並比較該第一參數值及該第二參數值的差異;以及使該入射光的至少一部份穿過一光罩的一第二區域的一第三位置及一第四位置,以分別偵測對應該第三位置及對應該第四位置之一第三參數值及一第四參數值,並比較該第三參數值及該第四參數值的差異,其中該第一區與該第二區具有不同的光學性質。 A method for detecting a reticle includes: defining a process parameter value; determining an incident light by the process parameter value; causing at least a portion of the incident light to pass through a first position of a first region of the reticle And a second position to respectively detect a first parameter value corresponding to the first position and a corresponding second position and a second parameter value, and compare the difference between the first parameter value and the second parameter value; And passing at least a portion of the incident light through a third location and a fourth location of a second region of the reticle to detect a third location corresponding to the third location and a third location corresponding to the fourth location a parameter value and a fourth parameter value, and comparing the difference between the third parameter value and the fourth parameter value, wherein the first region and the second region have different optical properties. 如申請專利範圍第1項所述之檢測光罩的方法,其中該製程參數值包含一臨限尺寸。 The method of detecting a reticle of claim 1, wherein the process parameter value comprises a threshold size. 如申請專利範圍第2項所述之檢測光罩的方法,其中該臨限尺寸包含一臨限尺寸條(CD-bar)中之臨限尺寸。 The method of detecting a reticle of claim 2, wherein the threshold size comprises a threshold size in a CD-bar. 如申請專利範圍第1項所述之檢測光罩的方法,其中以該製程參數值決定該入射光包含決定該入射光的入射能量。 The method of detecting a reticle according to claim 1, wherein the incident light includes an incident energy that determines the incident light. 如申請專利範圍第1項所述之檢測光罩的方法,其中該第一區域與該第二區域具有不同之光學特性。 The method of detecting a reticle according to claim 1, wherein the first region and the second region have different optical characteristics. 如申請專利範圍第5項所述之檢測光罩的方法,其中該第一區域與該第二區域具有不同之圖案密集度。 The method of detecting a reticle of claim 5, wherein the first region and the second region have different pattern densities. 如申請專利範圍第6項所述之檢測光罩的方法,其中該第一區域包含一圖案密集區域,而該第二區域包含一孤立圖案區域。 The method of detecting a reticle of claim 6, wherein the first region comprises a pattern dense region and the second region comprises an isolated pattern region. 如申請專利範圍第1項所述之檢測光罩的方法,其中該第一位置及該第三位置包含至少一缺陷。 The method of detecting a reticle of claim 1, wherein the first location and the third location comprise at least one defect. 如申請專利範圍第1項所述之檢測光罩的方法,其中該第二位置及該第四位置為無缺陷。 The method of detecting a reticle according to claim 1, wherein the second position and the fourth position are defect-free. 如申請專利範圍第1項所述之檢測光罩的方法,其中該第一參數值、該第二參數值、該第三參數值及該第四參數值包含一臨限尺寸。 The method of detecting a reticle according to claim 1, wherein the first parameter value, the second parameter value, the third parameter value, and the fourth parameter value comprise a threshold size. 如申請專利範圍第1項所述之檢測光罩的方法,更包含:使該入射光的至少一部份穿過該第一區域的其他位置,以分別偵測對應該其他位置之其他參數值,並比較該其他參數值、該第一參數值與該第二參數值的差異。 The method for detecting a reticle according to claim 1, further comprising: passing at least a portion of the incident light through other locations of the first region to detect other parameter values corresponding to other locations, respectively. And comparing the other parameter value, the difference between the first parameter value and the second parameter value. 如申請專利範圍第1項所述之檢測光罩的方法,其中該其他位置包含單一位置或複數個位置。 The method of detecting a reticle of claim 1, wherein the other location comprises a single location or a plurality of locations. 如申請專利範圍第1項所述之檢測光罩的方法,更包含:使該入射光的至少一部份穿過該光罩的其他區域的複數個位置,以分別偵測對應該複數個位置之複數個參數值,並比較該複數個參數值的差異。 The method for detecting a reticle according to claim 1, further comprising: passing at least a portion of the incident light through a plurality of locations of other regions of the reticle to detect a plurality of positions respectively The plurality of parameter values, and compare the differences of the plurality of parameter values. 如申請專利範圍第1項所述之檢測光罩的方法,其中該入射光係由一光源發出,且該光源包含一波長為365奈米之水銀燈、一波長為193奈米之氟化氬準分子雷射、一波長為248奈米之氟化氪準分子雷射。 The method of detecting a reticle according to claim 1, wherein the incident light is emitted by a light source, and the light source comprises a mercury lamp having a wavelength of 365 nm and a argon fluoride having a wavelength of 193 nm. A molecular laser, a fluorinated europium excimer laser with a wavelength of 248 nm. 如申請專利範圍第1項所述之檢測光罩的方法,其中該光罩包含一吸收層、一金屬模、一無機模、一二元強度光罩、一相位轉移光罩或一光學鄰近修正光罩(OPC)。 The method of detecting a reticle according to claim 1, wherein the reticle comprises an absorbing layer, a metal mold, an inorganic mold, a binary intensity mask, a phase transfer mask or an optical proximity correction. Photomask (OPC). 如申請專利範圍第1項所述之檢測光罩的方法,更包含一光感測器,設於該入射光穿過該光罩後之光路徑上,以偵測該第一參數值、該第二參數值該第三參數值及該第四參數值。 The method of detecting a reticle according to claim 1, further comprising a light sensor disposed on the light path of the incident light passing through the reticle to detect the first parameter value, The second parameter value is the third parameter value and the fourth parameter value. 如申請專利範圍第16項所述之檢測光罩的方法,更包含一處理 器連接該光感測器並接收該光感測器的感測資料,以比較該第一參數值及該第二參數值的差異、比較該第三參數值及該第四參數值的差異。 The method for detecting a reticle as described in claim 16 of the patent application further includes a process The device is connected to the photo sensor and receives the sensing data of the photo sensor to compare the difference between the first parameter value and the second parameter value, and compare the difference between the third parameter value and the fourth parameter value.
TW100130923A 2011-08-29 2011-08-29 Mask inspecting method TWI557822B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100130923A TWI557822B (en) 2011-08-29 2011-08-29 Mask inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100130923A TWI557822B (en) 2011-08-29 2011-08-29 Mask inspecting method

Publications (2)

Publication Number Publication Date
TW201310560A TW201310560A (en) 2013-03-01
TWI557822B true TWI557822B (en) 2016-11-11

Family

ID=48482056

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100130923A TWI557822B (en) 2011-08-29 2011-08-29 Mask inspecting method

Country Status (1)

Country Link
TW (1) TWI557822B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10460999B2 (en) 2013-11-27 2019-10-29 Taiwan Semiconductor Manufacturing Co., Ltd. Metrology device and metrology method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805123A (en) * 1986-07-14 1989-02-14 Kla Instruments Corporation Automatic photomask and reticle inspection method and apparatus including improved defect detector and alignment sub-systems
US6388253B1 (en) * 1999-06-29 2002-05-14 Applied Materials, Inc. Integrated critical dimension control for semiconductor device manufacturing
US6961920B2 (en) * 2003-09-18 2005-11-01 International Business Machines Corporation Method for interlayer and yield based optical proximity correction
US6969864B2 (en) * 2002-06-07 2005-11-29 Brion Technologies, Inc. System and method for lithography process monitoring and control
US7327436B2 (en) * 2004-05-25 2008-02-05 Kabushiki Kaisha Toshiba Method for evaluating a local flare, correction method for a mask pattern, manufacturing method for a semiconductor device and a computer program product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805123A (en) * 1986-07-14 1989-02-14 Kla Instruments Corporation Automatic photomask and reticle inspection method and apparatus including improved defect detector and alignment sub-systems
US4805123B1 (en) * 1986-07-14 1998-10-13 Kla Instr Corp Automatic photomask and reticle inspection method and apparatus including improved defect detector and alignment sub-systems
US6388253B1 (en) * 1999-06-29 2002-05-14 Applied Materials, Inc. Integrated critical dimension control for semiconductor device manufacturing
US6969864B2 (en) * 2002-06-07 2005-11-29 Brion Technologies, Inc. System and method for lithography process monitoring and control
US6961920B2 (en) * 2003-09-18 2005-11-01 International Business Machines Corporation Method for interlayer and yield based optical proximity correction
US7327436B2 (en) * 2004-05-25 2008-02-05 Kabushiki Kaisha Toshiba Method for evaluating a local flare, correction method for a mask pattern, manufacturing method for a semiconductor device and a computer program product

Also Published As

Publication number Publication date
TW201310560A (en) 2013-03-01

Similar Documents

Publication Publication Date Title
KR100982135B1 (en) System and method for mask verification using an individual mask error model
US8421026B2 (en) Method and apparatus for mapping of line-width size distributions on photomasks
CN113196176A (en) Method and device for metering
KR20160031274A (en) Apparatus for inspecting the reticle and method thereof
US7149998B2 (en) Lithography process modeling of asymmetric patterns
KR100653990B1 (en) Method for detecting database pattern's fail on the photo mask
JP4846510B2 (en) Surface position measurement system and exposure method
TWI557822B (en) Mask inspecting method
KR100945937B1 (en) Method for inspecting defects in photomask
US20190079413A1 (en) Metrology in Lithographic Processes
TW200837504A (en) Exposure apparatus, exposure method, and device fabrication method
KR20080000976A (en) Method for processing a optical proximity correction of semiconductor device's pattern
US8810785B2 (en) Mask inspecting method
KR20080090794A (en) Method for fabricating photomask
KR100611400B1 (en) Apparatus for correcting optical proximity effect on the mask pattern
JP2014165275A (en) Exposure method and exposure system
US11886125B2 (en) Method for inferring a local uniformity metric
TWI439798B (en) Method of inspecting photomask defect
TWI710867B (en) Method of determining the contribution of a processing apparatus to a substrate parameter
EP3961303A1 (en) Method and apparatus for identifying contamination in a semiconductor fab
KR20190142106A (en) Method for manufacturing semiconductor device
KR101143624B1 (en) Method for inspecting defects in phase shift mask backside
Lo et al. Identifying process window marginalities of reticle designs for 0.15/0.13-um technologies
KR100649003B1 (en) Method for Testing Mask
Chen et al. Mask-LMC: lithographic simulation and defect detection from high-resolution mask images