TWI554017B - Method for voltage detection by b-duty - Google Patents

Method for voltage detection by b-duty Download PDF

Info

Publication number
TWI554017B
TWI554017B TW103142067A TW103142067A TWI554017B TW I554017 B TWI554017 B TW I554017B TW 103142067 A TW103142067 A TW 103142067A TW 103142067 A TW103142067 A TW 103142067A TW I554017 B TWI554017 B TW I554017B
Authority
TW
Taiwan
Prior art keywords
voltage
capacitor
state
signal
input
Prior art date
Application number
TW103142067A
Other languages
Chinese (zh)
Other versions
TW201622330A (en
Inventor
陳佑民
劉智遠
黃培倫
Original Assignee
萬國半導體(開曼)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 萬國半導體(開曼)股份有限公司 filed Critical 萬國半導體(開曼)股份有限公司
Priority to TW103142067A priority Critical patent/TWI554017B/en
Publication of TW201622330A publication Critical patent/TW201622330A/en
Application granted granted Critical
Publication of TWI554017B publication Critical patent/TWI554017B/en

Links

Description

電壓檢測電路及檢測電壓變化的方法 Voltage detection circuit and method for detecting voltage change

本發明主要涉及電源轉換系統,確切地說,是在應用於交流至直流電源轉換的裝置中設計一種對正弦波交流市電整流後的電壓實施偵測的檢測電路,並提供相應的檢測方法,藉由電壓檢測電路輕易的監控和檢測出輸入電壓幅度的變化狀態並輸出檢測結果。 The invention mainly relates to a power conversion system, in particular to a detection circuit for detecting a voltage of a sinusoidal AC mains rectification in a device applied to an AC to DC power conversion, and providing a corresponding detection method. The voltage detection circuit easily monitors and detects the change state of the input voltage amplitude and outputs the detection result.

在常規的電源轉換系統中,會利用交直流轉換器將電網提供的交流輸入電壓VAC轉換成期望的直流電壓VDC,然後再藉由電壓轉換器對電壓VDC調製之後,輸出最終的具微小紋波的直流輸出電壓VOUT,這是現有交直流轉換系統採用的常規技術。面臨的問題是,交流輸入電壓VAC並非一直具有穩定不變的峰值或有效值,當市電送入的交流輸入電壓VAC進入欠壓或者過壓狀態,都有可能造成交直流轉換器的損壞,因此,即時監控和判斷交流輸入電壓VAC的變化趨勢十分有必要。 In a conventional power conversion system, an AC/DC converter is used to convert the AC input voltage V AC provided by the grid into a desired DC voltage V DC , and then the voltage converter is used to modulate the voltage V DC to output the final tool. The DC output voltage V OUT of the tiny ripple is a conventional technique used in existing AC/DC conversion systems. The problem is that the AC input voltage V AC does not always have a stable peak or RMS value. When the AC input voltage V AC from the mains enters an undervoltage or overvoltage condition, it may cause damage to the AC/DC converter. Therefore, it is necessary to monitor and judge the changing trend of the AC input voltage V AC in real time.

在美國專利申請US20090141523中,利用兩個串聯的電阻構成分壓器並在它們之間的公共節點處產生反映輸入電壓VAC變化的偵測電壓。該兩個電阻串接在輸入電壓VAC輸出的直流電源VM和接地端之間,本領域的技術人員都知道,一直導通產生電流流經該兩個電阻會消耗功率,儘管這兩個電阻僅僅只是作為輔助的偵測元器件。有鑒於此,既要求提供可有效用於偵測輸入電壓VAC變化的裝置,而且這個裝置能直接無誤的準確反映電壓VAC變化趨勢,又要求能夠避免用於偵測輸入電壓VAC的裝置不必要的過多消耗能量,是一個待解決的難題。 In U.S. Patent Application No. US20090141523, a voltage divider is constructed using two resistors in series and a detection voltage reflecting a change in the input voltage V AC is generated at a common node between them. The two resistors are connected in series between the DC power source V M outputting the input voltage V AC and the ground terminal. It is known to those skilled in the art that the conduction of current through the two resistors consumes power, even though the two resistors Just as an auxiliary detection component. In view of this, it is required to provide a device which can be effectively used for detecting the change of the input voltage V AC , and the device can accurately reflect the trend of the voltage V AC directly and without error, and is required to avoid the device for detecting the input voltage V AC . Unnecessarily excessive energy consumption is a difficult problem to be solved.

在一個實施例中,本發明揭示了一種電壓檢測電路,包括: 一個整流電路,將交流電壓整流為直流的輸入電壓;一個偵測單元,接收輸入電壓並依據輸入電壓大小的波動,藉此產生具有不同邏輯態的偵測電壓信號;一個用於循環充放電的電容;一個充電電流源單元,在偵測單元發送的所述偵測電壓信號具有第二狀態時為所述電容充電;一個放電電流源單元,在偵測單元發送的所述偵測電壓信號具有第一狀態時使所述電容放電;一個主比較器,在電容充電和放電的交替過程中將電容上變化的電壓與一個臨界零電位進行比較,並輸出帶有標識輸入電壓變化趨勢的檢測信號。 In one embodiment, the present invention discloses a voltage detection circuit comprising: A rectifying circuit rectifies the alternating current voltage into a direct current input voltage; a detecting unit receives the input voltage and generates a detecting voltage signal having a different logic state according to the fluctuation of the input voltage; and one is used for cyclic charging and discharging a charging current source unit, wherein the detecting voltage signal sent by the detecting unit has a second state to charge the capacitor; and a discharging current source unit, the detecting voltage signal sent by the detecting unit has The first state causes the capacitor to discharge; a main comparator compares a voltage across the capacitor with a critical zero potential during an alternating charge and discharge of the capacitor, and outputs a detection signal with a trend indicating the change in the input voltage. .

上述電壓檢測電路,當輸入電壓超過一個預設值時,觸發所述偵測單元產生具有第一狀態的偵測電壓信號;以及當輸入電壓低於預設值時,觸發所述偵測單元產生具有第二狀態的偵測電壓信號。 The voltage detecting circuit triggers the detecting unit to generate a detecting voltage signal having a first state when the input voltage exceeds a preset value; and triggers the detecting unit to generate when the input voltage is lower than a preset value A detection voltage signal having a second state.

上述電壓檢測電路,在偵測單元中,一個齊納二極體的陽極連接於一個接面場效應電晶體的汲極,並將輸入電壓施加在齊納二極體陰極,設置所述預設值等於齊納二極體的擊穿電壓,從而在接面場效應電晶體的源極產生偵測電壓信號。 In the above voltage detecting circuit, in the detecting unit, an anode of a Zener diode is connected to a drain of a junction field effect transistor, and an input voltage is applied to the Zener diode cathode, and the preset is set. The value is equal to the breakdown voltage of the Zener diode, thereby generating a detection voltage signal at the source of the junction field effect transistor.

上述電壓檢測電路,接面場效應電晶體JFET的源極連接於偵測單元中一個比較器的正相輸入端,該比較器的反相輸入端輸入一個閥值電壓VTH;當輸入電壓高於所述預設值,導致偵測電壓信號電位大於閥值電壓VTH,表徵偵測電壓信號具有邏輯高的第一狀態,使得偵測單元的比較器輸出的驅動信號為高位準;當輸入電壓低於所述預設值,導致偵測電壓信號電位小於閥值電壓VTH,表徵偵測電壓信號具有邏輯低的第二狀態,使得偵測單元的比較器輸出的驅動信號為低位準。 In the above voltage detecting circuit, the source of the junction field effect transistor JFET is connected to the non-inverting input terminal of a comparator in the detecting unit, and the inverting input terminal of the comparator inputs a threshold voltage V TH ; when the input voltage is high At the preset value, the detected voltage signal potential is greater than the threshold voltage V TH , and the detected voltage signal has a logic high first state, so that the driving signal outputted by the comparator of the detecting unit is at a high level; The voltage is lower than the preset value, so that the detected voltage signal potential is less than the threshold voltage V TH , and the detected voltage signal has a logic low second state, so that the driving signal output by the comparator of the detecting unit is a low level.

上述電壓檢測電路,充電電流源單元包括一個電壓電流轉換器和一個開關SW1,開關SW1連接於一個電壓源與電壓電流轉換器輸入端之間;當偵測電壓信號具有第二狀態時,偵測單元發送驅動信號接通開關SW1,為充電電流 源單元提供用於轉換成充電電流的電壓源,將充電電流輸送給電容促使電容充電。 Said voltage detection circuit, a charging current source unit comprises a voltage to current converter and out switch SW 1, out switch SW 1 is connected between a voltage source and an input terminal of the voltage-current converter; when the detected voltage signal has a second state, the detecting unit transmits a drive signal turns on the switch SW 1, a voltage source for conversion into a charging current to the charging current source means, the charging current to the capacitor causes the capacitor to charge.

上述電壓檢測電路,放電電流源單元包括一個電壓電流轉換器和一個開關SW2,開關SW2連接於一個電壓源與電壓電流轉換器輸入端之間;當偵測電壓信號具有第一狀態時,偵測單元發送驅動信號接通開關SW2,為放電電流源單元提供用於轉換成放電電流的電壓源,電容藉由放電電流來釋放電荷量。 In the above voltage detecting circuit, the discharging current source unit comprises a voltage current converter and a switch SW 2 , the switch SW 2 is connected between a voltage source and the input of the voltage current converter; when the detecting voltage signal has the first state, The detecting unit sends a driving signal to turn on the switch SW 2 to supply a voltage source for converting the discharging current to the discharging current source unit, and the capacitor discharges the amount of the electric charge by the discharging current.

上述電壓檢測電路,偵測電壓信號從第一狀態翻轉成第二狀態的下降沿時刻,開始為電容充電,並且偵測電壓信號從第二狀態翻轉成第一狀態的上升沿時刻,開始釋放電容的電荷量;以及偵測電壓信號每次從第一狀態翻轉成第二狀態的每個下降沿時刻,在電容啟動充電之前先行對電容執行一次瞬時放電步驟。 The voltage detecting circuit detects that the voltage signal is turned from the first state to the falling edge of the second state, starts charging the capacitor, and detects that the voltage signal is flipped from the second state to the rising edge of the first state, and starts to release the capacitor. The amount of charge; and each time the detected voltage signal is flipped from the first state to the second state, each time the capacitor is charged, an instantaneous discharge step is performed on the capacitor.

上述電壓檢測電路,設置一個與電容並聯的且一端接地的開關SW3,偵測單元發送的驅動信號通過一個反相器反相後輸送給一個單穩態觸發器的輸入端,而單穩態觸發器的輸出端則連接到該開關SW3的控制端;由偵測電壓信號的下降沿經反相器反相後的上升沿,來觸發單穩態觸發器傳送一次驅動該開關SW3接通的輸出信號,利用該開關SW3對電容執行瞬時放電。 Said voltage detection circuit, a capacitor is provided in parallel with one end grounded and the switch SW 3, the drive signal detection unit transmitted after inverted by an inverter is supplied to a monostable flip-flop input terminal, and the monostable the output of the flip-flop is connected to the control terminal of the switch SW 3; and by the falling edge detection signal voltage by the rising edge of the inverted by an inverter, to trigger a monostable multivibrator for driving the transfer switch SW 3 connected The output signal is turned on, and the switch SW 3 is used to perform instantaneous discharge on the capacitor.

上述電壓檢測電路,將具有基準有效值VHVR的一個基準輸入電壓輸送給偵測單元,設定齊納二極體的齊納擊穿電壓為VZ1,在基準輸入電壓的一個週期內,偵測電壓信號的第一狀態具有的基準占空比DB為: 同時設定為電容充電的電流值I1和使電容放電的電流值I2之間滿足: The voltage detecting circuit supplies a reference input voltage having a reference effective value V HVR to the detecting unit, and sets a Zener breakdown voltage of the Zener diode to be V Z1 , and detects in one cycle of the reference input voltage. The first state of the voltage signal has a reference duty cycle D B of: At the same time, it is set between the current value I 1 for charging the capacitor and the current value I 2 for discharging the capacitor:

上述電壓檢測電路,當實際占空比大於基準占空比DB時,則主比較器輸出的檢測信號在實際輸入電壓的每個週期內都會產生一次高位準,該檢測信號的結果表示實際輸入電壓的峰值比基準輸入電壓的峰值大;或者當實際占空比小於基準占空比DB時,則主比較器輸出的檢測信號在實際輸入電壓的每個週期內都不會產生任何高位準,檢測信號的結果表示實際輸入電壓的峰值比基準輸入電壓的峰值小。 In the above voltage detecting circuit, when the actual duty ratio is greater than the reference duty ratio D B , the detection signal outputted by the main comparator generates a high level in each period of the actual input voltage, and the result of the detection signal represents the actual input. The peak value of the voltage is greater than the peak value of the reference input voltage; or when the actual duty ratio is less than the reference duty ratio D B , the detection signal output by the main comparator does not generate any high level in each period of the actual input voltage The result of the detection signal indicates that the peak value of the actual input voltage is smaller than the peak value of the reference input voltage.

上述電壓檢測電路,將偵測單元中比較器的輸出端連接到一個計數器Counter的輸入端,當計數器探測到偵測單元的該比較器輸出的比較結果為低位準且該低位準狀態維持超過一段預設的時間,則可以判斷輸入電壓處於欠壓狀態。 The voltage detecting circuit connects the output end of the comparator in the detecting unit to the input end of a counter Counter, and when the counter detects that the comparison result of the comparator output of the detecting unit is low, the low level state is maintained for more than one period. At the preset time, it can be judged that the input voltage is in an undervoltage state.

在另一個實施例中,本發明揭示了一種檢測電壓變化的方法,包括以下步驟:利用一個整流電路將交流電壓整流為直流的輸入電壓;以一個偵測單元來接收所述輸入電壓,並依據輸入電壓大小的波動,藉此由偵測單元產生具有不同邏輯態的偵測電壓信號;對一個電容執行循環的充放電程式;在電容的充電過程中,當偵測單元發送的所述偵測電壓信號具有第二狀態時,利用一個充電電流源單元為所述電容充電;在電容的放電過程中,當偵測單元發送的所述偵測電壓信號具有第一狀態時,利用一個放電電流源單元使所述電容放電;利用一個主比較器,在電容的充電和放電的交替過程中,將電容上變化的電壓和一個臨界零電位進行比較,藉由該主比較器輸出帶有標識輸入電壓變化趨勢的比較結果,作為檢測出輸入電壓變化的最終檢測信號。 In another embodiment, the present invention discloses a method for detecting a voltage change, comprising the steps of: rectifying an alternating current voltage into a direct current input voltage by using a rectifying circuit; receiving the input voltage by a detecting unit, and The fluctuation of the input voltage level, thereby generating a detection voltage signal having different logic states by the detecting unit; performing a cyclic charging and discharging program on one capacitor; and detecting the detection sent by the detecting unit during charging of the capacitor When the voltage signal has the second state, the capacitor is charged by a charging current source unit; during the discharging of the capacitor, when the detecting voltage signal sent by the detecting unit has the first state, using a discharging current source The unit discharges the capacitor; using a main comparator to compare the voltage across the capacitor with a critical zero potential during the alternating charge and discharge of the capacitor, with the main comparator output having the identified input voltage The comparison result of the change trend is used as the final detection signal for detecting the change of the input voltage.

上述方法,在輸入電壓超過一個預設值時,觸發所述偵測單元產生具有第一狀態的一個偵測電壓信號;以及在輸入電壓低於預設值時,觸發所述偵測單元產生具有第二狀態的一個偵測電壓信號。 In the above method, when the input voltage exceeds a preset value, the detecting unit is triggered to generate a detection voltage signal having a first state; and when the input voltage is lower than a preset value, triggering the detecting unit to generate A detected voltage signal of the second state.

上述方法,在偵測單元中,一個齊納二極體的陽極連接於一個接面場效應電晶體JFET的汲極,並將輸入電壓從齊納二極體陰極輸入,設置所述 預設值等於齊納二極體的擊穿電壓,從而在接面場效應電晶體的源極產生偵測電壓信號。 In the above method, in the detecting unit, an anode of a Zener diode is connected to a drain of a junction field effect transistor JFET, and an input voltage is input from a Zener diode cathode, and the The preset value is equal to the breakdown voltage of the Zener diode, so that a detection voltage signal is generated at the source of the junction field effect transistor.

上述方法,將接面場效應電晶體JFET的源極連接於偵測單元中一個比較器的正相輸入端,並在比較器的反相輸入端輸入一個閥值電壓VTH;當輸入電壓高於所述預設值,偵測電壓信號電位大於閥值電壓VTH,表徵偵測電壓信號具有邏輯高的第一狀態,則偵測單元的比較器輸出的驅動信號為高位準;當輸入電壓低於所述預設值,偵測電壓信號電位小於閥值電壓VTH,表徵偵測電壓信號具有邏輯低的第二狀態,則偵測單元的比較器輸出的驅動信號為低位準。 In the above method, the source of the junction field effect transistor JFET is connected to the non-inverting input terminal of a comparator in the detecting unit, and a threshold voltage V TH is input at the inverting input terminal of the comparator; when the input voltage is high And at the preset value, the detected voltage signal potential is greater than the threshold voltage V TH , and the detected voltage signal has a logic high first state, and the detection signal of the comparator output of the detecting unit is a high level; when the input voltage is Below the preset value, the detected voltage signal potential is less than the threshold voltage V TH , and the detected voltage signal has a second state with a logic low, and the driving signal output by the comparator of the detecting unit is a low level.

上述方法,充電電流源單元包括一個電壓電流轉換器和一個開關SW1,開關SW1連接於一個電壓源和充電電流源單元的電壓電流轉換器的電壓轉電流輸入端之間;當偵測電壓信號具有第二狀態時,偵測單元發送驅動信號接通開關SW1,為充電電流源單元提供用於轉換成充電電流的電壓源,將充電電流輸送給電容促使電容充電。 The above method, the charging current source unit comprises a voltage to current converter 1 and a switch SW, the switch SW is connected to the voltage converter is a voltage-current voltage source and the charging current source unit 1 rotation between a current input terminal; when the detection voltage when a signal having a second state, the detection unit transmits the driving signal turns on the switch SW 1, to provide a voltage source for conversion into a charging current for the charging current source means, the charging current to the capacitor causes the capacitor to charge.

上述方法,放電電流源單元包括一個電壓電流轉換器和一個開關SW2,開關SW2連接於一個電壓源和放電電流源單元的電壓電流轉換器的電壓轉電流輸入端之間;當偵測電壓信號具有第一狀態時,偵測單元發送驅動信號接通開關SW2,為放電電流源單元提供用於轉換成放電電流的電壓源,電容藉由放電電流來釋放電荷量。 The above method, the discharge current source unit comprises a voltage to current converter 2 and a switch SW, the switch SW is connected to the voltage converter is a voltage-current voltage source and the discharging current source unit 2 revolutions between the current input terminal; when the detection voltage signal having a first state when the detecting unit transmits the driving signal turns on the switch SW 2, a voltage source for converting the discharge current into a discharge current source means the capacitor by a discharge current to discharge the electric charge amount.

上述方法,在偵測電壓信號從第一狀態翻轉成第二狀態的下降沿時刻,開始為電容充電,並且在偵測電壓信號從第二狀態翻轉成第一狀態的上升沿時刻,開始釋放電容的電荷量;以及偵測電壓信號每次從第一狀態翻轉成第二狀態的每個下降沿時刻,在電容啟動充電之前先行對電容執行一次瞬時放電步驟。 In the above method, when the detected voltage signal is turned from the first state to the falling state of the second state, the capacitor is charged, and when the detected voltage signal is flipped from the second state to the rising edge of the first state, the capacitor is released. The amount of charge; and each time the detected voltage signal is flipped from the first state to the second state, each time the capacitor is charged, an instantaneous discharge step is performed on the capacitor.

上述方法,設置一個與充放電電容並聯的開關SW3,開關SW3的一端接地,使偵測單元發送的驅動信號通過一個反相器反相後再輸送給一個單穩態觸發器的輸入端,進一步將單穩態觸發器的輸出端連接到該開關SW3的控制 端;令偵測電壓信號的下降沿經反相器反相後的上升沿,來觸發單穩態觸發器傳送一次驅動該開關SW3接通的輸出信號,從而利用該開關SW3的接通狀態對電容執行瞬時放電。 The above-described method, a set 3, one end of the switch SW 3 is grounded, the drive signal transmitted from the detecting unit capacitor in parallel with the switch SW is supplied to the charging and discharging of a monostable multivibrator and then through an inverter inverting input terminal further connecting an output of the monostable flip-flop to the control terminal of the switch SW 3; so the falling edge detection signal voltage by the rising edge of the inverted by an inverter, to trigger the monostable primary drive transfer the output signal of the switch SW 3 is turned on, so that the use of state of the switch SW 3 is turned on to discharge the capacitor instantaneously executed.

上述方法,將具有基準有效值VHVR的一個基準輸入電壓輸送給偵測單元,設定齊納二極體的齊納擊穿電壓為VZ1,在基準輸入電壓的一個週期內,偵測電壓信號的第一狀態具有的基準占空比DB為: 同時設定電容充電的電流值I1和使電容放電的電流值I2之間滿足: In the above method, a reference input voltage having a reference effective value V HVR is supplied to the detecting unit, and the Zener breakdown voltage of the Zener diode is set to V Z1 , and the voltage signal is detected within one cycle of the reference input voltage. The first state has a reference duty cycle D B of: At the same time, it is set between the current value I 1 of the capacitor charging and the current value I 2 for discharging the capacitor:

上述方法,在實際占空比大於基準占空比DB時,將會觸發主比較器輸出的檢測信號在實際輸入電壓的每個週期內都會產生一次高位準,表示實際輸入電壓的峰值要比基準輸入電壓的峰值大;或者在實際占空比小於基準占空比DB時,將會觸發主比較器輸出的檢測信號在實際輸入電壓的每個週期內都不會產生任何高位準,表示實際輸入電壓的峰值要比基準輸入電壓的峰值小。 In the above method, when the actual duty ratio is greater than the reference duty ratio D B , the detection signal outputted by the main comparator will be triggered to generate a high level in each period of the actual input voltage, indicating that the peak value of the actual input voltage is greater than The peak value of the reference input voltage is large; or when the actual duty ratio is less than the reference duty ratio D B , the detection signal that will trigger the output of the main comparator does not generate any high level in each period of the actual input voltage, indicating The peak value of the actual input voltage is smaller than the peak value of the reference input voltage.

100 107‧‧‧節點 100 107‧‧‧ nodes

101‧‧‧接面場效應電晶體 101‧‧‧Connected field effect transistor

115‧‧‧橋式整流器 115‧‧‧Bridge rectifier

116‧‧‧電壓轉換器 116‧‧‧Voltage Converter

121‧‧‧比較器 121‧‧‧ comparator

122‧‧‧反相器 122‧‧‧Inverter

123‧‧‧單穩態觸發器 123‧‧‧One-shot trigger

128‧‧‧主比較器 128‧‧‧Main comparator

215‧‧‧偵測單元 215‧‧‧Detection unit

225‧‧‧整流電路 225‧‧‧Rectifier circuit

235‧‧‧充放電電路 235‧‧‧Charge and discharge circuit

235a‧‧‧充電電流源單元 235a‧‧‧Charging current source unit

235b‧‧‧放電電流源單元 235b‧‧‧Discharge current source unit

255‧‧‧電壓檢測電路 255‧‧‧Voltage detection circuit

ZD1‧‧‧齊納二極體 ZD1‧‧‧Zina diode

D1 D4‧‧‧二極體 D1 D4‧‧‧ diode

GND‧‧‧接地端 GND‧‧‧ ground terminal

R1‧‧‧電阻 R1‧‧‧ resistance

VHV‧‧‧輸入電壓 V HV ‧‧‧ input voltage

VZ‧‧‧擊穿電壓 V Z ‧‧‧ breakdown voltage

ID‧‧‧電流 I D ‧‧‧current

VSG‧‧‧正向壓降 V SG ‧‧‧ forward pressure drop

VGS‧‧‧源極和閘極間的電壓 V GS ‧‧‧ voltage between source and gate

VP‧‧‧夾斷電壓 V P ‧‧‧ pinch-off voltage

VS‧‧‧動態偵測電壓信號 V S ‧‧‧Dynamic detection voltage signal

VAC‧‧‧交流電壓 V AC ‧‧‧AC voltage

CX‧‧‧高頻濾波電容 A high frequency filter capacitor C X ‧‧‧

Cbulk‧‧‧輸出電容 C bulk ‧‧‧ output capacitor

VO‧‧‧直流輸出電壓 V O ‧‧‧DC output voltage

D2、D3‧‧‧整流二極體 D2, D3‧‧‧ Rectifier

CVDD‧‧‧電源電容 C VDD ‧‧‧Power Capacitor

DB‧‧‧實際占空比 D B ‧‧‧ actual duty cycle

VHV1、VHV2、VHV3‧‧‧振幅的輸入電壓 V HV1 , V HV2 , V HV3 ‧‧‧ amplitude input voltage

VHVR‧‧‧電壓有效值 V HVR ‧‧‧voltage rms

CT‧‧‧充放電電容 C T ‧‧‧Charge and discharge capacitor

SW1 SW2‧‧‧開關 Switch SW 1 SW 2 ‧‧‧

VS3‧‧‧偵測電壓信號 V S3 ‧‧‧Detection voltage signal

CVDD‧‧‧電源電容 C VDD ‧‧‧Power Capacitor

VDD‧‧‧直流電源電壓 V DD ‧‧‧DC power supply voltage

閱讀以下詳細說明並參照以下附圖之後,本發明的特徵和優勢將顯而易見:圖1A展示了偵測輸入電壓VHV變化狀態的基本偵測單元結構。 The features and advantages of the present invention will be apparent from the following detailed description and reference to the accompanying drawings. Figure 1A shows the basic detection unit structure for detecting the change state of the input voltage V HV .

圖1B是輸入電壓VHV超過齊納二極體擊穿電壓時偵測單元的輸出位準波形。 FIG. 1B is an output level waveform of the detecting unit when the input voltage V HV exceeds the Zener diode breakdown voltage.

圖2是交流電壓VAC整流後得到直流輸入電壓VHV並施加給偵測單元。 2 is a rectified AC voltage V AC to obtain a DC input voltage V HV and applied to the detecting unit.

圖3是在不同振幅或峰值的直流輸入電壓VHV條件下產生不同占空比的偵測信號。 Figure 3 is a detection signal that produces different duty cycles under different amplitude or peak DC input voltages V HV .

圖4A顯示了帶有充放電電容CT的充放電電路。 Fig. 4A shows a charge and discharge circuit with a charge and discharge capacitor C T .

圖4B~4C展示了在不同占空比的偵測電壓信號條件下,電容CT對應於不同偵測電壓信號的邏輯高或低而誘發充電和放電時機。 4B~4C show the charging and discharging timings induced by the capacitance C T corresponding to the logic high or low of different detection voltage signals under different duty cycle detection voltage signals.

圖5是含有偵測單元的電壓檢測電路。 Figure 5 is a voltage detection circuit including a detection unit.

圖6是輸入電壓VHV在不同振幅/峰值下電壓檢測電路輸出的檢測信號結果。 Fig. 6 is a result of detection signals outputted by the voltage detecting circuit of the input voltage V HV at different amplitudes/peaks.

參見圖1A,基本的偵測單元215主要包含一個接面場效應電晶體(JFET)101,以及偵測單元215還具有的一個齊納二極體ZD1,齊納二極體ZD1的陽極連接到該JFET101的汲極,而JFET101的源極則連接到一個二極體D1的陽極,二極體D1的陰極則連接到接地端GND。此外,JFET101的控制端如閘極則連接到接地端GND,並在JFET101的閘極和源極之間連接有一個電阻R1。一個作為直流電壓的輸入電壓VHV在連接於齊納二極體ZD1陰極端的節點100處,輸入給偵測單元215,該輸入電壓VHV通常是交流市電全波整流所得,將交流電完整的輸入正弦波形轉換成同一極性來輸出,充分利用原始交流電正弦波形的正半周、負半周這兩部份,轉化成直流電壓VHVReferring to FIG. 1A, the basic detecting unit 215 mainly includes a junction field effect transistor (JFET) 101, and the detecting unit 215 further has a Zener diode ZD1, and the anode of the Zener diode ZD1 is connected to The JFET 101 has a drain, and the source of the JFET 101 is connected to the anode of a diode D1, and the cathode of the diode D1 is connected to the ground GND. Further, the control terminal of the JFET 101, such as a gate, is connected to the ground GND, and a resistor R1 is connected between the gate and the source of the JFET 101. An input voltage V HV as a DC voltage is input to the detecting unit 215 at a node 100 connected to the cathode end of the Zener diode ZD1. The input voltage V HV is usually obtained by AC mains full-wave rectification, and the AC input is complete. The sinusoidal waveform is converted to the same polarity for output, and the positive half cycle and the negative half cycle of the original AC sinusoidal waveform are fully utilized to be converted into a DC voltage V HV .

在第一種情形下,當輸入電壓VHV比齊納二極體ZD1的擊穿電壓VZ大時,則齊納二極體ZD1發生可逆或自愈恢復的齊納擊穿,因此產生的電流ID自JFET101的汲極流向源極。電流ID將流經電阻R1和二極體D1,電阻R1兩端的正向壓降VSG因而會上升,但亦同步導致JFET101源極和閘極間的電壓VGS下降。在要求不是十分精准的預算條件下,JFET101源極和閘極間的電壓VGS大致會平衡於一個作為JFET的夾斷電壓(Pinch off)的電壓值VP,VGS等於|VP|的負值。反過來說,電阻R1兩端的電壓VSG將等於一個為正值的VP。在第二種情形下,當輸入電壓VHV比齊納二極體ZD1的擊穿電壓VZ小時,則齊納二極體ZD1不會被擊穿,因此不會產生任何流經JFET101的電流,也即電阻R1兩端的橫跨電壓VSG將等於零,此階段偵測單元215無功率消耗。毫無疑慮,即便第一種情形下存在橫跨電阻R1的電壓,但第二種情形下偵測單元215在監控輸入電壓VHV變化狀態時並無功耗,所以檢測電路的整體功耗被限制在較小的範圍。 In the first case, when the input voltage V HV is larger than the breakdown voltage V Z of the Zener diode ZD1, the Zener diode ZD1 undergoes a reversible or self-healing recovery Zener breakdown, thus resulting in Current I D flows from the drain of JFET 101 to the source. The current I D will flow through the resistor R1 and the diode D1, and the forward voltage drop V SG across the resistor R1 will thus rise, but will also cause the voltage V GS between the source and the gate of the JFET 101 to decrease. Under budget conditions where the requirements are not very accurate, the voltage V GS between the source and the gate of JFET 101 is roughly balanced by a voltage value V P which is the pinch-off voltage of the JFET, V GS is equal to |V P | Negative value. Conversely, the voltage V SG across resistor R1 will be equal to a positive value of V P . In the second case, when the input voltage V HV is smaller than the breakdown voltage V Z of the Zener diode ZD1, the Zener diode ZD1 is not broken down, and thus does not generate any current flowing through the JFET 101. That is, the crossover voltage V SG across the resistor R1 will be equal to zero, and the detection unit 215 has no power consumption at this stage. There is no doubt that even in the first case, there is a voltage across the resistor R1, but in the second case, the detecting unit 215 has no power consumption when monitoring the change state of the input voltage V HV , so the overall power consumption of the detecting circuit is Limited to a smaller range.

參見圖1B,當齊納二極體ZD1擊穿時,表徵偵測單元215進入輸入電壓VHV大於擊穿電壓VZ的第一種情形,發生的時間段與時刻t1至t3的時間段相對應。以一個週期T為例,在t1時刻,輸入電壓VHV趨於上升至超過擊穿電壓VZ,輸入電壓VHV大於擊穿電壓VZ被維持延續到t3時刻,至t3時刻開始起輸入電壓VHV才降至低於擊穿電壓VZ。在第一種情形下,導致JFET101源極端節點處具有一個不為零的電壓VS,標誌著JFET101源極端輸出實質是邏輯高位準,我們認為此時偵測單元215輸出的電壓VS具有第一狀態。參見圖1B,仍然在該週期T內,與第一種情形截然相反的是,齊納二極體ZD1未發生擊穿,表徵偵測單元215進入輸入電壓VHV小於擊穿電壓VZ的第二種情形,其發生的時間段為t1時刻之前和t3時刻之後。在第二種情形下,會導致JFET101源極應當具有一個為零的電壓VS,標誌著JFET101源極端輸出實質是邏輯低位準,我們認為此時偵測單元215輸出的電壓VS具有第二狀態。 Referring to FIG. 1B, when the Zener diode ZD1 breaks down, the characteristic detecting unit 215 enters the first case where the input voltage V HV is greater than the breakdown voltage V Z , the time period occurring and the time from time t 1 to t 3 . The paragraph corresponds. Taking one period T as an example, at time t 1 , the input voltage V HV tends to rise above the breakdown voltage V Z , and the input voltage V HV is greater than the breakdown voltage V Z is maintained until the time t 3 , and begins at time t 3 . The input voltage V HV falls below the breakdown voltage V Z . In the first case, the voltage at the source terminal of the JFET 101 has a non-zero voltage V S , which indicates that the source output of the JFET 101 is substantially a logic high level. We believe that the voltage V S output by the detecting unit 215 has the first a state. Referring to FIG. 1B, still in the period T, contrary to the first case, the Zener diode ZD1 does not break down, and the characteristic detecting unit 215 enters the input voltage V HV which is smaller than the breakdown voltage V Z . In both cases, the time period in which it occurs is before time t 1 and after time t 3 . In the second case, the source of the JFET 101 should have a zero voltage V S , indicating that the source output of the JFET 101 is substantially a logic low level. We believe that the voltage V S output by the detecting unit 215 has a second status.

本發明旨在將JFET101源極端產生的變化的電壓值視作偵測單元215響應輸入電壓VHV變化而輸出的動態偵測電壓信號VS。圖1B還以占空比的方式,展示了偵測電壓VS的位準邏輯狀態,以此來直觀體現齊納二極體ZD1被擊穿的第一種情形和齊納二極體ZD1未被擊穿的第二種情形。設定t2時刻輸入電壓VHV達到峰值,以及時間節點t1至時間節點t3之間的持續時長為2(t2-t1),偵測電壓VS的第一狀態在一個週期T內維持的總時長為2(t2-t1),相當於偵測電壓VS具有的第一狀態的占空比(B-Duty)為DB,該DB也可理解為齊納二極體ZD1的擊穿時段占週期比。 The present invention is directed to the varying voltage value produced by the source terminal of JFET 101 as the dynamic detection voltage signal V S output by detection unit 215 in response to a change in input voltage V HV . Figure 1B also shows the level logic state of the detection voltage V S in a duty cycle manner, so as to visually reflect the first case where the Zener diode ZD1 is broken down and the Zener diode ZD1 is not The second case of being penetrated. The input voltage V HV reaches a peak at time t 2 , and the duration between the time node t 1 and the time node t 3 is 2 (t 2 −t 1 ), and the first state of the detection voltage V S is in one cycle T the total length is maintained within 2 (t 2 -t 1), the duty ratio corresponding to the detection voltage V S having a first state (B-Duty) is D B, D B is also understood that the Zener The breakdown period of the diode ZD1 accounts for the period ratio.

參見圖2,電網提供的交流電壓VAC經過高頻濾波電容CX濾除高頻雜波信號之後,輸入給一個橋式整流器115,由橋式整流器115全波整流後,在一個輸出電容Cbulk上產生預期的直流電壓,該電容Cbulk存儲的直流電壓再經過電壓轉換器116實施調製之後,例如升壓或降壓調製,最終輸出具微小紋波的直流輸出電壓VO,這是現有交直流轉換系統採用的常規技術。在本發明中,還在提供交流電壓VAC的兩個輸入端額外分別對應連接兩個整流二極體D2、D3,構成 一個整流電路225,二極體D2的陽極連接到高頻濾波電容CX的一端,另一個二極體D3的陽極連接到高頻濾波電容CX相對的另一端。整流二極體D2、D3兩者的陰極連接在一起,並還與齊納二極體ZD1的陰極一起相連在節點100處。因此電網提供的交流電壓VAC除了輸送給交直流轉換系統之外,還同步輸送給整流電路225,交流電壓VAC經過整流電路225整流之後在二極體D2、D3兩者的陰極處產生直流的輸入電壓VHV,並在節點100處輸入給偵測單元215,輸入電壓VHV可參見圖1B中因整流而獲取的大小變化的直流脈動波形。 Referring to FIG. 2, the AC voltage V AC provided by the power grid is filtered by the high frequency filter capacitor C X to filter out the high frequency clutter signal, and then input to a bridge rectifier 115, which is full-wave rectified by the bridge rectifier 115, at an output capacitor C. The expected DC voltage is generated on the bulk , and the DC voltage stored in the capacitor C bulk is modulated by the voltage converter 116, such as step-up or step-down modulation, to finally output a DC ripple DC voltage V O , which is existing. Conventional technology used in AC/DC conversion systems. In the present invention, two rectifying diodes D2 and D3 are additionally connected to the two input terminals of the AC voltage V AC to form a rectifying circuit 225, and the anode of the diode D2 is connected to the high frequency filtering capacitor C. At one end of X , the anode of the other diode D3 is connected to the opposite end of the high frequency filter capacitor C X . The cathodes of both the rectifying diodes D2, D3 are connected together and are also connected at the node 100 with the cathode of the Zener diode ZD1. Therefore, the AC voltage V AC provided by the power grid is synchronously supplied to the rectifier circuit 225 in addition to the AC/DC conversion system, and the AC voltage V AC is rectified by the rectifier circuit 225 to generate a DC at the cathodes of both of the diodes D2 and D3. The input voltage V HV is input to the detecting unit 215 at the node 100, and the input voltage V HV can be referred to the DC ripple waveform of the magnitude change obtained by rectification in FIG. 1B.

作為可選項,該偵測單元/電路215與圖1A中偵測單元215僅有的區別在於,JFET101的源極端連接到一個二極體D4的陽極,但二極體D4的陰極與接地端GND之間還連接有一個電源電容CVDD,在齊納二極體ZD1擊穿時,流經JFET101的電流可對電源電容CVDD進行充電儲能,為交直流轉換系統提供直流的電壓源。在齊納二極體ZD1未發生擊穿時,電源電容CVDD不充電。除此之外,該偵測單元215的其他運作機制與圖1A中偵測單元215相同。其中二極體D4主要用於避免電源倒灌,防止電源電容CVDD提供的電壓源將JFET101的源極端節點處的電壓VS一直鉗制在高電位。 As an option, the detection unit/circuit 215 is only different from the detection unit 215 of FIG. 1A in that the source terminal of the JFET 101 is connected to the anode of a diode D4, but the cathode of the diode D4 is connected to the ground GND. A power supply capacitor C VDD is also connected between them. When the Zener diode ZD1 breaks down, the current flowing through the JFET 101 can charge and store the power supply capacitor C VDD to provide a DC voltage source for the AC/DC conversion system. When the Zener diode ZD1 does not break down, the power supply capacitor C VDD is not charged. In addition, the other operating mechanism of the detecting unit 215 is the same as that of the detecting unit 215 in FIG. 1A. The diode D4 is mainly used to avoid power supply backflow, and the voltage source provided by the power supply capacitor C VDD is prevented from clamping the voltage V S at the source terminal node of the JFET 101 to a high potential.

參見圖3,顯示了實際占空比DB隨著輸入電壓VHV的幅度變化而改變,作為對比,可在偵測單元215的齊納二極體ZD1的陰極一端先後輸送數個具有不同峰值或者振幅的輸入電壓VHV1、VHV2、VHV3,輸入電壓VHV3的峰值最大,輸入電壓VHV2的峰值最小,而輸入電壓VHV1的峰值則介於該兩者之間,但它們的週期T完全相同。提供輸入電壓VHV1時偵測單元215輸出的偵測電壓信號VS1的占空比為DB1,提供輸入電壓VHV2時偵測單元215輸出的偵測電壓信號VS2的占空比為DB2,提供輸入電壓VHV3時偵測單元215輸出的偵測電壓信號VS3的占空比為DB3。後文將會闡釋,當輸入振幅不同的這三個輸入電壓的結果是,占空比DB3最大,占空比DB1比DB3小但比DB2要大。 Referring to FIG. 3, it is shown that the actual duty ratio D B changes with the amplitude of the input voltage V HV . For comparison, several different peaks may be sequentially transmitted at the cathode end of the Zener diode ZD1 of the detecting unit 215 . Or the amplitude input voltages V HV1 , V HV2 , V HV3 , the peak value of the input voltage V HV3 is the largest, the peak value of the input voltage V HV2 is the smallest, and the peak value of the input voltage V HV1 is between the two, but their periods T is exactly the same. The duty ratio of the detection voltage signal V S1 outputted by the detecting unit 215 when the input voltage V HV1 is supplied is D B1 , and the duty ratio of the detection voltage signal V S2 outputted by the detecting unit 215 when the input voltage V HV2 is supplied is D B2 , when the input voltage V HV3 is supplied, the duty ratio of the detection voltage signal V S3 output by the detecting unit 215 is D B3 . As will be explained later, when the input voltages of the input amplitudes are different, the duty ratio D B3 is the largest, and the duty ratio D B1 is smaller than D B3 but larger than D B2 .

參見圖1B,占空比DB滿足以下函數關係: Referring to FIG. 1B, the duty ratio D B satisfies the following functional relationship:

因為輸入電壓VHV是擷取交流電正半周和負半周的整流結果,則輸入電壓VHV在時刻t1的瞬時值VHV(t1),和輸入電壓VHV的有效值電壓VHVR、齊納二極體ZD1的擊穿電壓值VZ1之間滿足以下函數關係: Since the input voltage V HV is the rectification result of the positive half cycle and the negative half cycle of the alternating current, the instantaneous value V HV (t 1 ) of the input voltage V HV at the time t 1 , and the effective value voltage V HVR of the input voltage V HV , The breakdown voltage value V Z1 of the nanodiode ZD1 satisfies the following functional relationship:

以及輸入電壓VHV在時刻t2的瞬時值VHV(t2)與該輸入電壓VHV的有效值電壓VHVR之間還滿足以下函數關係: And the following functional relationship is also satisfied between the instantaneous value V HV (t 2 ) of the input voltage V HV at the time t 2 and the rms voltage V HVR of the input voltage V HV :

由正弦量的相位關係可以獲悉ωt1和ωt2滿足以下函數關係: It can be known from the phase relationship of the sinusoidal quantity that ωt 1 and ωt 2 satisfy the following functional relationship:

ωt 2=90° (5) Ωt 2 =90° (5)

將公式(4)除以(5)並將兩者相比的結果代入公式(1),得到: Divide formula (4) by (5) and substitute the result of the two into formula (1) to get:

將公式(6)變形換算得到: Convert the formula (6) to get:

實質上各國或地區交流市電存有差異,而所謂的均方根值,或者稱作電壓有效值VHVR亦可能不同,現在我們以VHVR=100V為示範,並將齊納二極體ZD1的一個可選的擊穿電壓值VZ1=50V代入公式(7)進行闡釋: In essence, there is a difference in the exchange of electricity between countries and regions, and the so-called rms value, or voltage RMS V HVR, may be different. Now we use V HVR =100V as an example, and the Zener diode ZD1 An optional breakdown voltage value V Z1 =50V is substituted into equation (7) for explanation:

可以推算出上述條件下1-DB=0.23,也即DB=0.77。電網的交流市電有效值在某些國家或地區一般唯一確定,但擊穿電壓值VZ1可靈活調節,譬如直接選取某種特定型號的齊納二極體ZD1,選擇其崩潰電壓VZ1至某一個特定的大小值,或者串聯多個齊納二極體ZD1,以改變ZD1數量的方式來倍增VZ1值。 It can be inferred that 1-D B = 0.23 under the above conditions, that is, D B = 0.77. The rms rms of the grid is generally uniquely determined in some countries or regions, but the breakdown voltage value V Z1 can be flexibly adjusted. For example, directly select a certain type of Zener diode ZD1 and select its breakdown voltage V Z1 to some A specific size value, or a series of Zener diodes ZD1 in series, multiplies the V Z1 value by changing the number of ZD1.

參見圖4A,在充放電電路235中,設計一個對充放電電容CT進行充電的充電電流源單元235a,由開關SW1控制接通或斷開,和設計一個對充放電電容CT進行放電的放電電流源單元235b,由開關SW2控制接通或斷開。充放電電容CT連接在節點107和接地端GND之間,對電容CT實施的充電過程和放電過程交替進行,由偵測單元215發送的驅動信號來控制開關SW1、SW2。充電電流源單元235a提供的充電電流值為I1,充電時間為T,而放電電流源單元235b提供的放電電流值為I2,放電時間為T,充放電電容CT符合電容充放電公式I1×T=I2×T4A, the charging and discharging circuit 235, the design of a charge and discharge capacitance C T for a charging current source unit 235a, turning on or off by a control switch SW 1, and the design of a charge and discharge capacitance C T discharges a discharge current source unit 235b, on or off by a control switch SW 2. The charging and discharging capacitor C T is connected between the node 107 and the ground GND, and the charging process and the discharging process performed on the capacitor C T are alternately performed, and the driving signals transmitted by the detecting unit 215 are used to control the switches SW 1 and SW 2 . A charging unit charging current source 235a provides the current value I 1, the charging time is T charge and discharge current and a discharge current source unit 235b is provided by I 2, the discharge time of the discharge T, charging and discharging the capacitance charging and discharging load capacitance C T formula I 1 × T = I 2 × T charge discharge.

隨著充放電電路235起振,開關SW1和SW2將會交替開關,一者接通另一者必須斷開,促使電容CT執行充電後再放電,則在充放電電容CT的未接地的一端的節點107處產生我們期望的鋸齒波電壓信號VB,充放電電路235亦是一個鋸齒波(Sawtooth Signal)產生電路。完全放完電的電容CT其一端節點107處電壓可能會降低至零,如此一來,將節點107連接到一個主比較器128的反相輸入端,而主比較器128的正相輸入端則接一個為接近零的臨界電位,例如正相輸入端直接接地獲取零電位,則當節點107電位降低至零時刻就會誘發主比較器128的輸出端發送具有邏輯高位準的檢測信號。 As the charge and discharge circuit 235 starts to oscillate, the switches SW 1 and SW 2 will alternately switch, one of which is turned on and the other must be turned off, causing the capacitor C T to perform charging and then discharging, then the charge and discharge capacitor C T The desired sawtooth voltage signal V B is generated at node 107 at one end of the ground, and the charge and discharge circuit 235 is also a sawtooth signal generating circuit. The fully discharged capacitor C T may have its voltage at one end node 107 reduced to zero, thus connecting node 107 to the inverting input of a main comparator 128 and the positive input of main comparator 128. Then, a critical potential close to zero is obtained. For example, when the positive phase input terminal is directly grounded to obtain a zero potential, when the potential of the node 107 decreases to zero, the output of the main comparator 128 is induced to send a detection signal having a logic high level.

參見圖4B,是按照圖4A的充放電電路235實施充放電的範例,輸入電壓VHV1誘導偵測單元215產生偵測電壓信號VS1的邏輯位準波形,輸入電壓VHV2誘導偵測單元215產生偵測電壓信號VS2的邏輯位準波形,輸入電壓VHV1的峰值比輸入電壓VHV2的峰值大。在同一個週期T內,偵測電壓信號VS1的占空比顯然大於偵測電壓信號VS2的占空比。當充放電電路235完成啟動並處於穩定運行的工作階段,以輸入電壓VHV1為例來說明一個充放電週期,在輸入電壓VHV1前後相鄰的兩個週期Tn、Tn+1內,偵測電壓信號VS1在前一個週期Tn階段從高位準狀態翻轉成低位準狀態的下降沿時刻,開始對電容CT充電,持續不間斷的充電至截止於偵測電壓信號VS1在後一個週期Tn+1階段中從低位準狀態翻轉成高位準狀態的上升沿時刻,該上升沿時刻,電容CT停止充電並同步緊接著開始放電,放電截止 於偵測電壓信號VS1在後一個週期Tn+1階段從高位準狀態翻轉成低位準狀態時刻,從而完成一個完整的充放電週期。 4B is an example of charging and discharging according to the charging and discharging circuit 235 of FIG. 4A. The input voltage V HV1 induces the detecting unit 215 to generate a logic level waveform of the detecting voltage signal V S1 , and the input voltage V HV2 induces the detecting unit 215 . A logic level waveform of the detection voltage signal V S2 is generated, and the peak value of the input voltage V HV1 is larger than the peak value of the input voltage V HV2 . In the same period T, the duty ratio of the detection voltage signal V S1 is obviously greater than the duty ratio of the detection voltage signal V S2 . When the charging and discharging circuit 235 completes the startup and is in a stable operation phase, an input voltage V HV1 is taken as an example to illustrate a charging and discharging cycle, in two adjacent periods T n , T n+1 before and after the input voltage V HV1 . The detecting voltage signal V S1 starts to charge the capacitor C T during the previous period T n from the high level state to the falling edge of the low level state, and continues uninterrupted charging until the detection voltage signal V S1 is turned off. The rising edge of the period from the low level state to the high level state in a period T n+1 phase, at the rising edge time, the capacitor C T stops charging and synchronously starts to discharge, and the discharge ends after the detection voltage signal V S1 A period T n+1 phase is flipped from a high level state to a low level state moment, thereby completing a complete charge and discharge cycle.

針對一個完整的充放電週期而言,偵測電壓信號VS在前一個週期自高位準降至低位準的下降沿的時刻作為充電起始點,偵測電壓信號VS在後一個週期自低位準升至高位準的上升沿的時刻作為充電截止點和放電起始點,以及偵測電壓信號VS在後一個週期自高位準降至低位準的下降沿的時刻作為放電截止點。以輸入電壓VHV1為例,其具有基準有效值V'HVR,亦即具有對應的基準峰值,設電容CT每次充電維持的時間段等於2t1,此階段偵測電壓信號VS1具有邏輯低位準的第二狀態;和設電容CT每次放電維持的時間段等於2(t2-t1),此階段偵測電壓信號VS1具有邏輯高位準的第一狀態,在滿足預設充電時間和放電時間的條件下,使時間段2t1充電的電量恰好等於時間段2(t2-t1)放電的電量,即偵測電壓信號VS1在後一個週期自高位準降至低位準的下降沿的時刻,電容CT電量恰好釋放完畢。輸入電壓為VHV1時,電容CT的充放電電壓變化趨勢藉由圖4B中鋸齒波電壓信號VB1體現,此時偵測電壓信號VS1的占空比為DB1。我們將時間段2t1作為充電參照時間的基準充電時間,以及將時間段2(t2-t1)作為放電參照時間的基準放電時間,而占空比為DB1作為基準占空比。 For a complete charge and discharge cycle, the detection voltage signal V S is used as the charging start point from the high level to the low level falling edge in the previous cycle, and the detection voltage signal V S is low since the latter cycle. The timing at which the rising edge of the high level rises is as the charge cutoff point and the discharge start point, and the time at which the detected voltage signal V S falls from the high level to the low level in the latter period is taken as the discharge cutoff point. Taking the input voltage V HV1 as an example, it has a reference effective value V′ HVR , that is, has a corresponding reference peak value, and the period in which the capacitor C T is maintained for each charge is equal to 2t 1 , and the detection voltage signal V S1 has logic at this stage. a second state of low level; and a period in which the capacitor C T is maintained for each discharge is equal to 2 (t 2 -t 1 ), and the detection voltage signal V S1 has a first state of logic high level at this stage, and the preset is satisfied. Under the conditions of charging time and discharging time, the amount of electricity charged in the period 2t 1 is exactly equal to the amount of electricity discharged in the period 2 (t 2 -t 1 ), that is, the detecting voltage signal V S1 is lowered from the high level to the low level in the latter period. At the moment of the falling edge, the capacitor C T is just discharged. When the input voltage is V HV1 , the charging and discharging voltage variation trend of the capacitor C T is represented by the sawtooth wave voltage signal V B1 in FIG. 4B , and the duty ratio of the detecting voltage signal V S1 is D B1 . We use the time period 2t 1 as the reference charging time of the charging reference time, and the time period 2 (t 2 -t 1 ) as the reference discharging time of the discharging reference time, and the duty ratio is D B1 as the reference duty ratio.

結合公式(6)計算的DB,電容CT充放電電流符合函數關係:I 1×t 1=I 2×(t 2-t 1) (9) Combined with D B calculated by equation (6), the charge and discharge current of capacitor C T accords with the functional relationship: I 1 × t 1 = I 2 ×( t 2 - t 1 ) (9)

按照充電電流源單元235a提供的充電電流值為I1和放電電流源單元235b提供的放電電流值為I2的函數關係,對電容CT執行充放電。作為範例,如DB=0.77時,I1和I2之比等於0.77和0.23之比。按照上文內容,如果預設輸入電壓具有基準有效值V'HVR,在同時滿足公式(7)和公式(10)所獲得的占空比DB的前提條件下,充電時間段2t1內電容CT所充的電量剛好在時間段2(t2-t1)結束的瞬間完成放電,我們把此時擷取的占空比DB視為基準占空比DB1,後文將分析 實際占空比大於基準占空比的情形,和分析實際占空比可能小於基準占空比的情形。 The charge and discharge are performed on the capacitor C T in accordance with the charge current value I 1 supplied from the charge current source unit 235a and the discharge current value I 2 supplied from the discharge current source unit 235b. As an example, such as when D B = 0.77, I I 2 ratio of more than 1 and equal to 0.77 and 0.23. According to the above, if the preset input voltage has the reference effective value V' HVR , the capacitance in the charging period 2t 1 is satisfied under the premise that the duty ratio D B obtained by the formula (7) and the formula (10) is simultaneously satisfied. The charge of C T is just discharged at the end of time period 2 (t 2 -t 1 ). We consider the duty ratio D B taken at this time as the reference duty ratio D B1 , which will be analyzed later. The case where the duty cycle is greater than the reference duty cycle, and the case where the actual duty cycle may be less than the reference duty cycle.

在圖4C的一個實施例中,輸入電壓VHV3具有比輸入電壓VHV1更高的峰值,其中充電時間段2t"1小於2t1但放電時間段2(t"2-t"1)大於2(t2-t1),相應產生的偵測電壓信號VS3的實際占空比DB3會大於基準DB1,會在電容未接地的一端的節點107處產生如圖4C所示的波形VB3。在一個完整的充放電週期內,電容CT在偵測電壓信號VS3具有低位準的時間段2t"1內所充的總電荷量比較小,不足以使電容CT在偵測電壓信號VS3具有高位準的整個時間段2(t"2-t"1)一直都持續放電。可以這樣理解,在放電階段,即偵測電壓信號VS3在一個週期自低位準翻轉到高位準的放電起始點算起,時間點還未到偵測電壓信號VS3在該週期自高位準翻轉至低位準的下降沿的時刻,電容CT存儲的電量就已經釋放乾淨,相當於實際的放電時間小於預設的放電時間段2(t"2-t"1),而且電壓信號VB3在偵測電壓信號VS3具有第一狀態的時間段2(t"2-t"1)之內會發生等於零的現象,而不是時間段2(t"2-t"1)剛好結束時電荷量才為零,電容CT的充放電電壓變化趨勢藉由圖4C中鋸齒波電壓信號VB3體現。 In one embodiment of FIG. 4C, the input voltage V HV3 has a higher peak than the input voltage V HV1 , wherein the charging period 2t" 1 is less than 2t 1 but the discharging period 2 (t" 2 -t" 1 ) is greater than 2 (t 2 - t 1 ), the actual duty ratio D B3 of the corresponding detected voltage signal V S3 will be greater than the reference D B1 , and a waveform V as shown in FIG. 4C will be generated at the node 107 of the ungrounded end of the capacitor. B3. in a complete charge and discharge cycles, the capacitance C T having a low level period 2t "within a smaller overall charge ratio of the charged detection voltage signal V S3, the capacitor C T is not sufficient in the detection voltage The entire period of time 2 (t" 2 - t" 1 ) of the signal V S3 having a high level is continuously discharged. It can be understood that in the discharge phase, that is, the detection voltage signal V S3 is counted from a low level to a high level discharge starting point in one cycle, and the time point has not yet reached the detection voltage signal V S3 from the high level in the period. At the moment of flipping to the falling edge of the low level, the amount of electricity stored by the capacitor C T is released, which is equivalent to the actual discharge time being less than the preset discharge time period 2 (t" 2 -t" 1 ), and the voltage signal V B3 A phenomenon equal to zero occurs during the time period 2 (t" 2 - t" 1 ) in which the detection voltage signal V S3 has the first state, instead of the charge at the end of the time period 2 (t" 2 - t" 1 ) The amount is zero, and the charging/discharging voltage variation trend of the capacitor C T is represented by the sawtooth voltage signal V B3 in FIG. 4C.

在圖4B的一個實施例中,輸入電壓VHV2具有比輸入電壓VHV1更小的峰值,其中充電時間段2t'1大於2t1但放電時間段2(t'2-t'1)小於2(t2-t1),且輸入電壓的峰值超過擊穿電壓VZ1,會在節點107處產生鋸齒波電壓信號VB2,相應產生的偵測電壓信號VS2的實際占空比DB2會小於基準DB1,這與圖4C截然相反。在一個完整的充放電週期內,電容CT在偵測電壓信號VS2具有低位準的時間段2t'1內所充的電量非常大,在偵測電壓信號VS2具有高位準的整個時間段2(t'2-t'1)內不足以使電容CT的電量完全釋放完畢。可以這樣理解,在放電階段,即偵測電壓信號VS2在一個週期內自低位準翻轉到高位準的放電起始點算起,時間點剛好到偵測電壓信號VS2在該週期內自高位準翻轉至低位準的下降沿的時刻,如果不採取額外放電措施,則電容CT仍然會殘留有電荷量。此時電容CT的充放電電壓變化趨勢藉由圖4B中鋸齒波電壓信號VB2體現,鑒於偵測電壓信號VS2自 高位準翻轉至低位準的下降沿的時刻之後,將會繼續對電容CT充電,一旦該下降沿的時刻電容CT殘留有過多的電量,則電容CT的電量會持續積累而無法完成預期的充放電步驟。針對一個完整的充放電週期,上文已經告知設定偵測電壓信號VS2在每個週期內自高位準翻轉至低位準的下降沿的時刻,無論電容CT是否還儲存有電荷量,該時刻都作為放電截止點,在這個截止點時刻,有必要主動觸發釋放電容CT的殘留電荷量,使電容CT的電荷量急劇下降,下文將介紹主動釋放電容CT的方案。正如圖4B,在偵測電壓信號VS2的下降沿引導電容CT的電荷量釋放至接近於零,實質略大於零的值,例如低於0.1伏,在下降沿的時刻電壓信號VB2的波形垂直下降,近乎無放電斜率。 In one embodiment of FIG. 4B, the input voltage V HV2 has a smaller peak than the input voltage V HV1 , wherein the charging period 2t' 1 is greater than 2t 1 but the discharging period 2 (t' 2 -t' 1 ) is less than 2 (t 2 -t 1 ), and the peak value of the input voltage exceeds the breakdown voltage V Z1 , the sawtooth wave voltage signal V B2 is generated at the node 107, and the actual duty ratio D B2 of the corresponding detected voltage signal V S2 will be It is smaller than the reference D B1 , which is the opposite of FIG. 4C. During a complete charge and discharge cycle, the capacitor C T charges a very large amount of time during the time period 2t' 1 in which the detection voltage signal V S2 has a low level, and the detection voltage signal V S2 has a high level for the entire period of time. 2 (t' 2 -t' 1 ) is not enough to completely discharge the power of the capacitor C T . It can be understood that in the discharge phase, that is, the detection voltage signal V S2 is counted from a low level to a high level discharge starting point in one cycle, and the time point is just before the detection voltage signal V S2 is high in the period. At the time of the quasi-flip to the falling edge of the low level, if no additional discharge measures are taken, the capacitance C T still has a charge amount remaining. At this time, the charging and discharging voltage variation trend of the capacitor C T is represented by the sawtooth wave voltage signal V B2 in FIG. 4B , and the capacitor will continue to be continued after the detection voltage signal V S2 is turned from the high level to the low level falling edge. When C T is charged, once the capacitance C T remains excessively at the time of the falling edge, the amount of capacitance of the capacitor C T continues to accumulate and the expected charging and discharging step cannot be completed. For a complete charge and discharge cycle, the timing of setting the detection voltage signal V S2 from the high level to the low level falling edge in each period has been notified, regardless of whether the capacitor C T still stores the amount of charge, the moment As the discharge cut-off point, at this cut-off point, it is necessary to actively trigger the residual charge amount of the discharge capacitor C T , so that the charge amount of the capacitor C T drops sharply. The scheme of actively releasing the capacitor C T will be described below. As shown in FIG. 4B, the amount of charge of the conduction capacitor C T is released to a value close to zero at a falling edge of the detection voltage signal V S2 , substantially slightly greater than zero, for example, less than 0.1 volt, at the time of the falling edge, the voltage signal V B2 The waveform drops vertically with almost no discharge slope.

綜上所述,當偵測電壓信號VS具有剛好等於基準DB1的占空比時,開始放電後,電壓信號VB1在偵測電壓信號VS的下降沿的時刻剛好發生等於零的情況。一旦偵測電壓信號VS具有超過基準DB1的占空比時,開始放電後,電壓信號VB3在偵測電壓信號VS的每個下降沿的時刻之前的某一時刻都會發生等於零的情況。一旦偵測電壓信號VS具有小於基準DB1的占空比時,開始放電後,電壓信號VB2在偵測電壓信號VS的每個下降沿這個時刻都會被置於接近零而略大於零的狀態。在圖4A中,節點107連接到主比較器128的反相輸入端,主比較器128的正相輸入端接地,故當占空比為DB1時,主比較器128的輸出端在輸入電壓VHV的每個週期內恰好可以輸出一次邏輯高位準,發生在在偵測電壓信號VS的下降沿的時刻。當占空比大於DB1時,主比較器128的輸出端在輸入電壓VHV的每個週期內恰好可以輸出一次邏輯高位準,發生在在偵測電壓信號VS的上升沿的時刻之後而在下降沿的時刻之前。當占空比小於DB1時,主比較器128的輸出端在輸入電壓VHV的每個週期內都無法輸出高位準。 In summary, when the detection voltage signal V S has a duty ratio just equal to the reference D B1 , after the discharge is started, the voltage signal V B1 just happens to be equal to zero at the timing of detecting the falling edge of the voltage signal V S . Once the detected voltage signal V S has a duty ratio exceeding the reference D B1 , after the discharge is started, the voltage signal V B3 will be equal to zero at some point before the time of detecting each falling edge of the voltage signal V S . . Once the detected voltage signal V S has a duty ratio smaller than the reference D B1 , after the start of the discharge, the voltage signal V B2 is placed near zero and slightly larger than zero at each falling edge of the detected voltage signal V S . status. In FIG. 4A, node 107 is coupled to the inverting input of main comparator 128, and the non-inverting input of main comparator 128 is coupled to ground, so that when the duty cycle is D B1 , the output of main comparator 128 is at the input voltage. The logic high level can be outputted exactly once in each cycle of the V HV , occurring at the time of detecting the falling edge of the voltage signal V S . When the duty ratio is greater than D B1 , the output of the main comparator 128 can output a logic high level in each cycle of the input voltage V HV , occurring after the time of detecting the rising edge of the voltage signal V S Before the moment of the falling edge. When the duty ratio is less than D B1 , the output of the main comparator 128 cannot output a high level every period of the input voltage V HV .

參見圖5所示,電網的交流市電VAC經高頻濾波電容CX濾波後,輸送給一個常規的橋式整流器115,交流電壓VAC藉由橋式整流器115全波整流後,在一個輸出電容Cbulk上產生預期的直流電壓。交流電壓VAC還輸送給電壓檢測電路255的一個整流電路225,整流電路225中二極體D2的陽極連接到提供交流 電壓VAC的一個輸入端,整流電路225中另一個二極體D3的陽極連接到提供交流電壓VAC的另一個輸入端。電壓檢測電路255具有一個偵測單元215,整流二極體D2、D3兩者的陰極連接在一起並共同與偵測單元215中的齊納二極體ZD1的陰極相連。齊納二極體ZD1的陽極連接到JFET101的汲極,而JFET101的源極則連接到一個二極體D1的陽極,二極體D1的陰極則與接地端GND之間連接有一個電阻R2。JFET101的控制端如閘極則連接到接地端GND,並在JFET101的閘極和源極之間連接有一個電阻R1。偵測單元215還具有一個發送驅動信號控制開關SW1、SW2、SW3斷開或接通的比較器121,將一個大於零的閥值電壓VTH輸入到比較器121的反相輸入端,JFET101的源極連接到比較器121的正相輸入端。 Referring back to FIG. 5, after the AC mains power V AC by the high frequency filter capacitor C X filter, supplied to a conventional bridge rectifier 115, an AC voltage V AC by bridge rectifier 115 full-wave rectifier, the output of a The expected DC voltage is generated across the capacitor C bulk . The AC voltage V AC is also supplied to a rectifier circuit 225 of the voltage detection circuit 255. The anode of the diode D2 in the rectifier circuit 225 is connected to an input terminal for supplying an AC voltage V AC , and the other diode D3 of the rectifier circuit 225 is The anode is connected to another input that provides an alternating voltage V AC . The voltage detecting circuit 255 has a detecting unit 215, and the cathodes of the rectifying diodes D2 and D3 are connected together and commonly connected to the cathode of the Zener diode ZD1 in the detecting unit 215. The anode of the Zener diode ZD1 is connected to the drain of the JFET 101, and the source of the JFET 101 is connected to the anode of a diode D1, and the cathode of the diode D1 is connected to the ground GND with a resistor R2. The control terminal of the JFET 101, such as a gate, is connected to the ground GND, and a resistor R1 is connected between the gate and the source of the JFET 101. The detecting unit 215 further has a comparator 121 for transmitting the driving signal control switch SW 1 , SW 2 , SW 3 to be turned off or on, and inputting a threshold voltage V TH greater than zero to the inverting input terminal of the comparator 121 The source of JFET 101 is coupled to the non-inverting input of comparator 121.

參見圖5所示,顯示了偵測單元215的運作機制,輸入電壓VHV是交流電VAC經過整流電路225整流所得,直流電壓的輸入電壓VHV在齊納二極體ZD1陰極端的節點100處輸入給偵測單元215。前文已經闡明,當輸入電壓VHV比齊納二極體ZD1的擊穿電壓VZ大時,齊納二極體ZD1發生齊納擊穿,偵測單元215產生的電壓VS比預設的閥值電壓VTH大,比較器121的輸出端輸出高位準,體現了偵測電壓信號VS具高位準的第一狀態。反之,當輸入電壓VHV比齊納二極體ZD1的擊穿電壓VZ小時,齊納二極體ZD1不會被擊穿,偵測單元215輸出的電壓VS比預設的閥值電壓VTH小,比較器121的輸出端將輸出一個低位準,體現了偵測電壓信號VS為低位準的第二狀態。 Referring to FIG. 5, the operation mechanism of the detecting unit 215 is shown. The input voltage V HV is obtained by rectifying the alternating current V AC through the rectifying circuit 225, and the input voltage V HV of the direct current voltage is at the node 100 of the cathode end of the Zener diode ZD1. It is input to the detecting unit 215. As described above, when the input voltage V HV is larger than the breakdown voltage V Z of the Zener diode ZD1, Zener diode ZD1 undergoes Zener breakdown, and the detection unit 215 generates a voltage V S that is preset. The threshold voltage V TH is large, and the output end of the comparator 121 outputs a high level, which embodies a first state in which the detection voltage signal V S has a high level. On the contrary, when the input voltage V HV is smaller than the breakdown voltage V Z of the Zener diode ZD1, the Zener diode ZD1 is not broken, and the voltage V S output by the detecting unit 215 is greater than a preset threshold voltage. When the V TH is small, the output of the comparator 121 will output a low level, which embodies a second state in which the detection voltage signal V S is at a low level.

圖5中詳細展示了圖4A的充放電電路235,比較器121的輸出端連接到電壓檢測電路255中一個反相器(inverter)124的輸入端,該反相器124的輸出端則連接到充電電流源單元235a中的一個開關SW1的控制端,開關SW1的接通或斷開用於控制電壓電流轉換器125是否啟動充電程式。開關SW1及下文出現的SW2、SW3都是三端口電子開關,該等開關除了包含一組相對的輸入端外還具有控制兩個輸入端連接或斷開的一個控制端,開關有多種選擇方式,如P型或N型MOS電晶體或雙極電晶體或結型電晶體或它們的組合等。比較器121的輸出端同步還連接到放電電流源單元235b中的一個開關SW2的控制端,開關SW2的接通或 斷開用於控制電壓電流轉換器126是否啟動放電程式。開關SW2與三端開關SW1有著類似的結構,在比較器121輸出驅動信號的過程中,因為反相器124的作用,開關SW1的控制端在為低位準的驅動信號的驅動下將其接通而在高位準的驅動信號的驅動下將其斷開,與此同時,開關SW2的控制端在高位準的驅動信號的驅動下將其接通而在低位準的驅動信號的驅動下將其斷開,注意開關SW1和SW2兩者不能同時接通或斷開,而是互為交替開啟的。 The charge and discharge circuit 235 of FIG. 4A is shown in detail in FIG. 5. The output of the comparator 121 is connected to the input of an inverter 124 in the voltage detection circuit 255, and the output of the inverter 124 is connected to a control terminal of the switch SW unit 235a in the charging current source 1, a switch SW is turned on or off for controlling the voltage-current converter 125 whether the program to start charging. The switch SW 1 and the SW 2 and SW 3 appearing below are all three-port electronic switches. In addition to a set of opposite input terminals, the switches have a control terminal for controlling the connection or disconnection of the two input terminals. The selection method is, for example, a P-type or N-type MOS transistor or a bipolar transistor or a junction transistor or a combination thereof. A control terminal of the output of comparator 121 is also connected to a discharge current sync source unit 235b is a switch SW 2, the switch SW 2 is turned on or off for controlling the voltage to current converter 126 if the program start discharge. The switch SW 2 and the three-terminal switch SW 1 have a similar structure. In the process of outputting the driving signal by the comparator 121, the control terminal of the switch SW 1 is driven by the driving signal for the low level because of the action of the inverter 124. It is turned on and turned off by the driving of the high level driving signal, and at the same time, the control terminal of the switch SW 2 is driven by the driving signal of the high level and driven by the driving signal of the low level. Turn it off, and note that both switches SW 1 and SW 2 cannot be turned on or off at the same time, but alternately open to each other.

在充電電流源單元235a中,在為電壓電流轉換器125提供工作電壓的節點105處施加一個直流電源電壓VDD給轉換器125供電,以及還在另一個節點106處施加電源電壓VDD,節點106與接地端GND之間串聯有開關SW1和電阻R3。針對充電過程而言,開關SW1接通時電阻R3可避免電源電壓VDD直接短接到接地端,且電源電壓VDD輸送給電壓電流轉換器125的電壓轉電流輸入端。電壓電流轉換器125的電流釋放端/輸出端設置為連接到充放電電容CT的未接地的一端的節點107處,電壓電流轉換器125將所接收的電源電壓VDD轉換成大小為I1的充電電流,給電容CT實施充電。因為比較器121的輸出端只有在輸出一個低位準的前提下,開關SW1才會接通,則產生充電電流I1給電容CT充電的時機僅僅發生在輸入電壓VHV比齊納二極體ZD1的擊穿電壓VZ低時,亦即發生在偵測電壓信號VS具有邏輯低的第二狀態階段。 In the charging current source unit 235a, a DC power supply voltage V DD is applied to the converter 105 for supplying the operating voltage to the voltage-to-current converter 125, and the power supply voltage V DD is also applied at the other node 106. out switch SW 1 is connected in series between the 106 and the resistor R3 and the ground terminal GND. For the charging process, the resistor R3 prevents the power supply voltage V DD from being directly shorted to the ground terminal when the switch SW 1 is turned on, and the power supply voltage V DD is supplied to the voltage-to-current input terminal of the voltage-current converter 125. The current release terminal/output terminal of the voltage-to-current converter 125 is disposed to be connected to the node 107 of the ungrounded end of the charge and discharge capacitor C T , and the voltage current converter 125 converts the received power source voltage V DD to a size of I 1 The charging current is charged to the capacitor C T . Because the output of comparator 121 is only a low level at the output of the premise will be turned out switch SW 1, a charging current I 1 is generated to charge the timing capacitor C T only occurs when the input voltage V HV ratio of the Zener diode When the breakdown voltage V Z of the body ZD1 is low, that is, the second state phase in which the detection voltage signal V S has a logic low occurs.

在放電電流源單元235b中,節點106與接地端GND之間串聯有開關SW2和電阻R4,節點106處施加有電源電壓VDD,開關SW2接通時電阻R4可避免電源電壓VDD直接短接到接地端,且電源電壓VDD輸送給電壓電流轉換器126的電壓轉電流輸入端。電壓電流轉換器126的電流吸取端/輸入端設置為連接到充放電電容CT的未接地的一端即節點107處,開關SW2接通則電壓電流轉換器126將接收的電源電壓值轉換成放電電流I2,當試圖引導充放電電容CT放電到接地端時,以大小為I2的放電電流使電容CT實施放電。因為比較器121的輸出端只有在輸出一個高位準的前提下,開關SW2才會接通,則產生放電電流I2促使電容CT放 電的時機僅僅發生在輸入電壓VHV比齊納二極體ZD1的擊穿電壓VZ高時,亦即發生在偵測電壓信號VS具有邏輯高的第一狀態階段。 In the discharge current source unit 235b, a switch SW 2 and a resistor R4 are connected in series between the node 106 and the ground GND, and a power supply voltage V DD is applied to the node 106. When the switch SW 2 is turned on, the resistor R4 can avoid the power supply voltage V DD directly. Shorted to ground, and the supply voltage V DD is supplied to the voltage to current input of voltage to current converter 126. The current sinking/input terminal of the voltage-current converter 126 is disposed to be connected to the ungrounded end of the charging and discharging capacitor C T , that is, the node 107. When the switch SW 2 is turned on, the voltage-current converter 126 converts the received power source voltage value into a discharge. current I 2, the guide when attempting to charge and discharge the capacitor C T is discharged to the ground terminal, a size of the discharge current I 2 of the capacitance C T discharges embodiment. Since the output of the comparator 121 is only turned on under the premise of outputting a high level, the switch SW 2 is turned on, and the discharge current I 2 is generated to cause the discharge of the capacitor C T to occur only at the input voltage V HV than the Zener diode When the breakdown voltage V Z of the body ZD1 is high, that is, the first state phase in which the detection voltage signal V S has a logic high occurs.

放電電流源單元235b具有一個與電容CT並聯的三端口開關SW3,電容CT與開關SW3兩者都連接在節點107和接地端之間,一個輔助器件二極體D5與電容CT並聯,其陽極端接地而陰極端連接到節點107。類似的,一個輔助的二極體D6的陽極連接在節點107而陰極端連接到節點105。針對放電過程,前文已經闡明,偵測電壓信號VS在自高位準降至低位準的下降沿的時刻,被設定為放電截止點,無論電容CT是否存儲有電荷量,都會在該時刻被觸發發生一次持續納秒級別的電荷量釋放程式。如圖5所示,為了實現這一點,我們還需要將比較器121的輸出端信號輸送到開關SW3的控制端,雖然在一些可選的實施例中單穩態觸發器123的輸入端可以直接連接到比較器121的輸出端,但在較佳的實施例中,在電壓檢測電路255中還可以再設置一個反相器122,如果啟用該反相器122,如圖5所示,比較器121的輸出端連接到電壓檢測電路255中的反相器122的輸入端,而反相器122的輸出端則直接連接到一個單穩態觸發器123(例如100ns one-shot的觸發器)的輸入端,單穩態觸發器123的輸出端連接到開關SW3的控制端。當驅動信號直接觸發單穩態觸發器123時,偵測電壓信號VS從第一狀態翻轉成第二狀態的每個下降沿,也即比較器121輸出的驅動信號的每個下降沿,觸發該單穩態觸發器123發送為高位準的輸出信號來將開關SW3接通。考慮到單穩態觸發器123既可以被設定為下降沿觸發也可以被設置為上升沿觸發,如果啟用反相器122,仍然在偵測電壓信號VS從第一狀態翻轉成第二狀態的每個下降沿時刻,可以利用驅動信號的反相信號的上升沿來觸發該單穩態觸發器123發送為高位準的輸出信號將開關SW3接通。比較器121的輸出信號由反相器122反相後,以反相信號的邊沿來觸發單穩態觸發器123發送信號給開關SW3的控制端。從而實現在偵測電壓信號VS從高位準翻轉成低位準的每個下降沿,該下降沿均觸發接通開關SW3,驅動開關SW3接通納秒級別的接通時間,將電容CT的電荷量釋放到接地端。單穩態觸發器123觸發開關SW3接通的時間極短,可認為是一個瞬時放 電步驟,每次觸發信號產生後單穩態觸發器123進入暫穩態,暫穩態維持一段時間再返回穩態。節點107處的電壓信號VB在偵測電壓信號VS的該下降沿的時刻波形如圖4B中電壓信號VB2所示,該時刻電壓VB2波形垂直下降,近乎沒有放電斜率。 A discharge current source unit 235b having a three-port switch SW is connected in parallel with the capacitor C T 3, 3 both the capacitance C T and the switch SW are connected between the node 107 and the ground terminal, a diode D5 aid and capacitance C T In parallel, the anode terminal is grounded and the cathode terminal is connected to node 107. Similarly, the anode of an auxiliary diode D6 is connected to node 107 and the cathode terminal is connected to node 105. For the discharge process, it has been clarified in the foregoing that the detection voltage signal V S is set as the discharge cut-off point at the falling edge from the high level to the low level, and whether or not the capacitor C T stores the amount of charge, it will be Trigger a charge release program that lasts for a nanosecond level. 5, in order to achieve this, we need to deliver a signal output terminal of the comparator 121 to the control terminal of the switch SW 3, although in some embodiments the input of the monoflop 123 may be an alternative embodiment Directly connected to the output of the comparator 121, but in the preferred embodiment, an inverter 122 can be further provided in the voltage detecting circuit 255. If the inverter 122 is enabled, as shown in FIG. The output of the inverter 121 is connected to the input of the inverter 122 in the voltage detecting circuit 255, and the output of the inverter 122 is directly connected to a one-shot flip-flop 123 (for example, a 100 ns one-shot flip-flop) an input terminal, an output terminal of monostable multivibrator 123 is connected to the control terminal of the switch SW 3. When the driving signal directly triggers the one-shot flip-flop 123, the detecting voltage signal V S is flipped from the first state to each falling edge of the second state, that is, each falling edge of the driving signal output by the comparator 121 is triggered. the output signal of the monoflop 123 transmits at a high level to the switch SW 3 is turned on. Considering that the one-shot flip-flop 123 can be set to either a falling edge trigger or a rising edge trigger, if the inverter 122 is enabled, the detected voltage signal V S is still flipped from the first state to the second state. each time a falling edge, a rising edge of the inverted signal can be used to trigger the drive signal the output signal of the monoflop 123 transmits at a high level the switch SW 3 is turned on. The output signal of the comparator 121 is inverted by the inverter 122 to an inverted signal of an edge triggered monoflop 123 sends a signal to the control terminal of the switch SW 3. In order to achieve the detection voltage signal V S from each falling edge of the high level to the low level of inversion, the falling edge of the trigger turns on the switch SW 3 are, driving the switch SW 3 is turned ON nanosecond time, the capacitance C The amount of charge of T is released to the ground. The monostable flip-flop 123 triggers the switch SW 3 to be turned on for a very short time, which can be regarded as an instantaneous discharge step. After each trigger signal is generated, the monostable flip-flop 123 enters a temporary steady state, and the transient steady state is maintained for a while and then returned. Steady state. The waveform of the voltage signal V B at the node 107 at the falling edge of the detected voltage signal V S is as shown by the voltage signal V B2 in FIG. 4B , at which time the waveform of the voltage V B2 drops vertically with almost no discharge slope.

參見圖5,主比較器128的正相輸入端接地,反相輸入端連接到節點107,節點107處的電壓信號VB在上文中已經予以闡明。如圖4B所示,在輸入電壓VHV1具有基準有效值V'HVR前提下,電容CT的充放電電壓變化趨勢,藉由鋸齒波電壓信號VB1來體現,時間段2t1作為充電參照時間的基準充電時間,將時間段2(t2-t1)作為放電參照時間的基準放電時間,偵測電壓信號VS1的占空比為基準DB1,此時主比較器128的輸出端在輸入電壓VHV1的每個週期內恰好可以輸出一次邏輯高位準,發生在在偵測電壓信號VS1的下降沿的時刻。仍然參見圖4B,一旦偵測電壓信號VS2具有小於DB1的占空比DB2時,說明輸入電壓VHV2具有比輸入電壓VHV1小的峰值,則電壓信號VB2在偵測電壓信號VS的每個下降沿這個時刻都會被置於接近零而略大於零的狀態,故主比較器128的輸出一直為低位準。參見圖4C,當輸入電壓VHV3具有比輸入電壓VHV1更高的峰值,相應產生的偵測電壓信號VS3的實際占空比DB3會大於DB1,會在電容一端的節點107處產生波形VB3,在一個充放電週期的放電階段,即從偵測電壓信號VS3在一個週期自低位準翻轉到高位準的放電起始點算起,時間點還未到偵測電壓信號VS3在該週期自高位準翻轉至低位準的下降沿的時刻,電容CT存儲的電量就已經釋放乾淨,致使電壓信號VB3會發生下降至等於零的現象,則主比較器128的輸出端在輸入電壓VHV3的每個週期內恰好可以在電容CT電荷量為零時輸出一次邏輯高位準。 Referring to Figure 5, the non-inverting input of main comparator 128 is coupled to ground, and the inverting input is coupled to node 107. The voltage signal V B at node 107 has been set forth above. As shown in FIG. 4B, under the premise that the input voltage V HV1 has the reference effective value V′ HVR , the charging and discharging voltage variation trend of the capacitor C T is represented by the sawtooth wave voltage signal V B1 , and the time period 2t 1 is used as the charging reference time. The reference charging time, the time period 2 (t 2 -t 1 ) is used as the reference discharge time of the discharge reference time, and the duty ratio of the detection voltage signal V S1 is the reference D B1 , at which time the output of the main comparator 128 is The logic high level can be outputted once in each cycle of the input voltage V HV1 at the time of detecting the falling edge of the voltage signal V S1 . Still referring to FIG. 4B, once the detection voltage signal V S2 has a duty ratio D B2 that is less than D B1 , the input voltage V HV2 has a smaller peak value than the input voltage V HV1 , and the voltage signal V B2 is at the detection voltage signal V . Each falling edge of S is placed near zero and slightly greater than zero, so the output of main comparator 128 is always low. Referring to FIG. 4C, when the input voltage V HV3 has a higher peak than the input voltage V HV1 , the actual duty ratio D B3 of the corresponding detected voltage signal V S3 will be greater than D B1 and will be generated at node 107 at one end of the capacitor. The waveform V B3 is calculated from the discharge phase of a charge and discharge cycle, that is, from the detection of the voltage signal V S3 in a cycle from the low level to the high level of the discharge start point, the time point has not yet reached the detection voltage signal V S3 At the moment when the period falls from the high level to the falling edge of the low level, the amount of power stored by the capacitor C T is released, causing the voltage signal V B3 to fall to a value equal to zero, and the output of the main comparator 128 is at the input. Each period of voltage V HV3 can output a logic high level just when the charge of the capacitor C T is zero.

參見圖6,從時間段TX至TY,設置實際輸入電壓VHV的峰值在時間維度上按照從前至後的順序逐步遞增,可依照上文揭示的方式來判斷交流市電VAC的變化趨勢。在時間段TX內,實際輸入電壓VHV的峰值都超過擊穿電壓VZ,但偵測電壓信號VS的占空比一直低於基準占空比DB1,故主比較器128輸出的檢測信號300的輸出一直都為低位準。在時間段TY的首個週期,臨界狀態的輸入電 壓VHV恰好具有基準有效值V'HVR或等效的峰值,則主比較器128的輸出端第一次輸出邏輯高位準300a,發生在該週期內偵測電壓信號VS的下降沿的時刻。時間段TY的首個週期之後,其他每個週期的實際輸入電壓VHV均具有比臨界狀態更高的峰值,則每個週期內主比較器128在電容CT電荷量為零時都輸出一次邏輯高位準,如高位準信號300b、300c等。假定基準有效值V'HVR等於100V,齊納二極體ZD1的擊穿電壓值VZ1=50V,推算出DB=0.77,凡是占空比超過0.77,就認為輸入的輸入電壓VHV的峰值或振幅開始超過100,可直觀的從主比較器128輸出的檢測信號300的高位準結果顯示出來。反之亦然,凡是占空比低於0.77,就認為輸入的輸入電壓VHV的峰值或振幅開始低於100,也可以直觀的從主比較器128輸出的檢測信號300的低位準結果顯示出來,藉此來判斷輸入電壓VHV的變化趨勢,判斷輸入電壓VHV亦即相當於判斷交流電壓VAC的趨勢,前者由後者全波整流而來。 Referring to FIG. 6, from the time period T X to T Y , the peak value of the actual input voltage V HV is set to be gradually increased in the time dimension from the front to the back, and the change trend of the AC mains V AC can be judged according to the manner disclosed above. . During the time period T X , the peak value of the actual input voltage V HV exceeds the breakdown voltage V Z , but the duty ratio of the detection voltage signal V S is always lower than the reference duty ratio D B1 , so the output of the main comparator 128 The output of the detection signal 300 is always at a low level. During the first period of the time period T Y , the critical state input voltage V HV has exactly the reference effective value V′ HVR or an equivalent peak, and the output of the main comparator 128 outputs the logic high level 300a for the first time, which occurs in The time at which the falling edge of the voltage signal V S is detected during this period. After the first period of the time period T Y , the actual input voltage V HV of each of the other periods has a higher peak value than the critical state, and the main comparator 128 outputs the capacitance of the capacitor C T is zero in each period. One logic high level, such as high level signals 300b, 300c, etc. Assuming that the reference effective value V' HVR is equal to 100V, the breakdown voltage value of the Zener diode ZD1 is V Z1 = 50V, and D B = 0.77 is derived. If the duty ratio exceeds 0.77, the input input voltage V HV is considered to be the peak value. Or the amplitude starts to exceed 100 The high level result of the detection signal 300 outputted from the main comparator 128 can be visually displayed. Vice versa, where the duty cycle is less than 0.77, the peak or amplitude of the input input voltage V HV begins to fall below 100. , Visual display may result from the low level detection signal output from the main comparator 128 out of 300, thereby to determine the trend of the input voltage V HV, i.e. determines the input voltage V HV equivalent trend Analyzing the alternating voltage V AC The former is rectified by the latter.

另外,作為可選項,雖然圖中未示意出,還可以將比較器121的輸出端連接到一個計數器Counter的輸入端,當這個計數器探測到比較器121輸出的比較結果為低位準且該低位準狀態維持超過一段預設的時間TBO時,一旦計數器121在持續超過該預設的彈跳時間(de-bounce time)TBO內都未接收到比較器121輸出的比較結果為高位準時,則可以判斷輸入電壓VHV或交流電壓VAC實質上處於欠壓狀態,例如當預設時間TBO延續至超過一個週期T或者數倍個週期n×T的時間,相當於實際輸入電壓VHV的峰值一直都沒有超過齊納二極體ZD1的齊納擊穿電壓VZ,進而可以觸發計數器121輸出一個保護信號,來切斷交流至直流的電源轉換裝置。 In addition, as an option, although not shown in the figure, the output terminal of the comparator 121 may be connected to the input terminal of a counter Counter, and when the counter detects that the comparison result output by the comparator 121 is a low level and the low level When the state is maintained for more than a predetermined period of time T BO , once the counter 121 does not receive the comparison result output by the comparator 121 to a high level within the preset de-bounce time T BO , It is judged that the input voltage V HV or the AC voltage V AC is substantially in an undervoltage state, for example, when the preset time T BO continues for more than one period T or several times of the period n×T, which is equivalent to the peak value of the actual input voltage V HV The Zener breakdown voltage V Z of the Zener diode ZD1 has not been exceeded, and the counter 121 can be triggered to output a protection signal to cut off the AC to DC power conversion device.

以上,通過說明和附圖,給出了具體實施方式的特定結構的典型實施例,上述發明提出了現有的較佳實施例,但這些內容並不作為局限。對於本領域的技術人員而言,閱讀上述說明後,各種變化和修正無疑將顯而易見。因此,所附的權利要求書應看作是涵蓋本發明的真實意圖和範圍的全部變化和修正。在 權利要求書範圍內任何和所有等價的範圍與內容,都應認為仍屬本發明的意圖和範圍內。 The exemplary embodiments of the specific structures of the specific embodiments have been described above by way of illustration and the accompanying drawings. Various changes and modifications will no doubt become apparent to those skilled in the <RTIgt; Accordingly, the appended claims are to cover all such modifications and modifications in Any and all equivalent ranges and contents within the scope of the claims are intended to be within the scope and spirit of the invention.

107‧‧‧節點 107‧‧‧ nodes

128‧‧‧主比較器 128‧‧‧Main comparator

235‧‧‧充放電電路 235‧‧‧Charge and discharge circuit

235a‧‧‧充電電流源單元 235a‧‧‧Charging current source unit

235b‧‧‧放電電流源單元 235b‧‧‧Discharge current source unit

CT‧‧‧充放電電容 C T ‧‧‧Charge and discharge capacitor

SW1 SW2‧‧‧開關 Switch SW 1 SW 2 ‧‧‧

VDD‧‧‧直流電源電壓 V DD ‧‧‧DC power supply voltage

Claims (21)

一種電壓檢測電路,其中,包括:一個整流電路,將交流電壓整流為直流的輸入電壓;一個偵測單元,接收輸入電壓並依據輸入電壓大小的波動,藉此產生具有不同邏輯態的偵測電壓信號;一個電容;一個充電電流源單元,在所述偵測電壓信號具有第二狀態時為所述電容充電;一個放電電流源單元,在所述偵測電壓信號具有第一狀態時使所述電容放電;一個主比較器,在電容充電和放電的交替過程中將電容上變化的電壓與一個臨界零電位進行比較,並輸出帶有標識輸入電壓變化趨勢的檢測信號。 A voltage detecting circuit includes: a rectifying circuit that rectifies an alternating current voltage into a direct current input voltage; and a detecting unit that receives the input voltage and generates a detecting voltage having different logic states according to fluctuations in the magnitude of the input voltage. a capacitor; a charging current source unit that charges the capacitor when the detected voltage signal has a second state; a discharge current source unit that causes the detecting voltage signal to have a first state Capacitor discharge; a main comparator that compares the voltage across the capacitor with a critical zero potential during the alternation of the charge and discharge of the capacitor and outputs a detection signal with a trend indicating the change in the input voltage. 根據申請專利範圍第1項所述的電壓檢測電路,其中,輸入電壓超過一預設值時觸發所述偵測單元產生具有第一狀態的偵測電壓信號;以及輸入電壓低於預設值時觸發所述偵測單元產生具有第二狀態的偵測電壓信號。 The voltage detecting circuit of claim 1, wherein the detecting unit triggers the detecting unit to generate a detecting voltage signal having a first state when the input voltage exceeds a preset value; and when the input voltage is lower than a preset value The detecting unit is triggered to generate a detection voltage signal having a second state. 根據申請專利範圍第2項所述的電壓檢測電路,其中,在偵測單元中,一個齊納二極體的陽極連接於一個接面場效應電晶體的汲極並將輸入電壓施加在其陰極,所述預設值等於齊納二極體的擊穿電壓,從而在接面場效應電晶體的源極產生偵測電壓信號。 The voltage detecting circuit according to claim 2, wherein in the detecting unit, an anode of a Zener diode is connected to a drain of a junction field effect transistor and an input voltage is applied to the cathode thereof The preset value is equal to the breakdown voltage of the Zener diode, thereby generating a detection voltage signal at the source of the junction field effect transistor. 根據申請專利範圍第3項所述的電壓檢測電路,其中,接面場效應電晶體的源極連接於偵測單元中一個比較器的正相輸入端,比較器的反相輸入端輸入一個閥值電壓;當輸入電壓高於所述預設值,偵測電壓信號電位大於閥值電壓,表徵偵測電壓信號具有邏輯高的第一狀態,偵測單元的比較器輸出的驅動信號為高位準;當輸入電壓低於所述預設值,偵測電壓信號電位小於閥值電壓,表徵偵測電壓信號具有邏輯低的第二狀態,偵測單元的比較器輸出的驅動信號為低位準。 The voltage detecting circuit according to claim 3, wherein the source of the junction field effect transistor is connected to the non-inverting input terminal of a comparator in the detecting unit, and the inverting input terminal of the comparator inputs a valve. Value voltage; when the input voltage is higher than the preset value, the detection voltage signal potential is greater than the threshold voltage, indicating that the detection voltage signal has a logic high first state, and the detection unit output of the detection unit is a high level When the input voltage is lower than the preset value, the detected voltage signal potential is less than the threshold voltage, and the detected voltage signal has a second state with a logic low, and the driving signal output by the comparator of the detecting unit is a low level. 根據申請專利範圍第1項所述的電壓檢測電路,其中,充電電流源單元包括一個電壓電流轉換器和一個連接於一電壓源與電壓電流轉換器輸入端之間的開關;當偵測電壓信號具有第二狀態時,偵測單元發送驅動信號接通開關,為充電電流源單元提供用於轉換成充電電流的電壓源,充電電流輸送給電容促使電容充電。 The voltage detecting circuit according to claim 1, wherein the charging current source unit comprises a voltage current converter and a switch connected between a voltage source and the input of the voltage current converter; when detecting the voltage signal When the second state is present, the detecting unit sends a driving signal to turn on the switch, and provides a charging current source unit with a voltage source for converting into a charging current, and the charging current is supplied to the capacitor to cause the capacitor to be charged. 根據申請專利範圍第1項所述的電壓檢測電路,其中,放電電流源單元包括一個電壓電流轉換器和一個連接於一電壓源與電壓電流轉換器輸入端之間的開關;當偵測電壓信號具有第一狀態時,偵測單元發送驅動信號接通開關,為放電電流源單元提供用於轉換成放電電流的電壓源,電容藉由放電電流來釋放電荷量。 The voltage detecting circuit according to claim 1, wherein the discharge current source unit comprises a voltage current converter and a switch connected between a voltage source and the input of the voltage current converter; when detecting the voltage signal When the first state is present, the detecting unit sends a driving signal to turn on the switch, and the discharging current source unit is provided with a voltage source for converting into a discharging current, and the capacitor discharges the amount of the electric charge by the discharging current. 根據申請專利範圍第3項所述的電壓檢測電路,其中,偵測電壓信號從第一狀態翻轉成第二狀態的下降沿時刻,開始為電容充電,並且偵測電壓信號從第二狀態翻轉成第一狀態的上升沿時刻,開始釋放電容的電荷量;以及偵測電壓信號每次從第一狀態翻轉成第二狀態的每個下降沿時刻,在電容啟動充電之前先行對電容執行一次瞬時放電步驟。 The voltage detecting circuit according to claim 3, wherein the detecting voltage signal is turned from the first state to the falling edge of the second state, charging is started, and the detecting voltage signal is inverted from the second state to At the rising edge of the first state, the amount of charge of the capacitor is released; and each time the detected voltage signal is flipped from the first state to the falling state of the second state, an instantaneous discharge is performed on the capacitor before the capacitor starts charging. step. 根據申請專利範圍第7項所述的電壓檢測電路,其中,設置一個與電容並聯的且一端接地的開關,偵測單元發送的驅動信號通過一個反相器反相後輸送給一個單穩態觸發器的輸入端,而單穩態觸發器的輸出端則連接到該開關的控制端;由偵測電壓信號的下降沿經反相器反相後的上升沿,來觸發單穩態觸發器傳送一次驅動該開關接通的輸出信號,利用該開關對電容執行瞬時放電。 According to the voltage detecting circuit of claim 7, wherein a switch connected in parallel with the capacitor and grounded at one end is provided, and the driving signal sent by the detecting unit is inverted by an inverter and sent to a one-shot trigger. The input of the monostable flip-flop is connected to the control terminal of the switch; the falling edge of the detected voltage signal is inverted by the inverted edge of the inverter to trigger the monostable trigger transfer The output signal that drives the switch is turned on once, and the switch is used to perform instantaneous discharge on the capacitor. 根據申請專利範圍第8項所述的電壓檢測電路,其中,將具有基準有效值VHVR的一個基準輸入電壓輸送給偵測單元,設定齊納二極體的擊穿電壓為VZ1,在基準輸入電壓的一個週期內,偵測電壓信號的第一狀態具有的基準占空比DB為: 同時設定電容充電的電流值I1和使電容放電的電流值I2之間滿足: According to the voltage detecting circuit of claim 8, wherein a reference input voltage having a reference effective value V HVR is supplied to the detecting unit, and the breakdown voltage of the Zener diode is set to V Z1 at the reference. During a period of the input voltage, the first state of the detected voltage signal has a reference duty cycle D B of: At the same time, it is set between the current value I 1 of the capacitor charging and the current value I 2 for discharging the capacitor: 根據申請專利範圍第9項所述的電壓檢測電路,其中,當實際占空比大於基準占空比DB,則主比較器輸出的檢測信號在實際輸入電壓的每個週期內都會產生一次高位準,表示實際輸入電壓的峰值比基準輸入電壓的峰值大;或者當實際占空比小於基準占空比DB,則主比較器輸出的檢測信號在實際輸入電壓的每個週期內都不會產生高位準,表示實際輸入電壓的峰值比基準輸入電壓的峰值小。 The voltage detecting circuit according to claim 9, wherein when the actual duty ratio is greater than the reference duty ratio D B , the detection signal outputted by the main comparator generates a high level in each period of the actual input voltage. Precisely, indicating that the peak value of the actual input voltage is greater than the peak value of the reference input voltage; or when the actual duty ratio is less than the reference duty ratio D B , the detection signal output by the main comparator will not be in each period of the actual input voltage. A high level is generated, indicating that the peak value of the actual input voltage is less than the peak value of the reference input voltage. 根據申請專利範圍第4項所述的電壓檢測電路,其中,將偵測單元中比較器的輸出端連接到一個計數器的輸入端,當計數器探測到偵測單元的該比較器輸出的比較結果為低位準且該低位準狀態維持超過一段預設的時間,則可以判斷輸入電壓處於欠壓狀態。 According to the voltage detecting circuit of claim 4, wherein the output of the comparator in the detecting unit is connected to the input end of a counter, and when the counter detects that the comparison result of the comparator output of the detecting unit is When the low level is maintained and the low level state is maintained for more than a predetermined period of time, it can be judged that the input voltage is in an undervoltage state. 一種檢測電壓變化的方法,其中,包括以下步驟:利用一個整流電路將交流電壓整流為直流的輸入電壓;將所述輸入電壓輸入給一個偵測單元,並依據輸入電壓大小的波動,藉此由偵測單元產生具有不同邏輯態的偵測電壓信號;對一個電容執行循環的充放電程式;在電容的充電過程中,當偵測單元發送的所述偵測電壓信號具有第二狀態時,利用一個充電電流源單元為所述電容充電;在電容的放電過程中,當偵測單元發送的所述偵測電壓信號具有第一狀態時,利用一個放電電流源單元使所述電容放電;利用一個主比較器,將電容在充電和放電的交替過程中電容上變化的電壓和臨界零電位進行比較,藉由主比較器輸出帶有標識輸入電壓變化趨勢的比較結果,作為檢測信號。 A method for detecting a voltage change, comprising the steps of: rectifying an alternating current voltage into a direct current input voltage by using a rectifying circuit; inputting the input voltage to a detecting unit, and according to fluctuations in the magnitude of the input voltage, thereby The detecting unit generates a detecting voltage signal having different logic states; performing a cyclic charging and discharging program on one capacitor; and during the charging process of the capacitor, when the detecting voltage signal sent by the detecting unit has the second state, utilizing a charging current source unit charges the capacitor; during the discharging of the capacitor, when the detecting voltage signal sent by the detecting unit has the first state, discharging the capacitor by using a discharging current source unit; The main comparator compares the capacitance of the capacitor during the alternating charging and discharging with the critical zero potential, and the main comparator outputs a comparison result with a tendency to identify the input voltage as a detection signal. 根據申請專利範圍第12項所述的方法,其中,在輸入電壓超過一預設值時觸發所述偵測單元產生具有第一狀態的偵測電壓信號;以及在輸入電壓低於預設值時觸發所述偵測單元產生具有第二狀態的偵測電壓信號。 The method of claim 12, wherein the detecting unit is triggered to generate a detection voltage signal having a first state when the input voltage exceeds a preset value; and when the input voltage is lower than a preset value The detecting unit is triggered to generate a detection voltage signal having a second state. 根據申請專利範圍第13項所述的方法,其中,在偵測單元中,一個齊納二極體的陽極連接於一個接面場效應電晶體的汲極並將輸入電壓施加在其陰極,設置所述預設值等於齊納二極體的擊穿電壓,從而在接面場效應電晶體的源極產生偵測電壓信號。 The method of claim 13, wherein in the detecting unit, an anode of a Zener diode is connected to a drain of a junction field effect transistor and an input voltage is applied to the cathode thereof. The preset value is equal to the breakdown voltage of the Zener diode, thereby generating a detection voltage signal at the source of the junction field effect transistor. 根據申請專利範圍第14項所述的方法,其中,將接面場效應電晶體的源極連接於偵測單元中一個比較器的正相輸入端,在比較器的反相輸入端輸入一個閥值電壓;當輸入電壓高於所述預設值,偵測電壓信號電位大於閥值電壓,表徵偵測電壓信號具有邏輯高的第一狀態,偵測單元的比較器輸出的驅動信號為高位準;當輸入電壓低於所述預設值,偵測電壓信號電位小於閥值電壓,表徵偵測電壓信號具有邏輯低的第二狀態,偵測單元的比較器輸出的驅動信號為低位準。 The method of claim 14, wherein the source of the junction field effect transistor is connected to a non-inverting input of a comparator of the detection unit, and a valve is input to the inverting input of the comparator. Value voltage; when the input voltage is higher than the preset value, the detection voltage signal potential is greater than the threshold voltage, indicating that the detection voltage signal has a logic high first state, and the detection unit output of the detection unit is a high level When the input voltage is lower than the preset value, the detected voltage signal potential is less than the threshold voltage, and the detected voltage signal has a second state with a logic low, and the driving signal output by the comparator of the detecting unit is a low level. 根據申請專利範圍第12項所述的方法,其中,充電電流源單元包括一個電壓電流轉換器和一個連接於一電壓源與電壓電流轉換器輸入端之間的開關;當偵測電壓信號具有第二狀態時,偵測單元發送驅動信號接通開關,為充電電流源單元提供用於轉換成充電電流的電壓源,將充電電流輸送給電容促使電容充電。 The method of claim 12, wherein the charging current source unit comprises a voltage current converter and a switch connected between a voltage source and the input of the voltage current converter; In the two states, the detecting unit sends a driving signal to turn on the switch, provides a voltage source for converting the charging current to the charging current source unit, and supplies the charging current to the capacitor to cause the capacitor to be charged. 根據申請專利範圍第12項所述的方法,其中,放電電流源單元包括一個電壓電流轉換器和一個連接於一電壓源與電壓電流轉換器輸入端之間的開關;當偵測電壓信號具有第一狀態時,偵測單元發送驅動信號接通開關,為放電電流源單元提供用於轉換成放電電流的電壓源,電容藉由放電電流來釋放電荷量。 The method of claim 12, wherein the discharge current source unit comprises a voltage current converter and a switch connected between a voltage source and the input of the voltage current converter; In one state, the detecting unit sends a driving signal to turn on the switch, and supplies a voltage source for converting the discharging current to the discharging current source unit, and the capacitor discharges the amount of the electric charge by the discharging current. 根據申請專利範圍第14項所述的方法,其中,在偵測電壓信號從第一狀態翻轉成第二狀態的下降沿時刻,開始為電容充電,並且在偵測電壓信號從 第二狀態翻轉成第一狀態的上升沿時刻,開始釋放電容的電荷量;以及偵測電壓信號每次從第一狀態翻轉成第二狀態的每個下降沿時刻,在電容啟動充電之前先行對電容執行一次瞬時放電步驟。 The method of claim 14, wherein the detecting of the voltage signal is started by charging the capacitor at a falling edge of the detecting voltage signal from the first state to the second state, and detecting the voltage signal from The second state is flipped to the rising edge of the first state, and the amount of charge of the capacitor is released; and each time the detected voltage signal is flipped from the first state to the second state, each time before the capacitor starts charging The capacitor performs an instantaneous discharge step. 根據申請專利範圍第18項所述的方法,其中,設置一個與電容並聯的且一端接地的開關,使偵測單元發送的驅動信號通過一個反相器反相後再輸送給一個單穩態觸發器的輸入端,和將單穩態觸發器的輸出端連接到該開關的控制端;由偵測電壓信號的下降沿經反相器反相後的上升沿,來觸發單穩態觸發器傳送一次驅動該開關接通的輸出信號,利用該開關的接通對電容執行瞬時放電。 According to the method of claim 18, wherein a switch connected in parallel with the capacitor and grounded at one end is provided, so that the driving signal sent by the detecting unit is inverted by an inverter and then sent to a one-shot trigger. The input end of the device, and the output end of the monostable flip-flop is connected to the control end of the switch; the rising edge of the detected voltage signal is inverted by the inverted edge of the inverter to trigger the monostable trigger transfer An output signal that drives the switch to be turned on once, and an instantaneous discharge of the capacitor is performed by turning on the switch. 根據申請專利範圍第19項所述的方法,其中,將具有基準有效值VHVR的一個基準輸入電壓輸送給偵測單元,設定齊納二極體的擊穿電壓為VZ1,在基準輸入電壓的一個週期內,偵測電壓信號的第一狀態具有的基準占空比DB為: 同時設定電容充電的電流值I1和使電容放電的電流值I2之間滿足: The method according to claim 19, wherein a reference input voltage having a reference effective value V HVR is supplied to the detecting unit, and the breakdown voltage of the Zener diode is set to V Z1 at the reference input voltage. In one cycle, the first state of the detected voltage signal has a reference duty cycle D B of: At the same time, it is set between the current value I 1 of the capacitor charging and the current value I 2 for discharging the capacitor: 根據申請專利範圍第20項所述的方法,其中,在實際占空比大於基準占空比DB時,主比較器輸出的檢測信號在實際輸入電壓的每個週期內都會產生一次高位準,表示實際輸入電壓的峰值比基準輸入電壓的峰值大;或者在實際占空比小於基準占空比DB時,主比較器輸出的檢測信號在實際輸入電壓的每個週期內都不產生高位準,表示實際輸入電壓的峰值比基準輸入電壓的峰值小。 The method according to claim 20, wherein, when the actual duty ratio is greater than the reference duty ratio D B , the detection signal output by the main comparator generates a high level in each period of the actual input voltage. Indicates that the peak value of the actual input voltage is greater than the peak value of the reference input voltage; or when the actual duty ratio is less than the reference duty ratio D B , the detection signal output by the main comparator does not generate a high level in each period of the actual input voltage , indicating that the peak value of the actual input voltage is smaller than the peak value of the reference input voltage.
TW103142067A 2014-12-03 2014-12-03 Method for voltage detection by b-duty TWI554017B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103142067A TWI554017B (en) 2014-12-03 2014-12-03 Method for voltage detection by b-duty

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103142067A TWI554017B (en) 2014-12-03 2014-12-03 Method for voltage detection by b-duty

Publications (2)

Publication Number Publication Date
TW201622330A TW201622330A (en) 2016-06-16
TWI554017B true TWI554017B (en) 2016-10-11

Family

ID=56755634

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103142067A TWI554017B (en) 2014-12-03 2014-12-03 Method for voltage detection by b-duty

Country Status (1)

Country Link
TW (1) TWI554017B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639017B (en) 2017-06-15 2018-10-21 宜鼎國際股份有限公司 Detection system and detection circuit for detecting health status of backup power module
KR101879285B1 (en) * 2017-08-01 2018-07-17 송청담 Capacitive sensor circuit for high sensitive detection
CN107543972A (en) * 2017-09-08 2018-01-05 乐鑫信息科技(上海)有限公司 One kind measurement capacitor system and its measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306183A (en) * 1979-03-14 1981-12-15 Lucas Industries Limited Voltage regulation circuit for a solar cell charging system
US20090141523A1 (en) * 2007-11-16 2009-06-04 Fuji Electric Device Technology Co., Ltd. Switching control circuit and AC/DC converter using the same
US7554298B2 (en) * 2004-09-28 2009-06-30 Nec Electronics Corporation Charger and integrated circuit having first and second charging currents
TW201224466A (en) * 2010-12-08 2012-06-16 Hon Hai Prec0Ision Industry Co Ltd Voltage detecting circuit
US20120249084A1 (en) * 2011-04-01 2012-10-04 Vilhauer Reed D Method and apparatus for managing charging current

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306183A (en) * 1979-03-14 1981-12-15 Lucas Industries Limited Voltage regulation circuit for a solar cell charging system
US7554298B2 (en) * 2004-09-28 2009-06-30 Nec Electronics Corporation Charger and integrated circuit having first and second charging currents
US20090141523A1 (en) * 2007-11-16 2009-06-04 Fuji Electric Device Technology Co., Ltd. Switching control circuit and AC/DC converter using the same
TW201224466A (en) * 2010-12-08 2012-06-16 Hon Hai Prec0Ision Industry Co Ltd Voltage detecting circuit
US20120249084A1 (en) * 2011-04-01 2012-10-04 Vilhauer Reed D Method and apparatus for managing charging current

Also Published As

Publication number Publication date
TW201622330A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US10298144B2 (en) Voltage detection circuit and a method of detecting voltage changes
US9664714B2 (en) Methods and devices for detecting the input voltage and discharging the residuevoltage
US9537417B2 (en) Power supply control circuit and power source cut-off detection method
JP5050799B2 (en) Switching control circuit and AC / DC converter using the switching control circuit
CN103187861A (en) Self-discharge bleeder circuit, method, bleeder integrated circuit device and AC/DC interface
US20210080491A1 (en) Detection circuit for an active discharge circuit of an x-capacitor, related active discharge circuit, integrated circuit and method
CN105680694A (en) System and method for a switched-mode power supply
US20050036342A1 (en) Switching power source apparatus
TWI554017B (en) Method for voltage detection by b-duty
JP2010011563A (en) Dc power supply device
US10826311B2 (en) Alternating-current voltage detection circuit
JP2016158311A (en) Semiconductor device for power supply control
TWI574493B (en) Method and lossless brown-in/brown-out and bleeding resistor removal circuit
US9778291B2 (en) AC input voltage interruption detection method and circuit
JPWO2018043226A1 (en) Switching power supply device and semiconductor device
CN206557275U (en) A kind of AC dump warning circuit
TWI496406B (en) Power converter and method for controlling power converter
US20130155733A1 (en) Generating a fast reset-signal using a fault-protection latch
US9871457B2 (en) Switching power supply device
JP2008283742A (en) Charging circuit
JP5772278B2 (en) Switching power supply
CN210639965U (en) Voltage driving circuit
JP2010206988A (en) Switching control circuit and ac/dc converter using the switching control circuit
TWI258263B (en) Modular power supply system
JP2024044731A (en) Power supply control circuit and power supply device