TWI534659B - 3d pointing device and method for compensating movement thereof - Google Patents

3d pointing device and method for compensating movement thereof Download PDF

Info

Publication number
TWI534659B
TWI534659B TW100123807A TW100123807A TWI534659B TW I534659 B TWI534659 B TW I534659B TW 100123807 A TW100123807 A TW 100123807A TW 100123807 A TW100123807 A TW 100123807A TW I534659 B TWI534659 B TW I534659B
Authority
TW
Taiwan
Prior art keywords
pointing device
motion sensing
signal group
axis motion
sensing module
Prior art date
Application number
TW100123807A
Other languages
Chinese (zh)
Other versions
TW201220145A (en
Inventor
葉舟
李金龍
劉順男
Original Assignee
曦恩體感科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/943,934 external-priority patent/US8441438B2/en
Application filed by 曦恩體感科技股份有限公司 filed Critical 曦恩體感科技股份有限公司
Publication of TW201220145A publication Critical patent/TW201220145A/en
Application granted granted Critical
Publication of TWI534659B publication Critical patent/TWI534659B/en

Links

Description

3D指向裝置與用於補償其移動的方法3D pointing device and method for compensating for its movement

本發明是關於一種利用有一動作感測模組的3D指向裝置及一種用於補償與轉換該動作感測模組所發出之信號的方法,其中該動作感測模組所發出之信號是對應到3D指向裝置的移動和轉動。本發明特別是關於一種使用有一動作感測模組的3D指向裝置,且該動作感測模組具有一強化的比對機制,用以計算和補償與該動作感測模組相關聯的累積誤差,而獲得在空間指向參考座標與動態環境下的實際結果偏向角(resulting deviation angles)。The present invention relates to a 3D pointing device using a motion sensing module and a method for compensating and converting a signal emitted by the motion sensing module, wherein the signal sent by the motion sensing module corresponds to The 3D points to the movement and rotation of the device. More particularly, the present invention relates to a 3D pointing device using a motion sensing module, and the motion sensing module has an enhanced comparison mechanism for calculating and compensating for accumulated errors associated with the motion sensing module. And obtain the resulting deviation angles in the spatial pointing reference coordinates and the dynamic environment.

圖1繪示出使用者利用一手持3D指向裝置110在一2D顯示裝置120的螢幕122上指出一指標。亦即,當手持3D指向裝置110射出一光線,該指標為該光線碰觸到該螢幕122的地方。例如,手持3D指向裝置110可為電腦的滑鼠或電玩遊戲的手把,而顯示裝置120可為電腦或電玩遊戲的一部分。在圖中存在有兩個參考座標,例如為空間指向參考座標與顯示器座標,其分別與該指向裝置110及顯示裝置120相關聯。與指向裝置110相關聯的第一參考座標或空間指向參考座標是由如圖1所示之三個軸,即:XP、YP、及ZP,所定義而成。與顯示裝置120相關聯的第二參考座標或顯示器座標則是由如圖1所示之三個軸,即:XD、YD、及ZD,所定義而成。顯示裝置120的螢幕122為參考座標XDYDZD中XDYD平面的一子集,參考座標XDYDZD則是與顯示裝置120相關聯。因此,XDYD平面又可被視為顯示裝置120的顯示平面。FIG. 1 illustrates a user indicating a pointer on a screen 122 of a 2D display device 120 using a handheld 3D pointing device 110. That is, when the handheld 3D pointing device 110 emits a light, the indicator is where the light touches the screen 122. For example, the handheld 3D pointing device 110 can be a mouse of a computer or a handle of a video game, and the display device 120 can be part of a computer or video game. There are two reference coordinates in the figure, such as spatial pointing reference coordinates and display coordinates, which are associated with the pointing device 110 and display device 120, respectively. The first reference coordinate or spatial pointing reference coordinate associated with pointing device 110 is defined by three axes as shown in FIG. 1, namely: X P , Y P , and Z P . The second reference coordinate or display coordinates associated with display device 120 are defined by three axes as shown in FIG. 1, namely: X D , Y D , and Z D . A display screen 122 of apparatus 120 is a subset of the reference coordinates X D Y D Z D X D Y D in the plane of the reference coordinate X D Y D Z D are associated with the display device 120. Therefore, the X D Y D plane can in turn be regarded as the display plane of the display device 120.

使用者可使用該指向裝置實行操控以達到特定目的,例如透過位於螢幕122上的指標在顯示裝置120上玩電玩遊戲等娛樂。為了在使用指向裝置時有良好的互動,當使用者移動指向裝置110時,螢幕122上的指標應該對應指向裝置110所移動的方位、方向、與距離進行移動,且顯示裝置120也應顯示出指標隨著上述的移動而變換到顯示裝置120的螢幕122上的新位置。指向裝置110的方位可用3D指向裝置110於參考座標XPYPZP上的三個偏向角來表示,這些偏向角分別為平擺角(yaw angle)111、俯仰角(pitch angle)112、與滾動角(roll angle)113。在此,平擺角111、俯仰角112、與滾動角113是採用與商用交通工具,例如船舶及飛機等,相關的立體角(spatial angle)之通用標準定義。一般來說,平擺角111是指指向裝置110相對於軸ZP的轉動,俯仰角112是指指向裝置110相對於軸YP的轉動,而滾動角113則是指指向裝置110相對於軸XP的轉動。The pointing device can be manipulated by the user to achieve a particular purpose, such as playing a video game or the like on the display device 120 via an indicator located on the screen 122. In order to have good interaction when using the pointing device, when the user moves the pointing device 110, the indicator on the screen 122 should move corresponding to the direction, direction, and distance moved by the pointing device 110, and the display device 120 should also display The indicator changes to a new location on the screen 122 of the display device 120 as described above. The orientation of the pointing device 110 can be represented by three deflection angles of the 3D pointing device 110 on the reference coordinate X P Y P Z P , which are respectively a yaw angle 111, a pitch angle 112, With a roll angle 113. Here, the sway angle 111, the pitch angle 112, and the roll angle 113 are defined by a general standard of spatial angles associated with commercial vehicles such as ships and airplanes. In general, the sway angle 111 refers to the rotation of the pointing device 110 relative to the axis Z P , the pitch angle 112 refers to the rotation of the pointing device 110 relative to the axis Y P , and the rolling angle 113 refers to the pointing device 110 relative to the axis The rotation of the X P.

在圖1所示的習知技術中,當指向裝置110的平擺角111改變時,上述位於螢幕122上的指標必須隨著平擺角111的改變而相對地在水平方向上移動。圖2所示為當使用者將指向裝置110相對於軸XP逆時針旋轉90°時的情況。在圖2所示的另一習知技術中,當平擺角111改變時,上述位於螢幕122上的指標將對應著做垂直方向的移動。平擺角111的改變可被一陀螺儀偵測到,此陀螺儀感測指向裝置110相對於軸XP的角速度ωx。圖1與圖2顯示出平擺角111相同的改變可能變換成螢幕122上指標的不同動作。因此,需要適當的一補償機制來對指向裝置110的方位進行補償,以使其能正確且合意地對應變換至顯示裝置120的螢幕122上的指標。在美國專利號7,158,118、7,262,760、與7,414,611中(發明人皆為Liberty),『補償』所指的是對受到重力或相對於旋轉軸進行額外旋轉所影響的訊號進行校正和補償。另外,在本發明中,『比對』所指的是:藉由感測裝置所生成的訊號,並減少或消除與該感測裝置相關聯的雜訊後,以計算並取得3D指向裝置110在第一參考座標或空間指向座標XPYPZP上實際的偏向角。此外,『變換』所指的是:計算並轉換空間指向座標XPYPZP上的偏向角至位於第二參考座標或顯示器座標XDYDZD上的2D顯示裝置120之顯示平面上的指標。In the conventional technique shown in FIG. 1, when the yaw angle 111 of the pointing device 110 is changed, the above-described index on the screen 122 must relatively move in the horizontal direction as the yaw angle 111 changes. Figure 2 shows the situation when the user rotates the pointing device 110 counterclockwise by 90° with respect to the axis X P . In another conventional technique shown in FIG. 2, when the yaw angle 111 is changed, the above-described index on the screen 122 will correspond to the movement in the vertical direction. The change in the sway angle 111 can be detected by a gyroscope that senses the angular velocity ω x of the pointing device 110 relative to the axis X P . 1 and 2 show different actions in which the same change in the sway angle 111 may be transformed into an indicator on the screen 122. Therefore, an appropriate compensation mechanism is needed to compensate for the orientation of the pointing device 110 so that it can correctly and desirably correspond to the index on the screen 122 of the display device 120. In U.S. Patent Nos. 7,158,118, 7,262,760, and 7,414,611 (inventors are Liberty), "compensation" refers to the correction and compensation of signals that are affected by gravity or additional rotation relative to the axis of rotation. Further, in the present invention, the "alignment" refers to calculating and acquiring the 3D pointing device 110 by the signal generated by the sensing device and reducing or eliminating the noise associated with the sensing device. The actual deflection angle at the first reference coordinate or space pointing coordinate X P Y P Z P . In addition, "transformation" refers to: calculating and converting the deflection angle on the coordinate point X P Y P Z P to the display plane of the 2D display device 120 located on the second reference coordinate or display coordinate X D Y D Z D The indicator on the.

對使用有五軸動作感測器(可測量Ax、Ay、Az、ωY、和ωZ)的指向裝置進行補償是本領域的通常知識,例如美國專利號7,158,118、7,262,760、與7,414,611中(發明人皆為Liberty)提出了此種具有五軸動作感測器的指向裝置,且也提出了一種補償機制,該補償機制使用兩個重力感測裝置ωY和ωZ去檢測相對於Yp和Zp二軸的轉動,且該補償機制還使用三個加速度感測器Ax、Ay、和Az去檢測指向裝置沿著參考座標XPYPZP的三個軸上的加速度。上述Liberty所提之使用有五軸動作感測器的指向裝置可能無法輸出指向裝置在3D參考座標上的偏向角。換句話說,由於五軸動作感測器中加速度感測器與重力感測裝置的限制,上述Liberty所提之指向裝置無法立即地輸出偏向角在3D參考座標上,而只能輸出至2D參考座標上,亦即上述之使用五軸動作感測器的指向裝置之輸出僅為2D參考座標上之平面圖形模式。而且,當指向裝置在取得動動感測器所產生的訊號時經歷非預期的移動,尤其在是沿著重力方向上經歷非預期的飄移或加速度時,上述之指向裝置與補償機制無法精確或適當地計算或取得該指向裝置的移動、角度、和方向。換句話說,當施加動態作用(dynamic actions)或額外的加速度於上述Liberty所提供的具補償機制的指向裝置上,尤其是沿著或大致上與重力相平行的方向上時,上述Liberty所提供的指向裝置無法適當且精確地輸出於空間參考座標XPYPZP上實際的平擺角、俯仰角、與滾動角,也因此將立體角變換到2D顯示器參考座標時,例如:參考座標XDYDZD,其映射程序便會嚴重地受到影響並產生錯誤。舉例來說,由於Liberty所提供的五軸補償方式無法直接且精確地檢測或補償相對於軸XP的轉動,故相對於軸XP的轉動必須從加速度感測器所偵測到的重力加速度中所推得。更進一步而言,由於既有加速度感測器的限制,只有當指向裝置為靜態時,該加速度感測器上的讀值才是精確的,這是因為這些感測器無法將重力加速度從其他型態的加速度區分開來所致,這些其他型態的加速度例如為向心力所產生的加速度或使用者所施加的其他型態的額外之加速度。Compensating for pointing devices using a five-axis motion sensor (measuring Ax, Ay, Az, ω Y , and ω Z ) is common in the art, for example, in U.S. Patent Nos. 7,158,118, 7,262,760, and 7,414,611 (invention Such a pointing device with a five-axis motion sensor is proposed by Liberty, and a compensation mechanism is also proposed, which uses two gravity sensing devices ω Y and ω Z to detect relative to Yp and Zp. Two-axis rotation, and the compensation mechanism also uses three acceleration sensors Ax, Ay, and Az to detect acceleration on the three axes of the pointing device along the reference coordinate X P Y P Z P . The pointing device described above by Liberty using a five-axis motion sensor may not be able to output the deflection angle of the pointing device on the 3D reference coordinate. In other words, due to the limitation of the acceleration sensor and the gravity sensing device in the five-axis motion sensor, the above-mentioned Liberty pointing device cannot immediately output the deflection angle on the 3D reference coordinate, but can only output to the 2D reference. On the coordinates, that is, the output of the pointing device using the five-axis motion sensor described above is only the planar graphic mode on the 2D reference coordinate. Moreover, when the pointing device experiences unintended movement while acquiring the signal generated by the motion sensor, especially when experiencing unintended drift or acceleration along the direction of gravity, the pointing device and the compensation mechanism described above cannot be accurate or appropriate. The movement, angle, and direction of the pointing device are calculated or obtained. In other words, when a dynamic action or additional acceleration is applied to the pointing device provided by the above Liberty with a compensation mechanism, especially in a direction parallel or substantially parallel to gravity, the above Liberty provides The pointing device cannot properly and accurately output the actual yaw angle, pitch angle, and roll angle on the spatial reference coordinate X P Y P Z P , and thus when converting the solid angle to the 2D display reference coordinate, for example: reference coordinate X D Y D Z D , its mapping program is severely affected and generates errors. For example, since the compensation axis Liberty not provided directly and accurately detect or compensate for the rotation axis X P, so with respect to the rotation axis X P to be detected by the gravitational acceleration from the acceleration sensors to In the middle of it. Furthermore, due to the limitations of the existing acceleration sensor, the reading on the acceleration sensor is accurate only when the pointing device is static, because these sensors cannot extract the gravitational acceleration from other The accelerations of the type are distinguished by accelerations such as accelerations generated by centripetal forces or additional accelerations of other types applied by the user.

而且,習知技術只能根據由動作感測器所產生的訊號所推算的結果而在2D參考座標上輸出一相對的移動樣板。例如,上述由Liberty所提出的前案只能以相對的方式輸出2D移動樣板,並於一螢幕上顯示出一指標,以對應上述的2D相對移動樣板。更具體來說,指標只能從一第一位置移動到相對於該第一位置的一第二位置。像這一種隨著時間從前一位置移動到下一位置的相對移動無法精確地決定並輸出下一位置,尤其是在前一位置為一錯誤位置的情況下,或者是在前一位置是錯誤地被決定為下一位置之一不正確的參考點的情況下,在此下一位置是藉由該不正確的參考點及其相對的移動方式所推得。就以意圖將指標移出顯示螢幕的邊界而導致錯誤輸出為例子,來清楚地解釋在習知技術中藉由相對移動關係來取得移動樣板的缺陷。在習知技術中的指標到達一顯示器的邊界,接著並超出邊界一段額外的距離的情況下,當指標來到一個新的位置,不管是在顯示器內或仍然在邊界的外部,指標便無法展現出一正確或實際的模式。換句話說,在到達一新的位置時,習知技術的指標並不會以絕對的方式將上述超出邊界的額外距離列入考慮,反而會捨棄該超出邊界的額外距離,也因為該指標使用該相對移動關係,從而造成輸出一錯誤的下一位置。由於在顯示器的邊界無法取得正確的位置,再加上採用上述的相對移動關係來取得指標的下一位置,故實際的移動樣板將無法被推算而得。Moreover, the prior art can only output a relative moving template on the 2D reference coordinate based on the result of the signal generated by the motion sensor. For example, the foregoing proposal proposed by Liberty can only output a 2D moving template in a relative manner and display an indicator on a screen to correspond to the above 2D relative moving template. More specifically, the indicator can only be moved from a first position to a second position relative to the first position. A relative movement like this one that moves from the previous position to the next position over time cannot accurately determine and output the next position, especially if the previous position is an incorrect position, or if the previous position is incorrectly In the case where it is determined that one of the next positions is an incorrect reference point, the next position is derived by the incorrect reference point and its relative movement. The erroneous output is caused by the intention of moving the indicator out of the boundary of the display screen as an example to clearly explain the drawback of obtaining a moving template by a relative movement relationship in the prior art. In the case where the indicator in the prior art reaches the boundary of a display and then exceeds the boundary by an extra distance, the indicator cannot be displayed when the indicator comes to a new position, whether in the display or still outside the boundary. A correct or actual mode. In other words, when reaching a new position, the prior art indicator does not take the above extra distance beyond the boundary in an absolute way, but instead discards the extra distance beyond the boundary and also uses the indicator. The relative movement relationship causes a wrong next position to be output. Since the correct position cannot be obtained at the boundary of the display, and the relative position of the above-mentioned relative movement is used to obtain the next position of the index, the actual moving template cannot be estimated.

因此,本領域迫切需要一種較先進的指向裝置,該指向裝置搭配強化的計算或比對方法,以在一動態的環境和情況下,精確地計算並取得於空間指向座標上實際的偏向角,並將該偏向角精確地變換至位於顯示器座標上的指標。除此之外,隨著3D技術的進步且其應用範圍也愈來愈廣泛,如在顯示器及互動系統上的應用,故對於一種能將其在3D或空間參考座標上的偏差精確輸出的3D指向裝置之需求也愈來愈迫切。而且,對於一種強化的比對方法之需求也愈形迫切,該比對方法可以對動作感測器所發出的訊號進行處理,以矯正或去除與該從動作感測器所發出的訊號或訊號融合相關聯的錯誤訊號或雜訊。此外,根據所應用的領域,所輸出的在3D參考座標上的偏差能被進一步變換或轉換至能運用在2D參考座標上的模式。Therefore, there is an urgent need in the art for a more advanced pointing device that is equipped with an enhanced calculation or comparison method to accurately calculate and obtain the actual deflection angle on the spatial pointing coordinates in a dynamic environment and situation. The deflection angle is precisely transformed to the indicator located on the coordinates of the display. In addition, with the advancement of 3D technology and its wide range of applications, such as display and interactive systems, it is a 3D that can accurately output its deviation on 3D or spatial reference coordinates. The need for pointing devices is also becoming more and more urgent. Moreover, the need for an enhanced alignment method is more and more urgent, and the comparison method can process the signal sent by the motion sensor to correct or remove the signal or signal sent from the slave motion sensor. Fusion of associated error signals or noise. Furthermore, depending on the field of application, the output deviations on the 3D reference coordinates can be further transformed or converted to a mode that can be applied to the 2D reference coordinates.

本發明的其中一目的在於提供一種3D指向裝置,該3D指向裝置使用一六軸動作感測模組。此3D指向裝置包括一加速度感測器與一轉動感測器,加速度感測器是用以量測或偵測軸向加速度Ax、Az、Ay,而轉動感測器則是用以量測或偵測角速度ωx、ωy、ωz。藉此,能取得包括結果角度(resultant angles)在內的結果偏差(resulting deviation),該結果角度包括3D指向裝置在一動態環境中進行移動和轉動時,其於一空間指向參考座標上的平擺角、俯仰角、與滾動角。而且,上述之包括結果角度在內的結果偏差能以絕對的方式取得並輸出,亦即能反應本發明的3D指向裝置在空間指向參考座標上實際的移動和轉動。It is an object of the present invention to provide a 3D pointing device that uses a six-axis motion sensing module. The 3D pointing device includes an acceleration sensor for measuring or detecting axial accelerations Ax, Az, Ay, and a rotation sensor for measuring or The angular velocities ω x , ω y , ω z are detected. Thereby, a result deviation including a result angle including a 3D pointing device that is flat on a reference point in a space when moving and rotating in a dynamic environment can be obtained. Swing angle, pitch angle, and roll angle. Moreover, the above-described deviation of the results, including the resulting angle, can be taken and output in an absolute manner, i.e., can reflect the actual movement and rotation of the 3D pointing device of the present invention on the spatial pointing reference coordinates.

本發明的另外一目的在於提供一種強化的比對方法,該比對方法能改進隨著時間所累積的錯誤訊號及雜訊,這些錯誤訊號及雜訊是與多個動作感測器所發出的訊號相關聯。這些動作感測器所發出的訊號包括在動態環境中加速度感測器Ax、Az、Ay所產生的訊號,以及陀螺儀ωx、ωy、ωz所產生的訊號。換句話說,累積的錯誤訊號可以被消除或校正,其中這些累積的錯誤訊號是與一動作感測模組所發出的訊號融合相關聯,且該動作感測模組包括多個動作感測器,這些動作感測器是用以偵測相對應於不同軸的移動和轉動。Another object of the present invention is to provide an enhanced comparison method which can improve error signals and noise accumulated over time, and these error signals and noises are emitted by a plurality of motion sensors. The signal is associated. The signals emitted by these motion sensors include the signals generated by the acceleration sensors A x , A z , A y in the dynamic environment, and the signals generated by the gyroscopes ω x , ω y , ω z . In other words, the accumulated error signals can be eliminated or corrected, wherein the accumulated error signals are associated with the signal fusion sent by a motion sensing module, and the motion sensing module includes a plurality of motion sensors. These motion sensors are used to detect movement and rotation corresponding to different axes.

本發明的又一目的在於提供一強化的比對方法,以正確地計算並輸出一結果偏差,該結果偏差包括一組結果角度,而這些結果角度則包括在一空間指向座標上的一平擺角、一俯仰角、與一滾動角,該平擺角、俯仰角、與滾動角是對應到該空間指向座標上的三個互相垂直的座標軸。藉由比對與角速度相關的轉動感測器的訊號及與軸向加速度相關的加速度感測器的訊號,可精確地取得並輸出上述的結果角度,而這些結果角度則可在進一步地變換至另一個不同於該空間指向座標的參考座標上。It is yet another object of the present invention to provide an enhanced alignment method for correctly calculating and outputting a result bias that includes a set of outcome angles that include a swing angle on a spatial pointing coordinate a pitch angle, and a roll angle, the sway angle, the pitch angle, and the roll angle are three mutually perpendicular coordinate axes corresponding to the coordinate points of the space. By comparing the signal of the rotational sensor related to the angular velocity and the signal of the acceleration sensor associated with the axial acceleration, the above-mentioned result angles can be accurately obtained and output, and the resulting angles can be further transformed to another A different reference coordinate from the coordinate point of the space.

本發明的再一目的在於提供一種映射方法,以將上述的位於一空間指向參考座標上的結果角度變換到一顯示器座標上,這些結果角度較佳是分別對應到該空間指向參考座標的三個軸,亦即:平擺角、俯仰角、與滾動角。藉由上述的變換,可在異於空間指向參考座標的顯示器座標上取得一移動樣板,亦即將該結果偏差的結果角度變換或轉換至該移動樣板。A further object of the present invention is to provide a mapping method for transforming the above-mentioned result angles located on a spatial pointing reference coordinate onto a display coordinate, and the resulting angles preferably correspond to three of the spatial pointing reference coordinates respectively. The axis, that is, the sway angle, the pitch angle, and the roll angle. By the above transformation, a moving template can be obtained on the display coordinates different from the spatial pointing reference coordinates, that is, the result angle of the result deviation is converted or converted to the moving template.

在本發明的一實施例中,提供一種3D指向裝置,此3D指向裝置使用一六軸動作感測模組,並藉由一強化的比對方法以刪除該六軸動作感測模組所產生的累積錯誤訊號,從而取得位於一空間指向參考座標上並對應於該3D指向裝置的移動與轉動的偏向角。本發明所提供的3D指向裝置與比對方法,可對上述六軸動作感測模組所產生的訊號進行比對,該軸動作感測模組可偵測到3D指向裝置對應於XP軸、YP軸、與ZP軸的轉動速度或角速度,且也可偵測到3D指向裝置沿著XP軸、YP軸、與ZP軸的軸向加速度。換句話說,本發明能消除或減少在一動態環境中所產生的累積錯誤訊號與雜訊,以精確地輸出3D指向裝置在一3D空間指向參考座標上的偏向角,該偏向角包括平擺角、俯仰角、與滾動角。上述的動態環境包括連續的移動、轉動、受到外部重力的影響、在多個方向上額外的加速度,或者包括隨著時間而變化的非線性移動和轉動。而且,位於該3D空間指向參考座標上且經過補償並精確輸出的偏向角,能更進一步地被變換或轉換到另一個參考座標中,此參考座標例如為上述的顯示器座標,其例如為一2D參考座標。In an embodiment of the invention, a 3D pointing device is provided. The 3D pointing device uses a six-axis motion sensing module and is deleted by the enhanced alignment method to delete the six-axis motion sensing module. Accumulating the error signal to obtain a deflection angle located on a spatial pointing reference coordinate and corresponding to the movement and rotation of the 3D pointing device. The 3D pointing device and the comparison method provided by the present invention can compare the signals generated by the six-axis motion sensing module, and the axis motion sensing module can detect that the 3D pointing device corresponds to the X P axis , Y P axis, and Z P axis rotational speed or angular velocity, and can also detect the axial acceleration of the 3D pointing device along the X P axis, the Y P axis, and the Z P axis. In other words, the present invention can eliminate or reduce accumulated error signals and noise generated in a dynamic environment to accurately output the deflection angle of the 3D pointing device on the reference coordinate in a 3D space, the deflection angle including the yaw Angle, pitch angle, and roll angle. The dynamic environment described above includes continuous movement, rotation, exposure to external gravity, additional acceleration in multiple directions, or non-linear movement and rotation that varies over time. Moreover, the deflection angle located on the reference coordinate of the 3D space and compensated and accurately output can be further transformed or converted into another reference coordinate, such as the above-mentioned display coordinates, which is, for example, a 2D. Reference coordinates.

在本發明的另一實施例中,提供一種3D指向裝置,此3D指向裝置使用一六軸動作感測模組。其中,該3D指向裝置的六軸動作感測模組包括至少一陀螺儀與至少一加速度感測器。在本發明的一較佳實施例中,六軸動作感測模組包括一轉動感測器與一加速度感測器,此轉動感測器可用於檢測角速度ωx、ωy、ωz並產生相對應的訊號,而加速度感測器可用於檢測軸向加速度Ax、Ay、Az並產生相對應的訊號。本領域具有通常知識者應可理解,在一較佳實施例中,上述轉動感測器可能包括三個陀螺儀,其分別對應到3D指向裝置在3D空間指向參考座標上的角速度ωx、ωy、ωz;此外,上述加速度感測器可包括三個加速度感測器,其分別對應到3D指向裝置在3D空間指向參考座標上的軸向加速度Ax、Ay、Az。轉動感測器偵測3D指向裝置於一與該3D指向裝置相關聯的參考座標上的轉動,並提供帶有一轉動率或一角速度資訊的輸出訊號。上述之帶有角速度資訊的輸出訊號包括三個部份,其分別對應到參考座標的第一軸、第二軸、與第三軸,亦即3D空間指向座標的Xp軸、Yp軸、與Zp軸。加速度感測器偵測3D指向裝置於空間指向參考座標上的軸向加速度,並提供一帶有加速度資訊的輸出訊號,該空間指向參考座標例如為一3D指向參考座標。上述之帶有軸向加速度的輸出訊號包括三個部份,其分別對應到參考座標的第一軸、第二軸、與第三軸,亦即3D空間指向座標的Xp軸、Yp軸、與Zp軸。上述之3D空間指向座標的Xp軸、Yp軸、與Zp軸也可被簡稱為X軸、Y軸、與Z軸。In another embodiment of the present invention, a 3D pointing device is provided that uses a six-axis motion sensing module. The six-axis motion sensing module of the 3D pointing device includes at least one gyroscope and at least one acceleration sensor. In a preferred embodiment of the present invention, the six-axis motion sensing module includes a rotation sensor and an acceleration sensor, and the rotation sensor can be used to detect angular velocities ω x , ω y , ω z and generate Corresponding signals, and the acceleration sensor can be used to detect the axial accelerations Ax, Ay, Az and generate corresponding signals. It should be understood by those skilled in the art that in a preferred embodiment, the rotation sensor may include three gyroscopes corresponding to the angular velocities ω x , ω of the 3D pointing device pointing to the reference coordinates in the 3D space, respectively. y , ω z ; Furthermore, the acceleration sensor described above may include three acceleration sensors respectively corresponding to the axial accelerations Ax, Ay, Az of the 3D pointing device pointing in the 3D space to the reference coordinates. The rotation sensor detects the rotation of the 3D pointing device on a reference coordinate associated with the 3D pointing device and provides an output signal with a rotational rate or an angular velocity information. The above output signal with angular velocity information includes three parts corresponding to the first axis, the second axis, and the third axis of the reference coordinate, that is, the Xp axis, the Yp axis, and the Zp of the 3D space pointing coordinates. axis. The acceleration sensor detects the axial acceleration of the 3D pointing device on the spatial pointing reference coordinate and provides an output signal with acceleration information, such as a reference coordinate, for example, a 3D pointing reference coordinate. The above output signal with axial acceleration includes three parts, which respectively correspond to the first axis, the second axis, and the third axis of the reference coordinate, that is, the Xp axis, the Yp axis, and the 3D space pointing coordinates Zp axis. The above-mentioned 3D space pointing coordinates of the Xp axis, the Yp axis, and the Zp axis may also be simply referred to as the X axis, the Y axis, and the Z axis.

在本發明的另一實施例中,提供一種補償方法,該補償方法是用以補償上述六軸動作感測模組所發出的訊號之累積誤差,此六軸動作感測模組是位於與一空間指向參考座標相關的動態環境。在一實施例中,是藉由一硬體處理器來執行或處理該補償方法。藉由執行一資料比對,亦即將用來測量角速度的轉動感測器所發出的訊號與用來測量軸向加速度的加速度感測器所發出的訊號相比對,此硬體處理器可以用來補償與結果偏差相關的累計誤差,此累計誤差是源自於:上述之3D指向裝置在空間指向座標及動態環境下進行移動和轉動時,其六軸動作感測模組所發出的訊號。也因此,在動態環境下,相應於在3D空間指向座標下的3D指向裝置之移動與轉動的結果誤差可以精確地被取得。In another embodiment of the present invention, a compensation method is provided for compensating for a cumulative error of a signal emitted by the six-axis motion sensing module. The six-axis motion sensing module is located at The space points to the dynamic environment associated with the reference coordinates. In one embodiment, the compensation method is performed or processed by a hardware processor. By performing a data comparison, the signal from the rotary sensor that will be used to measure the angular velocity is compared with the signal from the acceleration sensor used to measure the axial acceleration. The hardware processor can be used. To compensate for the accumulated error associated with the deviation of the result, the cumulative error is derived from the signal emitted by the six-axis motion sensing module when the 3D pointing device moves and rotates in the spatial pointing coordinates and the dynamic environment. Therefore, in a dynamic environment, the result of the movement and rotation corresponding to the 3D pointing device under the coordinate in the 3D space can be accurately obtained.

在本發明的另一實施例中,提供一種取得一結果偏差的方法,此結果偏差包括3D指向裝置位於一空間指向座標中的結果角度,在3D指向裝置中裝設有一六軸動作感測模組,且此3D指向裝置是在上述的空間指向座標中的一動態環境中進行移動和轉動。上述之取得結果偏差的方法包括下述的步驟:首先,取得一先前狀態(previous state),此先前狀態與前段角速度(previous angular velocities)ωx、ωy、ωz相關聯,此前段角速度ωx、ωy、ωz是由在前一時段T-1時的六軸動作感測模組所發出的訊號中獲取;再來,藉由取得量測角速度ωx、ωy、ωz,以取得六軸動作感測模組的現今狀態,此量測角速度ωx、ωy、ωz是由在一現今時段T的動作感測訊號中取得;之後,藉由取得量測軸向加速度Ax、Ay、Az,以取得六軸動作感測模組的一量測狀態,此量測軸向加速度Ax、Ay、Az是由在現今時段T的動作感測訊號中取得,同時藉由現今狀態的量測角速度ωx、ωy、ωz以計算預計的軸向加速度Ax’、Ay’、Az’;接著,藉由比較六軸動作感測模組的現今狀態與量測狀態,以取得六軸動作感測模組的一更新狀態;然後,計算並轉換六軸動作感測模組的更新狀態至所述的結果偏差,此結果偏差包括3D指向裝置於空間指向座標中的結果角度。In another embodiment of the present invention, there is provided a method for obtaining a result deviation, the result deviation comprising a result angle of the 3D pointing device in a spatial pointing coordinate, and a six-axis motion sensing mounted in the 3D pointing device The module, and the 3D pointing device is moved and rotated in a dynamic environment in the spatial pointing coordinates described above. The above method for obtaining the result deviation includes the following steps: First, a previous state is obtained, which is associated with the previous angular velocities ω x , ω y , ω z , and the previous angular velocity ω x , ω y , ω z are obtained from the signals emitted by the six-axis motion sensing module at the previous time period T-1; and, by taking the measured angular velocities ω x , ω y , ω z , In order to obtain the current state of the six-axis motion sensing module, the measured angular velocities ω x , ω y , ω z are obtained from the motion sensing signals in a current time period T; thereafter, the axial acceleration is measured by taking Ax, Ay, Az, in order to obtain a measurement state of the six-axis motion sensing module, the measured axial accelerations Ax, Ay, Az are obtained by the motion sensing signals in the current time period T, and by nowadays The measured angular velocities ω x , ω y , ω z of the state are used to calculate the predicted axial accelerations Ax′, Ay′, Az′; and then, by comparing the current state and the measured state of the six-axis motion sensing module, Obtaining an updated state of the six-axis motion sensing module; then, calculating and transferring The updated state of the six-axis motion sensing module is changed to the resulting deviation, and the resulting deviation includes the resulting angle of the 3D pointing device in the spatial pointing coordinate.

在本發明的另一實施例中,提供一種映射方法,此映射方法用以將偏向角轉換至一顯示器的一顯示器座標上,此顯示器具有一預定的螢幕尺寸,且上述的偏向角是與一3D指向裝置在一空間指向座標中的移動和轉動相關聯。在一實施例中,是將在一空間指向座標上的偏向角,包括平擺角、俯仰角、與滾動角,變換或轉換至位於一顯示器座標上,且較佳是在一2D參考座標上進行移動的指向物件,例如:指標。此映射方法包括下述的步驟:藉由計算與顯示器座標相關聯的一預定敏感度以取得顯示器座標的邊界資訊,並藉上述的偏向角與邊界資訊而執行在顯示器座標上的角度與距離的轉換。In another embodiment of the present invention, a mapping method is provided for converting a deflection angle to a display coordinate of a display having a predetermined screen size, and the above-described deflection angle is The 3D pointing device is associated with movement and rotation in a space pointing coordinate. In one embodiment, the deflection angle on a space pointing coordinate, including the sway angle, the pitch angle, and the roll angle, is transformed or converted to be located on a display coordinate, and preferably on a 2D reference coordinate. A pointing object that moves, such as an indicator. The mapping method includes the steps of: obtaining a boundary information of the display coordinates by calculating a predetermined sensitivity associated with the coordinates of the display, and performing angles and distances on the coordinates of the display by using the above-described deflection angle and boundary information. Conversion.

圖3所繪示為本發明之一實施例的3D指向裝置300的爆炸圖,此3D指向裝置300能在一3D空間指向參考座標與一動態環境中進行移動和轉動。此3D空間指向參考座標類似於圖1與圖2所繪示的參考座標XPYPZP。相對於時間軸,3D指向裝置300在上述的3D空間指向參考座標與動態環境中所進行的移動和轉動可能是連續且非線性地。3 is an exploded view of a 3D pointing device 300 that can be moved and rotated in a 3D space pointing reference coordinates and a dynamic environment, in accordance with an embodiment of the present invention. This 3D space pointing reference coordinates are similar to the reference coordinates X P Y P Z P illustrated in FIGS. 1 and 2. Relative to the time axis, the movement and rotation of the 3D pointing device 300 in the 3D space directed reference coordinates and dynamic environment described above may be continuous and non-linear.

3D指向裝置包括一上蓋310、一印刷電路板(PCB)340、一轉動感測器342、一加速度感測器344、一資料傳輸單元346、一運算處理器348、一下蓋320、及一電池組322。上蓋310包括數個控制鈕312,以供使用者於遙控時發出預定的指令。在一實施例中,殼體330包括上蓋310與下蓋320。於上述的動態環境中,殼體330在受到使用者的操控或受到任何方向之外力的情況下,殼體330能於空間指向參考座標中進行移動和轉動。如圖3所示,在一實施例中,轉動感測器342、加速度感測器344、資料傳輸單元346、及運算處理器348都可依附在印刷電路板340上。印刷電路板340是被該殼體330所包覆,此印刷電路板340包括至少一基板,此基板具有一長側邊,此長側邊是大致平行於殼體的長側面。此外,外加的電池組322提供電力給整個3D指向裝置300。The 3D pointing device includes an upper cover 310, a printed circuit board (PCB) 340, a rotation sensor 342, an acceleration sensor 344, a data transmission unit 346, an operation processor 348, a lower cover 320, and a battery. Group 322. The upper cover 310 includes a plurality of control buttons 312 for the user to issue a predetermined command upon remote control. In an embodiment, the housing 330 includes an upper cover 310 and a lower cover 320. In the dynamic environment described above, the housing 330 can be moved and rotated in the space pointing reference coordinates while being manipulated by the user or subjected to forces in any direction. As shown in FIG. 3, in one embodiment, the rotation sensor 342, the acceleration sensor 344, the data transfer unit 346, and the arithmetic processor 348 can all be attached to the printed circuit board 340. The printed circuit board 340 is covered by the housing 330. The printed circuit board 340 includes at least one substrate having a long side that is substantially parallel to the long side of the housing. In addition, an additional battery pack 322 provides power to the entire 3D pointing device 300.

圖4所繪示為本發明的一實施例的3D指向裝置300之方塊圖,其繪示出3D指向裝置300的硬體零件。此3D指向裝置300包括一六軸動作感測模組302與一處理及傳輸模組304,此六軸動作感測模組302包括轉動感測器342與加速度感測器344,而處理及傳輸模組304包括資料傳輸單元346與運算處理器348。4 is a block diagram of a 3D pointing device 300 showing a hardware component of the 3D pointing device 300, in accordance with an embodiment of the present invention. The 3D pointing device 300 includes a six-axis motion sensing module 302 and a processing and transmission module 304. The six-axis motion sensing module 302 includes a rotation sensor 342 and an acceleration sensor 344 for processing and transmission. The module 304 includes a data transfer unit 346 and an arithmetic processor 348.

六軸動作感測模組302中的轉動感測器342用以偵測並產生第一訊號組,此第一訊號組包括角速度ωx、ωy、ωz,角速度ωx、ωy、ωz是指3D指向裝置300於移動及轉動時,相對於空間指向參考座標的三個互相垂直的座標軸XP、YP、ZP的角速度。上述的角速度ωx、ωy、ωz是分別對應到三個座標軸XP、YP、ZP。加速度感測器344用以偵測並產生第二訊號組,此第二訊號組包括軸向加速度Ax、Ay、Az,軸向加速度Ax、Ay、Az是指3D指向裝置300於移動及轉動時,沿著空間指向參考座標的三個互相垂直的座標軸XP、YP、ZP的軸向加速度。上述的軸向加速度Ax、Ay、Az是分別對應到三個座標軸XP、YP、ZP。上述的『六軸』代表三個角速度ωx、ωy、ωz與三個軸向加速度Ax、Ay、Az。因此,本領域具有通常知識者應可了解,上述的『六軸』並非一定需在特定方位成垂直,其也可在不同的方位做轉動。本發明所揭露的上述座標系統僅是用於說明,其他位於不同的方位及/或具不同標號的座標軸也可以適用於本發明。The rotation sensor 342 of the six-axis motion sensing module 302 is configured to detect and generate a first signal group, where the first signal group includes angular velocities ω x , ω y , ω z , angular velocities ω x , ω y , ω z is the angular velocity of the three mutually perpendicular coordinate axes X P , Y P , Z P of the 3D pointing device 300 with respect to the spatial pointing reference coordinate when moving and rotating. The angular velocities ω x , ω y , and ω z described above correspond to the three coordinate axes X P , Y P , and Z P , respectively . The acceleration sensor 344 is configured to detect and generate a second signal group, where the second signal group includes axial accelerations Ax, Ay, and Az, and the axial accelerations Ax, Ay, and Az refer to the 3D pointing device 300 when moving and rotating. The axial acceleration of the three mutually perpendicular coordinate axes X P , Y P , Z P pointing along the space to the reference coordinate. The axial accelerations Ax, Ay, and Az described above correspond to the three coordinate axes X P , Y P , and Z P , respectively . The above "six-axis" means three angular velocities ω x, ω y, ω z with three axial acceleration Ax, Ay, Az. Therefore, those of ordinary skill in the art should understand that the above-mentioned "six-axis" does not necessarily have to be perpendicular in a specific orientation, and it can also be rotated in different orientations. The above coordinate system disclosed in the present invention is for illustrative purposes only, and other coordinate axes located at different orientations and/or having different numbers may also be suitable for use in the present invention.

資料傳輸單元346是電性連接到六軸動作感測模組302,以傳輸第一訊號組與第二訊號組。藉由印刷電路板340上的電性連接,資料傳輸單元346傳輸六軸動作感測模組302所發出的第一訊號組與第二訊號組至運算處理器348。運算處理器348接收並處理由資料傳輸單元346所傳送過來的第一訊號組與第二訊號組。藉由與六軸動作感測模組302進行傳訊,運算處理器348可以計算3D指向裝置300的結果偏差,此結果偏差包括三個結果角度,其較佳是分別對應到空間指向參考座標的三個軸。上述的結果角度包括如圖1與圖2所示的平擺角111、俯仰角112、與滾動角113。為了計算結果偏差,運算處理器348是使用一比對機制去消除源自於六軸動作感測模組302發出的第一訊號組與第二訊號組所產生的累積誤差;藉此,在上述的動態環境下,可取得3D指向裝置300六軸動作感測模組302之結果偏差,此結果偏差包括在空間指向參考座標中的結果角度,較佳是關於空間指向參考座標的三個互相垂直的座標軸。也因此,該結果角度能以絕對的方式取得並輸出,所謂絕對的方式是指能反應本發明之3D指向裝置在空間指向參考座標中實際的移動和轉動。此外,所述的運算處理器348所用之比對機制更包括一更新程式。在此更新程式中,藉由與一第一訊號組相關的一先前狀態及與一第二訊號組相關的一量測狀態,以取得六軸動作感測模組的一更新狀態,此第一訊號組是與角速度ωx、ωy、ωz相關,而第二訊號組則是與軸向加速度Ax、Ay、Az相關。上述的量測狀態包括對第二訊號組所做的量測或量測而得的軸向加速度Ax、Ay、Az,以及對軸向加速度Ax’、Ay’、Az’所做的預計量測(predicted measurement),此軸向加速度Ax’、Ay’、Az’是基於或由第一訊號組所運算而得。本發明之3D指向裝置中的六軸動作感測模組的各種狀態將於之後做詳述。The data transmission unit 346 is electrically connected to the six-axis motion sensing module 302 to transmit the first signal group and the second signal group. The data transmission unit 346 transmits the first signal group and the second signal group sent by the six-axis motion sensing module 302 to the operation processor 348 by the electrical connection on the printed circuit board 340. The operation processor 348 receives and processes the first signal group and the second signal group transmitted by the data transmission unit 346. The arithmetic processor 348 can calculate the result deviation of the 3D pointing device 300 by performing communication with the six-axis motion sensing module 302. The resulting deviation includes three result angles, which preferably correspond to the space pointing reference coordinates respectively. Axis. The result angles described above include the sway angle 111, the pitch angle 112, and the roll angle 113 as shown in FIGS. 1 and 2. In order to calculate the deviation of the result, the operation processor 348 uses a comparison mechanism to eliminate the accumulated error caused by the first signal group and the second signal group sent by the six-axis motion sensing module 302; In the dynamic environment, the result deviation of the six-axis motion sensing module 302 of the 3D pointing device 300 can be obtained. The result deviation includes the angle of the result in the spatial pointing reference coordinate, preferably three perpendicular to the spatial pointing reference coordinate. Coordinate axis. Therefore, the resulting angle can be taken and output in an absolute manner, and the so-called absolute mode refers to the actual movement and rotation of the 3D pointing device of the present invention in the spatial pointing reference coordinate. In addition, the comparison mechanism used by the operation processor 348 further includes an update program. In the update program, an update state of the six-axis motion sensing module is obtained by a previous state associated with a first signal group and a measurement state associated with a second signal group. The signal group is related to the angular velocities ω x , ω y , ω z , and the second signal group is related to the axial accelerations Ax, Ay, Az. The above measurement states include the axial accelerations Ax, Ay, Az measured or measured for the second signal group, and the estimated measurements made on the axial accelerations Ax', Ay', Az' (predicted measurement), the axial accelerations Ax', Ay', Az' are based on or calculated by the first signal group. The various states of the six-axis motion sensing module in the 3D pointing device of the present invention will be described in detail later.

在本實施例中,處理及傳輸模組304的運算處理器348更包括一映射程式,以將位於空間指向參考座標中的結果偏差的結果角度轉換成在一顯示器參考座標中的一移動樣板。此顯示器參考座標是不同於空間指向參考座標,但類似於圖1與圖2中的參考座標XDYDZD。上述的移動樣板可被顯示於一2D顯示裝置的一螢幕上,此2D顯示裝置類似於如圖1及圖2所示的顯示裝置120。根據與顯示器參考座標相互關聯的一敏感度輸入,上述的映射程式將結果角度轉換成移動樣板,較佳是對應於空間指向參考座標的三個互相垂直的座標軸。In the present embodiment, the arithmetic processor 348 of the processing and transmission module 304 further includes a mapping program to convert the resulting angle of the result deviation located in the spatial pointing reference coordinate into a moving template in a display reference coordinate. This display reference coordinate is different from the spatial pointing reference coordinate, but is similar to the reference coordinate X D Y D Z D in Figures 1 and 2. The moving template described above can be displayed on a screen of a 2D display device similar to the display device 120 shown in FIGS. 1 and 2. Based on a sensitivity input associated with the display reference coordinates, the mapping program converts the resulting angle into a moving template, preferably corresponding to three mutually perpendicular coordinate axes that point in space to the reference coordinate.

圖5所繪示為本發明之另一實施例的3D指向裝置500,此3D指向裝置500使用一六軸動作感測模組且位於一3D空間指向參考座標中。如圖5所示,3D指向裝置500包括兩個部份,即:560與570,其可彼此進行資料的傳輸。在一實施例中,第一部分560包括一上蓋(未繪示)、一印刷電路板540、一六軸動作感測模組502、一資料傳輸單元546、一下蓋520、與一電池組522,其中六軸動作感測模組502包括一轉動感測器542與一加速度感測器544。藉由無線傳輸,例如基於IEEE 802.11標準的無線區域網路或藍芽標準的無線傳輸,資料傳輸單元546將六軸動作感測模組502的轉動感測器542所產生的第一訊號組(ωx、ωy、ωz)及加速度感測器544所產生的第二訊號組(Ax、Ay、Az),傳輸到第二部分570的資料接收單元552。本領域具有通常知識者應可明白,在其他的實施例中,第一部分560與第二部分570可藉由有線傳輸,例如:電纜或電線,而相連接。FIG. 5 illustrates a 3D pointing device 500 according to another embodiment of the present invention. The 3D pointing device 500 uses a six-axis motion sensing module and is located in a 3D space pointing reference coordinate. As shown in FIG. 5, the 3D pointing device 500 includes two parts, namely: 560 and 570, which are capable of transmitting data to each other. In one embodiment, the first portion 560 includes an upper cover (not shown), a printed circuit board 540, a six-axis motion sensing module 502, a data transmission unit 546, a lower cover 520, and a battery pack 522. The six-axis motion sensing module 502 includes a rotation sensor 542 and an acceleration sensor 544. The data transmission unit 546 converts the first signal group generated by the rotation sensor 542 of the six-axis motion sensing module 502 by wireless transmission, for example, wireless local area network or Bluetooth standard wireless transmission based on the IEEE 802.11 standard ( ω x , ω y , ω z ) and the second signal group (Ax, Ay, Az) generated by the acceleration sensor 544 are transmitted to the data receiving unit 552 of the second portion 570. It should be understood by those of ordinary skill in the art that in other embodiments, the first portion 560 and the second portion 570 can be connected by wired transmission, such as a cable or wire.

在一實施例中,第二部分570是與其他電子運算裝置或系統,如:個人電腦580,相插接的一外部處理裝置。舉例來說,第二部分570是藉由一標準界面(如圖5所示的通用串列匯流排)而插接或耦合於一筆記型電腦。第一部分560與第二部分570是藉由資料傳輸單元546及資料接收單元552而彼此相溝通。如前所述,資料傳輸單元546及資料接收單元552彼此之間可藉由無線傳輸或有線傳輸而彼此相溝通。換句話說,以硬體配置與資料傳輸的角度來看,在本發明的一實施例中,包括轉動感測器542與加速度感測器544在內的六軸動作感測模組502,是與處理單元或運算處理器554相分離;而從六軸動作感測模組502所發出的訊號則可藉由資料傳輸單元546、552,以有線或無線傳輸的方式傳遞到運算處理器554,其中無線傳輸例如基於IEEE 802.11標準或藍芽標準的無線傳輸。In one embodiment, the second portion 570 is an external processing device that is interleaved with other electronic computing devices or systems, such as a personal computer 580. For example, the second portion 570 is plugged or coupled to a notebook computer via a standard interface (such as the universal serial bus shown in FIG. 5). The first portion 560 and the second portion 570 are in communication with each other by the data transfer unit 546 and the data receiving unit 552. As described above, the data transmission unit 546 and the data receiving unit 552 can communicate with each other by wireless transmission or wired transmission. In other words, in a hardware configuration and data transmission, in one embodiment of the present invention, the six-axis motion sensing module 502 including the rotation sensor 542 and the acceleration sensor 544 is The signal sent from the six-axis motion sensing module 502 can be transmitted to the computing processor 554 by wire or wireless transmission by the data transmission unit 546, 552. Among them, wireless transmission is, for example, wireless transmission based on the IEEE 802.11 standard or the Bluetooth standard.

在本發明的一實施例中,3D指向裝置500的第二部分570包括資料傳輸單元552與運算處理器554。如前所述,第二部分570的資料傳輸單元552可與相分離且配置在第一部分560中的資料傳輸單元546進行資料傳輸。在第二部分570中的資料傳輸單元552可接收從第一部分560的資料傳輸單元546所傳輸過來的第一訊號組與第二訊號組,並將其傳輸到運算處理器554。在本實施例中,運算處理器554能執行上述的運算與訊號的比對。在一實施例中,該運算處理器554所執行的比對機制更包括一更新程式,此更新程式是藉由與第一訊號組相關聯的一先前狀態及與第二訊號組相關聯的一量測狀態以取得一更新狀態。量測狀態更包括對第二訊號組進行量測及基於第一訊號組的預計量測。如圖5所示,運算處理器554是位於3D指向裝置之殼體的外部。在一實施例中,運算處理器554藉由一變換機制,而將3D指向裝置的結果偏差中之結果角度轉換至位於一顯示器參考座標的一移動樣板,其中結果角度是位於空間指向參考座標中,且較佳是指相應於空間指向參考座標的三個互相垂直之座標軸,而上述的顯示器參考座標則是與筆記型電腦580相關聯。上述的移動樣板是顯示在筆記型電腦580的螢幕582上。In an embodiment of the invention, the second portion 570 of the 3D pointing device 500 includes a data transfer unit 552 and an arithmetic processor 554. As previously described, the data transfer unit 552 of the second portion 570 can perform data transfer with the data transfer unit 546 that is separate and disposed in the first portion 560. The data transmission unit 552 in the second portion 570 can receive the first signal group and the second signal group transmitted from the data transmission unit 546 of the first portion 560 and transmit it to the operation processor 554. In the present embodiment, the arithmetic processor 554 can perform the above-described comparison of the operation and the signal. In an embodiment, the comparison mechanism executed by the operation processor 554 further includes an update program, wherein the update program is a previous state associated with the first signal group and a second associated with the second signal group. The status is measured to obtain an update status. The measurement state further includes measuring the second signal group and predicting the measurement based on the first signal group. As shown in Figure 5, the arithmetic processor 554 is external to the housing of the 3D pointing device. In one embodiment, the arithmetic processor 554 converts the result angle of the result deviation of the 3D pointing device to a moving template located at a reference coordinate of the display by a transformation mechanism, wherein the resulting angle is located in the spatial pointing reference coordinate. And preferably refers to three mutually perpendicular coordinate axes corresponding to the spatial pointing reference coordinates, and the above-described display reference coordinates are associated with the notebook computer 580. The mobile template described above is displayed on the screen 582 of the notebook computer 580.

圖6所繪示為本發明之另一實施例的3D指向裝置600的爆炸圖,此3D指向裝置600具有一六軸動作感測模組且位於一3D空間指向參考座標中。3D指向裝置600更包括一內建的顯示器682。換句話說,以硬體配置的角度來看,上述與顯示器相關聯的顯示器參考座標無需位於空間指向座標的外部。在一實施例中,3D指向裝置600包括一下蓋620、一印刷電路板640、一電池組622、一轉動感測器642、一加速度感測器644、一資料傳輸單元646、一運算處理器648、一顯示器682、及一上蓋610。同樣地,在一實施例中,殼體630包括一上蓋610與一下蓋620。內建的顯示器682是整合於該殼體630中,而六軸動作感測模組602則包括轉動感測器642與加速度感測器644。資料傳輸單元646及運算處理器648也可整合成3D指向裝置600的處理及傳輸模組604。FIG. 6 is an exploded view of a 3D pointing device 600 according to another embodiment of the present invention. The 3D pointing device 600 has a six-axis motion sensing module and is located in a 3D space pointing reference coordinate. The 3D pointing device 600 further includes a built-in display 682. In other words, from a hardware configuration perspective, the display reference coordinates associated with the display described above need not be located outside of the spatial pointing coordinates. In one embodiment, the 3D pointing device 600 includes a lower cover 620, a printed circuit board 640, a battery pack 622, a rotation sensor 642, an acceleration sensor 644, a data transmission unit 646, an arithmetic processor. 648, a display 682, and an upper cover 610. Likewise, in one embodiment, the housing 630 includes an upper cover 610 and a lower cover 620. The built-in display 682 is integrated in the housing 630, and the six-axis motion sensing module 602 includes a rotation sensor 642 and an acceleration sensor 644. The data transfer unit 646 and the arithmetic processor 648 can also be integrated into the processing and transfer module 604 of the 3D pointing device 600.

處理及傳輸模組604的運算處理器648也可執行變換機制,此變換機制是將上述空間指向座標或3D參考座標中的結果偏差轉換到一顯示器參考座標上,此顯示器參考座標例如為2D參考座標。在上述的變換機制中,是將於空間指向座標中的3D指向裝置600的結果偏差中之結果角度轉換成位於一顯示器參考座標中的一移動樣板,此移動樣板是與3D指向裝置600本身相關聯,且上述的結果角度較佳是指相應於空間指向座標的三個互相垂直之座標軸的角度。顯示器682顯示了上述的移動樣板。上蓋610包括一透明區域614,以讓使用者能看到該顯示器682。The arithmetic processor 648 of the processing and transmission module 604 can also perform a transformation mechanism that converts the resulting deviations in the spatial pointing coordinates or 3D reference coordinates onto a display reference coordinate, such as a 2D reference. coordinate. In the above transformation mechanism, the result angle in the result deviation of the 3D pointing device 600 in the spatial pointing coordinate is converted into a moving template located in a display reference coordinate, which is related to the 3D pointing device 600 itself. Preferably, the above result angle is preferably the angle of three mutually perpendicular coordinate axes corresponding to the spatial pointing coordinates. Display 682 shows the moving template described above. The upper cover 610 includes a transparent area 614 for the user to see the display 682.

圖7所繪示為一示範性的流程圖,其繪示出本發明之一實施例的取得及/或輸出一結果偏差的方法,此結果偏差包括3D指向裝置位於空間指向座標的結果角度,此3D指向裝置可在一3D空間指向參考座標及動態環境中移動和轉動。在本發明的各個實施例中,如圖7所示的方法可為一比對程式或比對模型,此比對程式或比對模型是嵌設在處理單元或處理及傳輸模組中的運算處理器348、554、648中或可被其執行。FIG. 7 is an exemplary flow chart illustrating a method of obtaining and/or outputting a result deviation according to an embodiment of the present invention, the result deviation including a result angle of the 3D pointing device located at a spatial pointing coordinate, The 3D pointing device can be moved and rotated in a 3D space pointing to a reference coordinate and dynamic environment. In various embodiments of the present invention, the method shown in FIG. 7 may be a comparison program or a comparison model, and the comparison program or the comparison model is an operation embedded in the processing unit or the processing and transmission module. The processor 348, 554, 648 may or may be executed by it.

因此,在本發明的一實施例中,提供一取得結果偏差的方法,此結果偏差包括3D指向裝置在空間指向參考座標的結果角度,在此3D指向裝置中包括一六軸動作感測模組,並能於動態環境與空間指向參考座標中進行移動和轉動,上述之取得結果偏差的方法包括以下步驟。首先,如圖7所示,六軸動作感測模組的各種狀態,例如:先前狀態、現今狀態、測量狀態、與更新狀態,是指上述用於取得在3D參考座標中結果偏差的方法(較佳是以絕對的方式)之一個步驟或一個步驟組。在一實施例中,上述的方法包括以下的步驟。首先,取得六軸動作感測模組的一先前狀態(例如:步驟705與步驟710所述)。其中,先前狀態包括一初始值組或一第一四元值,該初始值組或該第一四元值是與前段角速度ωx、ωy、ωz相關聯,這些前段角速度ωx、ωy、ωz是從六軸動作感測模組於前一時段T-1所發出的動作感測訊號中取得。之後,藉由取得量測角速度ωx、ωy、ωz而獲得六軸動作感測模組的一現今狀態,其中這些量測角速度ωx、ωy、ωz是從六軸動作感測模組於現今時段T所發出的動作感測訊號中取得(例如:步驟715與步驟720所述)。再來,藉由取得量測軸向加速度Ax、Ay、Az並而獲得六軸動作感測模組的一量測狀態,其中這些量測軸向加速度Ax、Ay、Az是從六軸動作感測模組於現今時段T所發出的動作感測訊號中取得(例如:步驟725所述)。然後,藉由六軸動作感測模組於現今狀態的量測角速度ωx、ωy、ωz來計算預計軸向加速度Ax’、Ay’、Az’(例如:步驟730所述)。接著,藉由比較六軸動作感測模組的現今狀態與量測狀態以取得六軸動作感測模組的一更新狀態(例如:步驟735所述)。之後,計算和轉換六軸動作感測模組的更新狀態到結果偏差,結果偏差包括3D指向裝置在空間指向參考座標的結果角度(例如:步驟745所述)。為了建立一連續的迴路,所取得之六軸動作感測模組的更新狀態較佳是輸出到先前狀態。在一實施例中,更新狀態可為一四元值,亦即:圖中所示的第三四元值;此四元值可直接輸出到另一個四元值的先前狀態,即如圖中所示的第一四元值的先前狀態(例如:步驟740所述)。Therefore, in an embodiment of the invention, a method for obtaining a deviation of the result is provided, the result deviation comprising a result angle of the 3D pointing device pointing in the space to the reference coordinate, wherein the 3D pointing device comprises a six-axis motion sensing module And moving and rotating in the dynamic environment and the space pointing reference coordinates, the above method for obtaining the result deviation includes the following steps. First, as shown in FIG. 7, various states of the six-axis motion sensing module, such as the previous state, the current state, the measured state, and the updated state, refer to the above method for obtaining the result deviation in the 3D reference coordinate ( Preferably, it is a step or a group of steps in an absolute manner. In an embodiment, the above method comprises the following steps. First, a previous state of the six-axis motion sensing module is obtained (eg, as described in steps 705 and 710). Wherein, the previous state includes an initial value set or a first quaternary value, and the initial quaternion value is associated with the front angular velocity ω x , ω y , ω z , and the front angular velocity ω x , ω y and ω z are obtained from the motion sensing signal sent by the six-axis motion sensing module in the previous period T-1. Thereafter, a current state of the six-axis motion sensing module is obtained by taking the measured angular velocities ω x , ω y , ω z , wherein the measured angular velocities ω x , ω y , ω z are sensed from the six-axis motion The module is obtained in the action sensing signal sent by the current time period T (for example, as described in steps 715 and 720). Then, a measurement state of the six-axis motion sensing module is obtained by taking the measured axial accelerations Ax, Ay, and Az, wherein the measured axial accelerations Ax, Ay, and Az are six-axis motion senses. The test module is obtained in the action sensing signal sent by the current time period T (for example, as described in step 725). The predicted axial accelerations Ax', Ay', Az' are then calculated by the six-axis motion sensing module's measured angular velocities ω x , ω y , ω z in the present state (eg, as described in step 730). Then, an update state of the six-axis motion sensing module is obtained by comparing the current state and the measured state of the six-axis motion sensing module (eg, as described in step 735). Thereafter, the updated state of the six-axis motion sensing module is calculated and converted to a resulting deviation, and the resulting bias includes the resulting angle of the 3D pointing device in space pointing to the reference coordinate (eg, as described in step 745). In order to establish a continuous loop, the updated state of the obtained six-axis motion sensing module is preferably output to the previous state. In an embodiment, the update status may be a quaternary value, that is, a third quaternary value as shown in the figure; the quaternary value may be directly output to the previous state of another quaternary value, ie, as shown in the figure. The previous state of the first quaternion value shown (eg, as described in step 740).

而且,本領域具有通常知識者應明白:上述被處理及傳輸模組所執行且包括更新程式的比對機制,可參照如圖7與圖8所示之六軸動作感測模組的各種不同狀態。如前所述,藉由與第一訊號組相關聯的先前狀態及與第二訊號組相關聯的量測狀態,處理器所執行的更新程式可取得六軸動作感測模組的更新狀態,其中上述的第一訊號組是關於角速度ωx、ωy、ωz,而上述的第二訊號組則是關於軸向加速度Ax、Ay、Az。上述之量測狀態包括對第二訊號組進行量測,亦即對軸向加速度Ax、Ay、Az進行量測,且包括從第一訊號組中計算而得的預計量測值Ax’、Ay’、Az’。對於六軸動作感測模組織上述的各種狀態,以及取得在3D參考座標中3D指向裝置的結果偏差的方法之相關步驟,將於以下作詳細的說明。Moreover, those skilled in the art should understand that the comparison mechanism executed by the processing and transmission module and including the update program can refer to various six-axis motion sensing modules as shown in FIG. 7 and FIG. status. As described above, the update program executed by the processor can obtain the update status of the six-axis motion sensing module by using the previous state associated with the first signal group and the measurement state associated with the second signal group. The first signal group is about angular velocity ω x , ω y , ω z , and the second signal group is about axial acceleration Ax, Ay, Az. The measuring state includes measuring the second signal group, that is, measuring the axial accelerations Ax, Ay, and Az, and including the estimated measured values Ax' and Ay calculated from the first signal group. ', Az'. The steps associated with the various states described above for the six-axis motion sensing mode organization and the method of obtaining the resulting deviation of the 3D pointing device in the 3D reference coordinate are described in detail below.

請再參照圖7,在本發明的一實施例中,在該取得結果偏差的方法中,首先是先取得六軸動作感測模組的一先前狀態,其中此結果偏差包括3D指向裝置在空間指向參考座標的結果角度。在一實施例中,六軸動作感測模組的先前狀態較佳為一第一四元值,且第一四元值較佳是於流程或方法的一開始時便初始化並作為一開始的先前狀態(步驟705)。換句話說,在本發明的一實施例中,六軸動作感測模組的訊號較佳是以四元值表示並與平擺角相關,且其初始值為零。第一四元值的四個元素一開始被預設為一組預定的初始值。或者,第一四元值也可被另一個訊號組所取代,該另一個訊號組是由轉動感測器與加速度感測器於下一個時段所產生的訊號組,以使圖7所示的方法為在前一時段T-1與現今時段T間的一連續迴路。關於在時段T-1的第一四元值如何被之後於時段T所輸出的四元值所取代,將於後文做詳細說明。本領域具有通常知識者應可了解可用“歐拉角”來表示四元值。同樣地,本領域具有通常知識者應了解,上述的前一時段T-1與現今時段T能分別被現今時段T與下一時段T+1所取代,且落入本發明的精神與範圍內。Referring to FIG. 7 again, in an embodiment of the present invention, in the method for obtaining a deviation of the result, first, a previous state of the six-axis motion sensing module is first obtained, wherein the result deviation includes a 3D pointing device in space. The angle of the result pointing to the reference coordinate. In an embodiment, the previous state of the six-axis motion sensing module is preferably a first quaternary value, and the first quaternary value is preferably initialized at the beginning of the process or method and is used as a start. The previous state (step 705). In other words, in an embodiment of the invention, the signal of the six-axis motion sensing module is preferably represented by a quaternion value and associated with a sway angle, and its initial value is zero. The four elements of the first quaternion value are initially preset to a predetermined set of initial values. Alternatively, the first quaternion value can also be replaced by another signal group, which is a signal group generated by the rotation sensor and the acceleration sensor in the next period to make the signal shown in FIG. The method is a continuous loop between the previous period T-1 and the current time period T. How the first quaternary value at the time period T-1 is replaced by the quaternary value outputted after the time period T will be described later in detail. Those of ordinary skill in the art should be able to understand the available "Eulerian angles" to represent quaternary values. Similarly, those skilled in the art should understand that the previous time period T-1 and the current time period T can be replaced by the current time period T and the next time period T+1, respectively, and fall within the spirit and scope of the present invention. .

如圖7所示,於步驟710中取得於前一時段T的第一四元值。如圖7所示的方法能在連續的時段中執行。在本發明的一實施例中,步驟710-745可為一次執行一步驟的迴圈。在其他實施例中,可同時執行多個步驟,例如可同時取得由六軸動作感測模組所發出的多個訊號,而非一次只取得一個訊號。本領域具有通常知識者應可明白,在此所提的步驟只是為了說明之用,其他可能的步驟順序,不管是依序執行或同時執行,皆應落在本發明的範圍內。當首次執行步驟710時,則取得在步驟705中被初始化的第一四元值。否則,於現今時段T的第一四元值是於前一時段T-1中取得。換句話說,步驟710通常是對照上述之六軸動作感測模組的先前狀態。根據本發明的另一實施例,先前狀態可對照步驟705或步驟710。As shown in FIG. 7, the first quaternary value of the previous time period T is obtained in step 710. The method as shown in Figure 7 can be performed in successive time periods. In an embodiment of the invention, steps 710-745 may be a loop that performs one step at a time. In other embodiments, multiple steps can be performed simultaneously, for example, multiple signals sent by the six-axis motion sensing module can be simultaneously acquired, instead of only one signal being acquired at a time. It should be understood by those skilled in the art that the steps herein are for illustrative purposes only, and other possible sequence of steps, whether performed sequentially or simultaneously, are intended to be within the scope of the present invention. When step 710 is performed for the first time, the first quaternion value initialized in step 705 is obtained. Otherwise, the first quaternion value of T in the current time period is obtained in the previous period T-1. In other words, step 710 is generally in contrast to the previous state of the six-axis motion sensing module described above. According to another embodiment of the invention, the previous state may be compared to step 705 or step 710.

下一步驟可能是,取得由轉動感測器產生的第一訊號組,在本實施例中,此第一訊號組包括步驟715所示的量測角速度ωx、ωy、ωz。在步驟720中,藉由角速度ωx、ωy、ωz,可計算並取得現今時段T的第二四元值。步驟715與步驟720通常是指上述六軸動作感測模組的現今狀態。在一實施例中,運算處理器可使用一資料轉換手段以將角速度ωx、ωy、ωz轉換為第二四元值。該資料轉換手段可為一程式或一指令,該程式或指令可用下述的方程式(1)來表示。The next step may be to obtain the first signal group generated by the rotation sensor. In the embodiment, the first signal group includes the measured angular velocities ω x , ω y , ω z shown in step 715. In step 720, the second quaternion value of the current time period T can be calculated and obtained by the angular velocities ω x , ω y , ω z . Steps 715 and 720 generally refer to the current state of the six-axis motion sensing module described above. In an embodiment, the arithmetic processor may use a data conversion means to convert the angular velocities ω x , ω y , ω z to a second quaternary value. The data conversion means can be a program or an instruction, and the program or instruction can be expressed by the following equation (1).

方程式(1)是一微分方程。位於等號左側的四元值為等號右側的四元值(q0,q1,q2,q3)相對於時間的一階導數。資料轉換手段使用第一四元值作為微分方程(1)的初始值,並計算微分方程(1)的解。第二四元值為微分方程(1)的解。Equation (1) is a differential equation. The quaternion value to the left of the equal sign is the first derivative of the quaternion value (q 0 , q 1 , q 2 , q 3 ) to the right of the equal sign with respect to time. The data conversion means uses the first quaternary value as the initial value of the differential equation (1), and calculates the solution of the differential equation (1). The second quaternion is the solution of the differential equation (1).

如圖所示,在本實施例中,六軸動作感測模組的“量測狀態”一般是對照步驟725及步驟730。在步驟725中,可取得加速度感測器所產生的第二訊號組,此第二訊號組包括量測軸向加速度Ax、Ay、Az,即Ax、Ay、Az為軸向加速度的量測值。為了取得本發明之六軸動作感測模組的量測狀態,在一實施例中,基於上述六軸動作感測模組的現今狀態或如步驟730所示的第二四元值,可計算並取得預計軸向加速度Ax’、Ay’、Az’。換句話說,可取得兩組代表六軸動作感測模組的量測狀態之軸向加速度,其中一組為步驟725中的量測軸向加速度Ax、Ay、Az,而另外一組為步驟730中的預計軸向加速度Ax’、Ay’、Az’,此預計軸向加速度Ax’、Ay’、Az’是基於上述現今狀態或與量測角速度相關的第二四元值而求得。而且,在一實施例中,運算處理器可利用一資料轉換手段以將量測軸向加速度Ax、Ay、Az轉換成一四元值。該資料轉換手段可為一軟體程式,其可以下述方程式(2),(3),(4)來代表。As shown in the figure, in the present embodiment, the "measurement state" of the six-axis motion sensing module is generally compared with step 725 and step 730. In step 725, a second signal group generated by the acceleration sensor is obtained. The second signal group includes measuring axial accelerations Ax, Ay, and Az, that is, Ax, Ay, and Az are measured values of the axial acceleration. . In order to obtain the measurement state of the six-axis motion sensing module of the present invention, in an embodiment, based on the current state of the six-axis motion sensing module or the second quaternary value as shown in step 730, The predicted axial accelerations Ax', Ay', Az' are obtained. In other words, two sets of axial accelerations representing the measured state of the six-axis motion sensing module can be obtained, one of which is the measured axial accelerations Ax, Ay, Az in step 725, and the other is a step. The predicted axial accelerations Ax', Ay', Az' in 730 are determined based on the current state or the second quaternary value associated with the measured angular velocity. Moreover, in an embodiment, the arithmetic processor can utilize a data conversion means to convert the measured axial accelerations Ax, Ay, Az into a quaternary value. The data conversion means can be a software program, which can be represented by the following equations (2), (3), (4).

Ax=2(q1q3-q0q2)........................................(2)Ax=2(q 1 q 3 -q 0 q 2 ).................................... ....(2)

Ay=2(q2q3+q0q1)......................................(3)Ay=2(q 2 q 3 +q 0 q 1 ).................................... ..(3)

上述運算處理器可用於計算方程式(2),(3),(4)的解(q0,q1,q2,q3)。The above operational processor can be used to calculate the solutions (q 0 , q 1 , q 2 , q 3 ) of equations (2), (3), (4).

在取得結果誤差的一實施例中,較佳是使用一比對機制以比較一六軸動作感測模組在現今時段T的現今狀態與量測狀態,其中上述結果誤差包括使用該六軸動作感測模組的3D指向裝置於一空間指向參考座標中的結果角度。換句話說,在步驟735所示的實施例中,較佳是將第二四元值與位於現今時段T中的量測軸向加速度Ax、Ay、Az及預計軸向加速度Ax’、Ay’、Az’進行比對,其中第二四元值是與現今時段T中的量測角速度相關聯。接著,所取得的結果可作為現今時段T中的六軸動作感測模組的一更新狀態。包括與上述現今狀態、量測狀態、及更新狀態相關聯的方程式之指令,將於下文中進行介紹。In an embodiment in which the resulting error is obtained, a comparison mechanism is preferably used to compare the current state and the measured state of the six-axis motion sensing module in the current time period T, wherein the result error includes using the six-axis motion The 3D pointing device of the sensing module points in a space to the resulting angle in the reference coordinate. In other words, in the embodiment shown in step 735, it is preferred to measure the second quaternary value with the measured axial accelerations Ax, Ay, Az and the predicted axial accelerations Ax', Ay' in the present time period T. Az' is compared, wherein the second quaternion value is associated with the measured angular velocity in the current time period T. Then, the obtained result can be used as an update state of the six-axis motion sensing module in the current time period T. Instructions including equations associated with the present state, measurement state, and update state described above are described below.

根據本發明的一實施例,在圖中步驟735所示的比對機制中,與上述第二四元值互相關聯且與陀螺儀的角速度相關聯的現今狀態可以藉由下述方程式取得。According to an embodiment of the invention, in the alignment mechanism shown in step 735 of the figure, the current state associated with the second quaternary value and associated with the angular velocity of the gyroscope can be obtained by the following equation.

x(t|t-1)=f(xt-1,ut).....................................................(5)x(t|t-1)=f(x t-1 ,u t )............................... ......................(5)

在較佳的實施例中,與現今狀態相關聯的一第一機率(狀態轉換機率)可藉由下述的方程式而取得。In a preferred embodiment, a first probability (state transition probability) associated with the current state can be obtained by the equations described below.

P(xt|xt-1,ut)=FxP(xt-1|xt-1)Fx T+FuP(ut-1|ut-1)Fu T+Qt P(x t |x t-1 ,u t )=F x P(x t-1 |x t-1 )F x T +F u P(u t-1 |u t-1 )F u T + Q t

其中,Q t 為額外動作雜訊(additional motion noise)。Among them, Q t is additional motion noise.

同樣地,與上述之第二軸向加速度互相關聯,且與加速度感測器所測得的軸向加速度及現今狀態相關的測量狀態,可由下述方程式求得。Similarly, the measurement state associated with the second axial acceleration described above and related to the axial acceleration measured by the acceleration sensor and the current state can be obtained by the following equation.

zt(t|t-1)=h(x(t|t-1)).................................(8)z t (t|t-1)=h(x(t|t-1))............................. ....(8)

在較佳的實施例中,與量測狀態相關聯的一第二機率(量測機率)可從下述的方程式求得:In a preferred embodiment, a second probability (measurement probability) associated with the measurement state can be obtained from the equation:

P(zt|xt)=HxP(xt|xt-1)Hx T+Rt......................(9)P(z t |x t )=H x P(x t |x t-1 )H x T +R t ......................( 9)

其中,R t 為量測雜訊(measurement noise)。Where R t is measurement noise.

在一實施例中,基於如下與資料關聯(data association)相關的方程式,上述的第一機率與第二機率可進一步用來取得六軸動作感測模組的更新狀態:In an embodiment, the first probability and the second probability may be further used to obtain an updated state of the six-axis motion sensing module based on the following equations related to data association:

Dt={[zt-h(x(t|t-1))]P(zt|xt)[zt-h(x(t|t-1))]-1}1/2.....(11)D t ={[z t -h(x(t|t-1))]P(z t |x t )[z t -h(x(t|t-1))] -1 } 1/2 .....(11)

在一實施例中,所取得之六軸動作感測模組的更新狀態,其較佳包括由方程式所表示的比對機制或資料關聯,可為如圖所示的一第三四元值。而且,在如圖所示的下一個步驟中,所取得之六軸動作感測模組的更新狀態可被輸出並用於取得一結果偏差,此結果偏差包括在一空間指向參考座標的結果角度。本領域具有通常知識者應可了解上述實施例中的現今狀態、量測狀態、更新狀態、資料關聯、及比對機制中的機率僅是用於說明之用,並非用以限制本發明。In an embodiment, the updated state of the obtained six-axis motion sensing module preferably includes an alignment mechanism or data association represented by an equation, which may be a third quaternary value as shown. Moreover, in the next step as shown, the updated state of the obtained six-axis motion sensing module can be output and used to obtain a result bias that includes the resulting angle of a reference to the reference coordinate in a space. Those of ordinary skill in the art should understand that the present state, the measurement state, the update state, the data association, and the probability in the comparison mechanism in the above embodiments are for illustrative purposes only and are not intended to limit the present invention.

如前所述,如圖中步驟740所示,較佳是將所取得的更新狀態(較佳是以第三四元值的形態)輸入至六軸動作感應模組的先前狀態。換句話說,在一實施例中,第一四元值可被上述之第三四元值所取代,或者是說第三四元值可直接取代第一四元值在前一時段T-1的值以進行下一個迴圈。換句話說,於現今時段T的第三四元值會變成下一時段T+1的第一四元值。或者是說,在前一時段T-1所輸出的第三四元值可做為現今時段T的第一四元值。As described above, as shown in step 740 of the figure, it is preferable to input the acquired update state (preferably in the form of a third quaternary value) to the previous state of the six-axis motion sensing module. In other words, in an embodiment, the first quaternion value may be replaced by the third quaternary value described above, or the third quaternary value may directly replace the first quaternary value in the previous period T-1. The value of the next loop. In other words, the third quaternion value of T in the current time period will become the first quaternion value of the next time period T+1. Or, the third quaternary value outputted in the previous period T-1 can be used as the first quaternion value of the current time period T.

在步驟745中,本發明之六軸動作感測模組的更新狀態可進一步被處理並轉換為結果偏差,此結果偏差包括在空間指向座標中的結果角度,其中結果角度包括位於空間指向座標中之3D指向裝置的平擺角、俯仰角、與滾動角,較佳是上述之平擺角、俯仰角、與滾動角分別對應於空間指向座標的三個互相垂直的座標軸的角度。在一實施例中,運算處理器使用一資料轉換手段,以將代表六軸動作感測模組之更新狀態的第三四元值轉換為平擺角、俯仰角、與滾動角。該資料轉換手段可為一程式或指令,該程式或指令可用下述的方程式(12)、(13)、和(14)進行表示。In step 745, the updated state of the six-axis motion sensing module of the present invention may be further processed and converted to a result bias, the resulting bias including the resulting angle in the spatial pointing coordinate, wherein the resulting angle is included in the spatial pointing coordinate The 3D pointing device has a sway angle, a pitch angle, and a roll angle. Preferably, the sway angle, the pitch angle, and the roll angle respectively correspond to angles of three mutually perpendicular coordinate axes of the spatial pointing coordinates. In one embodiment, the arithmetic processor uses a data conversion means to convert the third quaternary value representing the updated state of the six-axis motion sensing module to a sway angle, a pitch angle, and a roll angle. The data conversion means can be a program or an instruction, which can be represented by the following equations (12), (13), and (14).

pitch=arcsin(2(q0q2-q3q1))..........................(13)Pitch=arcsin(2(q 0 q 2 -q 3 q 1 ))..........................(13)

變數q0、q1、q2、和q3則為第三四元值的四個元素。The variables q 0 , q 1 , q 2 , and q 3 are the four elements of the third quaternion value.

在本發明的一實施例中,提供一種時間上連續的迴圈方法,由與六軸動作感測模組相連通的運算處理器所執行的此方法會回到步驟710以執行在下一個時段T+1的比對程序或方法。此外,上述的結果偏差較佳是以一種絕對的方式取得和輸出,且能反應出本發明之3D指向裝置在空間指向參考座標上真實的移動及轉動,上述結果偏差包括結果角度,而結果角度則包括由第三四元值所轉換而得的位於空間轉換座標的平擺角、俯仰角、與滾動角。本領域具有通常知識者應可明白,上述3D指向裝置在空間指向參考座標上實際的移動及轉動可為在一動態環境下即時的移動及轉動,此即時的移動及轉動可用向量進行表示,該向量相對於空間指向參考座標上互相垂直的座標軸具有一定的大小和方向。In an embodiment of the invention, a temporally continuous loopback method is provided, the method executed by the arithmetic processor in communication with the six-axis motion sensing module returns to step 710 to execute in the next time period T. +1 alignment program or method. In addition, the above-mentioned result deviation is preferably obtained and output in an absolute manner, and can reflect the true movement and rotation of the 3D pointing device of the present invention on the spatial pointing reference coordinate, the result deviation including the result angle, and the result angle Then, the sway angle, the pitch angle, and the roll angle of the space conversion coordinate converted by the third quaternary value are included. It should be understood by those skilled in the art that the actual movement and rotation of the above-mentioned 3D pointing device on the spatial pointing reference coordinate can be instantaneous movement and rotation in a dynamic environment, and the instantaneous movement and rotation can be represented by a vector. The vector has a certain size and direction with respect to the coordinate axis whose space points to the mutually perpendicular to the reference coordinates.

圖8所繪示為一流程圖,其繪示出本發明之另一實施例的映射方法,此映射方法將3D指向裝置的結果偏差映射到一顯示器參考座標的方法,此結果偏差包括3D指向裝置在空間指向座標上的結果角度,此3D指向裝置可在一3D空間指向參考座標或動態環境中移動和轉動。圖9為一示意圖,其顯示出如何對上述之3D指向裝置的包括結果角度在內的結果偏差進行映射。為了說明之目的,圖7與圖8間的差異可由如圖8所示額外的映射步驟750來表示。圖8中的步驟705-745是與圖7中所對應的步驟相同,其執行關於3D指向裝置的比對程序。步驟750則是執行關於3D指向裝置的映射程序。運算處理器可包括用來執行映射步驟750的一映射程式。在步驟750中,處理及傳輸模組取得顯示器資料,此顯示器資料例如包括螢幕尺寸與邊界資訊,並基於與顯示器參考座標相關聯的一敏感度輸入,處理及傳輸模組轉換與空間指向參考座標相關的結果偏差的結果角度至顯示器參考座標中的映射區域的一移動樣板,較佳是分別關於空間指向參考座標的三個互相垂直的座標軸。本領域具有通常知識者應可明白上述顯示器資料包括顯示器的形態,例如:LED顯示器、LCD顯示器、觸控螢幕或3D顯示器,以及顯示器的頻率,例如:120Hz或240Hz。在一實施例中,與顯示器相關的顯示器參考座標可為一2D顯示器參考座標。在另一實施例中,顯示器參考座標可為一3D顯示器的3D顯示器參考座標。FIG. 8 is a flow chart illustrating a mapping method of another embodiment of the present invention, the mapping method mapping a result deviation of a 3D pointing device to a display reference coordinate, the result deviation including a 3D pointing The resulting angle of the device on the coordinates of the coordinates, the 3D pointing device can be moved and rotated in a 3D space pointing to a reference coordinate or dynamic environment. Figure 9 is a schematic diagram showing how the resulting deviations from the resulting angles of the 3D pointing device are mapped. For purposes of illustration, the differences between FIG. 7 and FIG. 8 may be represented by an additional mapping step 750 as shown in FIG. Steps 705-745 in Fig. 8 are the same as the steps corresponding to those in Fig. 7, which perform an alignment procedure with respect to the 3D pointing device. Step 750 is to perform a mapping procedure for the 3D pointing device. The arithmetic processor can include a mapping program for performing the mapping step 750. In step 750, the processing and transmission module obtains display data, for example, including screen size and boundary information, and based on a sensitivity input, processing and transmission module conversion and spatial pointing reference coordinates associated with the display reference coordinates The result of the correlation result deviation is a moving template of the mapping area in the display reference coordinate, preferably three mutually perpendicular coordinate axes respectively pointing to the reference coordinate with respect to the space. Those of ordinary skill in the art will appreciate that the above display information includes the form of the display, such as an LED display, an LCD display, a touch screen or a 3D display, and the frequency of the display, such as 120 Hz or 240 Hz. In an embodiment, the display reference coordinate associated with the display can be a 2D display reference coordinate. In another embodiment, the display reference coordinate can be a 3D display reference coordinate of a 3D display.

上述的顯示器資料更包括一敏感度輸入,此敏感度輸入為一參數,使用者可藉由設置在3D顯示裝置之外殼上的控制鈕來輸入和調整此參數。敏感度輸入可用來表示對應3D指向裝置移動的顯示裝置敏感度。請參考圖9,以對映射程序做更進一步的說明。在一實施例中,敏感度輸入為一參數,此參數代表顯示器與本發明之3D指向裝置的關係,例如:距離關係。此3D指向裝置的輸出包括位於3D指向參考座標的平擺角、俯仰角、與滾動角在內的偏移,此偏移可變換到顯示器的2D顯示器參考座標上的一移動樣板。在另一個實施例中,敏感度輸入可為包括邊界資訊的一螢幕尺寸,此邊界資訊是由使用者所預定,例如是藉由使用者的輸入或操作所取得。在又一實施例中,移動樣板包括距離、或被移動或從3D指向裝置的移動變換的畫數之數目,為了增加或減少移動樣板,敏感度輸入在映射程式中進行預設,讓敏感度輸入的參數為一預設值。The display data further includes a sensitivity input, and the sensitivity input is a parameter, and the user can input and adjust the parameter by using a control button disposed on the outer casing of the 3D display device. The sensitivity input can be used to indicate the sensitivity of the display device corresponding to the movement of the 3D pointing device. Please refer to Figure 9 for a further explanation of the mapping procedure. In one embodiment, the sensitivity input is a parameter that represents the relationship of the display to the 3D pointing device of the present invention, such as a distance relationship. The output of the 3D pointing device includes an offset at the 3D pointing reference coordinate, the pitch angle, and the roll angle, which offset can be transformed to a moving template on the 2D display reference coordinate of the display. In another embodiment, the sensitivity input can be a screen size including boundary information that is predetermined by the user, such as by user input or operation. In yet another embodiment, the movement template includes a distance, or a number of strokes that are moved or shifted from the movement of the 3D pointing device. To increase or decrease the movement template, the sensitivity input is preset in the mapping program to allow sensitivity. The input parameter is a preset value.

圖9為本發明的一實施例之一3D指向裝置930與一顯示裝置的螢幕910的鳥瞰圖。螢幕910具有一中心點922、一目標點924、與一邊界點926。中心點922為螢幕910的幾合中心,目標點924為3D指向裝置930所指向的位置,邊界點926為位於螢幕910右方邊界的一點。上述之各點922、924、926與3D指向裝置930是位於一共用平面上,此共用平面是與顯示器參考座標XDYDZD的XD軸與ZD軸相平行。虛擬光束942、944、946為三道想像的光束,其分別從3D指向裝置930發射到中心點922、目標點924、與邊界點926。距離P為中心點922與目標點924之間的距離,距離Pmax為中心點922與邊界點926之間的距離,而距離d則為中心點922與3D指向裝置930之間的距離。上述之3D指向裝置930的結果偏差中的平擺角為虛擬光束942與虛擬光束944間所夾的角度θ,而角度θmax則為虛擬光束942與虛擬光束946間所夾的角度。上述的映射區域為位於顯示器參考座標且包括螢幕910之顯示面的一平面,螢幕910之顯示面為映射區域的一個子集。Figure 9 is a bird's eye view of a screen 910 of a 3D pointing device 930 and a display device in accordance with one embodiment of the present invention. The screen 910 has a center point 922, a target point 924, and a boundary point 926. The center point 922 is the coincidence center of the screen 910, the target point 924 is the position pointed by the 3D pointing device 930, and the boundary point 926 is a point located on the right border of the screen 910. The points 922, 924, 926 and the 3D pointing device 930 described above are located on a common plane which is parallel to the X D axis and the Z D axis of the display reference coordinates X D Y D Z D . The virtual beams 942, 944, 946 are three imaginary beams that are transmitted from the 3D pointing device 930 to the center point 922, the target point 924, and the boundary point 926, respectively. The distance P is the distance between the center point 922 and the target point 924, the distance Pmax is the distance between the center point 922 and the boundary point 926, and the distance d is the distance between the center point 922 and the 3D pointing device 930. The sway angle in the result deviation of the 3D pointing device 930 is the angle θ between the virtual beam 942 and the virtual beam 944, and the angle θ max is the angle between the virtual beam 942 and the virtual beam 946. The mapping area described above is a plane located on the display reference coordinates and including the display surface of the screen 910, and the display surface of the screen 910 is a subset of the mapping area.

在本實施例中,上述的敏感度輸入是由3D指向裝置930的使用者所提供。敏感度β可由下述的公式(15)所定義。In the present embodiment, the sensitivity input described above is provided by the user of the 3D pointing device 930. The sensitivity β can be defined by the following formula (15).

其中,在方程式(15)中的敏感度β是由使用者所提供。Among them, the sensitivity β in the equation (15) is provided by the user.

下述之方程式(16)可由方程式(15)及幾何關係中推得。The following equation (16) can be derived from equation (15) and the geometric relationship.

下述之方程式(17)可由方程式(16)中推得。Equation (17) below can be derived from equation (16).

在方程式(17)中,距離Pmax可從螢幕的寬度推得,而螢幕的寬度則是步驟750所取得的顯示器資料。另外,角度θ則為在步驟中所取得的平擺角,而敏感度β則是由使用者所提供。因此,3D指向裝置930的運算處理器可依據方程式(17)而算出距離P。接著,運算處理器便可依據距離P與螢幕910的寬度而輕易地取得目標點於橫向座標上的位置。此外,依照類似的方法,運算處理器可依據俯仰角而輕易地取得螢幕910上的目標點於縱向座標上的位置。In equation (17), the distance Pmax can be derived from the width of the screen, and the width of the screen is the display data obtained in step 750. In addition, the angle θ is the sway angle obtained in the step, and the sensitivity β is provided by the user. Therefore, the arithmetic processor of the 3D pointing device 930 can calculate the distance P according to equation (17). Then, the arithmetic processor can easily obtain the position of the target point on the lateral coordinate according to the distance P and the width of the screen 910. Moreover, in a similar manner, the arithmetic processor can easily obtain the position of the target point on the screen 910 on the longitudinal coordinate in accordance with the pitch angle.

在步驟750中的映射程序可用以上所述為例,亦即將結果角度中的平擺角與俯仰角轉換為螢幕910上的目標點924的二維座標,進行說明。藉此,運算處理器取得了目標點924於現今時段的座標。運算處理器會將現今時段的目標點924的座標減去前一時段的目標點924的座標,其結果便為現今時段的目標點924的水平偏移與垂直偏移。上述的水平與垂直偏移可被傳送到顯示裝置,以使顯示裝置能追蹤目標點924的位置。顯示裝置能於螢幕910上顯示一游標或某些視覺效果,以強調目標點924的位置。當使用者移動3D指向裝置930時,上述的游標或視覺效果能於螢幕910上展現出一移動樣板。The mapping procedure in step 750 can be exemplified by the above description, that is, the sway angle and the pitch angle in the result angle are converted into two-dimensional coordinates of the target point 924 on the screen 910 for explanation. Thereby, the arithmetic processor obtains the coordinates of the target point 924 at the current time. The arithmetic processor subtracts the coordinates of the target point 924 of the current time period from the coordinates of the target point 924 of the previous time period, and the result is the horizontal offset and the vertical offset of the target point 924 of the current time period. The horizontal and vertical offsets described above can be communicated to the display device to enable the display device to track the position of the target point 924. The display device can display a cursor or certain visual effects on the screen 910 to emphasize the position of the target point 924. When the user moves the 3D pointing device 930, the cursor or visual effect described above can display a moving template on the screen 910.

同樣地,,在本發明的一實施例中,提供一種時間上連續的迴圈方法,由與六軸動作感測模組相連通的運算處理器所執行的此方法會回到步驟710以執行在下一個時段T+1的比對及變換的程序或方法。Similarly, in an embodiment of the invention, a temporally continuous loopback method is provided, and the method performed by the arithmetic processor in communication with the six-axis motion sensing module returns to step 710 to execute A program or method of alignment and transformation in the next time period T+1.

總之,本發明提供一種六軸比對方法,其是比對指標裝置相對於三座標軸的轉動所產生及轉換的訊號,與指標裝置沿著三座標軸的加速度所產生及轉換的訊號。比對後,在一實施例中,該六軸比對方法會輸出結果偏差,此結果偏差包括位於一空間指向參考座標的平擺角、俯仰角、與滾動角,此空間指向參考座標例如為3D指向裝置上的一3D參考座標。在另一實施例中,六軸比對方法還包括將結果偏差變換到一顯示器參考座標的步驟,此結果偏差包括位於空間指向參考座標的平擺角、俯仰角、與滾動角,而顯示器參考座標例如為位於一顯示裝置的螢幕上的2D顯示器參考座標。本發明之六軸比對方法是包括對動作感測訊號進行比對、對四元值進行計算與轉換等步驟,以輸出包括位於3D參考座標的平擺角、俯仰角、與滾動角在內的結果偏差,本發明之六軸比對方法具有新穎性且不易被本領域具有通常知識者從習知技術中所推得,故也具有進步性。In summary, the present invention provides a six-axis alignment method that is a signal generated and converted by the rotation of the index device relative to the three coordinate axes, and a signal generated and converted by the acceleration of the index device along the three coordinate axes. After the comparison, in an embodiment, the six-axis comparison method outputs a deviation of the result, the deviation of the result includes a sway angle, a pitch angle, and a roll angle at a spatial pointing reference coordinate, and the space pointing to the reference coordinate is, for example, The 3D points to a 3D reference coordinate on the device. In another embodiment, the six-axis alignment method further includes the step of transforming the resulting deviation to a display reference coordinate, the resulting deviation including a yaw angle, a pitch angle, and a roll angle at a spatial pointing reference coordinate, and the display reference The coordinates are, for example, 2D display reference coordinates on a screen of a display device. The six-axis comparison method of the present invention includes the steps of comparing the motion sensing signals, calculating and converting the quaternary values, and the like, and outputting the sway angle, the elevation angle, and the rolling angle including the 3D reference coordinates. The deviation of the results, the six-axis alignment method of the present invention is novel and is not easily inferred from the prior art by those skilled in the art, and is also progressive.

綜上所述,本領域具有通常知識者應可了解,在本發明中,將包括位於一空間指向參考座標的3D角度以絕對的方式輸出是具有新穎性。而且,強化的3D指向裝置具有本發明所提出的且具有新穎性的比對方法及程式,故能以絕對的方式取得並輸出上述的偏差,其是不易被本領域具有通常知識者從習知技術中所推得,故也具有進步性。上述之與結果偏差相關聯的『絕對』是指本發明之3D指向裝置在空間指向參考座標中實際的移動與轉動,其中結果偏差是從強化的3D指向裝置所取得並輸出,結果偏差包括結果角度,而結果角度例如是位於空間指向參考座標中的平擺角、俯仰角、與滾動角。本領域具有通常知識者應可明白,只能輸出平面角度或相對移動的習知技術,是無法提供與本發明之以絕對方式提供結果偏差的相關啟示。而且,由於六軸動作感測模組於動態環境中移動和轉動所產生和累積的雜訊可被有效地刪除或補償,因此本發明之六軸比對方法可精確地將所述的偏差輸出,此偏差包括在3D參考座標中的角度。在上述的方法中,藉由六軸動作感測模組的現今狀態、量測狀態、與更新狀態來取得結果偏差並刪除本發明之3D指向裝置的六軸動作感測模組所累積的誤差,是具有新穎性且不易被本領域具有通常知識者所推得,故也具有進步性。此外,在本發明中,包括結果角度在內的結果偏差可進一步地被變換到另一個顯示器參考座標或2D參考座標,其中上述的結果角度是位於空間指向參考座標或3D參考座標中。而且,將本發明之強化的3D指向裝置的移動和轉動以絕對的方式變換到顯示器參考座標上是具有新穎性,且不易被本領域具有通常知識者從習知技術中所推得,故也具有進步性。In summary, it should be understood by those of ordinary skill in the art that in the present invention, it is novel to include the 3D angle at a spatial pointing reference coordinate in an absolute manner. Moreover, the enhanced 3D pointing device has the novelty method and program proposed by the present invention, so that the above-described deviation can be obtained and output in an absolute manner, which is not easily known by those having ordinary knowledge in the art. It is also advanced in technology and is therefore progressive. The above-mentioned "absolute" associated with the result deviation refers to the actual movement and rotation of the 3D pointing device of the present invention in the spatial pointing reference coordinate, wherein the resulting deviation is obtained from the enhanced 3D pointing device and output, and the resulting deviation includes the result. The angle, and the resulting angle is, for example, the sway angle, the pitch angle, and the roll angle in the spatial pointing reference coordinates. It should be understood by those of ordinary skill in the art that conventional techniques that can only output planar angles or relative movements do not provide the relevant insights that provide deviations from the results of the present invention in an absolute manner. Moreover, since the noise generated and accumulated by the movement and rotation of the six-axis motion sensing module in the dynamic environment can be effectively deleted or compensated, the six-axis alignment method of the present invention can accurately output the deviation. This deviation includes the angle in the 3D reference coordinate. In the above method, the current state, the measurement state, and the update state of the six-axis motion sensing module are used to obtain a deviation of the result and the error accumulated by the six-axis motion sensing module of the 3D pointing device of the present invention is deleted. It is novel and is not easily inferred by those who have ordinary knowledge in the field, so it is also progressive. Moreover, in the present invention, the resulting deviation, including the resulting angle, can be further transformed to another display reference coordinate or 2D reference coordinate, wherein the resulting angle is located in a spatial pointing reference coordinate or a 3D reference coordinate. Moreover, it is novel to transform the movement and rotation of the enhanced 3D pointing device of the present invention into the display reference coordinates in an absolute manner, and is not easily inferred from the prior art by those skilled in the art, and thus Progressive.

本發明以實施例說明如上,然其並非用以限定本發明所主張之專利權利範圍。其專利保護範圍當視後附之申請專利範圍及其等同領域而定。凡本領域具有通常知識者,在不脫離本專利精神或範圍內,所作之更動或潤飾,均屬於本發明所揭示精神下所完成之等效改變或設計,且應包含在下述之申請專利範圍內。而且,在本發明說明書中,“一”或“一個”可代表“至少一個”或“多個”的意思。例如,本領域具有通常知識者應可了解,在此,一印刷電路板可以指多個印刷電路板,且六軸運動做感測模組的轉動感測器或陀螺儀、及/或加速度感測器可被裝設於多個印刷電路板上。The present invention has been described above by way of examples, and is not intended to limit the scope of the claims. The scope of patent protection is subject to the scope of the patent application and its equivalent fields. Modifications or modifications made by those skilled in the art, without departing from the spirit or scope of the invention, are equivalent to the equivalents or modifications made in the spirit of the invention and should be included in the following claims. Inside. Moreover, in the description of the invention, "a" or "an" For example, it should be understood by those skilled in the art that a printed circuit board can refer to a plurality of printed circuit boards, and the six-axis motion can be used as a rotation sensor or gyroscope of the sensing module, and/or a sense of acceleration. The detector can be mounted on a plurality of printed circuit boards.

110...手持3D指向裝置110. . . Handheld 3D pointing device

111...平擺角111. . . Flat swing angle

112...俯仰角112. . . Pitch angle

113...滾動角113. . . Rolling angle

120...2D顯示裝置120. . . 2D display device

122...螢幕122. . . Screen

XP、YP、ZP...軸X P , Y P , Z P . . . axis

XD、YD、ZD...軸X D , Y D , Z D . . . axis

300、500、600、930...3D指向裝置300, 500, 600, 930. . . 3D pointing device

302、502、602...六軸動作感測模組302, 502, 602. . . Six-axis motion sensing module

304、604...處理及傳輸模組304, 604. . . Processing and transmission module

310、610...上蓋310, 610. . . Upper cover

320、520、620...下蓋320, 520, 620. . . lower lid

322、522、622...電池組322, 522, 622. . . Battery

330...殼體330. . . case

340、540、640...印刷電路板340, 540, 640. . . A printed circuit board

342、542、642...轉動感測器342, 542, 642. . . Rotary sensor

344、544、644...加速度感測器344, 544, 644. . . Acceleration sensor

346、546、646...資料傳輸單元346, 546, 646. . . Data transmission unit

348、648...運算處理器348, 648. . . Arithmetic processor

552...資料接收單元552. . . Data receiving unit

554...運算處理器554. . . Arithmetic processor

560...第一部分560. . . first part

570...第二部分570. . . the second part

580...個人電腦580. . . personal computer

582、910...螢幕582, 910. . . Screen

682...顯示器682. . . monitor

705~750...步驟705~750. . . step

922...中心點922. . . Center point

924...目標點924. . . Target

926...邊界點926. . . Boundary point

942、944、946...虛擬光束942, 944, 946. . . Virtual beam

θ、θmax...角度θ, θ max . . . angle

d、P、Pmax...距離d, P, P max . . . distance

圖1所繪示為在2D參考座標且具有一五軸動作感測器的一習知技術。FIG. 1 illustrates a conventional technique of having a five-axis motion sensor at a 2D reference coordinate.

圖2所繪示為圖1之具有五軸動作感測器的習知技術,其繞著Xp軸進行轉動,且受到進一步的動態交互作用。2 is a prior art diagram of FIG. 1 with a five-axis motion sensor that rotates about the Xp axis and is subject to further dynamic interaction.

圖3所繪示為本發明的一實施例的3D指向裝置的爆炸圖,此3D指向裝置位於一3D空間指向參考座標中且具有一六軸動作感測模組。FIG. 3 is an exploded view of a 3D pointing device according to an embodiment of the present invention. The 3D pointing device is located in a 3D space pointing reference coordinate and has a six-axis motion sensing module.

圖4所繪示為本發明的一實施例的3D指向裝置之方塊圖,其繪示出3D指向裝置的硬體零件。4 is a block diagram of a 3D pointing device in accordance with an embodiment of the present invention, showing the hardware components of the 3D pointing device.

圖5所繪示為本發明的另一實施例的3D指向裝置,此3D指向裝置位於一3D空間指向參考座標中且具有一六軸動作感測模組。FIG. 5 illustrates a 3D pointing device according to another embodiment of the present invention. The 3D pointing device is located in a 3D space pointing reference coordinate and has a six-axis motion sensing module.

圖6所繪示為本發明的另一實施例的3D指向裝置的爆炸圖,此3D指向裝置位於一3D空間指向參考座標中且具有一六軸動作感測模組。FIG. 6 is an exploded view of a 3D pointing device according to another embodiment of the present invention. The 3D pointing device is located in a 3D space pointing reference coordinate and has a six-axis motion sensing module.

圖7所繪示為本發明之一實施例的一補償方法的流程圖,此補償方法是用以補償3D指向裝置的偏向角,此3D指向裝置是在一3D空間指向參考座標與一動態環境中進行移動與轉動。FIG. 7 is a flow chart of a compensation method for compensating a deflection angle of a 3D pointing device according to an embodiment of the present invention. The 3D pointing device is directed to a reference coordinate and a dynamic environment in a 3D space. Move and rotate in the middle.

圖8所繪示為本發明之另一實施例的一映射方法的流程圖,此映射方法是用以將3D指向裝置的偏向角變換至一顯示器參考座標,此3D指向裝置是在一3D空間指向參考座標與一動態環境中進行移動與轉動。FIG. 8 is a flowchart of a mapping method for transforming a deflection angle of a 3D pointing device to a display reference coordinate according to another embodiment of the present invention. The 3D pointing device is in a 3D space. Moves and rotates in a dynamic environment pointing to the reference coordinates.

圖9所繪示為將本發明的3D指向裝置的結果偏差的結果角度進行變換的一實施例。Figure 9 is a diagram showing an embodiment of transforming the result angle of the result of the 3D pointing device of the present invention.

300...3D指向裝置300. . . 3D pointing device

310...上蓋310. . . Upper cover

320...下蓋320. . . lower lid

322...電池組322. . . Battery

330...殼體330. . . case

340...印刷電路板340. . . A printed circuit board

342...轉動感測器342. . . Rotary sensor

344...加速度感測器344. . . Acceleration sensor

346...資料傳輸單元346. . . Data transmission unit

348...運算處理器348. . . Arithmetic processor

Claims (19)

一種3D指向裝置,適於在一動態環境中進行移動或轉動,該3D指向裝置包括:一殼體,該殼體與該3D指向裝置在一空間指向參考座標上進行移動和轉動相關聯;一印刷電路板,被該殼體所包覆;一六軸動作感測模組,依附在該印刷電路板上,該六軸動作感測模組包括一轉動感測器與一加速度感測器,該轉動感測器是用以偵測和產生一第一訊號組,該第一訊號組包括與該3D指向裝置在該空間指向參考座標上的移動與轉動相關的角速度ωx、ωy、ωz,該加速度感測器是用以偵測和產生一第二訊號組,該第二訊號組包括與3D指向裝置在該空間指向參考座標上的移動與轉動相關的軸向加速度Ax、Ay、Az;及一處理及傳輸模組,包括一資料傳輸單元與一運算處理器,該資料傳輸單元電性連接至該六軸動作感測模組並以用於傳輸該第一訊號組與該第二訊號組,該運算處理器是用以接受和計算從該資料傳輸單元傳輸過來的該第一訊號組與該第二訊號組,該處理及傳輸模組與該六軸動作感測模組相通聯並藉由一比對機制以比對該第一訊號組與該第二訊號組,消除該第一訊號組與該第二訊號組所產生的累積誤差,以計算一結果偏差,該結果偏差包括多個於該空間指向參考座標上的結果角度,藉此於該動態環境中獲得位於該空間指向參考座標上的該結果角度,該結果角度是屬於該3D指向裝置的該六軸動作感測模組的結果偏差。 A 3D pointing device adapted to move or rotate in a dynamic environment, the 3D pointing device comprising: a housing associated with the 3D pointing device for moving and rotating on a spatial pointing reference coordinate; The printed circuit board is covered by the casing; a six-axis motion sensing module is attached to the printed circuit board, and the six-axis motion sensing module includes a rotation sensor and an acceleration sensor. The rotation sensor is configured to detect and generate a first signal group, and the first signal group includes angular velocities ω x , ω y , ω related to movement and rotation of the 3D pointing device on the spatial pointing reference coordinate z , the acceleration sensor is configured to detect and generate a second signal group, and the second signal group includes axial accelerations Ax, Ay related to movement and rotation of the 3D pointing device on the space pointing reference coordinates. And a processing and transmission module, comprising: a data transmission unit and an operation processor, the data transmission unit is electrically connected to the six-axis motion sensing module for transmitting the first signal group and the Second signal group, the operation The processor is configured to receive and calculate the first signal group and the second signal group transmitted from the data transmission unit, and the processing and transmission module is coupled to the six-axis motion sensing module and The comparison mechanism eliminates the accumulated error generated by the first signal group and the second signal group by comparing the first signal group and the second signal group to calculate a result deviation, where the result deviation includes multiple The space points to the result angle on the reference coordinate, thereby obtaining the result angle of the spatial pointing reference coordinate in the dynamic environment, the result angle being the result deviation of the six-axis motion sensing module belonging to the 3D pointing device . 如申請專利範圍第1項所述的3D指向裝置,其中該動態環境包括一情境,其中該3D指向裝置在該空間指向參考座標上的移動和轉動對時間軸是連續且非線性的。 The 3D pointing device of claim 1, wherein the dynamic environment comprises a context, wherein movement and rotation of the 3D pointing device on the spatial pointing reference coordinates are continuous and non-linear with respect to the time axis. 如申請專利範圍第1項所述的3D指向裝置,其中被該殼體包覆的該印刷電路板包括至少一基板,該基板包括一第一長側邊,該第一長側邊大致平行於該殼體的一長側面。 The 3D pointing device of claim 1, wherein the printed circuit board covered by the housing comprises at least one substrate, the substrate comprising a first long side, the first long side being substantially parallel to A long side of the housing. 如申請專利範圍第1項所述的3D指向裝置,其中該空間指向參考座標為一3D指向座標,且屬於該結果偏差的該結果角度包括一平擺角、一俯仰角、與一滾動角,其分別對應到該空間指向參考座標中三個互相垂直的座標軸。 The 3D pointing device of claim 1, wherein the space pointing reference coordinate is a 3D pointing coordinate, and the result angle belonging to the result deviation comprises a swing angle, a pitch angle, and a roll angle, Corresponding to the space pointing to three mutually perpendicular coordinate axes in the reference coordinate. 如申請專利範圍第1項所述的3D指向裝置,其中該處理及傳輸模組中的該資料傳輸單元是依附於被該殼體包覆的該印刷電路板,藉由該印刷電路板上的電性連接,該資料傳輸單元將該六軸動作感測模組所產生的該第一訊號組與該第二訊號組傳輸至該運算處理器。 The 3D pointing device of claim 1, wherein the data transfer unit in the processing and transport module is attached to the printed circuit board covered by the housing, by using the printed circuit board The data transmission unit transmits the first signal group and the second signal group generated by the six-axis motion sensing module to the operation processor. 如申請專利範圍第1項所述的3D指向裝置,其中該處理及傳輸模組的該運算處理器是位於該殼體的外部,且該運算處理器是以無線的方式接收由該資料傳輸單元所傳送並由該六軸動作感測模組所發出的該第一訊號組與該第二訊號組。 The 3D pointing device of claim 1, wherein the processing processor of the processing and transmission module is external to the housing, and the computing processor is wirelessly received by the data transmission unit The first signal group and the second signal group transmitted by the six-axis motion sensing module. 如申請專利範圍第1項所述的3D指向裝置,其中該處理及傳輸模組所使用的該比對機制更包括一更新程式,在該更新程式中,是藉由與該第一訊號組相關的一先前狀態及與該第二訊號組相關的一量測狀態而獲得一更新狀態,該量測狀態包括對該第二訊號組進行量測與根據該第一訊號組而得的一預計量測。 The 3D pointing device of claim 1, wherein the comparison mechanism used by the processing and transmission module further comprises an update program, wherein the update program is related to the first signal group Obtaining an update state of a previous state and a measurement state associated with the second signal group, the measurement state comprising measuring the second signal group and a predetermined amount according to the first signal group Measurement. 如申請專利範圍第1項所述的3D指向裝置,其中該處理及傳輸模組所使用的該比對機制更包括一資料轉換手段,該資料轉換手段用以將四元值轉換成該空間指向參考座標上的該3D指向裝置中的該六軸動作感測模組的該結果偏差之該結果角度,該四元值是與該六軸動作感測模組所發出的該第一訊號組與該第二訊號 組及該綜合結果相關聯。 The 3D pointing device of claim 1, wherein the comparison mechanism used by the processing and transmission module further comprises a data conversion means for converting the quaternion value into the spatial direction The result angle of the result deviation of the six-axis motion sensing module in the 3D pointing device on the reference coordinate, the quaternary value is the same as the first signal group sent by the six-axis motion sensing module The second signal The group is associated with the combined result. 如申請專利範圍第1項所述的3D指向裝置,其中該處理及傳輸模組中的該運算處理器更包括一映射程式,基於與該顯示器參考座標相關聯的一敏感度輸入,該映射程式用以將於該空間指向參考座標上的該3D指向裝置中的該六軸動作感測模組的該結果偏差之該結果角度轉換成在一顯示器參考座標中的一移動樣板,該顯示器參考座標不同於該空間指向參考座標。 The 3D pointing device of claim 1, wherein the processing processor in the processing and transmission module further comprises a mapping program based on a sensitivity input associated with the display reference coordinate, the mapping program Converting the result angle of the result deviation of the six-axis motion sensing module in the 3D pointing device to the reference point on the space to a moving template in a display reference coordinate, the display reference coordinate Unlike this space, it points to the reference coordinate. 如申請專利範圍第9項所述的3D指向裝置,其中與該顯示器參考座標相關聯的該敏感度輸入是由一使用者的輸入所決定且與一顯示裝置的邊界資訊相關聯,該顯示裝置於該顯示器參考座標中具有一對應的映射區域。 The 3D pointing device of claim 9, wherein the sensitivity input associated with the display reference coordinate is determined by a user input and associated with boundary information of a display device, the display device There is a corresponding mapping area in the display reference coordinate. 一種3D指向裝置,適於在一動態環境中進行移動或轉動,且該3D指向裝置與在一2D顯示器參考座標中的一移動樣板相關聯,該3D指向裝置包括:一殼體,該殼體與位於該3D指向參考座標上的該3D指向裝置的移動和轉動相關聯;一印刷電路板,被該殼體所包覆;一六軸動作感測模組,依附在該印刷電路板上,該六軸動作感測模組包括一轉動感測器與一加速度感測器,該轉動感測器是用以偵測和產生一第一訊號組,該第一訊號組包括與該3D指向裝置在該3D指向參考座標上的移動與轉動相關的角速度ωx、ωy、ωz,該加速度感測器是用以偵測和產生一第二訊號組,該第二訊號組包括與在該3D指向參考座標上的該3D指向裝置的移動與轉動相關的軸向加速度Ax、Ay、Az;及一處理及傳輸模組,包括一資料傳輸單元與一運算處理器,該資料傳輸單元電性連接至該六軸動作感測模組以用於傳輸該第 一訊號組與該第二訊號組,該運算處理器是用以接受和計算從該資料傳輸單元傳輸過來的該第一訊號組與該第二訊號組,該處理及傳輸模組與該六軸動作感測模組相通聯並藉由一比對機制以比對該第一訊號組與該第二訊號組,消除該第一訊號組與該第二訊號組所產生的累積誤差,以計算一結果偏差,該結果偏差包括多個於該3D指向參考座標上的結果角度,且該運算處理器更包括一映射程式,基於與該2D顯示器參考座標相關聯的一敏感度輸入,該映射程式將於該3D指向參考座標上的該3D指向裝置中的該六軸動作感測模組的該結果偏差之該結果角度轉換成在該2D顯示器參考座標中的該移動樣板。 A 3D pointing device adapted to move or rotate in a dynamic environment, and the 3D pointing device is associated with a moving template in a 2D display reference coordinate, the 3D pointing device comprising: a housing, the housing Corresponding to movement and rotation of the 3D pointing device located on the 3D pointing reference coordinate; a printed circuit board covered by the housing; a six-axis motion sensing module attached to the printed circuit board The six-axis motion sensing module includes a rotation sensor and an acceleration sensor, wherein the rotation sensor is configured to detect and generate a first signal group, and the first signal group includes the 3D pointing device The angular velocity ω x , ω y , ω z associated with the movement and rotation of the 3D pointing reference coordinate is used to detect and generate a second signal group, and the second signal group includes 3D is directed to the axial accelerations Ax, Ay, Az associated with the movement and rotation of the 3D pointing device on the reference coordinate; and a processing and transmission module comprising a data transmission unit and an arithmetic processor, the data transmission unit being electrically Connected to the six axes The sensing module is configured to transmit the first signal group and the second signal group, and the operation processor is configured to receive and calculate the first signal group and the second signal group transmitted from the data transmission unit The processing and transmission module is coupled to the six-axis motion sensing module and eliminates the first signal group and the second by comparing the first signal group and the second signal group by a comparison mechanism a cumulative error generated by the signal group to calculate a result deviation, the result deviation including a plurality of result angles on the 3D pointing reference coordinate, and the operation processor further includes a mapping program based on the reference coordinates associated with the 2D display a sensitivity input, the mapping program converts the result angle of the result deviation of the six-axis motion sensing module in the 3D pointing device on the 3D pointing reference coordinate into the reference coordinate of the 2D display The mobile template. 如申請專利範圍第11項所述的3D指向裝置,其中該處理及傳輸模組中的該資料傳輸單元是依附於被該殼體包覆的該印刷電路板,藉由該印刷電路板上的電性連接,該資料傳輸單元傳輸該六軸動作感測模組所發出的該第一訊號組與該第二訊號組至該運算處理器。 The 3D pointing device of claim 11, wherein the data transfer unit in the processing and transport module is attached to the printed circuit board covered by the housing, by using the printed circuit board The data transmission unit transmits the first signal group and the second signal group sent by the six-axis motion sensing module to the operation processor. 如申請專利範圍第11項所述的3D指向裝置,其中該處理及傳輸模組的該運算處理器是位於該殼體的外部,且該運算處理器是以無線的方式接收由該資料傳輸單元所傳送並由該六軸動作感測模組所產生的該第一訊號組與該第二訊號組。 The 3D pointing device of claim 11, wherein the processing processor of the processing and transmission module is external to the housing, and the computing processor is wirelessly received by the data transmission unit The first signal group and the second signal group transmitted by the six-axis motion sensing module. 如申請專利範圍第1項所述的3D指向裝置,其中該處理及傳輸模組所使用的該比對機制更包括一更新程式,以根據與該第一訊號組相關的一先前狀態及與該第二訊號組相關的一量測狀態而獲得一更新狀態,該量測狀態包括對該第二訊號組進行量測與根據該第一訊號組而得的一預計量測,且屬於該結果偏差的該結果角度包括一平擺角、一俯仰角、與一滾動角,其分別對應到該空間指向參考座標之互相垂直的三個座標軸。 The 3D pointing device of claim 1, wherein the comparison mechanism used by the processing and transmission module further comprises an update program to be based on a previous state associated with the first signal group and Obtaining an update status related to a measurement status associated with the second signal group, the measurement status includes measuring the second signal group and a predicted measurement according to the first signal group, and belonging to the result deviation The resulting angle includes a sway angle, a pitch angle, and a roll angle, respectively corresponding to the three coordinate axes of the space that are perpendicular to each other to the reference coordinate. 如申請專利範圍第11項所述的3D指向裝置,其中與該顯示器參考座標相關聯的該敏感度輸入是由該處理及傳輸模組的該運算處理器之該映射程式所預定,該映射程式使用一顯示裝置的邊界資訊,該顯示裝置於該2D顯示器參考座標中具有一對應的映射區域,且該邊界資訊是由一使用者輸入所定義。 The 3D pointing device of claim 11, wherein the sensitivity input associated with the display reference coordinate is predetermined by the mapping program of the processing processor of the processing and transmission module, the mapping program Using the boundary information of a display device, the display device has a corresponding mapping area in the 2D display reference coordinate, and the boundary information is defined by a user input. 一種用以獲得3D指向裝置的結果偏差的方法,該結果偏差包括一3D指向裝置於一空間指向參考座標上的多個結果角度,該3D指向裝置是使用位於其內的一六軸動作感測模組,且該3D指向裝置適於在該空間指向參考座標上的一動態環境中進行移動和轉動,該方法包括:獲得該六軸動作感測模組的一先前狀態,其中該先前狀態包括一初始值組,該初始值組是與多個前段角速度相關聯,該些前段角速度是在一前一時段T-1時自該六軸動作感測模組的動作感測信號所取得;根據自該六軸動作感測模組於一現今時段T的動作感測信號中而獲得的量測角速度ωxyz,得到該六軸動作感測模組的一現今狀態;根據自該六軸動作感測模組於該現今時段T的動作感測信號中而獲得的量測軸向加速度Ax,Ay,Az,得到該六軸動作感測模組的一量測狀態,以及基於該六軸動作感測模組的該現今狀態的該些量測角速度ωxyz,算出預計軸向加速度Ax’,Ay’,Az’;藉由比對該六軸動作感測模組的該現今狀態與該量測狀態,以獲得該六軸動作感測模組的一更新狀態;計算並轉換該六軸動作感測模組的該更新狀態至該結果偏差,該結果偏差包括該3D指向裝置於該空間指向參考座標上的該結果角度。 該方法還包括一映射步驟,該映射步驟包括將在該空間指向參考座標中的該結果偏差的該結果角度轉換至位於該顯示器參考座標之一移動樣板,且該轉換步驟包括獲得與該顯示器參考座標相互關聯的一敏感度輸入,且該顯示器參考座標是不同於該空間指向參考座標。 A method for obtaining a deviation of a result of a 3D pointing device, the resulting deviation comprising a plurality of resulting angles of a 3D pointing device on a spatial pointing reference coordinate, the 3D pointing device using a six-axis motion sensing located therein a module, and the 3D pointing device is adapted to move and rotate in a dynamic environment in which the space points to a reference coordinate, the method comprising: obtaining a previous state of the six-axis motion sensing module, wherein the previous state comprises An initial value group, wherein the initial value group is associated with a plurality of front segment angular velocities obtained from an action sensing signal of the six-axis motion sensing module during a previous time period T-1; Obtaining an instantaneous angular velocity ω x , ω y , ω z obtained by the six-axis motion sensing module in a motion sensing signal of a current time period T, obtaining a current state of the six-axis motion sensing module; Obtaining the axial accelerations A x , A y , A z obtained by the six-axis motion sensing module in the motion sensing signal of the current time period T, and obtaining a measurement of the six-axis motion sensing module State, and based on the six-axis motion The plurality of sensing the amount of the current state of the module measured angular velocity ω x, ω y, ω z , the calculated expected axial acceleration A x ', A y', A z '; by comparing the six-axis motion sensing module The current state of the group and the measurement state to obtain an updated state of the six-axis motion sensing module; calculating and converting the updated state of the six-axis motion sensing module to the result deviation, the result deviation includes The resulting angle of the 3D pointing device on the space pointing to the reference coordinate. The method also includes a mapping step of converting the resulting angle of the result deviation in the spatial pointing reference coordinate to a movement template located at one of the display reference coordinates, and the converting step includes obtaining a reference with the display The coordinate is associated with a sensitivity input, and the display reference coordinate is different from the spatial pointing reference coordinate. 如申請專利範圍第16項所述之用以獲得3D指向裝置的結果偏差的方法,更包括以下的步驟:輸出該六軸動作感測模組的該更新狀態至該六軸動作感測模組的該先前狀態;其中,該結果偏差的該結果角度包括一平擺角、一俯仰角、與一滾動角,其分別對應到該空間指向參考座標之互相垂直的三個座標軸。 The method for obtaining a result deviation of a 3D pointing device according to claim 16 of the patent application, further comprising the steps of: outputting the updated state of the six-axis motion sensing module to the six-axis motion sensing module The previous state of the result deviation includes a sway angle, a pitch angle, and a roll angle corresponding to the three coordinate axes of the space pointing perpendicular to the reference coordinate. 如申請專利範圍第16項所述之用以獲得該3D指向裝置的該結果偏差的方法,其中該六軸動作感測模組的該先前狀態為對應於該前一時段T-1的一第一四元值,該六軸動作感測模組的該現今狀態為對應於該現今時段T的一第二四元值,而該六軸動作感測模組的該更新狀態為對應於該現今時段T的一第三四元值。 The method of claim 16, wherein the previous state of the six-axis motion sensing module is a one corresponding to the previous time period T-1. a quaternary value, the current state of the six-axis motion sensing module is a second quaternary value corresponding to the current time period T, and the updated state of the six-axis motion sensing module corresponds to the present A third quaternion value of time period T. 如申請專利範圍第16項所述之用以獲得該3D指向裝置的該結果偏差的方法,其中獲得該六軸動作感測模組的該先前狀態之步驟更包括:將該初始值組初始化。 The method for obtaining the deviation of the result of the 3D pointing device, as described in claim 16, wherein the step of obtaining the previous state of the six-axis motion sensing module further comprises: initializing the initial value group.
TW100123807A 2010-11-11 2011-07-06 3d pointing device and method for compensating movement thereof TWI534659B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/943,934 US8441438B2 (en) 2010-01-06 2010-11-11 3D pointing device and method for compensating movement thereof

Publications (2)

Publication Number Publication Date
TW201220145A TW201220145A (en) 2012-05-16
TWI534659B true TWI534659B (en) 2016-05-21

Family

ID=46583048

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100123807A TWI534659B (en) 2010-11-11 2011-07-06 3d pointing device and method for compensating movement thereof

Country Status (1)

Country Link
TW (1) TWI534659B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663526B (en) * 2018-05-17 2019-06-21 晶翔機電股份有限公司 Motion analysis device and motion analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663526B (en) * 2018-05-17 2019-06-21 晶翔機電股份有限公司 Motion analysis device and motion analysis method

Also Published As

Publication number Publication date
TW201220145A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US8441438B2 (en) 3D pointing device and method for compensating movement thereof
US8552978B2 (en) 3D pointing device and method for compensating rotations of the 3D pointing device thereof
US20210208180A1 (en) Correction of accumulated errors in inertial measurement units attached to a user
US10521011B2 (en) Calibration of inertial measurement units attached to arms of a user and to a head mounted device
US11698687B2 (en) Electronic device for use in motion detection and method for obtaining resultant deviation thereof
JP5807291B2 (en) Handheld pointing device with roll compensation
US8957909B2 (en) System and method for compensating for drift in a display of a user interface state
JP5258974B2 (en) Method and device for inputting force intensity and rotational intensity based on motion sensing
US11481029B2 (en) Method for tracking hand pose and electronic device thereof
US20100039381A1 (en) Rotatable input device
CN101872260A (en) Remote interactive pen and handwriting detection method
US8396684B2 (en) Method and system for motion tracking
US20140232649A1 (en) Method of controlling a cursor by measurements of the attitude of a pointer and pointer implementing said method
JP2008146620A (en) Inertial sensing input apparatus and method
US11009964B2 (en) Length calibration for computer models of users to generate inputs for computer systems
JP2004288188A (en) Pen type input system using magnetic sensor, and its trajectory restoration method
CN102778965B (en) 3d indicating device and method for compensating rotation of3d indicating device
TWI476733B (en) Three-dimensional space motion reconstruction method and apparatus constructed thereby
TWI407102B (en) Method of sensing motion in a 3d space
CN115120967A (en) Target positioning method, device, storage medium and terminal
CN111624547A (en) Tracking objects in an electromagnetic field
TWI534659B (en) 3d pointing device and method for compensating movement thereof
WO2023165355A1 (en) Surgical platform positioning system, and pose information determining method and device
TWI494797B (en) Electronic device for use in motion detection and method for obtaining resultant deviation thereof
CN113065572A (en) Multi-sensor fusion data processing method, positioning device and virtual reality equipment