TWI494549B - A luminance inspecting method for backlight modules based on multiple kernel support vector regression and apparatus thereof - Google Patents

A luminance inspecting method for backlight modules based on multiple kernel support vector regression and apparatus thereof Download PDF

Info

Publication number
TWI494549B
TWI494549B TW103138925A TW103138925A TWI494549B TW I494549 B TWI494549 B TW I494549B TW 103138925 A TW103138925 A TW 103138925A TW 103138925 A TW103138925 A TW 103138925A TW I494549 B TWI494549 B TW I494549B
Authority
TW
Taiwan
Prior art keywords
luminance
support vector
module
value
vector regression
Prior art date
Application number
TW103138925A
Other languages
Chinese (zh)
Other versions
TW201617591A (en
Inventor
Wuja Lin
Sinsin Jhuo
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW103138925A priority Critical patent/TWI494549B/en
Application granted granted Critical
Publication of TWI494549B publication Critical patent/TWI494549B/en
Publication of TW201617591A publication Critical patent/TW201617591A/en

Links

Landscapes

  • Image Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

利用多核心支援向量迴歸之背光模組輝度檢測方法及檢測器Backlight module luminance detection method and detector using multi-core support vector regression

本發明是關於一種背光模組輝度檢測方法,特別是指一種利用多核心支援向量迴歸之背光模組輝度檢測方法。The invention relates to a backlight module luminance detection method, in particular to a backlight module luminance detection method using multi-core support vector regression.

現今的顯示器技術相較早期的作法如陰極射線管等方式已出現明顯的差異,尤其在發光二極體以及液晶顯示技術取得重要的進展後,平面顯示器之普及性已大幅提升。Today's display technology has become significantly different from earlier methods such as cathode ray tubes. Especially after the LED diode and liquid crystal display technology have made important progress, the popularity of flat panel displays has been greatly improved.

然而,以液晶面板作為平面顯示器之應用存在著問題,由於液晶面板需透過內部的背光模組來改變其受光後所顯示出的色彩,因此輝度反映的正確性與否,可被視為背光模組品質表現的重要指標。但以生產線品管的角度而言,若要有效率地檢測產線上所有的背光模組之輝度,習知技術仍存在諸多難以克服的障礙。However, there is a problem in the application of the liquid crystal panel as a flat panel display. Since the liquid crystal panel needs to change the color displayed after receiving the light through the internal backlight module, the correctness of the brightness reflection can be regarded as a backlight mode. An important indicator of group quality performance. However, in terms of production line quality control, there are still many insurmountable obstacles to the detection of the brightness of all backlight modules on the production line.

習知的背光模組檢測方式係利用輝度色度儀反覆 地在背光模組上各個檢測位置移動以取得檢測目標之輝度值,故習知技術之檢測方式顯得曠日廢時,且因習知技術的檢測速度遠低於前端之製造生產速度,使得習知的檢測技術無法妥適地應用於背光模組之生產線上,對所有產品進行檢測。The conventional backlight module detection method is repeated by a luminance colorimeter. The ground moves on each detection position on the backlight module to obtain the luminance value of the detection target. Therefore, the detection method of the conventional technology appears to be in vain, and the detection speed of the prior art is much lower than the manufacturing speed of the front end, so that the conventional knowledge The detection technology cannot be properly applied to the production line of the backlight module to test all products.

近期之一種背光模組之輝度檢測方法為利用光學感應裝置對應一背光模組,且此種習知技術同時使用輝度計量測此一背光模組上各個檢測位置之實際輝度,隨後再以光學感應裝置偵測這些檢測位置上之灰階值,並將這些資料輸入一類神經網路系統以進行系統訓練,其後依據系統內部資料推算待量測的背光模組之輝度。A recent method for detecting the brightness of a backlight module is to use a light sensing device to correspond to a backlight module, and the prior art uses the luminance measurement to measure the actual luminance of each detection position on the backlight module, and then optically The sensing device detects the grayscale values at the detection positions, and inputs the data into a neural network system for system training, and then estimates the luminance of the backlight module to be measured according to the internal data of the system.

然而,此種習知技術的類神經網路系統之檢測模式的訓練時間較長,且其將所有訓練資料之重要性視為相等,無法依檢測者的判斷來調整訓練資料的權重值,此造成類神經網路的訓練及檢測過程無法具備靈活的可調整性,是故此習知技術較難精確地反映真實之輝度,因此,如何快速而準確地檢驗背光模組上各個檢測位置之輝度,一直是現今業界期盼解決的問題。However, the detection mode of the neural network system of the prior art has a long training time, and the importance of all the training materials is regarded as equal, and the weight value of the training data cannot be adjusted according to the judgment of the examiner. The training and detection process of the neural network can not be flexible and adjustable. Therefore, it is difficult for the conventional technology to accurately reflect the true luminance. Therefore, how to quickly and accurately verify the luminance of each detection position on the backlight module, It has always been a problem that the industry is looking forward to.

本發明之目的在於提供一種利用多核心支援向量迴歸之背光模組輝度檢測方法及檢測器,其利用同時拍攝背光模組上複數個檢測位置之多個像素點以取得各像素點之灰階值,並透過一系列之校正步驟以及輝度色度儀的量 測,建立各檢測位置的訓練樣本,並可依據這些訓練樣本,利用霍氏轉換產生多個用於計算輝度值的核心函式,透過調變多個核心函式的權重變數值建立輝度之預測模型,可於檢測模式下經由一次拍攝即完成整個背光模組之輝度檢測。The object of the present invention is to provide a backlight module luminance detection method and a detector using multi-core support vector regression, which simultaneously captures a plurality of pixel points of a plurality of detection positions on a backlight module to obtain gray scale values of respective pixel points. And through a series of calibration steps and the amount of luminance colorimeter The training samples of each detection position are established, and according to the training samples, a plurality of core functions for calculating the luminance values are generated by using the Holstein transformation, and the prediction of the luminance is established by modifying the weight variation values of the plurality of core functions. The model can complete the brightness detection of the entire backlight module by one shot in the detection mode.

依據本發明之方法態樣的一實施方式,提供一種利用多核心支援向量迴歸之背光模組輝度檢測方法,其包含以下步驟:定義複數背光模組,其中各個背光模組包含複數檢測位置,各個檢測位置又包含複數像素點,且各個像素點具有對應之一灰階值及一暗場值。選擇部分之背光模組為一第一群組,另一部分之背光模組為一第二群組。放置第一群組於複數模穴內,其中一背光模組對應一模穴。利用一攝像裝置拍攝第一群組之各個背光模組,並擷取各個像素點所對應之灰階值以及暗場值。利用第一群組之各個像素點所對應之灰階值以及暗場值進行暗場校正。將暗場校正之結果進行平場校正,並取得第一群組內對應於各個像素點之一灰階校正值。計算對應於各個檢測位置的那些灰階校正值之一第一平均值。量測各個檢測位置之一實際輝度值。建立對應於各個檢測位置之第一平均值以及實際輝度值為一訓練樣本。利用霍氏轉換產生對應那些訓練樣本之至少一核心函式,並輸入那些訓練樣本及核心函式至一多核心支援向量迴歸系統而產生一預測模型。取出第一群組,並放置第二群組於那些模穴內,其中一背光模組對應一模穴。利用攝像裝置拍攝第二群組之各個背光 模組,並擷取各個像素點所對應之灰階值以及暗場值。利用第二群組之各個像素點所對應之灰階值以及暗場值進行暗場校正。將暗場校正之結果進行平場校正,並取得第二群組內對應於各個像素點之一灰階校正值。計算第二群組中對應於各個檢測位置的灰階校正值之一第二平均值。利用第二群組中之各第二平均值、核心函式以及預測模型計算第二群組中之各個檢測位置之一預測輝度值。According to an embodiment of the method aspect of the present invention, a backlight module luminance detection method using multi-core support vector regression includes the following steps: defining a plurality of backlight modules, wherein each backlight module includes a plurality of detection positions, each The detection location further includes a plurality of pixel points, and each pixel point has a corresponding one of the grayscale values and a darkfield value. The backlight modules of the selected part are a first group, and the backlight modules of the other part are a second group. The first group is placed in the plurality of mold cavities, and one of the backlight modules corresponds to a cavity. A camera unit is used to capture each backlight module of the first group, and grayscale values and dark field values corresponding to the respective pixel points are captured. Dark field correction is performed using gray scale values and dark field values corresponding to respective pixel points of the first group. The result of the dark field correction is subjected to flat field correction, and a gray scale correction value corresponding to one of the respective pixel points in the first group is obtained. A first average of one of the grayscale correction values corresponding to each of the detected positions is calculated. One of the actual detection values of each detection position is measured. A first average value corresponding to each detected position and an actual luminance value are established as a training sample. A prediction model is generated by using a Hawkes transform to generate at least one core function corresponding to those training samples, and inputting those training samples and core functions to a multi-core support vector regression system. The first group is taken out, and the second group is placed in those cavities, and one of the backlight modules corresponds to a cavity. Using the camera to capture the backlights of the second group The module selects the grayscale value and the dark field value corresponding to each pixel. Dark field correction is performed using gray scale values and dark field values corresponding to respective pixel points of the second group. The result of the dark field correction is subjected to the flat field correction, and the gray scale correction value corresponding to one of the respective pixel points in the second group is obtained. A second average of one of the grayscale correction values corresponding to each of the detected positions in the second group is calculated. The predicted luminance values are calculated using one of the second average values, the core function, and the prediction model in the second group.

由前述實施方式可知,當第一群組中各個檢測位置的第一平均值以及實際輝度值分別求得之後,可輸出多組對應於各個檢測位置的訓練樣本,依據這些訓練樣本而透過霍氏轉換產生核心函式,並將前述的這些訓練樣本以及核心函式輸入多核心支援向量迴歸系統以產生預測模型,進而可搭配第二群組中對應各個檢測位置的第二平均值來計算出預測輝度值。It can be seen from the foregoing embodiment that after the first average value and the actual luminance value of each detection position in the first group are respectively obtained, a plurality of sets of training samples corresponding to the respective detection positions may be output, and the fire samples are transmitted according to the training samples. The transformation generates a core function, and the aforementioned training samples and the core function are input into the multi-core support vector regression system to generate a prediction model, and then the second average value corresponding to each detection position in the second group is used to calculate the prediction. Brightness value.

前述方法態樣實施方式之利用多核心支援向量迴歸之背光模組輝度檢測方法,其中攝像裝置可以是一感光耦合元件。前述利用多核心支援向量迴歸之背光模組輝度檢測方法,其中實際輝度值可透過一輝度色度儀測量。在前述方法態樣之實施方式中,核心函式係為一二元一次方程式,且其具有一為正數之斜率。前述之預測模型可包含二拉格朗奇乘數、一權重變數以及一常數,其中權重變數係與核心函式對應,且權重變數的數值可提供一檢測者做為調整其對應的核心函式的比重。藉由核心函式搭配多核心支援向量迴歸系統所產生之預測模型,可大幅度提升背 光模組之輝度檢測的效率,且當有多組核心函式以及預測模型之組合並存時,檢測者亦可依據實際情況自行調校對應各個核心函式的權重變數之比值,兼具較高的靈活性以及檢測之準確度。In the foregoing method aspect, the backlight module luminance detecting method using the multi-core support vector regression, wherein the imaging device can be a photosensitive coupling element. The backlight module luminance detection method using multi-core support vector regression, wherein the actual luminance value can be measured by a luminance colorimeter. In the embodiment of the foregoing method aspect, the core function is a binary one-time equation, and it has a slope of a positive number. The foregoing prediction model may include a two-Lagrangian multiplier, a weighting variable, and a constant, wherein the weighting variable corresponds to the core function, and the value of the weighting variable provides a detector as a core function for adjusting its corresponding The proportion. The core model can be greatly improved by using the prediction model generated by the multi-core support vector regression system. The efficiency of the luminance detection of the optical module, and when there are multiple sets of core functions and combinations of prediction models coexist, the detector can also adjust the ratio of the weight variables corresponding to each core function according to the actual situation, which is higher Flexibility and accuracy of detection.

依據本發明之結構態樣的一實施方式,提供一種利用多核心支援向量迴歸之背光模組輝度檢測器,其包含一攝像裝置、一量測裝置、一暗場校正模組、一平場校正模組、一訓練資料模組、一核心函式產生模組、一多核心支援向量迴歸系統以及一輝度預測模組。其中攝像裝置用以拍攝複數背光模組,背光模組上具有複數個檢測位置,各個檢測位置又具有複數之像素點,攝像裝置拍攝各個背光模組上各個檢測位置,並且擷取各個檢測位置包含的各像素點所對應之一灰階值以及一暗場值。量測裝置用以量測各個檢測位置上之一實際輝度值。暗場校正模組訊號連接攝像裝置並暗場校正攝像裝置所擷取的各個灰階值以及各個暗場值。平場校正模組訊號連接暗場校正模組,並擷取暗場校正模組之校正結果而產生對應各個像素點的灰階校正值,其後計算對應各個檢測位置內部所包含的各個灰階校正值之一第一平均值或一第二平均值。訓練資料模組訊號連接平場校正模組以及量測裝置,並輸出對應各個檢測位置之各個平均值以及各個實際輝度值為一訓練樣本。核心函式產生模組訊號連接訓練資料模組,其擷取訓練資料模組內的那些訓練樣本,並依據那些訓練樣本以霍氏轉換產生出對應於那些訓練樣本的至少一核心函式。多核心支 援向量迴歸系統訊號連接訓練資料模組以及核心函式產生模組而分別擷取那些訓練樣本及核心函式,並產生一預測模型。輝度預測模組係訊號連接多核心支援向量迴歸系統以及平場校正模組,並且分別自前述兩者取得預測模型、核心函式以及那些第二平均值,並且依據預測模型、核心函式以及那些第二平均值計算出對應各個檢測位置的預測輝度值。According to an embodiment of the structural aspect of the present invention, a backlight module luminance detector using multi-core support vector regression includes an imaging device, a measuring device, a dark field correcting module, and a flat field correcting mode. A group, a training data module, a core function generation module, a multi-core support vector regression system, and a luminance prediction module. The camera device is configured to capture a plurality of backlight modules. The backlight module has a plurality of detection positions, and each detection position has a plurality of pixel points. The camera device captures each detection position on each backlight module, and captures each detection position. One of the pixel points corresponds to a grayscale value and a dark field value. The measuring device is configured to measure an actual luminance value at each of the detected positions. The dark field correction module signal is connected to the camera device and the dark field is corrected for each gray scale value and each dark field value captured by the camera device. The flat field correction module signal is connected to the dark field correction module, and the correction result of the dark field correction module is extracted to generate gray scale correction values corresponding to the respective pixel points, and then the respective gray scale corrections included in the respective detection positions are calculated. One of the first average or a second average. The training data module signal is connected to the flat field correction module and the measuring device, and outputs respective average values corresponding to the respective detection positions and respective actual luminance values as a training sample. The core function generates a module signal connection training data module, which captures the training samples in the training data module, and generates at least one core function corresponding to those training samples according to the training samples. Multi-core branch The aid vector regression system signal connects the training data module and the core function generation module to respectively retrieve the training samples and the core functions, and generate a prediction model. The luminance prediction module system is connected to the multi-core support vector regression system and the flat field correction module, and obtains the prediction model, the core function, and the second average values from the foregoing two, respectively, and according to the prediction model, the core function, and those The two average values calculate the predicted luminance values corresponding to the respective detected positions.

藉由前述結構態樣之實施方式,檢測者可在訓練模式之下預先拍攝背光模組以取得背光模組上各個像素點對應之灰階值及暗場值,並透過暗場校正模組、平場校正模組以及訓練資料模組取得每一個檢測位置所包含的複數個灰階校正值之第一平均值,搭配量測裝置所測得各個檢測位置的實際輝度值而得到對應各個檢測位置的訓練樣本後,並在後續的檢測過程中以一次拍攝即完成背光模組之輝度檢測。According to the implementation of the foregoing structural aspect, the detector can pre-shoot the backlight module in the training mode to obtain the grayscale value and the dark field value corresponding to each pixel point on the backlight module, and pass the dark field correction module. The flat field correction module and the training data module obtain a first average value of the plurality of gray scale correction values included in each detection position, and the actual luminance values of the respective detection positions are measured by the measuring device to obtain corresponding detection positions. After training the sample, and in the subsequent detection process, the brightness detection of the backlight module is completed in one shot.

前述結構態樣實施方式之利用多核心支援向量迴歸之背光模組輝度檢測器,其中攝像裝置可以是一感光耦合元件。前述利用多核心支援向量迴歸之背光模組輝度檢測器,其中實際輝度值可透過一輝度色度儀測量。在前述結構態樣之實施方式中,核心函式係為一二元一次方程式,且其具有一為正數之斜率。前述之預測模型可包含二拉格朗奇乘數、一權重變數以及一常數,其中權重變數係與核心函式對應,且權重變數的數值可提供一檢測者做為調整其對應的核心函式的比重。藉由核心函式搭配多核心 支援向量迴歸系統所產生之預測模型,可大幅度提升背光模組之輝度檢測的效率,且當有多組核心函式以及預測模型之組合並存時,檢測者亦可依據實際情況自行調校對應各個核心函式的權重變數之比值,兼具較高的靈活性以及檢測之準確度。In the foregoing structural aspect, a backlight module luminance detector using multi-core support vector regression, wherein the imaging device can be a photosensitive coupling element. The aforementioned backlight module luminance detector using multi-core support vector regression, wherein the actual luminance value can be measured by a luminance colorimeter. In the embodiment of the foregoing structural aspect, the core function is a binary one-time equation, and it has a slope of a positive number. The foregoing prediction model may include a two-Lagrangian multiplier, a weighting variable, and a constant, wherein the weighting variable corresponds to the core function, and the value of the weighting variable provides a detector as a core function for adjusting its corresponding The proportion. With core functions with multiple cores The prediction model generated by the support vector regression system can greatly improve the efficiency of the luminance detection of the backlight module, and when there are multiple sets of core functions and a combination of prediction models coexist, the detector can also adjust the corresponding according to the actual situation. The ratio of the weight variables of each core function has both high flexibility and accuracy of detection.

100‧‧‧利用多核心支援向量迴歸之背光模組輝度檢測方法100‧‧‧Backlight module luminance detection method using multi-core support vector regression

A01~A16‧‧‧步驟A01~A16‧‧‧Steps

i ‧‧‧背光模組 i ‧‧‧Backlight module

c ‧‧‧檢測位置 c ‧‧‧Detection location

j ‧‧‧像素點 j ‧‧‧ pixels

I j ‧‧‧灰階值 I j ‧‧‧ gray scale value

G1‧‧‧第一群組G1‧‧‧First Group

G2‧‧‧第二群組G2‧‧‧ second group

M ‧‧‧核心函式數量 M ‧‧‧ core functions

w m ‧‧‧權重變數 w m ‧‧‧weight variable

K m ‧‧‧核心函式 K m ‧‧‧ core function

b ‧‧‧常數 b ‧‧‧ constant

‧‧‧集合 ‧‧‧set

g ‧‧‧斜率 g ‧‧‧Slope

p ‧‧‧截距 p ‧‧‧ intercept

x i x j ‧‧‧運算元 x i , x j ‧‧‧Operator

ρθ ‧‧‧極座標參數 ρ , θ ‧‧‧ polar coordinates

q ‧‧‧模穴 q ‧‧‧ cavity

‧‧‧集合 ‧‧‧set

D j ‧‧‧暗場值 D j ‧‧‧ dark field value

‧‧‧第一平均值 ‧‧‧First average

f j ‧‧‧平場校正函數 f j ‧‧‧ flat field correction function

‧‧‧實際輝度值 ‧‧‧ actual luminance value

‧‧‧第二平均值 ‧‧‧second average

‧‧‧預測輝度值 ‧‧‧Predicted luminance values

l ‧‧‧背光模組數量 l ‧‧‧Number of backlight modules

α i α i * ‧‧‧拉格朗奇乘數 α i , α i * ‧‧‧Lagrangian multiplier

200‧‧‧利用多核心支援向量迴歸之背光模組輝度檢測器200‧‧‧Backlight module luminance detector using multi-core support vector regression

210‧‧‧攝像裝置210‧‧‧ camera

220‧‧‧量測裝置220‧‧‧Measurement device

230‧‧‧暗場校正模組230‧‧‧ Dark Field Correction Module

240‧‧‧平場校正模組240‧‧‧ Flat Field Correction Module

250‧‧‧訓練資料模組250‧‧‧ Training Data Module

260‧‧‧核心函式產生模組260‧‧‧ core function generation module

270‧‧‧多核心支援向量迴歸系統270‧‧‧Multicore Support Vector Regression System

280‧‧‧輝度預測模組280‧‧‧luminance prediction module

第1A圖、第1B圖係依序繪示依據本發明方法態樣一實施方式之利用多核心支援向量迴歸之背光模組輝度檢測方法的步驟流程圖。1A and 1B are flowcharts showing the steps of the backlight module luminance detection method using multi-core support vector regression according to an embodiment of the method of the present invention.

第2圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法的背光模組及其模穴的示意圖。FIG. 2 is a schematic diagram showing a backlight module and a cavity thereof of the backlight module luminance detection method using multi-core support vector regression in FIG. 1 .

第3圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法的背光模組與攝像裝置示意圖。FIG. 3 is a schematic diagram showing a backlight module and an imaging device of a backlight module luminance detection method using multi-core support vector regression in FIG. 1 .

第4圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法的輝度量測示意圖。Fig. 4 is a schematic diagram showing the luminance measurement of the backlight module luminance detection method using multi-core support vector regression in Fig. 1.

第5圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法的核心函式示意圖。FIG. 5 is a schematic diagram showing the core function of the backlight module luminance detection method using multi-core support vector regression in FIG. 1 .

第6圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法的卡氏座標與核心函式關係圖。Fig. 6 is a diagram showing the relationship between the Cartesian coordinates and the core function of the backlight module luminance detection method using multi-core support vector regression in Fig. 1.

第7圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法的極座標與核心函式關係圖Figure 7 is a diagram showing the polar coordinates and core functions of the backlight module luminance detection method using multi-core support vector regression in Figure 1.

第8圖係繪示依據本發明結構態樣一實施方式之利用多核 心支援向量迴歸之背光模組輝度檢測器的結構方塊圖。Figure 8 is a diagram showing the use of a multi-core according to an embodiment of the present invention. A block diagram of the backlight module luminance detector of the heart support vector regression.

第1A圖、第1B圖係依序繪示依據本發明方法態樣一實施方式之利用多核心支援向量迴歸之背光模組輝度檢測方法100的步驟流程圖。第2圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法100的背光模組及其模穴的示意圖。請配合參照第1圖以及第2圖。本方法包含步驟A01至步驟A16,其中步驟A01為定義複數個背光模組i ,並且i N ,各個背光模組i 各自包含複數個檢測位置c ,並且c N ,各個檢測位置c 又包含複數個像素點j ,並且j N ,每一個像素點j 對應一灰階值I j 以及一暗場值D j 。如步驟A02所示,選擇部分之背光模組i 做為一第一群組G1,而另一部分之背光模組i 為一第二群組G2。步驟A03為放置第一群組G1所包含的各個背光模組i 於一模穴q ,並且q N ,其中一個背光模組i 對應一個模穴q1A and 1B are flowcharts showing the steps of the backlight module luminance detecting method 100 using multi-core support vector regression according to an embodiment of the method of the present invention. FIG. 2 is a schematic diagram showing a backlight module and a cavity thereof of the backlight module luminance detecting method 100 using multi-core support vector regression in FIG. 1 . Please refer to Figure 1 and Figure 2 together. The method includes steps A01 to A16, wherein step A01 defines a plurality of backlight modules i , and i N , each backlight module i each includes a plurality of detection positions c , and c N , each detection position c further includes a plurality of pixel points j , and j N , each pixel point j corresponds to a gray scale value I j and a dark field value D j . As shown in step A02, a portion of the backlight module i is selected as a first group G1, and another portion of the backlight module i is a second group G2. Step A03 is to place each backlight module i included in the first group G1 in a cavity q , and q N , one of the backlight modules i corresponds to a cavity q .

第3圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法100的背光模組i 與攝像裝置210示意圖。配合參照第3圖,步驟A04係利用一攝像裝置210拍攝第一群組G1之各個背光模組i ,並擷取各個像素點j所對應之灰階值I j 及暗場值D j ,詳細來說,各個檢測位置c 於背光模組i 上之顯示圖像係由其所包含的複數個像素點j 所構成,攝像裝置210拍攝各個像素點j 並同時擷取這些 灰階值I j 及暗場值D j ,進一步地,各檢測位置c 內部像素點j 之集合可以表示,例如表示將編號為2的背光模組i 放在編號為1的模穴q 、且此時編號為2的背光模組i (亦即此處的i 值為2)內部之第3個檢測位置c 所包含的所有像素點j 之集合。FIG. 3 is a schematic diagram showing the backlight module i and the imaging device 210 of the backlight module luminance detecting method 100 using multi-core support vector regression in FIG. 1 . With reference to FIG. 3, step A04 based imaging using an imaging device each of the backlight module 210 i of the first group G1, and retrieve the corresponding grayscale value of each pixel j I j and D j dark field value, detail For example, the display image of each detection position c on the backlight module i is composed of a plurality of pixel points j included therein, and the image capturing device 210 captures each pixel point j and simultaneously captures the gray scale values I j and a dark field value D j , further, a set of internal pixel points j of each detection position c may Express, for example Indicates that the backlight module i numbered 2 is placed in the cavity q numbered 1, and the backlight module i numbered 2 (i.e., the i value here is 2) is the third detection position c inside. A collection of all pixel points j that are included.

接著,步驟A05係擷取經由步驟A04所擷取之各個灰階值I j 及暗場值D j ,並且據以進行暗場校正。步驟A06係將步驟A05之暗場校正的結果進行平場校正,並產生對應各個像素點j 之灰階校正值。步驟A07係取各個檢測位置c 所包含的那些灰階校正值之一第一平均值,並可以下式(1)表示,其中表示所包含之像素點j 之數量,f j 為一平場校正函數,步驟A04至步驟A05之暗場校正的結果即為(1)式中所示的max(I j -D j ,0),此部分之暗場校正、平場校正等程序為相關領域之習知技術,故在此不多加詳述。Next, step A05 extracts each gray scale value I j and dark field value D j captured through step A04, and performs dark field correction accordingly. Step A06 performs flat field correction on the result of the dark field correction in step A05, and generates gray scale correction values corresponding to the respective pixel points j . Step A07 is to take a first average of one of the grayscale correction values included in each detection position c . And can be expressed by the following formula (1), wherein Express The number of pixel points j included, f j is a flat field correction function, and the result of dark field correction in steps A04 to A05 is max( I j - D j , 0) shown in (1), Some programs such as dark field correction and flat field correction are well-known techniques in the related art, and therefore will not be described in detail here.

第4圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法100的輝度量測示意圖。配合參照第4圖,步驟A08係以一量測裝置220量測各個檢測位置c 之一實際輝度值。步驟A09為建立對應於前述各個檢測位置c 的第一平均值以及實際輝度值成為一訓練樣本。步驟A10為透過霍氏轉換產生對應這些訓練樣本之至 少一核心函式K m ,並將這些訓練樣本及核心函式K m 輸入至一多核心支援向量迴歸系統270而產生一預測模型,其關係式如下(2)式表示, 其中l 為背光模組數量,α i α i * 為拉格朗奇乘數,M 為核心函式數量,w m 為權重變數,K m 為核心函式,b 為常數,上式中之為第二群組G2中待測之一預測輝度值,其中一預測輝度值係對應第二群組G2中一檢測位置c 之第二平均值,前述之預測模型係包含拉格朗奇乘數α i α i * 、權重變數w m 以及常數b ,在多核心支援向量迴歸系統270中,複數個訓練樣本及核心函式K m 係被用以求解出上述預測模型所包含的各種參數,而此處的預測模型及內部參數的解法乃為習知之多核心向量支援機器所使用,故於此不多詳述。 FIG. 4 is a schematic diagram showing the luminance measurement of the backlight module luminance detecting method 100 using multi-core support vector regression in FIG. 1 . Referring to FIG. 4, step A08 measures an actual luminance value of each detection position c by a measuring device 220. . Step A09 is to establish a first average value corresponding to each of the foregoing detection positions c . Actual luminance value Become a training sample. Step A10 is to generate at least one core function K m corresponding to the training samples by Hooby conversion, and input the training samples and the core function K m to a multi-core support vector regression system 270 to generate a prediction model. The formula is expressed as follows (2), Where l is the number of backlight modules, α i and α i * are Lagrangian multipliers, M is the number of core functions, w m is the weight variable, K m is the core function, b is a constant, in the above formula Predicting a luminance value for one of the samples to be tested in the second group G2, one of which is a predicted luminance value Corresponding to the second average value of a detection position c in the second group G2 The foregoing prediction model includes a Lagrangian multiplier α i and α i * , a weight variable w m , and a constant b . In the multi-core support vector regression system 270, a plurality of training samples and a core function K m are It is used to solve various parameters included in the above prediction model, and the solution of the prediction model and internal parameters here is used by the conventional multi-core vector support device, so it will not be described in detail here.

第5圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法100的核心函式K m 示意圖。關於本實施方式藉由霍氏轉換產生核心函式K m 之詳細說明,請搭配參照第5圖,令,則表示在模穴q 內之l 個背光模組i 上的各個檢測位置c 的訓練樣本之集合,舉例來說,表示第一個模穴q 內部所測得的80個背光模組i 上之第一個檢測位置c 的訓練樣本之集合。在第5圖中,橫軸表示對應各個檢測位置c 的第一平均值,縱軸表示對應各個第一平均值之實際輝度值,因此,第5圖中之每一個點分別代表一個訓練樣本。FIG. 5 is a schematic diagram showing the core function K m of the backlight module luminance detecting method 100 using multi-core support vector regression in FIG. 1 . For a detailed description of the core function K m generated by Holstein conversion in the present embodiment, please refer to FIG. 5, ,then L represents a set of the i th backlight module q cavity within respective detected position c of the training samples, for example, A set of training samples representing the first detection position c on the 80 backlight modules i measured inside the first cavity q . In Fig. 5, the horizontal axis represents the first average value corresponding to each detection position c The vertical axis indicates the corresponding first average Actual luminance value Therefore, each point in Figure 5 represents a training sample.

第6圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法100的卡氏座標與核心函式K m 關係圖。第7圖係繪示第1圖之利用多核心支援向量迴歸之背光模組輝度檢測方法100的極座標與核心函式K m 關係圖。請配合參照第6圖及第7圖,如第5圖中所述,各個訓練樣本在第6圖中以卡氏座標上的一點表示(為使說明易於理解,圖中僅以三個訓練樣本作為示意),且全部的訓練樣本之集合為,而此處之x i 以及y i 分別對應第5圖中的第一平均值以及實際輝度值,本實施方式以霍氏轉換求取核心函式K m ,其係將第6圖中可能通過各個點之直線函數全數轉換至第7圖極座標中,並且這些直線函數滿足ρ =x i cosθ +y i sinθ ,由一般數學知識可知,在對應同一組x i 以及y i 之情況下,第7圖中所有滿足條件之多數個(ρ ,θ )座標係組成一正弦波函數,因此,通過第6圖中三個訓練樣本的所有直線函數,其係分為三組並被轉繪成三個正弦波函數於第7圖中。FIG 6 illustrates a system using a first map of the multi-core support vector regression luminance of the backlight module Cartesian coordinate detection function 100 of the core K m diagram. FIG 7 illustrates the use of a first line of FIG plurality of core support vector regression method for detecting the luminance of the backlight module and the polar core 100 of the function K m diagram. Please refer to Figure 6 and Figure 7. As shown in Figure 5, each training sample is represented by a point on the Cartesian coordinate in Figure 6 (for ease of understanding, only three training samples are shown in the figure). As an illustration), and the set of all training samples is Where x i and y i correspond to the first average in Figure 5, respectively Actual luminance value In this embodiment, the core function K m is obtained by the Hawker transform, which converts the full linear function of each point in FIG. 6 into the polar coordinates of the seventh figure, and the straight line functions satisfy ρ = x i cos θ + y i sin θ , as can be seen from general mathematical knowledge, in the case of the same set of x i and y i , all the ( ρ , θ ) coordinate systems satisfying the condition in Fig. 7 form a sine wave function, therefore, Through all the straight line functions of the three training samples in Fig. 6, the system is divided into three groups and is transformed into three sine wave functions in Fig. 7.

以第6圖之卡氏座標而言,通過(x i ,y i )的所有直線因滿足ρ =x i cosθ +y i sinθ ,因此這些直線可用如下之(3)式表示,以第6圖作為示例,i =1,2,3, 由第(3)式可知,這些直線可被視為複數個二元一次方程式,且其斜率以及截距係受到ρθ 所影響,在第6圖中可明顯觀察到的是,三個點可能發生共線之情況,因此當特定的二元一次方程式同時通過三點時,可知此一(ρ ,θ )於第7圖之極座標中,必定皆為三個正弦波函數通過,亦即此(ρ ,θ )為三個正弦波函數之交點,再次參照第5圖,利用霍氏轉換的此一特性,當有愈多的訓練樣本被同一個二元一次方程式通過時,代表對應之二元一次方程式能夠很好地描述多個訓練樣本中之第一平均值以及實際輝度值的關係,也就是說,此一或是複數個二元一次方程式具有較高的參考價值,而可被選擇為檢測輝度時所需的核心函式K m ,並可以(4)式表示。In the case of the Cartesian coordinates of Fig. 6, all the straight lines passing ( x i , y i ) satisfy ρ = x i co co θ + y i sin θ , so these straight lines can be expressed by the following formula (3), 6 figure as an example, i =1, 2, 3, It can be seen from equation (3) that these straight lines can be regarded as a plurality of binary one-time equations, and the slope and the intercept are affected by ρ and θ . It can be clearly observed in Fig. 6 that three points are The collinearity may occur, so when a particular binary equation passes through three points at the same time, it can be known that this ( ρ , θ ) is in the polar coordinates of Figure 7, and must all pass three sine wave functions, that is, ( ρ , θ ) is the intersection of three sine wave functions. Referring again to Figure 5, using this characteristic of the Hawker transformation, when more training samples are passed by the same binary equation, the corresponding two The meta-first equation is a good description of the first average of multiple training samples. Actual luminance value The relationship, that is to say, this one or a plurality of binary one-time equations has a high reference value, and can be selected as the core function K m required for detecting the luminance, and can be expressed by the equation (4).

K m (x i ,x j )=(g .〈x i ,x j 〉+p ) (4);其中g 為斜率,p 為截距,x i 以及x j 為核心函式K m 之運算元,其分別對應第一平均值以及第二平均值,需在此說明的是,由第5圖及第6圖可得知,在合理的自然情況之下,多個訓練樣本內的第一平均值以及實際輝度值兩者呈現正相關,因此在第(3)式中,僅需考慮斜率g 為正數者。 K m ( x i , x j )=( g .< x i , x j 〉+ p ) (4); where g is the slope, p is the intercept, and x i and x j are the operations of the kernel function K m Yuan, which corresponds to the first average And a second average It should be noted that, as shown in Figures 5 and 6, the first average value in multiple training samples under reasonable natural conditions is known. Actual luminance value Both are positively correlated, so in equation (3), only the slope g is considered to be positive.

步驟A11係取出位於各個模穴q 內之第一群組G1,並將第二群組G2之那些背光模組i 放置於各個模穴q 內部,其中一個背光模組i 對應一個模穴q 。步驟A12至步 驟A15係分別對第二群組G2重複執行與步驟A04至步驟A07相同之處理程序,並取得對應第二群組G2內部各個檢測位置c 所包含的那些灰階校正值之一第二平均值。步驟A16為將前述步驟A10所產生的預測模型以及核心函式K m 代入第(2)式並求取預測輝度值In step A11, the first group G1 located in each cavity q is taken out, and those backlight modules i of the second group G2 are placed inside each cavity q , and one backlight module i corresponds to one cavity q . Steps A12 to A15 repeatedly perform the same processing procedure as step A04 to step A07 for the second group G2, and obtain one of the grayscale correction values included in each detection position c corresponding to the second group G2. Two average . Step A16 is to substitute the prediction model generated by the foregoing step A10 and the core function K m into the equation (2) and obtain the predicted luminance value. .

整體說明之,在開始第二群組G2內部之各個預測輝度值的計算前,前述之步驟A01至步驟A09係用以建立複數個訓練樣本,步驟A10則藉由這些訓練樣本以霍氏轉換來產生至少一個或複數個核心函式K m ,並輸入那些訓練樣本及核心函式K m 至多核心支援向量迴歸系統270而產生預測模型,隨後步驟A11至步驟A15則用以取得第二群組G2內部各個像素點j 之第二平均值,以利於在步驟A16中求取預測輝度值Overall, the predicted luminance values inside the second group G2 are started. Before the calculation, the foregoing steps A01 to A09 are used to establish a plurality of training samples, and the step A10 generates at least one or a plurality of core functions K m by using the training samples, and inputs those training samples. the core functions of up to K m and the core support vector regression prediction model generating system 270, and then the step A11 to step A15 for obtaining a second average value of each pixel j of the second group G2 internal In order to obtain the predicted luminance value in step A16. .

此外,檢測者可在核心函式產生模組260中,自行設定當一二元一次方程式通過一定個數以上之訓練樣本時,自動選擇此二元一次方程式作為核心函式K m ,例如僅選擇同時通過10個以上的訓練樣本時,方挑選為核心函式K m ,此時多核心支援向量迴歸系統270則依據被選出的核心函式K m 以及那些訓練樣本來產生預測模型。In addition, the detector can automatically set the binary one-time equation as the core function K m when the binary function equation is passed through a certain number of training samples in the core function generation module 260, for example, only selecting When more than 10 training samples are passed at the same time, the kernel function K m is selected. At this time, the multi-core support vector regression system 270 generates a prediction model according to the selected core function K m and those training samples.

值得一提的是,本方法態樣之實施方式所提供之複數個核心函式K m 除係由前述流程被計算出之外,前述第(2)式中所計算出的權重變數w m 另可調整各個核心函式K m 的比重值,進一步地說,如已知在第5圖中的某一訓練樣本為較佳的,則當有一或複數個核心函式K m 通過此訓練樣本 的座標位置時,檢測者即可依此調升此一或複數個核心函式K m 所對應之權重變數w m ,反之當一訓練樣本座標已知為較差或較不符合常理時,檢測者亦可依此而調降對應核心函式K m 所屬之權重變數w m ,或可直接透過調整權重變數w m 使得對應的核心函式K m 被排除於輝度檢測之選擇條件外。It is worth mentioning that, in addition to the foregoing process, the plurality of core functions K m provided by the implementation of the method aspect are calculated by the foregoing process, and the weight variable w m calculated in the foregoing formula (2) is additionally The specific gravity value of each core function K m can be adjusted. Further, as one of the training samples known in FIG. 5 is preferred, when one or more core functions K m pass through the training sample when the coordinate position, the examiner can be raised so this core function or a plurality of weights corresponding K m of variable weight w m, and vice versa when the coordinates of a known training samples is poor or less consistent with common sense, detection Zheyi corresponding to the core and so can be cut right function m K variables relevant to the weight w m, or may be variable by adjusting the weights W m K m that directly corresponds to the core functions are excluded outer luminance detecting the selection condition.

藉此,前述實施方式可利用拍攝各個背光模組以取得對應各個檢測位置的第一平均值,並搭配量測各個檢測位置的實際輝度值來建立訓練樣本,隨後再利用這些訓練樣本以霍氏轉換產生一或複數個符合條件的核心函式,並藉由多核心支援向量迴歸系統依照訓練樣本以及核心函式來產生預測模型,並可由檢測者藉由調整多個核心函式的權重變數,進一步地使檢測結果更加趨近於真實之實際輝度值。Therefore, the foregoing embodiment may use the shooting of each backlight module to obtain a first average value corresponding to each detection position, and compare the actual luminance values of the respective detection positions to establish training samples, and then use the training samples to adopt Holmes The transformation generates one or a plurality of qualified core functions, and the prediction model is generated according to the training samples and the core function by the multi-core support vector regression system, and the weight variable of the plurality of core functions can be adjusted by the detector. Further, the detection result is closer to the actual actual luminance value.

前述實施方式中使用之攝像裝置210可以是一感光耦合元件,並且不以此為限,另外,量測實際輝度值之量測裝置220可以是一輝度色度儀,並且不以此為限。The image pickup device 210 used in the foregoing embodiment may be a photosensitive coupling element, and is not limited thereto, and in addition, the actual luminance value is measured. The measuring device 220 can be a luminance colorimeter, and is not limited thereto.

第8圖係繪示依據本發明結構態樣一實施方式之利用多核心支援向量迴歸之背光模組輝度檢測器200的結構方塊圖。請一併參照第2圖以及第8圖,利用多核心支援向量迴歸之背光模組輝度檢測器200包含一攝像裝置210、一量測裝置220、一暗場校正模組230、一平場校正模組240、一訓練資料模組250、一多核心支援向量迴歸系統270以及一輝度預測模組280,其中攝像裝置210用以拍 攝複數背光模組i ,並且i N ,其中各個背光模組i 係被放置在對應之一模穴q 內,並且q N ,而背光模組i 上具有複數個檢測位置c ,並且c N ,各個檢測位置c 又具有複數之像素點j ,並且j N ,其中各個像素點j 對應一灰階值I j 以及一暗場值D j ,詳細來說,各個檢測位置c 於背光模組i 上之顯示圖像係由其所包含的複數個像素點j 所構成,配合參照第2圖與第3圖,攝像裝置210拍攝各個背光模組i 時,同時擷取各個像素點j 的灰階值I j 以及暗場值D j ,進一步地,各檢測位置c 內部像素點j 之集合可以表示,例如表示將編號為2的背光模組i 放在編號為1的模穴q 、且此時編號為2的背光模組i (亦即此處的i 值為2)內部之第3個檢測位置c 所包含的所有像素點j 之集合。再配合參照第4圖,量測裝置220用以量測各個檢測位置c 上之一實際輝度值。暗場校正模組230訊號連接攝像裝置210,並且暗場校正由攝像裝置210所攝得之各個灰階值I j 以及各個暗場值D j 。請配合參照第(1)式,平場校正模組240訊號連接暗場校正模組230並藉由擷取暗場校正模組230輸出的暗場校正結果來計算出對應這些像素點j 之複數灰階校正值,並將這些灰階校正值依據對應之檢測位置c 取平均而成為一第一平均值,參考第(1)式,其中表示包含之像素點j 之數量,f j 為一平場校正函數,此處所使用之暗場校正與平場校正為相關領域之習知技術,在此不多加詳述。配合參照第5圖,訓練資料模組250訊號連接平場校正模組240以及量測裝置220,並輸出對應各個檢 測位置c 之各個第一平均值以及各個實際輝度值為一訓練樣本,因此在第5圖中,每個訓練樣本的第一平均值以及實際輝度值可藉由一個點來表示。核心函式模組260訊號連接訓練資料模組250並擷取訓練資料模組250內部的那些訓練樣本,其後依據那些訓練樣本以霍氏轉換產生出對應於那些訓練樣本的至少一核心函式K m ,且核心函式K m 為一斜率為正數之二元一次方程式,此處核心函式K m 的產生以及特性與前述本發明之方法態樣實施方式相同,故不多作說明。多核心支援向量迴歸系統270訊號連接訓練資料模組250及核心函式模組260並分別擷取那些訓練樣本及核心函式,並藉此產生輝度預測用途之一預測模型,此處預測模型係包含拉格朗奇乘數α i α i * 、權重變數w m 以及常數b ,預測模型之產生與前述本發明之方法態樣實施方式相同,係為習知之多核心向量支援機器所使用,故不多詳述。輝度預測模組280訊號連接多核心支援向量迴歸系統270以及平場校正模組240,輝度預測模組280具有一預測模式,在此說明的是,在非預測之狀態下,平場校正模組240擷取暗場校正模組230輸出之暗場校正結果,並輸出對應各個檢測位置的平場校正結果,將這些平場校正結果取平均而成為一第一平均值,而當輝度預測模組280處於預測模式時,平場校正模組240執行與前述相同之步驟,但輸出之結果為一第二平均值,此時輝度預測模組280分別自多核心支援向量迴歸系統270以及平場校正模組240擷取預測模型、核心函式K m 以及第二平 均值,並且依據預測模型、核心函式K m 及那些第二平均值計算出對應各個檢測位置c 之一預測輝度值,此 處預測輝度值之計算與前述之本發明方法態樣實施方式相同。FIG. 8 is a block diagram showing the structure of a backlight module luminance detector 200 using multi-core support vector regression according to an embodiment of the present invention. Referring to FIG. 2 and FIG. 8 together, the backlight module luminance detector 200 using multi-core support vector regression includes an imaging device 210, a measuring device 220, a dark field correction module 230, and a flat field correction mode. a group 240, a training data module 250, a multi-core support vector regression system 270, and a luminance prediction module 280, wherein the camera device 210 is configured to capture a plurality of backlight modules i , and i N , wherein each backlight module i is placed in a corresponding one of the cavities q , and q N , and the backlight module i has a plurality of detection positions c , and c N , each detection position c has a complex pixel point j , and j N , wherein each pixel point j corresponds to a gray scale value I j and a dark field value D j . In detail, the display image of each detection position c on the backlight module i is composed of a plurality of pixel points included therein. when j is constituted, with reference to FIG. 2 and FIG. 3, each of the imaging apparatus 210 imaging backlight module i, while capturing each pixel grayscale value j I j D j and the dark-field values, further, each of the detection The set of internal pixel points j of position c can Express, for example Indicates that the backlight module i numbered 2 is placed in the cavity q numbered 1, and the backlight module i numbered 2 (i.e., the i value here is 2) is the third detection position c inside. A collection of all pixel points j that are included. Referring to FIG. 4 again, the measuring device 220 is configured to measure an actual luminance value at each detecting position c . . The dark field correction module 230 signals the camera device 210, and the dark field corrects the gray scale values I j and the respective dark field values D j captured by the camera device 210. Referring to the formula (1), the flat field correction module 240 is connected to the dark field correction module 230 and calculates the complex gray corresponding to the pixel points j by extracting the dark field correction result output by the dark field correction module 230. The order correction value, and the gray scale correction values are averaged according to the corresponding detection position c to become a first average value , refer to the formula (1), where Express The number of pixel points j included, f j is a flat field correction function, and the dark field correction and flat field correction used herein are well-known techniques in the related art, and will not be described in detail here. Referring to FIG. 5, the training data module 250 is connected to the flat field correction module 240 and the measuring device 220, and outputs respective first average values corresponding to the respective detection positions c . And the actual luminance values Is a training sample, so in Figure 5, the first average of each training sample Actual luminance value It can be represented by a dot. The core function module 260 signals the training data module 250 and retrieves the training samples inside the training data module 250, and then generates at least one core function corresponding to those training samples according to the training samples according to the Hoech transform. K m , and the core function K m is a binary one-order equation with a positive slope. Here, the generation and characteristics of the core function K m are the same as those of the foregoing method aspect of the present invention, and therefore will not be described. The multi-core support vector regression system 270 signals the training data module 250 and the core function module 260 and separately retrieves the training samples and the core functions, and thereby generates one of the prediction models for the luminance prediction use, where the prediction model is Including the Lagrangian multipliers α i and α i * , the weight variable w m and the constant b , the prediction model is generated in the same manner as the above-described method aspect embodiment of the present invention, and is used by a conventional multi-core vector support machine. Therefore, it is not detailed. The luminance prediction module 280 is connected to the multi-core support vector regression system 270 and the flat field correction module 240. The luminance prediction module 280 has a prediction mode. Here, in the non-predicted state, the flat field correction module 240撷The dark field correction result output by the dark field correction module 230 is taken, and the flat field correction result corresponding to each detection position is output, and the flat field correction results are averaged to become a first average value. When the luminance prediction module 280 is in the prediction mode, the flat field correction module 240 performs the same steps as described above, but the output is a second average. At this time, the luminance prediction module 280 retrieves the prediction model, the core function K m , and the second average from the multi-core support vector regression system 270 and the flat field correction module 240, respectively. And based on the prediction model, the core function K m and those second averages Calculating a predicted luminance value corresponding to one of the respective detection positions c , here predicts the luminance value The calculation is the same as the foregoing embodiment of the method aspect of the present invention.

藉由本發明結構態樣之一實施方式,檢測者可於進行背光模組之輝度檢測前,先行利用攝像裝置以及前述之暗場校正模組、平場校正模組、訓練資料模組來建立訓練樣本,而核心函式產生模組產生核心函式,並利用多核心支援向量迴歸系統依據訓練樣本和核心函式產生預測模型,藉此在後續的檢測當中,可於一次拍攝內即經由輝度預測模組透過核心函式與預測模型來求取對應各個第二平均值之預測輝度值。According to one embodiment of the structural aspect of the present invention, the detector can first establish a training sample by using the camera device and the dark field correction module, the flat field correction module, and the training data module before performing the luminance detection of the backlight module. The core function generation module generates a core function, and uses the multi-core support vector regression system to generate a prediction model based on the training sample and the core function, thereby, in the subsequent detection, the luminance prediction mode can be performed in one shot. The group obtains the predicted luminance values corresponding to the respective second average values through the core function and the prediction model.

此外,在前述實施方式中使用之攝像裝置210可以是一感光耦合元件,並且不以此為限,另外,量測實際輝度值之量測裝置220可以是一輝度色度儀,並且不以此為限。核心函式K m 除係由前述流程被計算出之外,前述第(2)式中的權重變數w m 可調整各個核心函式K m 的比重值,其調整依據已說明於本發明之方法態樣實施方式內,故不再重覆說明。In addition, the imaging device 210 used in the foregoing embodiment may be a photosensitive coupling element, and is not limited thereto, and in addition, the actual luminance value is measured. The measuring device 220 can be a luminance colorimeter, and is not limited thereto. The kernel function K m is calculated by the foregoing process, and the weight variable w m in the above formula (2) can adjust the specific gravity value of each core function K m , and the adjustment is based on the method described in the present invention. In the case of the embodiment, it will not be repeated.

由上述實施方式可知,本發明具有如下之優點:第一,利用多核心支援向量迴歸之檢測方法可改善習用檢測方法在每次檢測時都需要逐一在背光模組上各個檢測位置往復移動來檢測輝度的耗時缺點,本發明可在建立輝度預測模型後,在一次拍攝內即完成複數個背光模組的輝度檢 測,有效地提升檢測之效率,第二,相較於習知的類神經網路系統,本發明所需的訓練時間較短,並且具備彈性而適合產線使用,而在檢測之結果上亦較以往之方法更加準確,可實質應用於背光模組生產線之品質管控上。第三,本發明係可依據使用者設定的條件而自動選擇出複數個核心函式來計算出各個檢測位置的輝度值,並且允許使用者依照產線的黃金樣本,彈性調整核心函式所對應的權重變數,而使得預測輝度值更加精確地貼近實際情況。It can be seen from the above embodiments that the present invention has the following advantages: First, the multi-core support vector regression detection method can improve the conventional detection method, and each test needs to reciprocate on each detection position on the backlight module to detect each time. The time-consuming shortcoming of luminance, the invention can complete the luminance detection of a plurality of backlight modules in one shot after establishing the luminance prediction model The measurement effectively improves the efficiency of detection. Secondly, compared with the conventional neural network system, the invention requires shorter training time and is flexible and suitable for use in the production line, and the detection result is also More accurate than the previous method, it can be applied to the quality control of the backlight module production line. Thirdly, the present invention can automatically select a plurality of core functions according to the conditions set by the user to calculate the luminance values of the respective detection positions, and allow the user to adjust the core function according to the gold sample of the production line. The weighting variable makes the predicted luminance value more accurate to the actual situation.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

210‧‧‧攝像裝置210‧‧‧ camera

q ‧‧‧模穴 q ‧‧‧ cavity

i ‧‧‧背光模組 i ‧‧‧Backlight module

c ‧‧‧檢測位置 c ‧‧‧Detection location

Claims (14)

一種利用多核心支援向量迴歸之背光模組輝度檢測方法,包含以下步驟:定義複數背光模組,各該背光模組包含複數檢測位置,各該檢測位置包含複數像素點,各該像素點具有對應之一灰階值及一暗場值;選擇部分之該些背光模組為一第一群組,另一部分之該些背光模組為一第二群組;放置該第一群組於複數模穴內,其中一該背光模組對應一該模穴;利用一攝像裝置拍攝該第一群組之各該背光模組,並擷取各該像素點所對應之該灰階值以及該暗場值;利用該第一群組之各該像素點所對應之該灰階值以及該暗場值進行暗場校正;將暗場校正之結果進行平場校正,並取得該第一群組內對應於各該像素點之一灰階校正值;計算對應於各該檢測位置的該些灰階校正值之一第一平均值;量測各該檢測位置之一實際輝度值;建立對應於各該檢測位置之該第一平均值以及該實際輝度值為一訓練樣本;利用霍氏轉換產生對應該些訓練樣本之至少一核心函式,並輸入該些訓練樣本及該核心函式至一多核心支援向量迴歸系統而產生一預測模型; 取出該第一群組,並放置該第二群組於該些模穴內,其中一該背光模組對應一該模穴;利用該攝像裝置拍攝該第二群組之各該背光模組,並擷取各該像素點所對應之該灰階值以及該暗場值;利用該第二群組之各該像素點所對應之該灰階值以及該暗場值進行暗場校正;將暗場校正之結果進行平場校正,並取得該第二群組內對應於各該像素點之一灰階校正值;計算該第二群組中對應於各該檢測位置的該些灰階校正值之一第二平均值;以及利用該第二群組中之各該第二平均值、該核心函式以及該預測模型計算該第二群組中之各該檢測位置之一預測輝度值。A backlight module luminance detection method using multi-core support vector regression includes the following steps: defining a plurality of backlight modules, each of the backlight modules including a plurality of detection positions, each of the detection positions including a plurality of pixel points, each of the pixel points having a corresponding a grayscale value and a dark field value; the backlight modules of the selected portion are a first group, and the backlight modules of the other portion are a second group; the first group is placed in a complex mode In the hole, one of the backlight modules corresponds to the cavity; the backlight module of the first group is captured by a camera device, and the grayscale value corresponding to each pixel point and the dark field are captured a dark field correction using the grayscale value corresponding to each pixel of the first group and the dark field value; performing flat field correction on the result of the dark field correction, and obtaining the corresponding corresponding in the first group a grayscale correction value of each of the pixels; calculating a first average value of the grayscale correction values corresponding to each of the detection positions; measuring an actual luminance value of each of the detection locations; establishing corresponding to each detection The first level of position And the actual luminance value is a training sample; generating at least one core function corresponding to the training samples by using the Hawker transformation, and inputting the training samples and the core function to a multi-core support vector regression system to generate one Predictive model; Taking out the first group, and placing the second group in the cavity, one of the backlight modules corresponding to the cavity; using the camera to capture the backlight module of the second group, And capturing the grayscale value corresponding to each pixel point and the dark field value; performing dark field correction by using the grayscale value corresponding to each pixel point of the second group and the dark field value; Performing a field correction on the result of the field correction, and obtaining a grayscale correction value corresponding to one of the pixels in the second group; calculating the grayscale correction values corresponding to each of the detection locations in the second group a second average value; and calculating, by using each of the second average values in the second group, the core function, and the prediction model, a predicted luminance value of each of the detected positions in the second group. 如請求項1之利用多核心支援向量迴歸之背光模組輝度檢測方法,其中該攝像裝置為一感光耦合元件。The backlight module luminance detecting method using the multi-core support vector regression of claim 1, wherein the imaging device is a photosensitive coupling element. 如請求項1之利用多核心支援向量迴歸之背光模組輝度檢測方法,其中該實際輝度值透過一輝度色度儀測量。The backlight module luminance detection method using multi-core support vector regression of claim 1, wherein the actual luminance value is measured by a luminance colorimeter. 如請求項1之利用多核心支援向量迴歸之背光模組輝度檢測方法,其中該核心函式為一二元一次方程式。The backlight module luminance detection method using multi-core support vector regression of claim 1, wherein the core function is a binary one-time equation. 如請求項4之利用多核心支援向量迴歸之背光模組輝度檢測方法,該二元一次方程式具有一斜率,且該斜率為一正數。The backlight module luminance detection method using multi-core support vector regression of claim 4, the binary one-time equation has a slope, and the slope is a positive number. 如請求項1之利用多核心支援向量迴歸之背光模組輝度檢測方法,其中該預測模型包含二拉格朗奇乘數、一權重變數以及一常數。The backlight module luminance detection method using multi-core support vector regression of claim 1, wherein the prediction model includes two Lagrangian multipliers, a weight variable, and a constant. 如請求項6之利用多核心支援向量迴歸之背光模組輝度檢測方法,其中該權重變數對應該核心函式,且該權重變數可由一檢測者調控。The backlight module luminance detection method using multi-core support vector regression of claim 6, wherein the weight variable corresponds to a core function, and the weight variable can be regulated by a detector. 一種利用多核心支援向量迴歸之背光模組輝度檢測器,包含:一攝像裝置,其用以拍攝複數背光模組,其中各該背光模組包含複數檢測位置,各該檢測位置包含複數像素點,該攝像裝置拍攝各該背光模組之各該檢測位置,並擷取各該檢測位置之各該像素點所對應之一灰階值以及一暗場值;一量測裝置,其量測各該檢測位置之一實際輝度值;一暗場校正模組,其訊號連接該攝像裝置並暗場校正該攝像裝置擷取之各該灰階值及各該暗場值;一平場校正模組,其訊號連接該暗場校正模組,該平場校正模組擷取該暗場校正模組之校正結果並產生對應各 該像素點之各該灰階校正值,其後並計算對應各該檢測位置內部的各該灰階校正值之一第一平均值或一第二平均值;一訓練資料模組,其訊號連接該平場校正模組以及該量測裝置,並輸出對應各該檢測位置之各該第一平均值以及各該實際輝度值為一訓練樣本;一核心函式產生模組,其訊號連接該訓練資料模組並擷取該些訓練樣本,並以霍氏轉換產生對應於該些訓練樣本之至少一核心函式;一多核心支援向量迴歸系統,其訊號連接該訓練資料模組及該核心函式產生模組並分別擷取該些訓練樣本及該核心函式,並產生一預測模型;以及一輝度預測模組,其訊號連接該多核心支援向量迴歸系統以及該平場校正模組而分別擷取該預測模型及該些第二平均值,並依據該預測模型以及該些第二平均值計算各該背光模組內部各該檢測位置之一預測輝度值。A backlight module luminance detector using multi-core support vector regression includes: a camera device for capturing a plurality of backlight modules, wherein each of the backlight modules includes a plurality of detection positions, each of the detection positions including a plurality of pixel points, The camera device captures each of the detection positions of each of the backlight modules, and captures one grayscale value and one dark field value corresponding to each pixel of each detection position; a measuring device, which measures each Detecting an actual luminance value of a position; a dark field correction module, wherein the signal is connected to the camera device and the dark field corrects each grayscale value and each dark field value captured by the camera device; a flat field correction module The signal is connected to the dark field correction module, and the flat field correction module captures the correction result of the dark field correction module and generates corresponding Each of the grayscale correction values of the pixel points, and then calculating a first average value or a second average value corresponding to each of the grayscale correction values in each of the detection positions; a training data module, and the signal connection The flat field correction module and the measuring device output a first average value corresponding to each of the detection positions and each of the actual luminance values as a training sample; a core function generating module, wherein the signal is connected to the training data The module captures the training samples and generates at least one core function corresponding to the training samples by using a Holker conversion; a multi-core support vector regression system, wherein the signal is connected to the training data module and the core function Generating a module and separately extracting the training samples and the core function, and generating a prediction model; and a luminance prediction module, wherein the signal is connected to the multi-core support vector regression system and the flat field correction module respectively The prediction model and the second average values are used to calculate a predicted luminance value of each of the detection positions in each of the backlight modules according to the prediction model and the second average values. 如請求項8之利用多核心支援向量迴歸之背光模組輝度檢測器,其中該攝像裝置為一感光耦合元件。The backlight module luminance detector of claim 8 which utilizes multi-core support vector regression, wherein the camera device is a photosensitive coupling element. 如請求項8之利用多核心支援向量迴歸之背光模組輝度檢測器,其中該實際輝度值透過一輝度色度儀測量。A backlight module luminance detector using multi-core support vector regression of claim 8, wherein the actual luminance value is measured by a luminance colorimeter. 如請求項8之利用多核心支援向量迴歸之背光模組輝度檢測器,其中該核心函式為一二元一次方程式。A backlight module luminance detector using multi-core support vector regression of claim 8, wherein the core function is a binary one-time equation. 如請求項11之利用多核心支援向量迴歸之背光模組輝度檢測器,該二元一次方程式具有一斜率,且該斜率為一正數。A backlight module luminance detector using multi-core support vector regression of claim 11 has a slope and the slope is a positive number. 如請求項8之利用多核心支援向量迴歸之背光模組輝度檢測器,其中該預測模型包含二拉格朗奇乘數、一權重變數以及一常數。A backlight module luminance detector using multi-core support vector regression of claim 8, wherein the prediction model includes two Lagrangian multipliers, a weight variable, and a constant. 如請求項13之利用多核心支援向量迴歸之背光模組輝度檢測器,其中該權重變數對應該核心函式,且該權重變數可由一檢測者調控。The backlight module luminance detector of claim 13 using multi-core support vector regression, wherein the weight variable corresponds to a core function, and the weight variable can be regulated by a detector.
TW103138925A 2014-11-10 2014-11-10 A luminance inspecting method for backlight modules based on multiple kernel support vector regression and apparatus thereof TWI494549B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103138925A TWI494549B (en) 2014-11-10 2014-11-10 A luminance inspecting method for backlight modules based on multiple kernel support vector regression and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103138925A TWI494549B (en) 2014-11-10 2014-11-10 A luminance inspecting method for backlight modules based on multiple kernel support vector regression and apparatus thereof

Publications (2)

Publication Number Publication Date
TWI494549B true TWI494549B (en) 2015-08-01
TW201617591A TW201617591A (en) 2016-05-16

Family

ID=54343294

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103138925A TWI494549B (en) 2014-11-10 2014-11-10 A luminance inspecting method for backlight modules based on multiple kernel support vector regression and apparatus thereof

Country Status (1)

Country Link
TW (1) TWI494549B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575496B (en) * 2016-01-15 2017-03-21 And a method of setting and correcting the digital backlight device for correcting the brightness

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200931989A (en) * 2008-01-15 2009-07-16 Univ Nat Central Method to measure the gray scale-brightness characteristics and the uniformity of display, and structure of the system thereof
US20130285819A1 (en) * 2012-04-27 2013-10-31 Shenzhen China Star Optoelectronics Technology Co, Ltd. Inspection method of backlight module and inspection apparatus thereof
CN103630332A (en) * 2013-11-15 2014-03-12 南京中电熊猫照明有限公司 Backlight brightness uniformity measuring device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200931989A (en) * 2008-01-15 2009-07-16 Univ Nat Central Method to measure the gray scale-brightness characteristics and the uniformity of display, and structure of the system thereof
US20130285819A1 (en) * 2012-04-27 2013-10-31 Shenzhen China Star Optoelectronics Technology Co, Ltd. Inspection method of backlight module and inspection apparatus thereof
CN103630332A (en) * 2013-11-15 2014-03-12 南京中电熊猫照明有限公司 Backlight brightness uniformity measuring device and method

Also Published As

Publication number Publication date
TW201617591A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
WO2021063062A1 (en) Live-line testing system for power grid apparatus, thermal infrared imager, and method
CN104729718B (en) A kind of processing system and method for infrared imaging system NETD
CN102353519B (en) Resolving power evaluation method for three-generation dim light image intensifier
WO2010030056A1 (en) Automatic contour detection method for ultrasonic diagnosis appartus
CN108764257A (en) A kind of pointer instrument recognition methods of various visual angles
JP6234044B2 (en) Exterior material deterioration judging method and judging device
KR101503213B1 (en) Visual range measurement device and method using a geographical information and perspective of a visual image
CN109756720B (en) Focus and/or parallax adjustment in acoustic imaging using distance information
CN110428762B (en) OLED panel aging test luminescence characteristic detection method based on pixel brightness
CN109870240A (en) Infrared Targets image real-time quantitative processing system with environment self-adaption
CN111372005B (en) Automatic exposure compensation method and system for TOF camera module
CN109949725B (en) Image gray level standardization method and system for AOI system
CN105547342A (en) Industrial lens testing device and method on the basis of liquid crystal display panel
CN103903002B (en) Ambient brightness detection method and system
JP2019082451A (en) Reflection characteristic measuring apparatus, processing system, reflection characteristic measuring method and object processing method
CN101207834A (en) Method for checking digital camera articulation
TWI494549B (en) A luminance inspecting method for backlight modules based on multiple kernel support vector regression and apparatus thereof
CN111896119A (en) Infrared temperature measurement method and electronic equipment
CN116930192A (en) High-precision copper pipe defect detection method and system
TWI352805B (en)
CN110716530A (en) DCS response time testing device and method
CN109444150A (en) Contactless crackle measurement method and its device
JP2024040830A (en) Turbidity estimation apparatus, turbidity estimation system, drug injection control system, turbidity estimation method, and program
JP6234045B2 (en) Exterior material deterioration judging method and judging device
RU2424496C2 (en) Method for remote measurement of temperature field

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees