TWI448669B - Regional personnel positioning and activity evaluation method - Google Patents

Regional personnel positioning and activity evaluation method Download PDF

Info

Publication number
TWI448669B
TWI448669B TW100146798A TW100146798A TWI448669B TW I448669 B TWI448669 B TW I448669B TW 100146798 A TW100146798 A TW 100146798A TW 100146798 A TW100146798 A TW 100146798A TW I448669 B TWI448669 B TW I448669B
Authority
TW
Taiwan
Prior art keywords
area
infrared sensing
human body
activity
energy
Prior art date
Application number
TW100146798A
Other languages
Chinese (zh)
Other versions
TW201326765A (en
Inventor
Tzung Cheng Tsai
Ding Syu Wang
Lian Yi Cho
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100146798A priority Critical patent/TWI448669B/en
Publication of TW201326765A publication Critical patent/TW201326765A/en
Application granted granted Critical
Publication of TWI448669B publication Critical patent/TWI448669B/en

Links

Description

區域內人員位置定位與活動量之偵測方法Method for detecting location and activity of personnel in the area

本發明係有關一種區域內人員位置定位與活動量之偵測方法,尤指一種提供區域人員日常活動量資訊,可作為智慧節能管理、智慧家電、居家照護服務等加值應用。The invention relates to a method for detecting the position and activity of a person in an area, in particular to providing information on the daily activities of the area personnel, which can be used as a value-added application such as smart energy-saving management, smart home appliances, and home care services.

住商建築物電力耗能佔全國總用電之比例高達30%以上,如何改善住商建築用電效率,提高節能減碳效益是世界各國所關注的議題之一,除了透過節能設備更換與效能改善,建築能源管理系統是目前建築節能領域之重點發展方向。建築能源管理系統技術為建築節能技術領域之最後一哩(Last Mile)技術,亦為未未來智慧電網系統中之重要次系統,透過網路通訊、能源及環境感測器、節能控制模組及控制器、人工智慧耗能分析、預測及控制等先進資通訊技術,可有效管制建築物之傳統電力耗能,並透過耗能資訊的精確分析、預測計算,及交易等機制,達到區域能源的最適化調度及電力能源的最經濟化運用,實現未來零耗能建築物的目標。The power consumption of residential buildings accounts for more than 30% of the total electricity consumption in the country. How to improve the electricity efficiency of residential buildings and improve energy conservation and carbon reduction benefits is one of the topics of concern in the world, except through energy-saving equipment replacement and efficiency improvement. The building energy management system is currently the key development direction in the field of building energy conservation. Building energy management system technology is the last mile technology in the field of building energy-saving technology. It is also an important sub-system in the future smart grid system, through network communication, energy and environmental sensors, energy-saving control modules and Advanced communication technologies such as controllers, artificial intelligence energy consumption analysis, prediction and control can effectively control the traditional power consumption of buildings, and achieve regional energy through mechanisms such as accurate analysis, prediction calculation, and transaction of energy consumption information. Optimize the scheduling and the most economical use of electric energy to achieve the goal of zero-energy buildings in the future.

習知建築能源管理之一實施例為日立電器(Hitachi Appliances)於2009年9月展示一項新型空調產品,室內機可檢測遙控器位置,並重點對其周圍溫度進行溫度調節。室內機與遙控器距離分為遠、中、近三級,該空調之偵測區域可以把室內分為九等份,並且向遙控器所在區域送風,再配合遙控器上的溫度感測器所感測之環境溫度 值,以適當溫度及風量的空調氣流吹向遙控器所在的區域位置。以遙控器位置代表室內人員活動位置,可達到節能效果,在製暖時可節能約為14%,在製冷時可節能約為25%。One example of conventional building energy management is Hitachi Appliances, which introduced a new air conditioning product in September 2009. The indoor unit can detect the position of the remote control and focus on temperature adjustment of its ambient temperature. The distance between the indoor unit and the remote control is divided into three levels: far, medium and near. The detection area of the air conditioner can divide the indoor into nine equal parts, and send air to the area where the remote controller is located, and then feel the temperature sensor on the remote controller. Ambient temperature Value, the airflow of the air with the appropriate temperature and air volume is blown to the area where the remote control is located. The remote control position represents the indoor personnel's active position, which can achieve energy-saving effect. It can save energy by about 14% during heating and about 25% when cooling.

習知建築能源管理之再一實施例為松下電子於2009年4月展示一種可偵測人員所在位置區域,並據以自動調整最佳的風向與風量的冷氣機,以創造室內人員舒適及節能的環境。對於風向及風量的控制,可避免無效送風之能源浪費,其節能效果可達30%。此外冷氣遙控器上還具有顯示電費和CO2排量的功能,可顯示“本次電費”、“本月電費”、“上月電費”、“去年同月電費”、“本次CO2排放量”、以及“本月CO2排放量”等各項資訊以供使用者來做參考。A further embodiment of the conventional building energy management is that Matsushita Electric exhibited an air-conditioner that automatically detects the optimal wind direction and air volume in April 2009 to create an indoor air-conditioner comfort and energy saving. environment of. For the control of wind direction and air volume, energy waste of ineffective air supply can be avoided, and the energy saving effect can reach 30%. In addition, the air conditioner remote control also has the function of displaying electricity tariff and CO2 displacement, which can display “this electricity bill”, “this month’s electricity bill”, “last month’s electricity bill”, “the same month last year’s electricity bill”, “this CO2 emission amount”, And the "CO2 emissions this month" and other information for users to refer to.

習知建築能源管理之另一實施例為韓國Suk Lee學者等研究團隊2006年發表研究論文,應用人體紅外線感測模組,開發室內區域人員定位系統,應用複雜的貝氏分類器演算法,以提升定位精度,其缺點即為需要利用複雜運算電路,其製造成本亦相對提高。Another embodiment of the conventional building energy management is a research paper published by the research team of Suk Lee Scholars in Korea in 2006, applying the human body infrared sensing module, developing an indoor regional personnel positioning system, and applying a complex Bayesian classifier algorithm to The disadvantage of improving the positioning accuracy is that it requires the use of complex arithmetic circuits, and the manufacturing cost thereof is relatively increased.

另外,現有室內區域人員位置定位技術(Indoor Positioning System;IPS)包括有:紅外線(Infrared,IR)攜帶式標籤、無線射頻辨識系統(Radio Frequency Identification,RFID)、超音波(Ultrasound)反射與測距、無線電波(Radio Frequency)、地磁效應(Electronmagnetic)、影像處理與辨識(Computer Vision)等,評估並比較不同的室內區域人員活動位置偵測技術,需考量以下因素: 1.安全性與隱私:人員位置資訊的安全性與隱私是最重要的考量因素;2.成本:分為基礎偵測設備成本、人員佩帶的偵測元件成本、與安裝建置成本;3.性能:準確度(Accuracy)與精確度(Precision);4.可靠性(Robustness)與系統容錯度(Fault Tolerance);5.系統複雜性;6.使用者偏好、商品化接受程度。In addition, the existing indoor location personnel (Indoor Positioning System (IPS) includes: infrared (IR) portable tags, radio frequency identification (RFID), ultrasonic (Ultrasound) reflection and ranging , Radio Frequency (Radio Frequency), Geomagnetic Effect (Electronmagnetic), Image Processing and Identification (Computer Vision), etc., to evaluate and compare different indoor area personnel location detection technology, the following factors should be considered: 1. Security and privacy: The security and privacy of personnel location information is the most important consideration; 2. Cost: divided into basic detection equipment cost, cost of detecting components worn by personnel, and installation and installation costs; Performance: Accuracy and Precision; 4. Robustness and Fault Tolerance; 5. System Complexity; 6. User Preferences, Commodity Acceptance.

若未符合上述的條件,將室內區域人員活動位置偵測技術商業化就具有一定的困難度,需一併加以考量,本發明即符合上述條件,為一具有可商業化之方法。If the above conditions are not met, it is difficult to commercialize the indoor location detection technology in the indoor area. The present invention satisfies the above conditions and is a commercially viable method.

基於解決以上所述習知技術的缺失,本發明為一種區域內人員位置定位與活動量之偵測方法,主要目的為應用低成本人體紅外線感測模組,開發區域人員位置定位與日常活動量感知技術,人員位置資訊的安全性與隱私可獲得保障,且整體系統所需運算需求大幅降低,開發成本低,商品化接受程度高,區域人員位置定位包括縱向與橫向的位移,定位誤差小於15.7cm以內,同時提供區域人員日常活動量資訊,可作為智慧節能管理、智慧家電、居家照護服務等加值應用。Based on solving the above-mentioned shortcomings of the prior art, the present invention is a method for detecting position and activity of a person in an area, and the main purpose is to apply a low-cost human body infrared sensing module to develop regional personnel position and daily activity. Perceptual technology, the security and privacy of personnel location information can be guaranteed, and the computing requirements of the overall system are greatly reduced, the development cost is low, and the commercialization acceptance is high. The positional positioning of regional personnel includes vertical and horizontal displacement, and the positioning error is less than 15.7. Within cm, it also provides information on the daily activities of regional personnel, which can be used as value-added applications such as smart energy management, smart home appliances, and home care services.

本發明之另一目的在於開發建築能源管理系統之前端環境感知模組技術,以進行最適化能源管理,也就是將能 源傳輸至人員所在、所需要的地方,有人員的空間則提供足夠的照明、舒適的空調等,而人員離開時,能自動地降低能源使用、調整耗能設備運轉,做到當用則用及該省則省,要達成這應用條件,人流與活動量資訊便顯得相當重要,於住商建築、智慧家庭應用場域,以不侵害室內人員隱私條件下,可即時感知人員位置定位與活動量等變化資訊,進行最適化能源管理。Another object of the present invention is to develop a front-end environment-aware module technology for a building energy management system for optimal energy management, that is, The source is transmitted to the place where the personnel are located, and the space provided by the personnel provides sufficient lighting and comfortable air conditioning. When the person leaves, the energy use can be automatically reduced, and the energy-consuming equipment can be adjusted to operate. And the province is the province, to achieve this application condition, the flow of people and activity information is very important, in the residential building, smart home application field, in order to not infringe the privacy of indoor staff, can immediately sense the location and activity of personnel Change the information and optimize the energy management.

為達上述目的,本發明為一種區域內人員位置定位與活動量之偵測方法,其包括有:利用一微控制單元讀取複數組人體紅外線感測模組之類比訊號;利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理;利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理;獲得一能量曲線並計算能量曲線面積;利用一應用軟體來進行不同路徑之能量曲線之面積計算分析;利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離;以及利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值。In order to achieve the above object, the present invention is a method for detecting position and activity of a person in an area, which comprises: reading a analog signal of a complex array of human body infrared sensing module by using a micro control unit; Multiple arrays of different path tests are performed, and the signal outputs of the human body infrared sensing modules are separately obtained, and the micro control unit is used for an analysis process; the micro control unit is used to perform analog signals of each group of human body infrared sensing modules. The short-time energy calculation process; obtaining an energy curve and calculating the energy curve area; using an application software to calculate the area of the energy curve of different paths; using the application software to convert the energy curve area into the human body infrared sensing The relative distance of the module; and the application software to convert the relative distance of the complex array into the position coordinates and the activity amount of the regional personnel.

為進一步對本發明有更深入的說明,乃藉由以下圖示、圖號說明及發明詳細說明,冀能對 貴審查委員於審 查工作有所助益。In order to further explain the present invention, the following drawings, drawings, and detailed descriptions of the invention can be Checking the work has helped.

茲配合下列之圖式說明本發明之詳細結構,及其連結關係,以利於 貴審委做一瞭解。The detailed structure of the present invention and its connection relationship will be described in conjunction with the following drawings to facilitate an understanding of the audit committee.

請參閱圖一、二所示,係為本發明利用複數組人體紅外線感測模組偵測位置之示意圖、本發明人體紅外線感測模組之電路架構示意圖,其中人體紅外線感測模組(Pyroelectric Infrared Radial,PIR)11,當人體(熱源)12經過感測區域13,經由一菲涅耳透鏡(Fresnel lens)14將感測訊號聚焦在人體紅外線感測模組11上,經過類比放大電路處理,輸出相對應訊號,據以判斷人體紅外線感測模組11前方是否有人員12經過。並以其基本四組感測面積為單元,可感測人員12的「縱向」與「橫向」的移動,與人員12活動量等資訊。Please refer to FIG. 1 and FIG. 2 , which are schematic diagrams of detecting the position of the human body infrared sensing module by using the complex array, and the circuit structure diagram of the human body infrared sensing module of the present invention, wherein the human body infrared sensing module (Pyroelectric) Infrared Radial (PIR) 11, when the human body (heat source) 12 passes through the sensing area 13, the sensing signal is focused on the human body infrared sensing module 11 via a Fresnel lens 14, and processed by an analog amplification circuit. The corresponding signal is output, and it is determined whether there is a person 12 passing in front of the human body infrared sensing module 11. With its basic four sensing areas as the unit, it can sense the movement of "longitudinal" and "horizontal" of personnel 12, and the amount of activity of personnel 12.

圖三A~C係為本發明於人體紅外線感測模組前加置一套筒結構的結構示意圖,圖二所揭露該菲涅耳透鏡14係為藉助一套筒結構15設置於該人體紅外線感測模組11之前端,其結合結構即可設置於一天花板16,並可依室內環境區域調整其聚焦感測特性。FIG. 3A to FIG. 3 are schematic diagrams showing the structure of a sleeve structure in front of the human body infrared sensing module. FIG. 2 discloses that the Fresnel lens 14 is disposed on the human body by means of a sleeve structure 15 . The front end of the sensing module 11 can be disposed on a ceiling 16 in combination with the structure, and can adjust its focus sensing characteristics according to the indoor environment area.

請參閱圖四所示,係為本發明區域內人員位置定位與活動量之偵測方法的流程圖,且該區域內人員位置定位與活動量之偵測結果係藉由一數位示波器做一顯示,具體實施方法步驟如下說明:21~利用一微控制單元(圖中未示)讀取複數組人體紅外 線感測模組之類比訊號,該微控制單元可為一單晶片、一整合電路或是一電腦,配合適當的韌體或軟體來控制該複數組人體紅外線感測模組之運作,且該微控制單元根據該人體位置資料建構一動能變化模型,以獲得人體活動量的數值,該人體紅外線感測模組係為一焦電型紅外線感測器,且該複數組人體紅外線感測模組以四組為一基本單位;22~利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理;23~利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理;24~獲得一能量曲線並計算能量曲線面積;25~利用一應用軟體來進行不同路徑之能量曲線之面積計算分析;26~利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離;以及27~利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值。Please refer to FIG. 4, which is a flow chart of the method for detecting the position and activity of the personnel in the region of the present invention, and the detection result of the position and activity of the personnel in the region is displayed by a digital oscilloscope. The specific implementation method steps are as follows: 21~ using a micro control unit (not shown) to read the complex array human body infrared The analog signal of the line sensing module, the micro control unit can be a single chip, an integrated circuit or a computer, and the appropriate firmware or software is used to control the operation of the complex array human body infrared sensing module, and the The micro control unit constructs a kinetic energy change model according to the human body position data to obtain a numerical value of the human activity quantity, the human body infrared sensing module is a pyroelectric type infrared sensor, and the complex array human body infrared sensing module The four groups are used as a basic unit; 22~ use the complex array personnel to perform the different path test of the complex array, and separately obtain the signal output of the human body infrared sensing module, and use the micro control unit to perform an analysis process; 23~ utilize The micro control unit performs short-term energy calculation processing of analog signals of each group of human infrared sensing modules; 24~ obtains an energy curve and calculates an energy curve area; 25~ uses an application software to perform energy curves of different paths Area calculation analysis; 26~ use the application software to convert the energy curve area into a relative distance from the human body infrared sensing module; and 27~ utilize Application software to coordinate the position of the person's activity area values relative distance converted into a plurality of groups.

上述七個步驟之詳細解說分別如下所述:步驟21.利用一微控制單元(圖中未示)讀取複數組人體紅外線感測模組之類比訊號:本技術先進行可行性評估,安裝兩組人體紅外線感測模組,安裝位置與測試方式如圖五A,於天花板上至少設置有第一人體感測模組34及第二人體感測模組35,由測 試人員進行第一路徑31、第二路徑32與第三路徑33,每條路徑各行走兩次,使用數位示波器進行人體紅外線感測模組的訊號顯示與儲存。兩組類比人體紅外線感測模組(34、35)的訊號輸出結果如圖五B。由圖五B輸出結果顯示,選用的人體紅外線感測模組輸出訊號與其人員感測區域範圍有相關性,藉由多組人體紅外線感測模組安裝位置與感測區域重疊方式,可區分人員目前在何處感測區域,可為日後技術開發需求做一調整。本案之主要硬體架構電路(圖中未示),係為一感測訊號線整合電路板,由電源供應器供應人體紅外線感測模組工作電壓,當人體紅外線感測模組感測到下方區域有人員(熱源)紅外線時,便會輸出類比感測訊號至一微控制單元做信號處理。並藉由一人體紅外線感測模組之訊號的應用軟體,具有硬體驅動、設定、數據讀取、顯示與數據儲存之功能,可作為區域內人員活動位置偵測演算法開發平台。The detailed explanations of the above seven steps are respectively as follows: Step 21. Using a micro control unit (not shown) to read the analog signal of the complex array human body infrared sensing module: the technology first conducts feasibility evaluation, and installs two The human body infrared sensing module, the installation position and the test mode are as shown in FIG. 5A, and at least the first human body sensing module 34 and the second human body sensing module 35 are disposed on the ceiling. The tester performs the first path 31, the second path 32, and the third path 33, each of which travels twice, and uses a digital oscilloscope to display and store the signal of the human body infrared sensing module. The signal output results of the two groups of analog infrared sensing modules (34, 35) are shown in Figure 5B. The output of Figure 5B shows that the selected human infrared sensing module output signal has a correlation with the range of its sensor sensing area. By means of multiple sets of human infrared sensing module mounting position and sensing area overlapping mode, the personnel can be distinguished. Where is the sensing area currently available, which can be adjusted for future technology development needs. The main hardware architecture circuit (not shown) of the present case is a sensing signal line integrated circuit board, and the power supply device supplies the working voltage of the human body infrared sensing module, when the human body infrared sensing module senses the lower side. When there is a person (heat source) in the area, the analog sensing signal is output to a micro control unit for signal processing. The application software of the signal of the human body infrared sensing module has the functions of hardware driving, setting, data reading, display and data storage, and can be used as a development platform for the human activity position detection algorithm in the region.

步驟22.利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理:請繼續參閱圖五B所示,經過一可行性分析測試,人員行走不同路徑與人體紅外線感測訊號輸出有其相關性,應用此物理特性作為區域人員活動位置偵測演算法開發基礎。Step 22. Using the complex array personnel to perform different path test of the complex array, and separately obtaining the signal output of the human body infrared sensing module, and using the micro control unit to perform an analysis process: Please continue to refer to FIG. A feasibility analysis test, the different paths of the personnel walking and the human infrared sensing signal output have their correlation, and the physical characteristics are applied as the basis for the development of the regional personnel active position detecting algorithm.

步驟23:利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理:請參閱圖六所示,係為圖五B之距離感測信號轉換成 能量曲線圖,係為一種開發短時距能量曲線面積演算法,人員行走不同路徑可分析獲得不同的能量曲線。其中第一路徑距離偵測信號31可轉換成第一距離轉換能量曲線311;第二路徑距離偵測信號32可轉換成第二距離轉換能量曲線321;第三路徑距離偵測信號33可轉換成第三距離轉換能量曲線331。Step 23: Using the micro control unit to perform short-distance energy calculation processing of analog signals of each group of human infrared sensing modules: Please refer to FIG. 6 to convert the distance sensing signals of FIG. 5B into The energy curve is an algorithm for developing a short-time energy curve area. Different paths of people can be analyzed to obtain different energy curves. The first path distance detecting signal 31 can be converted into a first distance converting energy curve 311; the second path distance detecting signal 32 can be converted into a second distance converting energy curve 321; the third path distance detecting signal 33 can be converted into The third distance converts the energy curve 331.

步驟24.獲得一能量曲線並計算能量曲線面積:請參圖七所示,係為圖六之能量曲線之積分面積圖,本實施例係以圖六所揭露第二距離轉換能量曲線321做為舉例,經過計算分析後,即可獲得能量曲線之積分面積322,本實施例揭露以曲線積分基本方法,來計算其曲線面積。Step 24. Obtain an energy curve and calculate the energy curve area: Please refer to FIG. 7 , which is an integral area diagram of the energy curve of FIG. 6 . This embodiment is based on the second distance conversion energy curve 321 disclosed in FIG. 6 . For example, after the calculation and analysis, the integrated area 322 of the energy curve can be obtained. This embodiment discloses the basic method of curve integration to calculate the curve area.

步驟25.利用一應用軟體來進行不同路徑之能量曲線之面積計算分析:請參閱圖八A所示係為第一組能量曲線之積分面積數值表示圖;請參閱圖八B所示係為第二組能量曲線之積分面積數值表示圖;請參閱圖八C所示係為第三組能量曲線之積分面積數值表示圖,其中該A與B兩位測試人員行走路徑一至三,獲得能量區線,積分計算其面積數值。舉例而言,圖八A所揭露第一路徑由A人員走過,其第一積分面積數值41為923.5274;第一路徑由B人員走過,其第二積分面積數值42為856.2620。圖八B所揭露第二路徑由A人員走過,其第三積分面積數值43為567.4067;第二路徑由B人員走過,其第四積分面積數值44為624.5555。圖八C所揭露第三路徑由A人員走過,其第五 積分面積數值45為167.7535;第三路徑由B人員走過,其第六積分面積數值46為147.3674。Step 25. Using an application software to calculate the area of the energy curve of different paths: Please refer to Figure 8A for the integral area value representation of the first set of energy curves; see Figure 8B for the first The integral area numerical representation of the two sets of energy curves; see Figure 8C for the integral area numerical representation of the third set of energy curves, where the two testers A and B travel the path one to three to obtain the energy zone line , the integral calculates the area value. For example, the first path disclosed in FIG. 8A is passed by the A personnel, and the first integral area value 41 is 923.5274; the first path is passed by the B personnel, and the second integrated area value 42 is 856.2620. The second path disclosed in FIG. 8B is passed by the A personnel, and the third integral area value 43 is 567.4067; the second path is passed by the B personnel, and the fourth integral area value 44 is 624.5555. Figure 8C reveals that the third path is passed by the A staff, and its fifth The integral area value 45 is 167.7535; the third path is passed by the B personnel, and the sixth integral area value 46 is 147.3674.

步驟26.利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離:請參閱圖九所示,係為本發明能量積分面積轉換成與人體紅外線感測模組之相對距離示意圖,對於由人體紅外線感測能量之運算處理,換算成所在感測區域內之人員行走路徑與人體紅外線感測模組(PIR)圓心距離。其中第一人體紅外線感測模組51之偵測範圍為第一感測區域511,一人員之第一行走路徑512通過該第一感測區域511,而該第一感測區域511則偵測後形成第一人體紅外線感測能量之轉換相對距離54,而第一行走路徑512因距離第一人體紅外線感測模組51最遠,故其感測能量最小,但其計算而出的第一人體紅外線感測能量之轉換相對距離54數值最大(能量與距離的比值為呈反比),以表示人員是通過第一感測區域511之邊緣。第二人體紅外線感測模組52之偵測範圍為第二感測區域521,一人員之第二行走路徑522通過該第二感測區域521,而該第二感測區域521則偵測後形成第二人體紅外線感測能量之轉換相對距離55,而第二行走路徑522因距離第二人體紅外線感測模組52為中等距離,故其感測能量亦為中間值,而其計算而出的第二人體紅外線感測能量之轉換相對距離55數值為中間值,以表示人員是通過第二感測區域511之中等距離。第三人體紅外線感測模組53之偵測範圍為第三感測區域531,一人員之第三行走路徑532通過該第一感測區域531,而該第三 感測區域531則偵測後形成第三人體紅外線感測能量之轉換相對距離56,而第三行走路徑532因距離第三人體紅外線感測模組53之中心點,故其感測能量最大,但其計算而出的第三人體紅外線感測能量之轉換相對距離56數值最小,以表示人員是通過第三感測區域511之中心點。而所有的能量與距離的計算以本實施例為準則,以精確計算出人員的位置座標。Step 26. The application software is used to convert the energy curve area into a relative distance from the human body infrared sensing module: as shown in FIG. 9 , the energy integral area of the present invention is converted into a relative to the human body infrared sensing module. The distance diagram is calculated by the calculation process of the human body infrared sensation energy, and is converted into the distance between the walking path of the person in the sensing area and the center of the human body infrared sensing module (PIR). The detection range of the first human infrared sensing module 51 is the first sensing area 511, the first walking path 512 of a person passes through the first sensing area 511, and the first sensing area 511 detects The first human body infrared sensing energy conversion relative distance 54 is formed, and the first walking path 512 is the farthest from the first human body infrared sensing module 51, so the sensing energy is the smallest, but the first calculated The conversion of the human infrared sensing energy relative distance 54 is the largest (the ratio of energy to distance is inversely proportional) to indicate that the person is passing the edge of the first sensing region 511. The detection range of the second human body infrared sensing module 52 is the second sensing area 521. The second walking path 522 of a person passes through the second sensing area 521, and the second sensing area 521 is detected. Forming a second human body infrared sensing energy conversion relative distance 55, and the second traveling path 522 is a medium distance from the second human body infrared sensing module 52, so the sensing energy is also an intermediate value, and the calculated value is The second human infrared sensing energy conversion relative distance 55 value is an intermediate value to indicate that the person is equidistant through the second sensing region 511. The detection range of the third human body infrared sensing module 53 is the third sensing area 531, and the third walking path 532 of a person passes through the first sensing area 531, and the third The sensing area 531 detects the converted relative distance 56 of the third human body infrared sensing energy, and the third walking path 532 has the largest sensing energy because of the distance from the center point of the third human body infrared sensing module 53. However, the calculated third human infrared sensing energy conversion relative distance 56 value is the smallest to indicate that the person passes through the center point of the third sensing area 511. All energy and distance calculations are based on this embodiment to accurately calculate the position coordinates of the person.

步驟27.利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值:請參閱圖十所示,係為本發明利用四組人體紅外線感測模組所偵測距離轉換成人員位置座標示意圖,其中測試方法係包括第一人體紅外線感測模組51、第二人體紅外線感測模組52、第三人體紅外線感測模組53、第四人體紅外線感測模組57,該四組人體紅外線感測模組同時偵測到一人員位置58,前四組便分別形成第一人體紅外線感測能量之轉換相對距離54、第二人體紅外線感測能量之轉換相對距離55、第三人體紅外線感測能量之轉換相對距離56,而第四人體紅外線感測模組57,由於其第四感測區域571未偵測到該人員位置58,故未形成任何人體紅外線感測能量之轉換相對距離,上述明確表達由人體紅外線感測能量之運算處理,換算成所在感測區域內之人員活動位置與活動量的情況。Step 27. Using the application software to convert the relative distance of the complex array into the position coordinates and the activity amount of the regional personnel: Please refer to FIG. 10, which is the distance conversion detected by the four groups of human body infrared sensing modules. A schematic diagram of a position of a person, wherein the test method includes a first human body infrared sensing module 51, a second human body infrared sensing module 52, a third human body infrared sensing module 53, and a fourth human body infrared sensing module 57. The four groups of human body infrared sensing modules simultaneously detect a person position 58. The first four groups respectively form a first human body infrared sensing energy conversion relative distance 54 and a second human body infrared sensing energy conversion relative distance 55. The third human body infrared sensing energy conversion relative distance 56, and the fourth human body infrared sensing module 57 does not form any human body infrared sensing because the fourth sensing area 571 does not detect the human position 58. The relative distance of the energy conversion, the above-mentioned explicit expression is processed by the human body infrared sensing energy, and converted into the activity position and activity of the person in the sensing area. Case.

上述人體紅外線感測模組可嵌入於天花板上之人體紅外線感測模組夾具套筒,可依現場環境調整其聚焦感測區域,當人員移動時,本創意技術分析感測模組輸出訊號量 值,同時處理運算其中四組感測模組輸出訊號,由輸出訊號經過短時距能量計算,獲得能量曲線,再經過積分以計算曲線面積,人員位移與感測模組中心之距離與曲線面積有比例關係,應用數學運算負荷最低之重心法公式,計算方式如下,由此計算式可換算成人體紅外線感測模組所在聚焦感測區域內之人員活動位置與活動量。The human body infrared sensing module can be embedded in the ceiling of the human body infrared sensing module fixture sleeve, and the focus sensing area can be adjusted according to the scene environment. When the person moves, the creative technology analyzes the sensing module output signal amount. The value is simultaneously processed to calculate the output signals of the four sets of sensing modules. The output signal is calculated by the short-time energy to obtain the energy curve, and then integrated to calculate the curve area, the distance between the person displacement and the sensing module center and the curve area. In the proportional relationship, the gravity center formula with the lowest mathematical load is applied, and the calculation method is as follows. The calculation formula can convert the position and activity of the person in the focus sensing area where the adult body infrared sensing module is located.

本技術以五公尺見方(5m x 5m)之智慧節能家庭示範屋(Demo room)為技術實測空間6,將複數個人體紅外線感測模組61嵌入在天花板上,便形成複數個感測區域62,來驗證區域人員位置定位與日常活動量感知,包括人員的「縱向」與「橫向」的移動,與人員活動量等資訊。The technology uses a five-meter square (5m x 5m) smart energy-saving home demo room (Demo room) as the technical measurement space 6, and a plurality of personal infrared sensing modules 61 are embedded in the ceiling to form a plurality of sensing areas. 62, to verify the location of the regional personnel and the daily activity volume perception, including the "longitudinal" and "horizontal" movement of the personnel, and the amount of personnel activity.

請再參閱圖十二所示,係為本發明於一空間內設定一人員行走第一路徑示意圖,於圖十一所揭露的空間6中,其中三位受測者於實驗空間內進行測試,其中第一、二位受測者行走六點路徑並回到原點630,不過二者為行走路徑互為逆向,而第一位受測者行走路線(順時針方向)為原點630至第一位置631至第二位置632至第三位置633至第四位置634至第五位置635,最後回到原點630(如圖 十三A至圖十三D)。第二位受測者行走路線(逆時針方向)為原點630至第五位置635至第四位置634至第三位置633至第二位置632至第一位置631,最後回到原點630(如圖十四A至圖十四D)。第三位受測者行走路徑僅有五點,且為順時針方向,而行走的路線為原點640至第一位置641至第二位置642至第三位置643至第四位置644,最後回到原點640(如圖十五A至圖十五E)。Please refer to FIG. 12 again, which is a schematic diagram of setting a first path for a person to walk in a space. In the space 6 disclosed in FIG. 11 , three subjects are tested in the experimental space. The first and second subjects walked the six-point path and returned to the origin 630, but the two paths were reversed, and the first subject's walking route (clockwise) was the origin 630 to the first. a position 631 to a second position 632 to a third position 633 to a fourth position 634 to a fifth position 635, and finally return to the origin 630 (as shown in the figure) 13A to 13X)). The second subject's walking route (counterclockwise direction) is the origin 630 to the fifth position 635 to the fourth position 634 to the third position 633 to the second position 632 to the first position 631, and finally returns to the origin 630 ( Figure 14A to Figure 14D). The third subject has only five points of walking path and is clockwise, and the walking route is the origin 640 to the first position 641 to the second position 642 to the third position 643 to the fourth position 644, and finally Go to the origin 640 (as shown in Figure 15A to Figure 15E).

由上述測試結果顯示偵測人員行走路徑趨勢,並可不需經過校正,即時偵知人員初始位置,進入位置定位偵測功能。The above test results show the trend of the walking path of the detecting personnel, and can detect the initial position of the person and enter the position and position detecting function without correction.

為證實本技術之定位誤差範圍可小於直徑30cm以內,以符合實際應用需求,於5m x 5m之智慧節能家庭示範屋Demo room地板上每60cm標示指示座標,受測者依指示行走特定座標點,由區域人員活動位置偵測模組辨識人員行走座標數據輸出,與指示特定座標點進行定位距離誤差值分析,以驗證人員定位誤差值是否符合需求。In order to confirm that the positioning error range of the technology can be less than 30cm in diameter, in order to meet the practical application requirements, the indicator coordinates are marked every 60cm on the Demo room floor of the 5m x 5m smart energy-saving family demonstration house, and the subject walks a specific coordinate point according to the instruction. The regional personnel activity position detection module identifies the person walking coordinate data output, and analyzes the positioning distance error value with the specified specific coordinate point to verify whether the personnel positioning error value meets the demand.

請參閱圖十六、七所示,係為本發明於一空間內設定一人員行走第三路徑示意圖,與圖十二至圖十五E揭露不同之處為人員走直線之實施例,其中要求受測者從初始點座標(180,0)做為起始點730,一路至第一位置座標(180,60)至第二位置座標(180,120)至第三位置座標(180,180)至第四位置座標(180,240)至第五位置座標(180,300),再迴轉回至初始點730,進行測試,由實驗結果分析,指定座標點中心與偵測模組所辨識之人員活動座標中心,由圖十七之定位誤差(cm)之數據觀察之,定位距離誤差皆 在直徑15.7cm以內,而符合以低價成本來偵測人員位置活動量的方法。Please refer to FIG. 16 and FIG. 7 , which is a schematic diagram of setting a third path for a person to walk in a space in the present invention. The difference from FIG. 12 to FIG. 15E is an embodiment in which a person walks straight, wherein the requirement is The subject takes the initial point coordinate (180, 0) as the starting point 730, all the way to the first position coordinate (180, 60) to the second position coordinate (180, 120) to the third position coordinate (180, 180) From the coordinates of the fourth position (180, 240) to the coordinates of the fifth position (180, 300), and then returning to the initial point 730, the test is performed. The result of the experiment is analyzed, and the person identified by the center of the coordinate point and the detection module is identified. The coordinate center of the activity is observed by the data of the positioning error (cm) in Figure 17, and the positioning distance error is Within a diameter of 15.7 cm, it is in line with the method of detecting the amount of activity of a person at a low cost.

藉由上述圖一至圖十七之揭露,即可瞭解本發明為一種區域內人員位置定位與活動量之偵測方法,主要技術特徵為應用低成本人體紅外線感測模組,開發區域人員位置定位與日常活動量感知技術,人員位置資訊的安全性與隱私可獲得保障,且整體系統所需運算需求大幅降低,開發成本低,商品化接受程度高,區域人員位置定位包括縱向與橫向的位移,定位誤差小於15.7cm以內,同時提供區域人員日常活動量資訊,可作為智慧節能管理、智慧家電、居家照護服務等加值應用。同時於開發建築能源管理系統之前端環境感知模組技術,以進行最適化能源管理,也就是將能源傳輸至人員所在、所需要的地方,有人員的空間則提供足夠的照明、舒適的空調等,而人員離開時,能自動地降低能源使用、調整耗能設備運轉,做到當用則用及該省則省,要達成這應用條件,人流與活動量資訊便顯得相當重要,於住商建築、智慧家庭應用場域,以不侵害室內人員隱私條件下,可即時感知人員位置定位與活動量等變化資訊,進行最適化能源管理。而揭露技術內容提供區域人員日常活動量資訊,可作為智慧節能管理、智慧家電、居家照護服務等加值應用,而具有可保護的技術標的,故提出專利權申請以尋求專利權之保護。Through the disclosure of FIG. 1 to FIG. 17 above, it can be understood that the present invention is a method for detecting position and activity of a person in an area, and the main technical feature is to apply a low-cost human body infrared sensing module to develop a positional position of a person in an area. With the daily activity quantity sensing technology, the security and privacy of the personnel location information can be guaranteed, and the computing requirements of the overall system are greatly reduced, the development cost is low, the commercialization acceptance is high, and the positional positioning of the regional personnel includes vertical and horizontal displacement. The positioning error is less than 15.7cm, and provides information on the daily activities of regional personnel. It can be used as a value-added application such as smart energy management, smart home appliances, and home care services. At the same time, it develops the environment-aware module technology in front of the building energy management system to optimize the energy management, that is, to transfer energy to the place where the personnel are needed, and the space for personnel provides sufficient lighting, comfortable air conditioning, etc. When the personnel leave, they can automatically reduce the energy use and adjust the operation of the energy-consuming equipment. When it is used, the province and the province will save it. To achieve this application condition, the flow of people and activity information is very important. The smart home application field can optimize the energy management by instantly sensing the change information of the location and activity of the personnel without infringing the privacy of the indoor staff. The disclosure of technical content provides information on the daily activities of regional personnel, and can be used as a value-added application such as smart energy-saving management, smart home appliances, and home care services, and has a technical target that can be protected. Therefore, a patent application is filed to seek protection of patent rights.

綜上所述,本發明之結構特徵及各實施例皆已詳細揭示,而可充分顯示出本發明案在目的及功效上均深賦實施之進步性,極具產業之利用價值,且為目前市面上前所未 見之運用,依專利法之精神所述,本發明案完全符合發明專利之要件。In summary, the structural features and embodiments of the present invention have been disclosed in detail, and can fully demonstrate the progress of the invention in terms of purpose and efficacy, and is of great industrial value, and is currently Pre-existing in the market See the application, according to the spirit of the patent law, the invention is fully in line with the requirements of the invention patent.

唯以上所述者,僅為本發明之較佳實施例而已,當不能以之限定本發明所實施之範圍,即大凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬於本發明專利涵蓋之範圍內,謹請 貴審查委員明鑑,並祈惠准,是所至禱。The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent variations and modifications made by the scope of the present invention should still belong to the present invention. Within the scope of the patent, I would like to ask your review committee to give a clear understanding and pray for it. It is the prayer.

11‧‧‧人體紅外線感測模組11‧‧‧ Human body infrared sensing module

12‧‧‧人員12 ‧ ‧ staff

13‧‧‧感測區域13‧‧‧Sensing area

14‧‧‧菲涅耳透鏡14‧‧‧ Fresnel lens

15‧‧‧套筒結構15‧‧‧Sleeve structure

16‧‧‧天花板16‧‧‧ ceiling

21‧‧‧利用一微控制單元讀取複數組人體紅外線感測模組之 類比訊號21‧‧‧Using a micro control unit to read the complex array human body infrared sensing module Analog signal

22‧‧‧利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理22‧‧‧Using complex array personnel to perform complex path test for different arrays, and separately obtain the signal output of the human body infrared sensing modules, and use the micro control unit to perform an analysis process

23‧‧‧利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理23‧‧‧Using the micro control unit to calculate the short-term energy of analog signals of each group of human infrared sensing modules

24‧‧‧獲得一能量曲線並計算能量曲線面積24‧‧‧Get an energy curve and calculate the energy curve area

25‧‧‧利用一應用軟體來進行不同路徑之能量曲線之面積計算分析25‧‧‧Using an application software to calculate the area of the energy curve for different paths

26‧‧‧利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離26‧‧‧ Use the application software to convert the energy curve area into the relative distance from the human body infrared sensing module

27‧‧‧利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值27‧‧‧Using the application software to convert the relative distance of the complex array into the position coordinates and activity values of the regional personnel

31‧‧‧第一路徑距離偵測信號31‧‧‧First path distance detection signal

311‧‧‧第一距離轉換能量曲線311‧‧‧First distance conversion energy curve

32‧‧‧第二路徑距離偵測信號32‧‧‧Second path distance detection signal

321‧‧‧第二距離轉換能量曲線321‧‧‧Second distance conversion energy curve

322‧‧‧能量曲線之積分面積322‧‧‧Integral area of energy curve

33‧‧‧第三路徑距離偵測信號33‧‧‧ Third path distance detection signal

331‧‧‧第三距離轉換能量曲線331‧‧‧ Third distance conversion energy curve

34‧‧‧第一人體紅外線感測模組34‧‧‧First human body infrared sensing module

35‧‧‧第二人體紅外線感測模組35‧‧‧Second human infrared sensing module

41‧‧‧第一積分面積數值41‧‧‧ First integral area value

42‧‧‧第二積分面積數值42‧‧‧Second integral area value

43‧‧‧第三積分面積數值43‧‧‧ Third integral area value

44‧‧‧第四積分面積數值44‧‧‧ Fourth integral area value

45‧‧‧第五積分面積數值45‧‧‧ Fifth integral area value

46‧‧‧第六積分面積數值46‧‧‧ sixth integral area value

51‧‧‧第一人體紅外線感測模組51‧‧‧First human body infrared sensing module

511‧‧‧第一感測區域511‧‧‧First sensing area

512‧‧‧第一行走路徑512‧‧‧First walking path

52‧‧‧第二人體紅外線感測模組52‧‧‧Second human infrared sensing module

521‧‧‧第二感測區域521‧‧‧Second sensing area

522‧‧‧第二行走路徑522‧‧‧Second walking path

53‧‧‧第三人體紅外線感測模組53‧‧‧ Third human infrared sensing module

531‧‧‧第三感測區域531‧‧‧ Third sensing area

532‧‧‧第三行走路徑532‧‧‧The third walking path

54‧‧‧第一人體紅外線感測能量之轉換相對距離54‧‧‧ First human infrared sensing energy conversion relative distance

55‧‧‧第二人體紅外線感測能量之轉換相對距離55‧‧‧Second human infrared sensing energy conversion relative distance

56‧‧‧第三人體紅外線感測能量之轉換相對距離56‧‧‧ Third human infrared sensing energy conversion relative distance

57‧‧‧第四人體紅外線感測模組57‧‧‧Fourth human infrared sensing module

571‧‧‧第四感測區域571‧‧‧fourth sensing area

6‧‧‧空間6‧‧‧ Space

61‧‧‧人體紅外線感測模組61‧‧‧ Human body infrared sensing module

62‧‧‧感測區域62‧‧‧Sensing area

630‧‧‧原點630‧‧‧ origin

631‧‧‧第一位置631‧‧‧ first position

632‧‧‧第二位置632‧‧‧second position

633‧‧‧第三位置633‧‧‧ third position

634‧‧‧第四位置634‧‧‧ fourth position

635‧‧‧第五位置635‧‧‧ fifth position

640‧‧‧原點640‧‧‧ origin

641‧‧‧第一位置641‧‧‧ first position

642‧‧‧第二位置642‧‧‧second position

643‧‧‧第三位置643‧‧‧ third position

644‧‧‧第四位置644‧‧‧ fourth position

7‧‧‧空間7‧‧‧ Space

71‧‧‧人體紅外線感測模組71‧‧‧ Human body infrared sensing module

72‧‧‧感測區域72‧‧‧Sensing area

730‧‧‧起始點730‧‧‧ starting point

731‧‧‧第一位置731‧‧‧ first position

732‧‧‧第二位置732‧‧‧second position

733‧‧‧第三位置733‧‧‧ third position

734‧‧‧第四位置734‧‧‧ fourth position

735‧‧‧第五位置735‧‧‧ fifth position

圖一係為本發明利用複數組人體紅外線感測模組偵測位置之示意圖;圖二係為本發明人體紅外線感測模組之電路架構示意圖;圖三A~C係為本發明於人體紅外線感測模組前加置一套筒結構的結構示意圖;圖四係為本發明區域內人員位置定位與活動量之偵測方法的流程圖;圖五A係為本發明區域內設置複數人體紅外線感測模組來偵測複數組路徑之示意圖;圖五B係為圖五A之該些人體紅外線感測模組之距離感測信號曲線圖;圖六係為圖五B之距離感測信號轉換成能量曲線圖;圖七係為圖六之能量曲線之積分面積圖;圖八A係為第一組能量曲線之積分面積數值表示圖;圖八B係為第二組能量曲線之積分面積數值表示圖;圖八C係為第三組能量曲線之積分面積數值表示圖; 圖九係為本發明能量積分面積轉換成與人體紅外線感測模組之相對距離示意圖;圖十係為本發明利用四組人體紅外線感測模組所偵測距離轉換成人員位置座標示意圖;圖十一係為本發明於一空間內設置複數組人體紅外線感測模組之示意圖;圖十二係為本發明於一空間內設定一人員行走第一路徑示意圖;圖十三A~D係為圖十二之第一偵測結果示意圖;圖十四A~D係為圖十二之第二偵測結果示意圖;圖十五A係為本發明於一空間內設定一人員行走第二路徑示意圖;圖十五B~E係為圖十五A之偵測結果示意圖;圖十六係為本發明於一空間內設定一人員行走第三路徑示意圖;圖十七係為圖十六之偵測結果示意圖。FIG. 1 is a schematic diagram of detecting a position by using a complex array human body infrared sensing module according to the present invention; FIG. 2 is a schematic diagram of a circuit structure of the human body infrared sensing module of the present invention; FIG. 3A to C are the infrared rays of the present invention. A schematic diagram of a structure of a sleeve structure is added in front of the sensing module; FIG. 4 is a flow chart of a method for detecting position and activity of a person in the region of the invention; FIG. 5A is a plurality of human body infrared rays in the region of the invention. The sensing module detects the complex array path; FIG. 5B is the distance sensing signal curve of the human body infrared sensing module of FIG. 5A; FIG. 6 is the distance sensing signal of FIG. 5B. Converted into an energy curve; Figure 7 is the integral area map of the energy curve of Figure 6; Figure 8A is the integral area numerical representation of the first set of energy curves; Figure 8B is the integrated area of the second set of energy curves Numerical representation; Figure VIII is the numerical representation of the integral area of the third set of energy curves; FIG. 9 is a schematic diagram of the relative distance between the energy integral area of the present invention and the human body infrared sensing module; FIG. 10 is a schematic diagram of the distance detected by the four groups of human body infrared sensing modules converted into a person position coordinate; The eleventh series is a schematic diagram of the invention for setting a complex array human body infrared sensing module in a space; FIG. 12 is a schematic diagram of setting a first path for a person to walk in a space; FIG. 13A~D is Figure 12 is a schematic diagram of the first detection result; Figure 14A to D are schematic diagrams of the second detection result of Figure 12; Figure 15A is a schematic diagram of setting a second path for a person to walk in a space Figure 15B~E is a schematic diagram of the detection result of Figure 15A; Figure 16 is a schematic diagram of setting a third path for a person to walk in a space; Figure 17 is a detection of Figure 16. The result is schematic.

21‧‧‧利用一微控制單元讀取複數組人體紅外線感測模組之類比訊號21‧‧‧Using a micro control unit to read analog signals of complex array human infrared sensing modules

22‧‧‧利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理22‧‧‧Using complex array personnel to perform complex path test for different arrays, and separately obtain the signal output of the human body infrared sensing modules, and use the micro control unit to perform an analysis process

23‧‧‧利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理23‧‧‧Using the micro control unit to calculate the short-term energy of analog signals of each group of human infrared sensing modules

24‧‧‧獲得一能量曲線並計算能量曲線面積24‧‧‧Get an energy curve and calculate the energy curve area

25‧‧‧利用一應用軟體來進行不同路徑之能量曲線之面積計算分析25‧‧‧Using an application software to calculate the area of the energy curve for different paths

26‧‧‧利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離26‧‧‧ Use the application software to convert the energy curve area into the relative distance from the human body infrared sensing module

27‧‧‧利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值27‧‧‧Using the application software to convert the relative distance of the complex array into the position coordinates and activity values of the regional personnel

Claims (13)

一種區域內人員位置定位與活動量之偵測方法,其包括有下列步驟:(a)利用一微控制單元讀取複數組人體紅外線感測模組之類比訊號;(b)利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理;(c)利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理;(d)獲得一能量曲線並計算能量曲線面積;(e)利用一應用軟體來進行不同路徑之能量曲線之面積計算分析;(f)利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離;以及(g)利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值。 A method for detecting location and activity of a person in an area, comprising the steps of: (a) reading a analog signal of a complex array of human infrared sensing modules by using a micro control unit; (b) using a complex array of personnel Multiple arrays of different path tests are performed, and the signal outputs of the human body infrared sensing modules are separately obtained, and the micro control unit is used for an analysis process; (c) the micro control unit is used to perform each group of human body infrared sensing modes. (d) obtaining an energy curve and calculating the area of the energy curve; (e) using an application software to calculate the area of the energy curve of different paths; (f) using the application software The energy curve area is converted into a relative distance from the human body infrared sensing module; and (g) the application software is used to convert the complex array relative distance into the position coordinates and the activity amount values of the regional personnel. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該微控制單元根據該人體位置資料建構一動能變化模型,以獲得人體活動量的數值。 The method for detecting position and activity of a person in an area as described in claim 1 wherein the micro control unit constructs a kinetic energy change model according to the body position data to obtain a value of the amount of human activity. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該區域人員之位置座標與活動量數值由下列算式來求得: For example, the method for detecting the position and activity of personnel in the area mentioned in the first application of the patent scope, wherein the position coordinates and the activity amount of the personnel in the area are obtained by the following formula: 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該人體紅外線感測模組係為一焦電型紅外線感測器。 The method for detecting position and activity of a person in an area as described in claim 1 is wherein the human body infrared sensing module is a pyroelectric type infrared sensor. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該人體紅外線感測模組前端更係設置有一菲涅耳透鏡。 The method for detecting position and activity of a person in an area as described in the first aspect of the patent application, wherein the front end of the human body infrared sensing module is further provided with a Fresnel lens. 如申請專利範圍第5項所述之區域內人員位置定位與活動量之偵測方法,其中該菲涅耳透鏡係為藉助一套筒結構設置於該人體紅外線感測模組之前端。 The method for detecting position and activity of a person in an area as described in claim 5, wherein the Fresnel lens is disposed at a front end of the human body infrared sensing module by means of a sleeve structure. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該複數組人體紅外線感測模組以四組為一基本單位。 For example, the method for detecting position and activity of a person in an area as described in claim 1 is wherein the complex array of human body infrared sensing modules is divided into four groups as a basic unit. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該微控制單元可為一單晶片、一整合電路或是一電腦。 The method for detecting location and activity of a person in an area as described in claim 1 wherein the micro control unit can be a single chip, an integrated circuit, or a computer. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該區域內人員位置定位與活動量之偵測結果係藉由一數位示波器做一顯示。 For example, the method for detecting the position and activity of a person in the area described in the first application of the patent scope, wherein the detection result of the position and activity of the person in the area is displayed by a digital oscilloscope. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該應用軟體具有硬體驅動、設 定、數據讀取、顯示與數據儲存之功能。 For example, the method for detecting the position and activity of a person in an area as described in the first application of the patent scope, wherein the application software has a hardware drive and design The function of setting, data reading, display and data storage. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該步驟(a)中,該複數組人體紅外線感測模組係兩組,裝設於天花板上至少設置有第一人體感測模組及第二人體感測模組,由測試人員進行第一路徑、第二路徑與第三路徑,每條路徑各行走兩次,使用數位示波器進行人體紅外線感測模組的訊號顯示與儲存,兩組類比人體紅外線感測模組的訊號輸出結果顯示,選用的人體紅外線感測模組輸出訊號與其人員感測區域範圍有相關性,藉由多組人體紅外線感測模組安裝位置與感測區域重疊方式,可區分人員目前在何處感測區域,可為日後技術開發需求做一調整。 The method for detecting position and activity of a person in an area as described in claim 1 wherein, in the step (a), the complex array of human body infrared sensing modules are two sets, and are installed on the ceiling at least The first human sensing module and the second human sensing module are disposed, and the tester performs the first path, the second path and the third path, each path travels twice, and uses a digital oscilloscope to perform human body infrared sensing. The signal display and storage of the module, the signal output of the two groups of analog infrared sensing modules shows that the selected human infrared sensing module output signal has a correlation with the range of the human sensing area, and multiple sets of human infrared sense The installation location of the test module overlaps with the sensing area, which can distinguish where the sensor is currently in the sensing area, and can make an adjustment for future technical development needs. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該步驟(c)中,該類比訊號之短時距能量計算處理係為一種開發短時距能量曲線面積演算法,人員行走不同路徑可分析獲得不同的能量曲線。 For example, in the method for detecting the position and activity of a person in the area described in the first application of the patent scope, in the step (c), the short-term energy calculation processing of the analog signal is a development of a short-time energy curve. Area algorithm, people walking different paths can analyze and obtain different energy curves. 如申請專利範圍第1項所述之區域內人員位置定位與活動量之偵測方法,其中該步驟(g)中,該複數組相對距離轉換成區域人員之位置座標與活動量數值之測試方法係包括第一人體紅外線感測模組、第二人體紅外線感測模組、第三人體紅外線感測模組、第四人體紅外線感測模組,該四組人體紅外線感測模組同時偵測到一人員位置,前四組便分別形成第一人體紅外線感測能量之轉換相對距離、第二人體紅外線感測能量之轉換相對距 離、第三人體紅外線感測能量之轉換相對距離,而第四人體紅外線感測模組,由於其第四感測區域未偵測到該人員位置,故未形成任何人體紅外線感測能量之轉換相對距離,上述明確表達由人體紅外線感測能量之運算處理,換算成所在感測區域內之人員活動位置與活動量的情況。 The method for detecting the position and activity of a person in an area as described in claim 1 of the patent application, wherein in the step (g), the method for testing the relative distance of the complex array into a position coordinate and the activity amount of the regional personnel The system includes a first human body infrared sensing module, a second human body infrared sensing module, a third human body infrared sensing module, and a fourth human body infrared sensing module. The four groups of human body infrared sensing modules simultaneously detect To the position of a person, the first four groups respectively form the conversion relative distance of the first human body infrared sensing energy and the relative distance of the second human body infrared sensing energy. The third human body infrared sensing energy is converted from the relative distance, and the fourth human infrared sensing module does not form any human infrared sensing energy conversion because the fourth sensing area does not detect the position of the human body. The relative distance is expressed by the arithmetic processing of the human body infrared sensing energy, and is converted into the situation of the activity position and the activity amount of the person in the sensing area.
TW100146798A 2011-12-16 2011-12-16 Regional personnel positioning and activity evaluation method TWI448669B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100146798A TWI448669B (en) 2011-12-16 2011-12-16 Regional personnel positioning and activity evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100146798A TWI448669B (en) 2011-12-16 2011-12-16 Regional personnel positioning and activity evaluation method

Publications (2)

Publication Number Publication Date
TW201326765A TW201326765A (en) 2013-07-01
TWI448669B true TWI448669B (en) 2014-08-11

Family

ID=49224940

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100146798A TWI448669B (en) 2011-12-16 2011-12-16 Regional personnel positioning and activity evaluation method

Country Status (1)

Country Link
TW (1) TWI448669B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719368B (en) * 2014-12-04 2018-06-22 台达电子工业股份有限公司 Personnel's detecting system and personnel's detection method
TWI554747B (en) * 2014-12-04 2016-10-21 台達電子工業股份有限公司 Human detection system and human detection method
TWI662289B (en) * 2018-07-02 2019-06-11 廣達電腦股份有限公司 Tracking distance measuring system and method thereof
TWI730861B (en) * 2020-07-31 2021-06-11 國立勤益科技大學 Warning method of social distance violation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW349168B (en) * 1996-08-29 1999-01-01 Hamamatsu Photonics Kk Three-dimensional shape measuring apparatus
US20080136914A1 (en) * 2006-12-07 2008-06-12 Craig Carlson Mobile monitoring and surveillance system for monitoring activities at a remote protected area
TWM374841U (en) * 2009-08-21 2010-03-01 jin-ye Hong Monitoring device of patient's physiological information
US7840284B2 (en) * 2002-10-18 2010-11-23 Sony Corporation Information processing system and associated methodology of surveillance event monitoring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW349168B (en) * 1996-08-29 1999-01-01 Hamamatsu Photonics Kk Three-dimensional shape measuring apparatus
US7840284B2 (en) * 2002-10-18 2010-11-23 Sony Corporation Information processing system and associated methodology of surveillance event monitoring
US20080136914A1 (en) * 2006-12-07 2008-06-12 Craig Carlson Mobile monitoring and surveillance system for monitoring activities at a remote protected area
TWM374841U (en) * 2009-08-21 2010-03-01 jin-ye Hong Monitoring device of patient's physiological information

Also Published As

Publication number Publication date
TW201326765A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
Wang et al. Energy efficient HVAC control for an IPS-enabled large space in commercial buildings through dynamic spatial occupancy distribution
Yang et al. A multi-sensor based occupancy estimation model for supporting demand driven HVAC operations
Jiang et al. MAQS: a personalized mobile sensing system for indoor air quality monitoring
Trivedi et al. Occupancy detection systems for indoor environments: A survey of approaches and methods
Li et al. Measuring and monitoring occupancy with an RFID based system for demand-driven HVAC operations
TWI448669B (en) Regional personnel positioning and activity evaluation method
US20090088991A1 (en) System and method for monitoring and managing energy performance
Spataru et al. How to monitor people ‘smartly’to help reducing energy consumption in buildings?
CN106558916A (en) Information cuing method and information presentation device
CN102680025A (en) Indoor thermal comfort evaluation system
Randall et al. LuxTrace: Indoor positioning using building illumination
TWI526852B (en) Method for counting number of people based on appliance usages and monitoring system using the same
JP2007323526A (en) Environmental control system and input device
Lei et al. Building an intelligent laboratory environment via a cyber-physical system
Jazizadeh et al. Spatiotemporal lighting load disaggregation using light intensity signal
Zhang et al. Design of building environment detection system for architectures based on internet of things
Hsu et al. Using the big data analysis and basic information from lecture Halls to predict air change rate
Lyu et al. Where should the thermal image sensor of a smart A/C look?-Occupant thermal sensation model based on thermal imaging data
KR20210140805A (en) Device for evaluating energy performance of existing building and method thereof
Kciuk et al. Design and modeling of intelligent building office and thermal comfort based on probabilistic neural network
Wang et al. An RGB-D camera-based indoor occupancy positioning system for complex and densely populated scenarios
Bielskis et al. Ambient lighting controller based on reinforcement learning components of multi-agents
CN103985185A (en) Intelligent counting device
Taha et al. Design of an occupancy monitoring unit: a thermal imaging based people counting solution for socio-technical energy saving systems in hospitals
JP2021004680A (en) Analyzer and analysis method