TWI447349B - System and method for authenticating a probe - Google Patents

System and method for authenticating a probe Download PDF

Info

Publication number
TWI447349B
TWI447349B TW099107992A TW99107992A TWI447349B TW I447349 B TWI447349 B TW I447349B TW 099107992 A TW099107992 A TW 099107992A TW 99107992 A TW99107992 A TW 99107992A TW I447349 B TWI447349 B TW I447349B
Authority
TW
Taiwan
Prior art keywords
probe
ball
verification
contact point
coordinates
Prior art date
Application number
TW099107992A
Other languages
Chinese (zh)
Other versions
TW201132926A (en
Inventor
Chih Kuang Chang
Xin-Yuan Wu
Min Wang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW099107992A priority Critical patent/TWI447349B/en
Publication of TW201132926A publication Critical patent/TW201132926A/en
Application granted granted Critical
Publication of TWI447349B publication Critical patent/TWI447349B/en

Links

Description

探針驗證系統及方法Probe verification system and method

本發明涉及一種探針驗證系統及方法。The present invention relates to a probe verification system and method.

近年來,隨著電腦硬體性能的提高及價格的降低,三座標測量機在工業、科研中被廣泛用作產品測量的測量裝置。具體而言,該測量裝置主要用於對零件或者部件的尺寸誤差和形位誤差進行測量,對保證產品品質起著重要的作用。In recent years, with the improvement of computer hardware performance and the reduction of price, the three-coordinate measuring machine has been widely used as a measuring device for product measurement in industry and scientific research. Specifically, the measuring device is mainly used for measuring dimensional error and shape error of parts or components, and plays an important role in ensuring product quality.

探針是三座標測量機的一部分,其包括測桿和測桿底端的探球,該探球可由紅寶石材料製成。當探針的探球觸測零件或部件的表面時,探球會發出觸測信號,計數系統中的光柵計數器對所產生的觸測信號進行計數,並將其傳送給電腦。該電腦透過內部安裝的測量軟體會得到所述接觸點在三維空間內的座標。而每個接觸點的座標其實是探針在零件或部件的表面移動時探球的球心座標,該座標與接觸點的真正座標相差一個探球的半徑,例如,當探球的半徑為r,該探球沿X軸碰撞零件或部件的表面,所測接觸點在X軸的座標為X0時,該接觸點在X軸的實際座標為(X0-r)。為了準確計算出接觸點的實際座標,需先準確得知探球的半徑,以判斷探針是否合格,若探針不合格,則會極大地影響零件或部件的測試精度。The probe is part of a three-coordinate measuring machine that includes a measuring rod and a probe at the bottom end of the measuring rod, which can be made of a ruby material. When the probe's probe touches the surface of the part or part, the probe sends a touch signal, and the raster counter in the counting system counts the generated touch signal and transmits it to the computer. The computer obtains the coordinates of the contact point in three-dimensional space through the internally installed measuring software. The coordinates of each contact point are actually the spherical coordinates of the probe when the probe moves on the surface of the part or component. The coordinate is different from the true coordinate of the contact point by the radius of the probe. For example, when the radius of the probe is r The probe collides with the surface of the part or component along the X-axis. When the measured contact point is X0 on the X-axis, the actual coordinate of the contact point on the X-axis is (X0-r). In order to accurately calculate the actual coordinates of the contact point, it is necessary to accurately know the radius of the probe to determine whether the probe is qualified. If the probe fails, it will greatly affect the test accuracy of the part or component.

鑒於以上內容,有必要提供一種探針驗證系統及方法,透過獲取接觸點的實際座標來計算探球半徑,以驗證探針是否合格,減少了由於探針不合格造成的誤差,提高了測試精度。In view of the above, it is necessary to provide a probe verification system and method for calculating the radius of the probe by obtaining the actual coordinates of the contact point to verify whether the probe is qualified, reducing the error caused by the probe failure, and improving the test accuracy. .

一種探針驗證系統,該探針包括測桿底端的探球,該系統包括:設置模組,用於設置驗證參數,所述驗證參數包括驗證球的半徑、理論接觸點的個數、探球的理論半徑及探針合格時探球的實際半徑與探球理論半徑的公差範圍;模擬模組,用於當用戶在驗證球的上方任意選取一點作為接觸點,使探球接觸該點,根據該點與驗證球的半徑模擬一個虛擬球,並計算該虛擬球的圓心座標;計算模組,用於根據該虛擬球的圓心座標計算該虛擬球上所述理論接觸點的座標;獲取模組,用於透過虛擬球上的理論接觸點的座標獲取實際接觸點的座標,所述實際接觸點座標為第一次實際接觸點座標;所述計算模組,還用於透過上述第一次實際接觸點的座標計算驗證球的圓心座標,及根據驗證球的圓心座標計算驗證球上的理論接觸點座標;所述獲取模組,還用於透過驗證球上的理論接觸點的座標獲取實際接觸點的座標,所述實際接觸點座標為第二次實際接觸點座標;所述計算模組,還用於透過上述第二次實際接觸點的座標計算探球的實際半徑;判斷模組,用於判斷上述計算出來的探球的實際半徑與探球的理論半徑之間的公差是否在上述設置的公差範圍內,根據該判斷結果驗證探針是否合格;標識模組,用於標識上述驗證結果。A probe verification system includes a probe at the bottom end of the measuring rod, the system comprising: a setting module for setting a verification parameter, the verification parameter including a radius of the verification ball, a number of theoretical contact points, and a probe The theoretical radius and the tolerance range of the actual radius of the probe and the theoretical radius of the probe; the analog module is used when the user randomly selects a point above the verification ball as the contact point, so that the probe touches the point, according to Simulating a virtual sphere with the radius of the verification ball, and calculating a centroid coordinate of the virtual sphere; calculating a module for calculating a coordinate of the theoretical contact point on the virtual sphere according to a center coordinate of the virtual sphere; acquiring a module Obtaining a coordinate of an actual contact point through a coordinate of a theoretical contact point on the virtual ball, the actual contact point coordinate being a first actual contact point coordinate; the computing module is further configured to pass the first actual The coordinates of the contact point calculate the center coordinates of the verification ball, and calculate the theoretical contact point coordinates on the verification ball according to the coordinates of the center of the verification ball; the acquisition module is also used for the inspection The coordinates of the theoretical contact point on the ball acquire the coordinates of the actual contact point, the actual contact point coordinates are the second actual contact point coordinates; the calculation module is also used to calculate the coordinates of the second actual contact point The actual radius of the ball; the judging module is configured to judge whether the tolerance between the actual radius of the calculated ball and the theoretical radius of the ball is within the set tolerance range, and verify whether the probe is qualified according to the judgment result. An identification module for identifying the above verification result.

一種探針驗證方法,該探針包括測桿底端的探球,該方法包括步驟:設置驗證參數,所述驗證參數包括驗證球的半徑、理論接觸點的個數、探球的理論半徑及探針合格時探球的實際半徑與探球理論半徑的公差範圍;當用戶在驗證球的上方任意選取一點作為接觸點,使探球接觸該點,根據該點與驗證球的半徑模擬一個虛擬球,並計算該虛擬球的圓心座標;根據該虛擬球的圓心座標計算該虛擬球上所述理論接觸點的座標;透過虛擬球上的理論接觸點的座標獲取實際接觸點的座標,所述實際接觸點座標為第一次實際接觸點座標;透過上述第一次實際接觸點的座標計算驗證球的圓心座標,及根據驗證球的圓心座標計算驗證球上的理論接觸點座標;透過驗證球上的理論接觸點的座標獲取實際接觸點的座標,所述實際接觸點座標為第二次實際接觸點座標;透過上述第二次實際接觸點的座標計算探球的實際半徑;判斷上述計算出來的探球的實際半徑與探球的理論半徑之間的公差是否在上述設置的公差範圍內,根據該判斷結果驗證探針是否合格;標識上述驗證結果。A probe verification method, the probe includes a probe at the bottom end of the rod, the method comprising the steps of: setting a verification parameter including verifying a radius of the sphere, a number of theoretical contact points, a theoretical radius of the probe, and exploration When the needle passes, the actual radius of the ball and the theoretical radius of the ball are within the tolerance range; when the user randomly selects a point above the verification ball as the contact point, the probe touches the point, and simulates a virtual ball according to the radius of the point and the verification ball. And calculating a centroid coordinate of the virtual sphere; calculating a coordinate of the theoretical contact point on the virtual sphere according to a center coordinate of the virtual sphere; obtaining a coordinate of the actual contact point through a coordinate of a theoretical contact point on the virtual sphere, the actual The coordinates of the contact point are the first actual contact point coordinates; the coordinates of the center of the ball are calculated by the coordinates of the first actual contact point, and the coordinates of the theoretical contact point on the verification ball are calculated according to the coordinates of the center of the verification ball; The coordinates of the theoretical contact point acquire the coordinates of the actual contact point, and the actual contact point coordinates are the coordinates of the second actual contact point; Calculating the actual radius of the ball for the second actual contact point; determining whether the tolerance between the calculated actual radius of the ball and the theoretical radius of the ball is within the set tolerance range, and verifying according to the judgment result Whether the probe is qualified; identifies the above verification result.

相較於習知技術,所述的探針驗證系統及方法,透過獲取接觸點的實際座標來計算探球半徑,以驗證探針是否合格,減少了由於探針不合格造成的誤差,提高了測試精度,節約了企業的測試成本。Compared with the prior art, the probe verification system and method calculate the radius of the probe by obtaining the actual coordinates of the contact point to verify whether the probe is qualified, and reduce the error caused by the probe failure, thereby improving the error. Test accuracy saves the company's testing costs.

參照圖1所示,係本發明探針驗證系統較佳實施例的架構圖。該系統主要包括主機9,及與該主機9連接的影像量測機台1、顯示設備7和輸入設備8。所述主機9包括探針驗證系統(以下簡稱“驗證系統”)90。Referring to Figure 1, there is shown an architectural diagram of a preferred embodiment of the probe verification system of the present invention. The system mainly includes a host computer 9, and an image measuring machine 1, a display device 7, and an input device 8 connected to the host 9. The host 9 includes a probe verification system (hereinafter referred to as "verification system") 90.

所述影像量測機台1的組成,如圖2所示,該影像量測機台1包括與水平面平行的工作台2、跨設於該工作台2的龍門架3、固設於該龍門架3中部的頂罩4、探針5及置於工作台2上的驗證球6。所述探針5包括測桿51及該測桿51底端的探球50,如圖3所示。The composition of the image measuring machine 1 is as shown in FIG. 2. The image measuring machine 1 includes a table 2 parallel to the horizontal plane, a gantry 3 straddles the table 2, and is fixed to the gantry. The top cover 4 in the middle of the frame 3, the probe 5 and the verification ball 6 placed on the table 2. The probe 5 includes a measuring rod 51 and a probe 50 at the bottom end of the measuring rod 51, as shown in FIG.

其中,影像量測機台1還設有X軸傳動系統、Y軸傳動系統及Z軸傳動系統(圖未示)。所述X軸傳動系統、Y軸傳動系統及Z軸傳動系統用以驅動所述探球50沿機械座標的X軸、Y軸及Z軸移動,用以與驗證球6進行接觸以獲取該驗證球6上每個接觸點的座標。具體而言,當探球50與驗證球6接觸時,影像量測機台1可利用內部安裝的測量軟體(圖中未示出)測量該驗證球6上每個接觸點的座標。本實施例中,該每個接觸點的座標為接觸點的理論座標,其實際上是探球50與驗證球6接觸時探球50的球心O1的座標。所述驗證系統90根據該每個接觸點的理論座標可實現對探球50的驗證。The image measuring machine 1 is further provided with an X-axis transmission system, a Y-axis transmission system and a Z-axis transmission system (not shown). The X-axis transmission system, the Y-axis transmission system and the Z-axis transmission system are configured to drive the probe ball 50 to move along the X-axis, the Y-axis and the Z-axis of the mechanical coordinate for contacting the verification ball 6 to obtain the verification. The coordinates of each contact point on the ball 6. Specifically, when the probe 50 is in contact with the verification ball 6, the image measuring machine 1 can measure the coordinates of each contact point on the verification ball 6 using an internally mounted measurement software (not shown). In this embodiment, the coordinates of each contact point are the theoretical coordinates of the contact point, which is actually the coordinate of the spherical center O1 of the probe 50 when the probe 50 is in contact with the verification ball 6. The verification system 90 can verify the inspection of the ball 50 based on the theoretical coordinates of each of the contact points.

所述顯示設備7用於顯示影像量測機台1傳送給主機9的座標資料等。所述輸入設備8可以是鍵盤和滑鼠等,用於進行資料登錄,例如,設置理論接觸點的個數、輸入驗證球6的半徑、探球50的理論半徑及探球50的半徑的公差範圍等。The display device 7 is used to display coordinate data and the like transmitted by the image measuring machine 1 to the host 9. The input device 8 may be a keyboard, a mouse, or the like for performing data registration, for example, setting the number of theoretical contact points, the radius of the input verification ball 6, the theoretical radius of the probe 50, and the radius of the probe 50. Range, etc.

所述驗證系統90包括多個功能模組:設置模組910、模擬模組920、計算模組930、獲取模組940、判斷模組950及標識模組960。本發明所稱的模組是完成一特定功能的電腦程式段,比程式更適合於描述軟體在電腦中的執行過程,因此在本發明以下對軟體描述都以模組描述。The verification system 90 includes a plurality of function modules: a setup module 910, an analog module 920, a calculation module 930, an acquisition module 940, a determination module 950, and an identification module 960. The module referred to in the present invention is a computer program segment for performing a specific function, and is more suitable for describing the execution process of the software in the computer than the program. Therefore, the following description of the software in the present invention is described by a module.

所述設置模組910用於設置驗證參數。所述驗證參數包括,但不限於,驗證球6的半徑、理論接觸點的個數、探球50的理論半徑及探針5合格時探球50的實際半徑與探球50的理論半徑的公差範圍。具體而言,驗證球6的半徑r是固定的,探球50的理論半徑也是固定的,而理論接觸點的個數可以根據用戶的需要進行設置。透過所設置的驗證參數可驗證所述探球50的實際半徑是否合格,進而驗證探針5是否合格。The setting module 910 is configured to set a verification parameter. The verification parameters include, but are not limited to, the radius of the verification ball 6, the number of theoretical contact points, the theoretical radius of the probe 50, and the actual radius of the probe 50 when the probe 5 passes and the theoretical radius of the probe 50. range. Specifically, the radius r of the verification ball 6 is fixed, and the theoretical radius of the probe 50 is also fixed, and the number of theoretical contact points can be set according to the needs of the user. Whether the actual radius of the probe 50 is qualified can be verified by the set verification parameter, thereby verifying whether the probe 5 is qualified.

一般而言,理論接觸點的個數設置的越多,計算量越大,驗證的結果也越精確。在本較佳實施例中,理論接觸點的個數最少為4個,最多為20個。所述的理論接觸點是指驗證過程中探球50預計與驗證球6接觸的點。理論接觸點在驗證球6上的分佈可由理論接觸點的個數及分佈規則而定,該分佈規則由用戶預先透過設置模組910進行設置。例如,如圖4所示,將驗證球6的上表面以等間距的方式分為三層,第一層為驗證球6的中心圓,該中心圓上分佈3~10個理論接觸點,第二層為驗證球6的上表面的三分之二處的圓,該圓上分佈0~6個理論接觸點,第三層為驗證球6的上表面的三分之一處的圓,該圓上分佈0~3個理論接觸點。無論設置模組910設置了多少個理論接觸點,其中有一個理論接觸點在驗證球6的正上方,如點“a”處,其他理論接觸點會優先分佈在所述第一層上,當第一層分佈的個數達到10個且還有理論接觸點未分佈時,再考慮第二層,以此類推。例如,若設置模組910設置了20個理論接觸點,則驗證球6的正上方如點“a”處會分佈一個理論接觸點,驗證球6的第一層會分佈10個理論接觸點,第二層會分佈6個理論接觸點,第三層會分佈3個理論接觸點。若設置模組910設置了10個理論接觸點,則驗證球6的正上方點“a”處分佈了一個理論接觸點後其他9個理論接觸點會分佈在所述第一層上。In general, the more the number of theoretical contact points is set, the larger the calculation amount, and the more accurate the verification result. In the preferred embodiment, the number of theoretical contact points is at least four and at most 20. The theoretical contact point refers to the point at which the probe 50 is expected to be in contact with the verification ball 6 during verification. The distribution of the theoretical contact points on the verification sphere 6 can be determined by the number of theoretical contact points and the distribution rules, which are set by the user in advance through the setting module 910. For example, as shown in FIG. 4, the upper surface of the verification ball 6 is divided into three layers in an equally spaced manner. The first layer is the center circle of the verification ball 6, and the center circle is distributed with 3 to 10 theoretical contact points. The second layer is a circle of two-thirds of the upper surface of the verification ball 6, on which 0 to 6 theoretical contact points are distributed, and the third layer is a circle at the third of the upper surface of the verification ball 6, which 0~3 theoretical contact points are distributed on the circle. Regardless of how many theoretical contact points are set by the module 910, one of the theoretical contact points is directly above the verification ball 6, as at the point "a", other theoretical contact points are preferentially distributed on the first layer, when When the number of first layer distributions reaches 10 and there are also theoretical contact points that are not distributed, consider the second layer, and so on. For example, if the setting module 910 is provided with 20 theoretical contact points, a theoretical contact point is distributed directly above the verification ball 6 as the point "a", and the first layer of the verification ball 6 is distributed with 10 theoretical contact points. The second layer will distribute six theoretical contact points, and the third layer will distribute three theoretical contact points. If the set module 910 is provided with 10 theoretical contact points, the other 9 theoretical contact points will be distributed on the first layer after a theoretical contact point is distributed at the point "a" directly above the verification ball 6.

所述模擬模組920用於當用戶在驗證球6的上方任意選取一點作為接觸點,使探球50接觸該點,根據該點與驗證球6的半徑模擬一個虛擬球,並計算該虛擬球的圓心座標。本較佳實施例中,所述任意選取的點為驗證球6的頂點,如圖5所示的點P0。然而,由於人為的誤差,所選取的點與驗證球6的實際頂點P0之間會存在誤差,如圖5所示的接觸點P0'。因此,本實施例暫時以所述任意選取的點,如接觸點P0'作為驗證球6的頂點,模擬一個虛擬球,該虛擬球與驗證球6同樣大小。假設驗證球6的半徑為r,接觸點P0'的座標為(X0'、Y0'、Z0'),虛擬球的圓心O'與頂點P0'的座標在Z軸上相差所述半徑r,即O'的座標為(X0'、Y0'、Z0'-r)。The simulation module 920 is configured to randomly select a point above the verification ball 6 as a contact point, so that the probe 50 contacts the point, simulate a virtual ball according to the radius of the point and the verification ball 6, and calculate the virtual ball. The center of the circle. In the preferred embodiment, the arbitrarily selected point is the vertex of the verification ball 6, as shown by the point P0 in FIG. However, due to the human error, there is an error between the selected point and the actual vertex P0 of the verification ball 6, such as the contact point P0' shown in FIG. Therefore, in the present embodiment, the arbitrarily selected point, such as the contact point P0', is used as the vertex of the verification ball 6, and a virtual ball is simulated, which is the same size as the verification ball 6. Assuming that the radius of the verification ball 6 is r, the coordinates of the contact point P0' are (X0', Y0', Z0'), and the coordinates of the center O' of the virtual sphere and the vertex P0' differ by the radius r on the Z-axis, that is, The coordinates of O' are (X0', Y0', Z0'-r).

所述計算模組930用於根據該虛擬球的圓心O'的座標計算該虛擬球上所述理論接觸點的座標。該理論接觸點在虛擬球上的座標可透過如下方式得到:The calculation module 930 is configured to calculate a coordinate of the theoretical contact point on the virtual ball according to a coordinate of a center O′ of the virtual ball. The coordinates of the theoretical contact point on the virtual sphere can be obtained as follows:

Xi'=X0'+cos(i*a)*r;Xi'=X0'+cos(i*a)*r;

Yi'=Y0'+sin(i*a)*r;Yi'=Y0'+sin(i*a)*r;

Zi'=當前層的Z軸座標;Zi'=Z axis coordinate of the current layer;

其中,a=360/N,i<=N,N為當前層理論接觸點的個數(如圖4中所述的第一層上的理論接觸點的個數),N不等於零。Where a=360/N, i<=N, N is the number of theoretical contact points of the current layer (the number of theoretical contact points on the first layer as described in FIG. 4), and N is not equal to zero.

所述獲取模組940用於透過虛擬球上的理論接觸點的座標獲取實際接觸點(即下述的第一次實際接觸點)的座標。具體而言,假設虛擬球上有5個理論接觸點,則虛擬球的第一層(即中心圓)上有四個理論接觸點P1'、P2'、P3'及P4',頂點P0'上有一個理論接觸點,探球50根據P0'、P1'、P2'、P3'及P4'的座標分別接觸點P0'、P1'、P2'、P3'及P4',由於P0'、P1'、P2'、P3'及P4'為虛擬球上的點,因此,探球50在模擬碰撞所述理論接觸點時實際上碰到的點為驗證球6上的點,本實施例中,該實際碰到的點被稱為第一次實際接觸點。具體而言,以虛擬球的理論接觸點P1'為例,如圖6所示,探球50水平向右移動去接觸點P1',由於理論接觸點P1'實際不存在,因此,探球50經過點P1'後會與驗證球6上的點P1發生接觸,該點P1即為所述第一次實際接觸點,由理論接觸點P1'的座標可獲取該第一次實際接觸點P1的座標。同理,由上述其他理論接觸點的座標可獲取驗證球6上其他第一次實際接觸點的座標。The acquisition module 940 is configured to acquire the coordinates of the actual contact point (ie, the first actual contact point described below) through the coordinates of the theoretical contact point on the virtual ball. Specifically, assuming that there are five theoretical contact points on the virtual sphere, there are four theoretical contact points P1', P2', P3', and P4' on the first layer (ie, the center circle) of the virtual sphere, and the vertex P0' There is a theoretical contact point. The probe 50 touches the points P0', P1', P2', P3' and P4' according to the coordinates of P0', P1', P2', P3' and P4', respectively, because P0', P1' P2', P3', and P4' are points on the virtual sphere. Therefore, the point actually touched by the probe 50 when simulating the theoretical contact point is the point on the verification ball 6. In this embodiment, The point actually encountered is called the first actual contact point. Specifically, taking the theoretical contact point P1' of the virtual ball as an example, as shown in FIG. 6, the probe ball 50 is horizontally moved to the right to contact the point P1'. Since the theoretical contact point P1' does not actually exist, the probe 50 is not present. After the point P1', it will contact with the point P1 on the verification ball 6, which is the first actual contact point, and the coordinates of the theoretical contact point P1' can acquire the first actual contact point P1. coordinate. Similarly, the coordinates of the other first actual contact points on the verification ball 6 can be obtained from the coordinates of the other theoretical contact points described above.

所述計算模組930還用於透過上述第一次實際接觸點的座標計算驗證球6的圓心座標。在本較佳實施例中,驗證球6的圓心座標可透過擬合球公式和牛頓迭代公式利用所述第一次實際接觸點的座標計算得出,其中,擬合球公式和牛頓迭代公式為習知技術,其具體計算過程在此不做贅述。The calculation module 930 is further configured to calculate the center coordinates of the ball 6 through the coordinates of the first actual contact point. In the preferred embodiment, the center coordinates of the verification ball 6 can be calculated by using the coordinates of the first actual contact point by fitting the ball formula and the Newton iteration formula, wherein the fitting sphere formula and the Newton iteration formula are The specific calculation process of the prior art is not described here.

所述計算模組930還用於根據驗證球6的圓心座標計算驗證球6上的理論接觸點座標。驗證球6上的理論接觸點的座標可透過如下方式得到:假設上述計算出的驗證球6的圓心O的座標為(X0、Y0、Z0),則驗證球6上的理論接觸點的座標為:The calculation module 930 is further configured to calculate the theoretical contact point coordinates on the verification ball 6 according to the center coordinates of the verification ball 6. The coordinates of the theoretical contact point on the verification ball 6 can be obtained by assuming that the coordinates of the center O of the verification ball 6 calculated above are (X0, Y0, Z0), and the coordinates of the theoretical contact point on the verification ball 6 are :

Xi=X0+cos(i*a)*r;Xi=X0+cos(i*a)*r;

Yi=Y0+sin(i*a)*r;Yi=Y0+sin(i*a)*r;

Zi=當前層的Z軸座標;Zi=Z axis coordinate of the current layer;

其中,a=360/N,i<=N,N為當前層理論接觸點的個數,N不等於零。Where a=360/N, i<=N, N is the number of theoretical contact points of the current layer, and N is not equal to zero.

所述獲取模組940還用於透過驗證球6上的理論接觸點的座標獲取實際接觸點的座標,此處所講的實際接觸點的座標為第二次實際接觸點座標。具體而言,以獲取其中的一個實際接觸點P11的座標為例,如圖7所示,探球50水平向右移動與驗證球6上的理論接觸點P11接觸,由所述驗證球6的圓心O的座標為(X0、Y0、Z0)及驗證球6的的半徑r可獲取該第二次實際接觸點的座標。需要注意的是,由於存在誤差,此時,該第二次實際接觸點可能是點P11,也可能不是點P11。The acquisition module 940 is further configured to obtain the coordinates of the actual contact point through the coordinates of the theoretical contact point on the verification ball 6, where the coordinates of the actual contact point are the second actual contact point coordinates. Specifically, taking the coordinate of one of the actual contact points P11 as an example, as shown in FIG. 7, the probe 50 moves horizontally to the right to contact the theoretical contact point P11 on the verification ball 6, by the verification ball 6 The coordinates of the center O are (X0, Y0, Z0) and the radius r of the verification ball 6 can obtain the coordinates of the second actual contact point. It should be noted that due to the error, the second actual contact point may be the point P11 or the point P11.

所述計算模組930用於透過上述第二次實際接觸點的座標計算探球50的實際半徑。在本較佳實施例中,探球50的實際半徑可由探球50的圓心座標計算得出,而該探球50的圓心座標可由上述第二次實際接觸點的座標、擬合球公式和牛頓迭代公式計算得到。具體而言,將上述第二次實際接觸點的座標代入到擬合球公式和牛頓迭代公式,得到一個擬合球的半徑R,該擬合球的半徑R等於驗證球6的半徑r與探球50的實際半徑r1之和,也就是說,探球50的實際半徑為r1=R-r。The calculation module 930 is configured to calculate the actual radius of the probe 50 through the coordinates of the second actual contact point. In the preferred embodiment, the actual radius of the probe 50 can be calculated from the coordinates of the center of the probe 50, and the coordinates of the center of the probe 50 can be derived from the coordinates of the second actual contact point, the fit ball formula, and Newton. The iterative formula is calculated. Specifically, the coordinates of the second actual contact point are substituted into the fitting sphere formula and the Newton iteration formula to obtain a radius R of the fitting sphere, and the radius R of the fitting sphere is equal to the radius r of the verification sphere 6 and the exploration The sum of the actual radii r1 of the ball 50, that is, the actual radius of the ball 50 is r1 = Rr.

所述判斷模組950用於判斷上述計算出來的探球50的半徑是否合格以驗證探針5是否合格。具體而言,當計算出來的探球50的實際半徑與用戶設置的探球50的理論半徑的公差範圍在設定的公差範圍(例如,0.01毫米~0.05毫米)內時,則說明探球50合格,驗證結果為探針5合格。當計算出來的探球50的實際半徑與用戶設置的探球50的理論半徑的公差範圍不在設定的公差範圍內時,則說明探球50不合格,驗證結果為探針5不合格。The determining module 950 is configured to determine whether the calculated radius of the probe 50 is qualified to verify whether the probe 5 is qualified. Specifically, when the calculated range of the actual radius of the probe 50 and the theoretical radius of the probe 50 set by the user is within a set tolerance range (for example, 0.01 mm to 0.05 mm), the shot 50 is qualified. The verification result is that the probe 5 is qualified. When the calculated tolerance range of the actual radius of the probe 50 and the theoretical radius of the probe 50 set by the user is not within the set tolerance range, it indicates that the probe 50 is unqualified, and the verification result is that the probe 5 is unqualified.

所述標識模組960用於標識上述驗證結果。具體而言,當驗證結果為探針5合格時,標識模組960在顯示設備7上顯示符號“SUCCESS”;當驗證結果為探針5不合格時,標識模組960在顯示設備7上顯示符號“FAIL”,說明需要更換該探球50。The identification module 960 is configured to identify the verification result. Specifically, when the verification result is that the probe 5 is qualified, the identification module 960 displays the symbol “SUCCESS” on the display device 7; when the verification result is that the probe 5 fails, the identification module 960 displays on the display device 7. The symbol "FAIL" indicates that the probe 50 needs to be replaced.

如圖8所示,係本發明探針驗證方法較佳實施例的流程圖。As shown in Figure 8, a flow chart of a preferred embodiment of the probe verification method of the present invention is shown.

步驟S10,設置模組910設置驗證參數。所述驗證參數包括,但不限於,驗證球6的半徑、理論接觸點的個數、探球50的理論半徑及探針5合格時探球50的實際半徑與探球50的理論半徑的公差範圍。具體而言,驗證球6的半徑r是固定的,探球50的理論半徑也是固定的,而所述理論接觸點的個數可根據用戶的需要進行設置。透過所設置的驗證參數可驗證出所述探球50的實際半徑是否合格,進而驗證探針5是否合格。一般而言,理論接觸點的個數設置的越多,計算量越大,驗證的結果也越精確。在本較佳實施例中,理論接觸點的個數最少為4個,最多為20個。所述的理論接觸點是指驗證過程中探球50預計與驗證球6接觸的點。理論接觸點在驗證球6上的分佈可由理論接觸點的個數及分佈規則而定,該分佈規則由用戶預先透過設置模組910進行設置,具體分佈規則的設置如圖4中所述。In step S10, the setting module 910 sets the verification parameter. The verification parameters include, but are not limited to, the radius of the verification ball 6, the number of theoretical contact points, the theoretical radius of the probe 50, and the actual radius of the probe 50 when the probe 5 passes and the theoretical radius of the probe 50. range. Specifically, the radius r of the verification ball 6 is fixed, and the theoretical radius of the probe ball 50 is also fixed, and the number of the theoretical contact points can be set according to the needs of the user. Through the set verification parameters, it can be verified whether the actual radius of the probe 50 is qualified, thereby verifying whether the probe 5 is qualified. In general, the more the number of theoretical contact points is set, the larger the calculation amount, and the more accurate the verification result. In the preferred embodiment, the number of theoretical contact points is at least four and at most 20. The theoretical contact point refers to the point at which the probe 50 is expected to be in contact with the verification ball 6 during verification. The distribution of the theoretical contact points on the verification ball 6 can be determined by the number of theoretical contact points and the distribution rules. The distribution rules are set by the user through the setting module 910 in advance, and the specific distribution rules are set as shown in FIG. 4 .

步驟S11,當用戶在驗證球6的上方任意選取一點作為接觸點,使探球50接觸該點時,模擬模組920根據該點與驗證球6的半徑模擬一個虛擬球,並計算該虛擬球的圓心座標。本較佳實施例中,所述任意選取的點為驗證球6的頂點,如圖5所示的點P0。然而,由於人為的誤差,所選取的點與驗證球6的實際頂點P0之間會存在誤差,如圖5所示的接觸點P0'。因此,本實施例以所述任意選取的點,如接觸點P0'作為驗證球6的頂點,模擬一個虛擬球,該虛擬球與驗證球6同樣大小。假設驗證球6的半徑為r,接觸點P0'的座標為(X0'、Y0'、Z0'),虛擬球的圓心O'與頂點P0'的座標在Z軸上相差所述半徑r,即O'的座標為(X0'、Y0'、Z0'-r)。In step S11, when the user randomly selects a point above the verification ball 6 as a contact point to make the probe 50 contact the point, the simulation module 920 simulates a virtual ball according to the radius of the point and the verification ball 6, and calculates the virtual ball. The center of the circle. In the preferred embodiment, the arbitrarily selected point is the vertex of the verification ball 6, as shown by the point P0 in FIG. However, due to the human error, there is an error between the selected point and the actual vertex P0 of the verification ball 6, such as the contact point P0' shown in FIG. Therefore, in the present embodiment, the arbitrarily selected point, such as the contact point P0', is used as the vertex of the verification ball 6, simulating a virtual ball, which is the same size as the verification ball 6. Assuming that the radius of the verification ball 6 is r, the coordinates of the contact point P0' are (X0', Y0', Z0'), and the coordinates of the center O' of the virtual sphere and the vertex P0' differ by the radius r on the Z-axis, that is, The coordinates of O' are (X0', Y0', Z0'-r).

步驟S12,計算模組930根據該虛擬球的圓心O'的座標計算該虛擬球上所述理論接觸點的座標。該理論接觸點在虛擬球上的座標可透過如下方式得到:In step S12, the calculation module 930 calculates the coordinates of the theoretical contact point on the virtual sphere according to the coordinates of the center O' of the virtual sphere. The coordinates of the theoretical contact point on the virtual sphere can be obtained as follows:

Xi'=X0'+cos(i*a)*r;Xi'=X0'+cos(i*a)*r;

Yi'=Y0'+sin(i*a)*r;Yi'=Y0'+sin(i*a)*r;

Zi'=當前層的Z軸座標;Zi'=Z axis coordinate of the current layer;

其中,a=360/N,i<=N,N為當前層理論接觸點的個數(如圖4中所述的第一層上的理論接觸點的個數),N不等於零。Where a=360/N, i<=N, N is the number of theoretical contact points of the current layer (the number of theoretical contact points on the first layer as described in FIG. 4), and N is not equal to zero.

步驟S13,獲取模組940透過虛擬球上的理論接觸點的座標獲取實際接觸點(即下述的第一次實際接觸點)的座標。具體而言,假設虛擬球上有5個理論接觸點,則虛擬球的第一層(即中心圓)上有四個理論接觸點P1'、P2'、P3'及P4',頂點P0'上有一個理論接觸點,探球50根據P0'、P1'、P2'、P3'及P4'的座標分別接觸點P0'、P1'、P2'、P3'及P4',由於P0'、P1'、P2'、P3'及P4'為虛擬球上的點,因此,探球50在模擬碰撞所述理論接觸點時實際上碰到的點為驗證球6上的點,本實施例中,該實際碰到的點被稱為第一次實際接觸點。具體而言,以虛擬球的理論接觸點P1'為例,如圖6所示,探球50水平向右移動去接觸點P1',由於理論接觸點P1'實際不存在,因此,探球50經過點P1'後會與驗證球6上的點P1發生接觸,該點P1即為所述第一次實際接觸點,由理論接觸點P1'的座標可獲取該第一次實際接觸點P1的座標。同理,由上述其他理論接觸點的座標可獲取驗證球6上其他第一次實際接觸點的座標。In step S13, the acquisition module 940 acquires the coordinates of the actual contact point (ie, the first actual contact point described below) through the coordinates of the theoretical contact point on the virtual sphere. Specifically, assuming that there are five theoretical contact points on the virtual sphere, there are four theoretical contact points P1', P2', P3', and P4' on the first layer (ie, the center circle) of the virtual sphere, and the vertex P0' There is a theoretical contact point. The probe 50 touches the points P0', P1', P2', P3' and P4' according to the coordinates of P0', P1', P2', P3' and P4', respectively, because P0', P1' P2', P3', and P4' are points on the virtual sphere. Therefore, the point actually touched by the probe 50 when simulating the theoretical contact point is the point on the verification ball 6. In this embodiment, The point actually encountered is called the first actual contact point. Specifically, taking the theoretical contact point P1' of the virtual ball as an example, as shown in FIG. 6, the probe ball 50 is horizontally moved to the right to contact the point P1'. Since the theoretical contact point P1' does not actually exist, the probe 50 is not present. After the point P1', it will contact with the point P1 on the verification ball 6, which is the first actual contact point, and the coordinates of the theoretical contact point P1' can acquire the first actual contact point P1. coordinate. Similarly, the coordinates of the other first actual contact points on the verification ball 6 can be obtained from the coordinates of the other theoretical contact points described above.

步驟S14,計算模組930透過上述第一次實際接觸點的座標計算驗證球6的圓心座標。在本較佳實施例中,驗證球6的圓心座標可透過擬合球公式和牛頓迭代公式利用所述第一次實際接觸點的座標計算得出,其中,擬合球公式和牛頓迭代公式為習知技術,其具體計算過程在此不做贅述。In step S14, the calculation module 930 calculates the center coordinates of the verification ball 6 through the coordinate of the first actual contact point. In the preferred embodiment, the center coordinates of the verification ball 6 can be calculated by using the coordinates of the first actual contact point by fitting the ball formula and the Newton iteration formula, wherein the fitting sphere formula and the Newton iteration formula are The specific calculation process of the prior art is not described here.

步驟S15,計算模組930根據驗證球6的圓心座標計算驗證球6上的理論接觸點座標。驗證球6上的理論接觸點的座標可透過如下方式得到:假設上述計算出的驗證球6的圓心O的座標為(X0、Y0、Z0),則驗證球6上的理論接觸點的座標為:In step S15, the calculation module 930 calculates the theoretical contact point coordinates on the verification ball 6 based on the coordinates of the center of the verification ball 6. The coordinates of the theoretical contact point on the verification ball 6 can be obtained by assuming that the coordinates of the center O of the verification ball 6 calculated above are (X0, Y0, Z0), and the coordinates of the theoretical contact point on the verification ball 6 are :

Xi=X0+cos(i*a)*r;Xi=X0+cos(i*a)*r;

Yi=Y0+sin(i*a)*r;Yi=Y0+sin(i*a)*r;

Zi=當前層的Z軸座標;Zi=Z axis coordinate of the current layer;

其中,a=360/N,i<=N,N為當前層理論接觸點的個數,N不等於零。Where a=360/N, i<=N, N is the number of theoretical contact points of the current layer, and N is not equal to zero.

步驟S16,獲取模組940透過驗證球6上的理論接觸點的座標獲取實際接觸點的座標,此時所講的實際接觸點的座標為第二次實際接觸點座標。具體而言,以獲取其中的一個實際接觸點P11的座標為例,如圖7所示,探球50水平向右移動與驗證球6上的理論接觸點P11接觸,由所述驗證球6的圓心O的座標為(X0、Y0、Z0)及驗證球6的的半徑r可獲取該第二次實際接觸點的座標。需要注意的是,由於存在誤差,此時,該第二次實際接觸點可能是點P11,也可能不是點P11。In step S16, the acquisition module 940 obtains the coordinates of the actual contact point through the coordinates of the theoretical contact point on the verification ball 6, and the coordinates of the actual contact point at this time are the coordinates of the second actual contact point. Specifically, taking the coordinate of one of the actual contact points P11 as an example, as shown in FIG. 7, the probe 50 moves horizontally to the right to contact the theoretical contact point P11 on the verification ball 6, by the verification ball 6 The coordinates of the center O are (X0, Y0, Z0) and the radius r of the verification ball 6 can obtain the coordinates of the second actual contact point. It should be noted that due to the error, the second actual contact point may be the point P11 or the point P11.

步驟S17,計算模組930透過上述第二次實際接觸點的座標計算探球50的實際半徑。在本較佳實施例中,探球50的實際半徑可由探球50的圓心座標計算得出,而該探球50的圓心座標可由上述第二次實際接觸點的座標、擬合球公式和牛頓迭代公式計算得到。具體而言,將上述第二次實際接觸點的座標代入到擬合球公式和牛頓迭代公式,得到一個擬合球的半徑R,該擬合球的半徑R等於驗證球6的半徑r與探球50的實際半徑r1之和,因此,探球50的實際半徑為r1=R-r。In step S17, the calculation module 930 calculates the actual radius of the probe 50 through the coordinates of the second actual contact point. In the preferred embodiment, the actual radius of the probe 50 can be calculated from the coordinates of the center of the probe 50, and the coordinates of the center of the probe 50 can be derived from the coordinates of the second actual contact point, the fit ball formula, and Newton. The iterative formula is calculated. Specifically, the coordinates of the second actual contact point are substituted into the fitting sphere formula and the Newton iteration formula to obtain a radius R of the fitting sphere, and the radius R of the fitting sphere is equal to the radius r of the verification sphere 6 and the exploration The sum of the actual radii r1 of the ball 50, therefore, the actual radius of the probe 50 is r1 = Rr.

步驟S18,判斷模組950判斷上述計算出來的探球50的實際半徑是否合格以驗證探針5是否合格。具體而言,當計算出來的探球50的實際半徑與用戶設置的探球50的理論半徑的公差範圍在設定的公差範圍(例如,0.01毫米~0.05毫米)內時,則說明探球50合格,流程進入步驟S19。當計算出來的探球50的實際半徑與用戶設置的探球50的理論半徑的公差範圍不在設定的公差範圍內時,則說明探球50不合格,流程進入步驟S20。In step S18, the determining module 950 determines whether the calculated actual radius of the probe 50 is qualified to verify whether the probe 5 is qualified. Specifically, when the calculated range of the actual radius of the probe 50 and the theoretical radius of the probe 50 set by the user is within a set tolerance range (for example, 0.01 mm to 0.05 mm), the shot 50 is qualified. The flow proceeds to step S19. When the calculated tolerance range of the actual radius of the probe 50 and the theoretical radius of the probe 50 set by the user is not within the set tolerance range, it indicates that the probe 50 is unqualified, and the flow proceeds to step S20.

步驟S19,驗證結果為探針5合格,標識模組960在顯示設備7上顯示符號“SUCCESS”。In step S19, the verification result is that the probe 5 is qualified, and the identification module 960 displays the symbol "SUCCESS" on the display device 7.

步驟S20,驗證結果為探針5不合格,標識模組960在顯示設備7上顯示符號“FAIL”。In step S20, the verification result is that the probe 5 is unqualified, and the identification module 960 displays the symbol "FAIL" on the display device 7.

以上實施例僅用以說明本發明的技術方案而非限制,儘管參照以上較佳實施例對本發明進行了詳細說明,本領域的普通技術人員應當理解,可以對本發明的技術方案進行修改或等同替換都不應脫離本發明技術方案的精神和範圍。The above embodiments are only used to illustrate the technical solutions of the present invention and are not intended to be limiting, and the present invention will be described in detail with reference to the preferred embodiments thereof, and those skilled in the art should understand that the technical solutions of the present invention may be modified or substituted. Neither should the spirit and scope of the technical solutions of the present invention be deviated.

1‧‧‧影像量測機台1‧‧‧Image measuring machine

2‧‧‧工作台2‧‧‧Workbench

3‧‧‧龍門架3‧‧‧ gantry

4‧‧‧頂罩4‧‧‧ top cover

5‧‧‧探針5‧‧‧ probe

50‧‧‧探球50‧‧‧Check the ball

51‧‧‧測桿51‧‧‧ rod

6‧‧‧驗證球6‧‧‧ verification ball

7‧‧‧顯示設備7‧‧‧Display equipment

8‧‧‧輸入設備8‧‧‧Input equipment

9‧‧‧主機9‧‧‧Host

90‧‧‧探針驗證系統90‧‧‧Probe verification system

910‧‧‧設置模組910‧‧‧Setup module

920‧‧‧模擬模組920‧‧‧simulation module

930‧‧‧計算模組930‧‧‧Computation Module

940‧‧‧獲取模組940‧‧‧Getting module

950‧‧‧判斷模組950‧‧‧Judgement module

960‧‧‧標識模組960‧‧‧identification module

S10‧‧‧設置驗證時所需的驗證參數S10‧‧‧Set the verification parameters required for verification

S11‧‧‧在驗證球上方選取一點,根據該點及設置的驗證參數模擬一個虛擬球,計算該虛擬球的圓心座標S11‧‧‧ Select a point above the verification ball, simulate a virtual ball according to the point and the set verification parameters, and calculate the center coordinates of the virtual ball.

S12‧‧‧根據該虛擬球的圓心座標計算該虛擬球上每個理論接觸點的座標S12‧‧‧ Calculate the coordinates of each theoretical contact point on the virtual sphere based on the coordinates of the center of the virtual sphere

S13‧‧‧透過虛擬球上每個理論接觸點的座標獲取第一次實際接觸點的座標S13‧‧·Get the coordinates of the first actual contact point through the coordinates of each theoretical contact point on the virtual ball

S14‧‧‧透過第一次實際接觸點的座標計算驗證球的圓心座標S14‧‧‧ Calculate the center coordinates of the ball through the coordinates of the first actual contact point

S15‧‧‧透過驗證球的圓心座標計算得到驗證球上每個理論接觸點的座標S15‧‧‧ Calculate the coordinates of each theoretical contact point on the verification ball by verifying the center coordinates of the ball

S16‧‧‧透過驗證球上每個理論接觸點的座標獲取第二次實際接觸點的座標S16‧‧‧Get the coordinates of the second actual contact point by verifying the coordinates of each theoretical contact point on the ball

S17‧‧‧透過第二次實際接觸點的座標計算得到探球的實際半徑S17‧‧‧ Calculate the actual radius of the ball through the coordinates of the second actual contact point

S18‧‧‧判斷探球的半徑是否合格S18‧‧‧Determining whether the radius of the ball is qualified

S19‧‧‧探針合格S19‧‧‧ probe qualified

S20‧‧‧探針不合格S20‧‧‧ probe failed

圖1係本發明探針驗證系統較佳實施例的架構圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of a preferred embodiment of the probe verification system of the present invention.

圖2係影像量測機台的結構示意圖。Fig. 2 is a schematic structural view of an image measuring machine.

圖3係本發明探針的結構示意圖。Figure 3 is a schematic view showing the structure of the probe of the present invention.

圖4係本發明理論接觸點的分佈示意圖。Figure 4 is a schematic illustration of the distribution of theoretical contact points of the present invention.

圖5係本發明探針在驗證球上方任意選取一點後模擬虛擬球的示意圖。FIG. 5 is a schematic diagram of the virtual ball simulated by the probe of the present invention after arbitrarily selecting a point above the verification ball.

圖6係本發明探針獲取第一次實際接觸點的座標的示意圖。Figure 6 is a schematic illustration of the coordinates of the first actual contact point taken by the probe of the present invention.

圖7係本發明探針獲取第二次實際接觸點的座標的示意圖。Figure 7 is a schematic illustration of the coordinates of the probe of the present invention for obtaining a second actual contact point.

圖8係本發明探針驗證方法較佳實施例的流程圖。Figure 8 is a flow chart of a preferred embodiment of the probe verification method of the present invention.

S10‧‧‧設置驗證時所需的驗證參數 S10‧‧‧Set the verification parameters required for verification

S11‧‧‧在驗證球上方選取一點,根據該點及設置的驗證參數模擬一個虛擬球,計算該虛擬球的圓心座標 S11‧‧‧ Select a point above the verification ball, simulate a virtual ball according to the point and the set verification parameters, and calculate the center coordinates of the virtual ball.

S12‧‧‧根據該虛擬球的圓心座標計算該虛擬球上每個理論接觸點的座標 S12‧‧‧ Calculate the coordinates of each theoretical contact point on the virtual sphere based on the coordinates of the center of the virtual sphere

S13‧‧‧透過虛擬球上的每個理論接觸點的座標獲取第一次實際接觸點的座標 S13‧‧·Get the coordinates of the first actual contact point through the coordinates of each theoretical contact point on the virtual ball

S14‧‧‧透過第一次實際接觸點的座標計算驗證球的圓心座標 S14‧‧‧ Calculate the center coordinates of the ball through the coordinates of the first actual contact point

S15‧‧‧透過驗證球的圓心座標計算得到驗證球上每個理論接觸點的座標 S15‧‧‧ Calculate the coordinates of each theoretical contact point on the verification ball by verifying the center coordinates of the ball

S16‧‧‧透過驗證球上每個理論接觸點的座標獲取第二次實際接觸點的座標 S16‧‧‧Get the coordinates of the second actual contact point by verifying the coordinates of each theoretical contact point on the ball

S17‧‧‧透過第二次實際接觸點的座標計算得到探球的實際半徑 S17‧‧‧ Calculate the actual radius of the ball through the coordinates of the second actual contact point

S18‧‧‧判斷探球的半徑是否合格 S18‧‧‧Determining whether the radius of the ball is qualified

S19‧‧‧探針合格 S19‧‧‧ probe qualified

S20‧‧‧探針不合格 S20‧‧‧ probe failed

Claims (10)

一種探針驗證系統,該探針包括測桿底端的探球,該系統包括:
設置模組,用於設置驗證參數,所述驗證參數包括驗證球的半徑、理論接觸點的個數、探球的理論半徑及探針合格時探球的實際半徑與探球理論半徑的公差範圍;
模擬模組,用於當用戶在驗證球的上方任意選取一點作為接觸點,使探球接觸該點,根據該點與驗證球的半徑模擬一個虛擬球,並計算該虛擬球的圓心座標;
計算模組,用於根據該虛擬球的圓心座標計算該虛擬球上所述理論接觸點的座標;
獲取模組,用於透過虛擬球上的理論接觸點的座標獲取實際接觸點的座標,所述實際接觸點的座標為第一次實際接觸點的座標;
所述計算模組,還用於透過上述第一次實際接觸點的座標計算驗證球的圓心座標,及根據驗證球的圓心座標計算驗證球上理論接觸點的座標;
所述獲取模組,還用於透過驗證球上理論接觸點的座標獲取實際接觸點的座標,所述實際接觸點的座標為第二次實際接觸點的座標;
所述計算模組,還用於透過上述第二次實際接觸點的座標計算探球的實際半徑;
判斷模組,用於判斷上述計算出來的探球的實際半徑與探球的理論半徑之間的公差是否在上述設置的公差範圍內,根據該判斷結果驗證探針是否合格;及
標識模組,用於標識上述驗證結果。
A probe verification system includes a probe at the bottom end of the rod, the system comprising:
a setting module, configured to set a verification parameter, the verification parameter includes a radius of the verification ball, a number of theoretical contact points, a theoretical radius of the probe ball, and a tolerance range of the actual radius of the probe ball and the theoretical radius of the probe ball when the probe passes the test ;
The simulation module is configured to randomly select a point above the verification ball as a contact point, so that the probe touches the point, simulate a virtual ball according to the radius of the point and the verification ball, and calculate a center coordinate of the virtual ball;
a calculation module, configured to calculate a coordinate of the theoretical contact point on the virtual ball according to a center coordinate of the virtual ball;
Obtaining a module, configured to obtain a coordinate of an actual contact point through a coordinate of a theoretical contact point on the virtual ball, where the coordinate of the actual contact point is a coordinate of the first actual contact point;
The calculation module is further configured to calculate a center coordinate of the verification ball through a coordinate of the first actual contact point, and calculate a coordinate of the theoretical contact point on the verification ball according to a center coordinate of the verification ball;
The acquiring module is further configured to obtain a coordinate of the actual contact point by using a coordinate of the theoretical contact point on the verification ball, where the coordinate of the actual contact point is a coordinate of the second actual contact point;
The calculation module is further configured to calculate an actual radius of the probe through the coordinates of the second actual contact point;
a judging module, configured to determine whether a tolerance between the actual radius of the calculated probe ball and the theoretical radius of the probe ball is within the set tolerance range, and verify whether the probe is qualified according to the judgment result; and the identification module, Used to identify the above verification results.
如申請專利範圍第1項所述之探針驗證系統,其中,當所述驗證結果為探針合格時,標識模組顯示字元“SUCCESS”,當所述驗證結果為探針不合格時,標識模組顯示字元“FAIL”。The probe verification system of claim 1, wherein when the verification result is that the probe is qualified, the identification module displays the character “SUCCESS”, and when the verification result is that the probe fails, The identification module displays the character "FAIL". 如申請專利範圍第1項所述之探針驗證系統,其中,所述理論接觸點的個數的設置範圍在四到二十之間。The probe verification system of claim 1, wherein the number of the theoretical contact points is set between four and twenty. 如申請專利範圍第1項所述之探針驗證系統,其特徵在於,所述虛擬球的圓心座標是透過擬合球公式及牛頓迭代公式計算得到。The probe verification system according to claim 1, wherein the center point of the virtual sphere is calculated by fitting a ball formula and a Newton iteration formula. 如申請專利範圍第1項所述之探針驗證系統,其中,所述探球的實際半徑是透過擬合球公式及牛頓迭代公式計算得到。The probe verification system of claim 1, wherein the actual radius of the probe is calculated by fitting a ball formula and a Newton iteration formula. 一種探針驗證方法,該探針包括測桿底端的探球,該方法包括步驟:
設置驗證參數,所述驗證參數包括驗證球的半徑、理論接觸點的個數、探球的理論半徑及探針合格時探球的實際半徑與探球理論半徑的公差範圍;
當用戶在驗證球的上方任意選取一點作為接觸點,使探球接觸該點,根據該點與驗證球的半徑模擬一個虛擬球,並計算該虛擬球的圓心座標;
根據該虛擬球的圓心座標計算該虛擬球上所述理論接觸點的座標;
透過虛擬球上的理論接觸點的座標獲取實際接觸點的座標,所述實際接觸點座標為第一次實際接觸點的座標;
透過上述第一次實際接觸點的座標計算驗證球的圓心座標,及根據驗證球的圓心座標計算驗證球上理論接觸點的座標;
透過驗證球上理論接觸點的座標獲取實際接觸點的座標,所述實際接觸點的座標為第二次實際接觸點的座標;
透過上述第二次實際接觸點的座標計算探球的實際半徑;
判斷上述計算出來的探球的實際半徑與探球的理論半徑之間的公差是否在上述設置的公差範圍內,根據該判斷結果驗證探針是否合格;及
標識上述驗證結果。
A probe verification method includes a probe at the bottom end of a rod, the method comprising the steps of:
Setting a verification parameter, the verification parameter includes a radius of the verification ball, a number of theoretical contact points, a theoretical radius of the probe, and a tolerance range of the actual radius of the probe and the theoretical radius of the probe when the probe passes;
When the user randomly selects a point above the verification ball as a contact point, the probe touches the point, simulates a virtual ball according to the radius of the point and the verification ball, and calculates a centroid coordinate of the virtual ball;
Calculating a coordinate of the theoretical contact point on the virtual ball according to a center coordinate of the virtual ball;
Acquiring the coordinates of the actual contact point through the coordinates of the theoretical contact point on the virtual ball, the actual contact point coordinates being the coordinates of the first actual contact point;
Verifying the center coordinates of the ball through the coordinate of the first actual contact point, and calculating the coordinates of the theoretical contact point on the ball according to the coordinates of the center of the verification ball;
Acquiring the coordinates of the actual contact point by verifying the coordinates of the theoretical contact point on the ball, the coordinates of the actual contact point being the coordinates of the second actual contact point;
Calculating the actual radius of the probe through the coordinates of the second actual contact point;
Determining whether the tolerance between the actual radius of the calculated ball and the theoretical radius of the ball is within the set tolerance range, verifying whether the probe is qualified according to the judgment result; and identifying the verification result.
如申請專利範圍第6項所述之探針驗證方法,其中,所述標識上述驗證結果的步驟包括:
若所述驗證結果為探針合格,顯示字元“SUCCESS”;
若所述驗證結果為探針不合格,顯示字元“FAIL”。
The probe verification method according to claim 6, wherein the step of identifying the verification result includes:
If the verification result is that the probe is qualified, the character "SUCCESS" is displayed;
If the verification result is that the probe fails, the character "FAIL" is displayed.
如申請專利範圍第6項所述之探針驗證方法,其中,所述理論接觸點的個數的設置範圍在四到二十之間。The probe verification method according to claim 6, wherein the number of the theoretical contact points is set between four and twenty. 如申請專利範圍第6項所述之探針驗證方法,其中,所述虛擬球的圓心座標是透過擬合球公式及牛頓迭代公式計算得到。The probe verification method according to claim 6, wherein the center point of the virtual sphere is calculated by fitting a ball formula and a Newton iteration formula. 如申請專利範圍第6項所述之探針驗證方法,其中,所述探球的實際半徑是透過擬合球公式及牛頓迭代公式計算得到。The probe verification method according to claim 6, wherein the actual radius of the probe is calculated by fitting a ball formula and a Newton iteration formula.
TW099107992A 2010-03-18 2010-03-18 System and method for authenticating a probe TWI447349B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099107992A TWI447349B (en) 2010-03-18 2010-03-18 System and method for authenticating a probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099107992A TWI447349B (en) 2010-03-18 2010-03-18 System and method for authenticating a probe

Publications (2)

Publication Number Publication Date
TW201132926A TW201132926A (en) 2011-10-01
TWI447349B true TWI447349B (en) 2014-08-01

Family

ID=46750990

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099107992A TWI447349B (en) 2010-03-18 2010-03-18 System and method for authenticating a probe

Country Status (1)

Country Link
TW (1) TWI447349B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6772527B1 (en) * 2003-04-09 2004-08-10 Renishaw Plc Modular measurement device
CN1740741A (en) * 2005-09-18 2006-03-01 中国海洋大学 Calibrating method for visual non-contact measuring head
US7055367B2 (en) * 2001-11-01 2006-06-06 Renishaw Plc Calibration of a probe
TW200745577A (en) * 2006-02-08 2007-12-16 Sv Probe Pte Ltd Automated probe card planarization and alignment methods and tools

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7055367B2 (en) * 2001-11-01 2006-06-06 Renishaw Plc Calibration of a probe
US6772527B1 (en) * 2003-04-09 2004-08-10 Renishaw Plc Modular measurement device
CN1740741A (en) * 2005-09-18 2006-03-01 中国海洋大学 Calibrating method for visual non-contact measuring head
TW200745577A (en) * 2006-02-08 2007-12-16 Sv Probe Pte Ltd Automated probe card planarization and alignment methods and tools

Also Published As

Publication number Publication date
TW201132926A (en) 2011-10-01

Similar Documents

Publication Publication Date Title
US8265898B2 (en) System and method for verifying a probe tip
JP3005681B1 (en) CMM calibration gauge and CMM calibration method
US7433797B2 (en) Method for verifying scan precision of a laser measurement machine
TW201514445A (en) System and method for measuring flatness
CN107063060A (en) A kind of method and device for determining surface planarity
Gąska et al. Modeling of the residual kinematic errors of coordinate measuring machines using LaserTracer system
Li et al. An accurate probe pre-travel error compensation model for five-axis on-machine inspection system
Gromczak et al. Validation model for coordinate measuring methods based on the concept of statistical consistency control
US20160084625A1 (en) Method for compensating lobing behavior of a cmm touch probe
González-Madruga et al. Evaluation of AACMM using the virtual circles method
JP2020046301A (en) Measuring error evaluation method and program of machine tool
TWI510760B (en) System and method for compensating probe of 3d coordinate measurement machine and measuring space error of the probe
Mutilba et al. Performance calibration of articulated arm coordinate measuring machine
Miura et al. Comparative evaluation of estimation of hole plate measurement uncertainty via Monte Carlo simulation
KR20150097395A (en) Touch position detection method of touch panel, touch panel inspection method, and touch panel inspection apparatus
TWI447349B (en) System and method for authenticating a probe
JP2010261856A (en) Surface texture measuring device, surface texture measuring method, and program
TW201800717A (en) Optical interferometric apparatus for real-time full-field thickness inspection
CN109446539A (en) In conjunction with surface error body modeling method and device
CN204115708U (en) Flatness checking device
CN104006781B (en) The computational methods of surface normal vector certainty of measurement
CN104123043B (en) Virtual test system and method based on infrared touch screen touch point identification algorithm
CN202964282U (en) Ball head and ball center position detector
TW201518677A (en) System and method for processing data tested by double line laser probes
Ferreira et al. Performance of articulated arm CMM using virtual spheres gauge and geometry deviation analysis

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees