TWI441648B - Foxp3 peptide vaccine - Google Patents

Foxp3 peptide vaccine Download PDF

Info

Publication number
TWI441648B
TWI441648B TW096149888A TW96149888A TWI441648B TW I441648 B TWI441648 B TW I441648B TW 096149888 A TW096149888 A TW 096149888A TW 96149888 A TW96149888 A TW 96149888A TW I441648 B TWI441648 B TW I441648B
Authority
TW
Taiwan
Prior art keywords
peptide
foxp3
seq
cells
hla
Prior art date
Application number
TW096149888A
Other languages
Chinese (zh)
Other versions
TW200835516A (en
Inventor
Takuya Tsunoda
Ryuji Osawa
Original Assignee
Oncotherapy Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncotherapy Science Inc filed Critical Oncotherapy Science Inc
Publication of TW200835516A publication Critical patent/TW200835516A/en
Application granted granted Critical
Publication of TWI441648B publication Critical patent/TWI441648B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4713Autoimmune diseases, e.g. Insulin-dependent diabetes mellitus, multiple sclerosis, rheumathoid arthritis, systemic lupus erythematosus; Autoantigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Description

FOXP3胜肽疫苗FOXP3 peptide vaccine 【相關申請案】[related application]

本申請案基於2007年1月3日所提申之美國臨時申請案號60/878,615及2007年3月22日所提申之美國臨時申請案號60/896,472主張優惠。此等申請案之完整教示納入於此作為參考。This application is based on US Provisional Application No. 60/878,615, filed on Jan. 3, 2007, and U.S. Provisional Application No. 60/896,472, filed on March 22, 2007. The complete teachings of these applications are incorporated herein by reference.

本發明係關於生物科學領域,且特別關於癌症治療之領域。尤其,本發明係關於Foxp3胜肽,其作為癌症疫苗極為有用,並關於用於治療及預防腫瘤之藥物。The present invention relates to the field of biological sciences, and in particular to the field of cancer treatment. In particular, the present invention relates to a Foxp3 peptide which is extremely useful as a cancer vaccine and relates to a medicament for treating and preventing a tumor.

已有人證明CD8+ 細胞毒性T淋巴球(CTL)認識呈現在第I類MHC分子上之衍生自腫瘤關連抗原(TAA)之抗原決定基胜肽,且接著殺死該腫瘤細胞。自從發現MAGE家族為第1例的TAA,許多其他TAA也已使用免疫學方法被發現(Boon T, Int J Cancer 54: 177-80, 1993; Boon T et al., J Exp Med 183: 725-9, 1996; van der Bruggen P et al., Science 254: 1643-7, 1991; Brichard V et al., J Exp Med 178: 489-95, 1993; Kawakami Y et al., J Exp Med 180: 347-52, 1994),其中一些已進入臨床開發階段,作為免疫療法之標靶。It has been demonstrated that CD8 + cytotoxic T lymphocytes (CTLs) recognize epitope-derived peptides derived from tumor-associated antigens (TAAs) present on MHC class I molecules, and then kill the tumor cells. Since the discovery of the MAGE family as the first TAA, many other TAAs have also been discovered using immunological methods (Boon T, Int J Cancer 54: 177-80, 1993; Boon T et al., J Exp Med 183: 725- 9, 1996; van der Bruggen P et al., Science 254: 1643-7, 1991; Brichard V et al., J Exp Med 178: 489-95, 1993; Kawakami Y et al., J Exp Med 180: 347 -52, 1994), some of which have entered the clinical development phase as targets for immunotherapy.

識別誘導有效力且專一性抗腫瘤免疫反應的新TAA,成為進一步開發臨床胜肽接種策略應用在各種類型癌症之依據(Harris CC, J Natl Cancer Inst 88: 1442-5, 1996; Butterfield LH et al., Cancer Res 59: 3134-42, 1999; Vissers JLM et al., Cancer Res 59: 5554-9, 1999; Van der Burg SH et al., J Immunol 156: 3308-14, 1996; Tanaka F et al., Cancer Res 57: 4465-8, 1997; Fujie T et al., Int J Cancer 80: 169-72, 1999; Kikuchi M et al., Int J Cancer 81: 459-66, 1999; Oiso M et al., Int J Cancer 81: 387-94, 1999)。Identifying new TAAs that induce potency and specific anti-tumor immune responses is the basis for further development of clinical peptide vaccination strategies for various types of cancer (Harris CC, J Natl Cancer Inst 88: 1442-5, 1996; Butterfield LH et al., Cancer Res 59: 3134-42, 1999; Vissers JLM et al., Cancer Res 59: 5554-9, 1999; Van der Burg SH et al., J Immunol 156: 3308-14, 1996; Tanaka F et al., Cancer Res 57: 4465-8, 1997; Fujie T et al., Int J Cancer 80: 169-72, 1999; Kikuchi M et al., Int J Cancer 81: 459-66, 1999; Oiso M et al., Int J Cancer 81: 387-94, 1999).

已有人實施多種抗原專一性免疫療法,然而在明顯的腫瘤退化方面,至今僅得到低臨床效力(Rosenberg SA et al., Nat Med 10:909-15, 2004)。其中之一重要原因為,對於罹患進展階段癌症之病患,腫瘤-透過淋巴球(TIL)及周邊血液淋巴球(PBL)之免疫反應不佳(Miescher S et al., J Immunol 136: 1899-907, 1986)。腫瘤所誘導之此免疫抑制為對於腫瘤抗原反應不佳(Young RC et al., Am J Med 52: 63-8, 1972)、T細胞增生不佳(Alexander JP et al., Cancer Res 53: 1380-7, 1993)、喪失細胞激素生產(Horiguchi S et al., Cancer Res 59: 2950-6, 1999),及T細胞及天然殺手細胞之有缺陷的訊息傳遞(Kono K et al., Clin Cancer Res 11: 1825-8, 1996, Kiessling R et al., Cancer Immunol Immunother 48: 353-62, 1999)之原因。A number of antigen-specific immunotherapies have been implemented, however, in terms of significant tumor regression, only low clinical efficacy has been obtained to date (Rosenberg SA et al., Nat Med 10:909-15, 2004). One of the important reasons is that the immune response to tumor-through lymphocytes (TIL) and peripheral blood lymphocytes (PBL) is poor for patients with cancer at the advanced stage (Miescher S et al., J Immunol 136: 1899- 907, 1986). This immunosuppression induced by tumors is poor response to tumor antigens (Young RC et al., Am J Med 52: 63-8, 1972), poor T cell proliferation (Alexander JP et al., Cancer Res 53: 1380) -7, 1993), loss of cytokine production (Horiguchi S et al., Cancer Res 59: 2950-6, 1999), and defective signaling by T cells and natural killer cells (Kono K et al., Clin Cancer Res 11: 1825-8, 1996, Kiessling R et al., Cancer Immunol Immunother 48: 353-62, 1999).

為了改良免疫療法之臨床效力,克服腫瘤所誘導之免疫抑制因子的作用是重要的。免疫耐受性(immunological tolerance)及保護免受自體免疫,係由中央及周邊機制來 賦予,該些機制包括將胸腺中自我反應性T細胞的無性繁殖系刪除,以及誘導在周邊遭遇到自體抗原時之不敏化。最近,已有人解明特性為共表現CD4及CD25標記之調節T細胞(T-reg),為T細胞之功能上獨特的族群,其功能為維持免疫恆定(Sakaguchi S et al., J Immunol. 155: 1151-64, 1995, Dieckmann D et al., J Exp Med 193: 1303-10, 2001)。T-reg細胞為主要抑制各種類型免疫反應之角色其中之一(Miescher S et al., J Immunol 136: 1899-907, 1986; Young RC et al., Am J Med 52: 63-72, 1972; Alexander JP et al., Cancer Res 53: 1380-7, 1997; Horiguchi S et al., Cancer Res 59: 2950-6, 1999; Kono K et al., Clin Cancer Res 11: 1825-8, 1996; Kiessling R et al., Cancer Immunol Immunother 48: 353-62, 1999)。In order to improve the clinical efficacy of immunotherapy, it is important to overcome the effects of tumor-induced immunosuppressive factors. Immune tolerance and protection from autoimmunity, from central and peripheral mechanisms These mechanisms include the deletion of clonal reproductive lines of autoreactive T cells in the thymus and the induction of sensitization in the presence of autoantigens in the periphery. Recently, regulatory T cells (T-reg) characterized by co-expression of CD4 and CD25 have been devised, and are functionally unique groups of T cells whose function is to maintain constant immunity (Sakaguchi S et al., J Immunol. 155 : 1151-64, 1995, Dieckmann D et al., J Exp Med 193: 1303-10, 2001). T-reg cells are one of the major inhibitors of various types of immune responses (Miescher S et al., J Immunol 136: 1899-907, 1986; Young RC et al., Am J Med 52: 63-72, 1972; Alexander JP et al., Cancer Res 53: 1380-7, 1997; Horiguchi S et al., Cancer Res 59: 2950-6, 1999; Kono K et al., Clin Cancer Res 11: 1825-8, 1996; Kiessling R et al., Cancer Immunol Immunother 48: 353-62, 1999).

雖然對於產生T-reg及其功能之關鍵分子間交互作用及訊息傳遞路徑尚未完全明瞭,T-reg需要由Foxp3基因(GenBank Accession No. NM_014009; SEQ ID NO 1)所編碼之叉頭(forkhead)轉錄因子scurfin (Foxp3; SEQ ID NO 2),該其轉錄因子scurfin控制該些的發展及調節性質(Fontenot JD et al., Nat Immunol 4: 330-6, 2003, Hori S et al., Science 299: 1057-61, 2003, Khattri R et al., Nat Immunol 4: 304-6, 2003)。再者以經Foxp3 mRNA轉染之樹突細胞接種小鼠,引發一Foxp3專一性CTL反應(Smita N et al., Cancer Res. Jan 1;67(1):371-80, 2007)。Although the key inter-molecular interactions and message transmission pathways for the production of T-reg and its functions are not fully understood, T-reg requires a forkhead encoded by the Foxp3 gene (GenBank Accession No. NM_014009; SEQ ID NO 1). The transcription factor scurfin (Foxp3; SEQ ID NO 2), whose transcription factor scurfin controls the developmental and regulatory properties of this (Fontenot JD et al., Nat Immunol 4: 330-6, 2003, Hori S et al., Science 299 : 1057-61, 2003, Khattri R et al., Nat Immunol 4: 304-6, 2003). Furthermore, mice were vaccinated with dendritic cells transfected with Foxp3 mRNA to elicit a Foxp3-specific CTL response (Smita N et al., Cancer Res. Jan 1;67(1):371-80, 2007).

因此,Foxp3作為癌症免疫療法之標靶,且進一步,Foxp3所編碼之蛋白質之部分胜肽,可作為CTL認識之抗原。Therefore, Foxp3 is the target of cancer immunotherapy, and further, a part of the peptide encoded by Foxp3 can be used as an antigen recognized by CTL.

為了改良免疫療法之臨床效力,克服腫瘤所誘導之免疫抑制因子為重要的。已有人發現T-reg為抑制多種類型免疫反應之重要角色其中之一。因此,開發標靶於表現Foxp3之T-reg的疫苗以克服T-reg-誘導之免疫抑制為重要的。In order to improve the clinical efficacy of immunotherapy, it is important to overcome the immunosuppressive factors induced by tumors. T-reg has been found to be one of the important roles in suppressing multiple types of immune responses. Therefore, it is important to develop a vaccine targeting T-reg expressing Foxp3 to overcome T-reg-induced immunosuppression.

本發明依據鑑別來自於Foxp3之基因產物的抗原決定位胜肽而生,其會引發專一於Foxp3胜肽或抗原決定基的細胞毒性T淋巴球(CTL)。將健康提供者之周邊血液單核細胞(PBMC)使用來自於Foxp3之HLA-A﹡24及HLA-A﹡02結合候選胜肽加以刺激。已證明此等胜肽為受HLA-A24或HLA-A02限制之抗原決定基胜肽,能對抗表現Foxp3之T-reg誘導有效力且專一性免疫反應。The present invention is based on the identification of an epitope peptide derived from the gene product of Foxp3, which elicits a cytotoxic T lymphocyte (CTL) specific to the Foxp3 peptide or epitope. Peripheral blood mononuclear cells (PBMC) from healthy providers were stimulated with HLA-A*24 and HLA-A*02 binding candidate peptides from Foxp3. These peptides have been shown to be HLA-A24 or HLA-A02-restricted epitope peptides that are potent against T-reg-expressing potent and specific immune responses that express Foxp3.

綜言之,本發明提供一種用於調節免疫抑制之方法,該方法包含投予本發明之Foxp3多胜肽之步驟。例如細胞毒性T淋巴球之抗免疫抑制(即反轉或抵銷免疫抑制),藉由投予該Foxp3多胜肽而誘導。因此,本發明提供一種用於誘導抗免疫抑制之方法,包含投予該Foxp3多胜肽之步驟,及提供用於調節免疫抑制之醫藥製劑,該醫藥製劑包含該Foxp3多胜肽。In summary, the present invention provides a method for modulating immunosuppression comprising the step of administering a Foxp3 multipeptide of the present invention. For example, anti-immunosuppression (i.e., reversal or offsetting immunosuppression) of cytotoxic T lymphocytes is induced by administration of the Foxp3 polypeptide. Accordingly, the present invention provides a method for inducing anti-immunosuppression comprising the steps of administering the Foxp3 multi-peptide, and providing a pharmaceutical preparation for modulating immunosuppression, the pharmaceutical preparation comprising the Foxp3 multi-peptide.

於本發明之一態樣中,本發明提供一種胜肽,該胜肽包含或由擇自於以下群組之胺基酸序列構成SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74。In one aspect of the invention, the invention provides a peptide comprising or consisting of the amino acid sequences selected from the group consisting of SEQ ID NOs: 3-5, 7-9, 12, 15- 19, 22, 24, 27-30, 37, 67 or 74.

於本發明另一態樣中,本發明提供一種胜肽,具細胞毒性T細胞誘導能力,其中該胜肽包含或由擇自於以下群組之胺基酸序列構成:(a)SEQ ID NO: 3-5、7-9、12、17、67或74;以及(b)SEQ ID NO: 3-5、7-9、12、17、67或74,其中一、二或數種胺基酸經取代或加成。In another aspect of the invention, the invention provides a peptide having cytotoxic T cell inducing ability, wherein the peptide comprises or consists of an amino acid sequence selected from the group consisting of: (a) SEQ ID NO : 3-5, 7-9, 12, 17, 67 or 74; and (b) SEQ ID NO: 3-5, 7-9, 12, 17, 67 or 74, wherein one, two or several amine groups The acid is substituted or added.

於另一態樣,本發明提供一種胜肽,具細胞毒性T細胞誘導能力,其中該胜肽包含擇自於以下所構成族群之胺基酸序列:(a)SEQ ID NO: 15-19, 22, 24, 27-30或37,及(b)SEQ ID NO: 15-19, 22, 24, 27-30或37,其中1、2或數種胺基酸經取代或加成。In another aspect, the invention provides a peptide having cytotoxic T cell inducing ability, wherein the peptide comprises an amino acid sequence selected from the group consisting of: (a) SEQ ID NO: 15-19, 22, 24, 27-30 or 37, and (b) SEQ ID NO: 15-19, 22, 24, 27-30 or 37, wherein 1, 2 or several amino acids are substituted or added.

關於該些實施樣態,於一些實施樣態,自N-末端起該第2個胺基酸為苯丙胺酸、酪胺酸、甲硫胺酸或色胺酸。於一些實施形態,該C-末端胺基酸為苯丙胺酸、白胺酸、異白胺酸、色胺酸或甲硫胺酸。於一些實施形態,從N-末端起算之該第2個胺基酸為白胺酸或甲硫胺酸。於一些實施形態,該C-末端胺基酸為纈胺酸或白胺酸。例如該經取代之胜肽包含SEQ ID NO: 95、97或98之胺基酸序列。With respect to these embodiments, in some embodiments, the second amino acid is phenylalanine, tyrosine, methionine or tryptophan from the N-terminus. In some embodiments, the C-terminal amino acid is phenylalanine, leucine, isoleucine, tryptophan or methionine. In some embodiments, the second amino acid from the N-terminus is leucine or methionine. In some embodiments, the C-terminal amino acid is valine or leucine. For example, the substituted peptide comprises the amino acid sequence of SEQ ID NO: 95, 97 or 98.

本發明尚提供組合物,包含本發明之Foxp3胜肽,或編碼為本發明Foxp3胜肽之多核苷酸,及一製藥上可接 受之擔體或賦形劑。於一些實施形態,該些組合物配方為以一疫苗形式投予。The present invention further provides a composition comprising the Foxp3 peptide of the present invention, or a polynucleotide encoding the Foxp3 peptide of the present invention, and a pharmaceutically acceptable Accepted by the carrier or excipient. In some embodiments, the compositions are formulated to be administered as a vaccine.

該些組合物可包含本發明之Foxp3胜肽中1種或多數不同的胜肽。該些組合物用於抑制T-reg細胞為有用,例如抑制增生或壓抑T-reg細胞之功能。The compositions may comprise one or a plurality of different peptides of the Foxp3 peptide of the invention. These compositions are useful for inhibiting T-reg cells, such as inhibiting proliferation or suppressing the function of T-reg cells.

於一些實施形態,該些組合物包含一個以上Foxp3胜肽,該一個以上Foxp3胜肽引發免疫反應,而抑制HLA抗原為HLA-A24之個體中之T-reg細胞。於一些實施形態,該些組合物包含一個以上Foxp3胜肽,該一個以上Foxp3胜肽引發一免疫反應,而抑制HLA抗原為HLA-A02之個體中之T-reg細胞。In some embodiments, the compositions comprise more than one Foxp3 peptide, the one or more Foxp3 peptides elicit an immune response, and the T-reg cells in an individual that inhibits the HLA antigen to be HLA-A24. In some embodiments, the compositions comprise more than one Foxp3 peptide, the one or more Foxp3 peptides elicit an immune response, and the T-reg cells in an individual that inhibits the HLA antigen to be HLA-A02.

於另一樣態,本發明提供一種組合物,包含編碼本發明Foxp3胜肽之一多核苷酸。於一些實施態,該些組合物包含編碼為多數本發明之Foxp3胜肽之多數(即2以上)多核苷酸。於一些實施形態,該些組合物包含一多核苷酸,該多核苷酸編碼為多數本發明之Foxp3胜肽。In another aspect, the invention provides a composition comprising a polynucleotide encoding a Foxp3 peptide of the invention. In some embodiments, the compositions comprise a majority (i.e., 2 or more) polynucleotides encoding a majority of the Foxp3 peptides of the invention. In some embodiments, the compositions comprise a polynucleotide encoding a majority of a Foxp3 peptide of the invention.

於一些實施樣態中,該些組合物包含一其他胜肽,該其他胜肽具誘導對抗癌細胞之細胞毒性T細胞之能力,或包含編碼為其他胜肽之其他多核苷酸。In some embodiments, the compositions comprise an additional peptide having the ability to induce cytotoxic T cells against cancer cells, or other polynucleotides encoded as other peptides.

於另一態樣,本發明提供一種外吐小體(exosome),其表面上呈現一複合體,該複合體包含一HLA抗原及本發明之Foxp3胜肽。於一些實施形態,該HLA抗原擇自於以下所構成之族群:HLA-A24、HLA-A2402、HLA-A02及HLA-A0201。In another aspect, the invention provides an exosome having a complex on its surface, the complex comprising an HLA antigen and a Foxp3 peptide of the invention. In some embodiments, the HLA antigen is selected from the group consisting of HLA-A24, HLA-A2402, HLA-A02, and HLA-A0201.

於一相關態樣,本發明提供一種用於治療癌症之方法(例如減少腫瘤細胞生長、促進腫瘤細胞死亡),係藉由對一個體投予一Foxp3胜肽或編碼為一Foxp3胜肽之多核苷酸。In a related aspect, the present invention provides a method for treating cancer (for example, reducing tumor cell growth and promoting tumor cell death) by administering a Foxp3 peptide or a multinuclear encoding a Foxp3 peptide to one body. Glycosylate.

於另一態樣,本發明提供一種誘導抗原呈現細胞之方法,該抗原呈現細胞具高細胞毒性T細胞誘導能力,係藉由投予一本發明之Foxp3胜肽或編碼為該Foxp3胜肽之多核苷酸。In another aspect, the present invention provides a method of inducing an antigen-presenting cell which exhibits a high cytotoxic T cell inducing ability by administering a Foxp3 peptide of the present invention or encoding the Foxp3 peptide. Polynucleotide.

於另一樣態,本發明提供一種誘導細胞毒性T細胞之方法,係藉由投予一本發明之Foxp3胜肽或編碼為該Foxp3胜肽之多核苷酸。In another aspect, the invention provides a method of inducing cytotoxic T cells by administering a Foxp3 peptide of the invention or a polynucleotide encoding the Foxp3 peptide.

於一相關樣態,本發明提供一種經離析之細胞毒性T細胞,其係由本發明之Foxp3胜肽所誘導。In a related aspect, the present invention provides an isolated cytotoxic T cell which is induced by the Foxp3 peptide of the present invention.

於另一樣態,本發明提供一種抗原呈現細胞,其包含一形成在一HLA抗原及一本發明之Foxp3胜肽間的複合體。於一些實施形態,該抗原呈現細胞被離析。In another aspect, the invention provides an antigen presenting cell comprising a complex formed between an HLA antigen and a Foxp3 peptide of the invention. In some embodiments, the antigen exhibits cell isolation.

於另一樣態,本發明提供一種調節於一個體中之T-reg細胞之方法,包含對於該個體投予一疫苗,該疫苗包含本發明之Foxp3胜肽或一免疫學上有效之該胜肽片段,或編碼為該胜肽之一多核苷酸。In another aspect, the invention provides a method of modulating T-reg cells in a body comprising administering to the individual a vaccine comprising a Foxp3 peptide of the invention or an immunologically effective peptide A fragment, or a polynucleotide encoded as one of the peptides.

於實施本發明之治療方法時,該個體或病患可為人類。In practicing the methods of treatment of the invention, the individual or patient can be a human.

應瞭解上述本發明內容及以下詳述之例示實施形態,均非限制本發明或本發明其他替代實施形態。The above summary of the invention and the exemplary embodiments set forth below are not intended to limit the invention.

I.定義I. Definition

在此使用之"一"及"該"除非另有特別指明,意指"至少一"。The use of "a" or "an", unless otherwise specified, means "at least one".

用語"多胜肽"、"胜肽"及"蛋白質"在此互通使用,係指胺基酸殘基之聚合物。用語應用於胺基酸聚合物,其中1個以上胺基酸殘基為經修飾之殘基或非天然發生之殘基,例如對應於天然發生之胺基酸之人工化學擬似物,及天然發生之胺基酸聚合物。The terms "polypeptide", "peptide" and "protein" are used interchangeably herein to refer to a polymer of an amino acid residue. The term applies to amino acid polymers in which one or more amino acid residues are modified residues or non-naturally occurring residues, such as artificial chemical analogs corresponding to naturally occurring amino acids, and naturally occurring Amino acid polymer.

在此使用之用語"胺基酸",係指天然發生及合成胺基酸,及胺基酸類似物及胺基酸擬似物具與天然發生之胺基酸類似功能者。天然發生之胺基酸為遺傳密碼所編碼,並於細胞中轉譯後經修飾者(例如羥基脯胺酸、γ-羧基麩胺酸,及O-磷酸絲胺酸)。詞組"胺基酸類似物"係指與天然發生之胺基酸具相同基本化學結構之化合物(鍵結於一氫、一羧基、一胺基及一R基團之α碳),但具一經修飾的R基團或經修飾的骨架(例如高半胱胺酸、正白胺酸、甲硫胺酸亞碸、甲硫胺酸甲基鹽)。詞組"胺基酸擬似物"係指與一般胺基酸具不同結構但具類似功能之化學化合物。The term "amino acid" as used herein, refers to naturally occurring and synthetic amino acids, and amino acid analogs and amino acid mimetics have similar functions to naturally occurring amino acids. The naturally occurring amino acid is encoded by the genetic code and is modified in the cell after translation (eg, hydroxyproline, gamma-carboxy glutamic acid, and O-phosphoric acid). The phrase "amino acid analog" refers to a compound having the same basic chemical structure as the naturally occurring amino acid (an alpha carbon bonded to a hydrogen, a carboxyl group, an amine group, and an R group), but once Modified R group or modified backbone (eg, homocysteine, n-aminoglycolic acid, amidium thiomethionate, methyl methionine methyl salt). The phrase "amino acid mimetic" refers to a chemical compound having a different structure but a similar function to a general amino acid.

胺基酸在此以其通用的三字母符號或由IUPAC-IUB生化命名委員會建議之一字母符號表示。The amino acid is here indicated by its universal three letter symbol or by the letter symbol of one of the IUPAC-IUB Biochemical Nomenclature Commission recommendations.

用語"基因"、"多核苷酸"、"核苷酸"及"核酸"除有特別指明外,在此係互通,並類似於胺基酸,係以其通常被 接受的單字母碼表示。The terms "gene", "polynucleotide", "nucleotide" and "nucleic acid" are used interchangeably herein unless otherwise specified, and are similar to amino acids, which are usually Accepted single letter code representation.

除非另外定義,所有在此使用之技術及科學用語,與本發明所屬技術領域中熟習技藝之人士所共通瞭解者具有相同意義。於有抵觸時,以本發明說明書,包括定義為準。Unless otherwise defined, all technical and scientific terms used herein have the same meaning meaning meaning In the event of inconsistency, the present specification, including definitions, will control.

II.胜肽II. peptide

為了證明衍生自Foxp3之胜肽,作用為細胞毒性T細胞(CTLs)所認識之一抗原,於本發明中,分析胜肽Foxp3之次序列的胜肽以知是否其為由HLA-A24或HLA-A02所限制之抗原之抗原決定基,該些HLA-A24或HLA-A02為世界上共通的HLA對偶基因(Date Y et al., Tissue antigen 47: 93-101, 1996; Kondo A et al., J Immuol 155: 4307-12, 1995; Kubo RT et al., J Immuol 152: 3913-24, 1994)。為Foxp3次序列之HLA-A24及HLA-A02結合胜肽候選者,使用其對於HLA-A24及HLA-A02之結合親和性資訊來鑑別。於使用載有此等胜肽之樹突細胞(DC)體外刺激T細胞後,使用以下序列成功建立CTL: Foxp3-A24-9-363 (SEQ ID NO 3)、Foxp3-A24-9-366 (SEQ ID NO 7)、Foxp3-A24-9-190 (SEQ ID NO 9)、Foxp3-A24-9-207 (SEQ ID NO 4)、Foxp3-A24-9-332 (SEQ ID NO 5)、Foxp3-A24-9-337 (SEQ ID NO 8)、Foxp3-A24-10-114 (SEQ ID NO 12)、 Foxp3-A2-9-390 (SEQ ID NO 15)、Foxp3-A2-9-69 (SEQ ID NO 16)、Foxp3-A2-9-252 (SEQ ID NO 17)、Foxp3-A2-10-359 (SEQ ID NO 22)、Foxp3-A2-10-263 (SEQ ID NO 24)、Foxp3-A2-10-94 (SEQ ID NO 27)、Foxp3-A2-10-233 (SEQ ID NO 28)、Foxp3-A2-10-152 (SEQ ID NO 29)、Foxp3-A2-10-77 (SEQ ID NO 30)、Foxp3-A2-10-246 (SEQ ID NO 37)、Foxp3-A2-9-68 (SEQ ID NO 18)、Foxp3-A2-9-304 (SEQ ID NO 19)、Foxp3-A24-10-87 (SEQ ID NO 67),以及Foxp3-A24-10-60 (SEQ ID NO 74)。In order to demonstrate that the peptide derived from Foxp3 acts as one of the antigens recognized by cytotoxic T cells (CTLs), in the present invention, the peptide of the subsequence of the peptide Foxp3 is analyzed to know whether it is HLA-A24 or HLA. -A02 The epitope of the antigen restricted by H02-A24 or HLA-A02 is a common HLA dual gene in the world (Date Y et al., Tissue antigen 47: 93-101, 1996; Kondo A et al. J Immuol 155: 4307-12, 1995; Kubo RT et al., J Immuol 152: 3913-24, 1994). The HLA-A24 and HLA-A02 binding peptide candidates for the Foxp3 subsequence were identified using their binding affinity information for HLA-A24 and HLA-A02. After in vitro stimulation of T cells using dendritic cells (DC) carrying these peptides, CTLs were successfully established using the following sequences: Foxp3-A24-9-363 (SEQ ID NO 3), Foxp3-A24-9-366 ( SEQ ID NO 7), Foxp3-A24-9-190 (SEQ ID NO 9), Foxp3-A24-9-207 (SEQ ID NO 4), Foxp3-A24-9-332 (SEQ ID NO 5), Foxp3- A24-9-337 (SEQ ID NO 8), Foxp3-A24-10-114 (SEQ ID NO 12), Foxp3-A2-9-390 (SEQ ID NO 15), Foxp3-A2-9-69 (SEQ ID NO 16), Foxp3-A2-9-252 (SEQ ID NO 17), Foxp3-A2-10-359 ( SEQ ID NO 22), Foxp3-A2-10-263 (SEQ ID NO 24), Foxp3-A2-10-94 (SEQ ID NO 27), Foxp3-A2-10-233 (SEQ ID NO 28), Foxp3- A2-10-152 (SEQ ID NO 29), Foxp3-A2-10-77 (SEQ ID NO 30), Foxp3-A2-10-246 (SEQ ID NO 37), Foxp3-A2-9-68 (SEQ ID NO 18), Foxp3-A2-9-304 (SEQ ID NO 19), Foxp3-A24-10-87 (SEQ ID NO 67), and Foxp3-A24-10-60 (SEQ ID NO 74).

此等建立之CTL顯示對抗經該胜肽脈衝(pulsed)之標靶細胞具有效能的專一性CTL活性。此等結果與Foxp3為CTL所認識之抗原的結論為一致,且Foxp3-A24-9-363 (SEQ ID NO 3)、Foxp3-A24-9-366 (SEQ ID NO 7)、Foxp3-A24-9-190 (SEQ ID NO 9)、Foxp3-A24-9-207 (SEQ ID NO 4)、Foxp3-A24-9-332 (SEQ ID NO 5)、Foxp3-A24-9-337 (SEQ ID NO 8)、Foxp3-A24-10-114 (SEQ ID NO 12)、 Foxp3-A2-9-390 (SEQ ID NO 15)、Foxp3-A2-9-69 (SEQ ID NO 16)、Foxp3-A2-9-252 (SEQ ID NO 17)、Foxp3-A2-10-359 (SEQ ID NO 22)、Foxp3-A2-10-263 (SEQ ID NO 24)、Foxp3-A2-10-94 (SEQ ID NO 27)、Foxp3-A2-10-233 (SEQ ID NO 28)、Foxp3-A2-10-152 (SEQ ID NO 29)、Foxp3-A2-10-77 (SEQ ID NO 30)、Foxp3-A2-10-246 (SEQ ID NO 37)、Foxp3-A2-9-68 (SEQ ID NO 18)、Foxp3-A2-9-304 (SEQ ID NO 19)、Foxp3-A24-10-87 (SEQ ID NO 67),以及Foxp3-A24-10-60 (SEQ ID NO 74)為HLA-A24及HLA-A2所限制之抗原決定基胜肽。由於Foxp3於多數癌症病患中被表現,且與腫瘤所造成免疫抑制因子所誘導之免疫抑制有關連,Foxp3為一良好之用於免疫療法的標靶,以促進對抗癌症之抗原專一性免疫療法之臨床效力。These established CTLs show specific CTL activity against the target cells pulsed by the peptide. These results are consistent with the conclusion that Foxp3 is an antigen recognized by CTL, and Foxp3-A24-9-363 (SEQ ID NO 3), Foxp3-A24-9-366 (SEQ ID NO 7), Foxp3-A24-9 -190 (SEQ ID NO 9), Foxp3-A24-9-207 (SEQ ID NO 4), Foxp3-A24-9-332 (SEQ ID NO 5), Foxp3-A24-9-337 (SEQ ID NO 8) , Foxp3-A24-10-114 (SEQ ID NO 12), Foxp3-A2-9-390 (SEQ ID NO 15), Foxp3-A2-9-69 (SEQ ID NO 16), Foxp3-A2-9-252 (SEQ ID NO 17), Foxp3-A2-10-359 ( SEQ ID NO 22), Foxp3-A2-10-263 (SEQ ID NO 24), Foxp3-A2-10-94 (SEQ ID NO 27), Foxp3-A2-10-233 (SEQ ID NO 28), Foxp3- A2-10-152 (SEQ ID NO 29), Foxp3-A2-10-77 (SEQ ID NO 30), Foxp3-A2-10-246 (SEQ ID NO 37), Foxp3-A2-9-68 (SEQ ID NO 18), Foxp3-A2-9-304 (SEQ ID NO 19), Foxp3-A24-10-87 (SEQ ID NO 67), and Foxp3-A24-10-60 (SEQ ID NO 74) are HLA-A24 And the epitope-restricted peptide restricted by HLA-A2. Since Foxp3 is expressed in most cancer patients and is associated with immunosuppression induced by tumor-induced immunosuppressive factors, Foxp3 is a good target for immunotherapy to promote antigen-specific immunotherapy against cancer. Clinical efficacy.

因此,本發明提供九胜肽(由9個胺基酸殘基構成之胜肽)及十胜肽(由10個胺基酸殘基構成之胜肽)。本發明之Foxp3胜肽結合於一HLA分子並誘導於細胞毒性T淋巴球(CTL)之細胞毒性活性。更具體而言,本發明提供由擇自於以下胺基酸序列族群所構成之胜肽:SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74。Accordingly, the present invention provides a nine-peptide (a peptide consisting of 9 amino acid residues) and a ten-peptide (a peptide consisting of 10 amino acid residues). The Foxp3 peptide of the present invention binds to an HLA molecule and induces cytotoxic activity of cytotoxic T lymphocytes (CTL). More specifically, the present invention provides a peptide consisting of the following amino acid sequence populations: SEQ ID NOs: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74.

一般而言,軟體程式已從網路上可得到,例如Parker KC. et al, J Immunol. 1994 Jan 1;152(1):163-75中所述者可用於以電腦試驗(in silico)計算在各種胜肽及HLA抗原之結合親和性。與HLA抗原之結合親和性可如前所述於體外測量,例如於Parker KC. et al, J Immunol. 1994 Jan 1;152(1):163-75.; Nukaya I. et al, Int J Cancer. 1999 Jan 5;80(1):92-7.; Kuzushima K, et al.((2001)Blood.;98(6):1872-81.; Journal of Immunological Methods, 1995, 185: 181-190.; Protein Science, 2000, 9: 1838-1846)所述。In general, software programs are available on the Internet, as described in Parker KC. et al, J Immunol. 1994 Jan 1; 152(1): 163-75, which can be used in computer calculations (in silico). The binding affinity of various peptides and HLA antigens. The binding affinity to the HLA antigen can be measured in vitro as previously described, for example, in Parker KC. et al, J Immunol. 1994 Jan 1; 152(1): 163-75.; Nukaya I. et al, Int J Cancer 1999 Jan 5;80(1):92-7.; Kuzushima K, et al. ((2001) Blood.;98(6):1872-81.; Journal of Immunological Methods, 1995, 185: 181-190 .; Protein Science, 2000, 9: 1838-1846).

再者,本發明之Foxp3胜肽可與額外的胺基酸殘基相鄰,只要該Foxp3胜肽保留其CTL誘導能力即可。此種具CTL誘導能力之胜肽可少於約40個胺基酸,例如少於約20個胺基酸,例如少於約15個胺基酸。該毗鄰於以下胺基酸序列族群所構成之胜肽:SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74,之胺基酸序列不限定,且可由任意種胺基酸組成,只要其不抑制該胜肽之CTL誘導能力即可。因此,本發明尚提供具CTL誘導能力之胜肽,包含擇自於以下所構成族群之胺基酸序列SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67及74。Further, the Foxp3 peptide of the present invention may be adjacent to an additional amino acid residue as long as the Foxp3 peptide retains its CTL inducing ability. Such a peptide having CTL inducing ability may be less than about 40 amino acids, such as less than about 20 amino acids, such as less than about 15 amino acids. The peptide consisting of the following amino acid sequence population: SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74, the amine group The acid sequence is not limited and may be composed of any kind of amino acid as long as it does not inhibit the CTL inducing ability of the peptide. Accordingly, the present invention also provides a peptide having CTL inducibility, comprising amino acid sequences selected from the group consisting of SEQ ID NOs: 3-5, 7-9, 12, 15-19, 22, 24, 27 -30, 37, 67 and 74.

一般而言,已知在蛋白質中修飾1個以上胺基酸,有時不影響該蛋白質之功能而甚至增進了該原來的蛋白質的所望功能。事實上,經修飾的胜肽(即經取代、加成1、 2或數個胺基酸殘基至原來的參考序列所修飾的胺基酸序列構成之胜肽)已知保留該原來的胜肽之生物學活性(Mark et al., Proc Natl Acad Sci USA 81: 5662-6, 1984; Zoller and Smith, Nucleic acid Res 10: 6487-500, 1982; Dalbadie-McFarland et al., Proc Natl Acad Sci USA 79: 6409-13, 1982。因此,依照本發明之一實施形態,本發明之具CTL誘導能力之胜肽,可由包含SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74之胺基酸序列所構成,其中1個以上胺基酸經加成及/或經取代。In general, it is known that the modification of one or more amino acids in a protein sometimes does not affect the function of the protein and even enhances the desired function of the original protein. In fact, the modified peptide (ie, substituted, added 1, 2 or a plurality of amino acid residues to the amino acid sequence modified by the original reference sequence to form a peptide) known to retain the biological activity of the original peptide (Mark et al., Proc Natl Acad Sci USA 81 : 5662-6, 1984; Zoller and Smith, Nucleic acid Res 10: 6487-500, 1982; Dalbadie-McFarland et al., Proc Natl Acad Sci USA 79: 6409-13, 1982. Thus, in accordance with one embodiment of the present invention Morphology, a peptide having CTL inducing ability of the present invention, may be an amino acid comprising SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74 A sequence consisting of one or more amino acids added and/or substituted.

熟習此項技藝之人士將了解,改變單一胺基酸或小比例的胺基酸,對於一胺基酸序列進行個別的加成或取代,可能保守原來的胺基酸側鏈之性質;因此稱為"保守性取代"或"保守性修飾",其中,蛋白質之改變會得到具類似功能之蛋白質。提供功能上類似胺基酸之保守性取代表格為該技術領域中為人所周知的。胺基酸側鏈性質之例有:疏水性胺基酸(A、I、L、M、F、P、W、Y、V)、親水性胺基酸(R、D、N、C、E、Q、G、H、K、S、T),及具以下官能基或共同特性之側鏈:一脂肪族側鏈(G、A、V、L、I、P);含羥基之側鏈(S、T、Y);含硫原子之側鏈(C、M);含羧酸及醯胺之側鏈(D、N、E、Q);含鹼之側鏈(R、K、H);及含芳香族之側鏈(H、F、Y、W)。此外,以下8個群組包含彼此互為保守性取代之胺基酸:1)丙胺酸(A)、甘胺酸(G); 2)天冬胺酸(D)、麩胺酸(E); 3)天冬醯胺酸(N)、麩醯胺酸(Q); 4)精胺酸(R)、離胺酸(K); 5)異白胺酸(I)、白胺酸(L)、甲硫胺酸(M)、纈胺酸(V); 6)苯丙胺酸(F)、酪胺酸(Y)、色胺酸(W); 7)絲胺酸(S)、蘇胺酸(T),以及8)半胱胺酸(C)、甲硫胺酸(M)(見例如Creighton, Proteins (1984))。Those skilled in the art will appreciate that changing a single amino acid or a small proportion of an amino acid, individual addition or substitution of an amino acid sequence, may conserve the nature of the original amino acid side chain; It is a "conservative substitution" or a "conservative modification" in which a protein change results in a protein having a similar function. Providing a conservative substitution table that is functionally similar to an amino acid is well known in the art. Examples of the side chain properties of amino acids are: hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E) , Q, G, H, K, S, T), and side chains with the following functional groups or common characteristics: an aliphatic side chain (G, A, V, L, I, P); hydroxyl-containing side chain (S, T, Y); side chain containing sulfur atom (C, M); side chain containing carboxylic acid and guanamine (D, N, E, Q); side chain containing alkali (R, K, H ); and aromatic side chains (H, F, Y, W). In addition, the following 8 groups contain amino acids that are mutually conservatively substituted: 1) alanine (A), glycine (G); 2) aspartic acid (D), glutamic acid (E) ; 3) Aspartic acid (N), glutamic acid (Q); 4) arginine (R), lysine (K); 5) Isoleucine (I), leucine (L) ), methionine (M), proline (V); 6) phenylalanine (F), tyrosine (Y), tryptophan (W); 7) serine (S), sulphamine Acid (T), and 8) cysteine (C), methionine (M) (see, for example, Creighton, Proteins (1984)).

此種經保守性修飾的胜肽,可考量為本發明之胜肽。然而,本發明之胜肽不限於此等,且可包括非保守性修飾,只要該胜肽保留CTL誘導能力即可。再者,該經修飾的胜肽不排除可誘導CTL之多形變異體之胜肽、種間同源體,及Foxp3之對偶基因。Such a conservatively modified peptide can be considered as a peptide of the present invention. However, the peptide of the present invention is not limited thereto, and may include a non-conservative modification as long as the peptide retains the CTL inducing ability. Furthermore, the modified peptide does not exclude a peptide, an interspecies homolog, and a Foxp3 dual gene that induce a polymorphic variant of CTL.

可僅修飾(加成或取代)小數目(例如1、2或數個)或小比例的胺基酸殘基,而同時仍維持所需的CTL誘導能力(即CTL活化)。在此,用語"數個"意指5以下或例如3以下。經修飾的胺基殘基可為完整胺基酸序列SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67及74中的20%以下,例如15%或10%以下,例如1至5%。與所鑑別的全整序列具至少95%、96%、97%、98%、99%胺基酸序列同一性之Foxp3胜肽,為本發明考量的。序列同一性可使用用該技術領域中已知的演算法測量,例如BLAST,可從美國國家生物科技資訊中心(National Center for Biotechnolcgy Information)取得(網站 ncbi.nlm.nih.gov/blast/Blast.cgi)。A small number (eg, 1, 2, or several) or a small proportion of amino acid residues can be modified (addition or substitution) while still maintaining the desired CTL inducibility (ie, CTL activation). Here, the term "several" means 5 or less or, for example, 3 or less. The modified amino residue may be less than 20% of the complete amino acid sequence SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 and 74 For example, 15% or less, such as 1 to 5%. Foxp3 peptides having at least 95%, 96%, 97%, 98%, 99% amino acid sequence identity to the identified entire sequence are contemplated by the present invention. Sequence identity can be measured using algorithms known in the art, such as BLAST, available from the National Center for Biotechnolcgy Information (website) Ncbi.nlm.nih.gov/blast/Blast.cgi).

對於目前胜肽之同源性(即序列同一性)分析,Foxp3-A24-9-363 (SEQ ID NO 3)、Foxp3-A24-9-366 (SEQ ID NO 7)、Foxp3-A24-9-190 (SEQ ID NO 9)、Foxp3-A24-9-207 (SEQ ID NO 4)、Foxp3-A24-9-332 (SEQ ID NO 5)、Foxp3-A24-9-337 (SEQ ID NO 8)、Foxp3-A24-10-114 (SEQ ID NO 12)、Foxp3-A2-9-390 (SEQ ID NO 15)、Foxp3-A2-9-69 (SEQ ID NO 16)、Foxp3-A2-9-252 (SEQ ID NO 17)、Foxp3-A2-10-359 (SEQ ID NO 22)、Foxp3-A2-10-263 (SEQ ID NO 24)、Foxp3-A2-10-94 (SEQ ID NO 27)、Foxp3-A2-10-233 (SEQ ID NO 28)、Foxp3-A2-10-152 (SEQ ID NO 29)、Foxp3-A2-10-77 (SEQ ID NO 30)、Foxp3-A2-10-246 (SEQ ID NO 37)、Foxp3-A2-9-68 (SEQ ID NO 18)、Foxp3-A2-9-304 (SEQ ID NO 19)、Foxp3-A24-10-87 (SEQ ID NO 67),以及Foxp3-A24-10-60 (SEQ ID NO 74),顯示該些與衍生自任何其他已知人類基因產物之胜肽不具顯著同源性。此 情形降低了當使用於免疫療法,發生未知或不欲免疫反應之可能性。For the homology (ie, sequence identity) analysis of the current peptide, Foxp3-A24-9-363 (SEQ ID NO 3), Foxp3-A24-9-366 (SEQ ID NO 7), Foxp3-A24-9- 190 (SEQ ID NO 9), Foxp3-A24-9-207 (SEQ ID NO 4), Foxp3-A24-9-332 (SEQ ID NO 5), Foxp3-A24-9-337 (SEQ ID NO 8), Foxp3-A24-10-114 (SEQ ID NO 12), Foxp3-A2-9-390 (SEQ ID NO 15), Foxp3-A2-9-69 (SEQ ID NO 16), Foxp3-A2-9-252 ( SEQ ID NO 17), Foxp3-A2-10-359 (SEQ ID NO 22), Foxp3-A2-10-263 (SEQ ID NO 24), Foxp3-A2-10-94 (SEQ ID NO 27), Foxp3- A2-10-233 (SEQ ID NO 28), Foxp3-A2-10-152 (SEQ ID NO 29), Foxp3-A2-10-77 (SEQ ID NO 30), Foxp3-A2-10-246 (SEQ ID NO 37), Foxp3-A2-9-68 (SEQ ID NO 18), Foxp3-A2-9-304 (SEQ ID NO 19), Foxp3-A24-10-87 (SEQ ID NO 67), and Foxp3-A24 -10-60 (SEQ ID NO 74), showing that these do not have significant homology to the peptide derived from any other known human gene product. this The situation reduces the likelihood of an unknown or unwanted immune response when used in immunotherapy.

當使用於免疫療法,本發明之胜肽將與一HLA抗原以複合體形式呈現在細胞或外吐小體表面。因此,除了CTL誘導能力,胜肽係以對HLA抗原之高結合親和性來選擇。再者,該胜肽可經取代、加成等的胺基酸殘基修飾,以達成較高結合親和性。除了天然顯示的胜肽,由於結合於HLA抗原之胜肽序列的規則性(即一致性)已知(J Immunol 152: 3913, 1994;Immunogenetics 41: 178, 1995; J Immunol 155: 4307, 1994),因此可依據此等規則性實施本發明免疫性胜肽之修飾。例如顯示高HLA-A24結合親和性之胜肽,將N-末端起第2胺基酸取代為苯丙胺酸、酪胺酸、甲硫胺酸或色胺酸,且將胜肽之C-末端胺基酸取代成苯丙胺酸、白胺酸、異白胺酸、色胺酸或甲硫胺酸,亦為有用。另一方面,N-末端起第2個胺基酸取代為白胺酸或甲硫胺酸,且其中C-末端胺基酸取代為纈胺酸或白胺酸之胜肽,亦可用為具高HLA-A02結合親和性之胜肽。取代不僅實施在末端胺基酸,亦實施在胜肽中具潛力的TCR認識位置。Zaremba等人證明CAP1胜肽中之胺基酸取代可等同或較原來者更佳(Cancer Res. 57, 4570-4577, 1997)。例如該經取代之胜肽包含胺基酸序列SEQ ID NO: 95、97或98。再者,可將1或2個胺基酸加成於該胜肽之N及/或C-末端。此種具高HLA抗原結合親和性之經修飾胜肽,亦可包括在本發明中。When used in immunotherapy, the peptide of the present invention will be presented in the form of a complex with an HLA antigen on the surface of a cell or exosome. Therefore, in addition to the CTL inducing ability, the peptide is selected with a high binding affinity for the HLA antigen. Furthermore, the peptide can be modified with amino acid residues such as substitutions, additions, etc. to achieve higher binding affinity. In addition to the naturally displayed peptide, the regularity (i.e., identity) of the peptide sequence bound to the HLA antigen is known (J Immunol 152: 3913, 1994; Immunogenetics 41: 178, 1995; J Immunol 155: 4307, 1994). Therefore, the modification of the immunogenic peptide of the present invention can be carried out in accordance with such regularity. For example, a peptide exhibiting high HLA-A24 binding affinity, the N-terminal is substituted with a second amino acid to be phenylalanine, tyrosine, methionine or tryptophan, and the C-terminal amine of the peptide is obtained. Substituting a base acid for amphetamine, leucine, isoleucine, tryptophan or methionine is also useful. On the other hand, the N-terminal is substituted with a second amino acid to be leucine or methionine, and wherein the C-terminal amino acid is substituted with a peptide of lysine or leucine, and can also be used as a peptide. High HLA-A02 binds to the peptide of affinity. The substitution is not only carried out at the terminal amino acid, but also the potential TCR recognition position in the peptide. Zaremba et al. demonstrated that the amino acid substitution in the CAP1 peptide is equivalent or better than the original (Cancer Res. 57, 4570-4577, 1997). For example, the substituted peptide comprises the amino acid sequence SEQ ID NO: 95, 97 or 98. Further, one or two amino acids may be added to the N and/or C-terminus of the peptide. Such modified peptides having high HLA antigen binding affinity may also be included in the present invention.

然而,當該胜肽序列相同於內生性或外源性的具不同功能的蛋白質的一部分胺基酸序列,可能會誘發對抗特定物質之副作用,例如自體免疫疾病或過敏症狀。因此,可使用可取得的資料庫進行同源性研究,以避免或減少或極小化發生該胜肽序列配合於其他蛋白質之胺基酸序列的情形。當經過同源性研究已明瞭不存在與本目標胜肽具一或二胺基酸差異的其他胜肽,則能將本目標胜肽修飾以增加與HLA抗原之結合親和性,及/或增加CTL誘導能力,而不會有發生副作用的危險。However, when the peptide sequence is identical to a part of the amino acid sequence of an endogenous or exogenous protein with different functions, it may induce side effects against specific substances, such as autoimmune diseases or allergy symptoms. Thus, a library of available data can be used for homology studies to avoid or minimize or minimize the occurrence of amino acid sequences in which the peptide sequence is complexed with other proteins. When homologous studies have revealed that there are no other peptides that differ from the target peptide with a mono or diamino acid, the target peptide can be modified to increase binding affinity to the HLA antigen, and/or increase CTL induces without the risk of side effects.

以上所述對於HLA抗原具高結合親和性之胜肽非常有效。該依照以存在高結合親和性作為指標而選的候選胜肽,可實際檢驗其是否存在CTL誘導能力。在此,詞組“CTL誘導能力”代表該胜肽,當呈現在抗原呈現細胞上時,誘導CTL之能力。再者“CTL誘導能力”包括該胜肽誘導CTL活化、CTL增生及增加IFN-γ生產之能力。The peptides having high binding affinity for HLA antigens described above are very effective. According to the candidate peptide selected by using the high binding affinity as an index, it is possible to actually test whether or not the CTL inducing ability exists. Here, the phrase "CTL inducing ability" represents the ability of the peptide to induce CTL when presented on an antigen presenting cell. Further, "CTL inducibility" includes the ability of the peptide to induce CTL activation, CTL proliferation, and increase IFN-γ production.

CTL誘導能力之確認,可藉由誘導帶有人類MHC抗原之抗原呈現細胞(例如B-淋巴球、巨噬體,及樹突細胞)來實施,或更具體而言,衍生自人類周邊血液單核白血球之樹突細胞,於以該胜肽刺激後,與CD8-陽性細胞混合,然後測量CTL對抗標靶細胞所產生並釋出的IFN-γ。至於反應系統,可使用已被生產以表現人類HLA抗原之基因轉殖動物(例如敘述於BenMohamed L, Krishnan R, Longmate J, Auge C, Low L, Primus J, Diamond DJ, Hum Immunol 61(8): 764-79, 2000 Aug, Related Articles, Books, Linkout Induction of CTL reactoin by a minimal epitope vaccine in HLA A﹡0201/DR1 transgenic mice: dependence on HLA class II restricted T(H)reaction)。例如,可將標靶細胞以51 Cr等放射性標定,並從該標靶細胞釋出的放射性來計算細胞毒性活性。或者,可在存在帶有經固定化胜肽之抗原呈現細胞下,測量CTL產生及釋出的IFN-γ,並使用抗IFN-γ單株抗體使培養基上的抑制地帶可見化,以檢驗。Confirmation of CTL inducing ability can be carried out by inducing antigen-presenting cells (such as B-lymphocytes, macrophages, and dendritic cells) carrying human MHC antigens, or more specifically, from human peripheral blood samples. The dendritic cells of the nucleated white blood cells are mixed with CD8-positive cells after being stimulated with the peptide, and then the IFN-γ produced and released by the CTL against the target cells is measured. As for the reaction system, a gene-transformed animal that has been produced to express a human HLA antigen can be used (for example, described in Ben Mohamed L, Krishnan R, Longmate J, Auge C, Low L, Primus J, Diamond DJ, Hum Immunol 61 (8). : 764-79, 2000 Aug, Related Articles, Books, Linkout Induction of CTL reactoin by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice: dependence on HLA class II restricted T(H) reaction). For example, the target cells can be radiolabeled with 51 Cr or the like, and the cytotoxic activity can be calculated from the radioactivity released from the target cells. Alternatively, IFN-γ produced and released by CTL can be measured in the presence of an antigen-presenting cell with an immobilized peptide, and an inhibitory zone on the medium can be visualized using an anti-IFN-γ monoclonal antibody to examine.

如上所述該胜肽之CTL誘導能力之檢驗之結果得到,對於一HLA抗原具高結合親和性者不一定具高誘導能力。再者,擇自於包含胺基酸序列SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74之胜肽的九胜肽或十胜肽,顯示尤高CTL誘導能力及對於HLA抗原具高結合親和性。As a result of the test of the CTL inducing ability of the peptide as described above, it is not necessarily highly inducible for a high binding affinity of an HLA antigen. Further, selected from the peptides comprising the amino acid sequence SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74 Tetrapeptide, showing high CTL inducibility and high binding affinity for HLA antigen.

除了上述本發明胜肽之修飾,本發明之胜肽更可連接於其他物質,只要該些保留CTL誘導能力即可。可使用之物質包括:胜肽、脂質、糖及糖鏈、乙醯基、天然合成聚合物等。該胜肽可包含之修飾例如糖基化、側鏈氧化或磷酸化;只要該些修飾不破壞此處所述該胜肽之生物學活性即可。此等修飾可實施以對於該多胜肽提供額外功能(例如標靶功能,及傳遞功能)或使安定化。In addition to the above-described modification of the peptide of the present invention, the peptide of the present invention can be further linked to other substances as long as the CTL inducing ability is retained. Substances that can be used include: peptides, lipids, sugars and sugar chains, ethyl sulfonyl groups, natural synthetic polymers, and the like. The peptide may comprise modifications such as glycosylation, side chain oxidation or phosphorylation; as long as the modifications do not destroy the biological activity of the peptide described herein. Such modifications can be implemented to provide additional functionality (eg, targeting function, and delivery function) or to stabilize the multi-peptide.

例如,為了增加一多胜肽之體內安定性,於該技術領域中已知可引入尤有用的各種D-胺基酸、胺基酸擬似物或非天然胺基酸;此概念也可套用在本發明多胜肽。多胜肽 之安定性,可以用數種方式分析。例如,已使用胜肽酶及各種生物學培養基,例如人類血漿及血清,來測試安定性(見例如Verhoef et al., Eur J Drug Metab Pharmacokin 11: 291-302, 1986)。For example, in order to increase the in vivo stability of a multi-peptide, it is known in the art to introduce various D-amino acids, amino acid mimetics or unnatural amino acids which are particularly useful; this concept can also be applied to The multi-peptide of the invention. Polypeptide The stability can be analyzed in several ways. For example, peptidase and various biological media, such as human plasma and serum, have been used to test for stability (see, for example, Verhoef et al., Eur J Drug Metab Pharmacokin 11: 291-302, 1986).

III.製備該胜肽III. Preparation of the peptide

本發明之胜肽可使用習知的技術製備。例如該胜肽可利用重組DNA技術或化學合成來合成製備。本發明之胜肽也可個別合成,或合成為包含2個以上胜肽(例如2個以上Foxp3胜肽,或一Foxp3胜肽及一非Foxp3胜肽)之較長多胜肽。該胜肽可經離析,即純化為實質上不含其他天然發生之寄主細胞蛋白質及其片段,例如經至少約70%、80%或90%純化。The peptide of the present invention can be prepared using conventional techniques. For example, the peptide can be synthesized by recombinant DNA technology or chemical synthesis. The peptide of the present invention may also be synthesized individually or as a longer multi-peptide comprising two or more peptides (for example, two or more Foxp3 peptides, or one Foxp3 peptide and one non-Foxp3 peptide). The peptide can be isolated, i.e., purified to be substantially free of other naturally occurring host cell proteins and fragments thereof, for example, purified by at least about 70%, 80%, or 90%.

本發明之胜肽可依據所選擇的胺基酸序列,藉化學合成得到。例如可採用之合成的習知胜肽合成方法,包括:(i)Peptide Synthesis, Interscience, New York, 1966; (ii)The Proteins, Vol. 2, Academic Press, New York, 1976; (iii)Peptide Synthesis (in Japanese), Maruzen Co., 1975; (iv)Basics and Experiment of Peptide Synthesis (in Japanese), Maruzen Co., 1985; (v)Development of Pharmaceuticals (second volume)(in Japanese), Vol. 14 (peptide synthesis), Hirokawa, 1991; (vi)WO99/67288;及(vii)Barany G. & Merrifield R. B., Peptide Vol. 2, "Solid Phase Peptide Synthesis", Academic Press, New York, 1980, 100-118。The peptide of the present invention can be obtained by chemical synthesis depending on the selected amino acid sequence. For example, synthetic peptide synthesis methods which can be synthesized include: (i) Peptide Synthesis, Interscience, New York, 1966; (ii) The Proteins, Vol. 2, Academic Press, New York, 1976; (iii) Peptide Synthesis ( In Japanese), Maruzen Co., 1975; (iv) Basics and Experiment of Peptide Synthesis (in Japanese), Maruzen Co., 1985; (v) Development of Pharmaceuticals (second volume) (in Japanese), Vol. 14 (peptide Synthesis), Hirokawa, 1991; (vi) WO99/67288; and (vii) Barany G. & Merrifield R. B., Peptide Vol. 2, "Solid Phase Peptide Synthesis", Academic Press, New York, 1980, 100-118.

或者,本發明之胜肽可採用任何用於生產胜肽之已知遺傳工程方法得到(例如Morrison J. (1977) J. Bacteriology 132: 349-51; Clark-Curtiss & Curtiss (1983)Methods in Enzymology (eds. Wu et al.)101: 347-62)。例如,首先,將載有編碼為目標胜肽之多核苷酸的適當載體製備為可表現形式(例如對應於啟動子序列之調節序列下游),並轉形到適當的寄主細胞中。然後培養該寄主細胞以生產該關注的胜肽。該胜肽也可以採用體外轉譯系統,在體外生產。Alternatively, the peptide of the present invention can be obtained by any known genetic engineering method for producing a peptide (for example, Morrison J. (1977) J. Bacteriology 132: 349-51; Clark-Curtiss & Curtiss (1983) Methods in Enzymology (eds. Wu et al.) 101: 347-62). For example, first, a suitable vector carrying a polynucleotide encoding a target peptide is prepared in an expressible form (eg, downstream of a regulatory sequence corresponding to a promoter sequence) and transformed into an appropriate host cell. The host cell is then cultured to produce the peptide of interest. The peptide can also be produced in vitro using an in vitro translation system.

IV.多核苷酸IV. Polynucleotides

本發明提供多核苷酸,其編碼為任何前述本發明之胜肽。此等包括衍生自天然發生之Foxp3基因的多核苷酸,及其經保守性修飾的核苷酸序列。在此,詞組“經保守性修飾的核苷酸序列”係指編碼為相同的或基本上相同的胺基酸序列之序列。因為遺傳密碼之退化性,有許多功能上相同的核酸編碼為任意一給定蛋白質。例如,密碼子GCA、GCC、GCG及GCU均編碼為胺基酸丙胺酸。因此,於密碼子指定丙胺酸之每一位置,該密碼子可改變為任意對應所述密碼子而不會改變所編碼的多胜肽。此種核酸變異 為“靜默變異”,為一種經保守性修飾的變異。在此編碼為一胜肽的每一核酸序列,亦敘述該核酸之各可能的靜默變異。熟習此項技藝之人士將瞭解核酸中的每一密碼子(除了AUG,其通常為甲硫胺酸的唯一密碼子,TGG通常為色胺酸之唯一密碼子),可經修飾以得到功能上相同的分子。總之,編碼為一胜肽之核酸的各靜默變異,在各揭示的序列中暗示敘述於各序列。The invention provides polynucleotides encoding any of the foregoing peptides of the invention. These include polynucleotides derived from the naturally occurring Foxp3 gene, and their conservatively modified nucleotide sequences. As used herein, the phrase "conservatively modified nucleotide sequence" refers to a sequence that encodes the same or substantially the same amino acid sequence. Because of the degeneracy of the genetic code, there are many functionally identical nucleic acids encoded as any given protein. For example, the codons GCA, GCC, GCG, and GCU are all encoded as amino acid alanine. Thus, at each position where the codon is assigned to alanine, the codon can be altered to any corresponding codon without altering the encoded multi-peptide. Nucleic acid variation For "silent variation", it is a conservatively modified variation. Each of the nucleic acid sequences encoded herein as a peptide also describes each of the possible silent variations of the nucleic acid. Those skilled in the art will be aware of each codon in a nucleic acid (except for AUG, which is typically the only codon for methionine, which is typically the only codon for tryptophan) and can be modified to functionally The same molecule. In summary, each silent variation of a nucleic acid encoded as a peptide is implicitly recited in each sequence.

本發明之多核苷酸,可由DNA、RNA及其衍生物所構成。DNA適當地由鹼,例如A、T、C及G所構成。於RNA,T取代為U。The polynucleotide of the present invention may be composed of DNA, RNA and derivatives thereof. The DNA is suitably composed of a base such as A, T, C and G. For RNA, T is replaced by U.

本發明之Foxp3多核苷酸,編碼為多種本發明之Foxp3胜肽,其間有或無介入(intervening)胺基酸序列。例如該介入胺基酸序列可提供該多核苷酸或經轉譯之胜肽一切開部位(例如酵素認識序列)。再者,該多核苷酸除了編碼為該本發明之胜肽之編碼序列外,可包括任何額外的序列。例如該多核苷酸可為重組多核苷酸,包括對於表現該多胜肽必要的調節序列。一般而言,此種重組多核苷酸可藉由以習知重組技術,使用例如聚合酶及核酸內切酶,來操作多核苷酸以製備。The Foxp3 polynucleotide of the invention is encoded as a plurality of Foxp3 peptides of the invention with or without intervening amino acid sequences. For example, the intervening amino acid sequence can provide the polynucleotide or the translated peptide to an open site (eg, an enzyme recognition sequence). Furthermore, the polynucleotide may include any additional sequences in addition to the coding sequence encoding the peptide of the present invention. For example, the polynucleotide can be a recombinant polynucleotide, including regulatory sequences necessary for expression of the multi-peptide. In general, such recombinant polynucleotides can be prepared by manipulation of polynucleotides using conventional recombinant techniques, using, for example, polymerases and endonucleases.

重組及化學合成技術均可用於生產本發明之多核苷酸。例如該多核苷酸可藉由插入當轉染到一勝任細胞內可表現之一適當載體以生產。或者,該多核苷酸可使用PCR技術放大或表現於適當的寄主(見例如Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1989)。或者,該多核苷酸可使用固相技術合成,如Beaucage S. L. & Iyer R. P., Tetrahedron 48: 2223-311, 1992; Matthes et al., EMBO J 3: 801-5, 1984所述。Both recombinant and chemical synthesis techniques can be used to produce the polynucleotides of the invention. For example, the polynucleotide can be produced by insertion into a suitable vector that can be expressed when transfected into a competent cell. Alternatively, the polynucleotide can be amplified or expressed in a suitable host using PCR techniques (see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring). Harbor Laboratory, New York, 1989). Alternatively, the polynucleotide can be synthesized using a solid phase technique as described by Beaucage S. L. & Iyer R. P., Tetrahedron 48: 2223-311, 1992; Matthes et al., EMBO J 3: 801-5, 1984.

V.醫藥製劑V. Pharmaceutical preparations

因為Foxp3已鑑別為調節T(T-reg)細胞之分子,該細胞作用為維持免疫恆定,因此本發明Foxp3胜肽或編碼為該Foxp3胜肽之多核苷酸,可用於調節T-reg細胞。因此,本發明提供一種用於調節T-reg細胞之醫藥製劑,包含1個以上本發明之胜肽或編碼為該胜肽之多核苷酸作為活性成分。Since Foxp3 has been identified as a molecule that regulates T(reg-T) cells, which act to maintain constant immunity, the Foxp3 peptide of the present invention or the polynucleotide encoding the Foxp3 peptide can be used to modulate T-reg cells. Accordingly, the present invention provides a pharmaceutical preparation for regulating T-reg cells comprising one or more peptides of the present invention or a polynucleotide encoding the peptide as an active ingredient.

在此,“調節”T-reg細胞代表修飾體內之T-reg細胞狀態,例如抑制T-reg細胞增生或壓抑其功能。T-reg細胞被認為是抑制各種類型免疫反應的主要角色之一,且“壓抑T-reg細胞功能”在此意指降低T-reg細胞抑制免疫反應之能力。具體而言,T-reg細胞在周邊作用稱為周邊容忍(peripheral tolerance)(Miescher S et al., J Immunol 136: 1899-907, 1986; Young RC et al., Am J Med 52: 63-72, 1972; Alexander JP et al., Cancer Res 53: 1380-7, 1997; Horiguchi S et al., Cancer Res 59: 2950-6, 1999; Kono K et al., Clin Cancer Res 11: 1825-8, 1996; Kiessling R et al., Cancer Immunol Immunother 48: 353-62, 1999; Fontenot JD et al., Nat Immunol 4: 330-6, 2003, Hori S et al., Science 299: 1057-61, 2003; Khattri R et al., Nat Immunol 4: 304-6, 2003)。T-reg細胞例如於一癌症病患,提供免疫抑制效果。因此,過度表現於T-reg細胞之本發明Foxp3胜肽或編碼為該Foxp3胜肽之多核苷酸,可用為治療癌症之醫藥製劑(例如疫苗)。Here, "modulating" T-reg cells represents modifying the state of T-reg cells in vivo, for example, inhibiting T-reg cell proliferation or suppressing its function. T-reg cells are thought to be one of the main roles in inhibiting various types of immune responses, and "repressing T-reg cell function" herein means reducing the ability of T-reg cells to suppress an immune response. In particular, the peripheral action of T-reg cells is called peripheral tolerance (Miescher S et al., J Immunol 136: 1899-907, 1986; Young RC et al., Am J Med 52: 63-72). , 1972; Alexander JP et al., Cancer Res 53: 1380-7, 1997; Horiguchi S et al., Cancer Res 59: 2950-6, 1999; Kono K et al., Clin Cancer Res 11: 1825-8, 1996; Kiessling R et al., Cancer Immunol Immunother 48: 353-62, 1999; Fontenot JD et al., Nat Immunol 4: 330-6, 2003, Hori S et al., Science 299: 1057-61, 2003; Khattri R et al., Nat Immunol 4: 304-6, 2003). T-reg cells provide an immunosuppressive effect, for example, in a cancer patient. Therefore, the Foxp3 peptide of the present invention or the polynucleotide encoding the Foxp3 peptide which is excessively expressed in T-reg cells can be used as a pharmaceutical preparation for treating cancer (for example, a vaccine).

於本發明中,詞組“疫苗”(亦稱為免疫性組合物)係指一種物質,其作用為於接種到動物體內時,誘導抗腫瘤免疫性或調節T-reg之免疫性。In the present invention, the phrase "vaccine" (also referred to as an immunological composition) refers to a substance which acts to induce anti-tumor immunity or to modulate the immunity of T-reg when inoculated into an animal.

本發明之醫藥製劑可用於治療及/或預防於一個體,例如人類及其他哺乳動物中之癌症,該其他哺乳動物包括但不限於:小鼠、大鼠、天竺鼠、兔、貓、狗、綿羊、山羊、豬、牛、馬、猴、狒狒及黑猩猩,尤其具經濟價值的動物或馴化動物。The pharmaceutical preparation of the present invention can be used for the treatment and/or prevention of cancer in a body such as a human and other mammals including but not limited to: mouse, rat, guinea pig, rabbit, cat, dog, sheep , goats, pigs, cattle, horses, monkeys, baboons and chimpanzees, especially animals of economic value or domesticated animals.

依照本發明,包含胺基酸序列SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74之多胜肽,為HLA-A24或HLA-A02限制抗原決定基胜肽,能誘導對抗表現Foxp3之T-reg細胞之有效及專一性免疫反應。因此,本醫藥製劑意欲用於對於HLA抗原為HLA-A24或HLA-A02其中之一之個體投予。According to the invention, the peptide comprising the amino acid sequence SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74 is HLA-A24 or HLA-A02 limits the epitope determinant and induces an effective and specific immune response against T-reg cells expressing Foxp3. Therefore, the present pharmaceutical preparation is intended for administration to an individual whose HLA antigen is one of HLA-A24 or HLA-A02.

欲以本發明醫藥製劑治療之癌症不限,包括其中,Foxp3表現於該個體之所有種類的癌症。例示之癌症,包括:乳癌、AML、膽囊癌、子宮頸癌、膽管細胞癌(cholangiocellular carcinoma)、CML、直腸結腸癌、子宮內膜異位(Endometriosis)、食道癌、胃癌、胃瀰漫型 癌、肝癌、肺癌、淋巴瘤、神經母細胞瘤、骨肉瘤、卵巢癌、胰臟癌、前列腺癌、腎臟癌、小細胞肺癌、軟組織腫瘤和睪丸腫瘤。The cancer to be treated by the pharmaceutical preparation of the present invention is not limited, and includes, among them, Foxp3 exhibiting all kinds of cancers of the individual. Exemplary cancers include: breast cancer, AML, gallbladder cancer, cervical cancer, cholangiocellular carcinoma, CML, colorectal cancer, endometriosis, esophageal cancer, gastric cancer, diffuse stomach Cancer, liver cancer, lung cancer, lymphoma, neuroblastoma, osteosarcoma, ovarian cancer, pancreatic cancer, prostate cancer, kidney cancer, small cell lung cancer, soft tissue tumor, and testicular tumor.

視需要,本發明之由Foxp3胜肽或編碼為一Foxp3胜肽之多核苷酸構成之醫藥製劑,可隨意地包括其他治療物質作為活性成分,只要該物質不抑制關注胜肽的T-reg細胞調節效果即可。例如,配方可包括抗發炎藥劑、止痛劑、化療藥劑等。除了在此藥劑中包括其他治療物質,本發明之醫藥製劑可與1個以上其他藥理藥劑依序或同時投予。藥劑及藥理藥劑之量,取決於例如使用的藥理藥劑類型、欲治療的疾病,及投予的時程及路徑。The pharmaceutical preparation of the present invention comprising a Foxp3 peptide or a polynucleotide encoding a Foxp3 peptide may optionally include other therapeutic substances as an active ingredient as long as the substance does not inhibit T-reg cells which are concerned with the peptide. Adjust the effect. For example, the formulation may include an anti-inflammatory agent, an analgesic, a chemotherapeutic agent, and the like. In addition to including other therapeutic substances in the medicament, the pharmaceutical preparation of the present invention can be administered sequentially or simultaneously with one or more other pharmacological agents. The amount of the pharmaceutical agent and the pharmacological agent depends, for example, on the type of pharmacological agent to be used, the disease to be treated, and the time course and route of administration.

應瞭解到除了此處特別提到的成分,本發明之醫藥製劑可包括其他於此配方類型相關的該技術領域中習知的藥劑。It will be appreciated that in addition to the ingredients specifically mentioned herein, the pharmaceutical preparations of the present invention may include other agents conventional in the art related to this type of formulation.

於本發明之一實施形態,本醫藥製劑可包括於製造的物品及含有用於治療欲治療之疾病致病狀態,例如癌症的套組中。製造的物品可包括:一裝有本醫藥製劑並帶有標籤之容器。適當的容器包括瓶、小玻離瓶,及試管。該容器可由許多材料形成,例如玻璃或塑膠。容器上的標籤應指示該藥劑係用於治療或預防該疾病的1個以上情形。該標籤亦可顯示投予說明等。In one embodiment of the invention, the pharmaceutical preparations can be included in the articles of manufacture and in kits containing therapeutic conditions for the treatment of a condition to be treated, such as cancer. The article of manufacture may comprise: a container containing the pharmaceutical preparation and labeled. Suitable containers include bottles, small glass vials, and test tubes. The container can be formed from a variety of materials such as glass or plastic. The label on the container should indicate that the agent is used to treat or prevent more than one condition of the disease. The label can also display a description of the investment, and the like.

除了上述容器,包括本發明醫藥製劑之套組,可隨意地更包括一第二容器,裝有製藥上可接受的稀釋劑。可尚包括其他從商業或使用者角度會需要的材料,包括其他緩 衝劑、稀釋劑、過濾器、針頭、針筒及使用說明書。In addition to the above containers, the kit comprising the pharmaceutical preparation of the present invention may optionally include a second container containing a pharmaceutically acceptable diluent. May include other materials that will be needed from a business or user perspective, including other Granules, thinners, filters, needles, syringes and instructions for use.

該醫藥組合物,視需要可為包(pack)或分配裝置的形式,其包括1個以上包含該活性成分的單位劑型。該包可例如包括金屬或塑膠箔,例如泡罩。該包或分配裝置可附投予指示說明。The pharmaceutical composition may be in the form of a pack or a dispensing device, including one or more unit dosage forms containing the active ingredient. The bag may for example comprise a metal or plastic foil, such as a blister. The package or dispensing device can be attached to the instructions.

(1)含該胜肽作為活性成分之醫藥製劑 本發明之胜肽可直接投予作為醫藥製劑,視需要,可以習知的配方方法配方。於此情形,除了本發明之胜肽,額外的擔體、賦形劑等通常用於藥物的物質可適當包括而無特別限制。此種擔體之例有:無菌水、生理鹽液、磷酸緩衝液、培養液等。再者,該醫藥製劑可視需要包括安定劑、懸浮液、保存劑、界面活性劑等。本發明之醫藥製劑,可用於治療及/或預防癌症,尤其調節T-reg細胞。(1) A pharmaceutical preparation containing the peptide as an active ingredient The peptide of the present invention can be directly administered as a pharmaceutical preparation, and can be formulated by a conventional formulation method as needed. In this case, in addition to the peptide of the present invention, an additional carrier, an excipient or the like which is usually used for a drug may be appropriately included without particular limitation. Examples of such a carrier include sterile water, physiological saline solution, phosphate buffer solution, and culture solution. Furthermore, the pharmaceutical preparation may optionally include a stabilizer, a suspension, a preservative, a surfactant, and the like. The pharmaceutical preparation of the present invention can be used for the treatment and/or prevention of cancer, especially for regulating T-reg cells.

本發明之胜肽可組合成包含二種或以上之本發明Foxp3胜肽,以於體內誘導CTL。該Foxp3胜肽可為混合或使用標準技術彼此結合。例如該Foxp3胜肽可表現為單一多胜肽序列。組合中的該胜肽,可為相同或不同。藉由投予本發明之Foxp3胜肽,該胜肽在抗原呈現細胞之HLA抗原上以高密度呈現,然後誘導專一性地對於形成在呈現的胜肽及HLA抗原反應間的複合體反應的CTL。或者,在細胞表面上固定化有本發明之Foxp3胜肽的抗原呈現細胞,可藉由從經該本發明之胜肽刺激之個體中移除樹突細胞而達到,藉由再度投予該Foxp3胜肽-裝載的樹突細胞給該些個體會在該些個體中誘導CTL,並結果對於該標靶 細胞之侵犯性可增加。The peptide of the present invention can be combined to form two or more of the Foxp3 peptide of the present invention to induce CTL in vivo. The Foxp3 peptides can be combined with each other either by mixing or using standard techniques. For example, the Foxp3 peptide can be expressed as a single multi-peptide sequence. The peptides in the combination may be the same or different. By administering the Foxp3 peptide of the present invention, the peptide is present at a high density on the HLA antigen of the antigen-presenting cell, and then inducing a CTL that specifically reacts with the complex formed between the presented peptide and HLA antigen reaction. . Alternatively, an antigen-presenting cell immobilized with a Foxp3 peptide of the present invention on a cell surface can be obtained by removing dendritic cells from an individual stimulated with the peptide of the present invention by re-administering the Foxp3 The peptide-loaded dendritic cells give the individual an induction of CTL in the individual and the result is for the target Invasiveness of cells can be increased.

包含本發明之Foxp3胜肽作為活性成分之用於調節T-reg細胞之醫藥製劑,隨意地可包含一佐劑,以便有效地建立細胞免疫,或該些可以與其他活性成分一起投予,且可配方成顆粒後投予。佐劑係指一種當與具免疫學活性之蛋白質一起(或依序)投予時,增進對抗該蛋白質免疫反應之化合物。可應用之佐劑包括敘述於文獻中者(Clin Microbiol Rev 7: 277-89, 1994)。例示之佐劑包括但不限於:磷酸鋁、氫氧化鋁、明礬、霍亂毒素、沙門氏桿菌毒素等。A pharmaceutical preparation for modulating T-reg cells comprising the Foxp3 peptide of the present invention as an active ingredient, optionally containing an adjuvant for efficiently establishing cellular immunity, or the same can be administered together with other active ingredients, and It can be formulated into granules and then administered. An adjuvant is a compound that, when administered together with an immunologically active protein (or sequentially), enhances the immune response against the protein. Applicable adjuvants include those described in the literature (Clin Microbiol Rev 7: 277-89, 1994). Exemplary adjuvants include, but are not limited to, aluminum phosphate, aluminum hydroxide, alum, cholera toxin, salmonella toxin, and the like.

再者,可以方便地使用微脂體配方、該Foxp3胜肽結合於數-mcm直徑珠之顆粒配方,脂質結合於該胜肽之配方。Furthermore, it is convenient to use a liposome formulation in which the Foxp3 peptide is bound to a particle formulation of several-mcm diameter beads, and the lipid is bound to the peptide formulation.

本發明醫藥製劑之一些實施形態,包含一成分,其使細胞毒性T淋巴球初始化(prime)。脂質已被鑑別為能在體內使CTL對抗病毒性抗原初始化的物質。例如棕櫚酸殘基可附著於離胺酸殘基之ε-及α-胺基,並連接於本發明之胜肽。接著該脂質化胜肽可直接投予到小粒或微粒,包入微脂體中或於佐劑中乳化。作為其他脂質初始化CTL反應,可使用E. coli脂蛋白,例如三棕櫚醯基-S-甘油半胱胺基絲胺酸-絲胺酸(P3CSS)共價鍵結於適當胜肽,來初始化CTL(見例如Deres et al., Nature 342: 561, 1989)。Some embodiments of the pharmaceutical preparations of the invention comprise a component that primes a cytotoxic T lymphocyte. Lipids have been identified as substances that enable CTLs to initialize against viral antigens in vivo. For example, a palmitic acid residue may be attached to the epsilon- and a-amino group of the amine acid residue and linked to the peptide of the present invention. The lipidated peptide can then be administered directly to the granules or microparticles, encapsulated in the liposomes or emulsified in an adjuvant. As a further lipid-initiating CTL reaction, E. coli lipoproteins, such as triptolide-S-glycerylcysteine-serine-serine (P3CSS), can be covalently bonded to the appropriate peptide to initialize the CTL. (See, for example, Deres et al., Nature 342: 561, 1989).

投予方法可為口服、皮內、皮下、靜脈內注射等,且 全身性投予或局部投予至標靶部位鄰近處為有用的。投予可藉由單次投予或以多此追加投予實施。本發明胜肽之劑量可以依照所欲治療之疾病、病患年紀、體重、投予方法等適當調整,通常為0.001mg至1000mg,例如0.001mg至1000mg,例如0.1mg至10mg,且可每數日至每數月投予一次。熟悉此技藝之人士可適當選擇適當的劑量。The administration method may be oral, intradermal, subcutaneous, intravenous injection, etc., and Systemic administration or topical administration to the vicinity of the target site is useful. The administration can be carried out by a single administration or by additional injection. The dose of the peptide of the present invention can be appropriately adjusted depending on the disease to be treated, the age of the patient, the body weight, the administration method, and the like, and is usually 0.001 mg to 1000 mg, for example, 0.001 mg to 1000 mg, for example, 0.1 mg to 10 mg, and each number It is given every day until every few months. Those skilled in the art can appropriately select the appropriate dosage.

(2)包括多核苷酸作為活性成分之醫藥製劑 本發明之醫藥製劑,可包含以可表現形式編碼為此處揭示之Foxp3胜肽的核酸。在此,詞組“可表現形式”意指該多核苷酸引入於一細胞時,會在體內表現為多胜肽,而誘導抗腫瘤免疫性。於一實施形態,該關注多核苷酸之核酸序列,包括對於表現多核苷酸於標靶細胞為必要的調節元素。該多核苷酸可以安定地插入於標靶細胞之基因體(見例如Thomas KR & Capecchi MR, Cell 51: 503-12, 1987 for a description of homologous recombination cassette vectors)。見例如Wolff et al., Science 247: 1465-8, 1990; U. S. Patent Nos. 5, 580, 859; 5, 589, 466; 5, 804, 566; 5, 739, 118; 5, 736, 524; 5, 679, 647; and WO 98/04720。DNA類傳遞技術包括“裸露DNA”、促進性(bupivicaine、聚合物、胜肽媒介)傳遞、陽離子性脂質複合體,及微粒媒介("基因槍")或壓力媒介的傳遞(見例如美國專利號碼5,922,687)。(2) A pharmaceutical preparation comprising a polynucleotide as an active ingredient The pharmaceutical preparation of the present invention may comprise a nucleic acid which is encoded in the expressible form as the Foxp3 peptide disclosed herein. Here, the phrase "presentable form" means that when the polynucleotide is introduced into a cell, it exhibits a multi-peptide in vivo and induces anti-tumor immunity. In one embodiment, the nucleic acid sequence of the polynucleotide of interest comprises an regulatory element necessary for the expression of the polynucleotide in the target cell. The polynucleotide can be stably inserted into the genome of the target cell (see, for example, Thomas KR & Capecchi MR, Cell 51: 503-12, 1987 for a description of homologous recombination cassette vectors). See, for example, Wolff et al., Science 247: 1465-8, 1990; US Patent Nos. 5, 580, 859; 5, 589, 466; 5, 804, 566; 5, 739, 118; 5, 736, 524; 5, 679, 647; and WO 98/04720. DNA-based delivery technologies include "naked DNA", promoting (bupivicaine, polymer, peptide mediator) delivery, cationic lipid complexes, and delivery of particulate media ("gene guns") or pressure media (see, for example, US patent numbers) 5,922,687).

本發明之胜肽亦可由病毒或細菌性載體表現。表現載體之例,包括減毒的病毒寄主,例如牛痘或雞痘病毒。此 方法涉及使用牛痘病毒,例如作為一載體以表現編碼為該胜肽之核苷酸序列。於引入到寄主中時,該重組牛痘病毒表現該免疫性胜肽,並引發免疫反應。有用於免疫實驗步驟中的牛痘載體及方法,敘述於例如美國專利號碼4,722,848.。其他載體為BCG(Bacille Calmette Guerin)。BCG載體敘述於Stover et al., Nature 351: 456-60, 1991。許多的其他載體對於治療性投予或免疫為有用,例如腺病毒及腺病毒相關病毒載體、反轉錄病毒載體、傷寒沙門氏菌載體、去毒炭疽毒素載體等,為顯明的。見例如Shata et al., Mol Med Today 6: 66-71, 2000; Shedlock et al. J Leukoc Biol 68: 793-806, 2000; Hipp et al., In Vivo 14: 571-85, 2000。The peptide of the present invention can also be expressed by a viral or bacterial carrier. Examples of performance vectors include attenuated viral hosts such as vaccinia or fowlpox viruses. this The method involves the use of a vaccinia virus, for example as a vector to express a nucleotide sequence encoded as the peptide. Upon introduction into the host, the recombinant vaccinia virus exhibits the immunogenic peptide and elicits an immune response. Vaccinia vectors and methods for use in immunological assay procedures are described, for example, in U.S. Patent No. 4,722,848. The other vector is BCG (Bacille Calmette Guerin). The BCG vector is described in Stover et al., Nature 351: 456-60, 1991. Many other vectors are useful for therapeutic administration or immunization, such as adenovirus and adeno-associated viral vectors, retroviral vectors, Salmonella typhimurium vectors, detoxified anthrax toxin vectors, and the like. See, for example, Shata et al., Mol Med Today 6: 66-71, 2000; Shedlock et al. J Leukoc Biol 68: 793-806, 2000; Hipp et al., In Vivo 14: 571-85, 2000.

將多核苷酸傳遞到病患體內可為直接的,於此情形將病患直接暴露於帶有多核苷酸之載體,或非直接地,於此情形先將細胞以關注多核苷酸於體外轉形,然後移殖到病患體內。此二種方法為已知,稱為體內或體外(ex vivo)基因療法。Delivery of the polynucleotide to the patient can be direct, in which case the patient is directly exposed to the vector carrying the polynucleotide, or indirectly, in which case the cell is first transferred to the polynucleotide of interest. Shape, then transplanted to the patient. These two methods are known and are referred to as in vivo or ex vivo gene therapy.

關於基因治療方法之一般性評論,見Goldspiel et al., Clinical Pharmacy 12: 488-505, 1993; Wu and Wu, Biotherapy 3: 87-95, 1991; Tolstoshev, Ann Rev Pharmacol Toxicol 33: 573-96, 1993; Mulligan, Science 260: 926-32, 1993; Morgan & Anderson, Ann Rev Biochem 62: 191-217, 1993; Trends in Biotechnology 11(5): 155-215, 1993). Methods commonly known in the art of recombinant DNA technology which can be used are described in eds. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, NY, 1993; and Krieger, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY, 1990。For general comments on gene therapy methods, see Goldspiel et al., Clinical Pharmacy 12: 488-505, 1993; Wu and Wu, Biotherapy 3: 87-95, 1991; Tolstoshev, Ann Rev Pharmacol Toxicol 33: 573-96, 1993; Mulligan, Science 260: 926-32, 1993; Morgan & Anderson, Ann Rev Biochem 62: 191-217, 1993; Trends in Biotechnology 11(5): 155-215, 1993). Methods commonly known in the Art of recombinant DNA technology which can be used are described in eds. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, NY, 1993; and Krieger, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY , 1990.

投予方法可為口服、皮內、皮下、靜脈內注射等,且全身性投予或局部投予至標靶部位鄰近處為有用的。投予可藉由單次投予或以多此追加投予實施。於適當擔體中之多核苷酸或經編碼為本發明之胜肽之多核苷酸轉形之細胞之劑量,可以依照所欲治療之疾病、病患年紀、體重、投予方法等適當調整,通常為0.001mg至1000mg,例如0.001mg至1000mg,例如0.1mg至10mg,且可每數日至每數月投予一次。熟悉此技藝之人士可適當選擇適當的劑量。The administration method may be oral, intradermal, subcutaneous, intravenous injection or the like, and systemic administration or topical administration to the vicinity of the target site is useful. The administration can be carried out by a single administration or by additional injection. The dose of the polynucleotide in the appropriate carrier or the polynucleotide which is encoded as the polynucleotide of the peptide of the present invention can be appropriately adjusted according to the disease to be treated, the age of the patient, the body weight, the administration method, and the like. It is usually from 0.001 mg to 1000 mg, for example from 0.001 mg to 1000 mg, for example from 0.1 mg to 10 mg, and can be administered once every few days to every few months. Those skilled in the art can appropriately select the appropriate dosage.

(3)外吐小體 或者,本發明提供稱為外吐小體之胞內小囊,其呈現由該本發明之胜肽及HLA抗原形成的複合體在表面上。外吐小體可例如藉由使用在國際公開平11-510507及2000-512161日文翻譯版所述方法製備,且可使用從作為治療及/或預防的標靶的個體得到的抗原呈現細胞製備。本發明之外吐小體可以作為疫苗接種,類似於本發明之胜肽。(3) Exogenous body Alternatively, the invention provides an intracellular vesicle called an exosome that presents a complex formed by the peptide of the invention and the HLA antigen on the surface. The exosome can be prepared, for example, by using the method described in Japanese Patent Publication No. Hei 11-510507 and Japanese Patent Publication No. Hei. No. Hei. The exosome of the present invention can be vaccinated, similar to the peptide of the present invention.

使用之HLA抗原類型必需符合需要治療及/或預防之個體的HLA抗原類型。例如,對於日本人而言,HLA-A24, 尤其HLA-A2402,時常是適當的。The type of HLA antigen used must be consistent with the type of HLA antigen of the individual in need of treatment and/or prevention. For example, for the Japanese, HLA-A24, Especially HLA-A2402, is often appropriate.

關於HLA抗原,使用在日本人及白種人(Caucasian)高度表現的A-24或A-02類型,對於獲得有效結果是有利的,且使用包括A-2402及A-0201之次類型為有用。一般而言,臨床上會先檢查需要治療的病患的HLA抗原類型,以能適當選擇對此抗原具高水平結合親和性或具以抗原呈現誘導細胞毒性T細胞(CTL)能力之胜肽。再者,為獲得顯示高結合親和性及CTL誘導能力之胜肽,可依據該天然發生之Foxp3部分胜肽之胺基酸序列,取代或加成一、二或數個胺基酸。Regarding the HLA antigen, the use of the A-24 or A-02 type which is highly expressed in Japanese and Caucasian is advantageous for obtaining an effective result, and it is useful to use a subtype including A-2402 and A-0201. In general, the HLA antigen type of a patient in need of treatment is first examined clinically, so that a peptide having a high level of binding affinity for the antigen or a peptide exhibiting cytotoxic T cell (CTL) ability with an antigen can be appropriately selected. Furthermore, in order to obtain a peptide exhibiting high binding affinity and CTL inducing ability, one, two or several amino acids may be substituted or added depending on the amino acid sequence of the naturally occurring Foxp3 partial peptide.

(4)抗原呈現細胞 本發明尚提供抗原呈現細胞(APC),其呈現由HLA抗原及本發明之胜肽形成的複合體於表面上。藉由接觸本發明之胜肽或編碼為本發明之胜肽之核苷酸得到的該些APC,可從為治療及/或預防之標靶的個體中製備,且可對該些個體投予,或與其他包含本發明之胜肽、外吐小體之藥物或細胞毒性T細胞組合投予作為疫苗。(4) antigen presenting cells The present invention also provides antigen presenting cells (APCs) which exhibit a complex formed by an HLA antigen and a peptide of the present invention on a surface. The APCs obtained by contacting the peptide of the present invention or the nucleotide encoding the peptide of the present invention can be prepared from individuals who are targets for treatment and/or prevention, and can be administered to the individuals. Or as a vaccine in combination with other drugs or cytotoxic T cells comprising the peptide of the present invention, exosome.

該些APC不限於任何種類細胞,且包括樹突細胞(DC)、朗格(Langerhans)細胞、巨噬體、B細胞及經活化的T細胞,均已知在其細胞表面上呈現蛋白質抗原,以使淋巴球認識。由於DC為一代表性的APC,具有APC中最強的CTL誘導作用,DC作為本發明之APC尤其有用。The APCs are not limited to any kind of cells, and include dendritic cells (DC), Langerhans cells, macrophages, B cells, and activated T cells, all of which are known to exhibit protein antigens on their cell surface. To make the lymphocytes know. Since DC is a representative APC having the strongest CTL induction in APC, DC is particularly useful as the APC of the present invention.

例如APC可藉由從周邊血液單核球誘導樹突細胞,然 後使該些於體外、體內(ex vivo)或體內(in vivo)與本發明之胜肽接觸(刺激)得到。當本發明之胜肽對於該些個體投予時,固定化有本發明之胜肽之APC,於該個體體內被誘導。“誘導APC”包括使一細胞與該本發明之胜肽或編碼為該本發明胜肽之核苷酸接觸(刺激),以呈現由HLA抗原及本發明之胜肽形成的複合體在細胞表面上。或者,於固定化本發明之胜肽到APC後,可將APC對於該個體投予作為一疫苗。例如體外(ex vivo)投予可包含以下步驟:a:從個體收集APC,以及b:使步驟a之APC與該胜肽接觸。For example, APC can induce dendritic cells by mononuclear cells from peripheral blood, These are obtained by contacting (stimulating) the peptide of the present invention in vitro, ex vivo or in vivo. When the peptide of the present invention is administered to the individual, the APC immobilized with the peptide of the present invention is induced in the individual. "Inducing APC" includes contacting (stimulating) a cell with the peptide of the present invention or a nucleotide encoding the peptide of the present invention to present a complex formed by the HLA antigen and the peptide of the present invention on the cell surface. on. Alternatively, after immobilizing the peptide of the present invention to APC, APC can be administered to the individual as a vaccine. For example, ex vivo administration can comprise the steps of: a: collecting APC from an individual, and b: contacting the APC of step a with the peptide.

由步驟b得到之APC可對於該個體投予以作為一疫苗。The APC obtained from step b can be administered to the individual as a vaccine.

依照本發明之一樣態,APC具高水平的CTL誘導能力。此具高水平的細胞毒性T細胞誘導能力之APC,可藉由包含以下步驟之方法製備:於體外將包含編碼為本發明之胜肽的多核苷酸的基因轉移到APC。被引入的基因可為DNA或RNA。引入的方法不特別限制,可使用此領域中習知實施的方法,例如:脂質轉染(lipofection)、電穿孔(electroporation)及磷酸鈣法。更具體而言,可依照以下所述方法實施Cancer Res 56: 5672-7, 1996; J Immunol 161: 5607-13, 1998; J Exp Med 184: 465-72, 1996;國際公開2000-509281號日文翻譯版。藉由將基因轉移到APC中,該基因於細胞中經歷轉錄、轉譯等,且然後得到的蛋白質經第I或II類MHC處理,並經由一呈現路徑來 呈現部分胜肽。According to the state of the invention, APC has a high level of CTL inducing ability. This APC having a high level of cytotoxic T cell inducing ability can be prepared by a method comprising the step of transferring a gene comprising a polynucleotide encoding the peptide of the present invention to APC in vitro. The gene to be introduced may be DNA or RNA. The method to be introduced is not particularly limited, and methods conventionally known in the art, such as lipofection, electroporation, and calcium phosphate method, can be used. More specifically, Cancer Res 56 can be performed according to the methods described below: 5672-7, 1996; J Immunol 161: 5607-13, 1998; J Exp Med 184: 465-72, 1996; International Publication 2000-509281 Translation version. By transferring the gene into APC, the gene undergoes transcription, translation, etc. in the cell, and the resulting protein is then treated with MHC class I or II and via a presentation path. Present some peptides.

(5)細胞毒性T細胞 被誘導之對抗任何本發明之Foxp3胜肽之細胞毒性T細胞,被認為可在體內強化免疫系統對於T-reg細胞之標靶性,因此可用於作為類似於該胜肽之疫苗。因此,本發明提供離析的細胞毒性T細胞,係經由任何本發明胜肽所誘導。(5) Cytotoxic T cells Cytotoxic T cells that are induced to combat any of the Foxp3 peptides of the present invention are believed to potentiate the targeting of the immune system to T-reg cells in vivo and thus can be used as a vaccine similar to the peptide. Accordingly, the invention provides isolated cytotoxic T cells that are induced via any of the peptides of the invention.

此種細胞毒性T細胞可藉由以下方法得到:(1)對一個體投予本發明之胜肽,或(2)於體外使本發明之胜肽接觸(刺激)個體衍生之APC及CD8-陽性細胞或周邊血液單核白血球。Such cytotoxic T cells can be obtained by (1) administering a peptide of the present invention to one body, or (2) contacting (stimulating) the peptide of the present invention with APC and CD8-derived in vitro. Positive cells or peripheral blood mononuclear white blood cells.

該細胞毒性T細胞,係從呈現該本發明之胜肽之APC所刺激而誘導者,可以從為治療及/或預防標靶之個體衍生,且可將其本身投予,或為了與調節效果之目的,與其他藥物一起投予,該其他藥物包括該本發明之胜肽或外吐小體。所得到的細胞毒性T細胞專一性地對呈現本發明胜肽例如用於誘導的相同胜肽之標靶細胞作用。該標靶細胞可為內生性表現Foxp3之細胞,或經Foxp3基因轉染之細胞,及因為以此等胜肽刺激而呈現本發明之胜肽於細胞表面之細胞,也可成為攻擊的標靶。The cytotoxic T cell, which is induced by APC which exhibits the peptide of the present invention, can be derived from an individual who is a target for treatment and/or prevention, and can be administered by itself, or for adjustment effect. For the purpose, it is administered together with other drugs including the peptide or exosome of the present invention. The resulting cytotoxic T cells specifically act on the target cells presenting the peptide of the invention, for example, for the same peptide to be induced. The target cell may be a cell which is endogenous to express Foxp3, or a cell transfected with the Foxp3 gene, and a cell which exhibits the peptide of the present invention on the cell surface due to stimulation with such a peptide, and may also be a target of attack. .

(6)TCRs 本發明尚提供一種組合物,包含編碼為多胜肽之核酸,其能夠形成T細胞受體(TCR)之次單元,及使用該組合物之方法。該TCR次單元具有形成TCR之能力,該TCR 具有針對呈現本發明胜肽之細胞,給予對T細胞之專一性。藉由使用該技術領域中已知的技術,可鑑別出以1個以上本發明胜肽所誘導之CTL的TCR次單元的α-及β-鏈核酸(WO2007/032255及Morgan et al., J Immunol, 171, 3288 (2003))。衍生性TCR較佳為以高親和力結合於呈現該Foxp3胜肽之標靶細胞,且隨意地在體內及體外媒介有效殺死呈現該Foxp3胜肽之標靶細胞。(6) TCRs The present invention also provides a composition comprising a nucleic acid encoding a multi-peptide, which is capable of forming a secondary unit of a T cell receptor (TCR), and a method of using the composition. The TCR subunit has the ability to form a TCR, the TCR There is specificity for T cells given to cells exhibiting the peptide of the present invention. By using techniques known in the art, α- and β-strand nucleic acids of TCR subunits of CTLs induced by one or more of the peptides of the present invention can be identified (WO2007/032255 and Morgan et al., J). Immunol, 171, 3288 (2003)). The derivatized TCR preferably binds to the target cell exhibiting the Foxp3 peptide with high affinity, and optionally kills the target cell exhibiting the Foxp3 peptide in vivo and in vitro.

編碼為TCR次單元之核酸,可以引入適當的載體,例如反轉錄病毒載體。此等載體為該技術領域中為人周知的。該核酸或包含該核酸的有用載體,可轉移到T細胞內,該T細胞較佳為來自於一病患。有利地,本發明提供一現成(off-the-shelf)的組合物,容許快速修飾病患自己的T細胞(或其他哺乳動物自己的T細胞),以快速且輕易地產生經修飾的T細胞,該經修飾的T細胞具優越的T-reg細胞殺死性質。A nucleic acid encoding a TCR subunit can be introduced into a suitable vector, such as a retroviral vector. Such vectors are well known in the art. The nucleic acid or a useful vector comprising the nucleic acid can be transferred into a T cell, preferably from a patient. Advantageously, the present invention provides an off-the-shelf composition that allows rapid modification of a patient's own T cells (or other mammalian T cells) to rapidly and easily produce modified T cells. The modified T cell has superior T-reg cell killing properties.

並且,本發明提供CTL,其係藉由將編碼為與本發明Foxp3胜肽結合之TCR次單元多胜肽的核酸進行轉導(transduction)而製備。該經轉導的CTL能於體內形成T-reg細胞,並以周知的培養方法於體外培養(例如Kawakami et al., J Immunol., 142, 3452-3461 (1989))。本發明之T細胞可用於形成免疫性組合物,有用於治療或預防需要治療或保護之病患中的癌症(WO2006/031221)。Further, the present invention provides a CTL which is produced by transduction of a nucleic acid encoding a TCR subunit polypeptide which binds to the Foxp3 peptide of the present invention. The transduced CTL is capable of forming T-reg cells in vivo and is cultured in vitro by well-known culture methods (for example, Kawakami et al., J Immunol., 142, 3452-3461 (1989)). The T cells of the present invention are useful for forming an immunological composition for treating or preventing cancer in a patient in need of treatment or protection (WO2006/031221).

VI.使用Foxp3胜肽之方法VI. Method of using Foxp3 peptide

本發明之Foxp3胜肽及編碼為該Foxp3胜肽之多核苷 酸,可用於誘導APC及CTL。該Foxp3胜肽及多核苷酸可與其他化合物組合使用,只要該些化合物不抑制其CTL誘導能力即可。因此,任何上述本發明醫藥製劑,可用於下述方法。The Foxp3 peptide of the present invention and the polynucleoside encoded by the Foxp3 peptide Acid, which can be used to induce APC and CTL. The Foxp3 peptide and polynucleotide can be used in combination with other compounds as long as the compounds do not inhibit their CTL inducing ability. Therefore, any of the above pharmaceutical preparations of the present invention can be used in the following methods.

(1)誘導抗原呈現細胞(APCs)之方法 因此,本發明提供使用本發明之胜肽或編碼為該胜肽之多核苷酸以誘導APC之方法。誘導APC可依項目“V-(4)抗原呈現細胞”所述實施。本發明尚提供一種誘導APC之方法,該APC具高水平的細胞毒性T細胞誘導能力,其誘導敘述於前揭“V-(4)抗原呈現細胞”。或者,依照本發明,提供使用擇自於包含胺基酸序列SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74之胜肽中的Foxp3胜肽,或編碼為該Foxp3胜肽之多核苷酸來製造包括抗原呈現細胞之一醫藥組合物。再者,本發明尚提供擇自於胺基酸序列of SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74之胜肽的Foxp3胜肽,或編碼為該Foxp3胜肽之多核苷酸,以供誘導抗原呈現細胞。(1) Method for inducing antigen presenting cells (APCs) Accordingly, the present invention provides a method of using the peptide of the present invention or a polynucleotide encoding the peptide to induce APC. Induction of APC can be carried out as described in the item "V-(4) antigen presenting cells". The present invention also provides a method for inducing APC having a high level of cytotoxic T cell inducing ability, the induction of which is described above as "V-(4) antigen presenting cells". Alternatively, according to the present invention, the use of a peptide selected from the group consisting of amino acid sequence SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74 is provided. A Foxp3 peptide, or a polynucleotide encoding the Foxp3 peptide, is used to make a pharmaceutical composition comprising one of antigen presenting cells. Furthermore, the present invention also provides a peptide selected from the amino acid sequence of SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74. A Foxp3 peptide, or a polynucleotide encoding the Foxp3 peptide, for inducing antigen to present cells.

(2)誘導細胞毒性T細胞之方法 再者,本發明提供誘導CTL之方法,係使用本發明之Foxp3胜肽或編碼為該Foxp3胜肽之多核苷酸。當將本發明之Foxp3胜肽對一個體投予時,在該個體體內會誘導CTL,且增進標靶於T-reg細胞之免疫系統強度。或者,該些可用於體外(ex vivo)治療方法,其中,個體衍生的APC及CD8-陽性細胞或周邊血液單核白血球與該本發明之 胜肽於體外接觸(刺激),於誘導CTL後,使細胞回到該個體中。例如該方法可包含以下步驟:a:從個體收集APC,b:使步驟a之APC與該胜肽接觸,c:使步驟b之APC與CD8+ T細胞混合,並共同培養以供誘導細胞毒性T細胞,以及d:由步驟c之共同培養物收集CD8+ T細胞。(2) Method of Inducing Cytotoxic T Cells Further, the present invention provides a method of inducing CTL by using the Foxp3 peptide of the present invention or a polynucleotide encoding the Foxp3 peptide. When the Foxp3 peptide of the present invention is administered to a single body, CTL is induced in the individual and the strength of the immune system targeted to the T-reg cells is enhanced. Alternatively, the invention may be used in an ex vivo treatment method in which an individual-derived APC and CD8-positive cells or peripheral blood mononuclear leukocytes are contacted (stimulated) with the peptide of the present invention in vitro, after inducing CTL, The cells are returned to the individual. For example, the method can comprise the steps of: a: collecting APC from an individual, b: contacting the APC of step a with the peptide, c: mixing the APC of step b with CD8 + T cells, and coculturing for induction of cytotoxicity T cells, and d: CD8 + T cells were harvested from the co-culture of step c.

由步驟d得到之具細胞毒性活性之CD8+ T細胞,可對於該個體投予作為疫苗。在上述步驟c中欲與CD8+ T細胞混合之APC,亦可藉由編碼為本發明胜肽之基因轉移到APC中以製備,細節詳述於“V-(4)抗原呈現細胞”;但不限於此,任何對於T細胞有效呈現本發明胜肽之APC或外吐小體,可用於本方法。或者,依照本發明。提供使用擇自於包含胺基酸序列SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74之胜肽的Foxp3胜肽,或編碼為該Foxp3胜肽之多核苷酸,以製造包括CTL之醫藥組合物。再者。本發明尚提供擇自於包含胺基酸序列SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74之胜肽的該Foxp3胜肽,或編碼為該Foxp3胜肽之多核苷酸,以供誘導CTL。The cytotoxic activity of CD8 + T cells obtained from step d can be administered to the individual as a vaccine. The APC to be mixed with CD8 + T cells in the above step c can also be prepared by transferring the gene encoding the peptide of the present invention into APC, and the details are detailed in "V-(4) antigen presenting cells"; Without being limited thereto, any APC or exosome that effectively presents the peptide of the present invention to T cells can be used in the present method. Or, in accordance with the present invention. Providing a Foxp3 peptide selected from a peptide comprising the amino acid sequence SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74, or A polynucleotide encoding the Foxp3 peptide is used to make a pharmaceutical composition comprising CTL. Again. The present invention further provides the Foxp3 which is selected from the peptide comprising the amino acid sequence SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74. A peptide, or a polynucleotide encoding the Foxp3 peptide, for inducing CTL.

(3)調節免疫抑制 如上所述,本發明之胜肽、多核苷酸、外吐小體、APC及CTL,可作為疫苗以調節(即抑制)T-reg細胞。由於T-reg被認為是抑制多種類型免疫反應尤其CTL細胞毒 性活性之主要角色之一,本發明胜肽、多核苷酸、外吐小體、APC及CTL之能力,代表該些也可用於抵銷免疫抑制,尤其CTL細胞毒性活性。總之,本發明提供一種調節T-reg細胞之方法及一種調節(即抵銷)免疫抑制之方法,該些方法包含對於需要的個體投予本發明胜肽、多核苷酸、外吐小體、APC或CTL之步驟。再者,本發明尚提供使用擇自於包含胺基酸序列SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74之胜肽的Foxp3胜肽,或編碼為該Foxp3胜肽之多核苷酸,以製造用於調節免疫抑制之免疫性組合物。或者,本發明尚關於擇自於包含胺基酸序列SEQ ID NO: 3-5、7-9、12、15-19、22、24、27-30、37、67或74之胜肽的Foxp3胜肽,或編碼為該Foxp3胜肽之多核苷酸,用於調節免疫抑制。(3) Regulating immunosuppression As described above, the peptide, polynucleotide, exosome, APC and CTL of the present invention can be used as a vaccine to modulate (i.e., inhibit) T-reg cells. Because T-reg is thought to inhibit multiple types of immune responses, especially CTL cytotoxicity One of the main roles of sexual activity, the ability of the peptides, polynucleotides, exosomes, APCs, and CTLs of the present invention, can also be used to counteract immunosuppression, particularly CTL cytotoxic activity. In summary, the present invention provides a method of modulating T-reg cells and a method of modulating (ie, offsetting) immunosuppression comprising administering to a subject in need thereof a peptide, a polynucleotide, an exosome, Steps for APC or CTL. Furthermore, the present invention also provides for the use of peptides selected from the group consisting of amino acid sequences SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74. A Foxp3 peptide, or a polynucleotide encoding the Foxp3 peptide, to produce an immunological composition for modulating immunosuppression. Alternatively, the present invention relates to Foxp3 selected from peptides comprising the amino acid sequence SEQ ID NO: 3-5, 7-9, 12, 15-19, 22, 24, 27-30, 37, 67 or 74. A peptide, or a polynucleotide encoding the Foxp3 peptide, is used to modulate immunosuppression.

在此,調節免疫抑制代表投予本發明胜肽、多核苷酸、外吐小體、APC或CTL,造成體內的任何種類的變化。於一些實施形態,由本發明胜肽、多核苷酸、外吐小體、APC及CTL造成之改變,為降低免疫壓抑狀態之水平(抑制或抵銷免疫抑制),即,誘發抗免疫抑制。因此,本發明更提供一種誘導抗免疫抑制之方法,該方法包含對於一需要的個體投予本發明胜肽、多核苷酸、外吐小體、APC或CTL之步驟。Here, modulation of immunosuppression represents administration of a peptide, polynucleotide, exosome, APC or CTL of the invention, resulting in any kind of change in vivo. In some embodiments, the alterations caused by the peptides, polynucleotides, exosomes, APCs, and CTLs of the invention are those that reduce the level of immunosuppression (inhibition or offsetting immunosuppression), i.e., induce anti-immunosuppression. Accordingly, the present invention further provides a method of inducing anti-immunosupsis comprising the step of administering to a subject in need thereof a peptide, polynucleotide, exosome, APC or CTL of the invention.

一般而言,抗免疫抑制包括如下列的免疫反應:-誘導對抗表現Foxp3之T-reg的細胞毒性淋巴球,-誘導認識表現Foxp3之T-reg的抗體,以及 -誘導抗Treg細胞激素生產。In general, anti-immunosuppression includes an immune response as follows: - induction of cytotoxic lymphocytes against T-reg expressing Foxp3, - induction of antibodies recognizing T-reg of Foxp3, and - Inducing anti-Treg cytokine production.

因此,當某一蛋白質接種到一動物中時,誘發任一免疫反應,該蛋白質被判定為具抗免疫抑制誘導作用。由一蛋白質誘導之抗免疫抑制,可藉由觀察寄主免疫系統對抗蛋白質之體內或體外反應而偵測。Therefore, when a certain protein is inoculated into an animal, any immune reaction is induced, and the protein is judged to have an anti-immunosuppressive induction effect. Anti-immunosuppression induced by a protein can be detected by observing the host immune system against the in vivo or in vitro response of the protein.

例如用於偵測誘導(即,活化)細胞毒性T淋巴球之方法為人所周知的。尤其,已知進入活體的外來物質藉由抗原呈現細胞(APC)之作用,而呈現給T細胞及B細胞。回應於APC所呈現的抗原的T細胞,由於該抗原的刺激,以抗原專一性方式分化為細胞毒性T細胞(或細胞毒性T淋巴球;CTL),然後增生(此稱為活化T細胞)。因此,由某一胜肽誘導之CTL,可藉由以APC將該胜肽呈現給T細胞,並偵測誘導(即增生、IFN-γ生產及細胞毒性活性)CTL來評估。再者,APC具活化CD4+T細胞、CD8+T細胞、巨噬體、嗜酸性白血球及NK細胞之作用。因為CD4+T細胞在抗腫瘤免疫性亦為重要,因此,該胜肽之抗腫瘤免疫性誘導作用,可使用評估此等細胞之活化效果作為指標。For example, methods for detecting induced (i.e., activating) cytotoxic T lymphocytes are well known. In particular, it is known that foreign substances entering a living body are presented to T cells and B cells by the action of antigen presenting cells (APC). T cells that respond to the antigen presented by APC are differentiated into cytotoxic T cells (or cytotoxic T lymphocytes; CTL) by antigen-specific stimulation, and then proliferate (this is called activated T cells). Thus, a CTL induced by a peptide can be evaluated by presenting the peptide to T cells with APC and detecting CTLs for induction (ie, proliferation, IFN-γ production, and cytotoxic activity). Furthermore, APC has the function of activating CD4+ T cells, CD8+ T cells, macrophages, eosinophils, and NK cells. Since CD4+ T cells are also important in anti-tumor immunity, the anti-tumor immunity induction effect of the peptide can be used as an index for evaluating the activation effect of such cells.

使用樹突細胞(DC)作為APC以評估誘導CTL作用之方法,為該技術領域中為人所周知的。依照此方法,首先將一測試胜肽與DC接觸,然後將此DC與T細胞接觸。於接觸DC後,偵測具對抗表現該關注胜肽之細胞(即呈現在HLA分子上)的細胞毒性作用的T細胞,顯示該測試胜肽具有誘導細胞毒性T細胞之活性。CTL對抗T-reg之活性, 可使用例如51 Cr-標定的腫瘤細胞之溶解作為指標偵測。或者,使用3 H-胸腺嘧啶攝入活性或LDH(乳糖去氫酶)-釋放作為指標來評估T-reg受損的方法,亦為周知且可用於本發明。The use of dendritic cells (DCs) as APCs to assess the effects of inducing CTLs is well known in the art. According to this method, a test peptide is first contacted with DC and then the DC is contacted with T cells. Upon exposure to DC, T cells that are cytotoxic against cells expressing the peptide of interest (i.e., present on HLA molecules) are detected, indicating that the test peptide has activity to induce cytotoxic T cells. The activity of CTL against T-reg can be detected using, for example, 51 Cr-calibrated tumor cell lysis as an indicator. Alternatively, methods for assessing T-reg damage using 3 H-thymidine uptake activity or LDH (lactose dehydrogenase)-release as indicators are also well known and can be used in the present invention.

DC以外,周邊血液單核細胞(PBMCs)也可用作為APC。CTL之誘導據報告在存在GM-CSF and IL-4下培養PBMC會受到促進。同樣地,CTL已顯示在存在血蘭蛋白(keyhole limpet hemocyanin)(KLH)及IL-7下培養PBMC,會被誘導。In addition to DC, peripheral blood mononuclear cells (PBMCs) can also be used as APC. Induction of CTL It is reported that the cultivation of PBMC in the presence of GM-CSF and IL-4 is promoted. Similarly, CTL has been shown to culture PBMC in the presence of keyhole limpet hemocyanin (KLH) and IL-7, which is induced.

以此等方法已確認具CTL誘導活性之測試胜肽,為具DC活化作用之胜肽,且隨之具CTL誘導活性。因此,誘導對抗腫瘤細胞之CTL的Foxp3胜肽,作為對抗T-reg之疫苗為有用的。再者,藉由與該Foxp3胜肽接觸而得到誘導CTL抗T-reg能力的APC,作為對抗T-reg之疫苗亦為有用的。再者,藉由以APC呈現該胜肽抗原而得到細胞毒性之CTL,亦可作為對抗T-reg之疫苗。此種使用APC及CTL針對T-reg之免疫性的調節方法,稱為細胞免疫療法,且包含於本發明。The test peptide having CTL-inducing activity has been confirmed by such methods, and is a peptide having DC activation, and is accompanied by CTL-inducing activity. Therefore, the Foxp3 peptide which induces CTL against tumor cells is useful as a vaccine against T-reg. Furthermore, APC which induces CTL anti-T-reg ability by contact with the Foxp3 peptide is also useful as a vaccine against T-reg. Furthermore, a cytotoxic CTL can be obtained by presenting the peptide antigen in APC, and can also be used as a vaccine against T-reg. Such a method of regulating the immunity against T-reg using APC and CTL is called cell immunotherapy and is included in the present invention.

一般而言,當使用多胜肽於細胞免疫療法,CTL誘導之效率已知會由於組合具不同結構的多數胜肽並使該些與DC接觸而增加。因此,當以蛋白質片段刺激DC,使用多種類型片段的混合物為有利的。In general, when multi-peptide is used in cellular immunotherapy, the efficiency of CTL induction is known to increase due to the combination of most peptides with different structures and the contact with DC. Therefore, when DCs are stimulated with protein fragments, it is advantageous to use a mixture of multiple types of fragments.

或者,由一胜肽誘導抗免疫抑制,可藉由觀察誘導抗T-reg之抗體生產而確認。例如當以經該胜肽免疫之一個體,例如一人類病患、一實驗室動物,誘導對抗一胜肽的 抗體,且當T-reg細胞被此等抗體所抑制,該胜肽被判定為具誘導抗免疫抑制之能力。Alternatively, induction of anti-immunosuppression by a peptide can be confirmed by observing production of an antibody that induces anti-T-reg. For example, when one of the individuals immunized with the peptide, such as a human patient, a laboratory animal, induces a peptide against An antibody, and when T-reg cells are inhibited by such antibodies, the peptide is judged to have an ability to induce anti-immunosuppression.

抗免疫抑制藉由投予本發明疫苗而誘導,且此誘導能瓦解免疫抑制。此種效果在統計學上可為顯著的。例如於觀察值,顯著水準5%以下,其中疫苗對抗T-reg之調節作用,係與未投予疫苗之對照組比較。例如可使用Student's t-test、Mann-Whitney U-test或ANOVA於統計分析。Anti-immunosuppression is induced by administration of the vaccine of the present invention, and this induction can disrupt immunosuppression. This effect can be statistically significant. For example, at an observation level, the level of significance is 5% or less, wherein the regulation of the vaccine against T-reg is compared with the control group not administered with the vaccine. For example, Student's t-test, Mann-Whitney U-test or ANOVA can be used for statistical analysis.

當使用APC或CTL作為本發明之疫苗,T-reg可藉由例如體外(ex vivo)方法調節(即抑制)。更具體而言,收集接受治療或預防之個體的PBMC,將細胞與該多胜肽在體外(ex vivo)接觸,並於誘導APC或CTL後,可將該細胞對於該個體投予。APC可藉由將編碼為多胜肽之載體以體外(ex vivo)導入於PBMC。在體外誘導之APC或CTL可在投予前於體外選殖。藉由選殖及培養具損害標靶細胞高活性之細胞,可以更有效率地實施細胞免疫療法。再者,以此方式離析之APC及CTL,可用於細胞免疫療法,不僅是用在衍生該細胞之個體,也可用於其他個體中的類似疾病類型。When APC or CTL is used as the vaccine of the present invention, T-reg can be adjusted (i.e., inhibited) by, for example, an ex vivo method. More specifically, the PBMC of the individual receiving treatment or prevention is collected, the cells are contacted ex vivo with the multi-peptide, and after inducing APC or CTL, the cells can be administered to the individual. APC can be introduced into PBMC ex vivo by a vector encoding a multi-peptide. APC or CTL induced in vitro can be colonized in vitro prior to administration. Cellular immunotherapy can be performed more efficiently by colonizing and culturing cells that have high activity in the target cells. Furthermore, APCs and CTLs isolated in this manner can be used for cellular immunotherapy, not only for individuals who derive the cells, but also for similar disease types in other individuals.

除非另外定義,此處使用之所有技術及科學用語,與本發明所屬技術領域中具通常知識之人士通常瞭解的意義相同發明。雖然可使用類似或等同於此處所述方法及材料實施或測試本發明,但以下將敘述適當的方法及材料。在此引用到的所有出版物、專利申請案及其他參考文獻完整納入作為參考,當發生牴觸,以本發明說明書,包括定 義在內,以本發明說明書為準。此外,該些材料、方法及實施例僅係用於理解,並非意欲限制。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art. Although the invention may be practiced or tested using methods and materials similar or equivalent to those described herein, suitable methods and materials are described below. All publications, patent applications, and other references cited herein are hereby incorporated by reference in their entirety in the entirety The specification of the present invention shall prevail. In addition, the materials, methods, and examples are for illustrative purposes only and are not intended to be limiting.

以下呈現實施例來說明本發明,並協助該技術領域中具通常知識者製作並使用。該些實施例絕非意欲限制本發明範圍。The embodiments are presented below to illustrate the invention and to assist those skilled in the art to make and use. These examples are in no way intended to limit the scope of the invention.

實施例Example 材料及方法Materials and methods

細胞株 A24LCL細胞(HLA-A24/24)、T2細胞(HLA-A02/02)、人類B-淋巴母細胞、293T及COS7,購買自ATCC。 Cell lines A24LCL cells (HLA-A24/24), T2 cells (HLA-A02/02), human B-lymphoblasts, 293T and COS7 were purchased from ATCC.

衍生自Foxp3之胜肽候選者選擇 以結合預測軟體"BIMAS"(http://bimas.dcrt.nih.gov/cgi-bin/molbio/ken_par ker_comboform ),預測會與HLA-A﹡2402及HLA-A﹡0201分子結合之衍生自Foxp3的9-mer及10-mer胜肽,演算法依照Parker KC, et al.((1994)J Immunol.;152(1):163-75.)及Kuzushima K, et al.((2001)Blood.;98(6):1872-81.)所述。此等胜肽係由Sigma (Sapporo, Japan)依照標準固相合成法合成,並經反相HPLC純化。純度(>90%)及該胜肽同一性,以分析性HPLC及質譜分析決定。胜肽溶解於二甲基亞碸(DMSO),濃度20mg/ml,並保存於-80℃。 The candidate peptide candidate derived from Foxp3 is combined with the predicted software " BIMAS " (http://bimas.dcrt.nih.gov/cgi-bin/molbio/ken_par ker_comboform ), predicted to be associated with HLA-A*2402 and HLA- The A*0201 molecule binds to the 9-mer and 10-mer peptides derived from Foxp3, and the algorithm is based on Parker KC, et al. ((1994) J Immunol.; 152(1): 163-75.) and Kuzushima K. , et al. ((2001) Blood.; 98(6): 1872-81.). These peptides were synthesized by Sigma (Sapporo, Japan) according to standard solid phase synthesis and purified by reverse phase HPLC. Purity (>90%) and the identity of the peptide were determined by analytical HPLC and mass spectrometry. The peptide was dissolved in dimethyl hydrazine (DMSO) at a concentration of 20 mg/ml and stored at -80 °C.

體外CTL誘導 使用單核球衍生之樹突細胞(DCs)作為抗原呈現細胞(APCs),以誘導對抗呈現在HLA上的胜肽的CTL反應。DCs以另敘方式於體外產生(Horiguchi S. et al. Cancer Res. 59:2950-6)。具體而言,將以Ficoll-Plaque (Pharmacia)溶液從正常自願者(HLA-A﹡2402及/或HLA-A﹡0201)離析之周邊血液單核細胞(PBMC),藉由附著於塑膠培養皿(Becton Dickinson)分離,以便使得到單核球部分。將單核球富化於1000U/ml GM-CSF (R&D System)及1000U/ml IL-4(R&D系統),培養於含2%經熱失活的從自身取得的血清(AS)的AIM-V培養基(Invitrogen)。培養7日後,將細胞激素-產生之DC,於存在β2-微球蛋白3mcg/ml,在AIM-V培養基中,於攝氏20度加以合成胜肽20mcg/ml脈衝4小時。此等經胜肽脈衝之DC接著以絲裂黴素C(MMC)(30mcg/ml,30分鐘)失活,並與自身取得之CD8+ T細胞以1:20比例混合,該CD8+ T細胞係使用CD8陽性離析套組(Dynal)以陽性選擇得到。此等培養物被放於48-井盤(Corning);各井於AIM-V/2% AS 0.5ml中包含1.5x104 經胜肽脈衝的DC、3x105 CD8+ T細胞及10ng/ml的IL-7 (R&D System)。3日後,將此等培養物補充IL-2 (CHIRON)至最終濃度20IU/ml。於第7及14天,將細胞再以該經胜肽脈衝的自身取得的DC刺激。DC各次以與上述相同的程序製備。於第21天第3回合的胜肽刺激後,測試對抗經胜肽脈衝之A24LCL細胞或T2細胞之CTL活性。 In vitro CTL induction Mononuclear-derived dendritic cells (DCs) were used as antigen-presenting cells (APCs) to induce CTL responses against peptides present on HLA. DCs are produced in vitro in an alternative manner (Horiguchi S. et al. Cancer Res. 59: 2950-6). Specifically, peripheral blood mononuclear cells (PBMC) isolated from normal volunteers (HLA-A*2402 and/or HLA-A*0201) in a Ficoll-Plaque (Pharmacia) solution are attached to a plastic Petri dish. (Becton Dickinson) is separated to make it to the mononuclear sphere portion. Mononuclear spheres were enriched in 1000 U/ml GM-CSF (R&D System) and 1000 U/ml IL-4 (R&D Systems) and cultured in AIM-containing 2% heat-inactivated serum (AS) obtained from itself. V medium (Invitrogen). After 7 days of culture, the cytokine-produced DC was pulsed at 20 mcg/ml for 4 hours in the presence of β2-microglobulin at 3 mcg/ml in AIM-V medium at 20 °C. The DCs of these peptides were then inactivated with mitomycin C (MMC) (30 mcg/ml, 30 min) and mixed with CD8 + T cells obtained in their own ratio of 1:20, CD8 + T cells. The CD8 positive segregation kit (Dynal) was used for positive selection. These cultures were placed on a 48-well plate (Corning); each well contained 1.5x10 4 peptide-pulsed DCs, 3x10 5 CD8 + T cells, and 10 ng/ml in AIM-V/2% AS 0.5 ml. IL-7 (R&D System). After 3 days, the cultures were supplemented with IL-2 (CHIRON) to a final concentration of 20 IU/ml. On days 7 and 14, the cells were stimulated again with the DC obtained by the peptide pulse itself. DCs were prepared each time in the same procedure as above. After the peptide stimulation of the third round on the 21st day, the CTL activity against the peptide pulsed A24LCL cells or T2 cells was tested.

擴大CTL之程序 使CTL於培養物中使用類似於Riddell, et al.(Walter et al., N Engl J Med 333(16): 1038-44, 1995;Riddell et al., Nat Med 2(2): 216-23, 1996 Feb)所述方法擴大族群。將總共5x104 CTL及2種人類B-淋巴母細胞株再懸浮於AIM-V/5% AS25ml,於含40ng/ml抗CD3之單株抗體(Pharmingen),以MMC失活。於培養1天後,添加120IU/ml的IL-2至培養物中。在第5、8及11天,於培養物中加入含30IU/ml IL-2的新鮮的AIM-V/5% AS。 The procedure for expanding the CTL allows CTL to be used in culture similar to Riddell, et al. (Walter et al., N Engl J Med 333(16): 1038-44, 1995; Riddell et al., Nat Med 2(2) : 216-23, 1996 Feb) The method described expands the population. A total of 5× 10 4 CTL and 2 human B-lymocyte strains were resuspended in AIM-V/5% AS 25 ml, and inactivated with MMC in a 40 ng/ml anti-CD3 monoclonal antibody (Pharmingen). After 1 day of culture, 120 IU/ml of IL-2 was added to the culture. On days 5, 8 and 11, fresh AIM-V/5% AS containing 30 IU/ml IL-2 was added to the culture.

CTL專一性活性 為了檢測CTL之專一性,使用IFN-γ ELISPOT試驗及IFN-γ ELISA。簡言之,製備經胜肽脈衝的A24-LCL、T2細胞(1x104 /井)或內生性表現Foxp3及HLA分子之細胞,作為刺激子細胞。使用培養在48井的CTL細胞株,作為回應子細胞。IFN-γ ELISPOT試驗及IFN-γ ELISA,依照製造程序實施。 CTL-specific activity To detect the specificity of CTL, the IFN-γ ELISPOT assay and the IFN-γ ELISA were used. Briefly, peptides pulsed with A24-LCL, T2 cells (1x10 4 /well) or cells endogenously expressing Foxp3 and HLA molecules were prepared as stimulator cells. A CTL cell line cultured in well 48 was used as a responsive daughter cell. The IFN-γ ELISPOT assay and the IFN-γ ELISA were performed according to the manufacturing procedure.

BALB/c小鼠中,抗原決定位胜肽之免疫原性 為了初始化(priming)該胜肽專一性CTL,每隻小鼠使用100mcl疫苗混合物進行免疫,其中含50mcl HLA-A24限制胜肽及50mcl IFA。將疫苗於第0天,以皮下注射到小鼠右脅腹作為第1次免疫,於第7天注射到左脅腹作為 第2次免疫。於第14天,使用來自於經注射疫苗之小鼠的脾細胞作為回應子細胞,並使用經或不經胜肽脈衝的RLmalel細胞作為刺激子細胞,以供IFN-γ ELISPOT試驗。 Immunogenicity of the epitope-determining peptide in BALB/c mice To prime the peptide-specific CTL, each mouse was immunized with a 100 mlcl vaccine mixture containing 50 ml of HLA-A24-restricted peptide and 50 ml IFA. The vaccine was injected subcutaneously into the right flank of the mouse as the first immunization on the 0th day, and injected into the left flank as the second immunization on the 7th day. On day 14, spleen cells from vaccinated mice were used as responsive cells, and RLmalel cells pulsed with or without peptides were used as stimulator cells for the IFN-γ ELISPOT assay.

體內抗腫瘤效果 將4T1細胞(1x105 每隻小鼠),於第0天以皮下注射到BALB/c小鼠之右脅腹。在第3及10天,使用hFoxp3-252 (KLSAMQAHL: SEQ ID NO: 17)或mFoxp3-252 (KLGAMQAHL: SEQ ID NO: 88)IFA-接合胜肽接種。In vivo anti-tumor effect 4T1 cells (1×10 5 per mouse) were injected subcutaneously on day 0 into the right flank of BALB/c mice. On days 3 and 10, hFoxp3-252 (KLSAMQAHL: SEQ ID NO: 17) or mFoxp3-252 (KLGAMQAHL: SEQ ID NO: 88) IFA-conjugated peptide was used for inoculation.

分析Foxp3-9-252取代物對於HLA分子之親和性 實施IFN-γ ELISA試驗以檢驗經取代胜肽對於HLA-A2分子之親和性。使用經Foxp3-9-252-WT (KLSAMQAHL: SEQ ID NO: 17)胜肽誘導之CTL作為回應子細胞,並藉由與Foxp3-9-252-WT、Foxp3-9-252-9V (KLSAMQAHV: SEQ ID NO: 95)及HIV-A02 (SLYNTYATL)胜肽於攝氏37度一起溫育2小時製備T2細胞作為刺激子細胞。以廣範圍濃度(10-10-4 mcg/ml)的各胜肽對於T2細胞實施胜肽脈衝。Analysis of the affinity of the Foxp3-9-252 substitute for HLA molecules was performed in an IFN-[gamma] ELISA assay to test the affinity of the substituted peptide for the HLA-A2 molecule. CTLs induced by Foxp3-9-252-WT (KLSAMQAHL: SEQ ID NO: 17) were used as responsive daughter cells, and by using Foxp3-9-252-WT, Foxp3-9-252-9V (KLSAMQAHV: SEQ ID NO: 95) and HIV-A02 (SLYNTYATL) peptide were incubated with 37 degrees Celsius for 2 hours to prepare T2 cells as stimulator cells. Each peptide was subjected to a peptide pulse for T2 cells at a wide range of concentrations (10-10 -4 mcg/ml).

結果result

預測衍生自Foxp3之HLA-A24及HLA-A2結合胜肽 表1、2及3顯示Foxp3蛋白質之HLA-A﹡2402結合 胜肽或HLA-A﹡0201結合胜肽,順序為高結合親和性預測分數。總計選出60個胜肽具HLA-A24結合活性可能性,26個胜肽具HLA-A2結合活性可能性。 Prediction of HLA-A24 and HLA-A2 binding peptides derived from Foxp3 Tables 1, 2 and 3 show the HLA-A*2402 binding peptide or HLA-A*0201 binding peptide of Foxp3 protein in the order of high binding affinity prediction fraction. A total of 60 peptides were selected with the possibility of HLA-A24 binding activity, and 26 peptides had the possibility of HLA-A2 binding activity.

起始位置代表Foxp3之N-末端起算的胺基酸號碼。結合分數來自於"BIMAS"中材料及方法部分所述者。The starting position represents the amino acid number from the N-terminus of Foxp3. The combined scores are from those described in the Materials and Methods section of the "BIMAS".

起始位置代表Foxp3之N-末端起算的胺基酸號碼。結合分數來自於"BIMAS"中材料及方法部分所述者。The starting position represents the amino acid number from the N-terminus of Foxp3. The combined scores are from those described in the Materials and Methods section of the "BIMAS".

起始位置代表Foxp3之N-末端起算的胺基酸號碼。結合分數來自於"BIMAS"中材料及方法部分所述者。The starting position represents the amino acid number from the N-terminus of Foxp3. The combined scores are from those described in the Materials and Methods section of the "BIMAS".

使用經HLA-A2402限制之經預測的胜肽刺激T細胞 針對衍生自Foxp3蛋白質之胜肽的CTL,依照前揭“材料及方法”的方法產生。得到之CTL,以IFN-γ ELISPOT試驗所顯示可偵測的專一性CTL活性如第1A及圖1B所示。於第1A圖,於井編號#2及7經Foxp3-A24-9-363刺激之細胞、#1及#6經Foxp3-A24-9-366刺激之細胞、#5經Foxp3-A24-9-190刺激之細胞、#7經Foxp3-A24-10-87及Foxp3-A24-10-60刺激之細胞,相較於對照組,顯示有效能的IFN-γ生產。於圖1B,於井編號#4經Foxp3-A24-9-207刺激之細胞、於#6經Foxp3-A24-9-332刺激之細胞、於#6經Foxp3-A24-9-337刺激之細胞,及於#1經Foxp3-A24-10-114刺激之細胞,相較於對照組,顯示有效能的IFN-γ生產。 Stimulation of T cells using predicted peptides restricted by HLA-A2402 CTLs against peptides derived from Foxp3 protein were generated according to the method of the "Materials and Methods". The CTL obtained, as shown by the IFN-γ ELISPOT assay, showed specific CTL activity as shown in Figures 1A and 1B. In Figure 1A, cells stimulated with Foxp3-A24-9-363 in Yujing #2 and 7, cells stimulated with Foxp3-A24-9-366 in #1 and #6, and #5 via Foxp3-A24-9- 190-stimulated cells, #7, cells stimulated with Foxp3-A24-10-87 and Foxp3-A24-10-60 showed potent IFN-γ production compared to the control group. In Figure 1B, cells stimulated with Foxp3-A24-9-207 in Yujing #4, cells stimulated with Foxp3-A24-9-332 in #6, and cells stimulated with Foxp3-A24-9-337 in #6 And the cells stimulated with #pxp3-A24-10-114 in #1 showed an effective IFN-γ production compared to the control group.

使用經HLA-A0201限制之經預測胜肽刺激T細胞 於第2A、2B及2C圖顯示IFN-γ ELISPOT試驗中,顯示可偵測之專一性CTL活性的CTL。於第2A圖,於井編號#2經Foxp3-A2-9-390刺激之細胞、#2經Foxp3-A2-9-69刺激之細胞、#6經Foxp3-A2-9-252刺激之細胞、#4經Foxp3-A2-10-359刺激之細胞、#7經Foxp3-A2-263刺激之細胞,及#2與#5經Foxp3-A2-10-94 刺激之細胞,相較於對照組,顯示有效能的IFN-γ生產。於第2B圖,所有井的細胞經Foxp3-A2-10-233刺激,井編號#6及#7經Foxp3-A2-10-152刺激之細胞,#5經Foxp3-A2-10-77刺激之細胞,#1經Foxp3-A2-10-246及Foxp3-A2-10-94刺激之細胞,相較於對照組,顯示有效能的IFN-γ生產。於第2C圖,於井編號#1、2、4、5、7、9、11及12經Foxp3-A2-9-390刺激之細胞,於井編號#5及#11經Foxp3-A2-9-304刺激之細胞,於井編號#7經Foxp3-A2-9-68刺激之細胞,及於井編號#12經Foxp3-A2-9-252刺激之細胞,相較於對照組,顯示有效能的IFN-γ生產。 Stimulation of T cells using predicted peptides restricted by HLA-A0201 The CTLs showing detectable specific CTL activity in the IFN-γ ELISPOT assay are shown in panels 2A, 2B and 2C. In Figure 2A, cells stimulated with Foxp3-A2-9-390 in Yujing #2, cells stimulated with Foxp3-A2-9-69 in #2, cells stimulated with Foxp3-A2-9-252 in #6, #4 via Foxp3-A2-10-359 stimulated cells, #7 via Foxp3-A2-263 stimulated cells, and #2 and #5 via Foxp3-A2-10-94 stimulated cells, compared to the control group, Shows potent IFN-γ production. In Figure 2B, cells from all wells were stimulated with Foxp3-A2-10-233, wells #6 and #7 were stimulated with Foxp3-A2-10-152, and #5 was stimulated with Foxp3-A2-10-77. Cells, cells stimulated with Foxp3-A2-10-246 and Foxp3-A2-10-94, showed potent IFN-γ production compared to the control group. In Figure 2C, cells stimulated by Foxp3-A2-9-390 in well numbers #1, 2, 4, 5, 7, 9, 11 and 12, in well numbers #5 and #11 via Foxp3-A2-9 -304 stimulated cells, cells stimulated with Foxp3-A2-9-68 in well number #7, and cells stimulated with Foxp3-A2-9-252 in well number #12, showing effective energy compared to the control group IFN-γ production.

從Foxp3專一性胜肽建立CTL細胞株 將於陽性井中的細胞擴大族群並實施IFN-γ ELISA。於第3A、B、C圖,經Foxp3-A02-9-390 (SEQ ID NO: 15)刺激之CTL細胞株相較於對照組,顯示有效能的IFN-γ生產。於第3D圖,經Foxp3-A02-9-252 (SEQ ID NO: 17)刺激之CTL細胞株,相較於對照組,顯示有效能的IFN-γ生產。於第3E圖,經Foxp3-A24-10-60 (SEQ ID NO: 75)刺激之CTL細胞株,相較於對照組,顯示有效能的IFN-γ生產。於第3F圖,經Foxp3-A02-10-94 (SEQ ID NO: 27)刺激之CTL細胞株,相較於對照組,顯示有效能的IFN-γ生產。於第3G圖,經Foxp3-A24-10-87 (SEQ ID NO: 68)刺激之CTL細胞株,相較於對照組,顯示有效能 的IFN-γ生產。Positive wells will establish CTL cell lines to expand the population and the implementation of IFN-γ ELISA from Foxp3-specific peptide. In the 3A, B, and C panels, CTL cell lines stimulated with Foxp3-A02-9-390 (SEQ ID NO: 15) showed potent IFN-γ production compared to the control group. In the 3D panel, CTL cell lines stimulated with Foxp3-A02-9-252 (SEQ ID NO: 17) showed potent IFN-γ production compared to the control group. In Figure 3E, CTL cell lines stimulated with Foxp3-A24-10-60 (SEQ ID NO: 75) showed potent IFN-γ production compared to the control group. In Figure 3F, CTL cell lines stimulated with Foxp3-A02-10-94 (SEQ ID NO: 27) showed potent IFN-γ production compared to the control group. In the 3G map, CTL cell lines stimulated with Foxp3-A24-10-87 (SEQ ID NO: 68) showed potent IFN-γ production compared to the control group.

對抗內生性表現Foxp3及HLA-A﹡2402或HLA-A﹡0201之標靶細胞的專一性CTL活性 對於所建立的對抗此等胜肽之CTL選殖體,檢查其認識內生性表現Foxp3及HLA-A﹡24或02之標靶細胞的能力。對於293T之專一性CTL活性被測試,該293T經Foxp3基因及HLA-A﹡24或02分子全長兩者轉染,為內生性表現Foxp3及HLA-A﹡24或02之標靶細胞的專一性模型,對於293T之專一性CTL活性係使用由Foxp3-A02-9-390 (SEQ ID NO: 15)及Foxp3-A02-9-252 (SEQ ID NO: 17)產生的CTL細胞株作為效應子細胞測試。於第4A及4B圖,由Foxp3-A02-9-390 (SEQ ID NO: 15)and Foxp3-A02-9-252 (SEQ ID NO: 17)產生的CTL細胞株,對於經Foxp3及HLA-A02兩者轉染的293T顯示高專一性CTL活性。於第4C圖,由Foxp3-A02-9-252 (SEQ ID NO: 17)產生的CTL細胞株,對於經Foxp3及HLA-A24兩者轉染的293T顯示高專一性CTL活性。另一方面,其對於對照組未顯示顯著的專一性CTL活性。清楚顯示Foxp3-A02-9-390及Foxp3-A02-9-252天然表現於帶有HLA-A02及/或24分子之標靶細胞表面且認識CTL。再者,此等胜肽為抗原決定基胜肽,可利用於標靶於表現Foxp3之T-reg的疫苗。 Specific CTL activity against endogenously expressed Foxp3 and HLA-A*2402 or HLA-A*0201 target cells For the established CTL colonies against these peptides, examine their understanding of endogenous performance of Foxp3 and HLA - The ability of A*24 or 02 to target cells. For 293T specific CTL activity was tested, the 293T was transfected with both Foxp3 gene and HLA-A*24 or 02 full-length, which is endogenous to the specificity of Foxp3 and HLA-A*24 or 02 target cells. Model, CTL cell line produced by Foxp3-A02-9-390 (SEQ ID NO: 15) and Foxp3-A02-9-252 (SEQ ID NO: 17) was used as an effector cell for the 293T specific CTL activity. test. CTL cell lines produced by Foxp3-A02-9-390 (SEQ ID NO: 15) and Foxp3-A02-9-252 (SEQ ID NO: 17) for Foxp3 and HLA-A02 in Figures 4A and 4B Both transfected 293T showed highly specific CTL activity. In Figure 4C, a CTL cell line produced by Foxp3-A02-9-252 (SEQ ID NO: 17) showed highly specific CTL activity for 293T transfected with both Foxp3 and HLA-A24. On the other hand, it showed no significant specific CTL activity for the control group. It is clearly shown that Foxp3-A02-9-390 and Foxp3-A02-9-252 are naturally expressed on the surface of target cells bearing HLA-A02 and/or 24 molecules and recognize CTL. Furthermore, these peptides are epitope determinants and can be used in vaccines targeting T-reg expressing Foxp3.

BALB/c小鼠中,Foxp3-A24-9-252胜肽之免疫原性 為了評量針對BALB/c小鼠,Foxp3-9-252胜肽之免疫原性,各以人類Foxp3-9-252胜肽(Foxp3-252_h;KLSAMQAHL)及小鼠Foxp3-9-252胜肽(Foxp3-252_m;KLGAMQAHL)(SEQ ID NO:89)進行免疫。第2次注射胜肽後,以IFN-γ ELISPOT試驗決定胜肽專一性CTL活性(第5圖)。 BALB / c mice, Foxp3-A24-9-252 immunogenic peptides for the assessment to BALB / c mice, the immunogenicity of Foxp3-9-252 peptide, to each of the human Foxp3-9-252 The peptide (Foxp3-252_h; KLSAMQAHL) and the mouse Foxp3-9-252 peptide (Foxp3-252_m; KLGAMQAHL) (SEQ ID NO: 89) were immunized. After the second injection of the peptide, the peptide specific CTL activity was determined by the IFN-γ ELISPOT assay (Fig. 5).

從經注射胜肽疫苗之小鼠獲取的脾細胞,於與對應之經胜肽脈衝的刺激子細胞共同培養的井中,偵測到有效能的IFN-γ生產,於對照組井,未顯示IFN-γ生產。於圖5A,於5隻小鼠中的3隻,偵測到Foxp3-252_h胜肽專一性CTL反應(M3、M4及M5),但於僅經注射IFA之對照組小鼠(N1~N3),未偵測到此反應。於圖5B,於5隻小鼠中的1隻(M1)偵測到Foxp3-252_m胜肽專一性CTL反應,但僅經注射IFA之對照組小鼠(N1~N3),未偵測到此反應。此等資料顯示經注射Foxp3-252_h或Foxp3-252_m胜肽疫苗,可於體內誘導對抗經胜肽脈衝的標靶細胞之CTL。From the spleen cells obtained from the mice injected with the peptide vaccine, effective energy IFN-γ production was detected in the well cultured with the corresponding peptide-stimulated stimulator cells, and no IFN was detected in the control well. - γ production. In Fig. 5A, Foxp3-252_h peptide specific CTL responses (M3, M4, and M5) were detected in 3 out of 5 mice, but in control mice (N1~N3) injected only with IFA. , this reaction was not detected. In Fig. 5B, Foxp3-252_m peptide specific CTL response was detected in 1 (M1) of 5 mice, but only in the control group (N1~N3) injected with IFA, this was not detected. reaction. These data show that CTLs against target cells pulsed with peptides can be induced in vivo by injection of Foxp3-252_h or Foxp3-252_m peptide vaccine.

經注射Foxp3抗原決定基胜肽疫苗之抗腫瘤效果Antitumor effect of base peptide peptide vaccine injected with Foxp3 antigen

為了以經注射胜肽疫苗之經標靶Foxp3檢查抗腫瘤效果,企圖使用4T1腫瘤細胞及BALB/c小鼠進行體內治療性的處理。於第0天,將4T1乳癌細胞以皮下注射到BALB/c小鼠,然後於腫瘤挑戰後,於第3及10天,對此等小鼠實施疫苗接種。結果腫瘤生長在經注射Foxp3-252_h或 Foxp3-252_m胜肽疫苗之BALB/c小鼠,相較於作為對照組之小鼠,明顯降低(第6圖)。考慮統計分析,使用Foxp3抗原決定基胜肽進行疫苗接種的小鼠中的腫瘤生長抑制,顯示具顯著差異。In order to examine the anti-tumor effect with the targeted Foxp3 injected with the peptide vaccine, 4T1 tumor cells and BALB/c mice were attempted for in vivo therapeutic treatment. On day 0, 4T1 breast cancer cells were injected subcutaneously into BALB/c mice, and then vaccinated on days 3 and 10 after tumor challenge. Results Tumor growth was in the injection of Foxp3-252_h or BALB/c mice of the Foxp3-252_m peptide vaccine were significantly reduced compared to mice as a control group (Fig. 6). Considering statistical analysis, tumor growth inhibition in mice vaccinated with Foxp3 epitope determinant showed significant differences.

Foxp3抗原決定基胜肽之胺基酸取代 於前述結果,Foxp3-9-252胜肽(SEQ ID NO 17)被鑑別為經HLA-A﹡2402及HLA-A﹡0201兩者限制的抗原決定基胜肽。為了增進Foxp3-9-252胜肽之免疫原性,選擇單一或一組胺基酸取代以達成相較於天然Foxp3-9-252胜肽,對於HLA-A﹡2402或HLA-A﹡0201分子之較高結合親和性;Foxp3-9-252-WT (KLSAMQAHL)(SEQ ID NO 17)。Foxp3-9-252 (SEQ ID NO 17)中之胺基酸取代結合分數,從BIMAS軟體而來。表四顯示胺基酸序列及來自Foxp3-9-252之經取代胜肽對於HLA-A﹡2402及0201分子之結合分數。胜肽結合分數來自BIMAS軟體。6或9種取代,總共15個胜肽,相較於野生型被預測為對於HLA-A24或HLA-A2分子具較高結合親和性,合成此等胜肽(表四)。Amino acid substitution of Foxp3 epitope determinant peptide From the foregoing results, Foxp3-9-252 peptide (SEQ ID NO 17) was identified as an epitope peptide which was restricted by both HLA-A*2402 and HLA-A*0201. To enhance the immunogenicity of the Foxp3-9-252 peptide, a single or a group of amino acid substitutions were chosen to achieve a HLA-A*2402 or HLA-A*0201 molecule compared to the native Foxp3-9-252 peptide. Higher binding affinity; Foxp3-9-252-WT (KLSAMQAHL) (SEQ ID NO 17). The amino acid substitution binding fraction in Foxp3-9-252 (SEQ ID NO 17) was derived from the BIMAS software. Table 4 shows the binding fraction of the amino acid sequence and the substituted peptide from Foxp3-9-252 for HLA-A*2402 and 0201 molecules. The peptide binding score is derived from the BIMAS software. Six or nine substitutions, a total of 15 peptides, were predicted to have higher binding affinities for HLA-A24 or HLA-A2 molecules compared to wild type, and these peptides were synthesized (Table 4).

接著本案發明人等檢查是否使用此等取代之經胜肽脈衝的刺激子細胞,能為以Foxp3-9-252-WT胜肽誘導之CTL認識。結果,由Foxp3-9-252-WT胜肽誘導的CTL,產生對抗經Foxp3-9-252-9V (KLSAMQAHV)(SEQ ID NO 95)脈衝之T2細胞的IFN-γ,同樣地,產生對抗經Foxp3-9-252-WT胜肽脈衝之T2細胞的IFN-γ(第7A圖)。因為從對抗未經任何胜肽脈衝的刺激子細胞的CTL,未偵測到IFN-γ生產,顯示以Foxp3-9-252-WT胜肽誘導的CTL,能認識呈現在HLA-A2分子上之Foxp3-9-252-9V胜肽及Foxp3-9-252-WT。Next, the inventors of the present invention examined whether or not the stimulator cells using the substituted peptide pulse can be recognized by the CTL induced by Foxp3-9-252-WT peptide. As a result, the CTL induced by Foxp3-9-252-WT peptide produced IFN-γ against T2 cells pulsed with Foxp3-9-252-9V (KLSAMQAHV) (SEQ ID NO 95), and similarly, produced a confrontational IFN-γ of Foxp3-9-252-WT peptide T2 cells (Fig. 7A). Since IFN-γ production was not detected from CTL against stimulator cells without any peptide pulse, it was revealed that CTL induced by Foxp3-9-252-WT peptide was recognized to be present on HLA-A2 molecule. Foxp3-9-252-9V peptide and Foxp3-9-252-WT.

再者,為了評量是否Foxp3-9-252-9V胜肽相較於Foxp3-9-252-WT胜肽,對於HLA-A2分子具較高親和性,使用於廣範圍濃度(10-10-4 mcg/ml)經此等胜肽脈衝之刺激子細胞,檢查CTL活性。結果,與各經Foxp3-9-252-WT或Foxp3-9-252-9V胜肽脈衝的刺激子細胞共同培養的 CTL,產生的IFN-γ類似(第7B圖)。從此等資料顯示呈現Foxp3-9-252-9V胜肽於HLA-A﹡0201分子上,可能由以Foxp3-9-252-WT胜肽建立的CTL所認識。Furthermore, in order to assess whether the Foxp3-9-252-9V peptide is more affinitive to the HLA-A2 molecule than the Foxp3-9-252-WT peptide, it is used in a wide range of concentrations (10-10 - 4 mcg/ml) CTL activity was examined by stimulating daughter cells pulsed with these peptides. As a result, CTLs co-cultured with each of the stimulator cells pulsed with Foxp3-9-252-WT or Foxp3-9-252-9V peptides were similar in IFN-γ production (Fig. 7B). From these data it was shown that the Foxp3-9-252-9V peptide was expressed on the HLA-A*0201 molecule, probably recognized by the CTL established with the Foxp3-9-252-WT peptide.

另一方面,本案發明人等企圖使用HLA-A﹡0201限制之所有取代物,包括Foxp3-9-252-9V胜肽,來誘導CTL。結果,CTL藉由以Foxp3-9-252-3M (KLMAMQAHL)(SEQ ID NO 97)、Foxp3-9-252-3L (KLLAMQAHL)(SEQ ID NO 98)或Foxp3-9-252-9V胜肽刺激而誘導(第7C圖)。於井編號3及7經Foxp3-A02-9-252-3M刺激之細胞、井編號7中經Foxp3-A02-9-252-3L刺激之細胞,及井編號8中經Foxp3-A02-9-252-9V刺激之細胞,相較於對照組,顯示胜肽依存性IFN-γ生產。於以Foxp3-9-252-9V刺激而誘導之CTL細胞株藉由體外擴大族群而建立後,使用經Foxp3-9-252-WT或Foxp3-9-252-9V胜肽脈衝之刺激子細胞決定CTL活性。結果,經Foxp3-9-252-9V刺激而誘導之CTL,認識經Foxp3-9-252-WT胜肽脈衝之刺激子細胞,也同等地認識經Foxp3-9-252-9V胜肽脈衝之刺激子細胞(第7D圖)。此等結果強烈顯示Foxp3-9-252-9V胜肽可誘導Foxp3專一性CTL,Foxp3-9-252-WT胜肽亦如此。On the other hand, the inventors of the present invention attempted to induce CTL by using all of the substituents restricted by HLA-A*0201, including Foxp3-9-252-9V peptide. As a result, CTL was stimulated by Foxp3-9-252-3M (KLMAMQAHL) (SEQ ID NO 97), Foxp3-9-252-3L (KLLAMQAHL) (SEQ ID NO 98) or Foxp3-9-252-9V peptide And induction (Fig. 7C). Cells stimulated with Foxp3-A02-9-252-3M in wells 3 and 7 and cells stimulated with Foxp3-A02-9-252-3L in well number 7, and well numbered 8 in Foxp3-A02-9- The 252-9V stimulated cells showed peptide-dependent IFN-γ production compared to the control group. After the CTL cell line induced by Foxp3-9-252-9V stimulation was established by in vitro expansion of the population, it was determined using stimulator cells pulsed with Foxp3-9-252-WT or Foxp3-9-252-9V peptide. CTL activity. As a result, the CTL induced by Foxp3-9-252-9V stimulation recognized the stimulating cells of the pulse of Foxp3-9-252-WT peptide, and equally recognized the stimulation of the pulse of Foxp3-9-252-9V peptide. Child cells (Fig. 7D). These results strongly indicate that Foxp3-9-252-9V peptide can induce Foxp3-specific CTL, as does Foxp3-9-252-WT peptide.

抗原胜肽之同源性分析 經下列胜肽刺激之CTL顯示顯著及專一性CTL活性:FOXp3-A24-9-363 (SEQ ID NO 3)、 FOXp3-A24-9-366 (SEQ ID NO 7)、FOXp3-A24-9-190 (SEQ ID NO 9)、FOXp3-A24-9-207 (SEQ ID NO 4)、FOXp3-A24-9-332 (SEQ ID NO 5)、FOXp3-A24-9-337 (SEQ ID NO 8)、FOXp3-A24-10-114 (SEQ ID NO 12)、FOXp3-A2-9-390 (SEQ ID NO 15)、FOXp3-A2-9-69 (SEQ ID NO 16)、FOXp3-A2-9-252 (SEQ ID NO 17)、FOXp3-A2-10-359 (SEQ ID NO 22)、FOXp3-A2-10-263 (SEQ ID NO 24)、FOXp3-A2-10-94 (SEQ ID NO 27)、FOXp3-A2-10-233 (SEQ ID NO 28)、FOXp3-A2-10-152 (SEQ ID NO 29)、FOXp3-A2-10-77 (SEQ ID NO 30)、FOXp3-A2-10-246 (SEQ ID NO 37)、FOXp3-A2-9-68 (SEQ ID NO 18)、FOXp3-A2-9-304 (SEQ ID NO 19)、Foxp3-A24-10-87 (SEQ ID NO 67),以及Foxp3-A24-10-60 (SEQ ID NO 74)。 Homology analysis of the antigenic peptide showed significant and specific CTL activity by the following peptide-stimulated CTLs: FOXp3-A24-9-363 (SEQ ID NO 3), FOXp3-A24-9-366 (SEQ ID NO 7) , FOXp3-A24-9-190 (SEQ ID NO 9), FOXp3-A24-9-207 (SEQ ID NO 4), FOXp3-A24-9-332 (SEQ ID NO 5), FOXp3-A24-9-337 (SEQ ID NO 8), FOXp3-A24-10-114 (SEQ ID NO 12), FOXp3-A2-9-390 (SEQ ID NO 15), FOXp3-A2-9-69 (SEQ ID NO 16), FOXp3 -A2-9-252 (SEQ ID NO 17), FOXp3-A2-10-359 (SEQ ID NO 22), FOXp3-A2-10-263 (SEQ ID NO 24), FOXp3-A2-10-94 (SEQ ID NO 27), FOXp3-A2-10-233 (SEQ ID NO 28), FOXp3-A2-10-152 (SEQ ID NO 29), FOXp3-A2-10-77 (SEQ ID NO 30), FOXp3-A2 -10-246 (SEQ ID NO 37), FOXp3-A2-9-68 (SEQ ID NO 18), FOXp3-A2-9-304 (SEQ ID NO 19), Foxp3-A24-10-87 (SEQ ID NO) 67), and Foxp3-A24-10-60 (SEQ ID NO 74).

此可能意指以下序列FOXp3-A24-9-363 (SEQ ID NO 3)、FOXp3-A24-9-366 (SEQ ID NO 7)、FOXp3-A24-9-190 (SEQ ID NO 9)、 FOXp3-A24-9-207 (SEQ ID NO 4)、FOXp3-A24-9-332 (SEQ ID NO 5)、FOXp3-A24-9-337 (SEQ ID NO 8)、FOXp3-A24-10-114 (SEQ ID NO 12)、FOXp3-A2-9-390 (SEQ ID NO 15)、FOXp3-A2-9-69 (SEQ ID NO 16)、FOXp3-A2-9-252 (SEQ ID NO 17)、FOXp3-A2-10-359 (SEQ ID NO 22)、FOXp3-A2-10-263 (SEQ ID NO 24)、FOXp3-A2-10-94 (SEQ ID NO 27)、FOXp3-A2-10-233 (SEQ ID NO 28)、FOXp3-A2-10-152 (SEQ ID NO 29)、FOXp3-A2-10-77 (SEQ ID NO 30)、FOXp3-A2-10-246 (SEQ ID NO 37)、FOXp3-A2-9-68 (SEQ ID NO 18)、FOXp3-A2-9-304 (SEQ ID NO 19)、Foxp3-A24-10-87 (SEQ ID NO 67),以及Foxp3-A24-10-60 (SEQ ID NO 74),與衍生自其他已知會敏感化人類免疫系統之分子的胜肽為同源。為排除此可能性,對於該胜肽序列列表,使用BLAST演算法(http://www.ncbi.nlm.nih.gov/blast/blast.cgi)實施同源性分析,顯示沒有序列有顯著同源性。This may mean the following sequences FOXp3-A24-9-363 (SEQ ID NO 3), FOXp3-A24-9-366 (SEQ ID NO 7), FOXp3-A24-9-190 (SEQ ID NO 9), FOXp3-A24-9-207 (SEQ ID NO 4), FOXp3-A24-9-332 (SEQ ID NO 5), FOXp3-A24-9-337 (SEQ ID NO 8), FOXp3-A24-10-114 ( SEQ ID NO 12), FOXp3-A2-9-390 (SEQ ID NO 15), FOXp3-A2-9-69 (SEQ ID NO 16), FOXp3-A2-9-252 (SEQ ID NO 17), FOXp3- A2-10-359 (SEQ ID NO 22), FOXp3-A2-10-263 (SEQ ID NO 24), FOXp3-A2-10-94 (SEQ ID NO 27), FOXp3-A2-10-233 (SEQ ID NO 28), FOXp3-A2-10-152 (SEQ ID NO 29), FOXp3-A2-10-77 (SEQ ID NO 30), FOXp3-A2-10-246 (SEQ ID NO 37), FOXp3-A2- 9-68 (SEQ ID NO 18), FOXp3-A2-9-304 (SEQ ID NO 19), Foxp3-A24-10-87 (SEQ ID NO 67), and Foxp3-A24-10-60 (SEQ ID NO) 74) is homologous to peptides derived from other molecules known to sensitize the human immune system. To rule out this possibility, a homology analysis was performed using the BLAST algorithm (http://www.ncbi.nlm.nih.gov/blast/blast.cgi) for the list of peptide sequences, showing no significant sequence Source.

此等結果顯示以下序列FOXp3-A24-9-363 (SEQ ID NO 3)、 FOXp3-A24-9-366 (SEQ ID NO 7)、FOXp3-A24-9-190 (SEQ ID NO 9)、FOXp3-A24-9-207 (SEQ ID NO 4)、FOXp3-A24-9-332 (SEQ ID NO 5)、FOXp3-A24-9-337 (SEQ ID NO 8)、FOXp3-A24-10-114 (SEQ ID NO 12)、FOXp3-A2-9-390 (SEQ ID NO 15)、FOXp3-A2-9-69 (SEQ ID NO 16)、FOXp3-A2-9-252 (SEQ ID NO 17)、FOXp3-A2-10-359 (SEQID NO 22)、FOXp3-A2-10-263 (SEQ ID NO 24)、FOXp3-A2-10-94 (SEQ ID NO 27)、FOXp3-A2-10-233 (SEQ ID NO 28)、FOXp3-A2-10-152 (SEQ ID NO 29)、FOXp3-A2-10-77 (SEQ ID NO 30)、FOXp3-A2-10-246 (SEQ ID NO 37)、FOXp3-A2-9-68 (SEQ ID NO 18)、FOXp3-A2-9-304 (SEQ ID NO 19)、Foxp3-A24-10-87 (SEQ ID NO 67),以及Foxp3-A24-10-60 (SEQ ID NO 74)為獨特的,且以吾人的知識範圍內,對於任意無關的分子引發不欲免疫反應之可能性很小。These results show the following sequence FOXp3-A24-9-363 (SEQ ID NO 3), FOXp3-A24-9-366 (SEQ ID NO 7), FOXp3-A24-9-190 (SEQ ID NO 9), FOXp3-A24-9-207 (SEQ ID NO 4), FOXp3-A24-9-332 ( SEQ ID NO 5), FOXp3-A24-9-337 (SEQ ID NO 8), FOXp3-A24-10-114 (SEQ ID NO 12), FOXp3-A2-9-390 (SEQ ID NO 15), FOXp3- A2-9-69 (SEQ ID NO 16), FOXp3-A2-9-252 (SEQ ID NO 17), FOXp3-A2-10-359 (SEQ ID NO 22), FOXp3-A2-10-263 (SEQ ID NO) 24), FOXp3-A2-10-94 (SEQ ID NO 27), FOXp3-A2-10-233 (SEQ ID NO 28), FOXp3-A2-10-152 (SEQ ID NO 29), FOXp3-A2-10 -77 (SEQ ID NO 30), FOXp3-A2-10-246 (SEQ ID NO 37), FOXp3-A2-9-68 (SEQ ID NO 18), FOXp3-A2-9-304 (SEQ ID NO 19) , Foxp3-A24-10-87 (SEQ ID NO 67), and Foxp3-A24-10-60 (SEQ ID NO 74) are unique and, within our knowledge, induce unintentional immunity against any unrelated molecule The possibility of a reaction is small.

結論為,Foxp3為一種有用於標靶T-reg細胞之抗原,且使用此等抗原決定基胜肽之疫苗對於免疫療法可能 有用。In conclusion, Foxp3 is an antigen that has been used to target T-reg cells, and vaccines using these epitopes may be useful for immunotherapy. it works.

討論discuss

從第6圖之資料,注射各hFoxp3-252及mFoxp3-252胜肽疫苗,可於體內誘導抗原決定基專一性CTL。代表兩者Foxp3抗原決定基胜肽可誘導對抗表現Foxp3及對應之主要組織相容性複合體(histocompatibility complex)分子之標靶細胞的CTL。換言之,暗示此等CTL可能認識並調節T淋巴球(T-reg)。為了評量此假設,使用BALB/c小鼠檢查經此等Foxp3抗原決定基胜肽接種之體內抗腫瘤效果。明顯顯示在各經hFoxp3-252及mFoxp3-252胜肽接種的小鼠中,具抗腫瘤效果。此等結果強烈顯示腫瘤生長可能藉由抑制T-reg於局部腫瘤微環境而抑制,而甚至不用使用TAA抗原決定基胜肽接種。本案發明人等認為對抗腫瘤細胞之CTL,係於腫瘤存在於體內時所誘導,然而,T-reg也會由一些來自於腫瘤細胞之免疫抑制因子誘導並且抑制抗腫瘤效應子細胞功能。因為使用Foxp3抗原決定基胜肽接種能夠藉由殺死或抑制T-reg而解除免疫抑制情形,所以能在不接種TAA抗原決定基胜肽或使用強佐劑刺激全體免疫系統而顯示抗腫瘤效果。From the data in Figure 6, injection of each hFoxp3-252 and mFoxp3-252 peptide vaccine can induce epitope-specific CTL in vivo. Representing both Foxp3 epitope peptides can induce CTL against target cells expressing Foxp3 and corresponding major histocompatibility complex molecules. In other words, it is suggested that these CTLs may recognize and regulate T lymphocytes (T-reg). To assess this hypothesis, BALB/c mice were used to examine the in vivo anti-tumor effects of these Foxp3 epitope peptides. It was clearly shown to have an anti-tumor effect in mice inoculated with each of hFoxp3-252 and mFoxp3-252 peptide. These results strongly suggest that tumor growth may be inhibited by inhibiting T-reg in the local tumor microenvironment without even using TAA epitope phenopeptide inoculation. The inventors of the present invention believe that CTL against tumor cells is induced when the tumor is present in the body, however, T-reg is also induced by some immunosuppressive factors derived from tumor cells and inhibits anti-tumor effector cell function. Since the use of Foxp3 antigen determinant peptide vaccination can eliminate immunosuppression by killing or inhibiting T-reg, it can display anti-tumor effects without vaccinating the TAA epitope or using a strong adjuvant to stimulate the entire immune system. .

以此方式,接種hFoxp3-252胜肽(KLSAMQAHL)(SEQ ID NO 17)能誘導CTL及優於mFoxp3-252胜肽(KLGAMQAHL)(SEQ ID NO 88)之抗腫瘤效果(於第5及6圖)。從此等結果,吾人認為接種hFoxp3-252胜肽能相 較於接種mFoxp3-252胜肽,更有效率地避免免疫學容忍。換言之,由於hFoxp3-252之胺基酸序列在第3位置不同於mFoxp3-252,吾人認為hFoxp3-252胜肽為體內“非自體抗原”,且可有效地誘導對抗T-reg之CTL。In this way, vaccination with hFoxp3-252 peptide (KLSAMQAHL) (SEQ ID NO 17) induced CTL and superior anti-tumor effects of mFoxp3-252 peptide (KLGAMQAHL) (SEQ ID NO 88) (Figures 5 and 6) ). From these results, we believe that inoculation of hFoxp3-252 peptide phase Immunological tolerance is avoided more efficiently than inoculation with mFoxp3-252 peptide. In other words, since the amino acid sequence of hFoxp3-252 differs from mFoxp3-252 in the third position, we believe that the hFoxp3-252 peptide is an "non-autoantigen" in vivo and can effectively induce CTL against T-reg.

結論顯示Foxp3可作為癌症免疫療法之新穎標靶。再者,此等結果強烈支持以Foxp3抗原決定基胜肽接種,能抑制T-reg之功能,且應可供許多類型的癌細胞之癌症免疫療法用。Conclusions show that Foxp3 can be used as a novel target for cancer immunotherapy. Furthermore, these results strongly support the inoculation with the Foxp3 epitope, which inhibits the function of T-reg and should be used for cancer immunotherapy of many types of cancer cells.

第1圖顯示對於經衍生自Foxp3之胜肽誘導的CTL,IFN-γ ELISPOT試驗的結果照片。第1A圖,井編號#2及7經Foxp3-A24-9-363 (SEQ ID NO 3)刺激、#1及#6經Foxp3-A24-9-366 (SEQ ID NO 7)刺激、#5經Foxp3-A24-9-190 (SEQ ID NO 9)刺激,及#7經Foxp3-A24-10-87 (SEQ ID NO 67)及Foxp3-A24-10-60 (SEQ ID NO 74)刺激之CTL,相較於對照組,顯示有效能的IFN-γ生產。於第1B圖,井編號#4經Foxp3-A24-9-207 (SEQ ID NO 4)刺激、#6經Foxp3-A24-9-332 (SEQ ID NO 5)刺激、#6經Foxp3-A24-9-337 (SEQ ID NO 8)刺激,及#1經Foxp3-A24-10-114 (SEQ ID NO 12)刺激之CTL,相較於對照組,顯示有效能的IFN-γ生產。Figure 1 shows photographs of the results of the IFN-γ ELISPOT assay for CTLs induced by peptides derived from Foxp3. Figure 1A, well numbers #2 and 7 were stimulated with Foxp3-A24-9-363 (SEQ ID NO 3), #1 and #6 were stimulated with Foxp3-A24-9-366 (SEQ ID NO 7), #5 Foxp3-A24-9-190 (SEQ ID NO 9) stimulates, and #7 is stimulated by Foxp3-A24-10-87 (SEQ ID NO 67) and Foxp3-A24-10-60 (SEQ ID NO 74), Effective IFN-γ production was shown compared to the control group. In Figure 1B, well number #4 is stimulated by Foxp3-A24-9-207 (SEQ ID NO 4), #6 is stimulated by Foxp3-A24-9-332 (SEQ ID NO 5), and #6 via Foxp3-A24- 9-337 (SEQ ID NO 8) stimulation, and #1, CTL stimulated by Foxp3-A24-10-114 (SEQ ID NO 12), showed potent IFN-γ production compared to the control group.

第2圖顯示對於經衍生自Foxp3之胜肽誘導的CTL,IFN-γ ELISPOT試驗的結果照片。於第2A圖,井編號#2 經Foxp3-A2-9-390 (SEQ ID NO 15)刺激、#2經Foxp3-A2-9-69 (SEQ ID NO 16)刺激、#6經Foxp3-A2-9-252 (SEQ ID NO 17)刺激、#4經Foxp3-A2-10-359 (SEQ ID NO 22)刺激、#7經Foxp3-A2-263 (SEQ ID NO 24)刺激,及#2與#5經Foxp3-A2-10-94 (SEQ ID NO 27)刺激之CTL,相較於對照組,顯示有效能的IFN-γ生產。於第2B圖,所有井經Foxp3-A2-10-233 (SEQ ID NO 28)刺激、井編號#6及#7經Foxp3-A2-10-152 (SEQ ID NO 29)刺激、#5經Foxp3-A2-10-77 (SEQ ID NO 30)刺激,及#1經Foxp3-A2-10-246 (SEQ ID NO 37)與Foxp3-A2-10-94 (SEQ ID NO 27)刺激之CTL,相較於對照組,顯示有效能的IFN-γ生產。Figure 2 shows photographs of the results of the IFN-γ ELISPOT assay for CTLs induced by peptides derived from Foxp3. In Figure 2A, well number #2 Stimulated by Foxp3-A2-9-390 (SEQ ID NO 15), #2 stimulated by Foxp3-A2-9-69 (SEQ ID NO 16), #6 via Foxp3-A2-9-252 (SEQ ID NO 17) Stimulation, #4 via Foxp3-A2-10-359 (SEQ ID NO 22) stimulation, #7 via Foxp3-A2-263 (SEQ ID NO 24) stimulation, and #2 and #5 via Foxp3-A2-10-94 (SEQ ID NO 27) Stimulated CTL showed potent IFN-γ production compared to the control group. In Figure 2B, all wells were stimulated with Foxp3-A2-10-233 (SEQ ID NO 28), well numbers #6 and #7 were stimulated with Foxp3-A2-10-152 (SEQ ID NO 29), and #5 via Foxp3 -A2-10-77 (SEQ ID NO 30) stimulation, and #1 via Foxp3-A2-10-246 (SEQ ID NO 37) and Foxp3-A2-10-94 (SEQ ID NO 27) stimulated CTL, phase Effective IFN-γ production was shown compared to the control group.

於第2C圖,井編號#1、#2、#4、#5、#7、#9、#11及#12經Foxp3-A2-9-390 (SEQ ID NO 15)刺激、#5及#11經Foxp3-A2-9-304 (SEQ ID NO 19)刺激、#7經Foxp3-A2-9-68 (SEQ ID NO 7)刺激,#12經Foxp3-A2-9-252 (SEQ ID NO 17)刺激之CTL,相較於對照組,顯示有效能的IFN-γ生產。In Figure 2C, well numbers #1, #2, #4, #5, #7, #9, #11, and #12 are stimulated by Foxp3-A2-9-390 (SEQ ID NO 15), #5 and # 11 stimulated by Foxp3-A2-9-304 (SEQ ID NO 19), #7 stimulated by Foxp3-A2-9-68 (SEQ ID NO 7), #12 via Foxp3-A2-9-252 (SEQ ID NO 17) The stimulated CTL showed potent IFN-γ production compared to the control group.

第3圖顯示於陽性井中的細胞擴大族群並實施IFN-γ ELISA試驗。於第3A、B及C圖,經Foxp3-A02-9-390 (SEQ ID NO: 15)刺激之CTL細胞株(實心菱形),相較於對照組(實心方形),顯示有效能的IFN-γ生產。於圖3D,經Foxp3-A02-9-252 (SEQ ID NO: 17)刺激之CTL細胞株(實心菱形),相較於對照組(實心方形),顯示有效 能的IFN-γ生產。Figure 3 shows the expanded population of cells in positive wells and an IFN-γ ELISA assay was performed. In the 3A, B and C images, CTL cell lines (solid diamonds) stimulated by Foxp3-A02-9-390 (SEQ ID NO: 15) showed potent IFN-compares compared to the control group (closed squares). γ production. In Figure 3D, CTL cell lines (solid diamonds) stimulated with Foxp3-A02-9-252 (SEQ ID NO: 17) showed efficacy compared to the control group (solid squares). Energy production of IFN-γ.

於第3E圖,經Foxp3-A24-10-60(SEQ ID NO:74)刺激之CTL細胞株(實心菱形),相較於對照組(實心方形),顯示有效能的IFN-γ生產。於第3F圖,經Foxp3-A02-10-94(SEQ ID NO:27)刺激之CTL細胞株(實心菱形),相較於對照組(實心方形),顯示有效能的IFN-γ生產。於第3G圖,經Foxp3-A24-10-87(SEQ ID NO:67)刺激之CTL細胞株(實心菱形),相較於對照組(實心方形),顯示有效能的IFN-γ生產。In Figure 3E, a CTL cell line (solid diamond) stimulated with Foxp3-A24-10-60 (SEQ ID NO: 74) showed potent IFN-γ production compared to the control group (closed square). In Figure 3F, CTL cell lines (solid diamonds) stimulated by Foxp3-A02-10-94 (SEQ ID NO: 27) showed potent IFN-γ production compared to the control group (closed squares). In Figure 3G, CTL cell lines (solid diamonds) stimulated with Foxp3-A24-10-87 (SEQ ID NO: 67) showed potent IFN-γ production compared to the control group (closed square).

第4圖顯示對抗內生性表現Foxp3及HLA-A* 02或24之標靶細胞的專一性CTL活性。於第4A及B圖,由Foxp3-A02-9-390(SEQ ID NO:15)及Foxp3-A02-9-252(SEQ ID NO:17)誘導的CTL細胞株,對於經Foxp3及HLA-A02兩者轉染的293T,顯示高專一性CTL活性。另一方面,對於對照組,未顯示顯著的專一性CTL活性。於第4C圖,由Foxp3-A02-9-252(SEQ ID NO:17)誘導的CTL細胞株,對於經Foxp3及HLA-A24兩者轉染的293T,顯示高專一性CTL活性。另一方面,對於對照組,未顯示顯著的專一性CTL活性。Figure 4 shows the specific CTL activity against target cells with endogenous expression of Foxp3 and HLA-A* 02 or 24. CTL cell lines induced by Foxp3-A02-9-390 (SEQ ID NO: 15) and Foxp3-A02-9-252 (SEQ ID NO: 17) for Foxp3 and HLA-A02 in Figures 4A and B Both transfected 293T showed highly specific CTL activity. On the other hand, for the control group, no significant specific CTL activity was shown. In Figure 4C, a CTL cell line induced by Foxp3-A02-9-252 (SEQ ID NO: 17) showed high specific CTL activity for 293T transfected with both Foxp3 and HLA-A24. On the other hand, for the control group, no significant specific CTL activity was shown.

第5圖顯示Foxp3-252_h及Foxp3-252_m胜肽之體內免疫原性分析。於第0及7天,經皮下對於BALB/c小鼠注射IFA-結合胜肽或僅注射IFA。於第14天,收取經注射疫苗之小鼠脾細胞並作為回應子細胞。使用經對應脈衝之1x104 RLmalel細胞(實心方形),或未經胜肽脈衝之 細胞(空心方形),作為IFN-γ ELISPOT試驗用之刺激子細胞。在每個試驗中,於5隻小鼠(M1-M5)使用Foxp3-252_h(A)及Foxp3-252_m(B)注射疫苗,於3隻小鼠(N1-N3)注射IFA而沒有注射胜肽作為對照組。Figure 5 shows the in vivo immunogenicity analysis of Foxp3-252_h and Foxp3-252_m peptides. On days 0 and 7, BALB/c mice were injected subcutaneously with IFA-binding peptide or with only IFA. On day 14, vaccinated mouse spleen cells were harvested and used as responsive daughter cells. The corresponding pulsed 1x10 4 RLmalel cells (closed squares), or cells without pulsed peptides (open squares) were used as stimulator cells for the IFN-γ ELISPOT assay. In each experiment, Foxp3-252_h(A) and Foxp3-252_m(B) were vaccinated in 5 mice (M1-M5), and IFA was injected in 3 mice (N1-N3) without injection of peptides. As a control group.

第6圖顯示使用Foxp3抗原決定基胜肽進行疫苗接種之體內抗腫瘤效果。於第0天,對BALB/c小鼠注射1x105 4T1乳癌細胞株。於第3及10天,注射IFA結合Foxp3-252_h(-空心圓-)、IFA結合Foxp3-252_m(-實心方形-)、IFA無結合胜肽(-實心三角-)。亦於此試驗中製備未經接種疫苗的小鼠(-x-)當成對照組的正常腫瘤生長。於接種Foxp3抗原決定基胜肽之組別,觀察到腫瘤生長抑制之顯著差異。*:P<0.01;**:P<0.005。Figure 6 shows the in vivo anti-tumor effect of vaccination with Foxp3 epitope peptide. On day 0, BALB/c mice were injected with 1x10 5 4T1 breast cancer cell lines. On days 3 and 10, IFA was injected in combination with Foxp3-252_h (-open circle-), IFA in combination with Foxp3-252_m (-solid square-), and IFA without binding peptide (-solid triangle-). Unvaccinated mice (-x-) were also prepared in this experiment as normal tumor growth in the control group. Significant differences in tumor growth inhibition were observed in the group inoculated with the Foxp3 epitope. *: P <0.01; **: P < 0.005.

第7圖顯示Foxp3-9-252取代物對於HLA分子之親和性試驗。於第7A圖,以Foxp3-9-252-WT誘導之CTL認識呈現Foxp3-9-252-9V胜肽在HLA-A2分子上之細胞。實施IFN-γ ELISPOT試驗,使用經Foxp3-9-252-WT胜肽誘導之CTL細胞株作為回應子細胞,並使用經Foxp3-9-252-WT或Foxp3-9-252-9V胜肽脈衝之T2細胞作為刺激子細胞。製備不經胜肽脈衝之T2細胞作為對照組。於第7B圖,Foxp3-9-252-9V及Foxp3-9-252-WT對於HLA-A2分子顯示類似親和性。實施IFN-γ ELISA試驗,使用經Foxp3-9-252-WT胜肽誘導之CTL細胞株作為回應子細胞(1x105 細胞/井),並使用經Foxp3-9-252-WT(-實心圓-)、Foxp3-9-252-9V(-空心圓-)或HIV-A02(-實 心三角-)胜肽脈衝之T2細胞作為刺激子細胞(1x104 細胞/井)。對刺激子細胞之胜肽脈衝,係於各種胜肽及胜肽濃度,於攝氏37度進行2小時。Figure 7 shows the affinity test of the Foxp3-9-252 substitute for HLA molecules. In Figure 7A, the CTLs induced by Foxp3-9-252-WT recognize the cells of the Foxp3-9-252-9V peptide on the HLA-A2 molecule. The IFN-γ ELISPOT assay was performed using a Foxp3-9-252-WT peptide-induced CTL cell line as a responsive cell and using a pulse of Foxp3-9-252-WT or Foxp3-9-252-9V peptide. T2 cells act as stimulator cells. T2 cells pulsed without peptides were prepared as a control group. In Figure 7B, Foxp3-9-252-9V and Foxp3-9-252-WT showed similar affinity for HLA-A2 molecules. An IFN-γ ELISA assay was performed using a Foxp3-9-252-WT peptide-induced CTL cell line as a responsive cell (1×10 5 cells/well) and using Foxp3-9-252-WT (-filled circles - ), Foxp3-9-252-9V (-open circle-) or HIV-A02 (-solid triangle-) peptide pulsed T2 cells as stimulator cells (1 x 10 4 cells/well). The peptide pulse of the stimulator cells was incubated at various concentrations of peptide and peptide at 37 degrees Celsius for 2 hours.

於第7C圖,CTL能藉由以標靶HLA-A2分子之Foxp3-9-252取代物刺激而誘導。針對所有標靶HLA-A2分子經取代之胜肽的CTL,係依照"材料及方法"項目所述方法產生。井編號3及7經Foxp3-9-252-3M刺激之細胞,井編號7經Foxp3-9-252-3L刺激之細胞,及井編號8經Foxp3-9-252-9V刺激之細胞,相較於對照組,顯示IFN-γ生產。於圖7D,以Foxp3-9-252-9V誘導之CTL,認識以Foxp3-9-252-WT胜肽包覆之刺激子細胞。以Foxp3-9-252-9V胜肽誘導之CTL細胞株,用為回應子細胞。於此試驗中,使用與Foxp3-9-252-9V(-實心圓-)一起溫育的T2細胞或與Foxp3-9-252-WT(-空心圓-)胜肽一起溫育的T2細胞及不與胜肽(-空心圓-)一起溫育的T2細胞,作為刺激子細胞(1x104 細胞/井)。In Figure 7C, CTL can be induced by stimulation with a Foxp3-9-252 substitution of the target HLA-A2 molecule. CTLs for all of the target HLA-A2 substituted peptides were generated according to the methods described in the Materials and Methods project. Wells Nos. 3 and 7 were stimulated with Foxp3-9-252-3M, Well No. 7 was stimulated with Foxp3-9-252-3L, and well numbered 8 was stimulated with Foxp3-9-252-9V. In the control group, IFN-γ production was shown. In Figure 7D, stimulating cells coated with Foxp3-9-252-WT peptide were recognized as CTLs induced by Foxp3-9-252-9V. A CTL cell line induced with Foxp3-9-252-9V peptide was used as a response to daughter cells. In this assay, T2 cells incubated with Foxp3-9-252-9V (-filled round-) or T2 cells incubated with Foxp3-9-252-WT (-open round-) peptide were used. T2 cells that were not incubated with the peptide (-open circle-) were used as stimulator cells (1 x 10 4 cells/well).

<110>腫瘤療法科學股份有限公司 <120>FOXP3胜肽疫苗 <130>ONC-A0620P <150>US 60/878,615 <151>2007-01-03 <150>US 60/896,472 <151>2007-03-22 <160>103 <170>PatentIn version 3.4 <210>1 <211>1869 <212>DNA <213>人種 <220> <221>CDS <222>(189)‥(1484) <400>1 <210>2 <211>431 <212>PRT <213>人種 <400>2 <210>3 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>3<210>4 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>4<210>5 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>5<210>6 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>6<210>7 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>7<210>8 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>8<210>9 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>9<210>10 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>10<210>11 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>11<210>12 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>12<210>13 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>13<210>14 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>14<210>15 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>15<210>16 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>16<210>17 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>17<210>18 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>18<210>19 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>19<210>20 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>20<210>21 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>21<210>22 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>22<210>23 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>23<210>24 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>24<210>25 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>25<210>26 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>26<210>27 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>27<210>28 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>28<210>29 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>29<210>30 <211>10 <212>PRT <213>人工序列 <220><223>胜肽疫苗 <400>30<210>31 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>31<210>32 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>32<210>33 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>33<210>34 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>34<210>35 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>35<210>36 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>36<210>37 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>37<210>38 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>38<210>39 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽 <400>39<210>40 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>40<210>41 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>41<210>42 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>42<210>43 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>43<210>44 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>44<210>45 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>45<210>46 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>46<210>47 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>47<210>48 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>48<210>49 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>49<210>50 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>50<210>51 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>51<210>52 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>52<210>53 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>53<210>54 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>54<210>55 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>55<210>56 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>56<210>57 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>57<210>58 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>58<210>59 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>59<210>60 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>60<210>61 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>61<210>62 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>62<210>63 <211>10 <212>PRT <213>人工序列 <220><223>胜肽疫苗 <400>63<210>64 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>64<210>65 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>65<210>66 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>66<210>67 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>67<210>68 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>68<210>69 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>69<210>70 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>70<210>71 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>71<210>72 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>72<210>73 <211>10 <212>PRT <213>人工序列 <220> <222>胜肽疫苗 <400>73<210>74 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>74<210>75 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>75<210>76 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>76<210>77 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>77<210>78 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>78<210>79 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>79<210>80 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>80<210>81 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>81<210>82 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>82<210>83 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>83<210>84 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>84<210>85 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>85<210>86 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>86<210>87 <211>10 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>87<210>88 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>88<210>89 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>89<210>90 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>90<210>91 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>91<210>92 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>92<210>93 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>93<210>94 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>94<210>95 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>95<210>96 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>96<210>97 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>97<210>98 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>98<210>99 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>99<210>100 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>100<210>101 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>101<210>102 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>102<210>103 <211>9 <212>PRT <213>人工序列 <220> <223>胜肽疫苗 <400>103 <110>Tumor Therapy Science Co., Ltd. <120>FOXP3 peptide vaccine <130>ONC-A0620P <150>US 60/878,615 <151>2007-01-03 <150>US 60/896,472 <151>2007-03 -22 <160>103 <170>PatentIn version 3.4 <210>1 <211>1869 <212>DNA <213> Race <220><221>CDS<222>(189)..(1484)<400>1 <210>2 <211>431 <212>PRT <213>People <400>2 <210>3 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>3 <210>4 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>4 <210>5 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>5 <210>6 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>6 <210>7 <211>9 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>7 <210>8 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>8 <210>9 <211>9 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>9 <210>10 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>10 <210>11 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>11 <210>12 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>12 <210>13 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>13 <210>14 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>14 <210>15 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>15 <210>16 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>16 <210>17 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>17 <210>18 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>18 <210>19 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>19 <210>20 <211>9 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>20 <210>21 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>21 <210>22 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>22 <210>23 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>23 <210>24 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>24 <210>25 <211>10 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>25 <210>26 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>26 <210>27 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>27 <210>28 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>28 <210>29 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>29 <210>30 <211>10 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>30 <210>31 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>31 <210>32 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>32 <210>33 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>33 <210>34 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>34 <210>35 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>35 <210>36 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>36 <210>37 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>37 <210>38 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>38 <210>39 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide<400>39 <210>40 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>40 <210>41 <211>9 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>41 <210>42 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>42 <210>43 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>43 <210>44 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>44 <210>45 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>45 <210>46 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>46 <210>47 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>47 <210>48 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>48 <210>49 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>49 <210>50 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>50 <210>51 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>51 <210>52 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>52 <210>53 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>53 <210>54 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>54 <210>55 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>55 <210>56 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>56 <210>57 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>57 <210>58 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>58 <210>59 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>59 <210>60 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>60 <210>61 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>61 <210>62 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>62 <210>63 <211>10 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>63 <210>64 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>64 <210>65 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>65 <210>66 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>66 <210>67 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>67 <210>68 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>68 <210>69 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>69 <210>70 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>70 <210>71 <211>10 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>71 <210>72 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>72 <210>73 <211>10 <212>PRT <213>Artificial sequence<220><222>Peptide vaccine <400>73 <210>74 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>74 <210>75 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>75 <210>76 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>76 <210>77 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>77 <210>78 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>78 <210>79 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>79 <210>80 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>80 <210>81 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>81 <210>82 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>82 <210>83 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>83 <210>84 <211>10 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>84 <210>85 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>85 <210>86 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>86 <210>87 <211>10 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>87 <210>88 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>88 <210>89 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>89 <210>90 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>90 <210>91 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>91 <210>92 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>92 <210>93 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>93 <210>94 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>94 <210>95 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>95 <210>96 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>96 <210>97 <211>9 <212>PRT <213>Artificial sequence <220><223>Peptide vaccine <400>97 <210>98 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>98 <210>99 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>99 <210>100 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>100 <210>101 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>101 <210>102 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>102 <210>103 <211>9 <212>PRT <213>Artificial sequence<220><223>Peptide vaccine <400>103

Claims (22)

一種胜肽,由SEQ ID NO:17之胺基酸序列所構成。 A peptide comprising the amino acid sequence of SEQ ID NO: 17. 一種具細胞毒性T細胞誘導能力之胜肽,其具有少於15個胺基酸,其中該胜肽包括擇自下列所構成之胺基酸序列:(a)SEQ ID NO:17,以及(b)SEQ ID NO:17,其中一或二個胺基酸經取代或加成。 A peptide having cytotoxic T cell inducing ability having less than 15 amino acids, wherein the peptide comprises an amino acid sequence selected from the group consisting of: (a) SEQ ID NO: 17, and (b) SEQ ID NO: 17, wherein one or two amino acids are substituted or added. 如申請專利範圍第2項所述之胜肽,其中該N-端第2個胺基酸為苯丙胺酸、酪胺酸、甲硫胺酸、色胺酸或白胺酸。 The peptide according to claim 2, wherein the N-terminal second amino acid is phenylalanine, tyrosine, methionine, tryptophan or leucine. 如申請專利範圍第2或3項所述之胜肽,其中該C-端胺基酸為苯丙胺酸、白胺酸、異白胺酸、色胺酸、甲硫胺酸或纈胺酸。 The peptide according to claim 2, wherein the C-terminal amino acid is phenylalanine, leucine, isoleucine, tryptophan, methionine or valine. 如申請專利範圍第2項所述之胜肽,其中該胜肽包含SEQ ID NO:95、97或98之胺基酸序列。 The peptide of claim 2, wherein the peptide comprises the amino acid sequence of SEQ ID NO: 95, 97 or 98. 一種醫藥製劑,用於調節調節性T細胞(T-reg cell),包括一種以上申請專利範圍第1至5項中任一項之胜肽,或編碼為該胜肽之一多核苷酸。 A pharmaceutical preparation for modulating a regulatory T cell (T-reg cell), comprising one of the peptides of any one of the above claims 1 to 5, or a polynucleotide encoding the peptide. 如申請專利範圍第6項所述之醫藥製劑,其係用於抑制T-reg細胞之增生。 The pharmaceutical preparation according to claim 6, which is for inhibiting proliferation of T-reg cells. 如申請專利範圍第6項所述之醫藥製劑,其係用於投予至一HLA抗原為HLA-A24或HLA-A02之個體。 The pharmaceutical preparation according to claim 6, which is for administration to an individual whose HLA antigen is HLA-A24 or HLA-A02. 如申請專利範圍第6項所述之醫藥製劑,其係用於 抑制T-reg細胞之功能。 The pharmaceutical preparation according to claim 6 of the patent application, which is used for Inhibits the function of T-reg cells. 如申請專利範圍第6項所述之醫藥製劑,其係用於治療癌症。 The pharmaceutical preparation according to claim 6, which is for treating cancer. 如申請專利範圍第10項所述之醫藥製劑,其為一疫苗。 A pharmaceutical preparation as described in claim 10, which is a vaccine. 如申請專利範圍第10或11項所述之醫藥製劑,除了包含申請專利範圍第1至5項任一項之胜肽或一編碼為該胜肽之多核苷酸外,其更包括另一胜肽,該另一胜肽具誘導對抗癌細胞之細胞毒性T細胞的能力,或編碼該另一胜肽之多核苷酸。 The pharmaceutical preparation according to claim 10 or 11, which further comprises another victory in addition to the peptide of any one of claims 1 to 5 or a polynucleotide encoding the peptide. A peptide, the other peptide having the ability to induce cytotoxic T cells against cancer cells, or a polynucleotide encoding the other peptide. 一種外吐小體(exosome),在其表面上呈現一複合體,該複合體包含一HLA抗原及申請專利範圍第1至5項任一項之胜肽。 An exosome having a complex on its surface, the complex comprising an HLA antigen and the peptide of any one of claims 1 to 5. 如申請專利範圍第13項所述之外吐小體,其中該HLA抗原為HLA-A24或HLA-A02。 The exosome is as described in claim 13 wherein the HLA antigen is HLA-A24 or HLA-A02. 如申請專利範圍第14項所述之外吐小體,其中該HLA抗原為HLA-A2402或HLA-A0201。 The exosome is as described in claim 14, wherein the HLA antigen is HLA-A2402 or HLA-A0201. 一種誘導抗原呈現細胞之體外方法,該抗原呈現細胞具有細胞毒性T細胞誘導能力,其係藉由使一抗原呈現細胞接觸申請專利範圍第1至5項任一項之胜肽或將包含編碼為該胜肽之多核苷酸的基因轉移到一抗原呈現細胞。 An in vitro method for inducing an antigen to present a cell which exhibits a cytotoxic T cell inducing ability by causing an antigen to exhibit cell contact with a peptide of any one of claims 1 to 5 or encoding the inclusion as The gene of the polynucleotide of the peptide is transferred to an antigen presenting cell. 一種誘導細胞毒性T細胞之體外方法,其係藉由使抗原呈現細胞及CD8-陽性細胞或周邊血液單核白血球接觸申請專利範圍第1至5項任一項之胜肽或藉由使編碼為與 申請專利範圍第1至5項任一項之胜肽結合之TCR次單元多胜肽的核酸進行轉導。 An in vitro method for inducing cytotoxic T cells by contacting an antigen presenting cell and a CD8-positive cell or a peripheral blood mononuclear leukocyte with a peptide of any one of claims 1 to 5 or by encoding versus The nucleic acid of the TCR subunit multi-peptide that binds to the peptide of any one of claims 1 to 5 of the patent application is transduced. 一種分離之細胞毒性T細胞,其係由申請專利範圍第1至5項任一項之胜肽所誘導。 An isolated cytotoxic T cell induced by the peptide of any one of claims 1 to 5. 如申請專利範圍第18項之細胞毒性T細胞,其係由申請專利範圍第17項之方法所誘導。 A cytotoxic T cell as claimed in claim 18, which is induced by the method of claim 17 of the patent application. 一種抗原呈現細胞,包括一複合體,該複合體係形成在一HLA抗原及申請專利範圍第1至5項任一項之胜肽之間。 An antigen presenting cell comprising a complex formed between an HLA antigen and a peptide of any one of claims 1 to 5. 如申請專利範圍第20項所述之抗原呈現細胞,其係由申請專利範圍第16項之方法所誘導。 The antigen-presenting cell of claim 20, which is induced by the method of claim 16 of the patent application. 一種申請專利範圍第1至5項任一項之胜肽、其免疫活性片段或編碼為該胜肽之多核苷酸於製備疫苗之使用,其係用於調節一個體中的T-reg細胞。A peptide, an immunologically active fragment thereof, or a polynucleotide encoding the peptide, according to any one of claims 1 to 5, for use in the preparation of a vaccine for regulating T-reg cells in a body.
TW096149888A 2007-01-03 2007-12-25 Foxp3 peptide vaccine TWI441648B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87861507P 2007-01-03 2007-01-03
US89647207P 2007-03-22 2007-03-22

Publications (2)

Publication Number Publication Date
TW200835516A TW200835516A (en) 2008-09-01
TWI441648B true TWI441648B (en) 2014-06-21

Family

ID=39588270

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096149888A TWI441648B (en) 2007-01-03 2007-12-25 Foxp3 peptide vaccine

Country Status (14)

Country Link
US (1) US8563516B2 (en)
EP (2) EP2481748A3 (en)
JP (1) JP5339375B2 (en)
KR (1) KR20090099075A (en)
CN (1) CN101641369B (en)
AU (1) AU2007340834B2 (en)
BR (1) BRPI0720794A2 (en)
CA (1) CA2674365A1 (en)
IL (1) IL199622A0 (en)
MX (1) MX2009007261A (en)
RU (1) RU2473557C2 (en)
SG (1) SG177199A1 (en)
TW (1) TWI441648B (en)
WO (1) WO2008081581A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050486A2 (en) * 2007-10-19 2009-04-23 The University Of Surrey Peptide manipulators of regulatory t cell activity
CZ2008565A3 (en) * 2008-09-15 2009-11-18 Vysoká škola chemicko technologická v Praze Preparation of monoclonal antibodies against FoxP3 protein using modified virus resembling particles of Mason-Pfizer ape virus
AU2009332389A1 (en) * 2008-12-24 2011-07-14 Oncotherapy Science, Inc. C1orf59 peptides and vaccines including the same
TWI507204B (en) * 2009-05-26 2015-11-11 Oncotherapy Science Inc Cdc45l peptides and vaccines including the same
AU2012296090B2 (en) * 2011-08-12 2015-05-14 Oncotherapy Science, Inc. MPHOSPH1 peptides and vaccines including the same
CN102603892B (en) * 2012-02-22 2013-10-30 尉军 Tumor marker FOXP3 auto-antibody and application thereof
JP7022067B2 (en) * 2016-01-14 2022-02-17 メモリアル スローン ケタリング キャンサー センター T-cell receptor-like antibody specific for FOXP3-derived peptide
CN111375055B (en) * 2020-02-20 2021-09-03 陈宛莎 2019-nCoV subunit vaccine composition and immunization method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596032B2 (en) 1991-07-25 2004-04-07 Idec Pharmaceuticals Corporation Induction of cytotoxic t-lymphocyte responses
EP1967525B1 (en) * 2001-05-08 2012-11-14 Darwin Molecular Corporation A method for regulating immune function in primates using the foxp3 protein
DE60327786D1 (en) 2002-09-12 2009-07-09 Oncotherapy Science Inc KDR-PEPTIDES AND VACCINES CONTAINING THEM
GB0417430D0 (en) 2004-08-05 2004-09-08 Uc3 A novel HPV vaccine comprising peptides from host cell proteins
JP4628208B2 (en) 2004-08-10 2011-02-09 オンコセラピー・サイエンス株式会社 Peptide vaccine for the treatment of gastric cancer or colorectal cancer expressing CXADRL1 or GCUD1 protein
JP4840866B2 (en) 2005-01-19 2011-12-21 学校法人慶應義塾 Cancer vaccine

Also Published As

Publication number Publication date
IL199622A0 (en) 2010-04-15
SG177199A1 (en) 2012-01-30
EP2114987A1 (en) 2009-11-11
EP2481748A2 (en) 2012-08-01
US8563516B2 (en) 2013-10-22
EP2481748A3 (en) 2012-10-24
JP2010514669A (en) 2010-05-06
WO2008081581A1 (en) 2008-07-10
CA2674365A1 (en) 2008-07-10
KR20090099075A (en) 2009-09-21
RU2009129531A (en) 2011-02-10
AU2007340834A1 (en) 2008-07-10
RU2473557C2 (en) 2013-01-27
TW200835516A (en) 2008-09-01
CN101641369A (en) 2010-02-03
AU2007340834B2 (en) 2013-02-28
MX2009007261A (en) 2009-11-11
US20100092501A1 (en) 2010-04-15
JP5339375B2 (en) 2013-11-13
EP2114987A4 (en) 2010-07-21
BRPI0720794A2 (en) 2014-03-11
CN101641369B (en) 2014-10-22

Similar Documents

Publication Publication Date Title
TWI434853B (en) Tem8 peptides and vaccines comprising the same
JP2012500001A (en) INHBB epitope peptide and vaccine containing the same
US9119800B2 (en) HIG2 and URLC10 epitope peptide and vaccines containing the same
TWI441648B (en) Foxp3 peptide vaccine
RU2496787C2 (en) Mybl2 epitope peptides and vaccines containing them
US9675680B2 (en) MELK epitope peptides and vaccines containing the same
JP2011523937A (en) IQGAP3 epitope peptide and vaccine containing the same
JP5764823B2 (en) WDRPUH epitope peptide and vaccine containing the same
AU2008238739B2 (en) TEM8 peptides and vaccines comprising the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees