TWI435115B - 自動立體顯示裝置與空間光調變器 - Google Patents

自動立體顯示裝置與空間光調變器 Download PDF

Info

Publication number
TWI435115B
TWI435115B TW100102157A TW100102157A TWI435115B TW I435115 B TWI435115 B TW I435115B TW 100102157 A TW100102157 A TW 100102157A TW 100102157 A TW100102157 A TW 100102157A TW I435115 B TWI435115 B TW I435115B
Authority
TW
Taiwan
Prior art keywords
pixel
alignment
feature
pixels
display device
Prior art date
Application number
TW100102157A
Other languages
English (en)
Other versions
TW201126205A (en
Inventor
Jonathan Harrold
Graham John Woodgate
Renwei Liao
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Publication of TW201126205A publication Critical patent/TW201126205A/zh
Application granted granted Critical
Publication of TWI435115B publication Critical patent/TWI435115B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers

Description

自動立體顯示裝置與空間光調變器
本發明是有關於一種自動立體顯示裝置之像素結構。此類顯示裝置可被使用於電視、電腦監視器、通訊手機、數位相機、筆記型與桌上型電腦、遊戲裝置、汽車和其他移動式顯示器的應用中。
正常的人類視覺是立體的,即每一隻眼睛看到稍微不同的世界影像。頭腦融合這兩個影像(稱為立體對)以賦予深度的感受。三維立體顯示裝置顯出分開的影像至每一隻相對應的眼睛,其會被視為如在觀看一真實世界景象。頭腦再次融合此立體對以賦予深度的現象於影像中。
第1圖係繪示顯示平面1之顯示表面的平面視圖。右眼2觀視位於顯示平面1上之右眼同源(Homologous)影像點3,而左眼4觀視位於顯示平面1上之左眼同源影像點5,以產生使用者所察覺之位於螢幕平面後的外觀影像點6。若來自點3的光線係被左眼4所看見,而來自點5的光線係被右眼2所看見,則會產生一反影像(Pseudoscopic Image)21。由於會產生視覺疲勞至觀察者,反影像是不受歡迎的。
第2圖係繪示顯示平面1之顯示表面的平面視圖。右眼2觀視位於顯示平面1上之右眼同源影像點7,而左眼4觀視位於顯示平面1上之左眼同源影像點8,以產生使用者所察覺之位於螢幕平面前的外觀影像點9。若右眼2可看見來自點8的光線,而左眼4可看見來自點7的光線,則會產生一反影像12。
第3圖係繪示左眼影像10和右眼影像11的現象。左眼影像10中的左眼同源影像點5係置放於參考線12上。右眼影像11中之相對應的同源影像點3係置放在關於參考線12的不同相對位置3上。點3與參考線12間的分離13稱為像差(Disparity),而在此事例中,對將位於螢幕平面後的像差的點來說,像差是一正像差。類似地,在左眼影像10中,當右眼影像11中之對應的同源影像點7係與參考線14橫向地分開具有負像差之一距離15時,同源影像點8係位於參考線14上。當由左眼影像10改變至右眼影像11時,同源影像點3的移動係向右的。此係對應至位於螢幕平面後的無畸變(Orthoscopic)影像點6,而當同源影像點7的移動係向左時,則對應至位於螢幕平面前的無畸變影像點9。
對此景象中之一個廣義點而言,在如第3圖所示之立體對的每一個影像中,存在有一個對應點。這些點係被稱為同源點。此兩個影像間之同源點的相對分離係被稱為像差;具有零像差之點係對應至位於顯示器深度平面上的點。第1圖指出具有非交叉型像差的點係出現在顯示器的後方,而第3圖指出具有交叉型像差的點係出現在顯示器的前方。同源點之分離大小、至觀察者的距離、和觀察者兩眼之間分離賦予在顯示器上所感知的深度大小。
立體型式顯示裝置係習知技藝所熟知的,且係參照使用者戴上某種助視器來實質分開傳送至左右眼之影像的顯示裝置。例如:此助視器可為將影像以顏色編碼(Color Coded;如紅色和綠色)的彩色濾光片;在正交極化狀態中編碼影像的偏光眼鏡;或將畫面編碼成與眼鏡快門開啟同步之一時間序列影像的快門眼鏡(Shutter Glass)。
自動立體顯示裝置不需使用者所戴的眼鏡就可操作。在自動立體顯示裝置中,可由第4圖所示之空間的有限區域來看見每一個畫面。
第4圖係繪示具有附屬之視差元件17的顯示裝置16。顯示裝置16產生右眼影像18給右眼頻道。視差元件17引導光於箭頭19所示之方向中,以產生右眼觀察窗(Viewing Window)20於顯示器前方之區域中。觀察者將其右眼22置放在觀察窗20的位置上。左眼觀察窗24的位置係被顯出來做為參考。觀察窗20亦可被稱為垂直延伸的光學瞳孔。
第5圖係繪示左眼光學系統。顯示裝置16產生左眼影像26給左眼頻道。視差元件17引導光於箭頭28所示之方向中,以產生左眼觀察窗30於顯示器前方之區域中。觀察者將其左眼32置放在觀察窗30的位置上。右眼觀察窗20的位置係被顯出來做為參考。
視差元件17係做為光學操控機構。來自左眼影像26的光係被傳送至顯示器前方之有限區域中,稱之為觀察窗30。若左眼32係置放在觀察窗30的位置上,則觀察者看到由顯示裝置16所產生之恰當的左眼影像26。類似地,光學系統傳送意圖成為右眼影像18的光至右眼觀察窗20。若觀察者將其右眼22置放在此觀察窗,則將看到由顯示裝置16所產生的右眼影像18。通常,來自任一影像的光可被視為已被光學操控(引導)入各自的方向性分佈中。
在本案中,專有名詞「3D」係用以指出一種立體或自動立體影像,其中不同的影像係被表達至每一隻眼睛,此眼睛造成產生在頭腦中之深度的知覺。應理解的是,此專有名詞「3D」係不同於「3D圖像」,其中3D物件係被表達在二維(2D)顯示裝置上,而每一隻眼睛看到完全相同的影像。
視差元件17可切換於在提供3D影像的狀態,以容許3D與2D影像被選擇性地顯示。在本案中,專有名詞「2D/3D」係用以指出一種顯示裝置,其中可切換光學元件的功能,以實施全解析度2D影像或降低解析度之自動立體3D影像。
第6圖係繪示顯示設備之平面視圖,其中顯示設備包含在顯示平面34中之顯示裝置16和視差元件17,顯示平面34產生左眼觀察窗36、37、38和右眼觀察窗39、40、41於觀察窗平面42中。觀察窗平面與顯示裝置16間的分離係稱為名義觀察距離43。位於相對顯示裝置16之中間位置中的觀察窗37與觀察窗40係在第0個波瓣(Lobe)44中。位於第0個波瓣44右側之左眼觀察窗36和右眼觀察窗39係在第+1個波瓣46中,而位於第0個波瓣左側之左眼觀察窗38和右眼觀察窗41係在第-1個波瓣48中。
顯示設備之觀察窗平面42代表距側向觀視自由度(Viewing Freedom)最大之顯示裝置16的距離。對遠離顯示平面34之複數個點而言,有複數個鑽石形自動立體顯示觀視區,如第6圖之平面視圖所示。如第6圖所示,來自每一個點交叉的光係以一有限寬度的圓錐體射向觀察窗。圓錐體的寬度可被定義為角寬度。
視差元件17係用來產生在觀察窗平面42上之照度的指向性分佈,觀察窗平面42與顯示裝置16相距有一定義距離。遍及觀察窗平面42各處之強度變異構成一光指向性分佈的具體形式(Tangible Form)。
若眼睛係置放在如左眼觀察窗37和右眼觀察窗40之一對觀視區的每一者中,則自動立體影像將於遍及顯示器各處的全部區域上被看見。就第一階層來說,顯示器的縱向觀視自由度係被此些觀視區的長度所決定。
越過顯示器(構成光指向性分佈的具體形式)之觀察窗平面的強度(或照度)α50的變異係相對位置x 51繪示至第7圖之理想化觀察窗。右眼觀察窗位置強度(或照度)函數(或分佈)52係對應至第6圖所示之右眼觀察窗41,而強度(或照度)函數53係對應至左眼觀察窗37;強度(或照度)函數54係對應至右眼觀察窗40;及強度(或照度)函數55係對應至左眼觀察窗36。積分強度(或照度)函數60為來自個別強度(或照度)函數52、53、54、55的強度總和,強度(或照度)函數52、53、54、55係相對個別觀察窗41、37、40、36和進一步相鄰之觀察窗的位置。
第8圖係示意地繪示相對於位置x 51的積分強度函數60至較實際的觀察窗。右眼觀察窗位置強度函數56係對應至第6圖所示之右眼觀察窗41,而強度函數57係對應至左眼觀察窗37;強度函數58係對應至右眼觀察窗40;及強度函數59係對應至左眼觀察窗36。來自積分名義強度函數60之變異對在一角度範圍之名義強度的比值稱為角強度均勻率(Angular Intensity Uniformity;AIU)或alpha(α)函數。此名義強度函數可為例如:如第7圖所示之平坦的照度函數、朗伯(Lambertian)函數、或具有實質平順地變化之強度曲線的其他函數。AIU可於一段視角有限範圍中,或個別顯示之輸出角度的全部角度範圍中被量測到。
第9圖係繪示又一強度函數61,其中實質為三角形之觀察窗係相互重疊以產生一平的強度(或照度)函數60。有利的是,此種觀察窗可提供強韌的手段,藉以減少函數60中之不均勻度。又,此種觀察窗減少影像翻轉假影(Artefact),在此影像翻轉假影中,影像內容似乎是在多重畫面顯示中快速地由一畫面變化至又一畫面變化,造成觀察者看見影像明顯的轉動。
幾種3D假影可因不當的觀察窗性能而發生,特別是對重疊觀察窗。當來自右眼影像光被左眼看見(反之亦然)時,會發生反影像。這是一種重大的3D影像品質降級機構,其會導致觀察者的視覺疲勞。重疊觀察窗係會顯示模糊影像,其限制住了顯示時表現出的有用深度量。此外,粗劣的觀察窗品質將導致觀察者之有效觀視自由度的減少。此光學系統係設計來最佳化觀察窗的性能。
在具有多重畫面的顯示器中,相鄰之觀察窗包含一系列之畫面資料。當觀察者相對顯示裝置橫向移動時,每一隻眼睛所看見得影像會變化,以維持3D影像的出現。當人類觀察者相對顯示裝置移動時,他們對照度的變化很敏感。例如:若積分強度(或照度)函數60變化超過其最大值的0.5%至5%,則似乎會顯示出閃爍的畫面。因此,需要最小化積分強度(或照度)函數60的變異。當函數隨著視角變化時,函數的均勻度可稱為角強度均勻率(AIU),其係一重要的性能參數。
各自的影像係顯示在顯示平面34上,並被位於或靠近觀察窗平面42之觀察者所看見。
以下將討論用以改善顯示器之AIU的一些已知技術。
一種型式之習知自動立體顯示裝置的像素配置結構係使用如第10a圖所示之帶狀配置結構,其係用在標準2D顯示。像素開口(Apertures)62係排列於複數行之紅色像素65、綠色像素67和藍色像素69中。為產生自動立體顯示,如雙凸透鏡陣列(Lenticular Array)之視差元件172係與複數組之紅色像素65、綠色像素67和藍色像素69對齊,如圖所示。陣列之透鏡間的尖端71係此陣列之視差元件172之幾何軸的一個例子。
視差元件172可以是傾斜的,以使視差元件172之光學元件(例如:雙凸透鏡陣列例子中之透鏡)之幾何軸傾斜至像素開口62之垂直行的方向,如美國專利第3,409,351號和美國專利第6,064,424號所述。如此的排列可使觀察窗的重疊(類似第9圖所示),相較於光學元件之幾何軸平行於像素開口之垂直行方向(Column Direction)的視差元件時,造成強度之積分強度(或照度)函數60的較佳均勻度。
在此,平行於視差元件之光學元件之幾何軸的直線被稱為「射線」(Ray Line),其係一直線,沿著此直線之光射線名義上(忽略掉像差)係由一顯示裝置指向在觀察窗平面中任何垂直位置上之觀察窗平面中相同的相對水平位置,而不是光射線的方向。第10a圖更繪示射線64的傾斜方位與相對像素開口62之視差元件172之光學元件的幾何軸。如此的排列會產生對垂直線傾斜的觀察窗,使得畫面資料在觀察者垂直地移動時似乎會變化。
第10a圖更包含射線64與像素開口函數重疊(或交叉)的圖示,此像素開口函數提供在此稱為zeta(ζ)函數73之強度函數。zeta(ζ)函數73係隨著像素平面中之位置y 49變化。如將於以下所述,此係與越過之觀察窗平面42之位置x 51之觀察窗強度(α)50有關。
為了理解容易,射線64越過函數75的位置y 49係對應至光自射線64導入的水平位置y 49。zeta(ζ)函數73之強度函數75具有通常是平但具有峰部74的強度,峰點74的由來已被理解如下。
可藉由量測對應至越過像素開口62之位置y 49之射線64的總交叉長度66、68、70、72(以粗線表示),來決定在每一個已知位置y 49之zeta(ζ)函數。此係因為在操作時視差元件172收集來自射線64的光,並將此光完全引導至被觀視者觀察到之空間中的位置。
事實上,一眼睛係基於瞳孔大小、透鏡像差(Lens Aberrations)和透鏡焦點條件,而收到來自像素平面上之一區域或地點之一束射線64的光,因此所觀察到之積分名義強度函數alpha(α)60係zeta(ζ)函數73與點函數(Spot Function)sigma(σ)的迴旋積分(convolution),但仍會有相似的峰部。因此,強度函數60的變化,正如總交叉長度因射線64多樣化地覆蓋不同數量的像素開口62和其間的間隙而變化。特別是,強度函數75包含高總交叉長度所在的高位準,此係因為射線64在其角落與較多的像素開口62交叉。
如可被看到的是,總交叉長度66、68、70、72可包含來自兩相鄰像素的貢獻。當這些相鄰的像素具有兩種不同顏色時,每一個像素將具有3D影像之單位細胞(Cell)結構中同色的對應像素。因此,相鄰像素可被便利地用以理解單一顏色中之總交叉長度。
在一些具有不均勻zeta(ζ)強度函數75(其中視差元件172為雙凸透鏡陣列)的系統中,這些透鏡可被散焦,以有效地藉由提供不同射線64之不同總交叉長度66的平均值來平滑化alpha(α)積分強度函數60。然而,此一方法引起3D觀察窗間產生更多的重疊,並造成更多層的影像模糊、更少的有用深度和更多的反影像。因此,需要維持一高AIU而不增加透鏡的散焦。
世界(WO)專利申請案公開號第2007/031921號揭示一種技術,藉以使用如第10b圖所示之像素切角(Cut-Out)76來減少強度函數75中如峰部74的特徵。此切角76補償了增加的交叉,否則交叉會發生在像素開口62的角落,像素開口62減少射線80的總交叉長度78,並藉以平坦化zeta(ζ)強度函數75。然而,如此的安排不能用來補償寬視角顯示的輸出,如下所述。
如具有平行配向(Homogeneous Alignment)之扭轉向列型液晶顯示器(Twist Nematic Liquid Crystal Display;TN-LCD)的習知液晶顯示面板使用實質長方形的像素開口形狀,在其中整個像素操作為一單一區域(Domain),以使光學輸出之角對比性質對像素的每一部分實質為常數。此類像素非常適於長方形切角方法,以改善強度函數60的均勻率。然而,由於細胞中單一液晶配向之光學性能的限制,此種面板受到隨視角變化之對比的顯著變異。為了要補償此種視角效應,一種方式是使用垂直配向液晶材料結合至多區域結構及更複雜的配向修正技術。在此事例中,每一個像素包含具有不同液晶分子配向的複數個區域。此隨視角變化之顯示的對比性質係被來自個別區域之對比性質的加入所決定。
一種改善AIU的方式是對顯示器施加一徑向對稱模式。在此事例中,空間光調變器(Spatial Light Modulator)之像素的開口(顯示區)包含一配向特徵,例如:凸塊(Bump)特徵,其提供液晶之分子的徑向對稱配向。通常,此種顯示器能改善顯示裝置的角特性。
根據本發明,提出一種自動立體顯示裝置,包含:具有一陣列之不同色之可個別地定址的複數個像素的空間光調變器,此些像素係排列於複數行和複數列中,每一個像素包含有至少一個開口,此開口容置有液晶並具有一配向特徵,此配向特徵係設置來提供此液晶之分子的徑向對稱配向;以及包含複數個光學元件之一陣列的視差元件,此些光學元件係排列在空間光調變器上,以將一光線由像素引導至複數個觀察窗;此些光學元件具有複數個幾何軸,此些幾何軸係平行橫向地延伸越過空間光調變器至像素排列於其中的此些列;其中此些開口的形狀係被製作成使平行於視差元件之幾何軸的一假設線具有一總交叉長度,此總交叉長度係與沿著假設線而相鄰之具同色的像素相交叉;當越過配向特徵之總交叉長度被前述經配向特徵所調變之光線強度所加權後,假設線之所有位置對應的總交叉長度係為相同,其中此配向特徵所調變的光強度被表示為被前述之像素之其餘部分所調變之光強度的幾分之一。
由於平行於圓柱透鏡的幾何軸之多個假設線與每一個別像素交叉的加權總交叉長度,對應至假設線之所有位置係為相同,此可改善顯示裝置的AIU或角對比均勻率(Angular Contrast Uniformity;ACU)。在操作時,視差元件收集來自此些假設線(射線)之一者的光線,並將此光線全引導至被觀視者觀察到之空間中的位置(或更嚴格地來說,由於瞳孔大小、透鏡像差和透鏡聚焦調件,一隻眼睛接收來自一束射線之光線,因此所觀察到之實際強度是zeta(ζ)函數的迴旋積分)。因此,對應至假設線之所有位置相同的總交叉長度意指:當每一個像素具有相同的傳送設定(例如:在一白色影像上)時,所觀察到之光強度對不同之觀視位置是相同的。為達成這個條件,越過配向特徵之總交叉長度係經配向特徵所調變的光強度加權,其中此配向特徵所調變的光強度被表示為像素之其餘部分所調變的光強度的幾分之一。此係基於對凸塊配向特徵可能無法提供與像素之其餘部分相同的強度之一現象的理解,而補償此現象。
有利地,每一個像素包含複數個開口,每一個開口包含液晶和液晶中之配向特徵,每一個像素之開口的配向特徵在垂直於幾何軸之一方向上彼此之間具有一水平偏移量。
藉由此特徵,不同視角的ACU可針對下列原因被改善。此優點的產生係因配向特徵提供液晶分子的徑向對稱配向。結果是,每一條假設線越過不同配向之液晶分子,其係取決於相對配向特徵之假設線的位置。此不同配向引起自不同假設線所收集與被在對應觀看位置之觀視者所觀察到之光線的對比變異,因而產生角對比不均勻度。相對觀察窗平面中之位置x 51的對比均勻率係稱為ACU或beta(β)函數。然而,此效應被在垂直於幾何軸之一方向上彼此之間具有一水平偏移量的每一個像素之開口的配向特徵所減少。特別是,有越過假設線可能位置範圍之液晶分子的配向平均,以使隨視角變化之對比變異被最小化。
加上,此些優點可不需對光學元件進行散焦來達成,可設定視差元件之焦點以提供一假設觀察者之眼睛的小影像於像素平面上,以減少觀察窗間的模糊。有利地,此藉由降低反影像的強度來改善3D影像品質,亦減少影像本身的模糊。
此加強的AIU和ACU改善顯示裝置的性能。其可提供取決於顯示裝置之配置結構的各種優點。此類的優點包含例如:減少影像模糊、和/或容許深度的程度被顯出來。本發明在自動立體多重畫面顯示裝置中具有特別的價值,可使顯示裝置對移動中之觀察者不會有可看見的閃爍。因此,當對顯示器移動的觀察者在移動時,將不會看見顯示器似乎有閃爍的情形,或穿越顯示區域的強度變化。
在可切換至2D/3D的自動立體顯示裝置中,除在3D模式的優點外,亦可改善2D模式的AIU和ACU;而視差元件的製造與設計可以是寬鬆的;具有低成本、高良率和/或寬鬆的公差。在可切換至2D/3D的自動立體顯示裝置中,當使用雙折射(Birefringent)透鏡陣列為視差元件時,符合透鏡陣列需求的折射率可以是寬鬆的;和/或在高角度之偏極切換器(Polarisation Switcher)的性能可以是寬鬆的。
第10a圖係繪示對準至像素陣列之雙凸透鏡螢幕(Lenticular Screen)172的一種已知排列,以提供自動立體顯示器。雙凸透鏡螢幕172包含傾斜伸長的雙凸透鏡元件對準並排列在空間光調變器170上,空間光調變器170包含一陣列的像素62,在此例子中,每一個像素62包含一個單一開口。可個別地定址的像素62具有不同顏色並以一重複單位的像素來排列,此些重複單位的像素係於重複一水平的列方向和一垂直的行方向中。因此,雙凸透鏡螢幕172的光學元件具有複數個幾何軸,此些幾何軸係於一方向中平行地延伸越過空間光調變器,此方向係相對行方向傾斜一角度,在此事例中,此行方向為垂直方向。例如:像素包含複數行紅色像素65、複數行綠色像素67和複數行藍色像素69。
雙凸透鏡螢幕係一種型式之視差元件,其可包含一陣列之垂直延伸的圓柱狀微透鏡,並引導來自像素的光進入不同的觀察窗。在此所使用之「圓柱狀」的用語具有其在本技藝中之正常含義,其不僅包含嚴格的球狀透鏡形狀並包含非球狀透鏡形狀。透鏡的間距再次對應至觀視點修正條件(Viewpoint Correction Condition),以提供在正確視距的觀察窗。透鏡的曲率係被實質設定來產生位於觀察窗平面之LCD像素的影像。當透鏡收集光於來自像素的圓錐體中,並將其分佈至觀察窗時,雙凸透鏡立體顯示器具有基本面板的全亮度。
圓柱狀透鏡係描述一種透鏡,其中一邊緣(具一曲率半徑)係於第一線性方向中被掃視過。圓柱狀透鏡之幾何軸係被定義為沿著第一線性方向中之透鏡中心的線,即平行於邊緣71的掃視方向。平行於幾何軸的假設線係被稱為射線64。假設射線64與像素開口62的重疊(或交錯)提供針對顯示器之角強度均勻率和角對比均勻率性質的資訊。
因此,射線64與列像素65之像素開口62的重疊72,與位於等同位置之射線64與列像素67之像素開口62的重疊66具有相同的長度或大小,其中列像素67係相鄰於列像素65。然而,重疊72可能不同於重疊68,重疊68為不同位置之射線64在越過像素開口62並與其之重疊。事實上,可藉由調查對單一射線64之兩橫向相鄰之像素開口62間的重疊,來典型地考慮像素開口62間的總重疊。因此,總重疊係藉由重疊68與重疊70的和而被計算出。
越過射線位置y 49之重疊線長度zeta(ζ)73的圖示係被稱為zeta(ζ)函數75,其中射線位置y 49係相對於像素開口62中之像素位置。如第10a圖所示,長方形像素開口62提供加強強度的峰部74。當藉由雙凸透鏡螢幕反映影像至觀察窗平面42時,造成在某些觀視位置之加強的觀察窗強度。因此,當一觀察者移動越過觀察窗平面42時,顯示的強度會變化而引起影像閃爍。由於眼睛對此種程度的閃爍非常敏感,此類假影係不受歡迎的。例如:積分強度(或照度)函數60中低於0.5%-5%之強度假影可能會被移動中之觀察者所看見。因此,需要藉由提供高均勻率zeta(ζ)函數(強度函數)75,來盡可能地降低此效應。
一種改善此zeta不均勻度的已知手段係繪示於第10b圖中。在此事例中,zeta(ζ)(假設射線與像素開口函數的重疊)的峰部74係被長方形切角76所最小化。因此,AIU將具有高均勻度。如將於稍後所述,此種技術不能提供高AIU給徑向對稱液晶模式。又,如將於以下所述,此種技術不能補償角對比均勻率(ACU)效應。
在使用傾斜透鏡的自動立體顯示器中,可藉由考慮對彩色像素之一特定排列之3D影像的各種所欲之性質,來決定相對於複數行和複數列像素之假設射線的角度。例如有複數個像素,其中紅、綠和藍像素具有同樣大小,並一起形成一正方形彩色像素單位細胞,其大小為水平方向3單位和垂直方向3單位;另有一射線,其係在水平方向1單位和垂直方向3單位之角度上,並具有與垂直線間之18.43度角,且提供彼此重疊至一第一程度的觀察窗。藉由設定具有水平方向1單位和垂直方向3單位之角度的射線來減少角度至9.46度,可增加相鄰觀察窗間的重疊(擴大第9圖之三角形觀察窗結構的基礎)。較寬廣的觀察窗將顯出增加的畫面重疊,因而更可能會發生會反影像,並增加影像中的模糊量。然而,當觀察者相對顯示裝置橫向移動時,此類影像將較平順地變化,並相較於18.43度角具有較大的垂直觀視自由度。此兩個不同的角度亦提供具有不同空間頻率資訊的像素,其中此空間頻率資訊可修正3D影像的逼真度。其他影像亦可能具有修正為所需的顯示性質。
通常,射線(即光學元件的幾何軸)係傾斜一角度,使得以列方向中之像素間距於列方向的幾何軸位移發生在行方向中之像素間距乘以一非零整數中。例如:在行方向係垂直於列方向之處,意指光學元件的幾何軸係相對於行方向傾斜等於tan-1 (pr/(pc×n)之角度,其中pr為列方向之像素間距,pc為行方向之像素間距,n為非零整數。上述之18.43度和9.46度角係對應至n分別為1或2之事例。
空間光調變器為徑向對稱模式的液晶顯示器,包含:排列於複數行和複數列中(如以下細述)之一陣列的像素,此些行和列提供液晶之分子的徑向對稱配向。第11a圖係繪示此類徑向對稱模式之空間光調變器之部分例子的剖面圖。一液晶層(未標示)係被夾在基材100、102之間。液晶分子110係藉由凸塊特徵104對準至傾斜的指示器方位114,此些凸塊特徵104係自基材100朝向液晶層突出。在相鄰之凸塊特徵104、105間,液晶指示器需經歷相對不連續的傾斜,因而引起配向中的旋轉位移(Disclinations)。此種旋轉位移引起降低影像對比品質的散射。光阻擋層108和106遮蓋液晶旋轉位移的區域和定址電子裝置(Addressing Electronics),以最佳化顯示對比。
凸塊特徵104、105為一種型式之提供徑向對稱液晶配向的配向特徵。此類的配向可藉由如第11a圖所示之實體凸塊的凸塊特徵104、105來產生。然而,可使用其他型式之配向特徵的其他方式來產生此徑向對稱配向,例如:藉由配向層性質的改變而不需實體凸塊,如第11b圖所示。第11b圖係繪示又一徑向對稱模式之空間光調變器之液晶配向的剖面圖。在區域112中,其配向性質係與區域111不同,以使其所造成遠離區域111的配向係與如第11a圖所示之遠離凸塊特徵104的配向實質相同。因此,區域111為一不同形式的配向特徵。
亦可藉由例如電極圖案或金字塔配向特徵來產生配向特徵,但配向特徵仍產生一種基本上徑向對稱的液晶配向。在本說明書中,「配向特徵」的用語係被定義為包含以上選項的單一者或結合者。在每一事例中,可將又一光阻擋層或部分光阻擋層併入至配向特徵的區域中,以去除如旋轉位移之配向缺陷的可見度。
在如第12圖所示之單一像素118的平面視圖中,單一像素118具有例如:二個開口116、117,但不在此限。凸塊特徵104、105可為圓形的,而光阻擋層106可包含開口116、117,每一個開口116、117包含單一凸塊特徵104。液晶分子在所示之凸塊特徵上採取徑向對稱配向。利用一單一定址電壓來定址具有開口116、117的像素118,以使在每一個次開口之液晶分子的驅動係典型地相同。因此,包含有多重凸塊特徵的可定址像素包含多重像素開口,以減少散射效應。
在越過每一個開口116、117的區域時,液晶分子係以一組傾斜的方式排列,此為在凸塊表面上之液晶分子的配向與越過像素開口之配向的傳遞所造成的結果。如將於參照第14圖所述,每一個傾斜對在一特殊視角之最佳化的對比有貢獻。在2D操作模式中,相較於例如單一傾斜出現遍及整個像素之扭轉向列(TN)模式,來自每一個傾斜的貢獻總和對更均勻觀視模式有貢獻。因此,2D操作模式中,徑向對稱模式比TN模式裝置具有對視角之較高對比均勻率。如將於後所述,當一習知徑向對稱模式的液晶顯示器結合至如視差格柵(Parallax Barrier)或雙凸透鏡螢幕之伸長的視差光學裝置時,此性質不被維持。
第13a圖係繪示與世界專利第03/015424號所述相似之自動立體顯示裝置的側視示意圖,其中世界專利第03/015424號包含一可切換式雙凸透鏡元件。自動立體顯示裝置包含:背光120、偏光片122、四分之一波片124、(陣列)基材102、被像素化(Pixellated)的液晶層128、(對面的)基材100、四分之一波片132、偏光片134、基材136、可切換式偏極轉動層(Polarisation Rotating Layer)138、基材140、雙折射微透鏡陣列142(包含雙凸透鏡螢幕)、等向層144和基材146。此種2D/3D顯示器能夠2D/3D於模式中在自動立體3D顯示和具有全亮度之全解析度的2D影像間切換。或者,可使用固定式透鏡來取代可切換式雙折射透鏡和偏極切換裝置,以使顯示器為一種不可切換的3D自動立體顯示器。
第13b圖係繪示一種視差格柵自動立體顯示裝置。視差格柵係視差元件至雙凸透鏡螢幕之另一種形式,此雙凸透鏡螢幕引導光進入不同的觀察窗。第13a圖之可切換式雙凸透鏡螢幕係被液晶視差格柵元件所取代,此液晶視差格柵元件包含基材125、129;圖案化的液晶層127和輸出偏光片131。視差格柵的操作方式類似於本發明之具有像素排列的雙凸透鏡螢幕,雖然具有較低的輸出(Throughput)效率。或者,此視差格柵可為固定式格柵。視差格柵的幾何軸係再次平行於光學元件的光學軸,此些光學元件為視差格柵中之開口。
第14圖係繪示第11圖和第12圖之像素的操作。來自背光120之入射光被偏光片122所偏極化,以提供入射偏極化狀態150(例如:0度),此入射光並被四分之一波片124轉換成右圓形偏極化狀態152。液晶分子的每一個方位再提供一半波片函數,以使未切換狀態中之光被轉換成左圓形偏極化狀態158。例如:被線164所指出的液晶分子110提供相對於一軸的轉動,以使轉態(Transition)166被提供在邦加球(Poincare Sphere)上。每一個方位提供在一不同方位之一轉態160、162或166。接著通過四分之一波片132後提供轉態162,以提供一輸出偏極化狀態156,輸出偏極化狀態156係被輸出偏光片134所傳送或吸收。在一相反的驅動狀態中,分子係被對準來提供實質無相調變,以使至偏光片134之在輸入的偏極化狀態實質平行於輸入偏極化狀態150。
有利的是,相較於扭轉向列(TN)模式(寬視角)的操作,此種安排提供加強的角對比性質。
第15a圖係繪示具有雙凸透鏡螢幕172之顯示像素平面170的第一排列方式。複數個像素係排列在具複數行和複數列之陣列174中,此些列係實質平行並垂直至雙凸透鏡元件之幾何軸。此些像素具有縱向式像素開口方位。在第15b圖中,像素陣列174具有橫向式方位的像素。在第15c圖中,雙凸透鏡螢幕172係相對於陣列174之複數列像素的排列方向(垂直)傾斜一非零角度176。在第15d圖中,雙凸透鏡螢幕172係垂直的但相對於陣列174之複數列像素的排列方向傾斜一非零角度176。第15d圖的排列方式有利地產生垂直的觀察窗,以至於當觀視者相對顯示器垂直地移動時,最佳觀看位置似乎不會改變。在這些例子中,此些行和列係成正交的,雖然在通常的事例中這種情形不是必要的,行方向和列方向可以一小於90度角來排列。
第16a圖係繪示第12圖的像素118與第15b圖的陣列結合時之橫向式像素排列。兩行之像素係置放在透鏡陣列之每一者下方,以提供具有垂直透鏡之雙畫面自動立體顯示裝置。雙凸透鏡螢幕172具有平行於幾何透鏡軸之垂直的假設線(射線64)。來自空間光調變器的光線係從特定的射線64收集來的,並被引導於一特別的方向中。可藉由考慮強度(照度)外形或「點尺寸」sigma(σ)函數182來分析觀視者眼睛所收到的光,sigma(σ)函數182代表在像素平面上假設之觀察者瞳孔的影像,此像素平面係被雙凸透鏡螢幕172所產生,sigma(σ)180係相對像素平面上的位置y 49。觀視者眼睛收到由影像此收集的光。
代表假設射線64與開口116、117的重疊分佈的zeta(ζ)函數185係被繪示。特別地,zeta(ζ)函數185具有0 zeta(ζ)的低谷181;最大zeta(ζ)的峰部179;代表在凸塊特徵104區域之zeta(ζ)函數的下陷部183。
當藉由雙凸透鏡螢幕172反映像素118至觀察窗平面42時,如第6圖所示之例子,相對觀察窗平面位置x 51之強度α50的變異係如函數184所示,其為sigma(σ)函數182與zeta(ζ)函數185的迴旋積分。此AIU變異意指當眼睛移動越過觀察窗平面時強度產生變異。若點尺寸sigma(σ)函數182增加,則觀察窗可能會模糊不清至如alpha(α)函數186所示具有較少的AIU變異。然而,此類的模糊會增加顯示的串音(Crosstalk)特性,因而降低3D影像品質的等級。
此分析可進一步延伸以評估角對比均勻率(ACU)。對比xi(ξ)188係相對越過像素平面的位置y 49而被示意地繪示。可看到的是,對一單一開口117或116,有各種不同的對比xi(ξ)函數190、192、194越過開口117或116。在區域191中,xi(ζ)188是0,所以對比係不確定的且標示為0。每一個xi(ξ)函數190、192、194代表觀視顯示輸出之一不同的極座標。因此,直接在軸上(On-axis)的對比可使用一xi(ξ)函數194來代表,而在由與東北方向中之垂直線相差45度視觀顯示的極座標上的對比,可使用一不同的函數192來代表。
點函數sigma(σ)函數182與對比zeta(ζ)函數190、192、194的迴旋積分,以及雙凸透鏡螢幕的收集圓錐體角度一起提供相對觀察窗位置x 51的角對比beta(β)196。可看到的是,每一個視角具有一不同的對比beta(β)函數198、200、202,當眼睛移動越過觀察窗平面時每一者係對應至對比變異,對不同的視角此對比變異係不相同的。因此,角對比均勻率(ACU)在遍及顯示輸出各處上是不一致的。
對比均勻率,ACU能自我顯示為顯示之黑狀態(Black States)中的強度變化,且能因而於觀察者移動時導致顯示之黑狀態中的閃爍效應。此外,由於對任何特殊液晶分子傾斜之液晶半波片效應之色度(Chromaticity)的變異。
此種效應將會隨著極視角而變化。為解釋容易起見,本說明書將進一步以ACU函數(xi(ζ)相對y和beta(β)相對x)來描述自一單一極觀察座標的變異。
第16b圖係繪示具有雙凸透鏡螢幕之第12圖縱向式像素的排列。在此事例中,凸塊特徵104、105二者係相互對準排列,以使每一個觀察窗有一單一對比變異,而不是如第16a圖所示之雙對比變異。
[實施例]
第17圖係繪示本發明之第一實施例。徑向對稱模式之橫向式像素210包含頂開口(或所謂之頂或第一顯示區域)214、和底開口(或所謂之底或第二顯示區域)216,每一個開口容納有如上所述排列的凸塊特徵104,以提供液晶之分子的徑向對稱配位。第17圖係繪示不同色之3個像素210,例如紅、綠和藍色。像素210之開口214和216係容納有電極、電容和其他定址電路之不透光區218所分開。如將於以下所細述,每一個像素210可被個別地定址,亦即每一個像素可被彼此分開地定址。每一個像素210之頂開口214和底開口216可被統一地定址或分開地定址。
以與凸塊特徵104相關的特殊方式製作開口214和216的形狀,以改善AIU和ACU。開口214具有水平的頂邊緣215、傾斜的邊緣217和219、及具有凸塊特徵補償特徵220之底邊緣221。底邊緣221和凸塊特徵補償特徵220係被整合在一起。下開口216具有旋轉180度之相同開口形狀。在此例子中,凸塊特徵補償特徵220係對準至平行於射線64之凸塊特徵104,並具有安排來補償凸塊特徵104中之損失的開口形狀,如將於以下參照第19圖至第22圖所述。
單一像素210之開口214和216的邊緣217係重疊於重疊區225中,而兩相鄰像素210之開口214和216的邊緣219係重疊於重疊區227中。當忽略凸塊特徵補償特徵220時,頂邊緣215和底邊緣221係相互平行,以使重疊區225和227外之開口214和216具有平行於射線64的相同高度。在此例子中,重疊區225中之開口214和216的面積係實質相同的,和/或實質對準至射線64。同樣地,在重疊區225和227中,邊緣217係相互平行且每一者係對射線64傾斜,而邊緣219亦係相互平行且每一者係對射線64傾斜。
結果是,當忽略凸塊特徵補償特徵220時,在單一列中之射線64與像素210交叉的總交叉長度對應於射線64(為一假設線)之每一個位置係相同的。在重疊區225和227外,此交叉係與開口214和216之單一者交叉,而交叉長度為邊緣215和邊緣221間的距離。在重疊區225中,此交叉長度係被相加越過相同像素210的二開口214和216。在重疊區227中,此交叉長度係被相加越過不同色之不同像素210的二開口214和216。當考慮單色像素210時,射線64與沿著射線64而相鄰之同色像素210交叉的總交叉長度對應至射線64(為一假設線)之每一個位置係相同的。對應於重疊區225和227外之位置、及重疊區225中之位置,射線64具有與如第17圖所示之單列中之像素210交叉的固定長度。此可解釋射線64之位置的最大範圍。然而,對重疊區227中之位置,與單列中之單色像素210交叉的長度係比較短的,並隨著射線64之向外移動而減少。然而,在後續的列中,像素210的顏色係相互偏置。此具有的結果是,重疊區225中與第17圖所示之列中之像素210的交叉係與沿著射線64而相鄰之又一列中之同色像素210的交叉相加,以使與前述顏色之210交叉的總交叉長度保持相同。
因此,當忽略凸塊特徵104和凸塊特徵補償特徵220時,開口214和216的形狀對射線64的所有位置y 49提供均勻的zeta(ζ)函數(強度函數)75。
凸塊特徵補償特徵220係被排列來補償凸塊特徵104,提供甚至考慮到凸塊特徵104之均勻的zeta(ζ)函數75。如將於以下參照第19圖至第22圖所述,此係藉由凸塊特徵補償特徵220來達成,此凸塊特徵補償特徵220的形狀係製作成使射線64與特定顏色之像素210交叉之被凸塊特徵104上的光強度所加權的總交叉長度對應至假設射線64的每一個位置係為相同。
包含有凸塊特徵補償特徵220之開口214和216的形狀具有幾個重要的優勢。有利的是,顯示器之AIU係一常數,與點sigma(σ)函數182無關。典型地,由於透鏡的像差,點sigma(σ)函數182係隨著角度而變化,以使alpha(α)函數186和AIU隨著視角而變化。然而,目前的實施例意指:當觀察者改變觀視位置時,根據視角之點sigma(σ)函數182的變化係不可見的。對相對此顯示器移動的觀察者而言,此類的顯示器顯出減少了的閃爍。
又,在光學元件製造上的公差可較寬鬆,以使光學元件可較便宜地製造。再者,由於元件性能(如散射或折射率不配合)中的誤差不會被看見為2D AIU誤差,2D模式性能可被加強。
又,可減少光學元件的點尺寸,以使相鄰畫面間的串音程度可被降低,因而增加3D影像的品質。再者,相鄰影像間的模糊量可於一多重畫面顯示器中被減少,以使可被顯出之深度值增加。
又,可增加一雙畫面顯示器的觀察窗尺寸,以使較寬的觀察窗可被使用。例如:此種排列使觀察窗平面上之名義觀察窗尺寸成為130mm,而不是65mm。相鄰像素行間得小重疊意指相較於習知技藝,畫面間的串音區域被最小化。因此,可具有無畸變影像的較寬區域。若觀察者橫向地移動,在看見反影像前先看見2D影像(因為雙眼在相同的觀察窗中)。此種顯示器具有延伸的縱向觀視自由度。
更可看到的是,像素210之二開口214和216中之凸塊特徵104的位置,及由此得來之凸塊特徵補償特徵220在垂直於射線64的方向上彼此之間具有一水平錯距(偏移量),而不是垂直地對準如於使用第12圖所示之形式的縱向式像素118的雙畫面顯示器中。可看到通過凸塊特徵104之區域中心的射線223係分佈越過像素寬度。射線223的間隔可能是相等的。在此方式中,凸塊特徵104提供補償給顯示器中的ACU效應,此顯示器比他種裝置提供更均勻的ACU函數226。當凸塊特徵104提供液晶分子的徑向對稱配向時,在通常用語中,在不同位置的射線64越過不同配向的液晶分子,視相對於凸塊特徵104之射線64的位置而定。此不同配向引起光線對比中的變異,此光線係收集自不同的假設線並被對應觀視位置上之觀察者所觀察到,因而產生ACU。此ACU在如第16a圖所示之像素排列中係低劣的,但於像素210中被偏置的凸塊特徵104降低此效應。此係因為在越過假設線之可能位置的範圍中,引起對比變異之液晶分子配向中的變異有減少。
因此,本發明之實施例提供加強的AIU和加強的ACU於徑向對稱模式顯示器中。當觀察者移動時,此類顯示器顯出較低程度的閃爍,並表現出增大的公差給光學元件製造誤差,因而具有低成本。
有利地,本發明之實施例提供根據自動立體顯示裝置視角之均勻的強度變異。此類實施例去除顯示器領域間之黑罩幕的殘餘可見度。注視顯示器之觀察者看到對寬視角範圍之遍及顯示器各處的一均勻強度結構。因此,當觀察者相對此顯示器移動時,此顯示器似乎不會出現閃爍。此種閃爍是令人困擾的視覺反影。此外,像素排列的成本係與習知的像素排列實質相同。因此,不管視差光學元件的焦點條件為何,如函數60所代表之顯示器的AIU係對顯示器的所有觀視角度有利地實質固定不變的。此種排列亦可有利地提高ACU。因此,當觀察者移動他們的頭部時,可最小化顯示器的對比或色彩變異。若當觀察者移動時改變顯示器的對比,則影像似乎會出現強度或色彩的閃爍,因而降低顯示器性能的等級。
在可切換式2D/3D顯示器中,當切換至2D時,亦可能有一些殘留的3D功能。有利地,在本實施例中,AIU和ACU係與視差光學元件的焦點條件無關。因此,若有在2D模式中有一些殘留的3D功能,其將有益地不顯露為AIU或ACU效應。此可使光學元件的製造公差成為寬鬆的。例如:在可切換式雙折射透鏡中,如美國專利第7,058,252號所述,液晶和等向透鏡材料間可能有一些殘留的折射率變化(Refractive Index Step)。在習知之像素中,因殘留的透鏡功能,此可能會引起AIU誤差。在本實施例中,在折射率變化上的公差可因而被放寬,藉以有利地減少透鏡成本並增加良率、較寬廣的材料選擇和較寬大的加工寬容度。在本實施例中,當提供足夠的空間給電極和定址電路時,可調整個別領域的實際對準來最佳化開口比率。這些圖示係提供為說明的目的,但並不以此為限。
又,在3D模式中,透鏡的焦點可被最佳化,而不是如習知系統所述之散焦。有利地,此造成越過相鄰觀察窗之畫面資料的更大分離。減少觀察窗重疊有利地減少於3D影像中所看見的模糊,以使可顯示之深度總量增加。再者,更可降低反影像強度,而增加顯示的舒服度。可應用此類的排列至使用例如雙凸透鏡螢幕和視差格柵之視差光學元件的3D顯示器。
又,在具有根據視角之光學函數中之變異的透鏡中,由像素平面收集到之光線區域將因視角而異,其中此光學函數中之變異係被例如離軸(Off-axis)像差;或根據入射照射角度之有效透鏡指數等級的變化所引起。
在本實施例中,對沿著射線之同色像素的所有射線而言,射線具有固定的交叉長度,意指當被收集之射線所來自的區域隨著視角變化時,將產生相同的強度和對比函數。所以此類的排列可實施高視角而不產生不均勻的強度分佈,因而提供優良的AIU和ACU品質。
又,在其性能係取決於偏極切換器之視角的被動式雙折射透鏡中,強度變異將會取決於切換器的偏極輸出。此類的排列可使切換器具有減少的光學補償膜,因而在製造上較便宜、較薄和較容易。
又,當透鏡被排列在2D模式時,於具有3D功能離軸的主動式雙折射透鏡中,黑罩幕並未被分解為根據視角之AIU或ACU中的變化。
因此,本實施例具有增加的影像品質,並結合低成本但不對顯示器的2D品質妥協的優點。此類的排列係藉由像素開口佈局的修正來達成。
第18a圖係繪示第17圖所示之像素210的一種可能佈局,其中複數行像素間的邊緣219係傾斜的。每一個像素210可被個別地定址如下。開口214和216係被行電極250、列電極252、電晶體元件254和電極256所驅動。像素區域係被形成有兩相鄰列電極252、兩相鄰行電極250。電極256係在像素區域中。電極256和相對基材之對面電極(未繪示)可形成一電容,用以保持電場至位於其間之液晶層。如第18a圖和第18b圖所示,二個開口214和216係在像素區域中。但本發明並不受此限。可只有一個或多於二個開口於單一像素區域中。在此方式中,在保持像素開口功能時,可便利地設置定址電路於各自的像素開口間。再者,一些像素的垂直重疊是可能的,以使系統的開口比率可被最佳化。第18b圖係繪示第17圖所示之像素210的又一種可能佈局,其中複數行像素間的邊緣219係垂直的,因此係對準實質平行於視差光學元件的幾何軸。此排列具有較低的開口比率,但有利地具有相較於第18a圖之較小畫面間的串音區域。
現將以實施例來描述凸塊特徵之補償特徵的細部說明。當以四分之一波片和偏光片來分析時,凸塊特徵104包含強度低於周圍像素的區域。因此,除其長度外,必須考慮射線重疊的強度。需要包含凸塊特徵104的強度,以對像素平面中之特殊位置y 49提供均勻的zeta(ζ)函數73。因此,像素開口214和216的形狀係被製作成使被均等於射線64之不同位置的交叉長度為一加權的交叉長度。亦即,越過凸塊特徵104之交叉長度係被光線的強度所加權,此光線的強度被凸塊特徵104調變為像素210的其餘部分所調變之光線強度的幾分之一,亦即除凸塊特徵104外之像素的其餘部分。
藉由例子說明,第19圖係繪示一事例,其中在凸塊特徵104之區域中的輸出強度係均勻的,且為像素210其餘部分之輸出強度的50%。為要維持射線64的重疊,沿著射線64,凸塊特徵補償特徵220的長度224(在平行於射線64的方向中)係小於凸塊特徵104的長度222(在平行於射線64的方向中),例如:凸塊特徵104之長度222的一半。當凸塊特徵補償特徵220中的強度為凸塊特徵(區域)104中之強度的兩倍時,則越過像素的寬度之總射線強度是固定不變的。
第20圖係繪示一事例,其中越過凸塊特徵104舉例係不透光。在此事例中,凸出部之長度(Tab Length)224係與凸塊特徵104之長度222相同。
在其他實施例中,強度函數可越過凸塊特徵104之長度/寬度而變化。在此事例中,在平行於射線64的方向中之凸塊特徵補償特徵220的長度224的設定是:在射線64的每一個位置上,根據強度函數對在射線64各自位置上之凸塊特徵104的積分,以補償被凸塊特徵104所阻擋的光線。此具有的結果是:與射線64交叉的加權交叉長度和由此得來之zeta(ζ)函數,在射線64的每一個位置上係實質固定的。
在第21圖中,凸塊特徵補償特徵228和220係被繪示為分佈在開口214之頂部和底部上。有利地,此種排列可提供一種定位電子元件的不同排列方式,其增加總開口比率。在第22圖中,凸塊特徵補償特徵228係與傾斜邊緣的形狀結合。換言之,傾斜邊緣係連接至如第22圖所示之凸塊特徵補償特徵228的邊緣。
此些實施例之又一目的為:藉由提供越過像素寬度之凸塊特徵和凸塊特徵補償特徵的一空間頻率,此空間頻率係大於當被加入越過相鄰列時的像素空間頻率。在此方式中,可最小化一顯示器之ACU的變異。
當然,像素可提供根據第17圖所示之形狀以外的形狀。現將描述其他形狀的例子。第23圖至第26圖繪示橫向式徑向對稱模式之像素的各種實施例,此些像素具有越過一像素寬度之凸塊特徵補償特徵和多於一個的凸塊特徵,此像素寬度係被相加越過至少兩相鄰列之像素。
第23圖係繪示四列264至270之像素的例子,每一個像素包含單一開口,此開口具有在兩相鄰列之像素上的凸塊特徵補償特徵220和凸塊特徵260、262。此兩相鄰列可為不色的像素。例如:列264、270可為紅色像素,列266可為綠色像素,而列268可為藍色像素。當考慮單色像素時,射線64與沿著射線64而相鄰之同色像素交叉的總交叉長度對應至射線64(為一假設線)之每一個位置係相同的。當考慮紅色像素之列264、270時,對射線64之一些位置,射線64與一像素係只交叉在一列264或相鄰列270,而在這些位置之像素具有固定的高度,以使交叉長度等於此高度。在射線64之其他位置之相鄰列264和270中的像素係以對應錐形來沿著射線6重疊,以使相鄰列264和270之像素上之相加的總交叉長度實質保持相同。
因此,針對同色像素列,凸塊特徵262和272亦被橫向地隔開,以提供越過一像素寬度之多於一個的凸塊特徵,此像素寬度係被相加越過至少兩相鄰列之同色像素。因為位於一列中之水平對準的液晶指示器係對準至位於一相鄰列中之垂直對準的液晶指示器,ACU可改善,因而平均了越過此二列之各自的對比性質。在沿著一垂直射線之二像素開口間的重疊區域中,像素開口的邊緣可以是傾斜的,因而越過任何兩像素之射線的交叉長度對應至射線的所有位置可以是固定的。在像素寬度(並非開口寬度)的中心,與垂直線間的傾斜角度可大於在像素寬度邊緣的傾斜角度。此係因為在畫面資料變化於觀察窗平面的區域中的像素開口重疊應被最小化;但在像素寬度的中心,與垂直線間的較高傾斜角度可實施更便利的列電極佈線。
第24圖至第26圖係繪示類似第23圖的例子,但具有分離的像素,以包含二開口,其中每一個開口容納有一凸塊特徵。
第24圖類似地包含三個凸塊特徵274、276和278,此三個凸塊特徵274、276和278係橫向地相隔遍及兩同色列。液晶旋轉位移係出現在凸塊特徵274和276間,因此插入額外的罩幕區275以去除旋轉位移的可見度。此更需要像素邊界的修正以為維持zeta(ζ)函數的均勻度。在此例子中,開口的邊緣係相對於垂直線傾斜,其比垂直邊緣達成較大的開口比率,在垂直邊緣中像素係垂直地偏置,如將於第27圖所示。因此,增加凸塊特徵的數目改善ACU。相似地,第25圖和第26圖係繪示平均遍及兩相鄰同色列的四個凸塊特徵280、282、284和286。改變凸塊特徵的位置可延伸超過兩列。如第25圖所示,凸塊特徵286並不必定需出現在像素開口中。
第27圖係繪示像素開口和凸塊特徵補償特徵的又一排列,用於具有垂直透鏡之雙畫面顯示器中。像素行288和289係位於透鏡陣列172之第一透鏡的下方,而像素行290係位於透鏡陣列172之相鄰透鏡的下方。此些像素係排列在四列291、292、293和294所組成之一群組中。開口295、296和297具有1/2像素間距的寬度,而開口298具有1/4像素間距的寬度。每一個開口295、296和297中之凸塊特徵104的橫向位置是不相同的,以提供更均勻的ACU,如將於後所述。除在凸塊特徵104和凸塊特徵補償特徵220外,在平行於射線64的方向中之像素的長度係實質固定的,如前述原因所示。或者,像素邊緣可以是傾斜且重疊,以使zeta(ζ)函數固定不變。在列群組中,在越過開口之任何位置上的總射線229的重疊,係固定不變於平行於射線64之方向中的兩個像素開口長度上。有利地,此排列提供凸塊特徵104的一種正規順序,如射線300的順序所示。因此,此種排列具有優良的ACU性能與優良的AIU性能於徑向對稱模式裝置中。
以上所述之本發明的實施例包含垂直透鏡和垂直行之像素。然而,本發明可被應用於幾種不同的配置結構,包含有第15a圖至第15d圖所示之針對雙凸透鏡陣列和視差格柵的結構。第28圖係繪示又一實施例,其中透鏡係以類似第15c圖之方式,對一陣列之徑向對稱模式像素開口301和303傾斜。在此事例中,凸塊特徵補償特徵302、304係相對於沿著平行於幾何透鏡軸之射線64的凸塊特徵區域305而被橫向地偏置。再者,長方形切角部分係被繪示來改善AIU。凸塊特徵補償特徵302、304的形狀係被修改自前述之半圓形,以提供zeta(ζ)函數306的均勻度,並進一步最小化xi(ξ)函數308的均勻度。有利地,如以上所述的原因,在增加3D和2D影像品質與降低光學組件的成本時,傾斜透鏡多重畫面顯示器的AIU和ACU可被加強。
在整個說明書中,可藉由如由光阻擋層108和106所形成之黑罩幕層的單一材料層來定義像素開口。有利地,相較於藉由多重材料層來定義像素開口的結構,對製造提供改善的公差。但相較於黑罩幕層,凸塊特徵104的位置將被一分離層所定義。在此事例中,在組裝時黑罩幕層的對準可被有利地設定至對準凸塊特徵104。有利地,包含凸塊特徵104的材料層可被置放在與黑罩幕層相同的基材上。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何在此技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
1...顯示平面
2...右眼
3...影像點
4...左眼
5...左眼同源影像點
6...外觀影像點
7...右眼同源影像點
8...左眼同源影像點
9...外觀影像點
10...左眼影像
11...右眼影像
12...參考線
13...分離
14...參考線
15...距離
16...顯示裝置
17...視差元件
18...右眼影像
19...箭頭
20...右眼觀察窗
21...反影像
22...右眼
24...左眼觀察窗
26...左眼影像
28...箭頭
30...左眼觀察窗
32...左眼
34...顯示平面
36...左眼觀察窗
37...左眼觀察窗
38...左眼觀察窗
39...右眼觀察窗
40...右眼觀察窗
41...右眼觀察窗
42...觀察窗平面
43...名義觀察距離
44...波瓣
46...波瓣
48...波瓣
49...位置y
50...強度α
51...位置x
53...強度函數
52...強度函數
55...強度函數
54...強度函數
57...強度函數
56...強度函數
59...強度函數
58...強度函數
60...強度函數
61...強度函數
62...射線
64...像素開口
65...紅色像素
66...總交叉長度
67...綠色像素
68...總交叉長度
69...藍色像素
70...總交叉長度
71...尖端
72...總交叉長度
73...zeta(ζ)函數
74...峰部
75...強度函數
76...切角
78...總交叉長度
80...射線
100...基材
102...基材
104...凸塊特徵
105...凸塊特徵
106...光阻擋層
108...光阻擋層
110...液晶分子
111...區域
112...區域
114...指示器方位
116...開口
117...開口
118...像素
120...背光
122...偏光片
124...四分之一波片
125...基材
127...圖案化的液晶層
129...基材
131...輸出偏光片
132...四分之一波片
134...偏光片
136...基材
138...可切換式偏極轉動層
140...基材
142...雙折射微透鏡陣列
144...等向層
146...基材
150...入射偏極化狀態
152...右圓形偏極化狀態
156...右圓形偏極化狀態
158...左圓形偏極化狀態
160...轉態
162...轉態
164...線
166...轉態
170...空間光調變器
172...視差元件
174...像素陣列
176...非零角度
179...峰部
180...sigma(σ)
181...低谷
182...sigma(σ)函數
183...下陷部
184...函數
185...zeta(ζ)函數
186...alpha(α)函數
188...xi(ξ)函數
190...xi(ξ)函數
191...區域
192...xi(ξ)函數
194...xi(ξ)函數
196...角對比beta(β)
198...beta(β)函數
200...beta(β)函數
202...beta(β)函數
210...像素
214...開口
215...頂邊緣
216...底開口
217...邊緣
218...不透光區
219...邊緣
220...凸塊特徵補償特徵
221...底邊緣
222...長度
223...射線
224...長度
225...重疊區
226...ACU函數
227...重疊區
228...凸塊特徵補償特徵
250...行電極
252...列電極
254...電晶體元件
256...電極
260...凸塊特徵
262...凸塊特徵
264...列
266...列
268...列
270...列
272...凸塊特徵
274...凸塊特徵
276...凸塊特徵
278...凸塊特徵
280...凸塊特徵
282...凸塊特徵
284...凸塊特徵
286...凸塊特徵
288...像素行
289...像素行
290...像素行
291...列
292...列
293...列
294...列
295...開口
296...開口
297...開口
298...開口
300...射線
301...徑向對稱模式像素開口
302...凸塊特徵補償特徵
303...徑向對稱模式像素開口
304...凸塊特徵補償特徵
305...凸塊特徵區域
306...zeta(ζ)函數
308...xi(ξ)函數
RCP...右圓形偏極化
LCP...左圓形偏極化
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:
第1圖係繪示螢幕平面後方物件之3D顯示之明顯深度的產生。
第2圖係繪示螢幕平面前方物件之3D顯示之明顯深度的產生。
第3圖係繪示影像立體對之每一個影像上之同源點的位置。
第4圖係示意地繪示3D自動立體顯示器前方之右眼觀察窗的形成。
第5圖係示意地繪示3D自動立體顯示器前方之左眼觀察窗的形成。
第6圖係繪示來自3D顯示器之輸出圓錐體之觀視區域產生的平面視圖。
第7圖係繪示自動立體顯示器之一觀察窗外形。
第8圖係繪示來自3D自動立體顯示器之觀察窗輸出外形的示意圖。
第9圖係繪示來自3D自動立體顯示器之觀察窗輸出外形的又一示意圖。
第10a圖係繪示包含在一傾斜角對準至一像素陣列之雙凸透鏡陣列的自動立體顯示器。
第10b圖係繪示修正的像素結構以改善第10a圖之顯示器的AIU。
第11a圖係繪示一徑向對稱模式之空間光調變器中之液晶配向的剖面圖。
第11b圖係繪示又一徑向對稱模式之空間光調變器中之液晶配向的剖面圖。
第12圖係繪示一徑向對稱模式之空間光調變器中之液晶配向的平面視圖。
第13a圖係繪示之使用第11a圖、第11b圖和第12圖之可切換式雙凸透鏡自動立體顯示器的剖面圖。
第13b圖係繪示之使用第11a圖、第11b圖和第12圖之可切換式視差格柵自動立體顯示器的剖面圖。
第14圖係繪示徑向對稱模式之空間光調變器中之偏極調變的邦加球釋意。
第15a圖係繪示雙凸透鏡螢幕與像素陣列的一排列方式。
第15b圖係繪示雙凸透鏡螢幕與像素陣列的又一排列方式。
第15c圖係繪示雙凸透鏡螢幕與像素陣列的又一排列方式。
第15d圖係繪示雙凸透鏡螢幕與像素陣列的又一排列方式。
第16a圖係繪示習知之橫向式像素自動立體顯示器的AIU與ACU性質。
第16b圖係繪示習知之縱向式像素自動立體顯示器的AIU與ACU性質。
第17圖係繪示本發明之像素排列實施例。
第18a圖係繪示本發明之像素排列實施例的一電路佈局。
第18b圖係繪示本發明之像素排列實施例的又一電路佈局。
第19圖係繪示本發明之像素排列實施例的細節。
第20圖係繪示本發明之像素排列實施例的細節。
第21圖係繪示本發明之像素排列實施例的細節。
第22圖係繪示本發明之像素排列實施例的細節。
第23圖係繪示本發明之像素排列實施例。
第24圖係繪示本發明之又一像素排列實施例。
第25圖係繪示本發明之又一像素排列實施例。
第26圖係繪示本發明之又一像素排列實施例。
第27圖係繪示本發明之又一像素排列實施例。
第28圖係繪示本發明之又一像素排列實施例。
64...射線
75...強度函數
104...凸塊特徵
172...視差元件
210...像素
214...開口
215...頂邊緣
216...底開口
217...邊緣
218...不透光區
219...邊緣
220...凸塊特徵補償特徵
223...射線
225...重疊區
226...ACU函數
227...重疊區

Claims (18)

  1. 一種自動立體顯示裝置,包含:一空間光調變器(Spatial Light Modulator),具有一陣列包含複數個不同顏色且可個別地定址的像素,該些像素係排列於複數行和複數列中,每一像素包含至少一開口(Aperture),該開口容置有液晶並具有一配向(Alignment)特徵,該配向特徵係設置來提供該液晶之分子的徑向對稱配向;以及一視差元件,包含一陣列包含複數個光學元件,其中該些光學元件係排列在該空間光調變器上,以將一光線由該些像素引導至複數個觀察窗(Viewing Windows);該些光學元件具有複數個幾何軸,該些幾何軸係平行橫向地延伸越過該空間光調變器至該些像素排列於其中之該些列;其中該至少一開口的形狀係被製作成使一假設線具有一總交叉長度,該總交叉長度為沿著該假設線而相鄰之具同色之該些像素之交叉的長度,該假設線平行於該些光學元件之該些幾何軸;當越過該些配向特徵之交叉長度係經該配向特徵所調變的該光線的強度加權後,該假設線之所有位置對應的總交叉長度係為相同,其中該配向特徵所調變的該光線的強度為該些像素之其餘部分所調變的該光線的強度的幾分之一。
  2. 如請求項1所述之自動立體顯示裝置,其中每一像素包含複數個開口,每一開口包含液晶和該液晶中之該配向特徵,其中每一個別像素之該些開口的該些配向特徵在 垂直於該些幾何軸之一方向上彼此之間具有一水平偏移量。
  3. 如請求項2所述之自動立體顯示裝置,其中每一像素包括至少兩開口,該兩開口係以垂直於該些幾何軸之該方向彼此重疊。
  4. 如請求項3所述之自動立體顯示裝置,其中該至少二開口的每一個重疊部分具有至少一平行邊,該至少一平行邊相對於平行該些光學元件之該些幾何軸的方向係傾斜的。
  5. 如請求項1所述之自動立體顯示裝置,其中於一列中彼此相鄰之該些像素包含在垂直於該些幾何軸之該方向中重疊的各自開口。
  6. 如請求項1所述之自動立體顯示裝置,其中被該配向特徵所調變之該光線的強度為0,使得越過該配向特徵之該交叉長度被加權至0。
  7. 如請求項1所述之自動立體顯示裝置,其中該些配向特徵中之一係包括一凸塊,該凸塊係朝向該液晶突出。
  8. 如請求項1所述之自動立體顯示裝置,其中該空間 光調變器包含容納於二基材間之一液晶層。
  9. 如請求項8所述之自動立體顯示裝置,更包含:定義該些像素的一光阻擋層。
  10. 如請求項9所述之自動立體顯示裝置,其中該些配向特徵係形成在一個基材上。
  11. 如請求項1所述之自動立體顯示裝置,其中該些配向特徵係形成在一個基材上。
  12. 如請求項1所述之自動立體顯示裝置,其中平行地延伸越過該空間光調變器之該些幾何軸係垂直於該些像素排列所在的該些列。
  13. 一種空間光調變器,包含:複數個像素,每一像素包含:至少一開口容置有液晶並具有一配向特徵和一第一配向特徵補償特徵,該配向特徵係設置來提供該液晶之分子的徑向對稱配向,該配向特徵係相對於一假設線對齊該第一配向特徵補償特徵。
  14. 如請求項13所述之空間光調變器,其中每一像素更包含:一第二配向特徵補償特徵,且該配向特徵特徵相 對於該假設線來對齊至該第二配向特徵補償特徵。
  15. 如請求項13所述之空間光調變器,其中該開口容納有液晶。
  16. 如請求項13所述之空間光調變器,其中該第一配向特徵補償特徵之一凸出部之長度(Tab Length)係小於或等於該配向特徵之一長度。
  17. 如請求項13所述之空間光調變器,其中該開口更具有:一水平頂邊緣;二傾斜邊緣,分別連接至該水平頂邊緣之二端;以及一底邊緣,其中該底邊緣與該第一配向特徵補償特徵係整合在一起。
  18. 一種自動立體顯示裝置,包含:一空間光調變器,包含:複數個像素,每一像素包含:至少一開口容置有液晶並具有一配向特徵和一第一配向特徵補償特徵,該配向特徵係設置來提供該液晶之分子的徑向對稱配向,該配向特徵係相對於一假設線對齊該第一配向特徵補償特徵;以及 一視差元件,包含一陣列之複數個光學元件,其中該些光學元件係排列在該空間光調變器上。
TW100102157A 2010-01-27 2011-01-20 自動立體顯示裝置與空間光調變器 TWI435115B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB201001344A GB2477294B (en) 2010-01-27 2010-01-27 Autostereoscopic display apparatus

Publications (2)

Publication Number Publication Date
TW201126205A TW201126205A (en) 2011-08-01
TWI435115B true TWI435115B (zh) 2014-04-21

Family

ID=42084064

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102157A TWI435115B (zh) 2010-01-27 2011-01-20 自動立體顯示裝置與空間光調變器

Country Status (4)

Country Link
US (1) US8692871B2 (zh)
CN (1) CN102109715B (zh)
GB (1) GB2477294B (zh)
TW (1) TWI435115B (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101670927B1 (ko) * 2010-11-05 2016-11-01 삼성전자주식회사 디스플레이 장치 및 방법
EP2461238B1 (en) 2010-12-02 2017-06-28 LG Electronics Inc. Image display apparatus including an input device
US9420268B2 (en) * 2011-06-23 2016-08-16 Lg Electronics Inc. Apparatus and method for displaying 3-dimensional image
US9171392B2 (en) * 2011-08-02 2015-10-27 Tracer Imaging Llc Lenticular product having a radial lenticular blending effect
KR101269631B1 (ko) * 2011-10-06 2013-05-30 한국과학기술연구원 3차원 영상표시장치 및 이것에서 수행되는 3차원 영상표시 방법
DE112012004398A5 (de) * 2011-10-20 2014-08-07 Seereal Technologies S.A. Anzeigevorrichtung und Verfahren zur Darstellung einer dreidimensionalen Szene
JP2013101171A (ja) * 2011-11-07 2013-05-23 Sony Corp 表示装置および電子機器
KR102011876B1 (ko) * 2011-12-06 2019-10-21 오스텐도 테크놀로지스 인코포레이티드 공간-광학 및 시간 공간-광학 지향성 광 변조기
KR101978760B1 (ko) * 2011-12-13 2019-05-16 삼성전자 주식회사 3차원 이미지의 표시 기능을 구비한 단말기에서 사용자 인터페이스 방법 및 장치
WO2014098786A2 (en) * 2012-04-29 2014-06-26 Hewlett-Packard Development Company, L.P. View weighting for multiview displays
TWI484254B (zh) * 2012-04-30 2015-05-11 Au Optronics Corp 光調變面板之母板、光調變面板及立體顯示裝置
US9179126B2 (en) 2012-06-01 2015-11-03 Ostendo Technologies, Inc. Spatio-temporal light field cameras
RU2015105430A (ru) * 2012-07-18 2016-09-10 Конинклейке Филипс Н.В. Автостереоскопическое лентикулярное устройство отображения
JP6010375B2 (ja) * 2012-07-24 2016-10-19 株式会社ジャパンディスプレイ 表示装置
US20140035800A1 (en) * 2012-08-06 2014-02-06 Cno Co., Ltd. Segmented parallax barrier based display apparatus with 2d/3d mode switching and method thereof
US20150192725A1 (en) * 2012-08-13 2015-07-09 Bayer Materialscience Ag Light guide comprising decoupling elements
RU2015108648A (ru) * 2012-08-13 2016-10-10 Байер Матириальсайенс Аг Осветительное устройство для жидкокристаллического отображающего устройства
JP2015525960A (ja) * 2012-08-13 2015-09-07 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG アウトカップリング要素を有する導光プレート
TWI625551B (zh) 2013-03-15 2018-06-01 傲思丹度科技公司 具有改良之視角深度及解析度之三維光場顯示器及方法
TWI473058B (zh) * 2013-04-18 2015-02-11 Au Optronics Corp 顯示方法及其立體顯示系統
EP2853936A1 (en) * 2013-09-27 2015-04-01 Samsung Electronics Co., Ltd Display apparatus and method
US10116914B2 (en) * 2013-10-31 2018-10-30 3Di Llc Stereoscopic display
US11343487B2 (en) 2013-10-31 2022-05-24 David Woods Trackable glasses system for perspective views of a display
US10652525B2 (en) 2013-10-31 2020-05-12 3Di Llc Quad view display system
KR20150055442A (ko) * 2013-11-13 2015-05-21 삼성디스플레이 주식회사 입체 영상 표시 장치
WO2015091014A1 (en) 2013-12-20 2015-06-25 Koninklijke Philips N.V. Autostereoscopic display device
CN103869487B (zh) * 2014-03-18 2016-01-13 深圳市华星光电技术有限公司 显示装置及其显示图像的方法
KR102214355B1 (ko) 2014-06-16 2021-02-09 삼성디스플레이 주식회사 입체 영상 표시 장치
US9716879B2 (en) * 2014-07-15 2017-07-25 Shenzhen China Star Optoelectronics Technology Co., Ltd Image display method and device for multi-view stereoscopic display
TWI556624B (zh) * 2014-07-18 2016-11-01 友達光電股份有限公司 影像顯示方法以及影像顯示裝置
US9792757B2 (en) * 2014-09-16 2017-10-17 Igt Canada Solutions Ulc 3D enhanced gaming machine with selectable 3D intensity level
US11074876B2 (en) * 2014-12-22 2021-07-27 Tianma Microelectronics Co., Ltd. Stereoscopic display device
CN106303208B (zh) * 2015-08-31 2019-05-21 北京智谷睿拓技术服务有限公司 图像采集控制方法和装置
CN106303210B (zh) * 2015-08-31 2019-07-12 北京智谷睿拓技术服务有限公司 图像采集控制方法和装置
CN106303209B (zh) * 2015-08-31 2019-06-21 北京智谷睿拓技术服务有限公司 图像采集控制方法和装置
KR102463171B1 (ko) * 2015-12-24 2022-11-04 삼성전자주식회사 광학 레이어 및 이를 포함하는 디스플레이 장치
CN106254753B (zh) * 2015-12-31 2019-03-12 北京智谷睿拓技术服务有限公司 光场显示控制方法和装置、光场显示设备
US11105963B1 (en) * 2016-03-09 2021-08-31 Apple Inc. Optical systems with adjustable lenses
JP6645371B2 (ja) * 2016-07-15 2020-02-14 オムロン株式会社 光デバイス及び立体表示方法
KR102522397B1 (ko) * 2016-11-29 2023-04-17 엘지디스플레이 주식회사 무안경 방식의 입체영상 표시장치
KR101880751B1 (ko) * 2017-03-21 2018-07-20 주식회사 모픽 무안경 입체영상시청을 위해 사용자 단말과 렌티큘러 렌즈 간 정렬 오차를 줄이기 위한 방법 및 이를 수행하는 사용자 단말
KR102634878B1 (ko) 2017-05-25 2024-02-06 매직 립, 인코포레이티드 양면 임프린팅
IL301939A (en) * 2017-10-26 2023-06-01 Magic Leap Inc An augmented reality display with a liquid crystal variable focus element and a roll-to-roll method and a device for their creation
US10855974B2 (en) 2018-01-17 2020-12-01 Massachusetts Institute Of Technology Methods and apparatus for radial automultiscopic display
RU2679620C1 (ru) * 2018-04-24 2019-02-12 Василий Александрович ЕЖОВ Динамический амплитудный параллаксный барьер на противофазных жидкокристаллических слоях и способ управления им
NL2032216B1 (en) * 2022-06-17 2024-01-05 Dimenco Holding B V Method for reducing disclinations in a 2d/3d switchable autostereoscopic display

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409351A (en) 1966-02-07 1968-11-05 Douglas F. Winnek Composite stereography
GB8716369D0 (en) * 1987-07-10 1987-08-19 Travis A R L Three-dimensional display device
GB2278223A (en) 1993-05-21 1994-11-23 Sharp Kk Spatial light modulator and directional display
US6064424A (en) 1996-02-23 2000-05-16 U.S. Philips Corporation Autostereoscopic display apparatus
GB2320156A (en) * 1996-12-07 1998-06-10 Sharp Kk Directional display and method of making a mask for a directional display
GB2317734A (en) 1996-09-30 1998-04-01 Sharp Kk Spatial light modulator and directional display
GB0119176D0 (en) 2001-08-06 2001-09-26 Ocuity Ltd Optical switching apparatus
GB2403864A (en) * 2003-07-10 2005-01-12 Ocuity Ltd Pixel arrangement for an autostereoscopic display
US7480022B2 (en) * 2003-12-10 2009-01-20 Seiko Epson Corporation Liquid crystal display device, method of manufacturing liquid crystal display device, and electronic apparatus
KR101246645B1 (ko) 2005-04-29 2013-03-25 코닌클리케 필립스 일렉트로닉스 엔.브이. 입체 영상 디스플레이 장치
EP1929772B1 (en) 2005-09-16 2019-01-16 Philips Lighting Holding B.V. Illuminator
ATE488098T1 (de) 2005-09-16 2010-11-15 Koninkl Philips Electronics Nv Autostereoskopische anzeigevorrichtung und filter dafür
JP4834592B2 (ja) 2007-03-29 2011-12-14 株式会社東芝 三次元映像表示装置
GB2470752B (en) * 2009-06-03 2015-01-07 Au Optronics Corp Autostereoscopic Display Apparatus

Also Published As

Publication number Publication date
CN102109715B (zh) 2014-06-04
GB2477294A (en) 2011-08-03
CN102109715A (zh) 2011-06-29
TW201126205A (en) 2011-08-01
GB201001344D0 (en) 2010-03-17
US20110181706A1 (en) 2011-07-28
US8692871B2 (en) 2014-04-08
GB2477294B (en) 2015-05-06

Similar Documents

Publication Publication Date Title
TWI435115B (zh) 自動立體顯示裝置與空間光調變器
TWI451162B (zh) 自動立體影像顯示裝置
US8159739B2 (en) Display apparatus
JP5521380B2 (ja) 立体表示装置
JP4654183B2 (ja) レンズアレイ構造
JP5135448B2 (ja) 縦または横に表示することのできる3dディスプレイ
JP4944235B2 (ja) 切り替え可能な複屈折レンズアレイ及びこれを備えた表示装置
US9344708B2 (en) Non-glasses type stereoscopic image display device
US20080007566A1 (en) Multi-dimensional image selectable display device
CN104685867A (zh) 观察者跟踪自动立体显示器
KR20040083384A (ko) 시차 장벽 및 다중 뷰 디스플레이
JP2007535685A (ja) 自動立体表示装置のための画素配置
US10021375B2 (en) Display device and method of driving the same
US9709813B2 (en) Image display device
JPWO2004046789A1 (ja) 立体映像表示装置