TWI433477B - Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system - Google Patents

Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system Download PDF

Info

Publication number
TWI433477B
TWI433477B TW100101163A TW100101163A TWI433477B TW I433477 B TWI433477 B TW I433477B TW 100101163 A TW100101163 A TW 100101163A TW 100101163 A TW100101163 A TW 100101163A TW I433477 B TWI433477 B TW I433477B
Authority
TW
Taiwan
Prior art keywords
sequence
code
orthogonal
radio frequency
division multiplexing
Prior art date
Application number
TW100101163A
Other languages
Chinese (zh)
Other versions
TW201145851A (en
Inventor
Yingming Tsai
Guodong Zhang
Jung Lin Pan
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW201145851A publication Critical patent/TW201145851A/en
Application granted granted Critical
Publication of TWI433477B publication Critical patent/TWI433477B/en

Links

Description

傳送裝置、接收裝置及應用於正交分頻多工分碼多重存取系統中的方法Transmission device, receiving device and method for use in orthogonal frequency division multiplexing multiple code division multiple access system

本發明係有關無線通信系統。更特別是,本發明係有關正交分頻多工(OFDM)分碼多重存取(CDMA)通信系統。The present invention is related to wireless communication systems. More particularly, the present invention relates to orthogonal frequency division multiplexing (OFDM) code division multiple access (CDMA) communication systems.

未來無線通信網路將提供對用戶無線網際網路存取之寬頻服務。這些寬頻服務係需具多路衰減所產生之有限頻譜及符號間干擾(ISI)之分時(頻率選擇性)頻道之可靠及高速率通信。正交分頻多工係因若干原因而為最有希望解之一。正交分頻多工具有高頻譜效率,而適應性編碼及調變可跨越次載波被運用。實施係因基帶調變及解調可使用如反向快速富利葉轉換(IFFT)電路及快速富利葉轉換(FFT)電路之簡單電路來執行而被簡化。因為多路環境中僅一分接點等化器足以提供優越強固性,所以簡單接收器結構係為正交分頻多工系統優點之一。其他例中,當正交分頻多工結合跨越多次載波之信號擴展被使用時,係需更先進等化器。Future wireless communication networks will provide broadband services for users' wireless Internet access. These broadband services require reliable and high-rate communication with limited spectrum and inter-symbol interference (ISI) time-division (frequency selective) channels resulting from multiple attenuations. The orthogonal frequency division multiplexing system is one of the most promising solutions for several reasons. Orthogonal frequency division multi-tools have high spectral efficiency, while adaptive coding and modulation can be applied across sub-carriers. Implementation is simplified by baseband modulation and demodulation using simple circuits such as inverse fast Fourier transform (IFFT) circuits and fast Fourier transform (FFT) circuits. Since only one tap point equalizer in a multi-path environment is sufficient to provide superior robustness, a simple receiver structure is one of the advantages of an orthogonal frequency division multiplexing system. In other examples, when orthogonal frequency division multiplexing is used in conjunction with signal spreading across multiple carriers, a more advanced equalizer is required.

正交分頻多工已被若干標準採用,如數位聲音廣播(DAB),數位聲音廣播陸地(DAB-T),IEEE 802.11a/g,IEEE 802.16及非對稱數位用戶線路(ADSL)。正交分頻多工係被考慮採用於如第三代夥伴計劃(3GPP)長期演進之寬頻分碼多重存取(WCDMA),分碼多重存取2000,第四代(4G)無線系統,IEEE 802.11n,IEEE 802.16及IEEE 802.20。Orthogonal frequency division multiplexing has been adopted by several standards such as Digital Sound Broadcasting (DAB), Digital Sound Broadcasting Terrestrial (DAB-T), IEEE 802.11a/g, IEEE 802.16 and Asymmetric Digital Subscriber Line (ADSL). Orthogonal frequency division multiplexing is considered for use in the Long-Term Evolution of Wideband Coded Multiple Access (WCDMA), Partition Multiple Access 2000, Fourth Generation (4G) Wireless Systems, IEEE 802.11n, IEEE 802.16 and IEEE 802.20.

儘管所有優點,正交分頻多工係具有若干缺點。正交分頻多工之一主要缺點係其內含高峰值對平均功率比率(PAPR)。當次載波數增加時,正交分頻多工之峰值對平均功率比率亦增加。當高峰值對平均功率比率信號經由非線性功率放大器被傳送時,會發生劇烈信號失真。因此,正交分頻多工係需具功率回退之高度線性功率放大器。結果,具正交分頻多工之功率效率很低且實施正交分頻多工之行動裝置電池壽命受限。Despite all the advantages, orthogonal frequency division multiplexing has several drawbacks. One of the main drawbacks of orthogonal frequency division multiplexing is its high peak-to-average power ratio (PAPR). As the number of subcarriers increases, the peak-to-average power ratio of the orthogonal frequency division multiplexing also increases. When the high peak-to-average power ratio signal is transmitted via the nonlinear power amplifier, severe signal distortion occurs. Therefore, the orthogonal frequency division multiplexing system requires a highly linear power amplifier with power back-off. As a result, the power efficiency of the mobile device with orthogonal frequency division multiplexing is very low and the implementation of orthogonal frequency division multiplexing is limited.

降低正交分頻多工系統之峰值對平均功率比率技術已被廣泛地研究。這些峰值對平均功率比率技術係包含編碼,限幅及濾波。這些方法有效性不同且各具有複雜性,效能及頻譜效率之其自我內含置換。Techniques for reducing the peak-to-average power ratio of orthogonal frequency division multiplexing systems have been extensively studied. These peak-to-average power ratio techniques include coding, limiting, and filtering. These methods are different in effectiveness and each has its own complexity, efficiency and spectral efficiency.

本發明係有關正交分頻多工分碼多重存取系統。該系統係包含一傳送器及一接收器。傳送器處,擴展及次載波映射單元可以擴展複合二次序列(SCQS)碼擴展輸入資料符號以產生複數晶片,並映射各晶片至複數次載波之一。反向離散富利葉轉換(IDFT)或反向快速富利葉轉換單元係可對被映射至次載波之晶片執行反向離散富利葉轉換或反向快速富利葉轉換,且循環字首(CP)係被插入正交分頻多工訊框中。並列對串列(P/S)轉換器可將時域資料轉換為串列資料流。接收器處,串列對並列(S/P)轉換器可將被接收資料轉換為複數被接收資料流,而循環字首係被移除自該被接收資料。離散富利葉轉換(DFT)或快速富利葉轉換單元係可對該被接收資料執行離散富利葉轉換或快速富利葉轉換及執行等化。解展頻器可將等化器輸出解擴開來恢復該被傳送資料。The present invention relates to an orthogonal frequency division multiplexing multiple code division multiple access system. The system includes a transmitter and a receiver. At the transmitter, the spreading and subcarrier mapping unit may extend the composite quadratic sequence (SCQS) code to extend the input data symbols to generate a plurality of chips and map each of the chips to one of the plurality of carriers. An inverse discrete Fourier transform (IDFT) or inverse fast Fourier transform unit can perform inverse discrete Fourier transform or inverse fast Fourier transform on a wafer mapped to a subcarrier, and the cyclic prefix (CP) is inserted into the orthogonal frequency division multiplexing frame. A parallel-to-serial (P/S) converter converts time domain data into a serial data stream. At the receiver, a serial-to-parallel (S/P) converter converts the received data into a plurality of received data streams, and the cyclic word header is removed from the received data. A discrete Fourier transform (DFT) or fast Fourier transform unit may perform discrete Fourier transform or fast Fourier transform and perform equalization on the received data. The despreader can despread the equalizer output to recover the transmitted data.

本發明可應用至實施正交分頻多工及分碼多重存取之無線通信系統,如IEEE 802.11,IEEE 802.16,長期演進之第三代(3G)蜂巢系統,第四代(4G)系統,衛星系統,數位聲音廣播,數位視訊廣播(DVB)或類似者。The present invention is applicable to wireless communication systems implementing orthogonal frequency division multiplexing and code division multiple access, such as IEEE 802.11, IEEE 802.16, long-term evolution third generation (3G) cellular system, fourth generation (4G) system, Satellite systems, digital sound broadcasting, digital video broadcasting (DVB) or the like.

本發明特性可被併入積體電路(IC)或被配置於包含多互連組件中之電路中。Features of the invention may be incorporated into an integrated circuit (IC) or configured in a circuit comprising multiple interconnected components.

本發明可提供具有改良峰值對平均功率比率及容量之正交分頻多工-分碼多重存取系統。本發明係使用特殊擴展碼,擴展複合二次序列碼來擴展輸入資料符號。擴展複合二次序列碼包含兩組成;二次相位序列碼及正交(或偽正交)擴展碼。被G標示之二次相位序列碼例係為Newman相位碼(或多相碼),一般化啁啾狀序列(GCL)及Zadoff-Chu序列。二次相位序列亦被稱為多相序列。The present invention can provide an orthogonal frequency division multiplexing-dividing multiple access system with improved peak-to-average power ratio and capacity. The present invention extends the input data symbols by extending the composite secondary sequence code using a special spreading code. The extended composite secondary sequence code comprises two components; a secondary phase sequence code and an orthogonal (or pseudo-orthogonal) spreading code. The quadratic phase sequence code indicated by G is a Newman phase code (or polyphase code), a generalized sequence (GCL) and a Zadoff-Chu sequence. The secondary phase sequence is also referred to as a polyphase sequence.

為了支援可變擴展因子(VSF),二次相位序列(或多相序列)之序列長度係被限制為K=2k 。某些特殊例中(如隨機存取頻道或上鏈引示),二次相位序列(或多相序列)之序列長度可為任何隨意整數。給予系統中此載波數N=2n ,考慮N序列長度為N。接著,一般Newman相位碼序列係被固定。一般Newman相位碼序列係為:To support the variable spreading factor (VSF), the sequence length of the quadratic phase sequence (or polyphase sequence) is limited to K = 2 k . In some special cases (such as random access channels or uplink instructions), the sequence length of the quadratic phase sequence (or polyphase sequence) can be any random integer. Given the number of such carriers in the system N = 2 n , consider the length of the N sequence is N. Next, the general Newman phase code sequence is fixed. The general Newman phase code sequence is:

更多正交Newman相位碼序列係藉由轉換該一般Newman相位碼序列來創造。一般Newman相位碼序列之第1轉換版本(或離散富利葉轉換調變)係為:More orthogonal Newman phase code sequences are created by transforming the general Newman phase code sequence. The first conversion version of the general Newman phase code sequence (or discrete Fourier transform modulation) is:

具不同轉換兩Newman相位碼序列係彼此正交。The two Newman phase code sequences with different conversions are orthogonal to each other.

被H標示之正交(偽正交)擴展碼之一例係為Walsh-Hadamard碼,其係被給定:An example of an orthogonal (pseudo-orthogonal) spreading code indicated by H is a Walsh-Hadamard code, which is given by:

擴展複合二次序列碼係藉由組合二次相位碼及正交(偽正交)擴展碼來建構。針對特定擴展因子2m ,擴展複合二次序列碼係具有2m 晶片。擴展複合二次序列碼之一般二次相位序列碼部分具有2m 晶片,其為:The extended composite secondary sequence code is constructed by combining a quadratic phase code and an orthogonal (pseudo-orthogonal) spreading code. The extended composite secondary sequence code system has a 2 m wafer for a specific spreading factor of 2 m . The general quadratic phase sequence code portion of the extended composite secondary sequence code has a 2 m wafer, which is:

其中k=0,1,...,2m -1,i=0,1,...,2n-m -1。二次相位序列碼部分之第1變換版本係具有2m 晶片,其為:Where k = 0, 1, ..., 2 m -1, i = 0, 1, ..., 2 nm -1. The first modified version of the quadratic phase sequence code portion has a 2 m wafer, which is:

其中1=0,1,...,N-1,k=0,1,...,2m -1,i=0,1,...,2n-m -1。Wherein 1 = 0, 1, ..., N-1, k = 0, 1, ..., 2 m -1, i = 0, 1, ..., 2 nm -1.

針對具有擴展因子2m 之特定擴展複合二次序列碼,擴展複合二次序列碼之正交(偽正交)擴展碼部分係藉由擴展因子2m 之正交(偽正交)擴展碼組中之編碼之一來給定。例如,第h編碼係被標示For a specific extended composite secondary sequence code having a spreading factor of 2 m , the orthogonal (pseudo-orthogonal) spreading code portion of the extended composite secondary sequence code is extended by a quadrature (pseudo-orthogonal) spreading block of a spreading factor of 2 m One of the codes is given. For example, the h coding system is marked .

擴展複合二次序列碼ci 之第k晶片係被建構為一般Newman相位碼序列之第1轉換版本之第k二次相位序列碼及具有N=2m 大小之第h正交(偽正交)擴展碼之第k晶片之乘積。The kth wafer of the extended composite secondary sequence code c i is constructed as the kth quadratic phase sequence code of the first conversion version of the general Newman phase code sequence and the hth orthogonal (pseudo-orthogonal) having a size of N=2 m The product of the kth wafer of the spreading code.

擴展複合二次序列碼之編碼組大小係藉由正交(偽正交)擴展碼部分及二次相位序列碼部分之編碼組尺寸來決定。無論擴展因子為何,二次相位序列碼之編碼組尺寸均被固定,且藉由系統次載波數2n 之不同轉換數來決定。正交(偽正交)擴展碼之編碼組尺寸係視擴展因子而定。例如,Walsh-Hadamard碼例中,該尺寸等於擴展因子2m (0 m n )。The coding group size of the extended composite secondary sequence code is determined by the coding group size of the orthogonal (pseudo-orthogonal) spreading code portion and the secondary phase sequence code portion. Regardless of the spreading factor, the coding group size of the secondary phase sequence code is fixed and determined by the number of different conversions of the system subcarrier number 2 n . The coding group size of the orthogonal (pseudo-orthogonal) spreading code depends on the spreading factor. For example, in the Walsh-Hadamard code example, the size is equal to the expansion factor of 2 m (0 m n ).

不同使用者係被分配不同擴展複合二次序列碼。為使接收器區分不同使用者,二次相位序列碼部分,正交(偽正交)擴展碼部分或兩者中之二使用者所使用之擴展複合二次序列碼係不同。擴展複合二次序列碼之編碼組係被顯示於第2圖。無多路時,只要其二次相位序列碼部分不同,不同擴展複合二次序列碼係為正交;或正交擴展碼被使用。不同擴展複合二次序列碼僅於其二次相位序列碼部分相同且偽正交擴展碼被使用時才是偽正交。兩例中,不同編碼間之多重存取干擾(MAI)係為零或非常小。Different users are assigned different extended composite secondary sequence codes. In order for the receiver to distinguish between different users, the quadratic phase sequence code portion, the orthogonal (pseudo-orthogonal) spreading code portion or two of the two are different in the extended composite secondary sequence code system used by the user. The coding group of the extended composite secondary sequence code is shown in Fig. 2. When there is no multiplex, as long as the secondary phase sequence code portions are different, the different extended composite secondary sequence codes are orthogonal; or orthogonal spreading codes are used. The different extended composite secondary sequence codes are pseudo-orthogonal only when their secondary phase sequence code portions are identical and the pseudo-orthogonal spreading codes are used. In both cases, the multiple access interference (MAI) between different codes is zero or very small.

多路衰減環境下,被分配至不同使用者之編碼應使二次相位序列碼部分變換差異愈大愈好。被分配至不同使用者之編碼應使得若兩編碼之二次相位序列碼部分變換差異不小於多路頻道之最大延遲擴展,則兩編碼之間並無任何多重存取干擾。因此,對應正交(偽正交)擴展碼部分可被分配為相同。可選擇是,二次相位序列碼部分變換差異可被限制最多為多路頻道最大延遲擴展。此可以完全多重存取干擾之抗擾性來創造更多編碼。只要系統中使用者數量僅N/L,則此可達成,其中N為次載波數而L為多路頻道最大延遲擴展。In a multi-channel fading environment, the code assigned to different users should make the difference in the partial transformation of the quadratic phase sequence code as large as possible. The codes assigned to different users should be such that if the partial transform of the two phase sequence codes of the two codes is not less than the maximum delay spread of the multiple channels, there is no multiple access interference between the two codes. Therefore, the corresponding orthogonal (pseudo-orthogonal) spreading code portions can be assigned the same. Alternatively, the quadratic phase sequence code partial transform difference can be limited to at most the multi-channel maximum delay spread. This creates full coding with full multi-access interference immunity. This can be achieved as long as the number of users in the system is only N/L, where N is the number of secondary carriers and L is the maximum delay spread of the multiple channels.

若兩編碼之二次相位序列碼部分變換差異小於多路頻道之最大延遲擴展,則對應正交(偽正交)擴展碼部分應不同以降低不能藉由二次相位序列碼部分變換差異刪除之多重存取干擾。If the partial transform difference of the two-phase quadratic sequence code is smaller than the maximum delay spread of the multi-channel, the corresponding orthogonal (pseudo-orthogonal) spread code portion should be different to reduce the difference cannot be deleted by the quadratic phase sequence code partial transform difference Multiple access interference.

此法中,因為正交碼間之相關係藉由兩二次相位序列碼之相關被進一步降低,所以該多重存取干擾與傳統分碼多重存取系統相較下可被降低。針對干擾限制系統(如分碼多重存取),多重存取干擾降低意指系統容量增加。In this method, since the phase relationship between the orthogonal codes is further reduced by the correlation of the two secondary phase sequence codes, the multiple access interference can be reduced as compared with the conventional code division multiple access system. For interference limiting systems (such as code division multiple access), multiple access interference reduction means increased system capacity.

本發明之正交分頻多工-分碼多重存取系統係包含一傳送器及一接收器。傳送器包含一擴展及次載波映射部件及一正交分頻多工部件。擴展及次載波映射部件可擴展輸入資料符號為複數晶片及映射該晶片至複數次載波之一。正交分頻多工部件可執行傳統正交分頻多工操作。該擴展可被執行於頻域,時域或兩者中,其將被詳細解釋如下。The orthogonal frequency division multiplexing-dividing multiple access system of the present invention comprises a transmitter and a receiver. The transmitter includes an extension and subcarrier mapping component and an orthogonal frequency division multiplexing component. The extended and secondary carrier mapping component extends the input data symbols into a plurality of chips and maps the wafer to one of a plurality of subcarriers. The orthogonal frequency division multiplexing component can perform conventional orthogonal frequency division multiplexing operation. This extension can be performed in the frequency domain, the time domain or both, which will be explained in detail as follows.

第1圖係為依據本發明第一實施例之正交分頻多工分碼多重存取系統100方塊圖。系統100係包含一傳送器100及一接收器150。傳送器100係包含一展頻器112,一串列對並列(S/P)轉換器114,一次載波映射單元116,一反向離散富利葉轉換單元118,一循環字首(CP)插入單元120,一並列對串列(P/S)轉換器122及一可選擇混合器124。展頻器112可使用擴展複合二次序列碼111於頻域中擴展輸入資料符號101。擴展及次載波映射之程序係被顯示於第3圖中。擴展複合二次序列碼ci 所使用之擴展因子係為2m (0 m n )。一使用者可使用系統中所有2n 次載波。因此,可被一使用者傳送於一正交分頻多工訊框中之資料符號數係為2n-m 。各資料符號d(i)101係藉由擴展碼ci 111擴展為2m 晶片113。2m 晶片113接著藉由串列對並列轉換器114被轉換為2m 並列晶片115,而各晶片係藉由次載波映射單元116被等距映射至次載波117之一。相同資料符號之晶片所使用之各次載波間之距離係為2n-m 次載波。不同資料符號之晶片係被依序映射至系統中之次載波,使資料符號d(i)之晶片得以被映射至次載波2n-m ‧k+i,(k=0,1,...,2m -1,i=0,1,...,2n-m -1)。1 is a block diagram of an orthogonal frequency division multiplexing code division multiple access system 100 in accordance with a first embodiment of the present invention. System 100 includes a transmitter 100 and a receiver 150. The transmitter 100 includes a spreader 112, a serial-to-parallel (S/P) converter 114, a primary carrier mapping unit 116, an inverse discrete Fourier transform unit 118, and a cyclic prefix (CP) insertion. Unit 120, a parallel pair of serial (P/S) converters 122 and an optional mixer 124. The spreader 112 can extend the input data symbols 101 in the frequency domain using the extended composite secondary sequence code 111. The procedures for spreading and subcarrier mapping are shown in Figure 3. The spreading factor used to extend the composite quadratic sequence code c i is 2 m (0 m n ). A user can use all 2 n secondary carriers in the system. Therefore, the number of data symbols that can be transmitted by a user in an orthogonal frequency division multi-frame is 2 nm . Each data symbol d (i) 101 by spreading code based c i 111 extended to 2 m 113.2 m wafer by wafer 113 is then parallel to serial converter 114 is converted into parallel wafer 115 2 m, and each chip is The subcarrier mapping unit 116 is equally mapped to one of the subcarriers 117. The distance between each subcarrier used by the wafer of the same data symbol is 2 nm subcarrier. The chips of different data symbols are sequentially mapped to the secondary carriers in the system, so that the data symbols d(i) are mapped to the subcarrier 2 nm ‧k+i, (k=0,1,..., 2 m -1, i = 0, 1, ..., 2 nm -1).

第4圖顯示擴展及次載波映射之替代實施例。重複器402係被用來取代展頻器112以晶片速率重複各資料符號d(i) 2m 次。被重複之資料符號404係藉由串列對並列轉換器406被轉換為2m 並列符號407,而各符號係藉由次載波映射及加權單元408依序等距映射至2m 次載波之一。各次載波間之距離係為2n-m 次載波。不同資料符號之晶片係被依序映射至系統中之次載波,使資料符號d(i)之晶片得以被映射至次載波2n-m ‧k+i,(k=0,1,...,2m -1,i=0,1,...,2n-m -1)。被映射至各次載波2n-m ‧k+i之符號係藉由擴展複合二次序列碼加權使次載波2n-m ‧k+i上之符號被乘上被標示為之擴展複合二次序列碼之第k晶片。Figure 4 shows an alternate embodiment of the spread and subcarrier mapping. Repeater 402 is used in place of spreader 112 to repeat each data symbol d(i) 2 m times at wafer rate. The repeated data symbols 404 are converted into 2 m juxtaposed symbols 407 by the tandem pair parallel converter 406, and each symbol is equally mapped to one of the 2 m subcarriers by the subcarrier mapping and weighting unit 408. . The distance between each subcarrier is 2 nm subcarrier. The chips of different data symbols are sequentially mapped to the secondary carriers in the system, so that the data symbols d(i) are mapped to the subcarrier 2 nm ‧k+i, (k=0,1,..., 2 m -1, i = 0, 1, ..., 2 nm -1). The symbol mapped to 2 nm ‧k+i of each subcarrier is weighted by the extended composite subsequence code so that the symbol on the subcarrier 2 nm ‧k+i is multiplied and marked as The kth wafer of the extended composite secondary sequence code.

回去參考第1圖,被映射於次載波之晶片117係被饋入反向離散富利葉轉換單元118被轉換為時域資料119。循環字首接著藉由循環字首插入單元120被添加至各正交分頻多工訊框端。具有循環字首之時域資料121接著藉由並列對串列轉換器122被轉換為串列資料123且被傳送於無線頻道上。應注意,反向離散富利葉轉換操作可被反向快速富利葉轉換或其他類似操作所取代,循環字首插入可於反向離散富利葉轉換輸出被並列對串列轉換器122轉換為串列資料之前被執行,而循環字首移除可於該被接收信號被串列對並列轉換器154轉換為並列資料流之前被執行。Referring back to FIG. 1, the wafer 117 mapped to the subcarrier is fed to the inverse discrete Fourier transform unit 118 and converted into time domain data 119. The cyclic prefix is then added to each orthogonal frequency division multiplexer terminal by a cyclic prefix insertion unit 120. Time domain data 121 having a cyclic prefix is then converted to serial data 123 by a parallel pair of serial converters 122 and transmitted over the wireless channel. It should be noted that the inverse discrete Fourier transform operation can be replaced by an inverse fast Fourier transform or other similar operation, and the cyclic prefix insertion can be converted by the parallel-to-serial converter 122 in the inverse discrete Fourier transform output. The serial data is previously executed, and the cyclic prefix removal is performed before the received signal is converted by the serial-to-parallel converter 154 into a parallel data stream.

由於擴展資料之結構,反向離散富利葉轉換操作係可被簡化。反向離散富利葉轉換單元118之輸出119係可藉由特定相位被轉換。該項位係為對應輸入資料次載波及資料符號指標之函數。因此,反向離散富利葉轉換操作可藉由不需太多計算之相位轉換計算來取代。Due to the structure of the extended data, the inverse discrete Fourier transform operation system can be simplified. The output 119 of the inverse discrete Fourier transform unit 118 can be converted by a particular phase. This bit is a function of the input data subcarrier and data symbol index. Therefore, the inverse discrete Fourier transform operation can be replaced by a phase conversion calculation that does not require much calculation.

例如,假設n/2<m n 且擴展複合二次序列碼之正交(偽正交)擴展碼部分為{1,1,...,1}。則反向離散富利葉轉換單元118之第h輸出係被給定如下:For example, suppose n/2<m n The orthogonal (pseudo-orthogonal) spreading code portion of the extended composite secondary sequence code is {1, 1, ..., 1}. Then the hth output of the inverse discrete Fourier transform unit 118 is given as follows:

其中h值係滿足以下條件:Where h value meets the following conditions:

h =2 n-m p +i ,p =0,1,...2 m -1,i =0,1,...,2 n-m -1 h = 2 nm p + i , p =0,1,...2 m -1, i =0,1,...,2 nm -1

可選擇於傳送器110處執行遮罩操作及於接收器150處執行對應解遮罩操作。遮罩目的係降低胞元間多重存取干擾。於傳送器110處,混合器124可於傳送之前將資料123乘上遮罩碼125。對應解遮罩操作係被執行於接收器150處。混合器152可將該被接收信號128乘上遮罩碼125之共軛151以產生解遮罩資料流153。A masking operation can be performed at the transmitter 110 and a corresponding unmasking operation at the receiver 150. The purpose of the mask is to reduce multiple access interference between cells. At the conveyor 110, the mixer 124 can multiply the material 123 by the mask code 125 prior to transmission. A corresponding unmasking operation is performed at the receiver 150. The mixer 152 can multiply the received signal 128 by the conjugate 151 of the mask code 125 to produce a demasked data stream 153.

參考第1圖,接收器150係包含一可選混合器152,一串列對並列轉換器154,一循環字首移除單元156,一離散富利葉轉換單元158,一等化器160及一解展頻器(包含乘法器162,一加法器164及一規度器166)。時域被接收資料128係藉由串列對並列轉換器154被轉換為並列資料流,而循環字首係藉由循環字首移除單元156被移除。這些操作效能係可如上述解釋被交換。來自循環字首移除單元156之輸出157接著被饋入離散富利葉轉換單元158以被轉換為頻域資料159。頻域資料159之等化係藉由等化器160來執行。如傳統正交分頻多工系統中,簡單一分接點等化器係可被用於各次載波處之頻域資料159。應注意,離散富利葉轉換操作係可被快速富利葉轉換操作或其他類似操作取代。Referring to FIG. 1, the receiver 150 includes an optional mixer 152, a serial-to-parallel converter 154, a cyclic prefix removal unit 156, a discrete Fourier transform unit 158, an equalizer 160, and A despreading spreader (including a multiplier 162, an adder 164 and a gauge 166). The time domain received data 128 is converted to a parallel data stream by the serial pair parallel converter 154, and the cyclic word header is removed by the cyclic prefix removal unit 156. These operational performances can be exchanged as explained above. The output 157 from the cyclic prefix removal unit 156 is then fed into the discrete Fourier transform unit 158 to be converted to frequency domain data 159. The equalization of the frequency domain data 159 is performed by the equalizer 160. In a conventional orthogonal frequency division multiplexing system, a simple one-drop point equalizer can be used for the frequency domain data 159 at each subcarrier. It should be noted that the discrete Fourier transform operation can be replaced by a fast Fourier transform operation or other similar operation.

由於擴展資料結構因素,離散富利葉轉換操作亦可被簡化。離散富利葉轉換單元之輸出159係為被特定相位轉換之資料符號。該相位係為對應輸入資料次載波及資料符號指標之函數。因此,離散富利葉轉換操作可藉由不需太多計算之相位轉換計算來取代。其達成方式係類似但與相對傳送器側處之反向離散富利葉轉換相反。Discrete Fourier transform operations can also be simplified due to extended data structure factors. The output 159 of the discrete Fourier transform unit is a data symbol that is converted by a particular phase. The phase is a function corresponding to the input data subcarrier and the data symbol index. Therefore, the discrete Fourier transform operation can be replaced by a phase conversion calculation that does not require much calculation. The way it is achieved is similar but opposite to the inverse discrete Fourier transform at the opposite transmitter side.

被等化資料係被解展頻於頻域處。等化之後各次載波處之輸出161係藉由乘法器162被乘上被用於傳送器110處之擴展複合二次序列碼,k=0,1,...,2m -1之對應晶片之共軛168。接著,所有次載波處之乘法輸出163係被加法器164加總,而該被加總輸出165係被規度器166正規化有擴展複合二次序列碼之擴展因子以恢復資料167。The equalized data is despread in the frequency domain. The output 161 at each carrier after equalization is multiplied by the multiplier 162 for the extended composite secondary sequence code used at the transmitter 110. , k = 0, 1, ..., 2 m -1 of the corresponding conjugate 168 of the wafer. Next, the multiply outputs 163 at all subcarriers are summed by the adder 164, and the summed output 165 is normalized by the speculator 166 with the spreading factor of the extended composite secondary sequence code to recover the data 167.

接收器150可進一步包含可處理解展頻器輸出之一區塊線性等化器或一聯合偵測器(無圖示)。任何類型區塊線性等化器或聯合偵測器均可被使用。區塊線性等化器或聯合偵測器之一傳統配置係為最小均方差(MMSE)區塊線性等化器。此例中,頻道矩陣H係針對次載波被建立及計算,而等化係使用該被建立頻道矩陣來執行使得:Receiver 150 can further include a block linear equalizer or a joint detector (not shown) that can process the despreader output. Any type of block linear equalizer or joint detector can be used. One of the traditional configurations of block linear equalizers or joint detectors is the minimum mean square error (MMSE) block linear equalizer. In this example, the channel matrix H is established and calculated for the secondary carrier, and the equalization is performed using the established channel matrix such that:

其中H為頻道矩陣,為次載波中被接收信號,為次載波中被等化資料向量。Where H is the channel matrix, Is the received signal in the secondary carrier, The data vector is equalized in the secondary carrier.

針對上鏈操作,較佳於反向離散富利葉轉換操作之後保持固定包絡,其促進有效及便宜功率放大器之使用。為了保持固定包絡,以下針對具有N=2n 次載波之系統之條件必須被滿足。首先,擴展因子2m 係被 n /2 m n 限制,其中 a 項意指大於a之最小整數。其次,針對擴展因子2m ,僅部分正交碼被用來結合二次相位序列碼以產生可獲得固定包絡之擴展複合二次序列碼。例如,Newman相位碼及Hadamard碼例中,僅Hadamard碼組之第一碼(2m 大小)係被用來結合Newman相位序列碼以產生擴展複合二次序列碼。 b 項意指小於b之最大整數。For the uplink operation, it is preferred to maintain a fixed envelope after the inverse discrete Fourier transform operation, which facilitates the use of efficient and inexpensive power amplifiers. In order to maintain a fixed envelope, the following conditions for a system with N = 2 n subcarriers must be met. First, the expansion factor 2 m is n /2 m n limit, where a The term means the smallest integer greater than a. Second, for a spreading factor of 2 m , only a partial orthogonal code is used in conjunction with the secondary phase sequence code to produce an extended composite secondary sequence code from which a fixed envelope can be obtained. For example, in the Newman phase code and the Hadamard code example, only the first Hadamard code group The code (2 m size) is used to combine the Newman phase sequence code to produce an extended composite secondary sequence code. b The term means the largest integer less than b.

如上述,只要系統中使用者數量不超過N/L,則無多重存取干擾且不需執行多使用者偵測(MUD)。當系統中使用者數量超過N/L時,則會有多重存取干擾且多使用者偵測可能被實施。多重存取干擾較具有相同使用者數量之傳統分碼多重存取系統為優。As described above, as long as the number of users in the system does not exceed N/L, there is no multiple access interference and no multi-user detection (MUD) is required. When the number of users in the system exceeds N/L, there will be multiple access interference and multi-user detection may be implemented. Multiple access interference is superior to traditional code division multiple access systems with the same number of users.

假設系統中具有M使用者。則傳統分碼多重存取系統中多使用者偵測之使用者數量將為M。然而,依據本發明之傳統分碼多重存取系統中多使用者偵測之使用者數量將為 M /L ,其與傳統分碼多重存取系統相較係被降低L度量。以此法,多使用者偵測操作之複雜性遠低於先前技術傳統分碼多重存取系統中之多使用者偵測。亦可使用傳送器及/或接收器處之多天線。Suppose there are M users in the system. The number of users detected by multiple users in the traditional code division multiple access system will be M. However, the number of users detecting multiple users in the conventional code division multiple access system according to the present invention will be M / L It is reduced by the L metric compared to the traditional code division multiple access system. In this way, the complexity of the multi-user detection operation is much lower than that of the prior art multi-user detection in the conventional code division multiple access system. Multiple antennas at the transmitter and/or receiver can also be used.

第5圖係為依據本發明另一實施例之正交分頻多工分碼多重存取系統500(多載體直接序列(MC-DS)分碼多重存取系統)方塊圖。系統500包含一傳送器510及一接收器550。傳送器510係包含一串列對並列轉換器512,複數乘法器514,一次載波映射單元516,一反向離散富利葉轉換單元518,一並列對串列轉換器520,一循環字首插入單元522,及一可選擇混合器524。若系統500中具有N=2n 次載波,則使用者i之N連續資料符號501係藉由串列對並列轉換器512從串列被轉換為N並列符號513。使用者i之N並列資料符號513之第j資料符號係被標示為dj (i),其中j=0,1,...,N-1。使用者i所使用之擴展複合二次序列碼係被標示為ci 。各N並列資料符號513係使用擴展複合二次序列碼ci 511被擴展於時域中。擴展複合二次序列碼ci 之擴展因子係為2m (0 m n ),因此,各資料符號513係藉由擴展複合二次序列碼ci 511被擴展為2m 晶片515。Figure 5 is a block diagram of an orthogonal frequency division multiplexing multiple code division multiple access system 500 (Multi-Carrier Direct Sequence (MC-DS) code division multiple access system) in accordance with another embodiment of the present invention. System 500 includes a transmitter 510 and a receiver 550. The transmitter 510 includes a serial-to-parallel converter 512, a complex multiplier 514, a primary carrier mapping unit 516, an inverse discrete Fourier transform unit 518, a parallel-to-serial converter 520, and a cyclic prefix insertion. Unit 522, and an optional mixer 524. If the system 500 has N=2 n secondary carriers, the N consecutive data symbols 501 of the user i are converted from the serial to the N parallel symbols 513 by the serial-to-parallel converter 512. The jth data symbol of the N-parallel data symbol 513 of the user i is denoted as d j (i), where j=0, 1, ..., N-1. The extended composite secondary sequence code system used by user i is labeled c i . Each N parallel data symbol 513 is extended in the time domain using the extended composite secondary sequence code c i 511. The spreading factor of the extended composite secondary sequence code c i is 2 m (0 m n ), therefore, each data symbol 513 is expanded to a 2 m wafer 515 by expanding the composite secondary sequence code c i 511.

各晶片持續期間,各N資料符號dj (i)之一晶片係被傳送於其對應次載波j上。一使用者可使用系統中所有2n 次載波。因此,可被一正交分頻多工訊框中之一使用者傳送之資料符號數量係為2nDuring the duration of each wafer, one of the N data symbols d j (i) is transmitted on its corresponding subcarrier j. A user can use all 2 n secondary carriers in the system. Therefore, the number of data symbols that can be transmitted by a user in an orthogonal frequency division multi-frame is 2 n .

晶片515係藉由次載波映射單元516被等距映射至次載波。次載波上之晶片517係被饋入反向離散富利葉轉換單元518且被轉換為時域資料519。時域資料519係藉由並列對串列轉換器520從並列被轉換為串列資料521,循環字首係藉由循環字首插入單元522被添加至各訊框端。具循環字首之資料523係於無線頻道上被傳送。同樣單獨使用擴展複合二次序列碼對各次載波執行傳統直接序列分碼多重存取操作,而次載波上之直接序列分碼多重存取信號係使用正交分頻多工結構被並列傳送。Wafer 515 is equally mapped to the subcarrier by subcarrier mapping unit 516. The wafer 517 on the secondary carrier is fed to the inverse discrete Fourier transform unit 518 and converted to time domain data 519. The time domain data 519 is converted from the parallel to the serial data 521 by the parallel-to-serial converter 520, and the cyclic prefix is added to each of the frame terminals by the cyclic prefix insertion unit 522. The data 523 with the cyclic prefix is transmitted on the wireless channel. The conventional direct sequence code multiple access operation is also performed on each subcarrier using the extended composite secondary sequence code alone, and the direct sequence code multiple access signal on the secondary carrier is transmitted in parallel using the orthogonal frequency division multiplexing structure.

接收器550係包含一循環字首移除單元554,一串列對並列轉換器556,一離散富利葉轉換單元558,一等化器560,複數雷克組合器562及一並列對串列轉換器564。首先,循環字首係藉由循環字首移除單元554經由無線頻道從該被接收資料528被移除。資料555接著藉由串列對並列轉換器556從串列被轉換為並列資料557。並列資料557接著被饋入離散富利葉轉換單元558且被轉換為頻域資料559。接著,藉由等化器560對頻域資料559等化。如傳統正交分頻多工系統中,簡單一分接點等化器可被用於各次載波處。The receiver 550 includes a cyclic prefix removal unit 554, a serial-to-parallel converter 556, a discrete Fourier transform unit 558, an equalizer 560, a complex rake combiner 562, and a parallel pair of serials. Converter 564. First, the cyclic prefix is removed from the received material 528 via the wireless channel by the cyclic prefix removal unit 554. The data 555 is then converted from the serial to the side-by-side data 557 by the serial pair parallel converter 556. The parallel data 557 is then fed into the discrete Fourier transform unit 558 and converted to frequency domain data 559. The frequency domain data 559 is then equalized by the equalizer 560. In a conventional orthogonal frequency division multiplexing system, a simple one-drop point equalizer can be used for each subcarrier.

等化後各次載波上之資料561係於時域中被雷克組合器562(包含解展頻器)恢復。各雷克組合器562所產生之並列資料符號563係藉由並列對串列轉換器564被並列對串列轉換以恢復該被傳送資料。After equalization, the data 561 on each carrier is recovered in the time domain by the rake combiner 562 (including the despreader). The parallel data symbols 563 generated by each of the rake combiners 562 are parallel-to-serial converted by the parallel-to-serial converter 564 to recover the transmitted data.

如第1圖之第一實施例中,可選擇於傳送器510處執行遮罩操作及於接收器550處執行對應解遮罩操作以降低胞元間多重存取干擾。混合器524可於傳送之前將來自循環字首插入單元522之輸出523乘上遮罩碼525。接收器550之混合器552可將該被接收信號528乘上被用於傳送器510處之遮罩碼125之共軛551。As in the first embodiment of FIG. 1, a masking operation can be performed at transmitter 510 and a corresponding demasking operation can be performed at receiver 550 to reduce inter-cell multiple access interference. Mixer 524 can multiply output 523 from loop prefix insertion unit 522 by mask code 525 prior to transmission. The mixer 552 of the receiver 550 can multiply the received signal 528 by the conjugate 551 of the mask code 125 used at the transmitter 510.

第6圖係為依據本發明第三實施例之正交分頻多工分碼多重存取系統600方塊圖。系統600包含一傳送器610及一接收器650。傳送器610係包含一串列對並列轉換器612,複數乘法器614,複數重複器616,複數串列對並列轉換器618,一次載波映射及加權單元620,一反向離散富利葉轉換單元622,一並列對串列轉換器624,一循環字首插入單元626,及一可選擇混合器628。依據第三實施例,輸入資料符號係被擴展兩次,一次於時域而另一次於頻域。假設次載波總數為2n ,而被用於時域及頻域擴展之擴展因子分別為2p 及2m 。使用者i之NT 連續資料符號601係藉由串列對並列轉換器612從串列被轉換為並列NT 符號613。NT 值等於2n-m 。使用者i之NT 並列資料符號613之第j資料符號係被標示為dj (i),其中j=0,1,...,N-1。使用者i所使用之時域擴展碼611係被標示為(i ,:)。各NT 並列資料符號613接著藉由乘法器614將符號613乘上時域擴展碼(i ,:)611而被擴展於時域中。時域擴展碼(i ,:)之擴展因子係為被定義於方程式(3)及(4)中之2p 。各資料符號613係被擴展為2p 晶片,而NT 並列2p 晶片流615係被產生。Figure 6 is a block diagram of an orthogonal frequency division multiplexing code division multiple access system 600 in accordance with a third embodiment of the present invention. System 600 includes a transmitter 610 and a receiver 650. The transmitter 610 includes a serial-to-parallel converter 612, a complex multiplier 614, a complex repeater 616, a complex serial-to-parallel converter 618, a primary carrier mapping and weighting unit 620, and an inverse discrete Fourier transform unit. 622, a parallel pair of serial converters 624, a cyclic prefix insertion unit 626, and an optional mixer 628. According to a third embodiment, the input data symbols are expanded twice, once in the time domain and once in the frequency domain. Assume that the total number of secondary carriers is 2 n , and the spreading factors used for time domain and frequency domain expansion are 2 p and 2 m, respectively . The user i N T consecutive data symbol 601 by lines parallel to serial converter 612 is converted from serial to parallel N T symbol 613. The N T value is equal to 2 nm . The jth data symbol of the N T parallel data symbol 613 of the user i is denoted by d j (i), where j=0, 1, ..., N-1. The time domain extension code 611 used by user i is marked as ( i , :). Each N T parallel data symbol 613 is then multiplied by a time domain spreading code by a multiplier 614. ( i , :) 611 is extended in the time domain. Time domain spreading code The expansion factor of ( i , :) is defined as 2 p in equations (3) and (4). Each data symbol 613 is extended to 2 p based wafer, and the wafer 2 p N T parallel stream 615 is generated.

時域擴展之後,頻域擴展係被執行。針對各晶片流j(對應NT 資料符號之第j資料符號),給定使用者i,NT 晶片流之各晶片係於各晶片持續期間被重複器616重複2m 遍,該被重複2m 遍之晶片係藉由串列對並列轉換器618被轉換為並列2m 晶片619。該2m 晶片接著藉由次載波映射及加權單元620被依序映射至2m 等距次載波。各次載波間之距離係為2n-m 次載波。次載波映射係被依序執行使得來自第j晶片流之被重複晶片係被映射至次載波2n-m ‧k+j,(k=0,1,...,2m -1,j=0,1,...,2n-m -1)。反向離散富利葉轉換操作之前,各次載波2n-m ‧k+j上之晶片係藉由被標示之擴展複合二次序列碼ci 之第k晶片加權。After the time domain is extended, the frequency domain extension is performed. Wafer for each stream j (corresponding to the j-th data symbol of the N T data symbol), the given user i, each wafer chip is N T streams on the wafer is continuously repeated during each repeated m times 616, which was repeated 2 The m- pass wafer is converted to a parallel 2 m wafer 619 by a serial-to-parallel converter 618. The 2 m wafers are then sequentially mapped to 2 m equidistant subcarriers by subcarrier mapping and weighting unit 620. The distance between each subcarrier is 2 nm subcarrier. The subcarrier mapping is performed sequentially such that the repeated wafer system from the jth wafer stream is mapped to the subcarrier 2 nm ‧k+j, (k=0,1,...,2 m -1,j=0 , 1, ..., 2 nm -1). Prior to the inverse discrete Fourier transform operation, the wafers on each carrier at 2 nm ‧ k+j are marked The kth wafer weight of the extended composite secondary sequence code c i .

一使用者可使用系統中所有2n 次載波。因此,可被一正交分頻多工訊框中之一使用者傳送之資料符號數量係為2n-mA user can use all 2 n secondary carriers in the system. Therefore, the number of data symbols that can be transmitted by one user in an orthogonal frequency division multi-frame is 2 nm .

第7圖顯示第6圖系統中之頻域擴展及次載波映射之替代方法。除了重複晶片2m 遍,晶片615係被頻域擴展碼直接擴展。針對各晶片流j(對應NT 資料符號之第j資料符號),給定使用者i,各晶片615係於各晶片持續期間藉由乘法器702擴展複合二次序列碼703為2m 晶片704,而頻域擴展晶片704係藉由串列對並列轉換器706被轉換為2m 並列晶片707。如上述,這些並列晶片707接著被次載波映射單元708依序映射至2m 等距次載波709。各次載波間之距離係為2n-m 次載波。次載波映射係被依序執行使得來自第j晶片流之被重複晶片係被映射至次載波2n-m ‧k+j,(k=0,1,...,2m -1,j=0,1,...,2n-m -1)。Figure 7 shows an alternative to frequency domain extension and subcarrier mapping in the system of Figure 6. In addition to repeating the wafer 2 m times, the chip 615 is subjected to a frequency domain spreading code. Direct expansion. For each wafer stream j (corresponding to the jth data symbol of the N T data symbol), for a given user i, each of the chips 615 is extended by the multiplier 702 to extend the composite secondary sequence code for each wafer duration. 703 is a 2 m wafer 704, and the frequency domain extension chip 704 is converted to a 2 m parallel wafer 707 by a serial pair parallel converter 706. As described above, these parallel wafers 707 are then sequentially mapped by the secondary carrier mapping unit 708 to the 2 m equidistant subcarrier 709. The distance between each subcarrier is 2 nm subcarrier. The subcarrier mapping is performed sequentially such that the repeated wafer system from the jth wafer stream is mapped to the subcarrier 2 nm ‧k+j, (k=0,1,...,2 m -1,j=0 , 1, ..., 2 nm -1).

再參考第6圖,被映射至次載波上之晶片621係被饋入反向離散富利葉轉換單元622,且被轉換為時域資料623。時域資料623係藉由並列對串列轉換器624從並列資料被轉換為串列資料625,循環字首藉由循環字首插入單元626被添加至資料625之各訊框端。具有循環字首之資料627係被傳送於無線頻道上。Referring again to FIG. 6, the wafer 621 mapped to the subcarrier is fed to the inverse discrete Fourier transform unit 622 and converted to time domain data 623. The time domain data 623 is converted from the parallel data to the serial data 625 by the parallel to serial converter 624, and the cyclic prefix is added to each of the frame terminals of the data 625 by the cyclic prefix insertion unit 626. The material 627 having the cyclic prefix is transmitted on the wireless channel.

接收器650係包含一可選混合器652,一循環字首移除單元654,一串列對並列轉換器656,一離散富利葉轉換單元658,一等化器660,複數時間-頻率雷克組合器662及一並列對串列轉換器664。於接收器650側,循環字首係藉由循環字首移除單元654經由無線頻道從被接收資料632被移除。資料655接著藉由串列對並列轉換器656從串列被轉換為並列資料657。並列資料657被饋入離散富利葉轉換單元658,且被轉換為頻域資料659。接著,頻域資料659係藉由等化器660被等化。如傳統正交分頻多工系統中,簡單一分接點等化器係可被用於各次載波處。Receiver 650 includes an optional mixer 652, a cyclic prefix removal unit 654, a tandem pair parallel converter 656, a discrete Fourier transform unit 658, an equalizer 660, and a complex time-frequency Ray The gram combiner 662 and a parallel pair of serial converters 664. On the receiver 650 side, the cyclic prefix is removed from the received material 632 via the wireless channel by the cyclic prefix removal unit 654. The data 655 is then converted from the serial to the side-by-side material 657 by the serial pair parallel converter 656. The parallel data 657 is fed to the discrete Fourier transform unit 658 and converted to frequency domain data 659. Next, the frequency domain data 659 is equalized by the equalizer 660. In a conventional orthogonal frequency division multiplexing system, a simple one-drop point equalizer can be used for each subcarrier.

等化之後,各次載波上之資料661係藉由時間-頻率雷克組合器662恢復,其將被詳細解釋如下。各時間-頻率雷克組合器662所產生之並列資料符號663接著藉由並列對串列轉換器664被並列對串列轉換以恢復該被傳送資料。After equalization, the data 661 on each carrier is recovered by the time-frequency rake combiner 662, which will be explained in detail as follows. The side-by-side data symbols 663 generated by each time-frequency rake combiner 662 are then parallel-to-serial converted by the parallel-to-serial converter 664 to recover the transmitted data.

時間-頻率雷克組合器662係為可處理時間及頻率域於傳送器處恢復被擴展於時間及頻率域中之雷克組合器。第8圖顯示雷克組合器662例。熟練技術人士應注意,時間-頻率雷克組合器662可以許多不同方式被執行,而第8圖所示配置係被提供當作例子而非限制。各時間-頻率雷克組合器662係包含一次載波分組單元802,一解展頻器804及一雷克組合器806。針對NT 連續資料符號之各資料符號j(j=0,1,...,2n-m -1),次載波分組單元802係可收集以下次載波上之晶片661 2n-m ‧k+j,總共2m 晶片。接著,解展頻器804可對該2m 次載波上之晶片執行頻域解展頻。解展頻器804包含可將擴展複合二次序列碼之共軛813乘上該被收集晶片811之複數乘法器812,可加總該乘法輸出814之一加法器815,即可正規化該被加總輸出816之一規度器817。頻域解展頻之後,2n 次載波上之晶片係變成NT 並列晶片流上之晶片818。為了恢復使用者i之第j資料符號,時域雷克組合係藉由雷克組合器806被執行於對應晶片流818上。The time-frequency rake combiner 662 is a Rex combiner that recovers the time and frequency domains at the transmitter and is extended in the time and frequency domains. Figure 8 shows a 662 example of a rake combiner. Skilled artisans should note that the time-frequency rake combiner 662 can be implemented in many different ways, and the configuration shown in FIG. 8 is provided as an example and not a limitation. Each time-frequency rake combiner 662 includes a primary carrier grouping unit 802, a despreader 804, and a rake combiner 806. For each data symbol j (j=0, 1, . . . , 2 nm -1) of the N T consecutive data symbols, the subcarrier grouping unit 802 can collect the 661 2 nm ‧k+j on the following subcarriers, A total of 2 m wafers. Next, the despreader 804 can perform frequency domain despreading on the 2 m subcarrier. The despreader 804 includes a complex multiplier 812 that multiplies the conjugate 813 of the extended composite secondary sequence code by the collected wafer 811, and the adder 815 can be summed up by one of the multiplier outputs 814 to normalize the quilt The sum output 816 is a regulator 817. After frequency spreading in the frequency domain, the wafer on the 2 nth carrier becomes the wafer 818 on the N T parallel wafer stream. To recover the jth data symbol of user i, the time domain rip combination is performed on the corresponding wafer stream 818 by the rake combiner 806.

再次參考第6圖,可選擇於傳送器610處執行遮罩操作及於接收器650處執行對應解遮罩操作以降低胞元間多重存取干擾。混合器628可於傳送之前將來自循環字首插入單元626之輸出627乘上遮罩碼630。接收器650之混合器652可將該被接收信號632乘上被用於傳送器610處之遮罩碼之共軛651。Referring again to FIG. 6, a masking operation can be performed at transmitter 610 and a corresponding unmasking operation can be performed at receiver 650 to reduce inter-cell multiple access interference. Mixer 628 can multiply output 627 from loop prefix insertion unit 626 by mask code 630 prior to transmission. The mixer 652 of the receiver 650 can multiply the received signal 632 by the conjugate 651 of the mask code used at the transmitter 610.

針對所有上述實施例,預定資料向量{d(i)}(也就是預知信號)可被傳送。此法中,被上鏈傳送信號可被當作隨機存取頻道(RACH)之引示或上鏈引示信號。例如,所有1,{1,1,...,1}之預定資料向量{d(i)}均可被傳送。For all of the above embodiments, the predetermined material vector {d(i)} (i.e., the predictive signal) can be transmitted. In this method, the uplink transmitted signal can be regarded as a random access channel (RACH) pilot or uplink pilot signal. For example, all predetermined data vectors {d(i)} of 1,{1,1,...,1} can be transmitted.

雖然本發明之特性及元件被以特定組合說明於較佳實施例中,但各特性及元件係不需較佳實施例之其他特性及元件,或有或無本發明其他特性及元件之各種組合中被單獨使用。The features and elements of the present invention are described in the preferred embodiments in the preferred embodiments, and the various features and elements are not required to be further Used separately.

110、510、610...傳送器110, 510, 610. . . Transmitter

112...展頻器112. . . Spreader

123...資料123. . . data

124...混合器124. . . mixer

150、550、650...接收器150, 550, 650. . . receiver

151、551、651...共軛151, 551, 651. . . Conjugate

165...輸出165. . . Output

611...時域擴展碼611. . . Time domain spreading code

662...時間-頻率雷克組合器662. . . Time-frequency rake combiner

804...解展頻器804. . . Despreading spreader

812...乘法器812. . . Multiplier

ci ...擴展複合二次序列碼c i . . . Extended composite secondary sequence code

CP...循環字首CP. . . Cyclic prefix

DFT...離散富利葉轉換DFT. . . Discrete Fourier transform

IDFT...反向離散富利葉轉換IDFT. . . Inverse discrete Fourier transform

OFDM...正交分頻多工OFDM. . . Orthogonal frequency division multiplexing

P/S...並列對串列P/S. . . Parallel pair

SCQS...擴展複合二次序列SCQS. . . Extended composite quadratic sequence

SF...擴展因子SF. . . Expansion factor

S/P...串列對並列S/P. . . Tandem pair

本發明可從以下較佳實施例結合附圖說明得到更詳細了解,其中:The invention can be understood in more detail from the following description of the preferred embodiments, in which:

第1圖係為依據本發明一實施例之正交分頻多工分碼多重存取系統方塊圖;1 is a block diagram of an orthogonal frequency division multiplexing multiple code division multiple access system according to an embodiment of the present invention;

第2圖顯示依據本發明之擴展複合二次序列碼之編碼組;Figure 2 shows an encoding group of an extended composite secondary sequence code in accordance with the present invention;

第3圖顯示第1圖系統中之擴展及次載波映射;Figure 3 shows the extension and subcarrier mapping in the system of Figure 1;

第4圖顯示第1圖系統中之擴展及次載波映射之替代解釋;Figure 4 shows an alternative explanation of the extension and subcarrier mapping in the system of Figure 1;

第5圖係為依據本發明另一實施例之正交分頻多工分碼多重存取系統方塊圖;Figure 5 is a block diagram of an orthogonal frequency division multiplexing code division multiple access system according to another embodiment of the present invention;

第6圖係為依據本發明再另一實施例之正交分頻多工分碼多重存取系統方塊圖;Figure 6 is a block diagram of an orthogonal frequency division multiplexing code division multiple access system according to still another embodiment of the present invention;

第7圖顯示第6圖系統中之頻域擴展及次載波映射之替代方法;及Figure 7 shows an alternative method of frequency domain extension and subcarrier mapping in the system of Figure 6;

第8圖顯示依據本發明之時間-頻率雷克(Rake)組合器例方塊圖。Figure 8 is a block diagram showing an example of a time-frequency rake combiner in accordance with the present invention.

110...傳送器110. . . Transmitter

112...展頻器112. . . Spreader

123...資料123. . . data

124...混合器124. . . mixer

150...接收器150. . . receiver

151...共軛151. . . Conjugate

165...輸出165. . . Output

ci ...擴展複合二次序列碼c i . . . Extended composite secondary sequence code

IDFT...反向離散富利葉轉換IDFT. . . Inverse discrete Fourier transform

CP...循環字首CP. . . Cyclic prefix

OFDM...正交分頻多工OFDM. . . Orthogonal frequency division multiplexing

P/S...並列對串列P/S. . . Parallel pair

SCQS...擴展複合二次序列SCQS. . . Extended composite quadratic sequence

S/P...串列對並列S/P. . . Tandem pair

Claims (21)

一種傳送裝置,包括:至少一電路,係組構成組合資料符號和具有二次相位序列碼之擴展碼及正交序列,其中,具有二次相位序列碼之該擴展碼係藉由將具有複數個相位的第二序列做轉換所導出的,其中,對於2m 的擴展因子而言,該擴展碼具有2m 個晶片,並且由不同使用者所使用的碼在二次相位序列碼部分中係不同的,其中,該至少一電路被進一步組構成將擴展結果映射至複數個次載波,並且其中,該至少一電路被進一步組構成處理該所映射的複數個次載波以及將該處理的結果傳送作為無線電頻率信號。A transmitting apparatus comprising: at least one circuit, the group consisting of a combined data symbol and a spreading code and a quadrature sequence having a secondary phase sequence code, wherein the spreading code having a secondary phase sequence code has a plurality of The second sequence of phases is derived by conversion, wherein for a spreading factor of 2 m , the spreading code has 2 m wafers, and the codes used by different users are different in the secondary phase sequence code portion The at least one circuit is further configured to map the extended result to the plurality of secondary carriers, and wherein the at least one circuit is further configured to process the mapped plurality of secondary carriers and transmit the result of the processing as Radio frequency signal. 如申請專利範圍第1項所述的傳送裝置,其中,該第二序列為具有固定振幅的四相位序列。 The transmitting device of claim 1, wherein the second sequence is a four-phase sequence having a fixed amplitude. 如申請專利範圍第1項所述的傳送裝置,其中,該無線電頻率信號係進一步由第三序列所導出的。 The transmitting device of claim 1, wherein the radio frequency signal is further derived from a third sequence. 如申請專利範圍第3項所述的傳送裝置,其中,該第三序列降低胞元間干擾。 The transfer device of claim 3, wherein the third sequence reduces inter-cell interference. 如申請專利範圍第3項所述的傳送裝置,其中,該第三序列為遮罩碼。 The transfer device of claim 3, wherein the third sequence is a mask code. 如申請專利範圍第1項所述的傳送裝置,其中,該正交序列被分配至該傳送裝置。 The transmitting device of claim 1, wherein the orthogonal sequence is assigned to the transmitting device. 如申請專利範圍第1項所述的傳送裝置,其中,該 至少一電路被進一步組構成使用供擴展用之不同長度的正交序列。 The conveying device of claim 1, wherein the At least one of the circuits is further configured to use orthogonal sequences of different lengths for expansion. 如申請專利範圍第1項所述的傳送裝置,其中,該所映射的複數個次載波被傳送作為以正交分頻多工(OFDM)為基礎的信號。 The transmitting device of claim 1, wherein the mapped plurality of subcarriers are transmitted as an Orthogonal Frequency Division Multiplexing (OFDM) based signal. 一種可應用於正交分頻多工分碼多重存取系統中的方法,包括:藉由傳送裝置來組合資料符號和具有二次相位序列碼之擴展碼及正交序列,其中,具有二次相位序列碼之該擴展碼係藉由將具有複數個相位的第二序列做轉換所導出的,其中,由不同使用者所使用的碼在二次相位序列碼部分中係不同的;藉由該傳送裝置,使用正交序列來擴展組合的結果;藉由該傳送裝置,將擴展結果映射至複數個次載波;藉由該傳送裝置來處理該所映射的複數個次載波;以及將處理的結果傳送作為無線電頻率信號。 A method applicable to an orthogonal frequency division multiplexing multiple code division multiple access system, comprising: combining a data symbol and a spreading code and an orthogonal sequence having a secondary phase sequence code by a transmitting device, wherein the secondary phase has The spreading code of the sequence code is derived by converting a second sequence having a plurality of phases, wherein the codes used by different users are different in the second phase sequence code portion; by the transmission a device, using an orthogonal sequence to extend the result of the combination; by the transmitting device, mapping the extended result to a plurality of secondary carriers; processing the mapped plurality of secondary carriers by the transmitting device; and transmitting the processed result As a radio frequency signal. 如申請專利範圍第9項所述的方法,其中,該無線電頻率信號為具有固定振幅的四相位序列。 The method of claim 9, wherein the radio frequency signal is a four-phase sequence having a fixed amplitude. 如申請專利範圍第9項所述的方法,其中,該無線電頻率信號係進一步由第三序列所導出的。 The method of claim 9, wherein the radio frequency signal is further derived from a third sequence. 如申請專利範圍第11項所述的方法,其中,該第三序列降低胞元間干擾。 The method of claim 11, wherein the third sequence reduces inter-cell interference. 如申請專利範圍第11項所述的方法,其中,該第 三序列為遮罩碼。 The method of claim 11, wherein the The three sequences are mask codes. 如申請專利範圍第9項所述的方法,其中,該正交序列被分配至該傳送裝置。 The method of claim 9, wherein the orthogonal sequence is assigned to the transmitting device. 如申請專利範圍第9項所述的方法,其中,該所映射的複數個次載波被傳送作為以正交分頻多工(OFDM)為基礎的信號。 The method of claim 9, wherein the mapped plurality of subcarriers are transmitted as an Orthogonal Frequency Division Multiplexing (OFDM) based signal. 一種接收裝置,包括:至少一電路,係組構成接收無線電頻率信號以及確定來自該無線電頻率信號的資料符號,其中,該無線電頻率信號為組合該資料符號和具有二次相位序列碼之擴展碼、使用正交序列來擴展組合的結果、將擴展結果映射至複數個次載波,並且由不同使用者所使用的碼在二次相位序列碼部分中係不同的,以及處理該所映射的複數個次載波的結果,具有二次相位序列碼之該擴展碼係藉由將具有複數個相位的第二序列做轉換所導出的。 A receiving apparatus comprising: at least one circuit configured to receive a radio frequency signal and determine a data symbol from the radio frequency signal, wherein the radio frequency signal is a combination of the data symbol and a spreading code having a secondary phase sequence code, Using orthogonal sequences to extend the results of the combination, mapping the extended results to a plurality of subcarriers, and the codes used by different users are different in the quadratic phase sequence code portion, and processing the mapped plurality of times As a result of the carrier, the spreading code having the quadratic phase sequence code is derived by converting a second sequence having a plurality of phases. 如申請專利範圍第16項所述的接收裝置,其中,該第二序列為具有固定振幅的四相位序列。 The receiving device of claim 16, wherein the second sequence is a four-phase sequence having a fixed amplitude. 如申請專利範圍第16項所述的接收裝置,其中,該無線電頻率信號係進一步由第三序列所導出的。 The receiving device of claim 16, wherein the radio frequency signal is further derived from a third sequence. 如申請專利範圍第18項所述的接收裝置,其中,該第三序列降低胞元間干擾。 The receiving device of claim 18, wherein the third sequence reduces inter-cell interference. 如申請專利範圍第18項所述的接收裝置,其中,該第三序列為遮罩碼。 The receiving device of claim 18, wherein the third sequence is a mask code. 如申請專利範圍第16項所述的接收裝置,其中, 該無線電頻率信號被接收作為以正交分頻多工(OFDM)為基礎的信號。 The receiving device according to claim 16, wherein The radio frequency signal is received as an Orthogonal Frequency Division Multiplexing (OFDM) based signal.
TW100101163A 2005-03-24 2006-03-22 Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system TWI433477B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US66486805P 2005-03-24 2005-03-24
US66544205P 2005-03-25 2005-03-25
US66581105P 2005-03-28 2005-03-28
US66614005P 2005-03-29 2005-03-29

Publications (2)

Publication Number Publication Date
TW201145851A TW201145851A (en) 2011-12-16
TWI433477B true TWI433477B (en) 2014-04-01

Family

ID=45075101

Family Applications (6)

Application Number Title Priority Date Filing Date
TW100101163A TWI433477B (en) 2005-03-24 2006-03-22 Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system
TW95109945A TWI337013B (en) 2005-03-24 2006-03-22 Orthogonal frequency division multiplexing code division multiple access system
TW106109981A TWI666886B (en) 2005-03-24 2006-03-22 Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system
TW095137444A TW200731688A (en) 2005-03-24 2006-03-22 Orthogonal frequnecy division multiplexing code division multiple access system
TW103102455A TWI514788B (en) 2005-03-24 2006-03-22 Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system
TW104132415A TWI587649B (en) 2005-03-24 2006-03-22 Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system

Family Applications After (5)

Application Number Title Priority Date Filing Date
TW95109945A TWI337013B (en) 2005-03-24 2006-03-22 Orthogonal frequency division multiplexing code division multiple access system
TW106109981A TWI666886B (en) 2005-03-24 2006-03-22 Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system
TW095137444A TW200731688A (en) 2005-03-24 2006-03-22 Orthogonal frequnecy division multiplexing code division multiple access system
TW103102455A TWI514788B (en) 2005-03-24 2006-03-22 Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system
TW104132415A TWI587649B (en) 2005-03-24 2006-03-22 Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system

Country Status (1)

Country Link
TW (6) TWI433477B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2521961C2 (en) * 2010-01-08 2014-07-10 Фудзицу Лимитед Code generating apparatus, reference signal generating apparatus, and corresponding methods
US9203673B2 (en) * 2012-05-13 2015-12-01 Broadcom Corporation Multi-channel support within single user, multiple user, multiple access, and/or MIMO wireless communications

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804307B1 (en) * 2000-01-27 2004-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient transmit diversity using complex space-time block codes
US6744807B1 (en) * 2000-05-31 2004-06-01 University Of Pretoria Multi-dimensional spread spectrum modem
CN1126307C (en) * 2000-09-22 2003-10-29 信息产业部电信传输研究所 Multiphase orthogonal spectrum spreading code design and its spread-eliminating method
US7218666B2 (en) * 2000-12-29 2007-05-15 Motorola, Inc. Method and system for transmission and frequency domain equalization for wideband CDMA system
JP3548148B2 (en) * 2001-09-27 2004-07-28 松下電器産業株式会社 OFDM transmission apparatus and OFDM transmission method
KR100864709B1 (en) * 2002-05-30 2008-10-23 삼성전자주식회사 OFDM Transmitter capable of improving the quality of receiving and a method processing OFDM signal thereof
KR100586391B1 (en) * 2003-04-25 2006-06-08 주식회사 팬택 Transmitter using interleaving delay diversity
US7394865B2 (en) * 2003-06-25 2008-07-01 Nokia Corporation Signal constellations for multi-carrier systems
US7876806B2 (en) * 2005-03-24 2011-01-25 Interdigital Technology Corporation Orthogonal frequency division multiplexing-code division multiple access system

Also Published As

Publication number Publication date
TWI514788B (en) 2015-12-21
TW201739181A (en) 2017-11-01
TWI666886B (en) 2019-07-21
TW200731688A (en) 2007-08-16
TW201145851A (en) 2011-12-16
TWI587649B (en) 2017-06-11
TW200705845A (en) 2007-02-01
TW201427300A (en) 2014-07-01
TW201620260A (en) 2016-06-01
TWI337013B (en) 2011-02-01

Similar Documents

Publication Publication Date Title
US9614578B2 (en) Orthogonal frequency division multiplexing-code division multiple access system
US10382172B2 (en) Hybrid orthogonal frequency division multiple access system and method
JP3871270B2 (en) Transmitting apparatus and communication system
KR101304227B1 (en) Hybrid orthogonal frequency division multiple access system and method
KR100465315B1 (en) System for spreading/inverse spreading of Multicarrier-Code Division Multiple Access and method thereof
TWI433477B (en) Transmitting device, receiving device, and method applicable in an orthogonal frequency division multiplexing-code division multiple access system
KR200421631Y1 (en) Hybrid orthogonal frequency division multiple access system
Nahm et al. Time-and frequency-domain hybrid detection scheme for OFDM-CDMA systems