TWI428615B - Digital controlled load measuring device - Google Patents

Digital controlled load measuring device Download PDF

Info

Publication number
TWI428615B
TWI428615B TW99107736A TW99107736A TWI428615B TW I428615 B TWI428615 B TW I428615B TW 99107736 A TW99107736 A TW 99107736A TW 99107736 A TW99107736 A TW 99107736A TW I428615 B TWI428615 B TW I428615B
Authority
TW
Taiwan
Prior art keywords
current
signal
tested
load
measuring device
Prior art date
Application number
TW99107736A
Other languages
English (en)
Other versions
TW201132998A (en
Inventor
Hui Pu Chang
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Priority to TW99107736A priority Critical patent/TWI428615B/zh
Publication of TW201132998A publication Critical patent/TW201132998A/zh
Application granted granted Critical
Publication of TWI428615B publication Critical patent/TWI428615B/zh

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Description

數位式可控負載量測裝置
本發明係相關於一種數位式可控負載量測裝置,尤指在電力系統中,一種可快速量測以及推算出電壓及電流參數之數位式可控負載量測裝置。
隨著電力能源的發展與使用,評估電力系統的良窳變得逐漸重要,而在電力系統中,例如:太陽能電池、鋅空電池…等,其最重要的參考指標,莫過於電壓、電流等參數,藉由量測電力系統在不同負載下的電壓與電流變化,得到一電流-電壓特性曲線圖,可作為觀察此電力系統的能源消耗與元件特性之參考依據。
過去量測電力系統電流-電壓特性的方式,主要以電阻作為負載,並藉由改變電阻值來獲取電力系統在不同負載下的電壓電流特性。然而,更替不同電阻的量測過程費時,且可變電阻無法承受大電流所造成之溫度效應,限制了所能量測的電力系統規格,尤其是電阻數量會隨著解析度的需求,必須快速地增加到無法實現的大小。
因此,真實變動之電阻負載不易實現,為解決此問題,目前習用技藝中有採用電阻搭配類比電路方式以實現可變負載,而亦有使用電容充放電方式以實現可變負載。惟,上述兩種方式都存在一基本工作頻率,而基本工作頻率將限制使用者的採樣頻率大小,因為採樣頻率必須較模擬負載的基本工作頻率低很多才能忽略基本工作頻率調變的影響。
於習用技藝中,如:美國專利第4,456,880號之「I-V Curve Tracer Employing Parametric Sampling」,係利用切換式電容仿效電阻(Switched-Capacitor Resistor)來充放電,並對輸出電壓與電流作數位取樣。然而,使用開關切換電容,會使系統存在一個基本工作頻率。於美國專利第5,512,831號之「Method and Apparatus for Testing Electrochemical Energy」,則使用並聯式場效電晶體(Field Effect Transistor,FET)作為負載,藉由數位回授(feedback)方式控制量測系統的輸出電流,其數位回授頻率即為系統的基本工作頻率。
為了實現真實的可變電阻負載,並且克服基本工作頻率的限制,本發明利用R-2R電阻網路實現可變電阻負載,及運算放大器配合功率電晶體作類比回饋控制,由於類比回饋控制並無取樣,因此無基本工作頻率以及其連帶產生的頻寬限制,具有較大的穩態範圍。
爰上,本發明的目的在於提供一種數位式可控負載量測裝置,藉由提供可變動的負載,於短時間內切換成各種所需負載值,分別量測出各個電壓與電流訊號,可有效避免一待測物能量損失以及溫度效應影響。
本發明之另一目的在於利用一種數位化方式控制該量測裝置。係採用數位輸入方式,控制整個量測裝置負載切換,並掃描出電流-電壓特性曲線圖(I-V Curve)。
為達成前述之發明目的,本發明提供之數位式可控負載量測裝置,包含一R-2R階梯網路、一電壓隨耦器、一電流隨耦器;該R-2R階梯網路與該電壓隨耦器以及電流隨耦器電性相連;R-2R階梯網路可產生一變動可調之負載,該電壓隨耦器及該電流隨耦器,係將該變動可調之負載與一待測物構成迴 路(loop),量測出電壓、電流值,同時避免大電流,作保護量測裝置之用。因此,本發明可有效隔離電力系統中的待測物與量測裝置,當待測物輸出大電流時,可調降量測裝置中的電流,避免因電流過大造成高溫破壞元件,有效減少熱效應之問題。
以下的說明以及範例用以解釋本發明之細節。然,熟習此項技藝之人士應該輕易瞭解,於本發明之實施例所涵蓋下,所述及該些實施例應有相當之變化以及改良。因此,後載之實施例並非用於限制本發明之保護範疇。
請參見圖1,其顯示本發明之數位式可控負載量測裝置1之示意圖;該數位式可控負載量測裝置1包括一可變動負載單元(variable load)10、一電壓隨耦器(voltage follower)11、一電流隨耦器(current follower)12。一待測物(Device Under Test,簡稱DUT)13外接於該可變動負載單元10,藉由輸入一控制訊號VCTRL於該可變動負載單元10,可調整待測物之一負載電阻值。該電壓隨耦器11電性連接於該可變動負載單元10,其可於不增加額外負載下,量測待測物13於該負載電阻值下輸出電壓的一第一訊號V1,而該電流隨耦器12亦電性連接於該可變動負載單元10,其亦可於不增加額外負載下,量測一第二訊號V2,用以推算出該待測物13之對應輸出電流。
請參見圖2,該可變動負載單元10可由一R-2R階梯網路(R-2R ladder network)20組成,包含複數個電阻R與2R,以及複數個開關21。該些電阻包含N-1個第一電阻R及N+1個第二電阻2R,其中該第二電阻值為該第一電阻值的2倍,因此第一電阻以R標示,而第二電阻以2R標示。每一該第一電阻R兩端分別與其中二個第二電阻2R電性相連(總數為 N),該N個第二電阻2R之彼端則電性相連至其中一個開關21。因第二電阻2R的總數為N+1個,因此最末一個第二電阻2R係與該些第一電阻R形成串聯,並連接至一量測輸出訊號VM
該R-2R階梯網路20操作原理如下:該待測物13一端輸入一第一參考訊號VREF1,於待測物13另一端產生一端點訊號VP,並以該外部控制訊號VCTRL(顯示於圖1)控制每一個該開關21,選擇是否連接於該端點訊號VP,藉此改變待測物13端之負載電阻值,並決定一負載訊號(表示為VL)。該負載訊號VL係為該端點訊號VP與該第一參考訊號VREF1之差值,意即VL=(VP-VREF1)。
根據開關21的切換模式,可決定待測物13端之負載電阻值,假設該負載電阻值為RO並假設流入待測物13之總電流值為I,則根據電流分流原理:I=(VP-VREF1)/RO=VL/RO (1)
IDi=I×n/2N (2) =(I-IDi)×n/(2N-n) (3)
其中n=20b0+21b1+22b2+...+2N-1bN-1;bi為1代表第i個開關連接於端點訊號VP;否則為0。
公式(2)之IDi係於待測物13之端點訊號VP端,流經連接第i個與第i+1個第二電阻2R間的負載電流值,而I減去IDi,表示為I-IDi,則為電流IDi的補數電流(complementary current)。根據公式(1),流經待測物13的電流I之方向係依該第一參考訊號VREF1及該端點訊號VP之相對電壓高低所決定;且依開關21之切換決定待測物13之負載電阻值。據前 揭公式,如所有的開關21皆連接於端點訊號VP,則流經第0個第二電阻2R(最接近待測物13者)之電流將為I/2,流經第1個第二電阻2R之電流將為I/4,以此類推,而於最末二組第二電阻2R(最遠離待測物者)之電流將為I/2N,如圖2的每一第二電阻2R上所標示。
請參見圖3A配合圖1,該數位式可控負載量測裝置1之電壓隨耦器11包含一電壓放大器30;該電壓放大器30同相輸入端輸入由可變動負載單元10而來之端點訊號VP,反相輸入端則由該電壓放大器30輸出之第一訊號V1回授形成其輸入。因此量測該電壓放大器30輸出之第一訊號V1,即可得知可變動負載單元之端點訊號VP之量值,進而推知負載訊號VL
關於電流隨耦器12,則請參見圖3B配合圖1,該電流隨耦器12可包含一電流放大器31以及一壓流電阻R31。該電流放大器31同相輸入端輸入由該可變動負載單元10而來之端點訊號VP,其反相輸入端則由該電流隨耦器12之輸出端之第二訊號V2回授,串聯壓流電阻R31後輸入。根據歐姆定理,藉由該壓流電阻R31兩端之電壓差,即可推算出流經該壓流電阻R31之電流值,而該電流值即相等於前述補數電流I-IDi,亦即I減去IDi。如圖3B所示,壓流電阻R31兩端之電壓分別為第二訊號V2以及量測輸出訊號VM,因負載訊號VL已由上述電壓隨耦器11求得,因此僅須於電流隨耦器12中,量測出第二訊號V2之量值,即可推得負載電流IDi
此外,於該電流隨耦器12中,為避免過大的電流流入而損壞該電流隨耦器12,於該電流隨耦器12的輸出端可電性連接一保護元件32,並輸入一第二參考訊號VREF2至該保護元件32。
圖4顯示本發明之數位式可控負載量測裝置之一實施例,其顯示本發明之可變動負載單元10之第一參考訊號VREF1可連接一低電壓準位,例如接地,而電流隨耦器12之第二參考訊號VREF2則連接於一高電壓準位VCC,因此形成一共陰極(Common-Cathode)數位式可控負載(Digital Programmable Load,簡稱DPL)量測裝置4。於該電流隨耦器12中,該保護元件32可為一NPN型雙極電晶體(bipolar transistor)321,其基極(Base)電性連接至該電流放大器31之輸出端,而其集極(Collector)係連接於所述之第二參考訊號VREF2,其為前述高電壓準位VCC
上述之數位式可控負載量測裝置4以共陰極電路量測該待測物13之負載電壓以及負載電流之原理,為因應不同的需求,亦可實施於一共陽極(Common-Anode)電路。
參見圖5,其顯示本發明之可變動負載單元10之第一參考訊號VREF1可連接一高電壓準位VCC,而電流隨耦器12之第二參考訊號VREF2則連接於一低電壓準位,例如接地,因此形成一共陽極數位式可控負載量測裝置5。於該電流隨耦器12,該保護元件32可為一PNP型雙極電晶體322,其基極電性連接至該電流放大器31之輸出端,而其射極(Emitter)係連接於所述之第二參考訊號VREF2,亦即接地。
圖6顯示本發明一實施例之量測系統使用示意圖,其包括一微控制器(micro-controller)60、一輸入/輸出單元(I/O unit)61、該數位式可控負載量測裝置1,以及一類比對數位轉換器(Analog to Digital Converter,簡稱A/D)62。一電腦63透過一通訊介面64傳送訊號予微控制器60,該微控制器60接受該訊號後,透過該輸入/輸出單元61輸入外部控制訊號 VCTRL,致使該數位式可控負載量測裝置1選擇提供一變動負載或固定負載予待測物13,而待測物13因負載而輸出一類比訊號回傳數位式可控負載量測裝置1。該些類比訊號經由A/D 62轉為數位訊號並傳回微控制器60,該微控制器60再經由通訊介面64回傳予電腦63。
於電腦63收到該些數位訊號後,將儲存記錄,並將量測之電壓以及電流訊號於I-V座標圖中標示出該量測點之位置,如圖7之黑點所顯示;利用連接該些量測點,則可描述出元件之電流-電壓特性曲線圖(I-V curve)。圖7並以細黑直線顯示線性之固定負載線。
本發明可選擇變動或是固定負載,並可於短時間內,自動量測與描繪出元件之電流-電壓特性曲線圖,無須逐一調整變動負載並記錄量測數據。本發明所稱之待測物13可指一般電子元件,例如太陽能板、電晶體、二極體等。
雖然本發明已以一較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
1‧‧‧數位式可控負載量測裝置
10‧‧‧可變動負載單元
11‧‧‧電壓隨耦器
12‧‧‧電流隨耦器
13‧‧‧待測物
20‧‧‧R-2R階梯網路
21‧‧‧開關
30‧‧‧電壓放大器
31‧‧‧電流放大器
32‧‧‧保護元件
321‧‧‧NPN型雙極電晶體
322‧‧‧PNP型雙極電晶體
4‧‧‧共陰極數位式可控負載量測裝置
5‧‧‧共陽極數位式可控負載量測裝置
60‧‧‧微控制器
61‧‧‧輸入-輸出單元
62‧‧‧類比對數位轉換器
63‧‧‧電腦
64‧‧‧通訊介面
VCTRL‧‧‧外部控制訊號
VM‧‧‧量測輸出訊號
VP‧‧‧端點訊號
VREF1‧‧‧第一參考訊號
VREF2‧‧‧第二參考訊號
VCC‧‧‧高準位電壓
V1‧‧‧第一訊號
V2‧‧‧第二訊號
I‧‧‧總電流
IDi‧‧‧負載電流
I-IDi‧‧‧補數電流
R‧‧‧第一電阻
2R‧‧‧第二電阻
R31‧‧‧壓流電阻
為使本發明之前述及其他目的、特徵,優點與實施例得以容易瞭解,所述圖式之詳細說明如下:圖1顯示本發明一實施例之數位式可控負載量測裝置方塊圖;圖2顯示本發明一實施例之R-2R階梯網路;圖3A顯示本發明一實施例之電壓隨耦器;圖3B顯示本發明一實施例之電流隨耦器; 圖4顯示本發明之共陰極數位式可控負載量測裝置之一實施例;圖5顯示本發明之共陽極數位式可控負載量測裝置之一實施例;圖6顯示本發明一實施例之量測系統使用示意圖;以及圖7顯示一待測物之電流-電壓特性曲線示意圖。
10‧‧‧可變動負載單元
11‧‧‧電壓隨耦器
12‧‧‧電流隨耦器
13‧‧‧待測物
21‧‧‧開關
30‧‧‧電壓放大器
31‧‧‧電流放大器
321‧‧‧NPN型雙極電晶體
4‧‧‧共陰極數位式可控負載量測裝置
VM‧‧‧量測輸出訊號
VP‧‧‧端點訊號
VREF1‧‧‧第一參考訊號
VCC‧‧‧高電壓準位
V1‧‧‧第一訊號
V2‧‧‧第二訊號
I‧‧‧總電流
R‧‧‧第一電阻
2R‧‧‧第二電阻
R31‧‧‧壓流電阻

Claims (6)

  1. 一種數位式可控負載量測裝置,包括:一R-2R階梯網路,包含複數個電阻以及複數個開關;該R-2R階梯網路藉由一外部控制訊號,控制每一該些開關與對應電阻之一連接關係,藉以決定一待測物之一負載電阻;一電壓隨耦器,與該R-2R階梯網路電性相連,藉以得知該待測物之一負載訊號;以及一電流隨耦器,與該R-2R階梯網路電性相連,藉以得知該待測物之一負載電流。
  2. 如申請專利範圍第1項所述之數位式可控負載量測裝置,其中該電壓隨耦器包括一電壓放大器;該待測物兩端之電壓分別定義為一第一參考訊號以及一端點訊號;該電壓放大器之輸出回授至其反相輸入端,而其同相輸入端則輸入該待測物之端點訊號,藉由該電壓隨耦器輸出之一第一訊號,可得知該待測物之負載訊號。
  3. 如申請專利範圍第2項所述之數位式可控負載量測裝置,其中該電流隨耦器包括一電流放大器以及一壓流電阻;該電流隨耦器之輸出經壓流電阻回授至電流大器之反相輸入端,並於其同相輸入端輸入待測物之端點訊號,該反相輸入端並電性連接至該R-2R階梯網路之一量測輸出訊號,藉由該電流隨耦器輸出之一第二訊號,可得知該待測物之負載電流。
  4. 如申請專利範圍第3項所述之數位式可控負載量測裝置,其中該電流隨耦器更包括一保護元件,藉以避免過大之電流流經該電流隨耦器。
  5. 如申請專利範圍第4項所述之數位式可控負載量測裝置,其中該保護元件可為一NPN型雙極電晶體,其基極接該電流放大器之輸出端,其集極連接至一高電壓準位,而該待測物之第一參考訊號連接至一低電壓準位,而形成一共陰極電路。
  6. 如申請專利範圍第4項所述之數位式可控負載量測裝置,其中該保護元件可為一PNP型雙極電晶體,其基極接該電流放大器之輸出端,其射極連接至一低電壓準位,而該待測物之第一參考訊號連接至一高電壓準位,而形成一共陽極電路。
TW99107736A 2010-03-17 2010-03-17 Digital controlled load measuring device TWI428615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99107736A TWI428615B (zh) 2010-03-17 2010-03-17 Digital controlled load measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99107736A TWI428615B (zh) 2010-03-17 2010-03-17 Digital controlled load measuring device

Publications (2)

Publication Number Publication Date
TW201132998A TW201132998A (en) 2011-10-01
TWI428615B true TWI428615B (zh) 2014-03-01

Family

ID=46751020

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99107736A TWI428615B (zh) 2010-03-17 2010-03-17 Digital controlled load measuring device

Country Status (1)

Country Link
TW (1) TWI428615B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227262B2 (ja) * 2013-03-06 2017-11-08 株式会社荏原製作所 表面電位測定装置および表面電位測定方法
TWI588506B (zh) * 2016-08-12 2017-06-21 致茂電子股份有限公司 控制器的輸出控制方法

Also Published As

Publication number Publication date
TW201132998A (en) 2011-10-01

Similar Documents

Publication Publication Date Title
CA2802517C (en) Electrical isolation detection with enhanced dynamic range
CN103560760B (zh) 放大电路以及测量装置
CN101498749B (zh) 一种精密电阻测量装置和方法
CN109633255A (zh) 基于分流器的电流测量装置及电流测量方法
CN209979815U (zh) 用于差动电池测试的电路和差动电池测试器
CN203069672U (zh) 回路电阻测试系统
EP2873979B1 (en) Active current sensing circuit and measurement device
TWI428615B (zh) Digital controlled load measuring device
CN117330805B (zh) 一种用于电流检测的自动换档电路和电流检测装置
US8892377B2 (en) Digital programmable load measurement device
CN100459434C (zh) 具有集成测试电路的数模转换器和确定其过渡周期的方法
US20130043892A1 (en) Resistance measurement circuit
CN216387349U (zh) 一种充电机电能计量误差校准与溯源装置
CN108572273B (zh) 低电流测量电路及其测量方法
CN207301174U (zh) 一种应用在电池内阻测量中的区间放大电路
US8143881B2 (en) Current measuring apparatus for power supply
CN111337811B (zh) 一种忆阻器测试电路
CN110031774B (zh) 一种电池组内阻的在线测量方法及装置
CN107167649A (zh) 一种驻极体麦克风电流测试电路及其测试方法
CN211402545U (zh) 一种利用示波器测电阻实验装置
CN211603344U (zh) 一种直流电阻及开短路测试装置
CN204154856U (zh) 三极管放大测试电路
CN202502157U (zh) 一种电阻式参数和设备电压测量装置
CN107782942B (zh) 示波器测量电路及其有源前端、测试系统、测量方法
CN106528911B (zh) 一种建立电源vhdl-ams仿真模型的装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees