TWI426920B - 雙專一性、雙價抗-vegf/抗-ang-2抗體 - Google Patents

雙專一性、雙價抗-vegf/抗-ang-2抗體 Download PDF

Info

Publication number
TWI426920B
TWI426920B TW100109957A TW100109957A TWI426920B TW I426920 B TWI426920 B TW I426920B TW 100109957 A TW100109957 A TW 100109957A TW 100109957 A TW100109957 A TW 100109957A TW I426920 B TWI426920 B TW I426920B
Authority
TW
Taiwan
Prior art keywords
antibody
seq
vegf
bispecific
full length
Prior art date
Application number
TW100109957A
Other languages
English (en)
Other versions
TW201138820A (en
Inventor
Monika Baehner
Sabine Imhof-Jung
Anita Kavlie
Hubert Kettenberger
Christian Klein
Joerg Thomas Regula
Wolfgang Schaefer
Juergen Michael Schanzer
Werner Scheuer
Kay-Gunnar Stubenrauch
Markus Thomas
Original Assignee
Hoffmann La Roche
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42574700&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI426920(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoffmann La Roche filed Critical Hoffmann La Roche
Publication of TW201138820A publication Critical patent/TW201138820A/zh
Application granted granted Critical
Publication of TWI426920B publication Critical patent/TWI426920B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3015Breast
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3046Stomach, Intestines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/66Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a swap of domains, e.g. CH3-CH2, VH-CL or VL-CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Description

雙專一性、雙價抗-VEGF/抗-ANG-2抗體
本發明係關於針對人類血管內皮生長因子(VEGF/VEGF-A)且針對人類血管生成素-2(ANG-2)之雙專一性、雙價抗體,其產生方法,含有該等抗體之醫藥組合物,及其用途。
血管生成與多種病症之發病機制有關,該等病症包括實體腫瘤、眼內新生血管症候群(諸如增生性視網膜病變或年齡相關之黃斑變性(AMD))、類風濕性關節炎及牛皮癬(Folkman,J.等人,J. Biol. Chem. 267(1992) 10931-10934;Klagsbrun,M.等人,Annu. Rev. Physiol. 53(1991)217-239;及Garner,A.,Vascular diseases,Pathobiology of ocular disease,A dynamic approach,Garner,A.及Klintworth,G. K.(編),第2版,Marcel Dekker,New York(1994),第1625-1710頁)。在實體腫瘤之狀況下,相較於正常細胞而言,新血管生成允許腫瘤細胞獲得生長優勢及增殖自主性。因此,在乳癌以及若干種其他腫瘤之腫瘤切片之微血管密度與患者存活率之間觀測到相關性(Weidner,N.等人,N Engl J Med. 324(1991) 1-8;Horak,E.R.等人,Lancet 340(1992) 1120-1124;及Macchiarini,P.等人,Lancet 340(1992) 145-146)。
VEGF及抗-VEGF抗體
人類血管內皮生長因子(VEGF/VEGF-A)(SEQ ID No: 105)描述於例如以下之文獻中:Leung,D.W.等人,Science 246(1989) 1306-9;Keck,P.J.等人,Science 246(1989) 1309-12;及Connolly,D.T.等人,J. Biol. Chem. 264(1989)20017-24。VEGF參與調節與腫瘤及眼內病症相關之正常及異常血管生成及新血管生成(Ferrara,N.等人,Endocr. Rev. 18(1997) 4-25;Berkman,R.A.等人,J. Clin. Invest. 91(1993) 153-159;Brown,L.F.等人,Human Pathol. 26(1995) 86-91;Brown,L.F.等人,Cancer Res. 53(1993) 4727-4735;Mattern,J.等人,Brit. J. Cancer. 73(1996) 931-934;及Dvorak,H.F.等人,Am. J. Pathol. 146(1995) 1029-1039)。VEGF為自若干來源分離得到之同型二聚醣蛋白。VEGF對內皮細胞顯示高度專一的促有絲分裂活性。VEGF在胚胎血小管生成期間之新血管形成中及成年期間之血管生成中具有重要調節功能(Carmeliet,P.等人,Nature,380(1996) 435-439;Ferrara,N.等人,Nature,380(1996) 439-442;綜述於Ferrara,N.等人,Endocr. Rev.,18(1997) 4-25中)。已在顯示單個VEGF等位基因失活會導致胚胎由於不能形成維管結構而死亡的研究中證實VEGF所起之作用的重要性(Carmeliet,P.等人,Nature,380(1996) 435-439;Ferrara,N.等人,Nature,380(1996) 439-442)。此外,VEGF對單核細胞具有強趨化活性,可在內皮細胞中誘導出纖維蛋白溶酶原活化因子及纖維蛋白溶酶原活化因子抑制物,且亦可誘導微血管滲透性。由於誘導微血管滲透性之活性,故有時稱其為血管滲透因子(VPF)。對VEGF之分離及特性已有綜述;參見Ferrara,N.等人,J. Cellular Biochem.,47(1991) 211-218及Connolly,D.T.,J. Cellular Biochem.,47(1991) 219-223。單個VEGF基因之替代mRNA剪接產生VEGF之5種同功異型物。
抗-VEGF中和抗體在小鼠中抑制多種人類腫瘤細胞株之生長(Kim,K.J.等人,Nature 362(1993) 841-844;Warren,S.R.等人,J. Clin. Invest. 95(1995) 1789-1797;Borgstrom,P.等人,Cancer Res. 56(1996) 4032-4039;及Melnyk,O.等人,Cancer Res.56(1996) 921-924)。WO 94/10202、WO 98/45332、WO 2005/00900及WO 00/35956涉及針對VEGF之抗體。人類化單株抗體貝伐單抗(bevacizumab)(以商標名Avastin出售)為腫瘤治療中所用之一種抗-VEGF抗體(WO 98/45331)。
蘭尼單抗(Ranibizumab)(商標名Lucentis)為一種源自與貝伐單抗(Avastin)相同之親本鼠類抗體的單株抗體片段。其比母體分子小得多且已經親和力成熟而提供與VEGF-A之較強結合(WO 98/45331)。其為一種已獲准用於治療「濕」型年齡相關之黃斑變性(ARMD)的抗血管生成劑,濕型ARMD為年齡相關之視力損失的常見形式。另一抗-VEGF抗體例如為例如US 2007/0141065中所述之HuMab G6-31。
ANG-2及抗-ANG-2抗體
人類血管生成素-2(ANG-2)(或者縮寫為ANGPT2或ANG2)(SEQ ID No: 106)已描述於Maisonpierre,P.C.等人,Science 277(1997) 55-60及Cheung,A.H.等人,Genomics 48(1998) 389-91中。已發現血管生成素-1及血管生成素-2(ANG-1(SEQ ID No: 107)及ANG-2(SEQ ID No: 106))為Tie之配位體,Tie為選擇性表現於血管內皮中之酪胺酸激酶家族。Yancopoulos,G.D.等人,Nature 407(2000) 242-48。血管生成素家族目前存在四個確定的成員。血管生成素-3及血管生成素-4(Ang-3及Ang-4)可代表小鼠及人類中相同基因座上有很大差異之對應物。Kim,I.等人,FEBS Let,443(1999) 353-56;Kim,I.等人,J Biol Chem 274(1999) 26523-28。ANG-1及ANG-2最初在組織培養實驗中分別鑑別為促效劑及拮抗劑(關於ANG-1,參見:Davis,S.等人,Cell 87(1996) 1161-69;且關於ANG-2,參見:Maisonpierre,P.C.等人,Science 277(1997) 55-60)。所有已知血管生成素主要結合於Tie2,且Ang-1與Ang-2皆以3 nM(Kd)親和力結合於Tie2。Maisonpierre,P.C.等人,Science 277(1997) 55-60。已顯示Ang-1支持EC存活且促進內皮完整性,Davis,S.等人,Cell 87(1996) 1161-69;Kwak,H.J.等人,FEBS Lett 448(1999) 249-53;Suri,C.等人,Science 282(1998) 468-71;Thurston,G.等人,Science 286(1999) 2511-2514;Thurston,G.等人,Nat. Med. 6(2000) 460-63,而ANG-2具有相反作用且在無存活因子VEGF或鹼性纖維母細胞生長因子時促使血管不穩定及退化。Maisonpierre,P.C.等人,Science 277(1997) 55-60。然而,關於ANG-2功能之許多研究已表明更複雜之情形。ANG-2可能為複雜的血管重塑調節子,其在血管芽生(vessel sprouting)與血管退化方面皆起一定作用。證實ANG-2之該等作用的表現分析揭示在成人芽生式血管生成情形下ANG-2與VEGF一起被迅速誘導,而在血管退化情形下ANG-2在無VEGF時被誘導。Holash,J.等人,Science 284(1999) 1994-98;Holash,J.等人,Oncogene 18(1999) 5356-62。與情境依賴性作用一致,ANG-2專一地結合於由Ang-1活化之同一內皮專一性受體Tie-2,但對其活化具有情境依賴性效應。Maisonpierre,P.C.等人,Science 277(1997) 55-60。
角膜血管生成檢測已顯示ANG-1與ANG-2皆具有類似作用,與VEGF協同地起作用以促進新血管之生長。Asahara,T.等人,Circ. Res. 83(1998) 233-40。藉由在活體外於高濃度下觀測來提高存在劑量依賴性內皮反應之可能性,ANG-2亦可具促血管生成性。Kim,I.等人,Oncogene 19(2000) 4549-52。在高濃度下,ANG-2在血清剝奪細胞凋亡期間藉由經由PI-3激酶及Akt路徑活化Tie2來充當內皮細胞之細胞凋亡存活因子。Kim,I.等人,Oncogene 19(2000) 4549-52。
其他活體外實驗表明在持續暴露期間,ANG-2之作用可自Tie2之拮抗劑逐漸變為Tie2之促效劑,且在隨後的時間點,其可能直接促成血管形成及新生血管穩定化。Teichert-Kuliszewska,K.等人,Cardiovasc. Res. 49(2001) 659-70。此外,若將EC培養於纖維蛋白凝膠上,則亦觀測到Tie2經ANG-2活化,此或許表明ANG-2之作用可能取決於EC分化狀態。Teichert-Kuliszewska,K.等人,Cardiovasc. Res. 49(2001) 659-70。在培養於三維膠原蛋白凝膠中之微血管EC中,ANG-2亦可誘導Tie2活化且促進毛細管狀結構形成。Mochizuki,Y.等人,J. Cell. Sci. 115(2002) 175-83。利用3-D球狀共培養作為血管成熟之活體外模型可證明EC與間葉細胞之間的直接接觸會消除對VEGF之反應性,而VEGF及ANG-2之存在誘導芽生。Korff,T.等人,Faseb J. 15(2001) 447-57。Etoh,T.H.等人證明ANG-2在VEGF存在下高度上調組成性表現Tie2之EC,亦即MMP-1、MMP-9及u-PA之表現。Etoh,T.等人,Cancer Res. 61(2001) 2145-53。使用活體內瞳孔膜模型,Lobov,I.B.等人顯示ANG-2在內源性VEGF存在下促進毛細管直徑迅速增加、基底層重塑、內皮細胞增殖及遷移,且刺激新血管芽生。Lobov,I.B.等人,Proc. Natl. Acad. Sci. USA 99(2002) 11205-10。相比之下,ANG-2在無內源性VEGF之狀況下促進內皮細胞死亡及血管退化。Lobov,I.B.等人,Proc. Natl. Acad. Sci. USA 99(2002) 11205-10。類似地,使用活體內腫瘤模型,Vajkoczy,P.等人證明多細胞聚集體經由由宿主及腫瘤內皮同時表現VEGFR-2及ANG-2以芽生式血管生成方式開始血管生長。Vajkoczy,P.等人,J. Clin. Invest. 109(2002) 777-85。此模型說明生長中的腫瘤之確定微維管結構的特徵為假定由VEGF及ANG-2之表現介導的連續重塑(Vajkoczy,P.等人,J Clin. Invest. 109(2002) 777-85)。
Tie-2及血管生成素-1之基因剔除小鼠研究顯示類似表型且表明經血管生成素-1刺激之Tie-2磷酸化介導發育中的血管之重塑及穩定化,從而在血管生成期間促進血管成熟及維持內皮細胞支持細胞黏附(Dumont,D.J.等人,Genes & Development,8(1994) 1897-1909;Sato,T.N.,Nature,376(1995) 70-74;Thurston,G.等人,Nature Medicine: 6(2000) 460-463)。認為血管生成素-1之作用在廣泛且組成性地表現血管生成素-1之成人體內得以保留(Hanahan,D.,Science,277(1997) 48-50;Zagzag,D.等人,Exp Neurology,159(1999) 391-400)。相比之下,血管生成素-2之表現主要限於血管重塑部位,認為其在該部位中阻斷血管生成素-1之組成性穩定化或成熟功能,從而使血管恢復至並保持可能對芽生信號更具反應性之塑性狀態(Hanahan,D.,1997;Holash,J.等人,Oncogene 18(199) 5356-62;Maisonpierre,P.C.,1997)。對病理性血管生成中血管生成素-2表現之研究已發現許多腫瘤類型顯示血管的血管生成素-2表現(Maisonpierre,P.C.等人,Science 277(1997) 55-60)。在小鼠異種移植模型中,功能性研究表明血管生成素-2與腫瘤血管生成有關且將血管生成素-2過度表現與增加之腫瘤生長相關聯(Ahmad,S.A.等人,Cancer Res.,61(2001) 1255-1259)。其他研究已將血管生成素-2過度表現與腫瘤高血管性(hypervascularity)相關聯(Etoh,T.等人,Cancer Res. 61(2001) 2145-53;Tanaka,F.等人,Cancer Res. 62(2002) 7124-7129)。
近年來,已提出血管生成素-1、血管生成素-2及/或Tie-2作為可能的抗癌治療標靶。舉例而言,US 6,166,185、US 5,650,490及US 5,814,464各自揭示抗-Tie-2配位體及受體抗體。已有研究報導,使用可溶性Tie-2可降低齧齒動物體內腫瘤之數目及尺寸(Lin,1997;Lin 1998)。Siemeister,G.等人,Cancer Res. 59:3(1999) 3185-91產生表現Tie-2之胞外域的人類黑素瘤細胞株,將此等細胞株注入裸小鼠中且報導可溶性Tie-2對腫瘤生長及腫瘤血管生成產生顯著抑制。假定血管生成素-1與血管生成素-2皆結合於Tie-2,根據此等研究,尚不能肯定血管生成素-1、血管生成素-2或Tie-2是否將為抗癌療法之具吸引力的標靶。然而,認為有效的抗血管生成素-2療法可有益於治療諸如癌症之疾病,在該等疾病中進展取決於異常血管生成,其中阻斷該過程可防止疾病發展(Folkman,J.,Nature Medicine. 1(1995) 27-31)。
此外,一些團體已報導使用結合於血管生成素-2之抗體及肽。參見例如US 6,166,185及US 2003/10124129。WO 03/030833、WO 2006/068953、WO 03/057134或US 2006/0122370。
對局部表現血管生成素-2之作用的研究已顯示拮抗血管生成素-1/Tie-2信號使緊密血管結構變松,從而使EC暴露於來自血管生成誘導子(例如VEGF)之活化信號(Hanahan,D.,Science,277(1997) 48-50)。此由抑制血管生成素-1產生之促血管生成效應表明抗血管生成素-1療法並非為有效的抗癌治療。
ANG-2在發育期間表現於發生血管重塑之部位處。Maisonpierre,P.C.等人,Science 277(1997) 55-60。在成年個體中,ANG-2表現侷限於血管重塑部位以及高度血管化腫瘤內,該等腫瘤包括神經膠質瘤(Osada,H.等人,Int. J. Oncol. 18(2001) 305-09;Koga,K.等人,Cancer Res. 61(2001) 6248-54)、肝細胞癌(Tanaka,S.等人,J. Clin. Invest. 103(1999) 341-45)、胃癌(Etoh,T.等人,Cancer Res. 61(2001) 2145-53;Lee,J.H.等人,Int. J. Oncol. 18(2001) 355-61)、甲狀腺瘤(Bunone,G.等人,Am J Pathol 155(1999) 1967-76)、非小細胞肺癌(Wong,M.P.等人,Lung Cancer 29(2000) 11-22)以及結腸癌(Ahmad,S.A.等人,Cancer 92(2001) 1138-43),及前列腺癌(Wurmbach,J.H.等人,Anticancer Res. 20(2000) 5217-20)。發現一些腫瘤細胞表現ANG-2。舉例而言,Tanaka,S.等人,J. Clin. Invest. 103(1999) 341-45在12份人類肝細胞癌(HCC)試樣中之10份中偵測到ANG-2 mRNA。Ellis團體報導ANG-2普遍表現於腫瘤上皮中。Ahmad,S.A.等人,Cancer 92(2001) 1138-43。其他研究者報導有類似發現。Chen,L.等人,J. Tongji Med. Univ. 21(2001) 228-35。藉由偵測歸檔人類乳癌試樣中之ANG-2 mRNA含量,Sfiligoi,C.等人,Int. J. Cancer 103(2003) 466-74報導ANG-2 mRNA與附屬淋巴結入侵、無疾病時間短及整體存活不良顯著相關。Tanaka,F.等人,Cancer Res. 62(2002) 7124-29對總計236名分別處於病理階段I至IIIA之非小細胞肺癌(NSCLC)患者進行評述。使用免疫組織化學,其發現16.9% NSCLC患者呈ANG-2陽性。ANG-2陽性腫瘤之微血管密度顯著高於ANG-2陰性腫瘤之微血管密度。ANG-2之該類血管生成作用僅在VEGF表現較高時可見。此外,ANG-2之陽性表現為預測不良手術後存活之重要因子。Tanaka,F.等人,Cancer Res. 62(2002) 7124-7129。然而,其發現Ang-1表現與微血管密度之間無顯著相關性。Tanaka,F.等人,Cancer Res.62(2002) 7124-7129。此等結果表明ANG-2為具有若干種癌症之患者不良預後的指標。
最近,使用ANG-2基因剔除小鼠模型,Yancopoulos團體報導出生後血管生成需要ANG-2。Gale,N.W.等人,Dev. Cell 3(2002) 411-23。其顯示在ANG-2基因剔除小鼠中未出現眼睛中玻璃狀脈管結構之發育漸進式退化,且其視網膜血管未能自視網膜中央動脈芽出。Gale,N.W.等人,Dev. Cell 3(2002) 411-23。其亦發現缺失ANG-2導致在淋巴脈管結構之成型及功能方面產生重大缺陷。Gale,N.W.等人,Dev. Cell 3(2002) 411-23。Ang-1之遺傳拯救校正淋巴缺陷,但無法校正血管生成缺陷。Gale,N.W.等人,Dev. Cell 3(2002) 411-23。
Peters及其同事報導可溶性Tie2當以重組蛋白或在病毒表現載體中之形式傳遞時抑制小鼠模型中鼠類乳癌及黑素瘤之活體內生長。Lin,P.等人,Proc. Natl. Acad. Sci. USA95(1998) 8829-34;Lin,P.等人,J. Clin. Invest. 100(1997) 2072-78。經如此處理之腫瘤組織的血管密度大大降低。此外,可溶性Tie2阻斷大鼠角膜中由腫瘤細胞條件培養基刺激之血管生成。Lin,P.等人,J. Clin. Invest. 100(1997) 2072-78。此外,Isner及其團隊證明向VEGF添加ANG-2促進比單獨之VEGF顯著較長且較多之周圍新生血管形成。Asahara,T.等人,Circ. Res. 83(1998) 233-40。過量可溶性Tie2受體阻止ANG-2對VEGF誘導之新血管生成的調節。Asahara,T.等人,Circ. Res. 83(1998) 233-40。Siemeister,G.等人,Cancer Res. 59:3(1999) 3185-91使用裸小鼠異種移植物說明,Flt-1或Tie2之胞外配位體結合域在異種移植物中過度表現導致路徑受到顯著抑制,不能由另一者補償,此表明VEGF受體路徑及Tie2路徑應視為活體內血管生成過程所必需之兩個獨立介體。Siemeister,G.等人,Cancer Res. 59:3(1999) 3185-91。此係由最新發表之White,R.,R.等人,Proc. Natl. Acad. Sci. USA 100(2003) 5028-33證實。在其研究中展示,在大鼠角膜微囊袋血管生成模型中,專一地結合且抑制ANG-2之核酸酶抗性RNA適體顯著抑制由bFGF誘導之新血管生成。
雙專一性抗體
近期已開發出多種重組抗體形式,例如藉由融合例如IgG抗體形式與單鏈結構域產生之四價雙專一性抗體(參見例如Coloma,M.J.等人,Nature Biotech 15(1997) 159-163;WO 2001/077342;及Morrison,S.L.,Nature Biotech25(2007) 1233-1234)。
亦已開發出不再保留抗體核心結構(IgA、IgD、IgE、IgG或IgM)且能夠結合兩個或兩個以上抗原之若干其他新型形式,諸如雙功能抗體、三功能抗體或四功能抗體、微型抗體、若干單鏈形式(scFv、Bis-scFv)(Holliger,P.等人,Nature Biotech 23(2005) 1126-1136;Fischer,N.,Lger,O.,Pathobiology 74(2007) 3-14;Shen,J.等人,Journal of Immunological Methods 318(2007) 65-74;Wu,C.等人,Nature Biotech. 25(2007) 1290-1297)。
所有該等形式使用連接子來融合抗體核心(IgA、IgD、IgE、IgG或IgM)與另一結合蛋白(例如scFv)或融合例如兩個Fab片段或scFv(Fischer,N.,Lger,O.,Pathobiology 74(2007) 3-14)。必須牢記的是,可能需要藉由保持與天然存在之抗體的高度相似性來保留可經由Fc受體結合介導之效應功能,諸如補體依賴性細胞毒性(CDC)或抗體依賴性細胞毒性(ADCC)。
WO 2007/024715中報導作為經工程改造之多價及多專一性結合蛋白之雙可變域免疫球蛋白。US 6,897,044中報導一種製備生物活性抗體二聚體之方法。US 7,129,330中報導具有至少四個經肽連接子彼此連接之可變域的多價FV 抗體構築體。US 2005/0079170中報導二聚及多聚抗原結合結構。US 6,511,663中報導包含三個或四個藉由一連接結構彼此共價結合之Fab片段的三價或四價單專一性抗原結合蛋白,該蛋白不為天然免疫球蛋白。WO 2006/020258中報導四價雙專一性抗體,其可有效地表現於原核及真核細胞中且適用於治療及診斷方法中。US 2005/0163782中報導一種自包含未經至少一個鏈間雙硫鍵連接之二聚體與經至少一個鏈間雙硫鍵連接之二聚體的混合物使該兩類多肽二聚體彼此分離或優先合成經至少一個鏈間雙硫鍵連接之二聚體的方法。US 5,959,083中報導雙專一性四價受體。WO 2001/077342中報導具有三個或三個以上功能抗原結合位點之經工程改造之抗體。
WO 1997/001580中報導多專一性及多價抗原結合多肽。WO 1992/004053報導通常由結合於相同抗原決定子的IgG類單株抗體製備之同源結合物(homoconjugate),其係藉由合成交聯共價連接。WO 1991/06305中報導對抗原具有高親合力之寡聚單株抗體,其中分泌出通常為IgG類之寡聚物,其具有兩個或兩個以上締合在一起以形成四價或六價IgG分子之免疫球蛋白單體。US 6,350,860中報導綿羊源性抗體及經工程改造之抗體構築體,其可用於治療干擾素γ活性病原性疾病。US 2005/0100543中報導作為雙專一性抗體之多價載體的可靶向之構築體,亦即可靶向之構築體之各分子可充當兩個或兩個以上雙專一性抗體之載體。WO 1995/009917中報導經遺傳工程改造之雙專一性四價抗體。WO 2007/109254中報導由穩定化scFv組成或包含穩定化scFv之穩定化結合分子。
VEGF與ANG-2抑制劑之組合
WO 2007/068895涉及ANG-2拮抗劑與VEGF、KDR及/或FLTL拮抗劑之組合。WO 2007/089445涉及ANG-2與VEGF抑制劑之組合。
WO 2003/106501涉及結合於血管生成素且含有多聚結構域之融合蛋白。WO 2008/132568涉及結合於血管生成素及VEGF之融合蛋白。
WO 2009/136352涉及抗血管生成化合物。
本發明係關於一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於
i) 該第一抗原結合位點包含SEQ ID NO: 1作為重鏈可變域(VH)及SEQ ID NO: 2作為輕鏈可變域(VL);及
ii)該第二抗原結合位點包含SEQ ID NO: 3作為重鏈可變域(VH)及SEQ ID NO: 4作為輕鏈可變域(VL)。
在本發明之一態樣中,本發明之雙專一性抗體特徵在於包含
a)專一性結合於VEGF之第一全長抗體之重鏈及輕鏈;及
b)專一性結合於ANG-2之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL與CH1彼此置換。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 7之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 5之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 8之胺基酸序列作為第二全長抗體之經修飾重鏈及SEQ ID NO: 6之胺基酸序列作為第二全長抗體之經修飾輕鏈。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 11之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 9之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 12之胺基酸序列作為第二全長抗體之經修飾重鏈及SEQ ID NO: 10之胺基酸序列作為第二全長抗體之經修飾輕鏈。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 15之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 13之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 16之胺基酸序列作為第二全長抗體之經修飾重鏈及SEQ ID NO: 14之胺基酸序列作為第二全長抗體之經修飾輕鏈。
本發明之其他態樣為一種包含該雙專一性抗體之醫藥組合物、用於治療癌症之該組合物、該雙專一性抗體用於製造用以治療癌症之藥物的用途、藉由向需要該治療之患者投與該雙專一性抗體來治療罹患癌症之患者的方法。
本發明之其他態樣為一種包含該雙專一性抗體之醫藥組合物、用於治療血管疾病之該組合物、該雙專一性抗體用於製造用以治療血管疾病之藥物的用途、藉由向需要該治療之患者投與該雙專一性抗體來治療罹患血管疾病之患者的方法。
本發明之另一態樣為一種編碼本發明之雙專一性抗體之一條鏈的核酸分子。
本發明進一步提供含有本發明之該核酸且能夠在原核或真核宿主細胞中表現該核酸的表現載體,及含有該等載體以用於重組產生本發明雙專一性抗體之宿主細胞。
本發明進一步包含一種包含本發明載體之原核或真核宿主細胞。
本發明進一步包含一種產生本發明雙專一性抗體之方法,其特徵在於在原核或真核宿主細胞中表現本發明之核酸,且自該細胞或細胞培養物上清液回收該雙專一性抗體。本發明進一步包含藉由雙專一性抗體之該產生方法獲得之抗體。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 5、SEQ ID NO: 6、SEQ ID NO: 7及SEQ ID NO: 8之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11及SEQ ID NO: 12之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 13、SEQ ID NO: 14、SEQ ID NO: 15及SEQ ID NO: 16之胺基酸序列。
對於需要VEGF及ANG-2靶向療法之人類患者,本發明之雙專一性、雙價抗體顯示益處。本發明之抗體具有對罹患此類疾病、尤其罹患癌症之患者產生益處的非常有用性質。本發明之雙專一性抗體非常有效地抑制腫瘤生長及/或腫瘤血管生成或血管疾病。本發明之雙專一性、雙價抗體、本發明之雙專一性、雙價<VEGF-ANG-2>抗體展示有用的藥物動力學/藥效學特性,例如穩定性、優良(亦即緩慢)清除率(例如在低劑量下)。
本發明之雙專一性抗體非常有效於
a)抑制腫瘤生長(例如使用本發明之雙專一性抗體,可在相較於兩個親本單專一性抗體組合較低之濃度下達成腫瘤停滯(例如在實例9及10之COLO205及KPL4腫瘤模型中,相較於10 mg/kg Ang2i-LC06+10 mg/kg Avastin之組合,用10 mg/kg XMAb1即已達成腫瘤停滯)),及/或
b)抑制腫瘤血管生成或血管疾病(例如使用本發明之雙專一性抗體,可在相較於兩個親本單專一性抗體組合較低之濃度下達成最大抗血管生成作用(例如在實例8之小鼠角膜血管生成檢測中,相較於10 mg/kg Ang2i-LC06+10 mg/kg Avastin之組合,用10 mg/kg XMAb1即已達成最大抗血管生成作用))。
本發明係關於一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於
i) 該第一抗原結合位點包含SEQ ID NO: 1作為重鏈可變域(VH)及SEQ ID NO: 2作為輕鏈可變域(VL);及
ii)該第二抗原結合位點包含SEQ ID NO: 3作為重鏈可變域(VH)及SEQ ID NO: 4作為輕鏈可變域(VL)。
在本發明之一態樣中,本發明之雙專一性抗體特徵在於包含
a) 專一性結合於VEGF之第一全長抗體之重鏈及輕鏈;
b) 專一性結合於ANG-2之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL與CH1彼此置換。
專一性結合於人類血管內皮生長因子(VEGF)及人類血管生成素-2(ANG-2)之雙專一性抗體的此雙專一性、雙價抗體形式描述於WO 2009/080253中(參見圖1中包括杵臼結構(Knobs-into-Holes)修飾之CH3域之例示性略圖)。基於此雙專一性、雙價抗體形式之抗體在本發明之實例中稱為XMab。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 7之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 5之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 8之胺基酸序列作為第二全長抗體之經修飾重鏈及SEQ ID NO: 6之胺基酸序列作為第二全長抗體之經修飾輕鏈。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 11之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 9之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 12之胺基酸序列作為第二全長抗體之經修飾重鏈及SEQ ID NO: 10之胺基酸序列作為第二全長抗體之經修飾輕鏈。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 15之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 13之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 16之胺基酸序列作為第二全長抗體之經修飾重鏈及SEQ ID NO: 14之胺基酸序列作為第二全長抗體之經修飾輕鏈。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 19之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 17之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 20之胺基酸序列作為第二全長抗體之經修飾重鏈及SEQ ID NO: 18之胺基酸序列作為第二全長抗體之經修飾輕鏈。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 23之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 21之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 24之胺基酸序列作為第二全長抗體之經修飾重鏈及SEQ ID NO: 22之胺基酸序列作為第二全長抗體之經修飾輕鏈。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 27之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 25之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 28之胺基酸序列作為第二全長抗體之經修飾重鏈及SEQ ID NO: 26之胺基酸序列作為第二全長抗體之經修飾輕鏈。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 5、SEQ ID NO: 6、SEQ ID NO: 7及SEQ ID NO: 8之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 9、SEQ ID NO: 10、SEQ ID NO: 11及SEQ ID NO: 12之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 13、SEQ ID NO: 14、SEQ ID NO: 15及SEQ ID NO: 16之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 17、SEQ ID NO: 18、SEQ ID NO: 19及SEQ ID NO: 20之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 21、SEQ ID NO: 22、SEQ ID NO: 23及SEQ ID NO: 24之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 25、SEQ ID NO: 26、SEQ ID NO: 27及SEQ ID NO: 28之胺基酸序列。
在本發明之另一態樣中,本發明之雙專一性抗體特徵在於包含
a)專一性結合於VEGF之第一全長抗體之重鏈及輕鏈;
b)專一性結合於ANG-2之第二全長抗體之重鏈及輕鏈,其中重鏈N端經由肽連接子連接於輕鏈C端。
專一性結合於人類血管內皮生長因子(VEGF)及人類血管生成素-2(ANG-2)之此雙專一性抗體的此雙專一性、雙價抗體形式之一例示性略圖展示於圖2a中,其包括杵臼結構修飾之CH3域。基於此雙專一性、雙價抗體形式之抗體在本發明之實例中稱為OAscFab。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 30之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 31之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 29之胺基酸序列作為經由肽連接子連接於第二全長抗體之輕鏈的第二全長抗體之重鏈。
在一實施例中,該雙專一性、雙價抗體特徵在於包含
a)SEQ ID NO: 33之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 34之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 32之胺基酸序列作為經由肽連接子連接於第二全長抗體之輕鏈的第二全長抗體之重鏈。
在一實施例中,第二全長抗體之重鏈及輕鏈的抗體重鏈可變域(VH)及抗體輕鏈可變域(VL)藉由在以下位置之間引入雙硫鍵而經雙硫鍵穩定化:重鏈可變域位置44至輕鏈可變域位置100(編號始終根據Kabat之EU索引;(Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991)))。藉由在第二全長抗體重鏈及輕鏈之可變域VH與VL之間引入雙硫鍵來達成該進一步雙硫鍵穩定化。引入用於穩定化之非天然雙硫橋之技術例如描述於WO 94/029350;Rajagopal,V.等人,Prot. Engin. 10(1997) 1453-59;Kobayashi等人,Nuclear Medicine & Biology,第25卷(1998) 387-393;或Schmidt,M.等人,Oncogene 18(1999) 1711-1721中。
因此,在一實施例中,該雙專一性、雙價抗體之特徵在於在第二全長抗體重鏈及輕鏈之可變域之間,在重鏈可變域位置44與輕鏈可變域位置100之間包含雙硫鍵,且包含
a)SEQ ID NO: 36之胺基酸序列作為第一全長抗體之重鏈及SEQ ID NO: 37之胺基酸序列作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 35之胺基酸序列作為經由肽連接子連接於第二全長抗體之輕鏈的第二全長抗體之重鏈。
在本發明之另一態樣中,本發明之雙專一性抗體特徵在於包含
a)專一性結合於VEGF之第一全長抗體之重鏈及輕鏈;
b)專一性結合於ANG-2之第二全長抗體之重鏈及輕鏈,其中重鏈N端經由肽連接子連接於輕鏈C端;且其中可變域VL與VH彼此置換。
專一性結合於人類血管內皮生長因子(VEGF)及人類血管生成素-2(ANG-2)之此雙專一性抗體的此雙專一性、雙價抗體形式之一例示性略圖展示於圖2b中,其包括杵臼結構修飾之CH3域。基於此雙專一性、雙價抗體形式之抗體在實例中稱為OAscXFab1。
在一實施例中,該雙專一性抗體特徵在於包含
a)SEQ ID NO: 39作為第一全長抗體之重鏈及SEQ ID NO: 40作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 38作為經由肽連接子連接於第二全長抗體之輕鏈的第二全長抗體之重鏈。
在本發明之另一態樣中,本發明之雙專一性抗體特徵在於包含
a)專一性結合於VEGF之第一全長抗體之重鏈及輕鏈;
b)專一性結合於ANG-2之第二全長抗體之重鏈及輕鏈,其中重鏈N端經由肽連接子連接於輕鏈C端;且其中恆定域CL與CH1彼此置換。
專一性結合於人類血管內皮生長因子(VEGF)及人類血管生成素-2(ANG-2)之此雙專一性抗體的此雙專一性、雙價抗體形式之一例示性略圖展示於圖2c中,其包括杵臼結構修飾之CH3域。基於此雙專一性、雙價抗體形式之抗體在實例中稱為OAscXFab2及OAscXFab3。
在一實施例中,該雙專一性抗體特徵在於包含
a)SEQ ID NO: 42作為第一全長抗體之重鏈及SEQ ID NO: 43作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 41作為經由肽連接子連接於第二全長抗體之輕鏈的第二全長抗體之重鏈。
在一實施例中,該雙專一性抗體特徵在於包含
a)SEQ ID NO: 45作為第一全長抗體之重鏈及SEQ ID NO: 46作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 44作為經由肽連接子連接於第二全長抗體之輕鏈的第二全長抗體之重鏈。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 29、SEQ ID NO: 30及SEQ ID NO: 31之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 32、SEQ ID NO: 33及SEQ ID NO: 34之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 35、SEQ ID NO: 36及SEQ ID NO: 37之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 38、SEQ ID NO: 39及SEQ ID NO: 40之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 41、SEQ ID NO: 42及SEQ ID NO: 43之胺基酸序列。
因此,本發明之一實施例為一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於包含SEQ ID NO: 44、SEQ ID NO: 45及SEQ ID NO: 46之胺基酸序列。
本發明之雙專一性、雙價抗體之CH3域較佳藉由「杵臼結構」技術來改變,此技術以若干實例詳細描述於例如WO 96/027011;Ridgway J.B.等人,Protein Eng 9(1996) 617-621;及Merchant,A.M.等人,Nat Biotechnol 16(1998) 677-681中。在此方法中,改變兩個CH3域之相互作用表面,以增強含有此兩個CH3域之兩個重鏈的異型二聚。(兩個重鏈之)兩個CH3域中之每一者皆可為「杵狀結構(knob)」,而另一者為「臼狀結構(hole)」。引入雙硫橋可穩定化異型二聚體(Merchant,A.M.等人,Nature Biotech 16(1998) 677-681;Atwell,S.等人,J. Mol. Biol. 270(1997) 26-35)且提高產率。
在本發明之一較佳態樣中,所有本發明之雙專一性抗體的特徵在於:一重鏈之CH3域與另一重鏈之CH3域各自在包含抗體CH3域之間的初始界面之界面處相遇;其中該界面經改變以促進雙專一性抗體之形成,其中該改變之特徵在於:
a)一重鏈之CH3域經改變,以便在雙專一性抗體內與另一重鏈之CH3域之初始界面相遇的一重鏈之CH3域之初始界面內,胺基酸殘基經側鏈體積較大之胺基酸殘基置換,進而在一重鏈之CH3域之界面內產生隆凸,該隆凸可位於另一重鏈之CH3域之界面內的凹穴中;且
b)另一重鏈之CH3域經改變,以便在雙專一性抗體內與第一CH3域之初始界面相遇的第二CH3域之初始界面內,胺基酸殘基經側鏈體積較小之胺基酸殘基置換,進而在第二CH3域之界面內產生凹穴,第一CH3域之界面內的隆凸可位於該凹穴中。
因此,本發明之抗體較佳特徵在於
a)之全長抗體之重鏈的CH3域與b)之全長抗體之重鏈的CH3域各自在包含抗體CH3域之間的初始界面改變的界面處相遇;其中i)在一重鏈之CH3域中,胺基酸殘基經側鏈體積較大之胺基酸殘基置換,進而在一重鏈之CH3域之界面內產生隆凸,該隆凸可位於另一重鏈之CH3域之界面內的凹穴中;且其中ii)在另一重鏈之CH3域中,胺基酸殘基經側鏈體積較小之胺基酸殘基置換,進而在第二CH3域之界面內產生凹穴,第一CH3域之界面內的隆凸可位於該凹穴中。
側鏈體積較大之該胺基酸殘基較佳選自由以下組成之群:精胺酸(R)、苯丙胺酸(F)、酪胺酸(Y)、色胺酸(W)。
側鏈體積較小之該胺基酸殘基較佳選自由以下組成之群:丙胺酸(A)、絲胺酸(S)、蘇胺酸(T)、纈胺酸(V)。
在本發明之一態樣中,兩個CH3域藉由引入半胱胺酸(C)作為各CH3域之相應位置中之胺基酸,以便可在兩個CH3域之間形成雙硫橋而進一步改變。
在一實施例中,雙專一性抗體包含「杵狀結構鏈」CH3域中之T366W突變,及「臼狀結構鏈」CH3域中之T366S、L368A、Y407V突變。亦可例如藉由引入Y349C突變至「杵狀結構鏈」CH3域中且引入E356C突變或S354C突變至「臼狀結構鏈」CH3域中,使用CH3域之間的另一鏈間雙硫橋(Merchant,A.M.等人,Nature Biotech 16(1998)677-681)。
在另一實施例中,本發明之雙專一性抗體包含兩個CH3域之一者中之Y349C、T366W突變,及兩個CH3域之另一者中之E356C、T366S、L368A、Y407V突變。在另一較佳實施例中,雙專一性抗體包含兩個CH3域之一者中之Y349C、T366W突變,及兩個CH3域之另一者中之S354C、T366S、L368A、Y407V突變(一CH3域中之另外Y349C突變與另一CH3域中之另外E356C或S354C突變形成鏈間雙硫橋)(編號始終根據Kabat之EU索引;(Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991)))。而且,或者或另外,亦可使用如EP 1 870 459 A1所述之其他杵臼結構技術。因此,雙專一性抗體之另一實例為R409D;「杵狀結構鏈」CH3域中之K370E突變及D399K;「臼狀結構鏈」CH3域中之E357K突變(編號始終根據Kabat之EU索引;(Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991)))。
在另一實施例中,雙專一性抗體包含「杵狀結構鏈」CH3域中之T366W突變,及「臼狀結構鏈」CH3域中之T366S、L368A、Y407V突變,及另外R409D;「杵狀結構鏈」CH3域中之K370E突變及D399K;「臼狀結構鏈」CH3域中之E357K突變。
在另一實施例中,雙專一性抗體包含兩個CH3域之一者中之Y349C、T366W突變,及兩個CH3域之另一者中之S354C、T366S、L368A、Y407V突變,或該三價、雙專一性抗體包含兩個CH3域之一者中之Y349C、T366W突變,及兩個CH3域之另一者中之S354C、T366S、L368A、Y407V突變,及另外R409D;「杵狀結構鏈」CH3域中之K370E突變及D399K;「臼狀結構鏈」CH3域中之E357K突變。
在本發明之一實施例中,本發明之雙專一性抗體特徵在於具有一或多種以下性質(在如實例3至7中所述之檢測中測定):
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於VEGF;
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於ANG-2;
- 雙專一性、雙價抗體以15 nM或低於15 nM之IC50抑制經Tie2轉染之HEK293細胞中ANG-2誘導之Tie2磷酸化(在一實施例中,IC50為10 nM或低於10 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制ANG-2結合於Tie2(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制VEGF結合於VEGF受體(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以10 nM或低於10 nM之IC 50抑制VEGF誘導之HUVEC細胞增殖(在一實施例中,IC50為5 nM或低於5 nM)。
在一實施例中,雙專一性、雙價抗體特徵在於包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於
i)該第一抗原結合位點包含SEQ ID NO: 1作為重鏈可變域(VH)及SEQ ID NO: 2作為輕鏈可變域(VL);及
ii)該第二抗原結合位點包含SEQ ID NO: 3作為重鏈可變域(VH)及SEQ ID NO: 4作為輕鏈可變域(VL);
且具有一或多種以下性質(在如實例3至7中所述之檢測中測定):
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於VEGF;
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於ANG-2;
- 雙專一性、雙價抗體以15 nM或低於15 nM之IC50抑制經Tie2轉染之HEK293細胞中ANG-2誘導之Tie2磷酸化(在一實施例中,IC50為10 nM或低於10 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制ANG-2結合於Tie2(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制VEGF結合於VEGF受體(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以10 nM或低於10 nM之IC50抑制VEGF誘導之HUVEC細胞增殖(在一實施例中,IC50為5 nM或低於5 nM)。
在本發明之一態樣中,本發明之該雙專一性抗體特徵在於包含
a)專一性結合於VEGF之第一全長抗體之重鏈及輕鏈;
b)專一性結合於ANG-2之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL與CH1彼此置換;
且具有一或多個以下性質(在如實例3至7中所述之檢測中測定):
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於VEGF;
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於ANG-2;
- 雙專一性、雙價抗體以15 nM或低於15 nM之IC50抑制經Tie2轉染之HEK293細胞中ANG-2誘導之Tie2磷酸化(在一實施例中,IC50為10 nM或低於10 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制ANG-2結合於Tie2(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制VEGF結合於VEGF受體(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以10 nM或低於10 nM之IC50抑制VEGF誘導之HUVEC細胞增殖(在一實施例中,IC50為5 nM或低於5 nM)。
在一實施例中,雙專一性、雙價抗體特徵在於包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於
i)該第一抗原結合位點包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 1作為重鏈可變域(VH),及在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 2作為輕鏈可變域(VL);且
ii)該第二抗原結合位點包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 3作為重鏈可變域(VH),及在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 4作為輕鏈可變域(VL)。
在一實施例中,雙專一性、雙價抗體特徵在於包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於
i)該第一抗原結合位點包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 1作為重鏈可變域(VH),及在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 2作為輕鏈可變域(VL);且
ii)該第二抗原結合位點包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 3作為重鏈可變域(VH),及在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 4作為輕鏈可變域(VL);
且具有一或多個以下性質(在如實例3至7中所述之檢測中測定):
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於VEGF;
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於ANG-2;
- 雙專一性、雙價抗體以15 nM或低於15 nM之IC50抑制經Tie2轉染之HEK293細胞中ANG-2誘導之Tie2磷酸化(在一實施例中,IC50為10 nM或低於10 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制ANG-2結合於Tie2(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制VEGF結合於VEGF受體(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以10 nM或低於10 nM之IC50抑制VEGF誘導之HUVEC細胞增殖(在一實施例中,IC50為5 nM或低於5 nM)。
在本發明之一態樣中,本發明之雙專一性抗體特徵在於包含
a)專一性結合於VEGF之第一全長抗體之重鏈及輕鏈,且其中第一全長抗體之重鏈包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 7之胺基酸序列,且第一全長抗體之輕鏈包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 5之胺基酸序列,且
b)專一性結合於ANG-2之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1彼此置換,且其中第二全長抗體之經修飾重鏈包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 8之胺基酸序列,且第二全長抗體之經修飾輕鏈包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 6之胺基酸序列。
在本發明之一態樣中,本發明之雙專一性抗體特徵在於包含
a)專一性結合於VEGF之第一全長抗體之重鏈及輕鏈,且其中第一全長抗體之重鏈包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 7之胺基酸序列,且第一全長抗體之輕鏈包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 5之胺基酸序列,且
b)專一性結合於ANG-2之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1彼此置換,且其中第二全長抗體之經修飾重鏈包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 8之胺基酸序列,且第二全長抗體之經修飾輕鏈包含在CDR中胺基酸殘基取代不超過1個之SEQ ID NO: 6之胺基酸序列;且具有一或多個以下性質(在如實例3至7中所述之檢測中測定):
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於VEGF;
- 雙專一性、雙價抗體以5 nM或低於5 nM結合親和力之KD值結合於ANG-2;
- 雙專一性、雙價抗體以15 nM或低於15 nM之IC50抑制經Tie2轉染之HEK293細胞中ANG-2誘導之Tie2磷酸化(在一實施例中,IC50為10 nM或低於10 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制ANG-2結合於Tie2(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以20 nM或低於20 nM之IC50抑制VEGF結合於VEGF受體(在一實施例中,IC50為15 nM或低於15 nM);
- 雙專一性、雙價抗體以10 nM或低於10 nM之IC50抑制VEGF誘導之HUVEC細胞增殖(在一實施例中,IC50為5 nM或低於5 nM)。
如本文所用之「抗體」係指包含抗原結合位點之結合蛋白。如本文所用之術語「結合位點」或「抗原結合位點」表示配位體實際上所結合之抗體分子上之某一(些)區域。術語「抗原結合位點」包含抗體重鏈可變域(VH)及抗體輕鏈可變域(VL)(VH/VL對)。
抗體專一性係指抗體對抗原之特定抗原決定基的選擇性識別。舉例而言,天然抗體為單專一性抗體。
本發明之「雙專一性抗體」為具有兩種不同抗原結合專一性之抗體。本發明之抗體對兩種不同抗原,作為第一抗原之VEGF及作為第二抗原之ANG-2具專一性。
如本文所用之術語「單專一性」抗體表示具有一或多個結合位點之抗體,該等位點中之每一者皆與同一抗原之同一抗原決定基結合。
如本申請案中所用之術語「價」表示抗體分子中存在指定數目之結合位點。因而,術語「雙價」、「四價」及「六價」表示抗體分子中分別存在兩個結合位點,四個結合位點及六個結合位點。本發明之雙專一性抗體為「雙價」。
如本文所用之術語「VEGF」係指人類血管內皮生長因子(VEGF/VEGF-A)(SEQ ID No: 47),其描述於例如Leung,D.W.等人,Science 246(1989) 1306-9;Keck,P.J.等人,Science 246(1989) 1309-12及Connolly,D.T.等人,J. Biol. Chem. 264(1989) 20017-24中。VEGF參與調節與腫瘤及眼內病症相關之正常及異常血管生成及新血管生成(Ferrara,N.等人,Endocr. Rev. 18(1997) 4-25;Berkman,R.A.等人,J. Clin. Invest. 91(1993) 153-159;Brown,L.F.等人,Human Pathol. 26(1995) 86-91;Brown,L.F.等人,Cancer Res. 53(1993) 4727-4735;Mattern,J.等人,Brit. J. Cancer. 73(1996) 931-934;及Dvorak,H.F.等人,Am. J. Pathol. 146(1995) 1029-1039)。VEGF為已自若干來源分離之同型二聚醣蛋白。VEGF顯示針對內皮細胞之高度專一促有絲分裂活性。
如本文所用之術語「ANG-2」係指人類血管生成素-2(ANG-2)(或者縮寫為ANGPT2或ANG2)(SEQ ID No: 48),其描述於例如Maisonpierre,P.C.等人,Science 277(1997) 55-60及Cheung,A.H.等人,Genomics 48(1998) 389-91中。發現血管生成素-1及血管生成素-2為Tie之配位體,Tie為選擇性表現於血管內皮中之酪胺酸激酶家族。Yancopoulos,G.D.等人,Nature 407(2000) 242-48。血管生成素家族目前存在四個確定成員。血管生成素-3及血管生成素-4(Ang-3及Ang-4)可代表小鼠及人類中相同基因座上有很大差異之對應物。Kim,I.等人,FEBS Let,443(1999) 353-56;Kim,I.等人,J Biol Chem 274(1999) 26523-28。ANG-1及ANG-2最初在組織培養實驗中分別鑑別為促效劑及拮抗劑(關於ANG-1,參見:Davis,S.等人,Cell 87(1996) 1161-69;及關於ANG-2,參見:Maisonpierre,P.C.等人,Science 277(1997) 55-60)。所有已知血管生成素主要結合於Tie2,且Ang-1與Ang-2皆以3 nM(Kd)親和力結合於Tie2。Maisonpierre,P.C.等人,Science 277(1997) 55-60。
本發明雙專一性抗體之抗原結合位點含有六個在不同程度上對結合位點對抗原之親和力作出貢獻的互補決定區(CDR)。存在三個重鏈可變域CDR(CDRH1、CDRH2及CDRH3)及三個輕鏈可變域CDR(CDRL1、CDRL2及CDRL3)。藉由與胺基酸序列之經彙編資料庫(其中CDR及FR已根據序列中的可變性定義)比較來確定CDR及構架區(FR)之範圍。本發明之範疇內亦包括由較少CDR構成之功能性抗原結合位點(亦即,其中結合專一性由三個、四個或五個CDR決定)。舉例而言,少於全套6個CDR對結合而言可為足夠的。在一些狀況下,VH或VL域將為足夠。
本發明之抗體進一步包含一或多個免疫球蛋白種類之免疫球蛋白恆定區。免疫球蛋白種類包括IgG、IgM、IgA、IgD及IgE同型,且在IgG及IgA狀況下,包括其亞型。
如本文所用之術語「單株抗體」或「單株抗體組成」係指具有單一胺基酸組成之抗體分子製劑。
術語「嵌合抗體」係指包含來自一種來源或物種之可變區(亦即結合區)及源自不同來源或物種之恆定區之至少一部分的抗體,該抗體一般藉由重組DNA技術產生。包含鼠類可變區及人類恆定區之嵌合抗體較佳。本發明涵蓋之「嵌合抗體」的其他較佳形式為恆定區已自初始抗體恆定區修飾或改變以產生尤其關於Clq結合及/或Fc受體(FcR)結合之本發明特性的形式。該等嵌合抗體亦稱為「類別轉換抗體」。嵌合抗體為包含編碼免疫球蛋白可變區之DNA區段及編碼免疫球蛋白恆定區之DNA區段的經表現免疫球蛋白基因的產物。用於產生嵌合抗體之方法包含習知重組DNA及基因轉染技術,為此項技術中所熟知。參見例如Morrison,S.L.等人,Proc. Natl. Acad. Sci. USA 81(1984) 6851-6855;US 5,202,238及US 5,204,244。
術語「人類化抗體」係指構架或「互補決定區」(CDR)經修飾以包含與親本免疫球蛋白相比專一性不同之免疫球蛋白之CDR的抗體。在一較佳實施例中,將鼠類CDR移植至人類抗體之構架區中以製備「人類化抗體」。參見例如Riechmann,L.等人,Nature 332(1988) 323-327;及Neuberger,M.S.等人,Nature 314(1985) 268-270。尤其較佳之CDR對應於呈現識別上文針對嵌合抗體所述之抗原之序列的CDR。本發明涵蓋之「人類化抗體」的其他形式為恆定區已以其他方式自初始抗體恆定區修飾或改變以產生尤其關於Clq結合及/或Fc受體(FcR)結合之本發明特性的形式。
如本文所用之術語「人類抗體」意欲包括具有源自人類生殖系免疫球蛋白序列之可變區及恆定區的抗體。人類抗體為此項技術中熟知(van Dijk,M.A.及van de Winkel,J.G.,Curr. Opin. Chem. Biol. 5(2001) 368-374)。人類抗體亦可在無內源性免疫球蛋白產生之狀況下在免疫後能夠產生完全譜系或精選之人類抗體的轉殖基因動物(例如小鼠)中產生。在該生殖系突變小鼠中轉移人類生殖系免疫球蛋白基因陣列將導致在抗原攻毒後產生人類抗體(參見例如Jakobovits,A.等人,Proc. Natl. Acad. Sci. USA 90(1993) 2551-2555;Jakobovits,A.等人,Nature 362(1993) 255-258;Brueggemann,M.等人,Year Immunol. 7(1993) 33-40)。人類抗體亦可在噬菌體呈現庫中產生(Hoogenboom,H.R.及Winter,G.,J. Mol. Biol. 227(1992) 381-388;Marks,J.D.等人,J. Mol. Biol. 222(1991) 581-597)。Cole,A.等人及Boerner,P.等人之技術亦可用於製備人類單株抗體(Cole,A.等人,Monoclonal Antibodies and Cancer Therapy,Liss,A.L.,第77頁(1985);及Boerner,P.等人,J. Immunol. 147(1991) 86-95)。如已針對本發明之嵌合及人類化抗體所提及,如本文所用之術語「人類抗體」亦包含在恆定區中例如藉由「類別轉換」(亦即Fc部分改變或突變(例如自IgG1變至IgG4及/或IgG1/IgG4突變))修飾而產生尤其關於Clq結合及/或FcR結合之本發明特性的該類抗體。
如本文所用之術語「重組人類抗體」意欲包括藉由重組方式製備、表現、產生或分離之所有人類抗體,諸如自轉殖人類免疫球蛋白基因之宿主細胞(諸如NS0或CHO細胞)或動物(例如小鼠)分離之抗體,或使用轉染至宿主細胞中之重組表現載體表現之抗體。該等重組人類抗體具有重排形式之可變區及恆定區。本發明之重組人類抗體已經受活體內體細胞超突變。因此,重組抗體之VH及VL區之胺基酸序列為雖然源自人類生殖系VH及VL序列且與其有關,但可能並不天然存在於活體內人類抗體生殖系譜系中的序列。
如本文所用之「可變域」(輕鏈(VL)可變域、重鏈(VH)可變域)表示直接參與抗體與抗原結合之輕鏈與重鏈對中之每一者。人類輕鏈及重鏈可變域具有相同通用結構,且各域包含四個構架(FR)區,該等構架區序列普遍保守,由三個「高變區」(或互補決定區,CDR)連接。該等構架區採用β片構形,且CDR可形成連接β片結構之環。各鏈中之CDR藉由構架區保持其三維結構且連同來自其他鏈之CDR一起形成抗原結合位點。抗體重鏈及輕鏈CDR3區在本發明抗體之結合專一性/親和力中起尤其重要的作用,且因此提供本發明之另一目標。
當用於本文中時,術語「高變區」或「抗體之抗原結合部分」係指抗體中負責抗原結合之胺基酸殘基。高變區包含來自「互補決定區」或「CDR」之胺基酸殘基。「構架」或「FR」區為除如本文中所定義之高變區殘基之外的可變域區域。因此,抗體之輕鏈及重鏈自N端至C端包含結構域FR1、CDR1、FR2、CDR2、FR3、CDR3及FR4。各鏈上之CDR由該等構架胺基酸隔開。重鏈之CDR3尤其為最有助於抗原結合之區域。根據Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991)(包括根據Kabat之EU索引編號(下文縮寫為根據Kabat編號))之標準定義判定CDR區及FR區。
如本文所用之術語「結合」或「專一性結合」係指在使用經純化野生型抗原之活體外檢測、較佳電漿子共振檢測(BIAcore,GE-Healthcare Uppsala,Sweden)(實例3)中抗體與抗原(人類VEGF或人類ANG-2)之抗原決定基結合。結合親和力由術語ka(抗體/抗原複合物中抗體之締合速率常數)、kD (解離常數)及KD (kD /ka)定義。在一實施例中,結合或專一性結合意謂結合親和力(KD )為10-8 mol/1或10-8 mol/l以下,較佳為10-9 M至10-13 mol/l。
術語「抗原決定基」包括任何能夠專一性結合抗體之多肽決定子。在某些實施例中,抗原決定基決定子包括分子之化學活性表面基團,諸如胺基酸、糖側鏈、磷醯基或磺醯基,且在某些實施例中,其可具有特定三維結構特徵及/或特定電荷特徵。抗原決定基為由抗體結合之抗原區。
在某些實施例中,當抗體在蛋白質及/或大分子之複雜混合物中優先識別其目標抗原時,稱該抗體專一性結合該抗原。
術語「全長抗體」表示由兩個「全長抗體重鏈」及兩個「全長抗體輕鏈」組成之抗體(參見圖1)。「全長抗體重鏈」為在N端至C端方向上由抗體重鏈可變域(VH)、抗體重鏈恆定域1(CH1)、抗體鉸鏈區(HR)、抗體重鏈恆定域2(CH2)及抗體重鏈恆定域3(CH3)(縮寫為VH-CH1-HR-CH2-CH3)以及在子類IgE抗體之狀況下視情況存在之抗體重鏈恆定域4(CH4)組成的多肽。「全長抗體重鏈」較佳為在N端至C端方向上由VH、CH1、HR、CH2及CH3組成之多肽。「全長抗體輕鏈」為在N端至C端方向上由抗體輕鏈可變域(VL)及抗體輕鏈恆定域(CL)組成之多肽,縮寫為VL-CL。抗體輕鏈恆定域(CL)可為κ或λ。兩個全長抗體鏈經由CL域與CH1域之間及全長抗體重鏈鉸鏈區之間的多肽間雙硫鍵連接在一起。典型全長抗體之實例為天然抗體,如IgG(例如IgG 1及IgG2)、IgM、IgA、IgD及IgE。本發明之全長抗體可來自單一物種(例如人類),或其可為嵌合或人類化抗體。本發明之全長抗體包含各由一對VH及VL形成之兩個抗原結合位點,兩者皆專一性結合於同一抗原。該全長抗體之重鏈或輕鏈之C端表示該重鏈或輕鏈之C端的最後一個胺基酸。該全長抗體之重鏈或輕鏈之N端表示該重鏈或輕鏈之N端的最後一個胺基酸。
如本發明所用之術語「肽連接子」表示具有較佳由合成法得到的胺基酸序列之肽。使用本發明之此等肽將第二全長抗體(其專一性結合於第二抗原)之輕鏈C端經由肽連接子連接於重鏈N端。第二全長抗體重鏈及輕鏈內之肽連接子為長度為至少30個胺基酸,較佳至少32至50個胺基酸之胺基酸序列的肽。在一實施例中,肽連接子為長度為32至40個胺基酸之胺基酸序列的肽。在一實施例中,該連接子為(GxS)n,其中G=甘胺酸,S=絲胺酸(x=3,n=8、9或10且m=0、1、2或3)或(x=4且n=6、7或8且m=0、1、2或3),較佳x=4,n=6或7且m=0、1、2或3,更佳x=4,n=7且m=2。在一實施例中,該連接子為(G4 S)6 G2
如本申請案中所用之術語「恆定區」表示除了可變區之外的抗體結構域的總和。恆定區雖然不直接參與抗原結合,但展現多種效應功能。視其重鏈恆定區之胺基酸序列而定,抗體分為以下類別:IgA、IgD、IgE、IgG及IgM,且其中若干種可進一步分為諸如IgG1、IgG2、IgG3及IgG4、IgA1及IgA2的子類。對應於不同類別之抗體的重鏈恆定區分別稱為α、δ、ε、γ及μ。在所有5種抗體類別中可發現之輕鏈恆定區稱為κ及λ。
如本申請案中所用之術語「自人類起源獲得之恆定區」表示子類IgG1、IgG2、IgG3或IgG4之人類抗體的恆定重鏈區及/或恆定輕鏈κ或λ區。該等恆定區為此項技術中熟知且例如由Kabat,E.A.(參見例如Johnson,G.及Wu,T.T.,Nucleic Acids Res. 28(2000) 214-218;Kabat,E.A.等人,Proc. Natl. Acad. Sci. USA 72(1975) 2785-2788)所述。
本發明之雙專一性、雙價抗體較佳具有人類IgG1子類之恆定區。
儘管IgG4子類抗體顯示降低之Fc受體(FcγRIIIa)結合,但其他IgG子類抗體仍顯示結合性。然而,Pro238、Asp265、Asp270、Asn297(失去Fc碳水化合物)、Pro329、Leu234、Leu235、Gly236、Gly237、Ile253、Ser254、Lys288、Thr307、Gln311、Asn434及His435為若經改變亦提供降低之Fc受體結合的殘基(Shields,R.L.等人,J. Biol. Chem. 276(2001) 6591-6604;Lund,J.等人,FASEB J. 9(1995) 115-119;Morgan,A.等人,Immunology 86(1995) 319-324;EP 0 307 434)。
在一實施例中,本發明之抗體相較於IgG1抗體具有降低之FcR結合,且雙專一性、雙價抗體涉及具有S228、L234、L235及/或D265突變之IgG4子類或IgG1子類之FcR結合,及/或含有PVA236突變。在一實施例中,雙專一性、雙價抗體中之突變在IgG4 S228P及L235E中以及IgG1 L234A及L235A中。
本發明之另一態樣為特徵在於包含以下之雙專一性、雙價抗體:
a)專一性結合於第一抗原之第一全長抗體之重鏈及輕鏈;
b)專一性結合於第二抗原之第二全長抗體之重鏈及輕鏈,其中重鏈N端經由肽連接子連接於輕鏈C端;且其中可變域VL與VH或恆定域CL與CH1彼此置換。
此雙專一性、雙價抗體形式之CH3域較佳藉由「杵臼結構」技術來改變,此技術以若干實例詳細描述於例如WO 96/027011;Ridgway J.B.等人,Protein Eng 9(1996) 617-621;及Merchant,A.M.等人,Nat Biotechnol 16(1998) 677-681中。在此方法中,改變兩個CH3域之相互作用表面,以增強含有此兩個CH3域之兩個重鏈的異型二聚。(兩個重鏈之)兩個CH3域中之每一者皆可為「杵狀結構」,而另一者為「臼狀結構」。引入雙硫橋可穩定化異型二聚體(Merchant,A.M.等人,Nature Biotech 16(1998) 677-681;Atwell,S.等人,J. Mol. Biol. 270(1997) 26-35)且提高產率。更多細節及實施例參見上文。
本發明之另一態樣為特徵在於包含以下之雙專一性、雙價抗體:
a)專一性結合於第一抗原之第一全長抗體之重鏈及輕鏈;
b)專一性結合於第二抗原之第二全長抗體之重鏈及輕鏈,其中重鏈N端經由肽連接子連接於輕鏈C端;且其中可變域VL與VH彼此置換。
此雙專一性、雙價抗體形式之一例示性略圖展示於圖2b中,其包括杵臼結構修飾之CH3域。基於此雙專一性、雙價抗體形式之抗體在實例中稱為OAscXFabl。
在一實施例中,該雙專一性抗體特徵在於包含
a)SEQ ID NO: 39作為第一全長抗體之重鏈及SEQ ID NO: 40作為第一全長抗體之輕鏈,及
b)SEQ ID NO: 38作為經由肽連接子連接於第二全長抗體之輕鏈的第二全長抗體之重鏈。
本發明之另一態樣為特徵在於包含以下之雙專一性、雙價抗體:
a)專一性結合於第一抗原之第一全長抗體之重鏈及輕鏈;
b)專一性結合於第二抗原之第二全長抗體之重鏈及輕鏈,其中重鏈N端經由肽連接子連接於輕鏈C端;且其中恆定域CL與CH1彼此置換。
此雙專一性、雙價抗體形式之一例示性略圖展示於圖2c中,其包括杵臼結構修飾之CH3域。基於此雙專一性、雙價抗體形式之抗體在實例中稱為OAscXFab2及OAscXFab3。
在一實施例中,該雙專一性抗體特徵在於包含
a) SEQ ID NO: 42作為第一全長抗體之重鏈及SEQ ID NO: 43作為第一全長抗體之輕鏈,及
b) SEQ ID NO: 41作為經由肽連接子連接於第二全長抗體之輕鏈的第二全長抗體之重鏈。
在一實施例中,該雙專一性抗體特徵在於包含
a) SEQ ID NO: 45作為第一全長抗體之重鏈及SEQ ID NO: 46作為第一全長抗體之輕鏈,及
b) SEQ ID NO: 44作為經由肽連接子連接於第二全長抗體之輕鏈的第二全長抗體之重鏈。
藉由重組方式產生本發明之抗體。因此,本發明之一態樣為編碼本發明抗體之核酸,且另一態樣為包含編碼本發明抗體之該核酸的細胞。重組產生方法為此項技術中廣泛已知且包含在原核及真核細胞中蛋白質表現,隨後分離抗體且通常純化至醫藥學上可接受之純度。為在宿主細胞中表現上述抗體,藉由標準方法將編碼各別經修飾輕鏈及重鏈之核酸插入至表現載體中。在適當原核或真核宿主細胞(如CHO細胞、NS0細胞、SP2/0細胞、HEK293細胞、COS細胞、PER.C6細胞、酵母或大腸桿菌(E.coli)細胞)中進行表現且自細胞中(上清液或溶解後之細胞)回收抗體。重組產生抗體之一般方法為此項技術中熟知且描述於例如Makrides,S.C.,Protein Expr. Purif. 17(1999) 183-202;Geisse,S.等人,Protein Expr. Purif. 8(1996) 271-282;Kaufman,R.J.,Mol. Biotechnol. 16(2000) 151-160;Werner,R.G.,Drug Res. 48(1998)870-880之綜述文章中。
因此,本發明之一實施例為一種製備本發明雙專一性抗體之方法,其包含以下步驟:
a)宿主細胞經包含編碼該抗體之核酸分子的載體轉型;
b)在允許合成該抗體分子之條件下培養宿主細胞;及
c)自該培養物回收該抗體分子。
藉由習知免疫球蛋白純化程序(諸如蛋白A-瓊脂糖凝膠(protein A-Sepharose)、羥磷灰石層析法、凝膠電泳法、透析或親和層析法)適宜地自培養基分離雙專一性抗體。編碼單株抗體之DNA及RNA容易採用習知程序分離及定序。融合瘤細胞可用作該DNA及RNA之來源。一旦分離,即可將DNA插入表現載體中,接著轉染至不另外產生免疫球蛋白之宿主細胞(諸如HEK 293細胞、CHO細胞或骨髓瘤細胞)中,以在宿主細胞中合成重組單株抗體。
藉由向抗體DNA中引入適當核苷酸變化或藉由核苷酸合成來製備雙專一性抗體之胺基酸序列變異體(或突變體)。然而,該等修飾僅可在非常有限之範圍中進行。舉例而言,修飾不改變上述抗體特徵(諸如IgG同型及抗原結合),但可改良重組產生之產率、蛋白質穩定性或促進純化。
如本申請案中所用之術語「宿主細胞」表示可經工程改造而產生本發明抗體之任何種類之細胞系統。在一實施例中,使用HEK293細胞及CHO細胞作為宿主細胞。如本文所用之表述「細胞」、「細胞株」及「細胞培養物」可互換使用且所有該等名稱均包括後代。因此,短語「轉型體」及「轉型細胞」包括初級個體細胞及自其產生之培養物,與轉移次數無關。亦應瞭解,所有後代之DNA含量可能由於有意或無意突變而不能完全一致。具有與針對原始轉型細胞所篩檢相同之功能或生物活性的變異後代包括在內。
NS0細胞中之表現由例如Barnes,L.M.等人,Cytotechnology 32(2000) 109-123;Barnes,L.M.等人,Biotech. Bioeng. 73(2001) 261-270描述。短暫表現由例如Durocher,Y.等人,Nucl. Acids. Res. 30(2002) E9描述。可變域之選殖由Orlandi,R.等人,Proc. Natl. Acad. Sci. USA 86(1989) 3833-3837;Carter,P.等人,Proc. Natl. Acad. Sci. USA 89(1992) 4285-4289;及Norderhaug,L.等人,J. Immunol. Methods 204(1997) 77-87描述。較佳短暫表現系統(HEK 293)由Schlaeger,E.-J.及Christensen,K.在Cytotechnology 30(1999) 71-83中及由Schlaeger,E.-J.在J. Immunol. Methods 194(1996) 191-199中描述。
適於原核生物之控制序列例如包括啟動子、視情況存在之操縱序列及核糖體結合位點。已知真核細胞利用啟動子、強化子及聚腺苷酸化信號。
當一核酸與另一核酸序列功能相關時,其為「可操作地連接」。舉例而言,若前序列或分泌性前導序列之DNA表現為參與多肽分泌之前蛋白,則其可操作地連接於多肽之DNA;若啟動子或強化子影響編碼序列之轉錄,則其可操作地連接於該序列;或若核糖體結合位點經定位以促進轉譯,則其可操作地連接於編碼序列。一般而言,「可操作地連接」意謂所連接之DNA序列為鄰接的,且在分泌性前導序列之狀況下為鄰接且處於閱讀框架中。然而,強化子不必為鄰接的。連接係藉由在適宜的限制性位點接合來實現。若該等位點不存在,則根據習知實務使用合成性寡核苷酸接附子(adaptor)或連接子。
藉由標準技術(包括鹼性/SDS處理、CsCl分帶技術(CsCl banding)、管柱層析法、瓊脂糖凝膠電泳及此項技術中熟知之其他技術)純化抗體以去除細胞組分或其他污染物,例如其他細胞核酸或蛋白質。參見Ausubel,F.等人編,Current Protocols in Molecular Biology,Greene Publishing and Wiley Interscience,New York(1987)。已充分確立不同方法且廣泛用於蛋白質純化,諸如使用微生物蛋白之親和層析法(例如蛋白A或蛋白G親和層析法)、離子交換層析法(例如陽離子交換(羧甲基樹脂)、陰離子交換(胺基乙基樹脂)及混合模式交換)、嗜硫吸附法(例如用β-巰基乙醇及其他SH配位體)、疏水性相互作用或芳族吸附層析法(例如利用苯基-瓊脂糖、氮雜親芳烴性樹脂(aza-arenophilic resin)或間胺基苯基酸)、金屬螯合物親和層析法(例如利用Ni(II)及Cu(II)親和性材料)、尺寸排阻層析法及電泳法(諸如凝膠電泳法、毛細管電泳法)(Vijayalakshmi,M.A.,Appl. Biochem. Biotech. 75(1998) 93-102)。
現已發現,本發明之針對人類VEGF及人類ANG-2之雙專一性抗體具有有用的特徵,諸如高穩定性及有用藥物動力學/藥效學特性,例如優良(亦即緩慢)清除率(例如在低劑量下)。
對於需要VEGF及ANG-2靶向療法之人類患者,本發明之雙專一性、雙價抗體顯示益處。
此外,其具有生物或藥理學活性且展示活體內腫瘤生長抑制及/或腫瘤血管生成抑制。
本發明之雙專一性抗體非常有效於
a)抑制腫瘤生長(例如使用本發明之雙專一性抗體,可在相較於兩個親本單專一性抗體組合較低之濃度下達成腫瘤停滯(例如在實例9及10之COLO205及KPL4腫瘤模型中,相較於10 mg/kg Ang2i-LC06+10 mg/kg Avastin之組合,用10 mg/kg XMAb1即已達成腫瘤停滯)),及/或
b)抑制腫瘤血管生成或血管疾病(例如使用本發明之雙專一性抗體,可在相較於兩個親本單專一性抗體組合較低之濃度下達成最大抗血管生成作用(例如在實例8之小鼠角膜血管生成檢測中,相較於10 mg/kg Ang2i-LC06+10 mg/kg Avastin之組合,用10 mg/kg XMAb1即已達成最大抗血管生成作用))。
最後,本發明之針對人類VEGF及人類ANG-2之雙專一性、雙價抗體可具有有用的功效/毒性概況,且可為需要抗-VEGF及抗-ANG-2療法之患者提供益處。
本發明之一態樣為一種包含本發明抗體之醫藥組合物。本發明之另一態樣為本發明抗體用於製造醫藥組合物之用途。本發明之另一態樣為一種製造包含本發明抗體之醫藥組合物的方法。在另一態樣中,本發明提供一種含有本發明抗體與醫藥載劑調配在一起之組合物,例如醫藥組合物。
本發明之一實施例為本發明之雙專一性抗體,其係用於治療癌症。
本發明之另一態樣為該醫藥組合物,其係用於治療癌症。
本發明之另一態樣為本發明抗體之用途,其係用於製造用以治療癌症之藥物。
本發明之另一態樣為治療罹患癌症之患者的方法,其係藉由向需要該治療之患者投與本發明抗體。
本發明之另一態樣為該醫藥組合物,其係用於預防癌轉移。
本發明包含用於預防癌轉移之本發明雙專一性抗體。
本發明之另一態樣為本發明雙專一性抗體之用途,其係用於製造用以預防癌轉移之藥物。
本發明之另一態樣為預防罹患原發性癌症之患者之癌轉移的方法,其係藉由向需要該預防性治療之患者投與本發明雙專一性抗體。
可展示非常有效地預防活體內原位及皮下癌症模型中自發性癌轉移/繼發性腫瘤(參見實例9)(和靜脈內注射腫瘤細胞之實驗模型對比)。此類似於細胞自原發性腫瘤傳播及轉移至如肺或肝之繼發性器官(其中為繼發性腫瘤)的臨床情況。
根據本發明之術語「癌轉移」係指癌細胞自原發性腫瘤傳播至患者體內別處之一或多個部位,接著形成繼發性腫瘤。確定癌症是否已經轉移之轉移偵測手段為此項技術中已知,且包括骨頭掃描、胸部X射線、CAT掃描、MRI掃描及腫瘤標記物測試。
如本文所用之術語「預防癌轉移」或「預防繼發性腫瘤」具有相同含義,且係指針對罹患癌症之患者之癌轉移的防治藥劑以此方式抑制或減少癌細胞自原發性腫瘤進一步傳播至患者體內別處之一或多個部位。此意謂預防、延遲或減少原發性腫瘤或癌症之轉移,因此預防、延遲或減少繼發性腫瘤之形成。較佳預防或減少肺之癌轉移(亦即繼發性腫瘤),此意謂預防或減少癌細胞自原發性腫瘤轉移性傳播至肺。
如本文所用之「醫藥載劑」包括生理學相容之任何及所有溶劑、分散介質、包衣、抗細菌劑及抗真菌劑、等張及吸收延遲劑及其類似物。載劑較佳適於靜脈內、肌肉內、皮下、非經腸、脊椎或表皮投與(例如藉由注射或輸注)。
本發明之組合物可藉由此項技術中已知之各種方法投與。如熟習此項技術者所瞭解,投與途徑及/或模式將視所要結果而變化。為藉由特定投與途徑來投與本發明化合物,可能需要將化合物以防止其失活之物質塗佈或將化合物與該物質共同投與。舉例而言,化合物可在適當載劑(例如脂質體或稀釋劑)中向個體投與。醫藥學上可接受之稀釋劑包括生理食鹽水及水性緩衝溶液。醫藥載劑包括無菌水溶液或分散液及用於臨時製備無菌可注射溶液或分散液之無菌粉末。此項技術中已知用於醫藥活性物質之該等介質及試劑的用途。
如本文所用之短語「非經腸投與」意謂除經腸及局部投與之外的投與模式,一般藉由注射,且包括(不限於)靜脈內、肌肉內、動脈內、鞘內、囊內、眶內、心內、皮內、腹膜內、經氣管、皮下、表皮下、關節內、囊下、蛛網膜下、脊柱內、硬膜外及胸骨內注射及輸注。
如本文所用之術語癌症係指增生性疾病,諸如淋巴瘤、淋巴球性白血病、肺癌、非小細胞肺(NSCL)癌、細支氣管細胞肺癌、骨癌、胰臟癌、皮膚癌、頭或頸癌、皮膚或眼內黑素瘤、子宮癌、卵巢癌、直腸癌、肛門區癌、胃癌(stomach cancer)、胃癌(gastric cancer)、結腸癌、乳癌、子宮癌、輸卵管癌、子宮內膜癌、子宮頸癌、陰道癌、陰門癌、霍奇金氏病(Hodgkin's Disease)、食道癌、小腸癌、內分泌系統癌、甲狀腺癌、副甲狀腺癌、腎上腺癌、軟組織肉瘤、尿道癌、陰莖癌、前列腺癌、膀胱癌、腎癌或輸尿管癌、腎細胞癌、腎盂癌、間皮瘤、肝細胞癌、膽癌、中樞神經系統(CNS)贅瘤、脊柱腫瘤、腦幹神經膠質瘤、多形性膠質母細胞瘤、星形細胞瘤、神經鞘瘤、室管膜瘤、神經管胚細胞瘤、腦膜瘤、鱗狀細胞癌、垂體腺瘤及尤文氏肉瘤(Ewings sarcoma),包括上述任何癌症之難治癒形式,或上述一或多種癌症的組合。
本發明之另一態樣為本發明之雙專一性抗體或該醫藥組合物,其係作為抗血管生成劑。該抗血管生成劑可用於治療癌症,尤其實體腫瘤及其他血管疾病。
本發明之一實施例為本發明之雙專一性抗體,其係用於治療血管疾病。
本發明之另一態樣為該醫藥組合物,其係用於治療血管疾病。
本發明之另一態樣為本發明抗體之用途,其係用於製造用以治療血管疾病之藥物。
本發明之另一態樣為治療罹患血管疾病之患者的方法,其係藉由向需要該治療之患者投與本發明抗體。
術語「血管疾病」包括癌症、發炎疾病、動脈粥樣硬化、局部缺血、外傷、敗血症、COPD、哮喘、糖尿病、AMD、視網膜病變、中風、肥胖症、急性肺損傷、出血、血管滲漏(例如由細胞因子誘發)、過敏症、葛瑞夫茲氏病(Graves' Disease)、橋本氏自體免疫甲狀腺炎(Hashimoto's Autoimmune Thyroiditis)、特發性血小板減少性紫癜、巨細胞動脈炎、類風濕性關節炎、全身性紅斑性狼瘡症(SLE)、狼瘡性腎炎、克羅恩氏病(Crohn's Disease)、多發性硬化症、潰瘍性結腸炎(尤其實體腫瘤)、眼內新生血管症候群(諸如增生性視網膜病變或年齡相關之黃斑變性(AMD))、類風濕性關節炎及牛皮癬(Folkman,J.等人,J. Biol. Chem. 267(1992) 10931-10934;Klagsbrun,M.等人,Annu. Rev. Physiol. 53(1991) 217-239;及Garner,A.,Vascular diseases,Pathobiology of ocular disease,A dynamic approach,Garner,A.及Klintworth,G.K.,(編),第2版,Marcel Dekker,New York(1994),第1625-1710頁)。
此等組合物亦可含有佐劑,諸如防腐劑、濕潤劑、乳化劑及分散劑。可藉由滅菌程序(同上)及藉由納入例如對羥基苯甲酸酯、氯丁醇、苯酚、山梨酸及其類似物之各種抗細菌劑及抗真菌劑來確保防止微生物存在。亦可能需要組合物中包括諸如糖、氯化鈉及其類似物之等張劑。另外,可藉由納入延遲吸收之試劑(諸如單硬脂酸鋁及明膠)來實現可注射醫藥形式之延長吸收。
不管所選投與途徑,藉由熟習此項技術者已知之習知方法,將可以適合水合形式使用之本發明化合物及/或本發明醫藥組合物調配成醫藥學上可接受之劑型。
可改變本發明醫藥組合物中活性成分之實際劑量濃度,以便獲得有效達成針對特定患者、組合物及投藥模式的所要治療反應且對患者無毒性的活性成分之量。所選劑量濃度將視多種藥物動力學因素而定,包括所採用之本發明特定組合物之活性、投與途徑、投與時間、所採用之特定化合物的排泄率、治療持續時間、與所採用特定組合物組合使用之其他藥物、化合物及/或物質、所治療患者之年齡、性別、體重、病狀、一般健康狀況及先前病史,及醫藥技術中熟知之類似因素。
組合物必須無菌且在一定程度上流動,以便可藉由針筒傳遞組合物。除水以外,載劑較佳為等張緩衝生理食鹽水溶液。
可例如藉由使用諸如卵磷脂之包衣,藉由在分散液狀況下維持所要粒徑及藉由使用界面活性劑來保持適當流動性。在許多情況下,較佳在組合物中包括等張劑,例如糖、多元醇(諸如甘露糖醇或山梨糖醇)及氯化鈉。
如本文所用,表述「細胞」、「細胞株」及「細胞培養物」可互換使用且所有該等名稱均包括後代。因此,短語「轉型體」及「轉型細胞」包括初級個體細胞及自其產生之培養物,與轉移次數無關。亦應瞭解,所有後代之DNA含量可能由於有意或無意突變而不能完全一致。具有與針對原始轉型細胞所篩檢相同之功能或生物活性的變異後代包括在內。當意欲使用不同名稱時,根據上下文將顯而易知。
如本文所用之術語「轉型」係指將載體/核酸轉移至宿主細胞中之過程。若使用不具有難以對付之細胞壁障壁之細胞作為宿主細胞,則例如藉由如Graham,F.L.,van der Eb,A.J.,Virology 52(1973) 546-467所述之磷酸鈣沈澱法進行轉染。然而,亦可使用諸如藉由細胞核注射或藉由原生質體融合將DNA引入細胞中之其他方法。若使用原核細胞或含有實質細胞壁構造之細胞,則一種轉染方法例如為如Cohen,S.N.等人,PNAS. 69(1972) 2110-2114所述之使用氯化鈣的鈣處理法。
如本文所用之「表現」係指將核酸轉錄成mRNA之過程及/或隨後將經轉錄之mRNA(亦稱為轉錄物)轉譯成肽、多肽或蛋白質之過程。轉錄物及經編碼之多肽統稱為基因產物。若聚核苷酸係源自基因組DNA,則真核細胞中之表現可包括mRNA之剪接。
「載體」為一種核酸分子,詳言之為自我複製之核酸分子,其將所插入之核酸分子轉移至宿主細胞中及/或宿主細胞之間。該術語包括主要用於將DNA或RNA插入細胞中(例如染色體整合)之載體、主要用於複製DNA或RNA之複製載體及用於轉錄及/或轉譯DNA或RNA之表現載體。亦包括提供一種以上所述功能之載體。
「表現載體」為一種聚核苷酸,其在引入適當宿主細胞中時可轉錄且轉譯為多肽。「表現系統」通常係指一種由可用於產生所要表現產物之表現載體構成的適合宿主細胞。
為幫助理解本發明,提供以下實例、序列表及圖,本發明之真實範疇闡述於隨附申請專利範圍中。應瞭解,可在不悖離本發明精神之情況下對所闡述之程序作出修改。
序列表之描述(胺基酸序列)
SEQ ID NO:1 <VEGF>貝伐單抗之可變重鏈域VH
SEQ ID NO:2 <VEGF>貝伐單抗之可變輕鏈域VL
SEQ ID NO:3 <ANG-2>E6Q之可變重鏈域VH
SEQ ID NO:4 <ANG-2>E6Q之可變輕鏈域VL
SEQ ID NO: 5 XMab1-<VEGF>輕鏈
SEQ ID NO: 6 XMab1-<ANG2>輕鏈
SEQ ID NO: 7 XMab1-<VEGF>重鏈
SEQ ID NO: 8 XMab1-<ANG2>重鏈
SEQ ID NO: 9 XMab2-<VEGF>輕鏈
SEQ ID NO: 10 XMab2-<ANG2>輕鏈
SEQ ID NO: 11 XMab2-<VEGF>重鏈
SEQ ID NO: 12 XMab2-<ANG2>重鏈
SEQ ID NO: 13 XMab3-<VEGF>輕鏈
SEQ ID NO: 14 XMab3-<ANG2>輕鏈
SEQ ID NO: 15 XMab3-<VEGF>重鏈
SEQ ID NO: 16 XMab3-<ANG2>重鏈
SEQ ID NO: 17 XMab4-<VEGF>輕鏈
SEQ ID NO: 18 XMab4-<ANG2>輕鏈
SEQ ID NO: 19 XMab4-<VEGF>重鏈
SEQ ID NO: 20 XMab4-<ANG2>重鏈
SEQ ID NO: 21 XMab5-<VEGF>輕鏈
SEQ ID NO: 22 XMab5-<ANG2>輕鏈
SEQ ID NO: 23 XMab5-<VEGF>重鏈
SEQ ID NO: 24 XMab5-<ANG2>重鏈
SEQ ID NO: 25 XMab6-<VEGF>輕鏈
SEQ ID NO: 26 XMab6-<ANG2>輕鏈
SEQ ID NO: 27 XMab6-<VEGF>重鏈
SEQ ID NO: 28 XMab6-<ANG2>重鏈
SEQ ID NO: 29 OAscFab1-<ANG2>肽連接之重鏈及輕鏈
SEQ ID NO: 30 OAscFab1-<VEGF>重鏈
SEQ ID NO: 31 OAscFab1-<VEGF>輕鏈
SEQ ID NO: 32 OAscFab2-<ANG2>肽連接之重鏈及輕鏈
SEQ ID NO: 33 OAscFab2-<VEGF>重鏈
SEQ ID NO: 34 OAscFab2-<VEGF>輕鏈
SEQ ID NO: 35 OAscFab3-<ANG2>肽連接之重鏈及輕鏈
SEQ ID NO: 36 OAscFab3-<VEGF>重鏈
SEQ ID NO: 37 OAscFab3-<VEGF>輕鏈
SEQ ID NO: 38 OAscXFab1-<ANG2>肽連接之重鏈及輕鏈
SEQ ID NO: 39 OAscXFab1-<VEGF>重鏈
SEQ ID NO: 40 OAscXFab1-<VEGF>輕鏈
SEQ ID NO: 41 OAscXFab2-<ANG2>肽連接之重鏈及輕鏈
SEQ ID NO: 42 OAscXFab2-<VEGF>重鏈
SEQ ID NO: 43 OAscXFab2-<VEGF>輕鏈
SEQ ID NO: 44 OAscXFab3-<ANG2>肽連接之重鏈及輕鏈
SEQ ID NO: 45 OAscXFab3-<VEGF>重鏈
SEQ ID NO: 46 OAscXFab3-<VEGF>輕鏈
SEQ ID NO: 47 人類血管內皮生長因子(VEGF)
SEQ ID NO: 48 人類血管生成素-2(ANG-2)
實驗程序
實例
材料及一般方法
關於人類免疫球蛋白輕鏈及重鏈之核苷酸序列的一般資訊於以下文獻中給出:Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991)。抗體鏈之胺基酸係根據EU編號來編號及提及(Edelman,G.M.等人,Proc. Natl. Acad. Sci. USA 63(1969) 78-85;Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD,(1991))。
重組DNA技術
如Sambrook,J.等人,Molecular cloning: A laboratory manual;Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York,1989中所述使用標準方法來處理DNA。根據製造商之說明書使用分子生物學試劑。
基因合成
可自由化學合成製成之寡核苷酸製備所要基因區段。藉由黏接及接合寡核苷酸(包括PCR擴增)來組裝側接有單限制性核酸內切酶裂解位點之基因區段,隨後經由指定限制性位點(例如KpnI/SacI或AscI/PacI)選殖至基於pPCRScript(Stratagene)之pGA4選殖載體中。藉由DNA定序來確定次選殖基因片段之DNA序列。
根據Geneart(Regensburg,Germany)之既定說明來對基因合成片段排序。合成編碼Ang-2/VEGF雙專一性抗體之輕鏈及重鏈的所有基因區段,其具有編碼目的是使蛋白質在真核細胞中分泌之前導肽(MGWSCIILFLVATATGVHS)的5'端DNA序列及在合成基因之5'及3'端之獨特限制性位點。設計具有雙硫鍵穩定化之「杵臼結構」修飾之重鏈的DNA序列,其在「杵狀結構」重鏈中具有S354C及T366W突變且在「臼狀結構」重鏈中具有Y349C、T366S、L368A及Y407V突變。
DNA序列確定
DNA及蛋白質序列分析與序列資料管理
藉由根據MediGenomix GmbH(Martinsried,Germany)或Sequiserve GmbH(Vaterstetten,Germany)進行之雙股定序來確定DNA序列。
GCG(Genetics Computer Group,Madison,Wisconsin)之套裝軟體第10.2版及Infomax之Vector NT1 Advance套件第8.0版用於序列產生、定位、分析、註釋及說明。
表現載體
為表現所述抗體,應用基於含CMV-內含子A啟動子之cDNA構造或含CMV啟動子之基因組構造,短暫表現(例如在HEK293 EBNA或HEK293-F細胞中)或穩定表現(例如在CHO細胞中)之表現質體變異體(例如圖2B)。
除抗體表現卡匣外,載體亦含有:
- 允許在大腸桿菌中複製此質體之複製起點,及
- 賦予大腸桿菌安比西林(ampicillin)抗性之β-內醯胺酶基因。
抗體基因之轉錄單元係由以下要素構成:
- 5'端之獨特限制性位點;
- 來自人類細胞巨大病毒之即刻早期強化子及啟動子;
- 隨後為在cDNA構造狀況下之內含子A序列;
- 人類抗體基因之5'-未轉譯區;
- 免疫球蛋白重鏈信號序列;
- 呈具有免疫球蛋白外顯子-內含子構造之cDNA或基因組構造形式的人類抗體鏈(重鏈、經修飾重鏈或輕鏈);
- 具有聚腺苷酸化信號序列之3'未轉譯區;及
- 3'端之獨特限制性位點。
為短暫及穩定轉染,藉由質體製備法自經轉型大腸桿菌培養物(Nucleobond AX,Macherey-Nagel)製備大量質體。
細胞培養技術
如Current Protocols in Cell Biology(2000),Bonifacino,J.S.,Dasso,M.,Harford,J.B.,Lippincott-Schwartz,J.及Yamada,K.M.(編),John Wiley & Sons,Inc.中所述使用標準細胞培養技術。
在HEK293-F系統中短暫轉染
根據製造商之說明書,使用FreeStyleTM 293表現系統(Invitrogen,USA),藉由短暫轉染人類胚腎293-F細胞來表現重組免疫球蛋白變異體。簡言之,在37℃/8% CO2 下在FreeStyleTM 293表現培養基中培養懸浮之FreeStyleTM 293-F細胞,且在轉染當日,將細胞以1-2×106 個活細胞/毫升之密度接種於新鮮培養基中。使用325 μl 293fectinTM (Invitrogen,Germany)及250 μg 1:1莫耳比率之重鏈及輕鏈質體DNA,在Opti-I培養基(Invitrogen,USA)中製備DNA-293fectinTM 複合物,單專一性親本抗體之最終轉染體積達250 ml。使用325 μl 293fectinTM (Invitrogen,Germany)及250 μg一般1:1:1莫耳比率之「杵臼結構」重鏈1及2及輕鏈質體DNA,在Opti-I培養基(Invitrogen,USA)中製備具有兩個重鏈及一個輕鏈之「杵臼結構」DNA-293fectin複合物,最終轉染體積(OAscFab及OAscXFab)達250 ml。為使表現量最佳,可改變比率。使用325 μl 293fectinTM (Invitrogen,Germany)及250 μg 1:1:1莫耳比率之「杵臼結構」重鏈1及2及輕鏈質體DNA,在Opti-I培養基(Invitrogen,USA)中製備XMab DNA-293fectin複合物,最終轉染體積達250 ml。為使表現量最佳,可改變比率。轉染後第7天,藉由在14000 g下離心30分鐘收集含有抗體之細胞培養物上清液,且經由無菌過濾器(0.22 μm)過濾。上清液儲存在-20℃下,直至純化。
蛋白質測定
根據Pace,C.N.等人,Protein Science,4(1995) 2411-1423,藉由使用基於胺基酸序列計算之莫耳消光係數測定280 nm下的光學密度(OD)來測定經純化抗體及衍生物之蛋白質濃度。
上清液中之抗體濃度測定
藉由免疫沈澱法,使用蛋白A瓊脂糖(Protein A Agarose)珠粒(Roche)來估算細胞培養物上清液中之抗體及衍生物濃度。將60 μL蛋白A瓊脂糖珠粒在TBS-NP40(50 mM Tris pH 7.5,150 mM NaCl,1% Nonidet-P40)中洗滌3次。隨後,向在TBS-NP40中預平衡之蛋白A瓊脂糖珠粒施加1-15 mL細胞培養物上清液。在室溫下培育1小時後,將珠粒在Ultrafree-MC-過濾器管柱[Amicon]上以0.5 mL TBS-NP40洗滌1次,以0.5 mL 2×磷酸鹽緩衝鹽水(2×PBS,Roche)洗滌2次,且以0.5 mL 100 mM檸檬酸鈉(pH 5.0)簡單洗滌4次。藉由添加35 μl NuPAGELDS樣品緩衝液(Invitrogen)溶離所結合之抗體。分別將樣品的一半與NuPAGE樣品還原劑組合或保持未還原,且在70℃下加熱10分鐘。從而,將20 μl施加於4-12% NuPAGEBis-Tris SDS-PAGE(Invitrogen)(對於非還原性SDS-PAGE使用MOPS緩衝液,且對於還原性SDS-PAGE使用具有NuPAGE抗氧化操作緩衝液添加劑(Invitrogen)之MES緩衝液)且以庫馬斯藍(Coomassie Blue)染色。
藉由蛋白A-HPLC層析法量測細胞培養物上清液中之抗體及衍生物濃度。簡言之,向在50 mM K2 HPO4 、300 mM NaCl(pH 7.3)中之HiTrap蛋白A管柱(GE Healthcare)施加含有結合蛋白A之抗體及衍生物的細胞培養物上清液且在Dionex HPLC系統上以550 mM乙酸(pH 2.5)自基質溶離。利用UV吸光度及峰面積積分值來定量所溶離之蛋白質。經純化標準IgG1抗體用作標準物。
或者,藉由夾心IgG-ELISA來量測細胞培養物上清液中之抗體及衍生物濃度。簡言之,將StreptaWell高結合抗生蛋白鏈菌素(Strepatavidin)A-96孔微量滴定盤(Roche)用每孔100 μL經生物素標記抗人類IgG捕捉分子F(ab')2<hFcγ>BI(Dianova)以0.1 μg/mL在室溫下塗佈1小時或在4℃下塗佈隔夜,隨後以每孔200 μL PBS、0.05% Tween(PBST,Sigma)洗滌3次。向各孔中添加每孔100 μL各別含抗體細胞培養物上清液於PBS(Sigma)中之連續稀釋液,且在室溫下在微量滴定盤震盪器上培育1-2小時。以每孔200 μL PBST洗滌各孔3次,且在室溫下在微量滴定盤震盪器上以100 μl 0.1 μg/mL之F(ab')2<hFcγ>POD(Dianova)作為偵測抗體偵測所結合之抗體1-2小時。以每孔200 μL PBST洗滌3次洗去未經結合之偵測抗體,且藉由每孔添加100 μL ABTS來偵測所結合之偵測抗體。在Tecan Fluor光譜儀上在405 nm量測波長下(參考波長492 nm)進行吸光度測定。
純化雙專一性抗體
藉由使用Protein A-SepharoseTM (GE Healthcare,Sweden)之親和層析法及Superdex200尺寸排阻層析法,自細胞培養物上清液純化雙專一性抗體。簡言之,將無菌過濾之細胞培養物上清液施加於經PBS緩衝液(10 mM Na2 HPO4 、1 mM KH2 PO4 、137 mM NaCl及2.7 mM KCl,pH 7.4)平衡之HiTrap ProteinA HP(5 ml)管柱上。用平衡緩衝液洗去未結合之蛋白質。用0.1 M檸檬酸鹽緩衝液(pH 2.8)溶離抗體及抗體變異體,且用0.1 ml 1 M Tris(pH 8.5)中和含有蛋白質之溶離份。接著,彙集溶離之蛋白質溶離份,用Amicon Ultra離心過濾裝置(MWCO: 30 K,Millipore)濃縮至3毫升體積,且負載於經20 mM Histidin、140 mM NaCl(pH 6.0)平衡之Superdex200 HiLoad 120 ml 16/60凝膠過濾管柱(GE Healthcare,Sweden)上。彙集含有高分子量聚集體小於5%之經純化雙專一性抗體的溶離份,且以1.0 mg/ml等分試樣儲存在-80℃下。
SDS-PAGE
根據製造商之說明書,使用NuPAGEPre-Cast凝膠系統(Invitrogen)。詳言之,使用4-20% NuPAGENovexTRIS-Glycine Pre-Cast凝膠及NovexTRIS-Glycine SDS操作緩衝液。(例如參見圖3)。藉由在操作凝膠之前添加NuPAGE樣品還原劑來達成樣品之還原。
分析型尺寸排阻層析法
藉由HPLC層析法進行用於測定抗體之聚集及寡聚狀態的尺寸排阻層析。簡言之,將蛋白A純化抗體施加至在Agilent HPLC 1100系統上在300 mM NaCl、50 mM KH2 PO4 /K2 HPO4 (pH 7.5)中之Tosoh TSKgel G3000SW管柱上或Dionex HPLC系統上在2×PBS中之Superdex 200管柱(GE Healthcare)上。利用UV吸光度及峰面積積分值來定量所溶離之蛋白質。BioRad凝膠過濾標準151-1901用作標準物。(例如參見圖4)。
質譜法
經由電噴霧電離質譜法(ESI-MS)測定及確認交叉抗體之總去糖基化質量。簡言之,在37℃下在100 mM KH2 PO4 /K2 HPO4 (pH 7)中在達2 mg/ml之蛋白質濃度下用50 mU N-醣苷酶F(PNGaseF,ProZyme)將100 μg經純化抗體去糖基化12-24小時,隨後經由Sephadex G25管柱(GE Healthcare)上之HPLC脫鹽。在去糖基化及還原之後藉由ESI-MS測定各別重鏈及輕鏈之質量。簡言之,將115 μl中之50 μg抗體與60μl 1 M TCEP及50 μl 8 M胍鹽酸鹽一起培育,隨後脫鹽。經由裝備有NanoMate源之Q-Star Elite MS系統上的ESI-MS測定總質量及經還原重鏈及輕鏈之質量。
HEK293-Tie2細胞株之產生
為測定血管生成素-2抗體對ANGPT2刺激之Tie2磷酸化及細胞上ANGPT2與Tie2之結合的干擾,產生重組HEK293-Tie細胞株。簡言之,使用Fugene(Roche Applied Science)作為轉染試劑,將在CMV啟動子及新黴素抗性標記物控制下編碼全長人類Tie2(SEQ ID 108)的基於pcDNA3之質體(RB22-pcDNA3 Topo hTie2)轉染至HEK293細胞(ATCC)中,且在DMEM 10% FCS、500 μg/ml G418中選擇抗性細胞。經由選殖柱分離個別純系,隨後用FACS分析Tie2表現。純系22經鑑別為甚至在無G418存在下亦具有高量且穩定之Tie2表現之純系(HEK293-Tie2純系22)。HEK293-Tie2純系22隨後用於細胞檢測:ANGPT2誘導之Tie2磷酸化及ANGPT2細胞配位體結合檢測。
ANGPT2誘導之Tie2磷酸化檢測
根據以下檢測原理,量測ANGPT2抗體對ANGPT2誘導之Tie2磷酸化的抑制。在不存在或存在ANGPT2抗體之情況下以ANGPT2刺激HEK293-Tie2純系22,歷時5分鐘,且用夾心式ELISA來定量P-Tie2。簡言之,使每孔2×105 個HEK293-Tie2純系22細胞在聚-D-離胺酸塗佈之96孔微量滴定盤上於100 μl DMEM、10% FCS、500 μg/ml遺傳黴素(Geneticin)中生長隔夜。次日,在微量滴定盤中準備一列滴定之ANGPT2抗體(4倍濃縮,每孔75 μl最終體積,一式兩份),且與75 μl ANGPT2[R&D systems # 623-AN]稀釋液(3.2 μg/ml,4倍濃縮溶液)混合。將抗體及ANGPT2在室溫下預培育15分鐘。向HEK293-Tie2純系22細胞(與1 mM NaV3 O4 (Sigma #S6508)一起預培育5分鐘)中添加100 μ1混合物,且在37℃下培育5分鐘。隨後,每孔以200 μl冰冷PBS+1 mM NaV3 O4 洗滌細胞,且在冰上由每孔添加120 μl溶解緩衝液(20 mM Tris(pH 8.0)、137 mM NaCl、1% NP-40、10%甘油、2 mM EDTA、1 mM NaV3 O4 、1 mM PMSF及10 μg/ml抑肽酶(Aprotinin))溶解。在4℃下在微量滴定盤震盪器上溶解細胞30分鐘,且不預先離心及不測定總蛋白質,將100 μl溶解產物直接轉移至p-Tie2 ELISA微量滴定盤(R&D Systems,R&D #DY990)中。根據製造商之說明書定量P-Tie2量,且使用Excel之XLfit4分析插件(XLfit4analysis plug-in)(劑量反應單點分析模型205)測定抑制之IC50 值。可比較一個實驗內之IC50 值,但其可隨不同實驗而變化。
VEGF誘導之HUVEC增殖檢測
選擇VEGF誘導之HUVEC(人臍靜脈內皮細胞,Promocell #C-12200)增殖來量測VEGF抗體之細胞功能。簡言之,將每96孔5000個HUVEC細胞(低繼代次數,5次繼代)在膠原蛋白I塗佈之BD Biocoat膠原蛋白I 96孔微量滴定盤(BD #354407/35640)中於100 μl饑餓培養基(EBM-2內皮細胞基礎培養基2(Promocell # C-22211)、0.5% FCS、盤尼西林(Penicilline)/鏈黴素(Streptomycine))中培育隔夜。使不同濃度之抗體與rhVEGF(30 ng1/ml最終濃度,BD # 354107)混合,且在室溫下預培育15分鐘。隨後,將混合物添加至HUVEC細胞中,且將其在37℃、5% CO2 下培育72小時。在分析當日,使培養盤平衡至室溫,歷時30分鐘,且根據手冊(Promega,# G7571/2/3)使用CellTiter-GloTM發光細胞活力檢測套組(Luminescent Cell Viability Assay kit)來測定細胞活力/增殖。以分光光度計測定發光。
實例la
雙專一性、雙價結構域交換之<VEGF-ANG-2>抗體分子XMab的表現及純化
根據以上材料及方法中所述之程序,表現及純化雙專一性、雙價結構域交換之<VEGF-ANG-2>抗體分子XMab1、XMab2及XMab3。<VEGF>部分之VH及VL(SEQ ID NO: 1及SEQ ID NO: 2)係基於貝伐單抗。<ANG2>部分之VH(SEQ ID NO:3)係由ANG2i-LC06之VH序列(其描述於PCT申請案第PCT/EP2009/007182號(WO 2010/040508)中且其為經由噬菌體呈現所得之序列之進一步成熟片段)之E6Q突變(位置6上之起始胺基酸麩胺酸(E)經麩醯胺酸(Q)置換)獲得。<ANG2>部分之VL(SEQ ID NO: 4)來源於ANG2i-LC06之VL序列(參見PCT申請案第PCT/EP2009/007182號(WO 2010/040508))。表現及純化雙專一性、雙價結構域交換之<VEGF-ANG-2>抗體分子XMab1、XMab2及XMab3。此等雙專一性、雙價抗體之相關輕鏈及重鏈胺基酸序列以SEQ ID NO: 5-8(XMab1)、SEQ ID NO: 9-12(XMab2)及SEQ ID NO:13-16(XMab3)給出。關於例示性結構,參見圖1。
類似地表現及純化雙專一性、雙價<VEGF-ANG-2>抗體XMab4、XMab5及XMab6(相關輕鏈及重鏈胺基酸序列以SEQ ID NO: 17-20(XMab4)、SEQ ID NO: 21-24(XMab5)及SEQ ID NO: 25-28(XMab6)給出)。
如所述測定結合親和力及其他性質。
實例1b
雙專一性、雙價<VEGF-ANG-2>抗體分子OAscFab之表現及純化
根據以上材料及方法中所述之程序,表現及純化雙專一性、雙價<VEGF-ANG-2>抗體分子OAscFab1、OAscFab2、OAscFab3。<VEGF>部分之VH及VL(SEQ ID NO: 1及SEQ ID NO: 2)係基於貝伐單抗。<ANG2>E6Q部分之VH(SEQ ID NO: 3)係由ANG2i-LC06之VH序列(其描述於PCT申請案第PCT/EP2009/007182號(WO 2010/040508)中且其為經由噬菌體呈現所得之序列之進一步成熟片段)之E6Q突變(位置6上之起始胺基酸麩胺酸(E)經麩醯胺酸(Q)置換)獲得。<ANG2>E6Q部分之VL(SEQ ID NO: 4)來源於ANG2i-LC06之VL序列(參見PCT申請案第PCT/EP2009/007182號(WO 2010/040508))。此等雙專一性、雙價抗體之相關輕鏈及重鏈胺基酸序列以SEQ ID NO: 29-31(OAscFab1)、SEQ ID NO: 32-34(OAscFab2)及SEQ ID NO: 35-37(OAscFab3)給出。關於例示性結構,參見圖2a。藉由西方墨點法確認OAscFab1、OAscFab2及OAscFab3之表現。純化OAscFab2及OAscFab3,產生以下產量。
如所述測定結合親和力及其他性質。
實例1c
雙專一性、雙價結構域交換之<VEGF-ANG-2>抗體分子OAscXFab的表現及純化
根據以上材料及方法中所述之程序,表現及純化雙專一性、雙價結構域交換之<VEGF-ANG-2>抗體分子OAscXFab1、OAscXFab2、OAscXFab3。<VEGF>部分之VH及VL(SEQ ID NO: 1及SEQ ID NO: 2)係基於貝伐單抗。<ANG2>E6Q部分之VH(SEQ ID NO:3)係由ANG2i-LC06之VH序列(其描述於PCT申請案第PCT/EP2009/007182號(WO 2010/040508)中且其為經由噬菌體呈現所得之序列之進一步成熟片段)之E6Q突變(位置6上之起始胺基酸麩胺酸(E)經麩醯胺酸(Q)置換)獲得。<ANG2>E6Q部分之VL(SEQ ID NO: 4)來源於ANG2i-LC06之VL序列(參見PCT申請案第PCT/EP2009/007182號(WO 2010/040508))。此等雙專一性、雙價抗體之相關輕鏈及重鏈胺基酸序列以SEQ ID NO: 38-40(OAscXFab1)、SEQ ID NO: 41-43(OAscXFab2)及SEQ ID NO: 44-46(OAscXFab3)給出。關於例示性結構,參見圖2b(OAscXFab1)及圖2c(OAscXFab2、OAscXFab3)。藉由西方墨點法確認表現。
如所述測定結合親和力及其他性質。
實例2
雙專一性抗體之穩定性
變性溫度(SYPRO橙法)
為確定發生蛋白質變性(亦即溫度誘發之蛋白質結構損失)之溫度,使用一種依賴於在疏水性環境中顯示強烈螢光之疏水性螢光染料(SYPRO橙,Invitrogen)的方法。蛋白質變性後,疏水性小片暴露於溶劑,導致螢光增加。在高於變性溫度之溫度下,螢光強度又降低,因此將達到最大強度時之溫度定義為變性溫度。該方法由Ericsson,U.B.等人,Anal Biochem 357(2006) 289-298及He,F.等人,Journal of Pharmaceutical Sciences 99(2010) 1707-1720描述。
將於20 mM His/HisCl、140 mM NaCl(pH 6.0)中約1 mg/mL濃度之蛋白質樣品與SYPRO橙(5000×儲備溶液)混合,達到1:5000之最終稀釋。將20 μL體積轉移至384孔培養盤中,且在480即時PCR系統(Roche Applied Sciences)中在0.36℃/min之加熱速率下記錄隨溫度而變之螢光。
藉由動態光散射(DLS)測定發生熱誘發性蛋白質聚集的溫度。DLS產生有關處於溶解狀態之大分子之尺寸分佈的資訊,由微秒規模上散射光強度之波動獲得。當逐漸加熱樣品時,聚集在某一溫度開始,導致粒子尺寸增大。粒子尺寸開始增加之溫度定義為聚集溫度。聚集溫度與變性溫度不必相同,因為變性可能未必為聚集之先決條件。
使用DynaPro DLS盤式讀數器(Wyatt technologies)量測聚集溫度。在量測之前,經由384孔過濾板(Millipore MultiScreen 384孔過濾系統,0.45 μm)過濾樣品,至光學384孔培養盤(Corning #3540)中。使用35 μL之樣品體積,於調配緩衝液(20 mM檸檬酸鹽、180 mM蔗糖、20 mM精胺酸、0.02%聚山梨酸酯20)中之蛋白質濃度為約1 mg/mL。各孔經20 μL石蠟油(Sigma)覆蓋以避免蒸發。以0.05℃/min之速率,將樣品自25℃加熱至80℃,且連續獲得每次操作最大15個樣品數目之DLS資料。
DLS為一種偵測處於溶解狀態之大分子之聚集體的靈敏方法,因為聚集體會產生強的光散射信號。因此,可隨時間推移藉由重複獲得DLS資料來跟蹤分子聚集之趨勢。為加速潛在聚集至實用速率,在50℃下進行量測。
如上所述進行樣品製備。記錄DLS資料長達100小時。以隨時間推移平均直徑之線性擬合之斜率來計算聚集速率(奈米/天)。
為評估雙專一性分子在聚集/碎裂方面的穩定性,將樣品在調配緩衝液(20 mM檸檬酸鹽、180 mM蔗糖、20 mM精胺酸、0.02%聚山梨酸酯20)中約1 mg/mL之蛋白質濃度下於40℃下培育3週。對照樣品在-80℃下儲存3週。
藉由HPLC進行尺寸排阻層析法以定量聚集體及低分子量(LMW)物質。將25-100 μg之量的蛋白質施加於Ultimate3000 HPLC系統(Dionex)上在300 mM NaCl、50 mM磷酸鉀(pH 7.5)中之Tosoh TSKgel G3000SWXL管柱上。藉由280 nm下之UV吸光度來定量溶離之蛋白質。
實例3:
雙專一性抗體<VEGF-Ang-2>之結合性質
A)藉由表面電漿子共振(SPR)分析表徵之結合性質
藉由使用BIAcore T100儀器(GE Healthcare Biosciences AB,Uppsala,Sweden)施加表面電漿子共振(SPR),證實兩種抗原之同時結合。使用標準胺偶合化學,將VEGF固定於CM5感測器晶片。第一步中,在25℃下以於HBS緩衝液(10 mM HEPES、150 mM NaCl、0.05% Tween 20,pH 7.4)中10 μg/ml之濃度注射<VEGF-Ang-2>XMAb。在抗體結合於固定之VEGF後,在第二步中以10 μg/ml注射hAng-2(圖3)。
在另一實驗中,確定<VEGF-Ang-2>XMab之親和力及結合動力學。簡言之,經由胺偶合將山羊<hIgG-Fcγ>多株抗體固定於CM4晶片上,以呈遞針對Ang-2及VEGF之雙專一性抗體。在25℃或37℃下於HBS緩衝液中量測結合。添加溶解狀態下介於0.37 nM與30 nM之間或介於3.7 nM與200 nM之間的各種濃度之經純化Ang-2-His(R&D systems或內部純化)或VEGF(R&D systems或內部純化)。藉由注射3分鐘來量測締合;藉由用HBS緩衝液洗滌晶片表面10分鐘來量測解離,且使用1:1朗繆爾結合模型(Langmuir binding model)評估KD值。由於Ang-2製劑之異質性,故無法觀測到1:1結合。因此,KD值為表觀值。經測定之<VEGF-Ang-2>XMab對VEGF之親和力極高,在37℃下所計算之解離速率甚至超出Biacore規格。表1中概述兩種抗原之結合常數。
B)定量結合活性雙專一性<Ang2/VEGF>XMab1之檢測
除SPR分析外,建立ELISA以定量結合活性雙專一性mAb<Ang2/VEGF>抗體之量。在此檢測中,第一步中,將hAng2直接塗佈於maxisorp微量滴定盤(MTP)之孔中。同時,將樣品/參考標準物(mAb<Ang2/VEGF>)在另一MTP孔中與地高辛配基化VEGF一起預先培育。預先培育及塗佈後,藉由洗滌Ang2塗佈之MTP來移除過量未結合之Ang2。接著將預先培育之<Ang2/VEGF>與VEGF-Dig之混合物轉移至hAng2塗佈之MTP中且培育。培育後,藉由洗滌來移除過量預先培育之溶液,接著與辣根過氧化酶標記之抗地高辛配基抗體一起培育。抗體-酶結合物催化ABTS受質之顏色反應。藉由ELISA讀數器在405 nm波長(參考波長:490 nm([405/490] nm))下量測信號。一式兩份確定各樣品之吸光度值。(例示此測試系統之略圖展示於圖4中且用於定量之ELISA之校正曲線展示於圖5中)
實例4
Tie2磷酸化
為證實抗-ANGPT2相關活性保留在雙專一性雙價<VEGF-ANGPT2>抗體XMAb1中,進行Tie2磷酸化檢測。用如上所述之ANGPT2刺激之Tie2磷酸化檢測測定XMAb1之功效。
在如上所述之ANGPT2刺激之Tie2磷酸化檢測中顯示XMAb1干擾ANGPT2刺激之Tie2磷酸化。XMAb1之IC50為7.4 nM +/- 2.3。
實例5
對huANG-2與Tie-2之結合的抑制(ELISA)
在室溫下在384孔微量滴定盤(MicroCoat,DE,目錄號464718)上進行相互作用ELISA。在各培育步驟後,以PBST洗滌培養盤3次。以5 μg/ml Tie-2蛋白塗佈ELISA培養盤1小時。此後,以補充有0.2% Tween-20及2% BSA之PBS(Roche Diagnostics GmbH,DE)阻斷各孔1小時。將經純化之雙專一性Xmab抗體於PBS中之稀釋液與0.2 μg/ml人類血管生成素-2(R&D Systems,UK,目錄號623-AN)一起在室溫下培育1小時。洗滌後,添加0.5 μg/ml生物素標記抗血管生成素-2純系BAM0981(R&D Systems,UK)與1:3000稀釋之抗生蛋白鏈菌素HRP(Roche Diagnostics GmbH,DE,目錄號11089153001)之混合物,歷時1小時。此後,以PBST洗滌培養盤3次。在室溫下,以新鮮製備之ABTS試劑(Roche Diagnostics GmbH,DE,緩衝液#204 530 001,錠劑#11 112 422 001)使培養盤顯色30分鐘。在405 nm下量測吸光度,且測定IC50。XMab1顯示以12 nM 之IC50抑制ANG-2與Tie-2之結合。
實例6
對hVEGF與hVEGF受體之結合的抑制(ELISA)
在室溫下在384孔微量滴定盤(MicroCoat,DE,目錄號464718)上進行測試。在各培育步驟後,以PBST洗滌培養盤3次。開始時,以1 μg/ml hVEGF-R蛋白(R&D Systems,UK,目錄號321-FL)塗佈培養盤1小時。此後,以補充有0.2% Tween-20及2% BSA之PBS(Roche Diagnostics GmbH,DE)阻斷各孔1小時。將經純化之雙專一性Xmab抗體於PBS中之稀釋液與0.15 μg/ml huVEGF121(R&D Systems,UK,目錄號298-VS)一起在室溫下培育1小時。洗滌後,添加0.5 μg/ml抗VEGF純系Mab923(R&D Systems,UK)與1:2000結合辣根過氧化酶(HRP)之F(ab')2抗小鼠IgG(GE Healthcare,UK,目錄號NA9310V)的混合物,歷時1小時。此後,以PBST洗滌培養盤6次。在室溫下,以新鮮製備之ABTS試劑(Roche Diagnostics GmbH,DE,緩衝液#204 530 001,錠劑#11 112 422 001)使培養盤顯色30分鐘。在405 nm下量測吸光度,且測定IC50。XMab1顯示以10 nM之IC50抑制VEGF與VEGF受體之結合。
實例7
HUVEC增殖
為證實抗-VEGF相關活性保留在雙專一性雙價<VEGF-ANG2>抗體XMAb1中,進行VEGF誘導之HUVEC增殖檢測。在如上所述之VEGF誘導之HUVEC增殖檢測中,顯示XMAb1以類似於貝伐單抗之方式干擾VEGF誘導之HUVEC增殖。XMAb1以濃度依賴性方式干擾VEGF誘導之HUVEC增殖,類似於親本抗體貝伐單抗(Avastin)。貝伐單抗之IC50為1.1 nM且XMAb之IC50為2.3 nM。
實例8
小鼠角膜微囊袋血管生成檢測
自Charles River(Sulzfeld,Germany)購得8至10週齡之雌性Balb/c小鼠。根據Rogers,M.S.等人,Nat Protoc 2(2007) 2545-2550描述之方法修改方案。簡言之,在顯微鏡下使用外科手術刀片及尖銳鑷子在麻醉小鼠中以自角膜緣至頂部約1 mm製備約500 μm寬之微囊袋。植入直徑為0.6 mm之圓盤(Nylaflo,Pall Corporation,Michigan),且使植入區域之表面平滑。在相應生長因子或媒劑中培育圓盤至少30分鐘。3、5及7天後(或者僅在3天後),對眼睛攝影且量測血管反應。藉由計算新血管面積/角膜總面積之百分比來定量檢測。
將圓盤負載300 ng VEGF或作為對照之PBS,且植入,持續7天。在第3、5及7天,隨時間推移監測血管自角膜緣至圓盤之外生長。在圓盤植入之前的一天,經靜脈內投與抗體(<Ang-2/VEGF>XMAb1、<hVEGF>Avastin(貝伐單抗)),Avastin及XMAb1之劑量為10 mg/kg。對照組中之動物接受媒劑。施用體積為10 ml/kg。
為測試XMAb1對活體內VEGF誘導之血管生成的影響,進行小鼠角膜血管生成檢測。在此檢測中,將VEGF浸泡之Nylaflo圓盤植入無血管角膜之囊袋中距離角膜緣血管固定距離處。血管立即朝著所形成VEGF梯度之方向生長至角膜中。結果顯示,自研究第3天至第5天,全身性投與XMAb1(10 mg/kg)幾乎完全抑制血管朝著VEGF梯度之方向自角膜緣外生長(圖6 )。在另一實驗中,進行直接比較研究。將圓盤負載300 ng VEGF或作為對照之PBS,且植入,持續3天。在第3天,隨時間推移監測血管自角膜緣至圓盤之外生長。在圓盤投植入前的一天,經靜脈內投與抗體(雙專一性<Ang-2/VEGF>抗體XMAb1、親本<VEGF>抗體貝伐單抗(Avastin)、親本<Ang-2>抗體ANG2i-LC06,及<VEGF>抗體貝伐單抗(Avastin)與<Ang-2>抗體ANG2i-LC06之組合),貝伐單抗(Avastin)之劑量為10 mg/kg,XMAb1之劑量為10 mg/kg,貝伐單抗(Avastin)之劑量為10 mg/kg,且ANG2i-LC06之劑量為10 mg/kg。投與具有10 mg/kg貝伐單抗(Avastin)及10 mg/kg ANG2i-LC06之貝伐單抗(Avastin)與ANG2i-LC06之組合。對照組中之動物接受媒劑。施用體積為10 ml/kg。
結果(參見圖7及下表)顯示,在研究第3天,全身性投與XMAb1(10 mg/kg)幾乎完全抑制血管朝著VEGF梯度方向自角膜緣外生長,類似於貝伐單抗與Ang2i-LC06之組合。相比之下,抗Ang-2單一療法僅輕微抑制VEGF誘導之血管生成(圖7) 。在與10 mg/kg Ang2i-LC06+10 mg/kg貝伐單抗(Avastin)組合相比10 mg/kg XMAb1之較低濃度下,即已達成最大作用。
表: 在小鼠角膜微囊袋血管生成檢測中第3天時VEGF誘導之血管生成的抑制百分比
實例9
Scid beige小鼠之Colo205異種移植模型中雙專一性抗體<VEGF-ANG-2>抗體之活體內功效
細胞株及培養條件:
Colo205人類結腸直腸癌細胞(ATCC編號CCL-222)。通常在水飽和氛圍中在37℃、5% CO2 下於補充有10%胎牛血清(PAA Laboratories,Austria)及2 mM L-麩醯胺酸之RPMI 1640培養基(PAA,Laboratories,Austria)中培養腫瘤細胞株。繼代2-5次用於移植。
動物:
根據約定原則(GV-Solas;Felasa;TierschG),將到達時4-5週齡之雌性SCID beige小鼠(自Charles River Germanyd購得)維持在無特定病原體之條件下,每日12小時亮/12小時暗循環。評述實驗研究方案且經地方政府批准。到達後,使動物在動物實驗設施之檢疫部分中維持一週,以使其習慣新環境且進行觀測。定時進行連續健康監測。隨意提供膳食(Provimi Kliba 3337)及水(酸化pH 2.5-3)。研究開始時小鼠年齡為約10週。
腫瘤細胞注射:
在注射當日,自培養瓶(Greiner)收集腫瘤細胞(胰蛋白酶-EDTA),且轉移至50 ml培養基中,洗滌一次,且再懸浮於PBS中。再用PBS進行洗滌步驟及過濾(細胞過濾器;FalconΦ 100 μm)後,將最終細胞效價調至2.5×107 /ml。用移液管小心地混合腫瘤細胞懸浮液以避免細胞聚集。此後,使用寬針(1.10×40 mm)將細胞懸浮液填充至1.0 ml結核菌素針筒(Braun Melsungen)中;對於注射,改變針的尺寸(0.45×25 mm),且每次注射使用新針。在密閉循環系統中利用預培育腔室(譜萊玻璃(plexiglas))、個別小鼠鼻子遮罩(矽)及不可燃或非爆炸性麻醉化合物異氟烷(cp-pharma)用史蒂芬吸入單元(Stephens inhalation unit)對小動物進行麻醉。在注射前兩天,刮削動物之皮毛,且為注射細胞,用解剖鉗小心提起麻醉動物之皮,且將100 μl細胞懸浮液(=2.5×106 個細胞)皮下注射至動物的右側腹中。
動物處理
動物處理分別在平均腫瘤體積達約100 mm3 之隨機日開始。每週以如下表中所示之不同化合物腹膜內處理小鼠一次。
監測:
每週管理動物之健康狀態2次。細胞注射後,每週提供體重資料2次。在指定日開始用測徑規量測腫瘤尺寸,隨後在整個處理期內每週量測2次。根據NCI方案計算腫瘤體積(腫瘤體積=1/2ab2 ,其中「a」及「b」分別為腫瘤之長及短直徑)。終止準則為臨界腫瘤質量(高達1.7 g或Φ >1.5 cm)、體重損失超過基線20%、腫瘤潰爛或動物之不良一般狀況。
結果(參見圖8 )表明,相較於用單專一性抗體處理,雙專一性、雙價<VEGF-ANG-2>抗體XMAb1在Scid beige小鼠之異種移植腫瘤模型Colo205中展示較高程度之腫瘤生長抑制。LC06與貝伐單抗組合之功效展示類似於XMAb1之結果。XMAb1之最大功效用10 mg/kg即已達到。
在第二實驗中,分析XMAb1對較大腫瘤之作用。
動物處理
動物處理分別在平均腫瘤體積達約400 mm3 之隨機日開始。每週以如下表中所示之不同化合物腹膜內處理小鼠一次。
監測:
每週管理動物之健康狀態2次。細胞注射後,每週提供體重資料2次。在指定日開始用測徑規量測腫瘤尺寸,隨後在整個處理期內每週量測2次。根據NCI方案計算腫瘤體積(腫瘤體積=1/2ab2 ,其中「a」及「b」分別為腫瘤之長及短直徑)。終止準則為臨界腫瘤質量(高達1.7g或>1.5 cm)、體重損失超過基線20%、腫瘤潰爛或動物之不良一般狀況。
結果(參見圖9)表明,相較於用單專一性抗體處理在巨大腫瘤中與對照相比展示無功效,雙專一性、雙價<VEGF-ANG-2>抗體XMAb1在Scid beige小鼠之異種移植腫瘤模型Colo205中展示較高程度之腫瘤生長抑制。LC06與貝伐單抗組合之功效展示類似於XMAb1之結果。XMAb1之最大功效用10 mg/kg即已達到。
總之,結果證明,相較於用單專一性抗體處理,XMAb1展示優良功效,與腫瘤尺寸無關。
相較於10 mg/kg Ang2i-LC06+10 mg/kg Avastin之組合,在10 mg/kg XMAb1之較低濃度下即已達成此等模型中之腫瘤停滯。
實例10
Scid beige小鼠之原位KPL-4異種移植模型中雙專一性抗體<VEGF-ANG-2>抗體之活體內功效
腫瘤細胞株
已自具有發炎性皮膚癌轉移之乳癌患者的惡性胸膜滲出液確定人類乳癌細胞株KPL-4(Kurebayashi,J.等人,Br. J. Cancer 79(1999) 707-17)。通常在水飽和氛圍中在37℃、5% CO2 下於補充有10%胎牛血清(PAN Biotech,Germany)及2 mM L-麩醯胺酸(PAN Biotech,Germany)之DMEM培養基(PAN Biotech,Germany)中培養腫瘤細胞。用1×胰蛋白酶/EDTA(PAN)進行培養物繼代,每週分裂3次。
小鼠
到達後,使雌性SCID beige小鼠(10-12週齡;體重18-20 g,得自Charles River(Sulzfeld,Germany))在AALAAC批准之動物實驗設施之檢疫部分中維持一週,以使其習慣新環境且進行觀測。進行連續健康監測。根據國際原則(GV-Solas;Felasa;TierschG)將小鼠維持在SPF條件下,每日12小時亮/12小時暗循環。隨意提供膳食(Kliba Provimi 3347)及水(經過濾)。評述實驗研究方案且經地方政府批准(Regierung von Oberbayern;註冊編號211.2531.2-22/2003)。
腫瘤細胞注射
在注射當日,自培養瓶(Greiner TriFlask)收集腫瘤細胞(胰蛋白酶-EDTA),且轉移至50 ml培養基中,洗滌一次,且再懸浮於PBS中。再用PBS進行洗滌步驟及過濾(細胞過濾器;FalconΦ 100 μm)後,將最終細胞效價調至1.5×108 /ml。用移液管小心地混合腫瘤細胞懸浮液以避免細胞聚集。在密閉循環系統中利用預培育腔室(譜萊玻璃)、個別小鼠鼻子遮罩(矽)及不可燃或非爆炸性麻醉化合物異氟烷(Pharmacia-Upjohn,Germany)用史蒂芬吸入單元對小動物進行麻醉。注射前兩天,刮削動物之皮毛。對於腹股溝乳腺脂肪墊注射,將細胞以20 μl體積原位注射至各麻醉小鼠之右側倒數第二個腹股溝乳腺脂肪墊中。對於原位植入,使用漢彌爾頓微升針筒(Hamilton microliter syringe)及30Gx1/2"針穿過乳頭下之皮膚注射細胞懸浮液。
動物處理
動物處理分別在平均腫瘤體積達約80 mm3 之隨機日開始。每週以如下表中所示之不同化合物腹膜內處理小鼠一次。
監測腫瘤生長
每週管理動物之健康狀態2次。細胞注射後,每週提供體重資料2次。在處理期開始時,在指定日用測徑規量測腫瘤尺寸,每週2次。根據NCI方案計算腫瘤體積(B. Teicher;Anticancer drug development guide,Humana Press,1997,第5章,第92頁)(腫瘤體積=1/2ab2 ,其中「a」及「b」分別為腫瘤之長及短直徑)。
終止準則為臨界腫瘤質量(高達1.7 g或Φ >1.5 cm)、體重損失超過基線20%、腫瘤潰爛或動物之不良一般狀況。
結果(參見圖10)表明,相較於用單專一性抗體處理,雙專一性、雙價<VEGF-ANG-2>抗體XMAb1在Scid beige小鼠之異種移植腫瘤模型Colo205中展示較高程度之腫瘤生長抑制。LC06與貝伐單抗組合之功效展示類似於XMAb1之結果。XMAb1之最大功效用10 mg/kg即已達到。
在第二實驗中,分析XMAb1對較大腫瘤之作用。
動物處理
動物處理分別在平均腫瘤體積達約160 mm3 之隨機日開始。每週以如下表中所示之不同化合物腹膜內處理小鼠一次。
監測:
每週管理動物之健康狀態2次。細胞注射後,每週提供體重資料2次。在處理期開始時,在指定日用測徑規量測腫瘤尺寸,每週2次。根據NCI方案計算腫瘤體積(B. Teicher;Anticancer drug development guide,Humana Press,1997,第5章,第92頁)(腫瘤體積=1/2ab2 ,其中「a」及「b」分別為腫瘤之長及短直徑)。
終止準則為臨界腫瘤質量(高達1.7 g或Φ >1.5 cm)、體重損失超過基線20%、腫瘤潰爛或動物之不良一般狀況。
結果(參見圖11)表明,相較於用單專一性抗體處理,雙專一性、雙價<VEGF-ANG-2>抗體XMAb1在Scid beige小鼠之異種移植腫瘤模型Colo205中展示較高程度之腫瘤生長抑制。LC06與貝伐單抗組合之功效展示類似於XMAb1之結果。XMAb1之最大功效用10 mg/kg即已達到。
總之,結果證明,相較於用單專一性抗體處理,XMAb1展示優良功效,與腫瘤尺寸無關。
相較於10 mg/kg Ang2i-LC06+10 mg/kg Avastin之組合,在10 mg/kg XMAb1之較低濃度下即已達成此等模型中之腫瘤停滯。
實例11
在皮下Colo205異種移植物中用XMAb1處理對微血管密度之影響
藉由計數腫瘤載玻片之所有血管來評估血管密度。在石蠟包埋切片上用螢光抗小鼠CD34抗體(純系MEC14.7)標記血管。定量血管,且微血管密度計算為每平方毫米之血管數。所有結果皆以平均值±SEM表示。為確定實驗組之顯著差異,使用鄧尼特法(Dunnetts-Method)。認為p<0.05為統計上顯著的。結果表明,經處理之腫瘤中總腫瘤內MVD減少。用ANG2i-LC06處理使MVD降低29%,貝伐單抗使MVD降低0%,貝伐單抗+ANG2i-LC06使MVD降低15%,且XMAb1使MVD降低28%。
實例12
Scid beige小鼠之皮下N87異種移植模型中雙專一性抗體<VEGF-ANG-2>抗體之活體內功效
腫瘤細胞株
人類胃癌細胞株N87癌細胞(NCI-N87(ATCC編號CRL5822))。通常在水飽和氛圍中在37℃、5% CO2 下於補充有10%胎牛血清(PAN Biotech,Germany)及2 mM L-麩醯胺酸(PAN Biotech,Germany)之RPMI 1640中培養腫瘤細胞。用1×胰蛋白酶/EDTA(PAN)進行培養物繼代,每週分裂3次。
小鼠
到達後,使雌性SCID beige小鼠(10-12週齡;體重18-20 g,得自Charles River(Sulzfeld,Germany))在AALAAC批准之動物實驗設施之檢疫部分中維持一週,以使其習慣新環境且進行觀測。進行連續健康監測。根據國際原則(GV-Solas;Felasa;TierschG)將小鼠維持在SPF條件下,每日12小時亮/12小時暗循環。隨意提供膳食(Kliba Provimi 3347)及水(經過濾)。評述實驗研究方案且經地方政府批准(Regierung von Oberbayern;註冊編號211.2531.2-22/2003)。
腫瘤細胞注射
在細胞注射當日,自培養瓶(Greiner T 75)收集細胞,轉移至50 ml培養基中,洗滌一次,且再懸浮於PBS中。再用PBS洗滌後,用Vi-CellTM (細胞活力分析儀,Beckman Coulter,Madison,Wisconsin,U.S.A)量測細胞濃度。小心地混合腫瘤細胞懸浮液(PBS)(以減少細胞聚集)且保持於冰上。將細胞懸浮液填充至1.0 ml針筒中。對於注射,使用0.45×25 mm之針尺寸。為產生原發性腫瘤,將於100 μl體積PBS中之5×106 個N87腫瘤細胞皮下注射至各小鼠之右側腹中。
動物處理
動物處理分別在平均腫瘤體積達約130 mm3 之隨機日開始。每週以如下表中所示之不同化合物腹膜內處理小鼠一次。
監測腫瘤生長
每週管理動物之健康狀態1次。細胞注射後,每週提供體重資料1次。在處理期開始時,在指定日用測徑規量測腫瘤尺寸,每週一次。根據NCI方案計算腫瘤體積(B. Teicher;Anticancer drug development guide,Humana Press,1997,第5章,第92頁)(腫瘤體積=1/2ab2 ,其中「a」及「b」分別為腫瘤之長及短直徑)。
終止準則為臨界腫瘤質量(高達1.7 g或Φ >1.5 cm)、體重損失超過基線20%、腫瘤潰爛或動物之不良一般狀況。
結果表明,相較於用單專一性抗體處理,雙專一性、雙價<VEGF-ANG-2>抗體XMAb1在Scid beige小鼠之異種移植腫瘤模型Colo205中展示較高程度之腫瘤生長抑制(圖12 )。
圖1 :包括杵臼結構修飾之CH3域之XMab實例的例示性雙價雙專一性抗體形式。
圖2a :包括杵臼結構修飾之CH3域之OAscFab實例的例示性雙價雙專一性抗體形式。
圖2b :包括杵臼結構修飾之CH3域之OAscXFab1實例的例示性雙價雙專一性抗體形式。
圖2c :包括杵臼結構修飾之CH3域之OAscXFab2及OAscXFab3實例的例示性雙價雙專一性抗體形式。
圖3 :<VEGF-Ang-2>XMab1與VEGF結合(第一步)、接著與hAng-2結合(第二步)同時進行。
圖4 :定量結合活性mAb<Ang2/VEGF>抗體之ELISA原理。
圖5 :定量結合活性mAb<Ang2/VEGF>XMab1抗體之ELISA之校正曲線。
圖6 :小鼠角膜血管生成檢測。投與本發明之雙專一性抗體抑制血管朝著VEGF梯度方向自角膜緣外生長。
圖7 :小鼠角膜血管生成檢測。投與本發明之雙專一性抗體抑制血管生成/血管朝著VEGF梯度方向自角膜緣外生長。比較雙專一性<Ang2/VEGF>抗體XMab1、<Ang2>Mab ANG2i-LC06(LC06)、<VEGF>Mab貝伐單抗(Avastin)及ANG2i-LC06與<VEGF>Mab貝伐單抗(Avastin)之組合。(平均值+/- SEM;n=6)
圖8: 本發明之雙專一性抗體在活體內抑制人類結腸直腸癌Colo205之小鼠異種移植物(小型腫瘤)中腫瘤生長。比較雙專一性<Ang2/VEGF>抗體XMab1、<Ang2>Mab ANG2i-LC06(LC06)、<VEGF>Mab貝伐單抗(Avastin)及ANG2i-LC06與<VEGF>Mab貝伐單抗(Avastin)之組合。(ANG2_PZ_COLO205_015;平均值+/- SEM;n=10)
圖9: 本發明之雙專一性抗體在活體內抑制人類結腸直腸癌Colo205之小鼠異種移植物(大型腫瘤)中腫瘤生長。比較雙專一性<Ang2/VEGF>抗體XMab1、<Ang2>Mab ANG2i-LC06(LC06)、<VEGF>Mab貝伐單抗(Avastin)及ANG2i-LC06與<VEGF>Mab貝伐單抗(Avastin)之組合。(ANG2_PZ_COLO205_015A;平均值+/- SEM;n=10)
圖10: 本發明之雙專一性抗體在活體內抑制人類乳癌KPL-4之小鼠異種移植物(小型腫瘤)中腫瘤生長。比較雙專一性<Ang2/VEGF>抗體XMab1、<Ang2>Mab ANG2i-LC06(LC06)、<VEGF>Mab貝伐單抗(Avastin)及ANG2i-LC06與<VEGF>Mab貝伐單抗(Avastin)之組合。(ANG2_PZ_KPL-4_005;平均值+/- SEM;n=10)
圖11: 本發明之雙專一性抗體在活體內抑制人類乳癌KPL-4之小鼠異種移植物(大型腫瘤)中腫瘤生長。比較雙 專一性<Ang2/VEGF>抗體XMab1、<Ang2>Mab ANG2i-LC06(LC06)、<VEGF>Mab貝伐單抗(Avastin)及ANG2i-LC06與<VEGF>Mab貝伐單抗(Avastin)之組合。(ANG2_PZ_KPL-4_005A;平均值+/- SEM;n=10)
圖12: 本發明之雙專一性抗體在活體內抑制胃癌N87之小鼠異種移植物中腫瘤生長。比較雙專一性<Ang2/VEGF>抗體XMab1、<Ang2>Mab ANG2i-LC06(LC06)、<VEGF>Mab貝伐單抗(Avastin)及ANG2i-LC06與<VEGF>Mab貝伐單抗(Avastin)之組合。(ANG2_PZ_N87_004;平均值+/- SEM)
<110> 瑞士商赫孚孟拉羅股份有限公司
<120> 雙專一性、雙價抗-VEGF/抗-ANG-2抗體
<130> 26642 FT
<140> 100109957
<141> 2011-03-23
<150> EP10003269
<151> 2010-03-26
<160> 48
<170> PatentIn version 3.5
<210> 1
<211> 123
<212> PRT
<213> 人工序列
<220>
<223> <VEGF>貝伐單抗之可變重鏈域VH
<400> 1
<210> 2
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> <VEGF>貝伐單抗之可變輕鏈域VL
<400> 2
<210> 3
<211> 128
<212> PRT
<213> 人工序列
<220>
<223> <ANG-2>E6Q之可變重鏈域VH
<400> 3
<210> 4
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> <ANG-2>E6Q之可變輕鏈域VL
<400> 4
<210> 5
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> XMab1-<VEGF>輕鏈
<400> 5
<210> 6
<211> 213
<212> PRT
<213> 人工序列
<220>
<223> XMab1-<ANG2>輕鏈
<400> 6
<210> 7
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> XMab1-<VEGF>重鏈
<400> 7
<210> 8
<211> 463
<212> PRT
<213> 人工序列
<220>
<223> XMab1-<ANG2>重鏈
<400> 8
<210> 9
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> XMab2-<VEGF>輕鏈
<400> 9
<210> 10
<211> 212
<212> PRT
<213> 人工序列
<220>
<223> XMab2-<VEGF>重鏈
<400> 10
<210> 11
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> XMab2-<ANG2>重鏈
<400> 11
<210> 12
<211> 461
<212> PRT
<213> 人工序列
<220>
<223> XMab2-<ANG2>重鏈
<400> 12
<210> 13
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> XMab3-<VEGF>輕鏈
<400> 13
<210> 14
<211> 213
<212> PRT
<213> 人工序列
<220>
<223> XMab3-<ANG2>輕鏈
<400> 14
<210> 15
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> XMab3-<VEGF>重鏈
<400> 15
<210> 16
<211> 463
<212> PRT
-<213> 人工序列
<220>
<223> XMab3-<ANG2>重鏈
<400> 16
<210> 17
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> XMab4-<VEGF>輕鏈
<400> 17
<210> 18
<211> 212
<212> PRT
<213> 人工序列
<220>
<223> XMab4-<ANG2>輕鏈
<400> 18
<210> 19
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> XMab4-<VEGF>重鏈
<400> 19
<210> 20
<211> 461
<212> PRT
<213> 人工序列
<220>
<223> XMab4-<ANG2>重鏈
<400> 20
<210> 21
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> XMab5-<VEGF>輕鏈
<400> 21
<210> 22
<211> 212
<212> PRT
<213> 人工序列
<220>
<223> XMab5-<ANG2>輕鏈
<400> 22
<210> 23
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> XMab5-<VEGF>重鏈
<400> 23
<210> 24
<211> 461
<212> PRT
<213> 人工序列
<220>
<223> XMab5-<ANG2>重鏈
<400> 24
<210> 25
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> XMab6-<VEGF>輕鏈
<400> 25
<210> 26
<211> 212
<212> PRT
<213> 人工序列
<220>
<223> XMab6-<ANG2>輕鏈
<400> 26
<210> 27
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> XMab6-<VEGF>重鏈
<400> 27
<210> 28
<211> 461
<212> PRT
<213> 人工序列
<220>
<223> XMab6-<ANG2>重鏈
<400> 28
<210> 29
<211> 706
<212> PRT
<213> 人工序列
<220>
<223> OAscFab1-<ANG2>肰連接之重鏈及輕鏈
<400> 29
<210> 30
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> OAscFab1-<VEGF>重鏈
<400> 30
<210> 31
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> OAscFab1-<VEGF>輕鏈
<400> 31
<210> 32
<211> 705
<212> PRT
<213> 人工序列
<220>
<223> OAscFab2-<ANG2>肽連接之重鏈及輕鏈
<400> 32
<210> 33
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> OAscFab2-<VEGF>重鏈
<400> 33
<210> 34
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> OAscFab2-<VEGF>輕鏈
<400> 34
<210> 35
<211> 705
<212> PRT
<213> 人工序列
<220>
<223> OAscFab3-<ANG2>肽連接之重鏈及輕鏈
<400> 35
<210> 36
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> OAscFab3-<VEGF>重鏈
<400> 36
<210> 37
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> OAscFab3-<VEGF>輕鏈
<400> 37
<210> 38
<211> 708
<212> PRT
<213> 人工序列
<220>
<223> OAscXFab1-<ANG2>肽連接之重鏈及輕鏈
<400> 38
<210> 39
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> OAscXFab1-<VEGF>重鏈
<400> 39
<210> 40
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> OAscXFab1-<VEGF>輕鏈
<400> 40
<210> 41
<211> 708
<212> PRT
<213> 人工序列
<220>
<223> OAscXFab2-<ANG2>肽連接之重鏈及輕鏈
<400> 41
<210> 42
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> OAscXFab2-<VEGF>重鏈
<400> 42
<210> 43
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> OAscXFab2-<VEGF>輕鏈
<400> 43
<210> 44
<211> 705
<212> PRT
<213> 人工序列
<220>
<223> OAscXFab3-<ANG2>肽連接之重鏈及輕鏈
<400> 44
<210> 45
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> OAscXFab3-<VEGF>重鏈
<400> 45
<210> 46
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> OAscXFab3-<VEGF>輕鏈
<400> 46
<210> 47
<211> 191
<212> PRT
<213> 智人
<400> 47
<210> 48
<211> 504
<212> PRT
<213> 人工序列
<220>
<223> 具有前導序列及His標籤之人類血管生成素-2(ANG-2)
<400> 48
(無元件符號說明)

Claims (16)

  1. 一種雙專一性、雙價抗體,其包含專一性結合於人類VEGF之第一抗原結合位點及專一性結合於人類ANG-2之第二抗原結合位點,其特徵在於i)該第一抗原結合位點包含SEQ ID NO:1作為重鏈可變域(VH)及SEQ ID NO:2作為輕鏈可變域(VL);及ii)該第二抗原結合位點包含SEQ ID NO:3作為重鏈可變域(VH)及SEQ ID NO:4作為輕鏈可變域(VL);且其進一步之特徵在於包含a)專一性結合於VEGF之第一全長抗體之重鏈及輕鏈;b)專一性結合於ANG-2之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL與CH1彼此置換。
  2. 如請求項1之雙專一性抗體,其特徵在於包含a)SEQ ID NO:7作為該第一全長抗體之重鏈及SEQ ID NO:5作為該第一全長抗體之輕鏈,及b)SEQ ID NO:8作為該第二全長抗體之經修飾重鏈及SEQ ID NO:6作為該第二全長抗體之經修飾輕鏈。
  3. 如請求項1之雙專一性抗體,其特徵在於包含a)SEQ ID NO:11作為該第一全長抗體之重鏈及SEQ ID NO:9作為該第一全長抗體之輕鏈,及b)SEQ ID NO:12作為該第二全長抗體之經修飾重鏈及SEQ ID NO:10作為該第二全長抗體之經修飾輕鏈。
  4. 如請求項1之雙專一性抗體,其特徵在於包含a)SEQ ID NO:15作為該第一全長抗體之重鏈及SEQ ID NO:13作為該第一全長抗體之輕鏈,及b)SEQ ID NO:16作為該第二全長抗體之經修飾重鏈及SEQ ID NO:14作為該第二全長抗體之經修飾輕鏈。
  5. 一種醫藥組合物,其包含如請求項1至4中任一項之抗體。
  6. 如請求項1至4中任一項之雙專一性抗體,其係用於治療癌症。
  7. 一種如請求項1至4中任一項之抗體的用途,其係用於製造用以治療癌症之藥物。
  8. 如請求項1至4中任一項之雙專一性抗體,其係用於治療選自眼內新生血管症候群、類風濕性關節炎或牛皮癬之症狀。
  9. 如請求項8之雙專一性抗體,其係用於治療增生性視網膜病變或年齡相關之黃斑變性。
  10. 一種如請求項1至4中任一項之抗體的用途,其係用於製造用以治療選自眼內新生血管症候群、類風濕性關節炎或牛皮癬之症狀之藥物。
  11. 如請求項10之用途,其中該藥物係用於治療增生性視網膜病變或年齡相關之黃斑變性。
  12. 一種核酸,其編碼如請求項1至4中任一項之雙專一性抗體。
  13. 一種表現載體,其含有如請求項12之核酸,該表現載體能夠在原核或真核宿主細胞中表現該核酸。
  14. 一種原核或真核宿主細胞,其包含如請求項13之載體。
  15. 一種製備如請求項1至4中任一項之雙專一性抗體的方法,其包含以下步驟:a)使用包含編碼該抗體之核酸分子的載體轉型宿主細胞;b)在允許合成該抗體分子之條件下培養該宿主細胞;及c)自該培養物回收該抗體分子。
  16. 一種雙專一性抗體,其係由如請求項15之方法獲得。
TW100109957A 2010-03-26 2011-03-23 雙專一性、雙價抗-vegf/抗-ang-2抗體 TWI426920B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10003269 2010-03-26

Publications (2)

Publication Number Publication Date
TW201138820A TW201138820A (en) 2011-11-16
TWI426920B true TWI426920B (zh) 2014-02-21

Family

ID=42574700

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109957A TWI426920B (zh) 2010-03-26 2011-03-23 雙專一性、雙價抗-vegf/抗-ang-2抗體

Country Status (23)

Country Link
US (3) US8945552B2 (zh)
EP (1) EP2552960B1 (zh)
JP (1) JP5707482B2 (zh)
KR (1) KR101484383B1 (zh)
CN (1) CN102906114B (zh)
AR (1) AR080794A1 (zh)
AU (1) AU2011231580B2 (zh)
BR (1) BR112012024287A2 (zh)
CA (1) CA2793402C (zh)
CL (1) CL2012002662A1 (zh)
CO (1) CO6630087A2 (zh)
CR (1) CR20120464A (zh)
EC (1) ECSP12012177A (zh)
IL (1) IL222116A (zh)
MA (1) MA34172B1 (zh)
MX (1) MX2012010937A (zh)
NZ (1) NZ602320A (zh)
PE (1) PE20130560A1 (zh)
RU (1) RU2597973C2 (zh)
SG (1) SG184295A1 (zh)
TW (1) TWI426920B (zh)
UA (1) UA110932C2 (zh)
WO (1) WO2011117329A1 (zh)

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658924B2 (en) * 2001-10-11 2010-02-09 Amgen Inc. Angiopoietin-2 specific binding agents
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US8268314B2 (en) 2008-10-08 2012-09-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
PT2949670T (pt) 2009-12-10 2019-05-20 Hoffmann La Roche Anticorpos que se ligam preferencialmente ao domínio extracelular 4 do csf1r e respetiva utilização
WO2011107553A1 (en) 2010-03-05 2011-09-09 F. Hoffmann-La Roche Ag Antibodies against human csf-1r and uses thereof
CA2789071C (en) 2010-03-05 2018-03-27 F. Hoffmann-La Roche Ag Antibodies against human csf-1r and uses thereof
TWI426920B (zh) * 2010-03-26 2014-02-21 Hoffmann La Roche 雙專一性、雙價抗-vegf/抗-ang-2抗體
CN103403025B (zh) 2011-02-28 2016-10-12 弗·哈夫曼-拉罗切有限公司 单价抗原结合蛋白
JP5764677B2 (ja) 2011-02-28 2015-08-19 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 抗原結合タンパク質
US20130078247A1 (en) * 2011-04-01 2013-03-28 Boehringer Ingelheim International Gmbh Bispecific binding molecules binding to dii4 and ang2
US9527925B2 (en) 2011-04-01 2016-12-27 Boehringer Ingelheim International Gmbh Bispecific binding molecules binding to VEGF and ANG2
UA117901C2 (uk) 2011-07-06 2018-10-25 Ґенмаб Б.В. Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування
EP2543680A1 (en) * 2011-07-07 2013-01-09 Centre National de la Recherche Scientifique Multispecific mutated antibody Fab fragments
RU2658603C2 (ru) 2011-12-15 2018-06-21 Ф.Хоффманн-Ля Рош Аг Антитела против человеческого csf-1r и их применения
AR090263A1 (es) * 2012-03-08 2014-10-29 Hoffmann La Roche Terapia combinada de anticuerpos contra el csf-1r humano y las utilizaciones de la misma
EP3632462A1 (en) 2012-07-06 2020-04-08 Genmab B.V. Dimeric protein with triple mutations
WO2014006217A1 (en) 2012-07-06 2014-01-09 Genmab B.V. Dimeric protein with triple mutations
HRP20211641T1 (hr) * 2012-07-13 2022-02-04 Roche Glycart Ag Bispecifična protutijela anti-vegf/anti-ang-2 i njihova primjena u liječenju vaskularnih očnih bolesti
CN104508132B (zh) * 2012-08-02 2017-09-15 弗·哈夫曼-拉罗切有限公司 用于产生作为与惰性免疫球蛋白Fc区Fc融合的可溶FcR的方法及其用途
WO2014034735A1 (ja) * 2012-08-31 2014-03-06 国立大学法人 大阪大学 Vegf及び/又はアンギオポエチン-2の特異的エピトープを含むdnaワクチン
EP2900260A1 (en) * 2012-09-28 2015-08-05 Boehringer Ingelheim International GmbH Pharmaceutical combinations comprising dual angiopoietin-2 / dll4 binders and anti-vegf agents
KR20150060687A (ko) * 2012-09-28 2015-06-03 베링거 인겔하임 인터내셔날 게엠베하 이중 안지오포이에틴-2/Dll4 결합제 및 항-VEGF-R 제제를 포함하는 약제학적 조합물
AU2013372331A1 (en) 2013-01-10 2015-07-23 Genmab B.V. Human IgG1 Fc region variants and uses thereof
AR095882A1 (es) 2013-04-22 2015-11-18 Hoffmann La Roche Terapia de combinación de anticuerpos contra csf-1r humano con un agonista de tlr9
PE20151807A1 (es) 2013-04-29 2015-12-02 Hoffmann La Roche Anticuerpos modificados de union a fcrn humano y metodo de utilizacion
JP6618893B2 (ja) * 2013-04-29 2019-12-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Fc受容体結合が変更された非対称抗体および使用方法
US9879081B2 (en) 2013-06-25 2018-01-30 Samsung Electronics Co., Ltd. Protein complex, bispecific antibody including the protein complex, and method of preparation thereof
HUE048722T2 (hu) 2013-07-05 2020-08-28 Genmab As Humanizált vagy kiméra CD3 ellenanyagok
CN105473612A (zh) * 2013-08-19 2016-04-06 豪夫迈·罗氏有限公司 用羟基磷灰石层析分离双特异性抗体和双特异性抗体生产副产物
AR097584A1 (es) 2013-09-12 2016-03-23 Hoffmann La Roche Terapia de combinación de anticuerpos contra el csf-1r humano y anticuerpos contra el pd-l1 humano
CN105612182B (zh) 2013-10-11 2019-12-10 豪夫迈·罗氏有限公司 多特异性结构域交换共有可变轻链抗体
KR20150063728A (ko) * 2013-12-02 2015-06-10 삼성전자주식회사 항 VEGF-C/항 Ang2 이중 특이 항체
CA2928101A1 (en) * 2013-12-13 2015-06-18 F. Hoffmann-La Roche Ag Spr-based bridging assay for determining the biological activity of multivalent, multispecific molecules
SG11201604594SA (en) * 2013-12-20 2016-07-28 Hoffmann La Roche Combination therapy with an anti-ang2 antibody and a cd40 agonist
CA2932364A1 (en) * 2014-01-15 2015-07-23 F. Hoffmann-La Roche Ag Fc-region variants with improved protein a-binding
CN105899534B (zh) * 2014-01-15 2020-01-07 豪夫迈·罗氏有限公司 具有修饰的FCRN和保持的蛋白A结合性质的Fc区变体
CA2943834A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
ES2913205T3 (es) 2014-05-13 2022-06-01 Bioatla Inc Proteínas biológicas activas condicionalmente
AR100271A1 (es) * 2014-05-19 2016-09-21 Lilly Co Eli Compuestos de vegfr2 / ang2
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
KR102586656B1 (ko) 2014-07-11 2023-10-11 젠맵 에이/에스 Axl에 결합하는 항체
EP3218402A1 (en) 2014-11-10 2017-09-20 F. Hoffmann-La Roche AG Anti-il-1beta antibodies and methods of use
AU2015345323A1 (en) 2014-11-10 2017-04-06 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use in ophthalmology
CA2960297A1 (en) 2014-11-10 2016-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
WO2016075036A1 (en) 2014-11-10 2016-05-19 F. Hoffmann-La Roche Ag Anti-pdgf-b antibodies and methods of use
SG11201703458UA (en) 2014-11-10 2017-05-30 Hoffmann La Roche Anti-ang2 antibodies and methods of use
US20160144025A1 (en) * 2014-11-25 2016-05-26 Regeneron Pharmaceuticals, Inc. Methods and formulations for treating vascular eye diseases
AR103477A1 (es) 2015-01-28 2017-05-10 Lilly Co Eli Compuestos de vegfa / ang2
LT3280727T (lt) 2015-04-06 2021-04-12 Acceleron Pharma Inc. Vienos atšakos i tipo ir ii tipo receptorių sulieti baltymai ir jų naudojimas
WO2016164503A1 (en) * 2015-04-06 2016-10-13 Acceleron Pharma Inc. Alk7:actriib heteromultimers and uses thereof
MA41919A (fr) 2015-04-06 2018-02-13 Acceleron Pharma Inc Hétéromultimères alk4:actriib et leurs utilisations
JP2018515450A (ja) * 2015-04-23 2018-06-14 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト アンジオポイエチン2に結合する抗体のプログラムデスリガンド1に結合する抗体との併用療法
WO2016200835A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
PT3319993T (pt) 2015-07-10 2020-04-22 Genmab As Conjugados de anticorpo-fármaco específicos de axl para tratamento de cancro
MX2018000347A (es) 2015-07-15 2018-03-14 Genmab As Anticuerpos de grupo de diferenciacion 3 (cd3) humanizados o quimericos.
BR112018001255A2 (pt) 2015-07-23 2018-09-11 Boehringer Ingelheim International Gmbh composto direcionado à il-23a e fator de ativação de células b (baff) e seus usos
EP3792279A3 (en) * 2015-07-29 2021-07-07 Allergan, Inc. Heavy chain only antibodies to ang-2
DK3328419T3 (da) 2015-07-30 2021-10-11 Macrogenics Inc Pd-1-bindingsmolekyler og fremgangsmåder til anvendelse deraf
JP2018523673A (ja) 2015-08-14 2018-08-23 アラーガン、インコーポレイテッドAllergan,Incorporated Pdgfに対する重鎖のみ抗体
JP7084301B2 (ja) * 2015-08-21 2022-06-14 エフ.ホフマン-ラ ロシュ アーゲー 低伝導率洗浄緩衝液を用いたアフィニティークロマトグラフィー精製方法
EP3307321A4 (en) 2015-08-26 2019-04-17 Bison Therapeutics Inc. MULTISPECIFIC ANTIBODY PLATFORM AND ASSOCIATED METHODS
KR20180068982A (ko) * 2015-09-14 2018-06-22 갤럭시 바이오테크, 엘엘씨 혈관신생 인자에 대한 매우 강력한 모노클로날 항체
CN116987187A (zh) 2015-09-23 2023-11-03 豪夫迈·罗氏有限公司 抗-vegf抗体的优化的变体
US10703810B2 (en) * 2015-11-30 2020-07-07 Pieris Australia Pty Ltd. Fusion polypeptides which bind vascular endothelial growth factor a (VEGF-A) and angiopoietin-2 (Ang-2)
CA3004199A1 (en) 2015-11-30 2017-06-08 F. Hoffmann-La Roche Ag Immunoassay for the determination of fc-region modified antibodies
TW202208440A (zh) 2015-12-14 2022-03-01 美商宏觀基因股份有限公司 對於pd-1和ctla-4具有免疫反應性的雙特異性分子及其使用方法
US20200270363A1 (en) 2015-12-25 2020-08-27 Chugai Seiyaku Kabushiki Kaisha Antibody having enhanced activity, and method for modifying same
US11066465B2 (en) 2015-12-30 2021-07-20 Kodiak Sciences Inc. Antibodies and conjugates thereof
JP2019515670A (ja) 2016-04-15 2019-06-13 ジェネンテック, インコーポレイテッド がんをモニタリングし治療するための方法
CA3019921A1 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
EP3454903A4 (en) * 2016-05-13 2020-08-19 Askgene Pharma, Inc. NEW ANGIOPOIETIN-2, VEGF DUAL ANTAGONISTS
SG11201810777WA (en) * 2016-06-17 2018-12-28 Genentech Inc Purification of multispecific antibodies
CN109415435B (zh) 2016-07-04 2024-01-16 豪夫迈·罗氏有限公司 新型抗体形式
JP7050702B2 (ja) 2016-07-08 2022-04-08 ジェネンテック, インコーポレイテッド Nrf2及びその遺伝子の下流標的遺伝子の発現状態及び変異状態によるがんの診断及び治療方法
BR112019000512A2 (pt) 2016-07-14 2019-04-24 Genmab A/S anticorpo, ácido nucleico, vetor de expressão, célula hospedeira, composição, métodos de tratamento de uma doença, para produzir um anticorpo biespecífico e para detectar se a reticulação entre as células que expressam cd40 e cd137 ocorre em uma amostra, uso de um anticorpo multiespecífico, e, kit
US10836819B2 (en) 2016-08-23 2020-11-17 Medimmune Limited Anti-VEGF-A and anti-ANG2 antibodies and uses thereof
WO2018036852A1 (en) 2016-08-25 2018-03-01 F. Hoffmann-La Roche Ag Intermittent dosing of an anti-csf-1r antibody in combination with macrophage activating agent
JP7277363B2 (ja) 2016-11-01 2023-05-18 ジェンマブ ビー.ブイ. ポリペプチド変異体およびその使用
WO2018114728A1 (en) 2016-12-20 2018-06-28 F. Hoffmann-La Roche Ag Combination therapy with a bispecific anti-ang2/vegf antibody and a bispecific anti-her2 antibody
CN110072553B (zh) 2016-12-22 2023-09-15 豪夫迈·罗氏有限公司 在抗pd-l1/pd1治疗失败之后抗csf-1r抗体与抗pd-l1抗体组合对肿瘤的治疗
WO2018122053A1 (en) 2016-12-29 2018-07-05 F. Hoffmann-La Roche Ag Anti-angiopoietin-2 antibody formulation
KR20190115057A (ko) 2017-02-10 2019-10-10 젠맵 비. 브이 폴리펩티드 변이체 및 그의 용도
MX2019010295A (es) 2017-03-01 2019-11-21 Genentech Inc Métodos de diagnóstico y terapéuticos para el cáncer.
EP3592769A1 (en) 2017-03-09 2020-01-15 Genmab A/S Antibodies against pd-l1
AR111249A1 (es) 2017-03-22 2019-06-19 Genentech Inc Composiciones de anticuerpo optimizadas para el tratamiento de trastornos oculares
CA3057907A1 (en) 2017-03-31 2018-10-04 Genmab Holding B.V. Bispecific anti-cd37 antibodies, monoclonal anti-cd37 antibodies and methods of use thereof
SG11202000198QA (en) 2017-08-04 2020-02-27 Genmab As Binding agents binding to pd-l1 and cd137 and use thereof
EP3717656B1 (en) 2017-11-30 2024-03-13 F. Hoffmann-La Roche AG Process for culturing mammalian cells
US20210107988A1 (en) 2018-01-24 2021-04-15 Genmab B.V. Polypeptide variants and uses thereof
JP7005772B2 (ja) 2018-02-06 2022-02-10 エフ.ホフマン-ラ ロシュ アーゲー 眼科疾患の処置
MX2020009379A (es) 2018-03-12 2020-10-14 Genmab As Anticuerpos.
WO2019211472A1 (en) 2018-05-03 2019-11-07 Genmab B.V. Antibody variant combinations and uses thereof
JP7370322B2 (ja) 2018-06-04 2023-10-27 中外製薬株式会社 複合体を検出する方法
MA52951A (fr) 2018-06-22 2021-04-28 Genmab Holding B V Anticorps anti-cd37 et anticorps anti-cd20, compositions et méthodes d'utilisation de ceux-ci
EP3820890A1 (en) 2018-07-13 2021-05-19 Genmab A/S Trogocytosis-mediated therapy using cd38 antibodies
BR112020026432A2 (pt) 2018-07-13 2021-03-23 Genmab A/S variante de anticorpo, ácido nucleico isolado, vetor de expressão, ácido nucleico, combinação de ácidos nucleicos, veículo de dispensação, célula hospedeira recombinante, métodos para produção de uma variante de um anticorpo, para aumentar pelo menos uma função efetora de um anticorpo parental e para tratar uma doença, anticorpo, composição, composição farmacêutica, e, variante de anticorpo para uso
WO2020070313A1 (en) 2018-10-04 2020-04-09 Genmab Holding B.V. Pharmaceutical compositions comprising bispecific anti-cd37 antibodies
BR112021007946A2 (pt) 2018-10-29 2021-08-03 F. Hoffmann-La Roche Ag formulação de anticorpo
CA3118789A1 (en) 2018-11-06 2020-05-14 Genmab A/S Antibody formulation
WO2020180842A2 (en) * 2019-03-04 2020-09-10 Aptitude Medical Systems, Inc Aptamers and use thereof
US20220185875A1 (en) 2019-03-18 2022-06-16 Jiangsu Hengrui Medicine Co., Ltd. Bispecific antibody specifically bound to vegf and ang2
JP2022531894A (ja) 2019-05-09 2022-07-12 ゲンマブ ビー.ブイ. がんの処置において使用するための抗dr5抗体の組み合わせの投与レジメン
WO2020254351A1 (en) 2019-06-19 2020-12-24 F. Hoffmann-La Roche Ag Method for the generation of a multivalent, multispecific antibody expressing cell by targeted integration of multiple expression cassettes in a defined organization
CA3140318A1 (en) 2019-06-19 2020-12-24 Johannes Auer Method for the generation of a bivalent, bispecific antibody expressing cell by targeted integration of multiple expression cassettes in a defined organization
EP4003508A1 (en) 2019-07-31 2022-06-01 Memorial Sloan Kettering Cancer Center Perfusion modulated tumor dose sculpting with single dose radiotherapy
AU2020364071A1 (en) 2019-10-10 2022-05-26 Kodiak Sciences Inc. Methods of treating an eye disorder
EP4055046A1 (en) 2019-11-06 2022-09-14 Genmab B.V. Antibody variant combinations and uses thereof
JP2023510397A (ja) 2020-01-16 2023-03-13 ジェンマブ エー/エス Cd38抗体の製剤およびその使用
WO2021155916A1 (en) 2020-02-04 2021-08-12 BioNTech SE Treatment involving antigen vaccination and binding agents binding to pd-l1 and cd137
IL296256A (en) 2020-03-13 2022-11-01 Genentech Inc Antibodies against interleukin-33 and uses thereof
PE20230444A1 (es) 2020-03-18 2023-03-08 Genmab As Anticuerpos
JP2023524149A (ja) 2020-05-08 2023-06-08 ジェンマブ エー/エス Cd3およびcd20に対する二重特異性抗体
WO2022018294A1 (en) 2020-07-23 2022-01-27 Genmab B.V. A combination of anti-dr5 antibodies and an immunomodulatory imide drug for use in treating multiple myeloma
AU2021322046A1 (en) 2020-08-06 2023-02-02 BioNTech SE Binding agents for coronavirus S protein
WO2022049220A2 (en) 2020-09-02 2022-03-10 Genmab A/S Antibody therapy
EP4210747A1 (en) 2020-09-10 2023-07-19 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
EP4210744A1 (en) 2020-09-10 2023-07-19 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
AU2021339954A1 (en) 2020-09-10 2023-04-13 Genmab A/S Bispecific antibody against CD3 and CD20 in combination therapy for treating follicular lymphoma
US20230312757A1 (en) 2020-09-10 2023-10-05 Genmab A/S Bispecific antibodies against cd3 and cd20 for treating chronic lymphocytic leukemia
CA3189883A1 (en) 2020-09-10 2022-03-17 Brian Elliott Bispecific antibody against cd3 and cd20 in combination therapy for treating follicular lymphoma
AU2021342343A1 (en) 2020-09-10 2023-04-13 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
WO2022057888A1 (zh) * 2020-09-17 2022-03-24 江苏恒瑞医药股份有限公司 特异性结合vegf和ang-2的双特异性抗原结合分子
CA3193914A1 (en) 2020-10-02 2022-04-07 Louise KOOPMAN Antibodies capable of binding to ror2 and bispecific antibodies binding to ror2 and cd3
BR112023017887A2 (pt) 2021-03-12 2023-10-10 Genmab As Proteína compreendendo um primeiro polipeptídeo e um segundo polipeptídeo, anticorpo biespecífico, ácido nucleico de codificação do dito primeiro ou segundo polipeptídeo, célula hospedeira, composição farmacêutica, proteína, anticorpo biespecífico ou composição farmacêutica para uso, e, métodos de tratamento e de preparo de um anticorpo biespecífico
EP4334359A1 (en) 2021-05-07 2024-03-13 Genmab A/S Pharmaceutical compositions comprising bispecific antibodies binding to b7h4 and cd3
TW202315891A (zh) 2021-06-21 2023-04-16 丹麥商珍美寶股份有限公司 結合劑給藥排程
WO2023031473A1 (en) 2021-09-06 2023-03-09 Genmab B.V. Antibodies capable of binding to cd27, variants thereof and uses thereof
WO2023057571A1 (en) 2021-10-08 2023-04-13 Genmab A/S Antibodies binding to cd30 and cd3
US20230303693A1 (en) 2022-01-28 2023-09-28 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
US20230241211A1 (en) 2022-01-28 2023-08-03 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
WO2023174521A1 (en) 2022-03-15 2023-09-21 Genmab A/S Binding agents binding to epcam and cd137
WO2023198839A2 (en) 2022-04-13 2023-10-19 Genmab A/S Bispecific antibodies against cd3 and cd20
WO2023212298A1 (en) 2022-04-29 2023-11-02 Broadwing Bio Llc Bispecific antibodies and methods of treating ocular disease
WO2023218051A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
CN116003619B (zh) * 2022-12-12 2023-08-04 三门峡市眼科医院 人源化抗Ang-2和VEGF双功能抗体及其医药用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200730191A (en) * 2005-12-15 2007-08-16 Astrazeneca Ab Combinations
TW200738263A (en) * 2006-01-27 2007-10-16 Amgen Inc ANG2 and VEGF inhibitor combinations
TW200932271A (en) * 2007-12-21 2009-08-01 Hoffmann La Roche Bivalent, bispecific antibodies

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007089A1 (en) 1987-03-18 1988-09-22 Medical Research Council Altered antibodies
US5202238A (en) * 1987-10-27 1993-04-13 Oncogen Production of chimeric antibodies by homologous recombination
US5204244A (en) * 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
JPH04505709A (ja) 1989-11-07 1992-10-08 ブリストル―マイアーズ スクイブ カンパニー オリゴマー免疫グロブリン
EP0547137A4 (en) 1990-08-31 1993-12-08 Bristol-Myers Squibb Company Homoconjugated immunoglobulins
DE4118120A1 (de) 1991-06-03 1992-12-10 Behringwerke Ag Tetravalente bispezifische rezeptoren, ihre herstellung und verwendung
US6511663B1 (en) 1991-06-11 2003-01-28 Celltech R&D Limited Tri- and tetra-valent monospecific antigen-binding proteins
EP0604580A1 (en) 1991-09-19 1994-07-06 Genentech, Inc. EXPRESSION IN E. COLI OF ANTIBODY FRAGMENTS HAVING AT LEAST A CYSTEINE PRESENT AS A FREE THIOL, USE FOR THE PRODUCTION OF BIFUNCTIONAL F(ab') 2? ANTIBODIES
HU225646B1 (en) 1992-10-28 2007-05-29 Genentech Inc Hvegf receptors as vascular endothelial cell growth factor antagonists
US5747654A (en) 1993-06-14 1998-05-05 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
US6476198B1 (en) 1993-07-13 2002-11-05 The Scripps Research Institute Multispecific and multivalent antigen-binding polypeptide molecules
WO1995009917A1 (en) 1993-10-07 1995-04-13 The Regents Of The University Of California Genetically engineered bispecific tetravalent antibodies
US5814464A (en) 1994-10-07 1998-09-29 Regeneron Pharma Nucleic acids encoding TIE-2 ligand-2
US5650490A (en) 1994-10-07 1997-07-22 Regeneron Pharmaceuticals, Inc. Tie-2 ligand 2
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
ES2236634T3 (es) 1997-04-07 2005-07-16 Genentech, Inc. Anticuerpos anti-vegf.
EP2301580B1 (en) 1997-04-07 2012-01-18 Genentech, Inc. Container holding anti-VEGF antibodies
WO1999009055A2 (en) 1997-08-18 1999-02-25 Innogenetics N.V. Interferon-gamma-binding molecules for treating septic shock, cachexia, immune diseases and skin disorders
WO1999037791A1 (en) 1998-01-23 1999-07-29 Vlaams Interuniversitair Instituut Voor Biotechnologie Multipurpose antibody derivatives
DE19819846B4 (de) 1998-05-05 2016-11-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Multivalente Antikörper-Konstrukte
WO2000035956A1 (fr) 1998-12-16 2000-06-22 Kyowa Hakko Kogyo Co., Ltd. Anticorps monoclonal anti-vegf humain
US6897044B1 (en) 1999-01-28 2005-05-24 Biogen Idec, Inc. Production of tetravalent antibodies
JP2003531588A (ja) 2000-04-11 2003-10-28 ジェネンテック・インコーポレーテッド 多価抗体とその用途
US20020081247A1 (en) * 2000-12-26 2002-06-27 Dodson Christopher E. Apparatus and method for producing amorphous silica ash
US20030064053A1 (en) * 2001-08-31 2003-04-03 Shengjiang Liu Multivalent protein conjugate with multiple ligand-binding domains of receptors
ES2276735T3 (es) 2001-09-14 2007-07-01 Affimed Therapeutics Ag Anticuerpos fv multimericos de cadena sencilla en tandem.
US7138370B2 (en) 2001-10-11 2006-11-21 Amgen Inc. Specific binding agents of human angiopoietin-2
US7521053B2 (en) 2001-10-11 2009-04-21 Amgen Inc. Angiopoietin-2 specific binding agents
US7658924B2 (en) 2001-10-11 2010-02-09 Amgen Inc. Angiopoietin-2 specific binding agents
US7081443B2 (en) 2002-05-21 2006-07-25 Korea Advanced Institutes Of Science And Technology (Kaist) Chimeric comp-ang1 molecule
AU2003297282A1 (en) * 2002-11-14 2004-06-15 Cornell Research Foundation, Inc. Protection of cardiac myocardium
JP2007525466A (ja) 2003-05-30 2007-09-06 ジェネンテック・インコーポレーテッド 抗vegf抗体での治療
NZ544923A (en) 2003-06-27 2009-02-28 Biogen Idec Inc Use of hydrophobic-interaction-chromatography or hinge-region modifications for the production of homogeneous anti-body solutions
CA2531118C (en) 2003-07-01 2013-01-08 Immunomedics, Inc. Multivalent carriers of bi-specific antibodies
AR046510A1 (es) * 2003-07-25 2005-12-14 Regeneron Pharma Composicion de un antagonista de vegf y un agente anti-proliferativo
WO2005044853A2 (en) 2003-11-01 2005-05-19 Genentech, Inc. Anti-vegf antibodies
US20050106667A1 (en) * 2003-08-01 2005-05-19 Genentech, Inc Binding polypeptides with restricted diversity sequences
US20050276806A1 (en) 2004-06-15 2005-12-15 Advanced Biotherapy, Inc. Treatment of autism
WO2006020258A2 (en) 2004-07-17 2006-02-23 Imclone Systems Incorporated Novel tetravalent bispecific antibody
ZA200701715B (en) 2004-08-19 2008-07-30 Genentech Inc Polypeptide variants with altered effector function
US7586876B2 (en) * 2004-08-30 2009-09-08 Samsung Electronics Co., Ltd Handoff system and method between a wireless LAN and mobile communication network
US20070068895A1 (en) * 2004-12-02 2007-03-29 Eleanor Landstreet Bottle skirts
RU2394839C2 (ru) * 2004-12-21 2010-07-20 Астразенека Аб Антитела против ангиопоэтина-2 и их применение
EP1863844A1 (en) 2005-02-28 2007-12-12 Centocor, Inc. Heterodimeric protein binding compositions
EP3050963B1 (en) 2005-03-31 2019-09-18 Chugai Seiyaku Kabushiki Kaisha Process for production of polypeptide by regulation of assembly
NZ612578A (en) 2005-08-19 2014-11-28 Abbvie Inc Dual variable domain immunoglobin and uses thereof
WO2007044887A2 (en) 2005-10-11 2007-04-19 Transtarget, Inc. Method for producing a population of homogenous tetravalent bispecific antibodies
US7283389B2 (en) * 2005-12-09 2007-10-16 Macronix International Co., Ltd. Gated diode nonvolatile memory cell array
GEP20135917B (en) 2006-03-17 2013-09-10 Biogen Idec Inc Stabilized polypeptide compositions
KR20150097813A (ko) 2006-12-19 2015-08-26 제넨테크, 인크. 조기 종양의 치료 및 아주반트 및 네오아주반트 요법을 위한 vegf-특이적 길항제
US7794939B2 (en) * 2007-02-26 2010-09-14 University Of Idaho Methods of DNA methylation detection
US10259860B2 (en) 2007-02-27 2019-04-16 Aprogen Inc. Fusion proteins binding to VEGF and angiopoietin
JP2010538012A (ja) 2007-08-28 2010-12-09 バイオジェン アイデック マサチューセッツ インコーポレイテッド Igf−1rの複数のエピトープに結合する組成物
US20090058812A1 (en) * 2007-08-30 2009-03-05 Yoshimichi Matsuoka Mobile computing device construction using front paneled assembly and components thereof
RU2498991C2 (ru) * 2007-10-30 2013-11-20 Дженентек, Инк. Очистка антител с помощью катионообменной хроматографии
EP2222709B1 (en) 2007-11-30 2016-11-23 Glaxo Group Limited Antigen-binding constructs
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US8227577B2 (en) 2007-12-21 2012-07-24 Hoffman-La Roche Inc. Bivalent, bispecific antibodies
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US20090234726A1 (en) * 2008-03-12 2009-09-17 Microsoft Corporation Automobile location based advertising
BRPI0910482A2 (pt) 2008-04-29 2019-09-24 Abbott Lab imunoglobinas de domínio variável duplo e usos das mesmas
US8293714B2 (en) 2008-05-05 2012-10-23 Covx Technology Ireland, Ltd. Anti-angiogenic compounds
KR20110013409A (ko) * 2008-05-23 2011-02-09 삼성전자주식회사 항체-펩티드 융합 상승체
US8268314B2 (en) * 2008-10-08 2012-09-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
TWI426920B (zh) * 2010-03-26 2014-02-21 Hoffmann La Roche 雙專一性、雙價抗-vegf/抗-ang-2抗體

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200730191A (en) * 2005-12-15 2007-08-16 Astrazeneca Ab Combinations
TW200738263A (en) * 2006-01-27 2007-10-16 Amgen Inc ANG2 and VEGF inhibitor combinations
TW200932271A (en) * 2007-12-21 2009-08-01 Hoffmann La Roche Bivalent, bispecific antibodies

Also Published As

Publication number Publication date
MX2012010937A (es) 2012-10-15
WO2011117329A1 (en) 2011-09-29
IL222116A (en) 2017-09-28
US20170240626A1 (en) 2017-08-24
MA34172B1 (fr) 2013-04-03
UA110932C2 (uk) 2016-03-10
AR080794A1 (es) 2012-05-09
ECSP12012177A (es) 2012-10-30
AU2011231580B2 (en) 2015-01-29
JP5707482B2 (ja) 2015-04-30
PE20130560A1 (es) 2013-05-05
US20150191535A1 (en) 2015-07-09
EP2552960B1 (en) 2018-04-18
SG184295A1 (en) 2012-11-29
CN102906114B (zh) 2017-03-15
BR112012024287A2 (pt) 2017-03-01
KR101484383B1 (ko) 2015-01-22
US20110236388A1 (en) 2011-09-29
CN102906114A (zh) 2013-01-30
CR20120464A (es) 2012-10-05
CA2793402A1 (en) 2011-09-29
NZ602320A (en) 2013-06-28
KR20130001291A (ko) 2013-01-03
EP2552960A1 (en) 2013-02-06
RU2597973C2 (ru) 2016-09-20
RU2012143793A (ru) 2014-05-10
AU2011231580A1 (en) 2012-09-27
CL2012002662A1 (es) 2013-01-25
JP2013526848A (ja) 2013-06-27
CA2793402C (en) 2018-04-03
US8945552B2 (en) 2015-02-03
TW201138820A (en) 2011-11-16
CO6630087A2 (es) 2013-03-01

Similar Documents

Publication Publication Date Title
TWI426920B (zh) 雙專一性、雙價抗-vegf/抗-ang-2抗體
US20230399391A1 (en) Bispecific anti-vegf/anti-ang-2 antibodies

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees