TWI422074B - Aspherical led lens and light emitting device including the same - Google Patents

Aspherical led lens and light emitting device including the same Download PDF

Info

Publication number
TWI422074B
TWI422074B TW100100487A TW100100487A TWI422074B TW I422074 B TWI422074 B TW I422074B TW 100100487 A TW100100487 A TW 100100487A TW 100100487 A TW100100487 A TW 100100487A TW I422074 B TWI422074 B TW I422074B
Authority
TW
Taiwan
Prior art keywords
light
lens
led
emitting diode
aspherical
Prior art date
Application number
TW100100487A
Other languages
Chinese (zh)
Other versions
TW201140893A (en
Inventor
朴光日
吳熙鐸
李相哲
韓玎兒
黃雄俊
Original Assignee
首爾半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44305963&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI422074(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from KR1020100001059A external-priority patent/KR101644140B1/en
Priority claimed from KR1020100028693A external-priority patent/KR101144635B1/en
Application filed by 首爾半導體股份有限公司 filed Critical 首爾半導體股份有限公司
Publication of TW201140893A publication Critical patent/TW201140893A/en
Application granted granted Critical
Publication of TWI422074B publication Critical patent/TWI422074B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/046Refractors for light sources of lens shape the lens having a rotationally symmetrical shape about an axis for transmitting light in a direction mainly perpendicular to this axis, e.g. ring or annular lens with light source disposed inside the ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0095Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

非球面LED鏡片以及含有此鏡片的發光元件 Aspherical LED lens and light-emitting element containing the same 【相關專利申請案之交叉參考】 [Cross-Reference to Related Patent Applications]

本申請案主張2010年1月7日申請之韓國專利申請案第10-2010-0001059號與2010年3月30日申請之韓國專利申請案第10-2010-0028693號之優先權及權益,該些專利申請案之全部揭露內容均併入本案供參考。 The present application claims the priority and the benefit of the Korean Patent Application No. 10-2010-0001059, filed on Jan. 7, 2010, and the Korean Patent Application No. 10-2010-002869, filed on March 30, 2010. The entire disclosures of these patent applications are incorporated herein by reference.

本發明是有關於一種發光二極體(light emitting diodes,LEDs)的鏡片(lens),且特別是有關於一種非球面發光二極體鏡片(aspherical LED lens)以及含有此鏡片的發光元件(light emitting device)。 The present invention relates to a lens of light emitting diodes (LEDs), and more particularly to an aspherical LED lens and a light-emitting component containing the same (light) Ejector device).

發光二極體(LED)是指一種具有p-n接面(p-n junction)且根據p-n接面所形成的電位差在其中再結合電子(electrons)與電洞(holes)而發射光之半導體元件(semiconductor device)。發光二極體(LED)可由例如氮化鎵(GaN)、砷化鎵(GaAs)、磷化鎵(GaP)、磷砷化鎵(GaAs1-xPx)、砷化鋁鎵(Ga1-xAlxAs)、磷化銦(InP)、磷化鎵銦(In1-xGaxP)等等之化合物半導體(compound semiconductors)組成,並且已經普遍用於指示燈(display lamps)或顯示裝置(display devices)以顯示例如數字之簡單資訊。近年來,隨著例如資訊顯示科技及半導體科技之科技的發展,發光二極體(LEDs)不僅可用於例如液晶顯示器裝置(liquid crystal display devices)之平面顯示器(flat panel displays),也可用於一般照明。 A light-emitting diode (LED) refers to a semiconductor device having a pn junction and emitting light in accordance with a potential difference formed by a pn junction in which electrons and holes are recombined (semiconductor device). ). The light emitting diode (LED) may be, for example, gallium nitride (GaN), gallium arsenide (GaAs), gallium phosphide (GaP), gallium arsenide (GaAs 1-x P x ), aluminum gallium arsenide (Ga 1 ) -x Al x As), indium phosphide (InP), indium gallium phosphide (In 1-x Ga x P), etc., composed of compound semiconductors, and has been commonly used for display lamps or Display devices to display simple information such as numbers. In recent years, with the development of technologies such as information display technology and semiconductor technology, light-emitting diodes (LEDs) can be used not only for flat panel displays such as liquid crystal display devices, but also for general use. illumination.

發光二極體(LEDs)有許多優點,例如:比現有的光源(light source)更優越的能源效率與更長的壽命;未釋放有害的紫外線(ultraviolet,UV)光;以及環保,因此成為可取代現有冷陰極螢光燈(cold cathode fluorescent lamps,CCFL)之光源而逐漸受到關注。 Light-emitting diodes (LEDs) have many advantages, such as superior energy efficiency and longer life than existing light sources; no release of harmful ultraviolet (UV) light; and environmental protection, thus becoming It has gradually attracted attention in place of the light source of the existing cold cathode fluorescent lamps (CCFL).

然而,當發光二極體(LEDs)應用於顯示裝置的背光單元(backlight unit)的光源時,直接配置在發光二極體(LEDs)上的面板(panel)可具有高照度(illumination),但是發光二極體(LEDs)之間的區域則由於發光二極體(LEDs)的點光源特性可能具有低照度,因而整個面板可能具有不均勻的照度。此外,例如當發光二極體(LEDs)應用於路燈時,只有直接在路燈下的區域可能變得明亮,在路燈之間的路面卻可能黑暗,因而使行人或駕駛感到不便。 However, when light-emitting diodes (LEDs) are applied to a light source of a backlight unit of a display device, a panel directly disposed on light-emitting diodes (LEDs) may have high illumination, but The area between the light-emitting diodes (LEDs) may have low illumination due to the point source characteristics of the light-emitting diodes (LEDs), so the entire panel may have uneven illumination. Further, for example, when light-emitting diodes (LEDs) are applied to street lamps, only the area directly under the street lamps may become bright, and the road surface between the street lamps may be dark, thereby making pedestrians or driving feel inconvenient.

在此將參考使用半球面發光二極體鏡片(semispherical LED lens)作為背光單元的光源之例子而具體地說明習知的發光二極體(LED)。 Here, a conventional light-emitting diode (LED) will be specifically described with reference to an example of a light source using a semispherical LED lens as a backlight unit.

圖1是包含習知半球面發光二極體(LED)鏡片的發光元件100的側剖面圖,圖2是發光元件100所發射的光的方位角曲線(orientation angle curve)的曲線圖,以及圖3是當發光元件100作為背光單元的光源時根據發光元件100的排列在顯示裝置的面板上照度的示意圖。 1 is a side cross-sectional view of a light-emitting element 100 including a conventional hemispherical light-emitting diode (LED) lens, and FIG. 2 is a graph of an orientation angle curve of light emitted by the light-emitting element 100, and a graph 3 is a schematic diagram of illuminance on the panel of the display device according to the arrangement of the light-emitting elements 100 when the light-emitting element 100 is used as a light source of the backlight unit.

如圖1所示,習知發光元件100包括發光二極體晶片(LED chip)2以及調整發光二極體(LED)晶片2所發射的光 的角度之半球面發光二極體(LED)鏡片4。雖然未繪示於圖中,發光元件100更可包括沈積在發光二極體(LED)晶片2上的螢光材料以便產生白光。 As shown in FIG. 1, the conventional light-emitting element 100 includes a light-emitting diode chip (LED chip) 2 and light emitted by the light-emitting diode (LED) wafer 2. The angle of the hemispherical light-emitting diode (LED) lens 4. Although not shown in the drawings, the light-emitting element 100 may further include a fluorescent material deposited on the light-emitting diode (LED) wafer 2 to generate white light.

參照圖2,因為如圖1所示之發光元件100所發射的光由於鏡片4的半球面結構而聚焦於鏡片4的中心,所以此光可具有使照度朝鏡片的中心軸(central axis)增加且朝其右邊及左邊逐漸減少之對稱圖案(symmetrical pattern)的方位角。 Referring to FIG. 2, since the light emitted by the light-emitting element 100 as shown in FIG. 1 is focused on the center of the lens 4 due to the hemispherical structure of the lens 4, the light may have an increase in illumination toward the central axis of the lens. And the azimuth of the symmetrical pattern that gradually decreases toward the right and left sides.

因此,如圖3所示,當包含半球面發光二極體(LED)鏡片的發光元件100直線排列在顯示裝置的背光單元中時,發光元件100上方的面板上之照度可能不均勻,並且可能在面板上重複形成亮區與暗區。 Therefore, as shown in FIG. 3, when the light-emitting elements 100 including the hemispherical light-emitting diode (LED) lenses are linearly arranged in the backlight unit of the display device, the illuminance on the panel above the light-emitting elements 100 may be uneven, and may Bright and dark areas are repeatedly formed on the panel.

本發明提供一種非球面發光二極體(LED)鏡片以及含有此鏡片的發光元件,可使發光二極體(LED)晶片所發射的光具有雙峰形圖案的方位角而且最小化色差(chromatic aberration)。 The invention provides an aspherical light-emitting diode (LED) lens and a light-emitting element comprising the same, which can make the light emitted by the light-emitting diode (LED) wafer have a bifurcation pattern azimuth angle and minimize chromatic aberration (chromatic Aberration).

本發明提供一種非球面發光二極體(LED)鏡片以及含有此鏡片的發光元件,可使發光二極體晶片所發射的光的方位角曲線對稱於發光二極體(LED)鏡片的主軸(major axis)及副軸(minor axis)。 The invention provides an aspherical light-emitting diode (LED) lens and a light-emitting component comprising the same, which can make the azimuth curve of the light emitted by the light-emitting diode wafer symmetrical to the main axis of the light-emitting diode (LED) lens ( Major axis) and minor axis.

本發明的其他特徵將於以下的說明中予以敘述,並且一部分可由此說明自然明瞭或可藉由實施本發明而得知。 Other features of the invention will be set forth in the description which follows.

本發明之一實施例揭露一種非球面發光二極體(LED) 鏡片。此非球面發光二極體(LED)鏡片包括:出光面(light exit plane),在中心軸附近凹陷;入光面(light entrance plane),包含一種頂點(vertex)位於中心軸之錐形面(conical plane);以及多個突出(protrusions),排列在出光面的一部分側面(side surface)上,其中非球面發光二極體(LED)鏡片具有對稱於其中心軸之放射狀對稱結構。 An embodiment of the invention discloses an aspherical light emitting diode (LED) lens. The aspherical light-emitting diode (LED) lens includes a light exit plane that is recessed near the central axis, and a light entrance plane that includes a tapered surface on which the vertex is located on the central axis ( Conical plane; and a plurality of protrusions arranged on a side surface of the light-emitting surface, wherein the aspherical light-emitting diode (LED) lens has a radial symmetrical structure symmetrical to its central axis.

本發明之一實施例揭露一種發光元件。此發光元件包括:殼體(housing);發光二極體(LED)晶片,排列在殼體上;以及非球面發光二極體(LED)鏡片,排列在發光二極體(LED)晶片上,此非球面發光二極體(LED)鏡片具有對稱於發光二極體(LED)鏡片的中心軸之放射狀對稱結構。上述非球面發光二極體(LED)鏡片包括:出光面,在中心軸附近凹陷;入光面,包含一種頂點位於中心軸之錐形面,以及多個突出,排列在出光面的一部分側面上。 One embodiment of the invention discloses a light emitting element. The light emitting element includes: a housing; a light emitting diode (LED) wafer arranged on the housing; and an aspherical light emitting diode (LED) lens arranged on the light emitting diode (LED) wafer. The aspherical light emitting diode (LED) lens has a radially symmetrical structure that is symmetric with respect to a central axis of the light emitting diode (LED) lens. The aspherical light-emitting diode (LED) lens includes: a light-emitting surface that is recessed near a central axis; and a light-incident surface that includes a tapered surface having a vertex at a central axis, and a plurality of protrusions arranged on a portion of the side of the light-emitting surface .

本發明之一實施例揭露一種發光元件。此發光元件包括:基底(substrate);發光二極體(LED)晶片,排列在基底上;以及非球面發光二極體(LED)鏡片,排列在發光二極體(LED)晶片上。上述非球面發光二極體(LED)鏡片包含分別沿著發光二極體(LED)鏡片的主軸與副軸截取之不同截面。 One embodiment of the invention discloses a light emitting element. The illuminating element comprises: a substrate; a light emitting diode (LED) wafer arranged on the substrate; and an aspherical light emitting diode (LED) lens arranged on the light emitting diode (LED) wafer. The aspherical light emitting diode (LED) lens includes different cross sections taken along the major axis and the minor axis of the light emitting diode (LED) lens, respectively.

須知以上的概括說明及以下的詳細說明皆用以舉例及解釋,並且將於申請專利範圍提供本發明的進一步解釋。 The above general description and the following detailed description are intended to be illustrative and illustrative, and further explanation of the invention.

用以提供本發明的進一步說明之附圖將併入及構成此專利說明書的一部分,附圖繪示本發明的實施例,並且 連同其說明用以解釋本發明的原理。 The accompanying drawings that are included to provide a further description of the invention Together with the description thereof, the principles of the invention are explained.

在此將於參考繪示本發明的實施例之附圖之後更完整地說明本發明。然而,本發明能以許多不同的形式來實施,因此不應視為侷限於在此所述之實施例。更確切地說,提供這些實施例使本發明的揭露更齊全,並且將更完整地傳達本發明的觀念給任何所屬技術領域中具有通常知識者。在各圖中,為了清楚起見可能誇大各圖中分層及區域的尺寸及相對大小。圖中相同的參考數字表示相同的元件。 The invention will now be described more fully hereinafter with reference to the accompanying drawings of the embodiments of the invention. However, the invention can be embodied in many different forms and should not be construed as being limited to the embodiments described herein. Rather, these embodiments are provided so that this disclosure will be more complete, and will convey the concept of the invention more fully to those of ordinary skill in the art. In the figures, the size and relative sizes of layers and regions in the various figures may be exaggerated for clarity. The same reference numerals in the figures denote the same elements.

須知當一元件或分層稱為「位於」或「連接」另一元件或分層時,其可能直接位於或連接於此另一元件或分層,或者可能存在中介的元件或分層。相對地,當一元件或層稱為「直接位於」或「直接連接」另一元件或分層時,不存在中介的元件或分層。 It is to be understood that when a component or layer is referred to as "directly" or "connected" to another element or layer, it may be directly or be connected to the other element or layer. In contrast, when an element or layer is referred to as "directly on" or "directly connected" to another element or layer, there are no intervening elements or layers.

圖4與圖5是一種包含非球面發光二極體(LED)鏡片之發光元件的透視圖與側剖面圖,並且圖6與圖7是圖4的非球面發光二極體(LED)鏡片所發射的光的方位角曲線的曲線圖與圖4的非球面發光二極體(LED)鏡片的色差的曲線圖。 4 and 5 are perspective and side cross-sectional views of a light-emitting element including an aspherical light-emitting diode (LED) lens, and FIGS. 6 and 7 are aspherical light-emitting diode (LED) lenses of FIG. A plot of the azimuth curve of the emitted light versus the color difference of the aspherical light emitting diode (LED) lens of FIG.

參照圖4及圖5,發光元件200包括其內形成凹洞(cavity)21之殼體20、安裝在殼體20上之發光二極體(LED)晶片12、凹洞21的封裝材料(encapsulation material)22、以及非球面發光二極體(LED)鏡片14。 4 and 5, the light-emitting element 200 includes a casing 20 in which a cavity 21 is formed, a light-emitting diode (LED) wafer 12 mounted on the casing 20, and a packaging material for the cavity 21 (encapsulation). Material 22, and an aspherical light-emitting diode (LED) lens 14.

非球面發光二極體(LED)鏡片14可由例如矽膠 (silicone)、環氧樹脂(epoxy)、玻璃、或塑膠之類的透光材料(light-transmitting material)形成且其中散佈磷光體(phosphors)。此外,非球面發光二極體(LED)鏡片14可包括入光面141及出光面142,且具有對稱於發光二極體(LED)鏡片14的中心軸(y)之放射狀對稱結構。 The aspherical light emitting diode (LED) lens 14 can be, for example, silicone A light-transmitting material such as silicone, epoxy, glass, or plastic is formed and in which phosphors are dispersed. In addition, the aspherical light-emitting diode (LED) lens 14 may include a light incident surface 141 and a light exit surface 142, and has a radial symmetrical structure that is symmetric with respect to a central axis (y) of the light-emitting diode (LED) lens 14.

在此,入光面141是指從發光二極體(LED)晶片12發射且通過封裝材料22之光入射時所在之平面,並且由一種頂點位於中心軸之錐形面組成。空氣層(air layer)25可位於入光面141與封裝材料22之間的空間。並且,出光面142是指通過發光二極體(LED)鏡片14的光藉以發射至此發光二極體(LED)鏡片外部之平面,並且具有圍繞中心軸而彼此部分重疊之兩個凸半球面形狀(convex semispherical shapes)的重疊區域。上述之圍繞中心軸的重疊區域可以是凹陷區域。 Here, the light incident surface 141 refers to a plane from which light emitted from the light emitting diode (LED) wafer 12 and incident through the encapsulating material 22 is incident, and is composed of a tapered surface whose vertex is located at the central axis. An air layer 25 may be located in a space between the light incident surface 141 and the encapsulating material 22. Moreover, the light-emitting surface 142 refers to a plane through which the light of the light-emitting diode (LED) lens 14 is emitted to the outside of the light-emitting diode (LED) lens, and has two convex hemispherical shapes partially overlapping each other around the central axis. The overlapping area of (convex semispherical shapes). The above overlapping area around the central axis may be a recessed area.

利用非球面鏡片14的這種結構,光的數量或強度在接近非球面發光二極體(LED)鏡片14的中心(亦即接近非球面發光二極體(LED)鏡片14的中心軸)時減少,並且在接近非球面發光二極體(LED)鏡片14的周邊時增加,藉此提供如圖6所示之方位角曲線。尤其,相較於圖2,圖6的方位角曲線在鏡片的兩邊(接近大約+/-67度之角度)具有雙峰,以取代在鏡片的中心(在零度之角度)具有雙峰,並且圖形中心之光的數量或強度是此峰值的大約30~40%。 With this configuration of the aspherical lens 14, the amount or intensity of light is near the center of the aspherical light-emitting diode (LED) lens 14 (i.e., near the central axis of the aspherical light-emitting diode (LED) lens 14). It is reduced and increases as it approaches the periphery of the aspherical light-emitting diode (LED) lens 14, thereby providing an azimuthal curve as shown in FIG. In particular, the azimuthal curve of Figure 6 has a double peak on both sides of the lens (close to an angle of approximately +/- 67 degrees) compared to Figure 2, instead of having a double peak at the center of the lens (at an angle of zero), and The amount or intensity of light in the center of the graph is approximately 30-40% of this peak.

因此,當使用此種非球面鏡片14作為顯示裝置的背光單元的光源時,顯示裝置可在其面板上具有均勻的照度 及亮度,藉以解決亮區形成於發光二極體(LED)封裝正上方的面板區域且暗區形成於相鄰的發光二極體(LED)封裝之間的面板區域之習知發光二極體(LED)鏡片的問題。 Therefore, when such an aspherical lens 14 is used as a light source of a backlight unit of a display device, the display device can have uniform illumination on its panel And brightness, thereby solving the conventional light-emitting diodes in which the bright area is formed on the panel area directly above the light-emitting diode (LED) package and the dark area is formed in the panel area between adjacent light-emitting diode (LED) packages. (LED) lens problem.

不包含分散劑(dispersing agent)之非球面鏡片14由於鏡片的形狀可能顯現比習知半球面鏡片4更嚴重的色差,如同圖7的色差曲線。具體而言,在不包含分散劑之非球面鏡片14的方位角曲線中,方位角在±90度內之X-座標變化(△X)是大約0.047且Y-座標變化(△Y)是大約0.082。因此,可看出非球面鏡片14造成嚴重的色差。結果,由於色差可能在面板上產生例如黃色斑點或黃色圓環之類的斑點。 The aspherical lens 14 which does not contain a dispersing agent may exhibit a more severe chromatic aberration than the conventional hemispherical lens 4 due to the shape of the lens, like the color difference curve of FIG. Specifically, in the azimuth curve of the aspherical lens 14 not containing the dispersing agent, the X-coordinate change (ΔX) of the azimuth angle within ±90 degrees is about 0.047 and the Y-coordinate change (ΔY) is about 0.082. Therefore, it can be seen that the aspherical lens 14 causes a severe chromatic aberration. As a result, spots such as yellow spots or yellow circles may be generated on the panel due to chromatic aberration.

另一方面,當非球面鏡片14包含分散劑以解決色差問題時,分散劑可能不當地降低鏡片所發射的光的數量或可能對方位角產生不當的效果。因此,只使用分散劑可能不足以達成降低色差。 On the other hand, when the aspherical lens 14 contains a dispersing agent to solve the chromatic aberration problem, the dispersing agent may unduly reduce the amount of light emitted by the lens or may have an improper effect on the azimuth. Therefore, the use of only dispersants may not be sufficient to achieve a reduction in chromatic aberration.

其次,將參考圖8至圖10來說明依照本發明之一實施例之一種非球面鏡片。 Next, an aspherical lens according to an embodiment of the present invention will be described with reference to Figs. 8 to 10.

圖8是依照本發明之一實施例之一種具有包含多個側邊突出之非球面發光二極體(LED)鏡片之發光元件的側剖面圖。圖9與圖10分別是圖8的非球面發光二極體(LED)鏡片所發射的光的方位角曲線圖與此非球面發光二極體(LED)鏡片的色差曲線圖。 8 is a side cross-sectional view of a light emitting element having an aspherical light emitting diode (LED) lens having a plurality of side protrusions, in accordance with an embodiment of the present invention. 9 and 10 are azimuth plots of light emitted by the aspherical light-emitting diode (LED) lens of FIG. 8 and color difference curves of the aspherical light-emitting diode (LED) lens, respectively.

參照圖8,發光元件1000包括其內形成凹洞321之殼體320、發光二極體(LED)晶片322、封裝材料323、以及 非球面發光二極體(LED)鏡片360。 Referring to FIG. 8, the light emitting element 1000 includes a case 320 in which a cavity 321 is formed, a light emitting diode (LED) wafer 322, an encapsulating material 323, and Aspherical light emitting diode (LED) lens 360.

在殼體320中,凹洞321具有預定深度且可配置成圍繞發光二極體(LED)晶片322。凹洞321的深度最好可大於或等於發光二極體(LED)晶片322的高度。 In the housing 320, the recess 321 has a predetermined depth and is configurable to surround the light emitting diode (LED) wafer 322. The depth of the recess 321 may preferably be greater than or equal to the height of the light emitting diode (LED) wafer 322.

封裝材料323是例如矽膠或環氧樹脂之類的透光材料,用以填充凹洞321,並且封裝發光二極體(LED)晶片322以覆蓋及保護發光二極體(LED)晶片322。 The encapsulating material 323 is a light transmissive material such as silicone or epoxy to fill the cavity 321 and package a light emitting diode (LED) wafer 322 to cover and protect the light emitting diode (LED) wafer 322.

發光二極體(LED)晶片322安裝在殼體320的上表面,並且發射例如430~480奈米(nm)波段(wavelength band)之藍光或350~410奈米(nm)波段之紫外線(UV)光。另一方面,發光二極體(LED)晶片322可設定為發射其他顏色的光。因此,本發明並未侷限於特定的發光二極體(LED)晶片。 A light emitting diode (LED) wafer 322 is mounted on the upper surface of the casing 320 and emits blue light of, for example, a wavelength band of 430 to 480 nm (nm) or ultraviolet light of a wavelength of 350 to 410 nm (nm). )Light. On the other hand, the light emitting diode (LED) wafer 322 can be set to emit light of other colors. Thus, the invention is not limited to a particular light emitting diode (LED) wafer.

發光二極體(LED)晶片322安裝在殼體320的上表面且可放置在非球面發光二極體(LED)鏡片360的中心軸與殼體320交會之位置。具體而言,發光二極體(LED)晶片322可配置在非球面發光二極體(LED)鏡片360的中心,此鏡片可藉由膠黏劑(adhesive)或其他的方法來結合或連接包含發光二極體(LED)晶片322之殼體320的上表面。雖然於圖8中非球面發光二極體(LED)鏡片360繪示成配置在單一發光二極體(LED)晶片的上方,但是須知非球面發光二極體(LED)鏡片可配置在多個發光二極體(LED)晶片的上方。亦即,可配置多個發光二極體(LED)晶片在發光二極體(LED)鏡片360的中心軸(或中心)且圍繞其中心軸。 A light emitting diode (LED) wafer 322 is mounted on the upper surface of the housing 320 and can be placed at a position where the central axis of the aspherical light emitting diode (LED) lens 360 meets the housing 320. In particular, the light emitting diode (LED) wafer 322 can be disposed at the center of the aspherical light emitting diode (LED) lens 360, which can be bonded or connected by an adhesive or other method. The upper surface of the housing 320 of the light emitting diode (LED) wafer 322. Although the aspherical light emitting diode (LED) lens 360 is illustrated as being disposed over a single light emitting diode (LED) wafer in FIG. 8, it is to be understood that the aspherical light emitting diode (LED) lens can be disposed in multiple Above the light emitting diode (LED) wafer. That is, a plurality of light emitting diode (LED) wafers may be disposed at a central axis (or center) of the light emitting diode (LED) lens 360 and around its central axis.

並且,螢光材料可直接沈積在發光二極體(LED)晶片322上或可包含於封裝材料323或構成非球面發光二極體(LED)鏡片360的樹脂(resin)中。在此,螢光材料可利用發光二極體(LED)晶片322所發射的光作為激發光源來發射某種顏色的光。例如,若發光二極體(LED)晶片322是由發射430~480奈米(nm)波段的光之半導體組成之藍光發光二極體(LED)晶片,則利用此光的某部分作為激發光源來發射黃綠光或黃光之磷光體將沈積在發光二極體(LED)晶片322上,以便發光元件可藉由結合發光二極體(LED)晶片322所發射的藍光與磷光體所發射的黃綠光或黃光來發射白光。 Also, the phosphor material may be deposited directly on the light emitting diode (LED) wafer 322 or may be included in the encapsulating material 323 or a resin constituting the aspherical light emitting diode (LED) lens 360. Here, the fluorescent material can emit light of a certain color by using light emitted from the light-emitting diode (LED) wafer 322 as an excitation light source. For example, if the light-emitting diode (LED) wafer 322 is a blue light-emitting diode (LED) wafer composed of a semiconductor emitting light of a wavelength of 430 to 480 nm (nm), a portion of the light is used as an excitation light source. The phosphor that emits yellow-green or yellow light will be deposited on the light-emitting diode (LED) wafer 322 so that the light-emitting element can be combined with the blue-green or yellow light emitted by the blue light emitted by the light-emitting diode (LED) wafer 322 and the phosphor. Launch white light.

此外,非球面發光二極體(LED)鏡片360包括入光面361及出光面362,並且具有對稱於發光二極體(LED)鏡片360的中心軸(y)之放射狀對稱結構。 In addition, the aspherical light-emitting diode (LED) lens 360 includes a light incident surface 361 and a light exit surface 362, and has a radial symmetrical structure that is symmetric with respect to a central axis (y) of the light-emitting diode (LED) lens 360.

在此,入光面361是指從發光二極體(LED)晶片322發射且通過封裝材料323之光入射時所在之平面,並且由一種頂點位於中心軸(y)之錐形面組成。空氣層324可位於入光面361與封裝材料323之間的空間。並且,出光面362是指通過鏡片360的光藉以發射至發光二極體(LED)鏡片360外部之平面,並且具有圍繞中心軸(y)而彼此部分重疊之兩個凸半球面形狀C1、C2的重疊的區域。上述之圍繞中心軸(y)的重疊的區域可以是凹陷區域。並且,出光面362包括一部分形成於其側面上之多個突出(粗糙處)363。如圖8所示,突出363可形成於從低於出光面的最高點之某一 點到鏡片的末端之區域上,例如,從對應於鏡片全寬(overall lens width)的大約1/4~1/3之某一點至鏡片的任一末端。突出363可形成於出光面的側面上,其方式為藉由噴砂(sand blasting)而在模具(mold)上形成具有從發光二極體(LED)鏡片360表面算起大約0.4~1.0微米(μm)高度之突出(粗糙處),隨後射出成形(injection molding)以下所述之液態矽橡膠(liquid silicone rubber,LSR)使進入此模具。 Here, the light incident surface 361 refers to a plane from which light emitted from the light emitting diode (LED) wafer 322 and incident through the encapsulating material 323 is incident, and is composed of a tapered surface whose vertex is located at the central axis (y). The air layer 324 may be located in a space between the light incident surface 361 and the encapsulating material 323. Also, the light-emitting surface 362 refers to a plane through which the light passing through the lens 360 is emitted to the outside of the light-emitting diode (LED) lens 360, and has two convex hemispherical shapes C1 and C2 partially overlapping each other around the central axis (y). Overlapping areas. The above-mentioned overlapping area around the central axis (y) may be a recessed area. Also, the light-emitting surface 362 includes a plurality of protrusions (rough portions) 363 formed on the side surfaces thereof. As shown in FIG. 8, the protrusion 363 may be formed at a certain point from the lowest point below the light-emitting surface. Point to the area of the end of the lens, for example, from a point corresponding to about 1/4 to 1/3 of the lens width to either end of the lens. The protrusion 363 may be formed on the side of the light-emitting surface by sand blasting on the mold to have a thickness of about 0.4 to 1.0 micrometers (μm) from the surface of the light-emitting diode (LED) lens 360. The protrusion of the height (roughness) is then injected into the mold by injection molding the liquid silicone rubber (LSR) described below.

不同於習知半球面鏡片4,非球面鏡片360在接近鏡片的中心(接近中心軸)時光的數量或強度顯示出減少,並且在接近鏡片的周邊時光的數量或強度顯示出增加,藉此提供如圖9所示之光的方位角曲線。 Unlike the conventional hemispherical lens 4, the amount or intensity of light is reduced as the aspherical lens 360 approaches the center of the lens (near the central axis), and the amount or intensity of light is increased as it approaches the periphery of the lens, thereby providing The azimuth curve of the light as shown in FIG.

具體而言,圖9的方位角曲線在鏡片的兩邊(接近大約+/-67度之角度)具有雙峰,以取代鏡片的中心(在零度之角度)具有雙峰,雙峰之間的角度(亦即峰間值角度(peak-to-peak angle))是大約110度,並且曲線圖中央之光的數量或強度大約是峰值的30~40%,更精確來說是大約36%。亦即,不同於企圖利用分散劑來降低色差的情況,側邊突出363的形成不會改變原始方位角曲線。 Specifically, the azimuth curve of Figure 9 has a double peak on both sides of the lens (close to an angle of approximately +/- 67 degrees) to replace the center of the lens (at an angle of zero) with a double peak, the angle between the two peaks (That is, the peak-to-peak angle) is about 110 degrees, and the amount or intensity of light in the center of the graph is about 30-40% of the peak, more precisely about 36%. That is, unlike the case where an attempt is made to reduce the chromatic aberration using a dispersant, the formation of the side protrusions 363 does not change the original azimuth curve.

其次,參照圖10,圖中繪示圖8的非球面發光二極體(LED)鏡片360的色差。具體而言,在非球面發光二極體(LED)鏡片360的方位角曲線中,方位角±90度內之X-座標變化(△X)大約是0.028且Y-座標變化(△Y)大約是0.049。因此,相較於圖7的色差曲線圖(△X大約是0.047且△Y大約是0.082),非球面發光二極體(LED)鏡片360已 經藉由顯著降低X-座標變化(△X)及Y-座標變化(△Y)來降低色差。 Next, referring to FIG. 10, the chromatic aberration of the aspherical light-emitting diode (LED) lens 360 of FIG. 8 is illustrated. Specifically, in the azimuth curve of the aspherical light-emitting diode (LED) lens 360, the X-coordinate change (ΔX) within the azimuth angle of ±90 degrees is approximately 0.028 and the Y-coordinate change (ΔY) is approximately Is 0.049. Therefore, compared to the color difference graph of FIG. 7 (ΔX is about 0.047 and ΔY is about 0.082), the aspherical light-emitting diode (LED) lens 360 has The chromatic aberration is reduced by significantly reducing the X-coordinate change (ΔX) and the Y-coordinate change (ΔY).

因此,當使用包含側邊突出363之非球面鏡片360作為例如顯示裝置的背光單元的光源時,顯示裝置將在顯示裝置的面板上具有均勻的照度及亮度,而且消除色差所造成的例如黃色斑點或黃色圓環之類的斑點。此外,當降低色差是藉由形成側邊突出363而非利用分散劑時,顯示裝置並未遭受通過鏡片的光量下降所造成的亮度惡化。 Therefore, when the aspherical lens 360 including the side protrusions 363 is used as a light source of, for example, a backlight unit of a display device, the display device will have uniform illuminance and brightness on the panel of the display device, and eliminate yellow spots such as chromatic aberration. Or spots such as yellow rings. Further, when the chromatic aberration is lowered by forming the side protrusions 363 instead of using the dispersing agent, the display device does not suffer from the deterioration of brightness caused by the decrease in the amount of light passing through the lens.

在依照本實施例之非球面發光二極體(LED)鏡片360的製造過程中,可使用例如矽膠、環氧樹脂、玻璃、或塑膠之類的透光材料。例如,液態矽橡膠(LSR)具有可提供優良彈性之足夠低黏度(viscosity)且比目前使用的黏性矽膠樹脂在高溫時黏度下降較少,因而提供改良的可使用性。此外,液態矽橡膠(LSR)由於其低黏度容許以射出成形來自動化生產,因而提供優良的生產力。此外,因為液態矽橡膠(LSR)對於模具並未顯現釋放性(release properties),所以液態矽橡膠(LSR)不可能造成鏡片界面現象(interface phenomenon),並且當藉由噴砂於模具表面來形成突出時容許在鏡片上輕易形成突出(粗糙處)。 In the manufacturing process of the aspherical light-emitting diode (LED) lens 360 according to the present embodiment, a light-transmitting material such as silicone, epoxy, glass, or plastic can be used. For example, liquid enamel rubber (LSR) has a sufficiently low viscosity to provide excellent elasticity and a lower viscosity at higher temperatures than currently used viscous silicone resins, thus providing improved workability. In addition, liquid helium rubber (LSR) provides excellent productivity due to its low viscosity allowing automated production by injection molding. In addition, since liquid helium rubber (LSR) does not exhibit release properties for the mold, liquid helium rubber (LSR) is unlikely to cause an interface phenomenon, and when formed by sandblasting on the surface of the mold, It is easy to form a protrusion (roughness) on the lens.

依照本發明之一實施例,分散劑將與製造非球面發光二極體(LED)鏡片360所使用的矽膠樹脂混合以達成進一步降低色差。例如,可藉由液態矽橡膠(LSR)與二氧化矽(SiO2)分散劑所混合的混合物之射出成形來生產非球面發光二極體(LED)鏡片。在此情況下,由於分散劑可按色差 度的下降比例來降低光量或提供與圖9不同的方位角曲線,因此可調整液態矽橡膠(LSR)之分散劑的混合比例。 In accordance with an embodiment of the present invention, the dispersant will be mixed with the silicone resin used to make the aspherical light-emitting diode (LED) lens 360 to achieve further reduction in chromatic aberration. For example, an aspherical light-emitting diode (LED) lens can be produced by injection molding of a mixture of liquid enamel rubber (LSR) and cerium oxide (SiO 2 ) dispersant. In this case, since the dispersing agent can reduce the amount of light by a decreasing ratio of chromatic aberration or provide an azimuthal curve different from that of Fig. 9, the mixing ratio of the dispersing agent of the liquid ruthenium rubber (LSR) can be adjusted.

實驗顯示當利用液態矽橡膠(LSR)總數的大約0.3~0.4%之數量來混合分散劑時,非球面發光二極體(LED)鏡片以較少的色差顯現期望的亮度。本發明並未侷限於特定的分散劑種類或混合比例。 Experiments have shown that aspherical light-emitting diode (LED) lenses exhibit a desired brightness with less chromatic aberration when the dispersant is mixed in an amount of about 0.3 to 0.4% of the total amount of liquid enamel rubber (LSR). The invention is not limited to a particular dispersant type or mixing ratio.

圖11(a)、圖11(b)、及圖11(c)分別是依照本發明之實施例之包含線性區段(linear sections)之非球面發光二極體(LED)鏡片的側剖面圖。為了清楚起見將省略上述元件之重複說明。 11(a), 11(b), and 11(c) are side cross-sectional views, respectively, of an aspherical light-emitting diode (LED) lens including a linear section in accordance with an embodiment of the present invention. . Repeated description of the above elements will be omitted for the sake of clarity.

參照圖11(a),出光面可包括線性區段。具體而言,非球面發光二極體(LED)鏡片400a的出光面包括接近凹陷部分之線性區段420、包含彎曲表面之側面區段440、以及配置在線性區段與側面區段之間的線性區段430。在另一實施例中,如圖11(c)所示,非球面鏡片400c的出光面可以只包括接近凹陷部分之線性區段420而沒有線性區段430。亦即,依照這些實施例之非球面發光二極體(LED)鏡片的每一個出光面可包括至少兩個交會於鏡片的中心軸(y)之線性區段420。 Referring to FIG. 11(a), the light exiting surface may include a linear section. Specifically, the light exiting surface of the aspherical light emitting diode (LED) lens 400a includes a linear section 420 proximate to the recessed portion, a side section 440 including the curved surface, and a configuration between the linear section and the side section. Linear section 430. In another embodiment, as shown in FIG. 11(c), the light exit surface of the aspherical lens 400c may include only the linear section 420 near the recessed portion and no linear section 430. That is, each of the light exiting faces of the aspherical light emitting diode (LED) lenses in accordance with these embodiments may include at least two linear segments 420 that intersect the central axis (y) of the lens.

並且,圖11(a)的非球面發光二極體(LED)鏡片400a具有相對於水平面傾斜大約18度之線性區段420,圖11(b)的非球面發光二極體(LED)鏡片400b具有相對於水平面傾斜大約30度之線性區段420,以及圖11(c)的非球面鏡片400c具有相對於水平面傾斜大約40度之線性區段420。 Moreover, the aspherical light-emitting diode (LED) lens 400a of FIG. 11(a) has a linear section 420 inclined by about 18 degrees with respect to a horizontal plane, and the aspherical light-emitting diode (LED) lens 400b of FIG. 11(b). The linear section 420 having an inclination of about 30 degrees with respect to the horizontal plane, and the aspherical lens 400c of Fig. 11(c) have a linear section 420 inclined by about 40 degrees with respect to the horizontal plane.

對於圖11(a)至圖11(c)之個別的非球面鏡片,色差程度與面板上的黃色斑點的產生列示於下列表1。 For the individual aspherical lenses of Figures 11(a) through 11(c), the degree of chromatic aberration and the generation of yellow spots on the panel are listed in Table 1 below.

對於色差程度,就方位角±90度內的X-座標變化(△X)及Y-座標變化而言鏡片400a是△x=0.021/△y=0.069,鏡片400b是△x=0.016/△y=0.038,以及鏡片400c是△x=0.032/△y=0.072。不同於鏡片400a、400b,鏡片400c由於色差而在面板上產生黃色斑點。 For the degree of chromatic aberration, the lens 400a is Δx=0.021/Δy=0.069 for the X-coordinate change (ΔX) and the Y-coordinate change within the azimuth angle ±90 degrees, and the lens 400b is Δx=0.016/Δy. = 0.038, and the lens 400c is Δx = 0.032 / Δy = 0.072. Unlike the lenses 400a, 400b, the lens 400c produces yellow spots on the panel due to chromatic aberration.

因此,對於包含至少兩個在中心軸彼此交會的線性區段420之非球面鏡片400的出光面,色差發生於每一個線性區段相對於水平方向傾斜大約35~40度或更多之角度的時候。 Thus, for a light exit surface of an aspherical lens 400 comprising at least two linear segments 420 that intersect each other at a central axis, the chromatic aberration occurs at an angle of about 35 to 40 degrees or more with respect to the horizontal direction of each linear segment. time.

因此,當生產依照本實施例之包含線性區段之非球面鏡片時,考慮到根據接近非球面鏡片的凹陷部分之線性區段的傾斜度在大於大約35-40度之角度可能發生嚴重的色差,可調整線性區段的傾斜度(inclination)至相對於水平方向傾斜大約10~40度。 Therefore, when producing an aspherical lens including a linear segment according to the present embodiment, it is considered that serious chromatic aberration may occur at an angle of more than about 35-40 degrees according to the inclination of the linear segment close to the concave portion of the aspherical lens. The inclination of the linear section can be adjusted to be inclined by about 10 to 40 degrees with respect to the horizontal direction.

同時,雖然為了繪圖的清楚起見在圖11(a)、圖11(b)、以及圖11(c)中未繪示粗糙處或突出於每一個非球面鏡片的側面440上,但是每一個出光面更可在其側面上包括粗糙處或突出以降低色差。 Meanwhile, although the roughness is not shown or protruded from the side 440 of each aspherical lens in FIGS. 11(a), 11(b), and 11(c) for clarity of drawing, each one The illuminating surface may include roughness or protrusion on its side to reduce chromatic aberration.

圖12(a)及圖12(b)是依照本發明之實施例之非球面發光二極體(LED)鏡片的側剖面圖,其中每一個鏡片包含由具有不同曲率半徑(radii of curvature)之彎曲區段組成的出光面。為了清楚起見在此將省略上述元件之重複說明。 12(a) and 12(b) are side cross-sectional views of an aspherical light-emitting diode (LED) lens in accordance with an embodiment of the present invention, wherein each lens includes a radii of curvature having a different radius of curvature. The illuminating surface composed of curved sections. Repeated description of the above elements will be omitted herein for the sake of clarity.

參照圖12(a)及圖12(b),非球面發光二極體(LED)鏡片500的出光面520並非由具有單一曲率半徑之單一彎曲區段組成。相反地,出光面520可由具有不同曲率半徑之多個彎曲區段組成。亦即,結合具有不同曲率半徑之彎曲區段可組成出光面520。具體而言,在圖12(a)中,出光面520由分別具有曲率半徑R1=1.39與曲率半徑R2=1.46之彎曲區段組成,並且在圖12(b)中,出光面520由分別具有曲率半徑R1=0.5與曲率半徑R2=1.054之彎曲區段組成。 Referring to Figures 12(a) and 12(b), the light exit surface 520 of the aspherical light-emitting diode (LED) lens 500 is not composed of a single curved section having a single radius of curvature. Conversely, the light exit surface 520 can be composed of a plurality of curved segments having different radii of curvature. That is, a curved surface 520 can be formed by combining curved sections having different radii of curvature. Specifically, in FIG. 12(a), the light-emitting surface 520 is composed of curved sections each having a curvature radius R1=1.39 and a curvature radius R2=1.46, and in FIG. 12(b), the light-emitting surface 520 has The radius of curvature R1=0.5 and the curved section of curvature radius R2=1.054.

換言之,圖12(a)的出光面520通常由具有較大曲率半徑(亦即較小曲率)之彎曲區段組成,並且圖12(b)的出光面520通常由具有較小曲率半徑(亦即較大曲率)之彎曲區段組成。對於圖12(a)與圖12(b)的個別非球面鏡片,色差程度與面板上的黃色斑點的產生列示於下列表2。 In other words, the light exiting surface 520 of FIG. 12(a) is generally composed of a curved section having a large radius of curvature (ie, a small curvature), and the light exiting surface 520 of FIG. 12(b) is generally composed of a smaller radius of curvature (also That is, the curved section of the larger curvature). For the individual aspherical lenses of Figures 12(a) and 12(b), the degree of chromatic aberration and the generation of yellow spots on the panel are listed in Table 2 below.

表2 Table 2

就色差程度而言,對於包含通常由具有大曲率半徑之彎曲區段組成的出光面520之鏡片500a,其方位角±90度內的X-座標變化(△X)及Y-座標變化(△Y)是△x=0.04/△y=0.072,而對於包含通常由具有小曲率半徑之彎曲區段組成的出光面520之鏡片500b,其座標變化則是△x=0.072/△y=0.109。不同於鏡片500a,鏡片500b由於色差而在面板上產生黃色斑點或黃色圓環。 In terms of the degree of chromatic aberration, for the lens 500a including the light-emitting surface 520 which is usually composed of a curved section having a large radius of curvature, the X-coordinate change (ΔX) and the Y-coordinate change within the azimuth angle of ±90 degrees (Δ) Y) is Δx = 0.04 / Δy = 0.072, and for the lens 500b including the light-emitting surface 520 which is usually composed of a curved section having a small radius of curvature, the coordinate change is Δx = 0.772 / Δy = 0.109. Unlike the lens 500a, the lens 500b produces yellow spots or yellow circles on the panel due to chromatic aberration.

因此,形成非球面鏡片500時,在具有小曲率半徑之出光面的某些區域色差嚴重。 Therefore, when the aspherical lens 500 is formed, chromatic aberration is severe in some areas of the light-emitting surface having a small radius of curvature.

因此,當生產包含多個具有不同曲率半徑之彎曲區段之非球面鏡片時,考慮到嚴重的色差可能發生於其曲率半徑小於大約1.3的出光面的區域,最好調整彎曲區段的曲率半徑至大約1.0~5.0。 Therefore, when producing an aspherical lens comprising a plurality of curved sections having different radii of curvature, it is preferable to adjust the radius of curvature of the curved section in consideration of a serious chromatic aberration which may occur in a region of the illuminating surface whose curvature radius is less than about 1.3. To about 1.0~5.0.

同時,雖然為了繪圖的清楚起見而在圖12(a)及圖12(b)中於出光面的側面上未繪示粗糙處或突出,但是每一個非球面鏡片更可在出光面的側面上包括粗糙處或突出以降低色差。 At the same time, although the roughness or protrusion is not shown on the side of the light-emitting surface in FIGS. 12(a) and 12(b) for the sake of clarity of drawing, each aspherical lens is more on the side of the light-emitting surface. The roughness is included or highlighted to reduce chromatic aberration.

其次,將參考圖13及圖14來說明依照本發明之一實 施例之非球面發光二極體(LED)鏡片2200。圖13是依照此實施例之非球面發光二極體(LED)鏡片的透視圖,而圖14則是圖13的非球面發光二極體(LED)鏡片的俯視圖。 Next, an embodiment of the present invention will be described with reference to FIGS. 13 and 14. A non-spherical light emitting diode (LED) lens 2200 of the embodiment. Figure 13 is a perspective view of an aspherical light emitting diode (LED) lens in accordance with this embodiment, and Figure 14 is a top plan view of the aspherical light emitting diode (LED) lens of Figure 13.

參照圖13,本實施例的非球面發光二極體(LED)鏡片2200包括第一鏡片區段(lens section)2210、第二鏡片區段2220、以及支撐區段(supporting section)2230。第一鏡片區段2210與第二鏡片區段2220(也稱為「鏡片部件」)對稱於中心軸Y。各鏡片區段具有實質上為半球面的形狀且彼此表面接觸,使得在俯視時非球面發光二極體(LED)鏡片2200的整體形狀除了支撐區段2230以外類似於花生形狀,如圖14所示。 Referring to FIG. 13, the aspherical light emitting diode (LED) lens 2200 of the present embodiment includes a first lens section 2210, a second lens section 2220, and a supporting section 2230. The first lens segment 2210 and the second lens segment 2220 (also referred to as "lens components") are symmetrical about the central axis Y. Each of the lens segments has a substantially hemispherical shape and is in surface contact with each other such that the overall shape of the aspherical light-emitting diode (LED) lens 2200 is similar to the peanut shape except for the support section 2230, as shown in FIG. Show.

具體而言,參照圖14,依照本實施例之非球面發光二極體(LED)鏡片2200的鏡片部件的形狀是虛線所表示的兩個半球面凸面鏡片彼此表面接觸,其中鏡片的側面2340、2340'、2440、2440'以箭頭所示之方向從圓形虛線向內偏移。以這種方式,因為第一鏡片區段2210與第二鏡片區段2220彼此表面接觸而形成具有花生形狀之細長的鏡片部件,所以非球面發光二極體(LED)鏡片2200的方位角曲線不同於圖1所示之習知發光二極體(LED)鏡片4的方位角曲線。並且,能夠藉由調整鏡片的側面2340、2340'、2440、2440'之偏移距離來調整發光元件所照明的區域的橫向寬度。換言之,因為鏡片的側面2340、2340'、2440、2440'向內偏移以降低非球面發光二極體(LED)鏡片2200的厚度,所以可窄化照明區域的寬度。 Specifically, referring to FIG. 14, the lens member of the aspherical light-emitting diode (LED) lens 2200 according to the present embodiment has a shape in which two hemispherical convex lenses indicated by broken lines are in surface contact with each other, wherein the side surface 2340 of the lens, 2340', 2440, 2440' are offset inward from the circular dashed line in the direction indicated by the arrow. In this manner, the azimuthal curve of the aspherical light-emitting diode (LED) lens 2200 is different because the first lens segment 2210 and the second lens segment 2220 are in surface contact with one another to form an elongated lens component having a peanut shape. The azimuthal curve of the conventional light-emitting diode (LED) lens 4 shown in FIG. Further, the lateral width of the region illuminated by the light-emitting element can be adjusted by adjusting the offset distance of the side faces 2340, 2340', 2440, 2440' of the lens. In other words, because the sides 2340, 2340', 2440, 2440' of the lens are offset inward to reduce the thickness of the aspherical light emitting diode (LED) lens 2200, the width of the illumination area can be narrowed.

支撐區段2230並未侷限於特定的結構。例如,支撐區段2230可與第一鏡片區段2210及第二鏡片區段2220一體成形。或者,可單獨準備支撐區段2230然後附加至第一鏡片區段2210及第二鏡片區段2220。支撐區段2230覆蓋著安裝有發光二極體(LED)晶片2120(參見圖15)之基底2240,以便不僅覆蓋發光二極體(LED)晶片2120,而且覆蓋與形成於發光二極體(LED)晶片2120上的電極(electrode)電性連接之銲線(bonding wire)(未繪示)及覆蓋形成於基底2240上以供電給發光二極體(LED)晶片2120之圖案化電極(patterned electrode)(未繪示),因而可避免這些元件暴露於空氣且可保護這些元件免受外部撞擊或濕氣。 Support section 2230 is not limited to a particular configuration. For example, the support section 2230 can be integrally formed with the first lens section 2210 and the second lens section 2220. Alternatively, the support section 2230 can be separately prepared and then attached to the first lens section 2210 and the second lens section 2220. The support section 2230 covers the substrate 2240 on which the light emitting diode (LED) wafer 2120 (see FIG. 15) is mounted so as to cover not only the light emitting diode (LED) wafer 2120 but also the light emitting diode (LED). An electrode (electrode) electrically connected to a bonding wire (not shown) on the wafer 2120 and a patterned electrode formed on the substrate 2240 to supply power to the light emitting diode (LED) wafer 2120. ) (not shown), thus avoiding exposure of these components to air and protecting these components from external impact or moisture.

將參考圖15及圖16更詳細地說明依照本實施例之非球面發光二極體(LED)鏡片2200的鏡片部件的細節,圖中繪示發光二極體(LED)封裝,亦即,包含非球面發光二極體(LED)鏡片2200之發光元件。 Details of the lens component of the aspherical light-emitting diode (LED) lens 2200 according to the present embodiment will be described in more detail with reference to FIGS. 15 and 16, which illustrate a light-emitting diode (LED) package, that is, including A light-emitting element of an aspherical light-emitting diode (LED) lens 2200.

圖15是包含圖13的非球面發光二極體(LED)鏡片2200之發光元件2000沿著鏡片的主軸(亦即沿著圖13的線A-A’)截取之剖面圖。圖16是包含圖13的非球面發光二極體(LED)鏡片2200之發光元件2000沿著鏡片的副軸(亦即沿著圖13的線B-B’)截取之剖面圖。為了繪圖的清楚起見,須知圖15及圖16只繪示本發明的特性而未繪示例如導線架(lead frame)、電路、電線等等之元件,這些元件用於發光元件2000的操作或其他功能,但與本發明的範圍無直接相關。 Figure 15 is a cross-sectional view of the light-emitting element 2000 including the aspherical light-emitting diode (LED) lens 2200 of Figure 13 taken along the major axis of the lens (i.e., along line A-A' of Figure 13). Figure 16 is a cross-sectional view of the light-emitting element 2000 including the aspherical light-emitting diode (LED) lens 2200 of Figure 13 taken along the minor axis of the lens (i.e., along line B-B' of Figure 13). For the sake of clarity of the drawing, it is to be understood that FIGS. 15 and 16 only show the characteristics of the present invention and do not exemplify elements such as lead frames, circuits, wires, etc., which are used for the operation of the light-emitting element 2000 or Other functions, but are not directly related to the scope of the present invention.

如圖15及圖16所示,依照本實施例之發光元件2000可包括基底2240、安裝在基底2240上的發光二極體(LED)晶片2120、以及非球面發光二極體(LED)鏡片2200。 As shown in FIGS. 15 and 16, the light-emitting element 2000 according to the present embodiment may include a substrate 2240, a light-emitting diode (LED) wafer 2120 mounted on the substrate 2240, and an aspherical light-emitting diode (LED) lens 2200. .

任何基底都可當作上述基底,只要此基底容許高密度的發光二極體(LED)晶片2120安裝於其上即可。此種基底的例子包括(但不侷限於)氧化鋁(alumina)、石英(quartz)、鋯酸鈣(calcium zirconate)、鎂橄欖石(forsterite)、碳化矽(SiC)、石墨(graphite)、石英玻璃(fused silica)、富鋁紅柱石(mullite)、堇青石(cordierite)、氧化鋯(zirconia)、氧化鈹(beryllia)、氮化鋁(aluminum nitride)、及低溫共燒陶瓷(low temperature co-fired ceramic,LTCC)。陶瓷材料可應用於多層陶瓷封裝(multi-layer ceramic package,MLP),此封裝包括其上形成的金屬導體電線圖案且容易燒結。用於此種半導體封裝之陶瓷材料提供優良的氣密性(air-tightness)。 Any substrate can be used as the above substrate as long as the substrate allows a high-density light-emitting diode (LED) wafer 2120 to be mounted thereon. Examples of such substrates include, but are not limited to, alumina, quartz, calcium zirconate, forsterite, SiC, graphite, quartz. Fused silica, mullite, cordierite, zirconia, beryllia, aluminum nitride, and low temperature co-fired ceramics Fired ceramic, LTCC). The ceramic material can be applied to a multi-layer ceramic package (MLP), which includes a metal conductor wire pattern formed thereon and is easily sintered. Ceramic materials used in such semiconductor packages provide excellent air-tightness.

並且,雖然未繪示於圖中,但是基底2240具有圖案化電極,這些電極由例如銅或鋁之高導電金屬構成且可分別形成對應於發光二極體(LED)晶片2120的陽極(anode)及陰極(cathode)。 Also, although not shown in the drawings, the substrate 2240 has patterned electrodes which are composed of a highly conductive metal such as copper or aluminum and which can respectively form an anode corresponding to the light emitting diode (LED) wafer 2120. And cathode (cathode).

發光二極體(LED)晶片2120可以是例如發射430~480奈米(nm)波段的藍光之藍光發光二極體(LED)晶片或發射350~410奈米(nm)波段的紫外線(UV)光之紫外線(UV)發光二極體(LED)。或者,發光二極體(LED)晶片2120可配置成發射其他顏色的光。因此,本發明並未侷限於特定的發光二極體(LED)晶片。 The light emitting diode (LED) wafer 2120 may be, for example, a blue light emitting diode (LED) wafer emitting blue light in the range of 430 to 480 nm (nm) or emitting ultraviolet light (UV) in the wavelength range of 350 to 410 nm (nm). Ultraviolet (UV) light-emitting diode (LED). Alternatively, a light emitting diode (LED) wafer 2120 can be configured to emit light of other colors. Thus, the invention is not limited to a particular light emitting diode (LED) wafer.

發光二極體(LED)晶片2120安裝於基底2240的上表面上且可放置在非球面發光二極體(LED)鏡片2200的中心軸與基底2240交會之位置。具體而言,發光二極體(LED)晶片2120可配置在非球面發光二極體(LED)鏡片2200的中心,此鏡片可藉由膠黏劑或其他的方法來結合或連接包含發光二極體(LED)晶片2120之基底2240的上表面。雖然在圖15及圖16中非球面發光二極體(LED)鏡片2200繪示成包含單一發光二極體(LED)晶片,但是此非球面發光二極體(LED)鏡片可包括多個發光二極體(LED)晶片。 A light emitting diode (LED) wafer 2120 is mounted on the upper surface of the substrate 2240 and can be placed at a position where the central axis of the aspherical light emitting diode (LED) lens 2200 meets the substrate 2240. Specifically, the light emitting diode (LED) wafer 2120 can be disposed at the center of the aspherical light emitting diode (LED) lens 2200. The lens can be bonded or connected by an adhesive or other method including the light emitting diode. The upper surface of the substrate 2240 of the body (LED) wafer 2120. Although aspherical light emitting diode (LED) lens 2200 is illustrated as including a single light emitting diode (LED) wafer in FIGS. 15 and 16, the aspherical light emitting diode (LED) lens may include multiple light emitting Diode (LED) wafer.

此外,雖然未繪示於圖中,但是螢光材料可直接沈積於發光二極體(LED)晶片2120上,以便利用發光二極體(LED)晶片2120所發射的光作為激發光源來產生某種顏色的光。例如,若發光二極體(LED)晶片2120是發射430~480奈米(nm)波段的光之半導體所構成的藍光發光二極體(LED)晶片,則利用此光的一部分作為激發光源來發射黃綠光或黃光之磷光體將沈積於發光二極體(LED)晶片2120上,以便發光元件可藉由結合發光二極體(LED)晶片2120所發射的藍光與磷光體所發射的黃綠光或黃光來發射白光。此外,螢光材料可直接沈積於發光二極體(LED)晶片2120上或可包含於用以形成非球面發光二極體(LED)鏡片2200之樹脂中。或者,可提供螢光材料作為單獨的磷光片。 In addition, although not shown in the drawings, the fluorescent material may be directly deposited on the LED (2) wafer 2120 to generate light using the light emitted by the LED (2) wafer 2120 as an excitation light source. a variety of colors of light. For example, if the light-emitting diode (LED) wafer 2120 is a blue light-emitting diode (LED) wafer composed of a light semiconductor emitting a light of 430 to 480 nm (nm), a part of the light is used as an excitation light source. The phosphor emitting yellow-green or yellow light will be deposited on the light-emitting diode (LED) wafer 2120 so that the light-emitting element can be emitted by combining the blue light emitted by the light-emitting diode (LED) wafer 2120 with the yellow-green or yellow light emitted by the phosphor. White light. Additionally, the phosphor material can be deposited directly onto the light emitting diode (LED) wafer 2120 or can be included in the resin used to form the aspherical light emitting diode (LED) lens 2200. Alternatively, a phosphor material can be provided as a separate phosphor sheet.

非球面發光二極體(LED)鏡片2200用以藉由改變發光二極體(LED)晶片2120所發射的光的行進方向來調整光的方位角,並且可由例如矽膠、環氧樹脂、玻璃、或塑膠之 類的透光材料構成。 The aspherical light-emitting diode (LED) lens 2200 is used to adjust the azimuth of the light by changing the traveling direction of the light emitted by the light-emitting diode (LED) wafer 2120, and may be, for example, silicone, epoxy, glass, Or plastic A class of light transmissive materials.

依照本實施例之非球面發光二極體(LED)鏡片2200包括位置上大致對稱於中心軸Y之第一鏡片區段2210與第二鏡片區段2220,以及形成於第一鏡片區段2210及第二鏡片區段2220的下方之支撐區段2230。換言之,第一鏡片區段2210與第二鏡片區段2220彼此表面接觸以便在鏡片的中央區域2510形成凸面式突出的形狀,如圖16所示。 The aspherical light-emitting diode (LED) lens 2200 according to the present embodiment includes a first lens segment 2210 and a second lens segment 2220 that are substantially symmetrical about a central axis Y, and are formed in the first lens segment 2210 and A support section 2230 below the second lens section 2220. In other words, the first lens segment 2210 and the second lens segment 2220 are in surface contact with each other to form a convexly protruding shape in the central region 2510 of the lens, as shown in FIG.

再度參照圖15,在沿著非球面發光二極體(LED)鏡片2200的主軸截取之此發光二極體(LED)鏡片的截面上,第一鏡片區段2210與第二鏡片區段2220是兩側對稱的。具體而言,第一鏡片區段2210包括第一傾斜部分(slanted portion)2310、第一平坦部分(flat portion)2320、以及第一凸面部分(convex portion)2330,而第二鏡片區段2220則包括第二傾斜部分2410、第二平坦部分2420、以及第二凸面部分2430。因此,第一傾斜部分2310、第一平坦部分2320、以及第一凸面部分2330可分別與第二傾斜部分2410、第二平坦部分2420、以及第二凸面部分2430互相對稱且具有相同的長度。 Referring again to Figure 15, on a cross section of the light emitting diode (LED) lens taken along the major axis of the aspherical light emitting diode (LED) lens 2200, the first lens segment 2210 and the second lens segment 2220 are Symmetrical on both sides. In particular, the first lens segment 2210 includes a first slanted portion 2310, a first flat portion 2320, and a first convex portion 2330, while the second lens segment 2220 is A second inclined portion 2410, a second flat portion 2420, and a second convex portion 2430 are included. Accordingly, the first inclined portion 2310, the first flat portion 2320, and the first convex portion 2330 may be symmetrical to each other and have the same length as the second inclined portion 2410, the second flat portion 2420, and the second convex portion 2430, respectively.

具體而言,第一平坦部分2320與第二平坦部分2420分別是第一鏡片區段2210與第二鏡片區段2220(參見圖14)的最上端的平坦區域以形成線性結構。第一傾斜部分2310與第二傾斜部分2410分別連接到第一平坦部分2320與第二平坦部分2420的一末端,並且可以是朝向中心軸Y傾斜之彎曲表面。因此,第一傾斜部分2310與第二傾斜部分 2410在中心軸Y彼此耦合以便在非球面發光二極體(LED)鏡片2200的中心形成凹形橫截面。此外,第一凸面部分2330與第二凸面部分2430分別連接到第一平坦部分2320與第二平坦部分2420的另一末端,並且是朝向非球面發光二極體(LED)鏡片2200的外部凸起之彎曲表面。在此,第一傾斜部分2310(或第二傾斜部分2410)可具有與第一凸面部分2330(或第二凸面部分2430)相同或不同的曲率。 Specifically, the first flat portion 2320 and the second flat portion 2420 are flat regions of the uppermost end of the first lens segment 2210 and the second lens segment 2220 (see FIG. 14), respectively, to form a linear structure. The first inclined portion 2310 and the second inclined portion 2410 are respectively connected to one ends of the first flat portion 2320 and the second flat portion 2420, and may be curved surfaces inclined toward the central axis Y. Therefore, the first inclined portion 2310 and the second inclined portion The 2410 is coupled to each other at a central axis Y to form a concave cross section at the center of the aspherical light emitting diode (LED) lens 2200. Further, the first convex portion 2330 and the second convex portion 2430 are respectively connected to the other ends of the first flat portion 2320 and the second flat portion 2420, and are convex toward the outside of the aspherical light-emitting diode (LED) lens 2200. The curved surface. Here, the first inclined portion 2310 (or the second inclined portion 2410) may have the same or different curvature as the first convex portion 2330 (or the second convex portion 2430).

當光從發光二極體(LED)晶片2120發射到外面時,藉由空氣與用以形成非球面發光二極體(LED)鏡片2200之樹脂之間的折射率(refractive index)差異以及第一鏡片區段2210及第二鏡片區段2220的傾斜外表面的角度,光將折射而偏離中心軸Y。圖15利用箭頭簡要地繪示發光二極體(LED)晶片2120所發射的光的光程(optical path)。並且,非球面發光二極體(LED)鏡片2200的光方位角曲線繪示於圖17。以下將說明非球面發光二極體(LED)鏡片2200的光方位角曲線。 When light is emitted from the light emitting diode (LED) wafer 2120 to the outside, the difference in refractive index between the air and the resin used to form the aspherical light emitting diode (LED) lens 2200 and the first At the angle of the inclined outer surface of lens segment 2210 and second lens segment 2220, the light will refract from the central axis Y. Figure 15 schematically illustrates the optical path of light emitted by a light-emitting diode (LED) wafer 2120 using arrows. Moreover, the light azimuth curve of the aspherical light-emitting diode (LED) lens 2200 is shown in FIG. The light azimuth curve of the aspherical light-emitting diode (LED) lens 2200 will be described below.

參照圖16,圖中繪示沿著圖13的線B-B’截取之非球面發光二極體(LED)鏡片2200的橫截面。 Referring to Figure 16, a cross section of an aspherical light emitting diode (LED) lens 2200 taken along line B-B' of Figure 13 is illustrated.

非球面發光二極體(LED)鏡片2200的副軸橫截面可包括中央鏡片區域(central lens region)2510、分別連接到中央鏡片區域2510的兩末端之第一平面2520與第二平面2530、以及支撐區段2230。如同圖16所示,非球面發光二極體(LED)鏡片2200的副軸橫截面實質上具有包含凸面突出的中央鏡片區域2510之「凸」字形狀,不同於圖15 所示之非球面發光二極體(LED)鏡片2200的主軸橫截面。 The minor axis cross section of the aspherical light emitting diode (LED) lens 2200 can include a central lens region 2510, a first plane 2520 and a second plane 2530 that are coupled to both ends of the central lens region 2510, respectively, and Support section 2230. As shown in FIG. 16, the minor axis cross section of the aspherical light-emitting diode (LED) lens 2200 has substantially a "convex" shape including a central lens region 2510 having a convex protrusion, unlike FIG. The major axis cross section of the aspherical light emitting diode (LED) lens 2200 is shown.

如同圖15,圖16利用箭頭簡要地繪示發光二極體(LED)晶片2120所發射的光的光程。不同於圖15的光程,當光從發光二極體(LED)晶片2120發射時,光將在非球面發光二極體(LED)鏡片2200的第一平面2520及第二平面2530上朝向發光二極體(LED)鏡片2200的中心軸折射,因而可引導幾道光束在非球面發光二極體(LED)鏡片2200的外部朝上行進。 As with FIG. 15, FIG. 16 schematically illustrates the optical path of the light emitted by the light emitting diode (LED) wafer 2120 by arrows. Unlike the optical path of FIG. 15, when light is emitted from a light emitting diode (LED) wafer 2120, the light will be directed toward the first plane 2520 and the second plane 2530 of the aspherical light emitting diode (LED) lens 2200. The central axis of the diode (LED) lens 2200 is refracted so that several beams of light can be directed upwardly on the outside of the aspherical light-emitting diode (LED) lens 2200.

其次,參照圖17,將說明當作依照本實施例之非球面發光二極體(LED)鏡片2200的產品之發光元件2000的光方位角曲線。在圖17中,虛線表示鏡片的主軸橫截面上的光方位角曲線,而實線則表示鏡片的副軸橫截面上的光方位角曲線。 Next, referring to Fig. 17, a light azimuth curve of the light-emitting element 2000 which is a product of the aspherical light-emitting diode (LED) lens 2200 according to the present embodiment will be described. In Fig. 17, a broken line indicates a light azimuth curve on a principal axis cross section of the lens, and a solid line indicates a light azimuth curve on a minor axis cross section of the lens.

參照圖17,當使用非球面發光二極體(LED)鏡片2200時,發光二極體(LED)鏡片2200的主軸橫截面上的光方位角曲線由於在鏡片2200的中心光強度(optical intensity)相對減少且在鏡片2200的兩邊光強度顯著增加,因而通常具有M形曲線。反之,在發光二極體(LED)鏡片2200的副軸橫截面上的光方位角曲線中,因為光聚焦於鏡片的中心,所以光強度在非球面發光二極體(LED)鏡片2200的中心相對地增加且朝向非球面發光二極體(LED)鏡片2200的兩邊逐漸減少。 Referring to FIG. 17, when an aspherical light-emitting diode (LED) lens 2200 is used, the light azimuth curve of the principal axis cross section of the light-emitting diode (LED) lens 2200 is due to the optical intensity at the center of the lens 2200. Relatively reduced and the light intensity increases significantly on both sides of the lens 2200, and thus typically has an M-shaped curve. Conversely, in the azimuth curve of the cross-section of the secondary axis of the LED lens 2200, since the light is focused on the center of the lens, the light intensity is at the center of the aspherical LED (2) lens 2200. The relative increase and toward both sides of the aspherical light-emitting diode (LED) lens 2200 gradually decrease.

換言之,非球面發光二極體(LED)鏡片2200的主軸橫截面上的光方位角曲線不同於非球面發光二極體(LED)鏡 片2200的副軸橫截面上的光方位角曲線,藉以形成對稱的光方位角曲線。 In other words, the azimuth curve of the aspherical cross section of the aspherical light-emitting diode (LED) lens 2200 is different from that of the aspherical light-emitting diode (LED) mirror. The azimuth curve of the light on the minor axis cross section of the sheet 2200 is used to form a symmetrical light azimuth curve.

尤其,在圖13所示之中發光二極體(LED)鏡片2200的主軸橫截面上的方位角曲線中,鏡片的兩邊的峰值角度是大約50~70度且鏡片的中心的光強度是峰值的大約40~50%。反之,在發光二極體(LED)鏡片2200的副軸橫截面上的方位角曲線中,方位角是大約70~90度。 In particular, in the azimuth curve of the principal axis cross section of the light-emitting diode (LED) lens 2200 shown in FIG. 13, the peak angle of both sides of the lens is about 50 to 70 degrees and the light intensity at the center of the lens is the peak value. About 40~50%. Conversely, in the azimuth curve of the minor axis cross section of the light-emitting diode (LED) lens 2200, the azimuth angle is about 70 to 90 degrees.

因此,當發光元件2000使用非球面發光二極體(LED)鏡片2200時,參考非球面發光二極體(LED)鏡片2200的主軸平面,光將從發光元件2000的右邊及左邊寬廣地發射。因此,當此種發光元件2000用於例如路燈時,能夠利用發光元件2000所發射的光沿著路邊形成細長的照明區域。並且,參考非球面發光二極體(LED)鏡片2200的副軸平面,因為光聚焦於鏡片的中心,所以能以高於其他區域的亮度來照明在路燈的某半徑內的道路區域。換言之,包含非球面發光二極體(LED)鏡片2200之發光元件2000沿著非球面發光二極體(LED)鏡片的主軸及副軸以不同的圖案來發射光,因而當應用於路燈時能夠根據道路狀況達成有效的道路照明。 Therefore, when the light-emitting element 2000 uses the aspherical light-emitting diode (LED) lens 2200, referring to the principal plane of the aspherical light-emitting diode (LED) lens 2200, light will be widely emitted from the right and left sides of the light-emitting element 2000. Therefore, when such a light-emitting element 2000 is used, for example, in a street light, the light emitted by the light-emitting element 2000 can be used to form an elongated illumination area along the curb. Also, referring to the minor axis of the aspherical light-emitting diode (LED) lens 2200, since the light is focused on the center of the lens, the road area within a certain radius of the street light can be illuminated with higher brightness than the other areas. In other words, the light-emitting element 2000 including the aspherical light-emitting diode (LED) lens 2200 emits light in different patterns along the major axis and the minor axis of the aspherical light-emitting diode (LED) lens, and thus can be applied to a street lamp when applied to a street lamp Effective road lighting is achieved based on road conditions.

圖18及圖19繪示依照本發明之一實施例之包含非球面發光二極體(LED)鏡片3200之發光元件3000。具體而言,圖18是發光元件3000沿著非球面發光二極體(LED)鏡片3200的主軸截取之橫剖面圖,而圖19則是發光元件3000沿著非球面發光二極體(LED)鏡片3200的副軸截取之 橫剖面圖。須知為了繪示的清楚起見,圖18及圖19僅繪示本發明的特性而未繪示例如導線架、電路、電線等等之元件,這些元件用於發光元件3000的操作或其他功能但與本發明的範圍無直接相關。在此將省略圖15及圖16所述之元件的重複說明。 18 and 19 illustrate a light-emitting element 3000 including an aspherical light-emitting diode (LED) lens 3200 in accordance with an embodiment of the present invention. Specifically, FIG. 18 is a cross-sectional view of the light-emitting element 3000 taken along the major axis of the aspherical light-emitting diode (LED) lens 3200, and FIG. 19 is the light-emitting element 3000 along the aspherical light-emitting diode (LED). The secondary shaft of the lens 3200 is intercepted Cross section view. BRIEF DESCRIPTION OF THE DRAWINGS For the sake of clarity of the drawing, FIGS. 18 and 19 depict only the characteristics of the present invention and do not depict components such as lead frames, circuits, wires, etc., which are used for the operation or other functions of the light-emitting element 3000. There is no direct correlation with the scope of the invention. Repeated description of the elements described in FIGS. 15 and 16 will be omitted herein.

如圖18及圖19所示,依照本實施例之發光元件3000可包括基底3240、安裝在基底3240上的發光二極體(LED)晶片3120、以及非球面發光二極體(LED)鏡片3200。 As shown in FIGS. 18 and 19, the light-emitting element 3000 according to the present embodiment may include a substrate 3240, a light-emitting diode (LED) wafer 3120 mounted on the substrate 3240, and an aspherical light-emitting diode (LED) lens 3200. .

不同於圖15及圖16所示之發光元件2000,基底3240可包括凹陷預定深度的凹洞。因此,如下所述,雖然非球面發光二極體(LED)鏡片3200不包括支撐區段,但是因為發光二極體(LED)晶片3120安裝在凹洞中,所以非球面發光二極體(LED)鏡片3200可保護發光二極體(LED)晶片3120。 Unlike the light-emitting element 2000 shown in FIGS. 15 and 16, the substrate 3240 may include a recess that is recessed to a predetermined depth. Therefore, as described below, although the aspherical light-emitting diode (LED) lens 3200 does not include the support section, since the light-emitting diode (LED) wafer 3120 is mounted in the cavity, the aspherical light-emitting diode (LED) The lens 3200 can protect the light emitting diode (LED) wafer 3120.

發光二極體(LED)晶片3120可以是例如發射430~480奈米(nm)波段的藍光之藍光發光二極體晶片或發射350~410奈米(nm)波段的紫外線(UV)光之紫外線(UV)發光二極體晶片。或者,發光二極體(LED)晶片3120可配置成發射其他顏色的光。由此,本發明並未侷限於特定的發光二極體(LED)晶片。 The light emitting diode (LED) wafer 3120 may be, for example, a blue light emitting diode chip emitting blue light of 430 to 480 nm (nm) band or ultraviolet light emitting ultraviolet (UV) light of 350 to 410 nm (nm) band. (UV) light emitting diode chip. Alternatively, a light emitting diode (LED) wafer 3120 can be configured to emit light of other colors. Thus, the invention is not limited to a particular light emitting diode (LED) wafer.

發光二極體(LED)晶片3120安裝在基底3240的凹洞中且可放置在非球面發光二極體(LED)鏡片3200的中心軸與基底3240交會之位置。具體而言,發光二極體(LED)晶片3120可配置在非球面發光二極體(LED)鏡片3200的中 心,此鏡片可藉由膠黏劑或其他的方法與包含發光二極體(LED)晶片3120之基底3240的上表面結合或連接。雖然在圖18及圖19中將非球面發光二極體(LED)鏡片3200繪示成包含單一發光二極體(LED)晶片3120,但是須知非球面發光二極體(LED)鏡片可包括多個發光二極體(LED)晶片。 A light emitting diode (LED) wafer 3120 is mounted in the recess of the substrate 3240 and can be placed at a location where the central axis of the aspherical light emitting diode (LED) lens 3200 meets the substrate 3240. In particular, a light emitting diode (LED) wafer 3120 can be disposed in the aspherical light emitting diode (LED) lens 3200. The lens may be bonded or joined to the upper surface of the substrate 3240 comprising the light-emitting diode (LED) wafer 3120 by an adhesive or other means. Although the aspherical light-emitting diode (LED) lens 3200 is illustrated as including a single light-emitting diode (LED) wafer 3120 in FIGS. 18 and 19, it is to be noted that the aspherical light-emitting diode (LED) lens may include multiple Light-emitting diode (LED) wafers.

此外,雖然未繪示於圖中,但是螢光材料可直接沈積於發光二極體(LED)晶片3120上,以便利用發光二極體(LED)晶片3120所發射的光作為激發光源來產生某種顏色的光。在此,螢光材料可包含於用以形成非球面發光二極體(LED)鏡片3200之樹脂。或者,可提供螢光材料作為單獨的磷光片。 In addition, although not shown in the drawings, the fluorescent material may be directly deposited on the LED (3) wafer 3120 so as to generate light by using the light emitted by the LED (LED) wafer 3120 as an excitation light source. a variety of colors of light. Here, the fluorescent material may be included in the resin used to form the aspherical light-emitting diode (LED) lens 3200. Alternatively, a phosphor material can be provided as a separate phosphor sheet.

非球面發光二極體(LED)鏡片3200用以藉由改變發光二極體(LED)晶片3120所發射的光的行進方向來調整光的方位角,並且可由例如矽膠、環氧樹脂、玻璃、或塑膠之透光材料構成。 The aspherical light-emitting diode (LED) lens 3200 is used to adjust the azimuth of the light by changing the traveling direction of the light emitted by the light-emitting diode (LED) wafer 3120, and may be, for example, silicone, epoxy, glass, Or a transparent material made of plastic.

依照本實施例,非球面發光二極體(LED)鏡片3200包括其位置大致上對稱於中心軸Y之第一鏡片區段3211與第二鏡片區段3221,但不包括如上所述之支撐區段。第一鏡片區段3211與第二鏡片區段3221彼此表面接觸以便在鏡片的中央區域3511形成凸面突出的形狀,如圖19所示。 In accordance with the present embodiment, the aspherical light-emitting diode (LED) lens 3200 includes a first lens segment 3211 and a second lens segment 3221 that are substantially symmetrical about a central axis Y, but does not include a support region as described above. segment. The first lens section 3211 and the second lens section 3221 are in surface contact with each other to form a convexly protruding shape in the central region 3511 of the lens, as shown in FIG.

再度參照圖18,在非球面發光二極體(LED)鏡片3200的主軸截面上,第一鏡片區段3211與第二鏡片區段3221是兩側對稱的。具體而言,第一鏡片區段3211包括第一傾 斜部分3311、第一平坦部分3321、以及第一凸面部分3331,而第二鏡片區段3221則包括第二傾斜部分3411、第二平坦部分3421、以及第二凸面部分3431。因此,第一傾斜部分3311、第一平坦部分3321、以及第一凸面部分3331可分別對稱於第二傾斜部分3411、第二平坦部分3421、以及第二凸面部分3431。尤其,因為第一傾斜部分3311與第一凸面部分3331分別對稱於第二傾斜部分3411與第二凸面部分3431,所以第一傾斜部分3311與第一凸面部分3331的長度及曲率半徑可分別等於第二傾斜部分3411與第二凸面部分3431的長度及曲率半徑。 Referring again to FIG. 18, on the major axis section of the aspherical light-emitting diode (LED) lens 3200, the first lens segment 3211 and the second lens segment 3221 are bilaterally symmetrical. Specifically, the first lens segment 3211 includes a first tilt The inclined portion 3311, the first flat portion 3321, and the first convex portion 3331, and the second lens portion 3221 includes a second inclined portion 3411, a second flat portion 3421, and a second convex portion 3431. Therefore, the first inclined portion 3311, the first flat portion 3321, and the first convex portion 3331 may be symmetric with respect to the second inclined portion 3411, the second flat portion 3421, and the second convex portion 3431, respectively. In particular, since the first inclined portion 3311 and the first convex portion 3331 are respectively symmetrical to the second inclined portion 3411 and the second convex portion 3431, the length and the radius of curvature of the first inclined portion 3311 and the first convex portion 3331 may be equal to the first The length and radius of curvature of the second inclined portion 3411 and the second convex portion 3431.

具體而言,第一平坦部分3321與第二平坦部分3421分別是第一鏡片區段3211與第二鏡片區段3221的最上端平坦區域以形成線性結構。第一傾斜部分3311與第二傾斜部分3411分別連接到第一平坦部分3321與第二平坦部分3421的一末端,並且可以是朝向中心軸Y傾斜之彎曲表面。因此,第一傾斜部分3311與第二傾斜部分3411將在中心軸Y彼此耦合以便在非球面發光二極體(LED)鏡片3200的中心形成凹面截面。此外,第一凸面部分3331與第二凸面部分3431分別連接到第一平坦部分3321與第二平坦部分3421的另一末端,並且是朝向非球面發光二極體(LED)鏡片3200的外部凸起之彎曲表面。在此,第一傾斜部分3311(或第二傾斜部分3411)的曲率可等於或不等於第一凸面部分3331(或第二凸面部分3431)的曲率。 Specifically, the first flat portion 3321 and the second flat portion 3421 are the uppermost flat regions of the first lens segment 3211 and the second lens segment 3221, respectively, to form a linear structure. The first inclined portion 3311 and the second inclined portion 3411 are respectively connected to one ends of the first flat portion 3321 and the second flat portion 3421, and may be curved surfaces inclined toward the central axis Y. Therefore, the first inclined portion 3311 and the second inclined portion 3411 will be coupled to each other at the central axis Y to form a concave cross section at the center of the aspherical light emitting diode (LED) lens 3200. Further, the first convex portion 3331 and the second convex portion 3431 are respectively connected to the other ends of the first flat portion 3321 and the second flat portion 3421, and are convex toward the outside of the aspherical light-emitting diode (LED) lens 3200. The curved surface. Here, the curvature of the first inclined portion 3311 (or the second inclined portion 3411) may be equal to or not equal to the curvature of the first convex portion 3331 (or the second convex portion 3431).

當光從發光二極體(LED)晶片3120發射到外面時,藉 由空氣與用以形成非球面發光二極體(LED)鏡片3200之樹脂之間的折射率差異以及第一鏡片區段3210及第二鏡片區段3220的傾斜外表面的角度,光將折射而偏離中心軸Y。 When light is emitted from the light emitting diode (LED) wafer 3120 to the outside, The light will refract from the difference in refractive index between the air and the resin used to form the aspherical light-emitting diode (LED) lens 3200 and the angled outer surface of the first lens segment 3210 and the second lens segment 3220. Off center axis Y.

現在參照圖19,非球面發光二極體(LED)鏡片3200的副軸橫截面可包括中央鏡片區域3511以及分別連接到中央鏡片區域3511的兩末端之第一平面3521與第二平面3531,並且不需要包括支撐區段。當光從發光二極體(LED)晶片3120發射時,光將在非球面發光二極體(LED)鏡片3200的第一平面3521及第二平面3531上朝向鏡片的中心軸折射,因而可引導幾道光束在非球面發光二極體(LED)鏡片3200的外部朝上行進。 Referring now to FIG. 19, a minor axis cross section of an aspherical light emitting diode (LED) lens 3200 can include a central lens region 3511 and a first plane 3521 and a second plane 3531 that are coupled to both ends of the central lens region 3511, respectively, and It is not necessary to include a support section. When light is emitted from the light emitting diode (LED) wafer 3120, the light will be refracted toward the central axis of the lens on the first plane 3521 and the second plane 3531 of the aspherical light emitting diode (LED) lens 3200, thereby being guided Several beams travel upwards on the outside of the aspherical light-emitting diode (LED) lens 3200.

因此,非球面發光二極體(LED)鏡片3200的方位角曲線具有圖17之形狀,類似於上述非球面發光二極體(LED)鏡片的方位角曲線的形狀。具體而言,當使用非球面發光二極體(LED)鏡片3200時,非球面發光二極體(LED)鏡片3200的主軸橫截面上的光方位角曲線由於在非球面發光二極體(LED)鏡片3200的中心光強度相對減少且在非球面發光二極體(LED)鏡片3200的兩邊光強度顯著增加,因而通常具有M形曲線。反之,在非球面發光二極體(LED)鏡片3200的副軸橫截面上的光方位角曲線中,因為光聚焦於鏡片的中心,所以光強度在非球面發光二極體(LED)鏡片3200的中心相對地增加且朝向非球面發光二極體(LED)鏡片3200的兩邊逐漸減少。由此,非球面發光二極體(LED) 鏡片3200的主軸橫截面上的光方位角曲線不同於非球面發光二極體(LED)鏡片3200的副軸橫截面上的光方位角曲線,藉以形成不對稱的光方位角曲線。 Thus, the azimuthal curve of the aspherical light-emitting diode (LED) lens 3200 has the shape of FIG. 17, similar to the shape of the azimuthal curve of the aspherical light-emitting diode (LED) lens described above. Specifically, when an aspherical light-emitting diode (LED) lens 3200 is used, the azimuth curve of the aspherical cross section of the aspherical light-emitting diode (LED) lens 3200 is due to the aspherical light-emitting diode (LED). The central light intensity of the lens 3200 is relatively reduced and the light intensity on both sides of the aspherical light-emitting diode (LED) lens 3200 is significantly increased, and thus generally has an M-shaped curve. On the other hand, in the azimuth curve of the axicon cross section of the aspherical light-emitting diode (LED) lens 3200, since the light is focused on the center of the lens, the light intensity is in the aspherical light-emitting diode (LED) lens 3200. The center is relatively increased and gradually decreases toward both sides of the aspherical light-emitting diode (LED) lens 3200. Thus, an aspherical light emitting diode (LED) The optical azimuth curve of the principal axis cross section of the lens 3200 is different from the optical azimuth curve of the axicon cross section of the aspherical light emitting diode (LED) lens 3200, thereby forming an asymmetrical optical azimuth curve.

尤其,在發光二極體(LED)鏡片3200的主軸橫截面上的方位角曲線中,鏡片的兩邊的峰值角度是大約50~70度且鏡片的中心的光強度是峰值的大約40~50%。反之,在發光二極體(LED)鏡片3200的副軸橫截面上的方位角曲線中,方位角是大約70~90度。 In particular, in the azimuth curve of the principal axis cross section of the light-emitting diode (LED) lens 3200, the peak angle of both sides of the lens is about 50 to 70 degrees and the light intensity of the center of the lens is about 40 to 50% of the peak value. . On the other hand, in the azimuth curve of the cross-section of the minor axis of the light-emitting diode (LED) lens 3200, the azimuth angle is about 70 to 90 degrees.

因此,當使用非球面發光二極體(LED)鏡片3200的發光元件3000是用於例如路燈時,能夠利用發光元件3000所發射的光以沿著路邊而形成細長的照明區域。並且,參考非球面發光二極體(LED)鏡片3200的副軸平面,因為光聚焦於鏡片的中心,所以能以高於其他區域的亮度來照明在路燈的某半徑內的道路區域。 Therefore, when the light-emitting element 3000 using the aspherical light-emitting diode (LED) lens 3200 is used for, for example, a street lamp, the light emitted by the light-emitting element 3000 can be utilized to form an elongated illumination region along the roadside. Also, referring to the minor axis of the aspherical light-emitting diode (LED) lens 3200, since the light is focused on the center of the lens, the road area within a certain radius of the street light can be illuminated with higher brightness than the other areas.

依照本發明之實施例之非球面發光二極體(LED)鏡片可用以提供光的雙峰形方位角曲線。因此,使用非球面發光二極體(LED)鏡片作為背光單元的光源之顯示裝置可提供均勻的照度給顯示裝置的面板且顯著降低色差。 An aspherical light emitting diode (LED) lens in accordance with an embodiment of the present invention can be used to provide a bimodal azimuthal curve of light. Therefore, a display device using an aspherical light-emitting diode (LED) lens as a light source of a backlight unit can provide uniform illumination to a panel of a display device and significantly reduce chromatic aberration.

此外,當使用非球面發光二極體(LED)鏡片的發光元件是用於顯示裝置時,顯示裝置將在其面板上具有均勻的照度或亮度且將消除色差所造成的斑點,因而改善顯示品質。 In addition, when a light-emitting element using an aspherical light-emitting diode (LED) lens is used for a display device, the display device will have uniform illumination or brightness on its panel and will eliminate spots caused by chromatic aberration, thereby improving display quality. .

依照本發明之其他實施例,非球面發光二極體(LED)鏡片的主軸上的方位角曲線在偏離發光二極體(LED)鏡片 的中心之位置具有峰值角度,並且非球面發光二極體(LED)鏡片的副軸上的方位角曲線在發光二極體(LED)鏡片的中心具有峰值角度,以便該非球面發光二極體(LED)鏡片可在發光二極體(LED)鏡片的主軸方向及副軸方向上提供不同的光方位角曲線。 In accordance with other embodiments of the present invention, the azimuth curve on the major axis of an aspherical light-emitting diode (LED) lens is offset from the light-emitting diode (LED) lens The center of the position has a peak angle, and the azimuth curve on the minor axis of the aspherical light-emitting diode (LED) lens has a peak angle at the center of the light-emitting diode (LED) lens so that the aspherical light-emitting diode ( The LED) lens provides different optical azimuth curves in the direction of the major axis and the direction of the minor axis of the light-emitting diode (LED) lens.

因此,當使用此種非球面發光二極體(LED)鏡片的發光元件是用於路燈時,發光元件可提供沿著路邊而縱向形成的照明區域。 Therefore, when a light-emitting element using such an aspherical light-emitting diode (LED) lens is used for a street light, the light-emitting element can provide an illumination region formed longitudinally along the roadside.

雖然已經參考某些實施例連同附圖來舉例說明本發明,但是任何所屬技術領域中具有通常知識者將明瞭在不脫離本發明的精神和範圍的情況下當可對本發明作各種修改與變更。因此,須知這些實施例僅用以舉例說明及用以完整揭露本發明,以便使任何所屬技術領域中具有通常知識者能充分理解本發明。因此,本發明之權利保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described with reference to the embodiments of the embodiments of the present invention, it will be understood that various modifications and changes can be made to the present invention without departing from the spirit and scope of the invention. Therefore, the present invention is to be construed as being limited by the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

1、2240、3240‧‧‧基底 1, 2240, 3240‧‧‧ base

2、12、322、2120、3120‧‧‧發光二極體(LED)晶片 2, 12, 322, 2120, 3120‧‧‧Light Emitting Diode (LED) Wafer

4‧‧‧半球面發光二極體(LED)鏡片 4‧‧‧Hemispherical Light Emitting Diode (LED) Lenses

14、360、400a、400b、400c、500a、500b、2200、3200‧‧‧非球面發光二極體(LED)鏡片 14, 360, 400a, 400b, 400c, 500a, 500b, 2200, 3200‧‧‧ aspherical light-emitting diode (LED) lenses

20、320‧‧‧殼體 20, 320‧‧‧ shell

21、321‧‧‧空腔 21, 321‧‧‧ cavity

22、323‧‧‧封裝材料 22, 323‧‧‧Encapsulation materials

25、324‧‧‧空氣層 25, 324‧‧ air layer

100、200、1000、2000、3000‧‧‧發光元件 100, 200, 1000, 2000, 3000‧‧‧Lighting elements

141、361、410、510‧‧‧入光面 141, 361, 410, 510‧‧‧ into the glossy surface

142、362、520‧‧‧出光面 142, 362, 520‧‧ ‧ light surface

363‧‧‧突出 363‧‧‧ outstanding

420、430‧‧‧線性區段 420, 430‧‧‧ linear section

440、2340、2340'、2440、2440'‧‧‧側面 440, 2340, 2340', 2440, 2440' ‧ ‧ side

2210‧‧‧第一鏡片區段 2210‧‧‧First lens section

2220‧‧‧第二鏡片區段 2220‧‧‧second lens section

2230‧‧‧支撐區段 2230‧‧‧Support section

2310、3311‧‧‧第一傾斜部分 2310, 3311‧‧‧ first inclined part

2320、3321‧‧‧第一平坦部分 2320, 3321‧‧‧ first flat part

2330、3331‧‧‧第一凸面部分 2330, 3331‧‧‧ first convex part

2410、3411‧‧‧第二傾斜部分 2410, 3411‧‧‧ second inclined part

2420、3421‧‧‧第二平坦部分 2420, 3421‧‧‧ second flat part

2430、3431‧‧‧第二凸面部分 2430, 3431‧‧‧ second convex part

2510、3511‧‧‧中央鏡片區域 2510, 3511‧‧‧ central lens area

2520、3521‧‧‧第一平面 2520, 3521‧‧‧ first plane

2530、3531‧‧‧第二平面 2530, 3531‧‧‧ second plane

C1、C2‧‧‧凸半球面形狀 C 1 , C 2 ‧‧‧ convex hemispherical shape

l‧‧‧鏡片全寬 l ‧‧‧full width of the lens

R1、R2‧‧‧曲率半徑 R1, R2‧‧‧ radius of curvature

y‧‧‧中心軸 Y‧‧‧ center axis

圖1是一種包含習知半球面發光二極體(LED)鏡片之發光元件的側剖面圖。 1 is a side cross-sectional view of a light-emitting element including a conventional hemispherical light-emitting diode (LED) lens.

圖2是圖1的發光元件所發射的光的方位角曲線的曲線圖。 2 is a graph of an azimuth curve of light emitted by the light-emitting element of FIG. 1.

圖3是具有圖1所示之發光元件排列之顯示裝置的面板上之照度的示意圖。 Fig. 3 is a schematic view showing the illuminance on the panel of the display device having the arrangement of the light-emitting elements shown in Fig. 1.

圖4是一種包含非球面發光二極體(LED)鏡片之發光元件的透視圖。 4 is a perspective view of a light-emitting element including an aspherical light-emitting diode (LED) lens.

圖5是上述包含非球面發光二極體(LED)鏡片之發光元件的側剖面圖。 Fig. 5 is a side cross-sectional view showing the above-described light-emitting element including an aspherical light-emitting diode (LED) lens.

圖6是非球面發光二極體(LED)鏡片所發射的光的方位角曲線的曲線圖。 Figure 6 is a graph of azimuth curves of light emitted by an aspherical light emitting diode (LED) lens.

圖7是非球面發光二極體(LED)鏡片的色差的曲線圖。 Figure 7 is a graph of chromatic aberration of an aspherical light emitting diode (LED) lens.

圖8是依照本發明之一實施例之一種使用包含多個側邊突出之非球面發光二極體(LED)鏡片之發光元件的側剖面圖。 8 is a side cross-sectional view of a light-emitting element using an aspherical light-emitting diode (LED) lens including a plurality of side protrusions, in accordance with an embodiment of the present invention.

圖9是圖8的非球面發光二極體(LED)鏡片所發射的光的方位角曲線的曲線圖。 9 is a graph of azimuth curves of light emitted by the aspherical light emitting diode (LED) lens of FIG.

圖10是圖8的非球面發光二極體(LED)鏡片的色差的曲線圖。 Figure 10 is a graph of chromatic aberration of the aspherical light emitting diode (LED) lens of Figure 8.

圖11(a)、圖11(b)、及圖11(c)是依照本發明之實施例之包含線性區段之非球面發光二極體(LED)鏡片的側剖面圖。 11(a), 11(b), and 11(c) are side cross-sectional views of an aspherical light emitting diode (LED) lens including a linear segment in accordance with an embodiment of the present invention.

圖12(a)及圖12(b)是依照本發明之實施例之非球面發光二極體(LED)鏡片的側剖面圖,其中每一個具有由不同曲率半徑的彎曲區段組成之出光面。 12(a) and 12(b) are side cross-sectional views of an aspherical light-emitting diode (LED) lens in accordance with an embodiment of the present invention, each having a light-emitting surface composed of curved segments having different radii of curvature .

圖13是依照本發明之一實施例之一種非球面發光二極體(LED)鏡片的透視圖。 Figure 13 is a perspective view of an aspherical light emitting diode (LED) lens in accordance with an embodiment of the present invention.

圖14是圖13的非球面發光二極體(LED)鏡片的俯視圖。 14 is a top plan view of the aspherical light emitting diode (LED) lens of FIG.

圖15是圖13的非球面發光二極體(LED)鏡片沿著此鏡片的主軸截取之橫剖面圖。 Figure 15 is a cross-sectional view of the aspherical light emitting diode (LED) lens of Figure 13 taken along the major axis of the lens.

圖16是圖13的非球面發光二極體(LED)鏡片沿著此鏡片的副軸截取之橫剖面圖。 Figure 16 is a cross-sectional view of the aspherical light emitting diode (LED) lens of Figure 13 taken along the minor axis of the lens.

圖17是使用圖13的非球面發光二極體(LED)鏡片之發光元件的方位角曲線的曲線圖。 17 is a graph showing an azimuth curve of a light-emitting element using the aspherical light-emitting diode (LED) lens of FIG.

圖18是依照本發明之一實施例之一種非球面發光二極體(LED)鏡片沿著此鏡片的主軸截取之橫剖面圖。 18 is a cross-sectional view of an aspherical light emitting diode (LED) lens taken along the major axis of the lens in accordance with an embodiment of the present invention.

圖19是圖18的非球面發光二極體(LED)鏡片沿著此非球面發光二極體(LED)鏡片的副軸截取之橫剖面圖。 19 is a cross-sectional view of the aspherical light emitting diode (LED) lens of FIG. 18 taken along the minor axis of the aspherical light emitting diode (LED) lens.

320‧‧‧殼體 320‧‧‧shell

321‧‧‧空腔 321‧‧‧ cavity

322‧‧‧發光二極體(LED)晶片 322‧‧‧Light Emitting Diode (LED) Wafer

323‧‧‧封裝材料 323‧‧‧Packaging materials

324‧‧‧空氣層 324‧‧ Air layer

360‧‧‧非球面發光二極體(LED)鏡片 360‧‧‧Aspherical LED (LED) lenses

361‧‧‧入光面 361‧‧‧Into the glossy surface

362‧‧‧出光面 362‧‧‧Glossy

363‧‧‧突出 363‧‧‧ outstanding

1000‧‧‧發光元件 1000‧‧‧Lighting elements

C1、C2‧‧‧凸半球面形狀 C 1 , C 2 ‧‧‧ convex hemispherical shape

l‧‧‧鏡片全寬 l ‧‧‧full width of the lens

y‧‧‧中心軸 Y‧‧‧ center axis

Claims (19)

一種非球面發光二極體(LED)鏡片,包括:出光面,在中心軸附近凹陷;入光面,包含一種頂點位於所述中心軸之錐形面;以及多個突出,排列在所述出光面的一部分側面上,其中所述非球面發光二極體(LED)鏡片具有對稱於所述中心軸之放射狀對稱結構。 An aspherical light-emitting diode (LED) lens comprising: a light-emitting surface recessed near a central axis; a light-incident surface comprising a tapered surface having a vertex on the central axis; and a plurality of protrusions arranged in the light-emitting surface A portion of the side of the face, wherein the aspherical light-emitting diode (LED) lens has a radially symmetric structure that is symmetric with respect to the central axis. 如申請專利範圍第1項所述之非球面發光二極體(LED)鏡片,其中所述非球面發光二極體(LED)鏡片包含液態矽橡膠(LSR)。 The aspherical light emitting diode (LED) lens of claim 1, wherein the aspherical light emitting diode (LED) lens comprises liquid helium rubber (LSR). 如申請專利範圍第1項所述之非球面發光二極體(LED)鏡片,其中所述出光面包括至少兩個線性區段。 The aspherical light-emitting diode (LED) lens of claim 1, wherein the light-emitting surface comprises at least two linear segments. 如申請專利範圍第3項所述之非球面發光二極體(LED)鏡片,其中所述兩個線性區段在所述中心軸彼此接觸,並且所述兩個線性區段之每一個都具有偏離水平方向10度至40度的傾斜度。 The aspherical light-emitting diode (LED) lens of claim 3, wherein the two linear segments are in contact with each other at the central axis, and each of the two linear segments has Deviation from the horizontal direction by 10 degrees to 40 degrees. 如申請專利範圍第1項所述之非球面發光二極體(LED)鏡片,其中所述出光面包括多個具有不同曲率半徑的彎曲區段。 The aspherical light-emitting diode (LED) lens of claim 1, wherein the light-emitting surface comprises a plurality of curved sections having different radii of curvature. 如申請專利範圍第5項所述之非球面發光二極體(LED)鏡片,其中所述曲率半徑是在1.0至大約5.0的範圍內。 The aspherical light-emitting diode (LED) lens of claim 5, wherein the radius of curvature is in the range of 1.0 to about 5.0. 一種發光元件,包括: 殼體;發光二極體(LED)晶片,排列在所述殼體上;以及非球面發光二極體(LED)鏡片,排列在所述發光二極體(LED)晶片上,所述非球面發光二極體(LED)鏡片具有對稱於所述發光二極體(LED)鏡片的中心軸之放射狀對稱結構,其中所述非球面發光二極體(LED)鏡片包括:出光面,在所述中心軸附近凹陷;入光面,包含一種頂點位於所述中心軸之錐形面;以及多個突出,排列在所述出光面的一部分側面上,其中所述發光二極體(LED)晶片排列在所述非球面發光二極體(LED)鏡片的所述中心軸與所述殼體相交之位置。 A light-emitting element comprising: a housing; a light emitting diode (LED) wafer arranged on the housing; and an aspherical light emitting diode (LED) lens arranged on the light emitting diode (LED) wafer, the aspheric surface A light emitting diode (LED) lens has a radial symmetrical structure symmetrical to a central axis of the light emitting diode (LED) lens, wherein the aspherical light emitting diode (LED) lens comprises: a light emitting surface, a concave portion near the central axis; a light incident surface including a tapered surface having a vertex on the central axis; and a plurality of protrusions arranged on a portion of the side surface of the light emitting surface, wherein the light emitting diode (LED) wafer Arranged at a position where the central axis of the aspherical light-emitting diode (LED) lens intersects the housing. 如申請專利範圍第7項所述之發光元件,其中從所述發光二極體(LED)晶片發射且通過所述非球面發光二極體(LED)鏡片之光在所述發光元件的中央區域具有峰值的大約30%至大約40%之強度,並且所述光的方位角曲線在大約±67度的角度具有所述峰值。 The light-emitting element of claim 7, wherein light emitted from the light-emitting diode (LED) wafer and passing through the aspherical light-emitting diode (LED) lens is in a central region of the light-emitting element There is an intensity of about 30% to about 40% of the peak, and the azimuthal curve of the light has the peak at an angle of about ±67 degrees. 如申請專利範圍第7項所述之發光元件,其中所述非球面發光二極體(LED)鏡片包含液態矽橡膠(LSR)。 The light-emitting element of claim 7, wherein the aspherical light-emitting diode (LED) lens comprises liquid helium rubber (LSR). 如申請專利範圍第7項所述之發光元件,其中所述非球面發光二極體(LED)鏡片的所述出光面包括至少兩個線性區段。 The light-emitting element of claim 7, wherein the light-emitting surface of the aspherical light-emitting diode (LED) lens comprises at least two linear segments. 如申請專利範圍第10項所述之發光元件,其中所 述兩個線性區段在所述中心軸彼此接觸,並且所述兩個線性區段之每一個都具有偏離水平方向大約10度至40度的傾斜度。 A light-emitting element according to claim 10, wherein The two linear segments are in contact with each other at the central axis, and each of the two linear segments has an inclination of about 10 to 40 degrees from the horizontal direction. 如申請專利範圍第7項所述之發光元件,其中所述非球面發光二極體(LED)鏡片的所述出光面包括多個具有不同曲率半徑的彎曲區段。 The light-emitting element of claim 7, wherein the light-emitting surface of the aspherical light-emitting diode (LED) lens comprises a plurality of curved sections having different radii of curvature. 如申請專利範圍第12項所述之發光元件,其中所述曲率半徑是在1.0至大約5.0的範圍內。 The light-emitting element of claim 12, wherein the radius of curvature is in the range of 1.0 to about 5.0. 如申請專利範圍第7項所述之發光元件,其中所述殼體包含凹洞,並且所述發光二極體(LED)晶片排列在所述凹洞中。 The light-emitting element of claim 7, wherein the casing comprises a cavity, and the light-emitting diode (LED) wafer is arranged in the cavity. 如申請專利範圍第14項所述之發光元件,其中封裝材料排列在所述凹洞中,所述封裝材料用以封裝所述發光二極體(LED)晶片。 The light-emitting element of claim 14, wherein an encapsulating material is arranged in the cavity, the encapsulating material for encapsulating the light-emitting diode (LED) wafer. 如申請專利範圍第9項所述之發光元件,其中所述非球面發光二極體(LED)鏡片包含所述液態矽橡膠(LSR)與分散劑之射出成形的混合物。 The light-emitting element of claim 9, wherein the aspherical light-emitting diode (LED) lens comprises an injection-formed mixture of the liquid ruthenium rubber (LSR) and a dispersant. 一種發光元件,包括:基底;發光二極體(LED)晶片,排列在所述基底上;以及非球面發光二極體(LED)鏡片,排列在所述發光二極體(LED)晶片上,其中所述非球面發光二極體(LED)鏡片包含分別沿著 所述發光二極體(LED)鏡片的主軸與副軸截取之不同橫截面,所述非球面發光二極體(LED)鏡片的副軸橫截面包括中央鏡片區域、分別連接到所述中央鏡片區域的兩末端之第一平面與第二平面、以及支撐區段,所述支撐區段覆蓋所述基底。 A light-emitting element comprising: a substrate; a light-emitting diode (LED) wafer arranged on the substrate; and an aspherical light-emitting diode (LED) lens arranged on the light-emitting diode (LED) wafer, Wherein the aspherical light emitting diode (LED) lens comprises a different cross section of the main axis of the light emitting diode (LED) lens and a minor axis, the minor axis cross section of the aspherical light emitting diode (LED) lens including a central lens area, respectively connected to the central lens A first plane and a second plane at both ends of the region, and a support section covering the substrate. 如申請專利範圍第17項所述之發光元件,其中所述發光二極體(LED)鏡片的主軸橫截面包括互相對稱於所述發光二極體(LED)鏡片的中心軸之第一鏡片區段與第二鏡片區段。 The illuminating element of claim 17, wherein the principal axis cross section of the illuminating diode (LED) lens comprises a first lens region symmetrical to a central axis of the illuminating diode (LED) lens Segment and second lens segment. 如申請專利範圍第18項所述之發光元件,其中所述第一鏡片區段與所述第二鏡片區段都具有凸面鏡片形狀,所述第一鏡片區段與所述第二鏡片區段分別包括第一平坦部分與第二平坦部分,以及所述第一鏡片區段與所述第二鏡片區段沿著所述中心軸而彼此接觸以便形成凹陷部分。 The illuminating element of claim 18, wherein the first lens segment and the second lens segment both have a convex lens shape, the first lens segment and the second lens segment A first flat portion and a second flat portion are respectively included, and the first lens segment and the second lens segment are in contact with each other along the central axis to form a recessed portion.
TW100100487A 2010-01-07 2011-01-06 Aspherical led lens and light emitting device including the same TWI422074B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100001059A KR101644140B1 (en) 2010-01-07 2010-01-07 Led lens having an asymmetric orientation angle pattern and light emitting device having the same
KR1020100028693A KR101144635B1 (en) 2010-03-30 2010-03-30 Aspherical led lens and light emitting device for backlight having the same

Publications (2)

Publication Number Publication Date
TW201140893A TW201140893A (en) 2011-11-16
TWI422074B true TWI422074B (en) 2014-01-01

Family

ID=44305963

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100487A TWI422074B (en) 2010-01-07 2011-01-06 Aspherical led lens and light emitting device including the same

Country Status (5)

Country Link
US (3) US8602605B2 (en)
JP (1) JP5658282B2 (en)
CN (2) CN102696123B (en)
TW (1) TWI422074B (en)
WO (1) WO2011084001A2 (en)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416926B2 (en) 2009-04-28 2016-08-16 Cree, Inc. Lens with inner-cavity surface shaped for controlled light refraction
US9915409B2 (en) 2015-02-19 2018-03-13 Cree, Inc. Lens with textured surface facilitating light diffusion
US10422503B2 (en) * 2009-10-30 2019-09-24 Ideal Industries Lighting Llc One-piece multi-lens optical member and method of manufacture
US10060579B2 (en) 2011-12-02 2018-08-28 Seoul Semiconductor Co., Ltd. Light emitting module and lens
US10047930B2 (en) 2011-12-02 2018-08-14 Seoul Semiconductor Co., Ltd. Light emitting module and lens
CN103165798B (en) * 2011-12-09 2015-11-25 展晶科技(深圳)有限公司 Package structure for LED and lens thereof
CN103208581A (en) * 2012-01-17 2013-07-17 中央大学 Light emitting diode lens
TWM436230U (en) * 2012-02-14 2012-08-21 Lumenmax Optoelectronics Co Ltd Package structure of light emitting diode with wide angle and uniform light-emitting
KR20130094482A (en) * 2012-02-16 2013-08-26 서울반도체 주식회사 Light emitting module having lens
US8992053B2 (en) 2012-03-05 2015-03-31 Seoul Semiconductor Co., Ltd. Illumination lens for short-throw lighting
WO2013137761A1 (en) * 2012-03-15 2013-09-19 Общество С Ограниченной Ответственностью "Инфолед" Light-emitting diode
EP2642541A1 (en) * 2012-03-22 2013-09-25 Odelo GmbH Light emitting diode
EP2645434A1 (en) * 2012-03-30 2013-10-02 Lumenmax Optoelectronics Co., Ltd. Led-packaging arrangement with uniform light and wide angle
CN103375708B (en) * 2012-04-26 2015-10-28 展晶科技(深圳)有限公司 Light-emitting diode lamp source device
US8974077B2 (en) 2012-07-30 2015-03-10 Ultravision Technologies, Llc Heat sink for LED light source
KR101360568B1 (en) * 2012-09-14 2014-02-11 엘지이노텍 주식회사 Optical member and display device having the same
TW201425813A (en) * 2012-12-26 2014-07-01 Hon Hai Prec Ind Co Ltd Optical lens and lighting element with the optical lens
WO2014126278A1 (en) 2013-02-14 2014-08-21 엘지전자 주식회사 Display apparatus
US9565782B2 (en) 2013-02-15 2017-02-07 Ecosense Lighting Inc. Field replaceable power supply cartridge
US9920901B2 (en) 2013-03-15 2018-03-20 Cree, Inc. LED lensing arrangement
US10400984B2 (en) 2013-03-15 2019-09-03 Cree, Inc. LED light fixture and unitary optic member therefor
US9784902B2 (en) 2013-03-25 2017-10-10 3M Innovative Properties Company Dual-sided film with split light spreading structures
CN104154493B (en) * 2013-05-15 2019-04-09 欧司朗有限公司 Lens and lighting device with the lens
JP6243143B2 (en) * 2013-06-04 2017-12-06 スタンレー電気株式会社 Linear light source device for image reading device and image reading device
KR102108204B1 (en) 2013-08-26 2020-05-08 서울반도체 주식회사 Lens and light emitting module for surface illumination
US9887324B2 (en) * 2013-09-16 2018-02-06 Lg Innotek Co., Ltd. Light emitting device package
TWI562405B (en) * 2013-09-23 2016-12-11 Brightek Optoelectronic Shenzhen Co Ltd Method of manufacturing led package structure for preventing lateral light leakage
CN104681697A (en) * 2013-11-29 2015-06-03 鸿富锦精密工业(深圳)有限公司 Light-emitting component
JP6224451B2 (en) * 2013-12-16 2017-11-01 浜井電球工業株式会社 LED light distribution control lens
CN104748068B (en) * 2013-12-30 2018-04-17 赛恩倍吉科技顾问(深圳)有限公司 Lens and the light source module group using the lens
JP6647785B2 (en) * 2014-01-07 2020-02-14 エルジー イノテック カンパニー リミテッド Lens and lighting device including the same
KR102182019B1 (en) * 2014-01-24 2020-11-23 엘지이노텍 주식회사 Illumination system
RU2672643C2 (en) 2014-03-28 2018-11-16 Асахи Раббер Инк. Light distribution lens
EP2963474A1 (en) * 2014-07-05 2016-01-06 Swareflex GmbH Partly mattfinished optical lenses
US9757912B2 (en) 2014-08-27 2017-09-12 Cree, Inc. One-piece multi-lens optical member with ultraviolet inhibitor and method of manufacture
US11085591B2 (en) 2014-09-28 2021-08-10 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11543083B2 (en) 2014-09-28 2023-01-03 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
US11073248B2 (en) 2014-09-28 2021-07-27 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED bulb lamp
US11690148B2 (en) 2014-09-28 2023-06-27 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED filament and LED light bulb
US11525547B2 (en) 2014-09-28 2022-12-13 Zhejiang Super Lighting Electric Appliance Co., Ltd LED light bulb with curved filament
US11686436B2 (en) 2014-09-28 2023-06-27 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and light bulb using LED filament
US11421827B2 (en) 2015-06-19 2022-08-23 Zhejiang Super Lighting Electric Appliance Co., Ltd LED filament and LED light bulb
US10207440B2 (en) 2014-10-07 2019-02-19 Cree, Inc. Apparatus and method for formation of multi-region articles
US10477636B1 (en) 2014-10-28 2019-11-12 Ecosense Lighting Inc. Lighting systems having multiple light sources
KR102266737B1 (en) * 2014-11-03 2021-06-18 엘지이노텍 주식회사 lens,light emitting apparatus including the lens, and backlight unit including the apparatus
KR102304267B1 (en) 2014-11-19 2021-09-23 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device package and backlight unit including the package
US9470394B2 (en) 2014-11-24 2016-10-18 Cree, Inc. LED light fixture including optical member with in-situ-formed gasket and method of manufacture
KR102408719B1 (en) * 2015-02-02 2022-06-15 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 A lens and a light emitting device package including the same
US9869450B2 (en) 2015-02-09 2018-01-16 Ecosense Lighting Inc. Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector
US11306897B2 (en) 2015-02-09 2022-04-19 Ecosense Lighting Inc. Lighting systems generating partially-collimated light emissions
US10801696B2 (en) 2015-02-09 2020-10-13 Ecosense Lighting Inc. Lighting systems generating partially-collimated light emissions
US9651216B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
US9651227B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Low-profile lighting system having pivotable lighting enclosure
US9746159B1 (en) 2015-03-03 2017-08-29 Ecosense Lighting Inc. Lighting system having a sealing system
US9568665B2 (en) 2015-03-03 2017-02-14 Ecosense Lighting Inc. Lighting systems including lens modules for selectable light distribution
US10393341B2 (en) 2015-04-24 2019-08-27 Abl Ip Holding Llc Tri-lobe optic and associated light fixtures
USD779112S1 (en) 2015-04-24 2017-02-14 Abl Ip Holding Llc Tri-lobe light fixture optic
DE102015108499A1 (en) 2015-05-29 2016-12-01 Osram Opto Semiconductors Gmbh Optoelectronic component with a radiation source
KR102409961B1 (en) * 2015-06-26 2022-06-16 삼성전자주식회사 Optical device and light emitting device package having the same
USD785218S1 (en) 2015-07-06 2017-04-25 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782094S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782093S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
US9651232B1 (en) 2015-08-03 2017-05-16 Ecosense Lighting Inc. Lighting system having a mounting device
KR101666844B1 (en) * 2015-09-10 2016-10-19 삼성전자주식회사 Optical device and light source module having the same
CN106547145A (en) * 2015-09-18 2017-03-29 群创光电股份有限公司 Backlight module and display device
US10677418B2 (en) * 2015-09-29 2020-06-09 Signify Holding B.V. LED module with outlet lens
US10750070B2 (en) * 2015-12-18 2020-08-18 Ligitek Electronics Co., Ltd. Light-emitting diode and surveillance camera device using the same
KR102558280B1 (en) * 2016-02-05 2023-07-25 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light source unit and light unit having thereof
WO2017153968A1 (en) * 2016-03-11 2017-09-14 Universidad Eafit Covering with optoelectronic elements
US10003727B1 (en) * 2016-12-06 2018-06-19 Cheng Uei Precision Industry Co., Ltd. Camera module capable of emitting a uniform light
US10367171B2 (en) * 2016-12-29 2019-07-30 Research & Business Foundation Sungkyunkwan University Low reflective display device
CN107068815A (en) * 2017-04-11 2017-08-18 安徽芯瑞达科技股份有限公司 A kind of quantum dot powder filled cavity lens and preparation method thereof
CN107195763A (en) * 2017-05-08 2017-09-22 安徽芯瑞达科技股份有限公司 A kind of cavity lens of quantum dot solution filling and preparation method thereof
CN110650670A (en) * 2017-05-23 2020-01-03 奥林巴斯株式会社 Illumination unit, illumination device, and endoscope system
US10325791B1 (en) * 2017-12-13 2019-06-18 Facebook Technologies, Llc Formation of elastomeric layer on selective regions of light emitting device
US10697612B2 (en) 2018-05-02 2020-06-30 Frank Shum Light distribution for planar photonic component
JP2021534546A (en) * 2018-08-16 2021-12-09 エルジー イノテック カンパニー リミテッド Lighting equipment
CN109445013A (en) * 2018-12-04 2019-03-08 伟时电子股份有限公司 Direct-lighting backlight and its lens light guide plate
CN113007618B (en) 2019-12-19 2023-11-28 隆达电子股份有限公司 Optical element and light-emitting device
CN114935867A (en) * 2022-06-01 2022-08-23 环鸿电子(昆山)有限公司 Light emitting device and lens structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200824897A (en) * 2006-12-01 2008-06-16 Genius Electronic Optical Co Ltd Combination method of the silica-gel lens and carrying holder
TW200936952A (en) * 2008-02-26 2009-09-01 Alliance Optotek Co Ltd Lens element and light emitting apparatus having the same

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187316A (en) * 1983-04-08 1984-10-24 Hoya Corp Multiple focus lens
JPH0678110B2 (en) 1989-10-21 1994-10-05 日本碍子株式会社 Band spreading device for drums
JP3148493B2 (en) * 1994-01-31 2001-03-19 三洋電機株式会社 dishwasher
US6607286B2 (en) 2001-05-04 2003-08-19 Lumileds Lighting, U.S., Llc Lens and lens cap with sawtooth portion for light emitting diode
JP4635494B2 (en) 2004-07-13 2011-02-23 富士ゼロックス株式会社 Light emitting element with lens
KR100677135B1 (en) * 2004-09-25 2007-02-02 삼성전자주식회사 Side emitting device, back light unit using the same as a light source and liquid display apparatus employing it
KR100692432B1 (en) 2005-09-08 2007-03-09 서울반도체 주식회사 Side illumination lens and luminescent device using the same
WO2006080729A1 (en) * 2004-10-07 2006-08-03 Seoul Semiconductor Co., Ltd. Side illumination lens and luminescent device using the same
KR101080355B1 (en) * 2004-10-18 2011-11-04 삼성전자주식회사 Light emitting diode, lens for the same
KR100579397B1 (en) * 2004-12-16 2006-05-12 서울반도체 주식회사 Light emitting diode package employing a heat sink having a direct connection to a lead frame
WO2006065007A1 (en) 2004-12-16 2006-06-22 Seoul Semiconductor Co., Ltd. Leadframe having a heat sink supporting ring, fabricating method of a light emitting diodepackage using the same and light emitting diodepackage fabbricated by the method
TW200635085A (en) * 2005-01-20 2006-10-01 Barnes Group Inc LED assembly having overmolded lens on treated leadframe and method therefor
JP5373244B2 (en) * 2005-02-24 2013-12-18 株式会社朝日ラバー Light-emitting diode lens component and light-emitting diode light source device
JP2006319224A (en) * 2005-05-13 2006-11-24 Citizen Electronics Co Ltd White light emitting diode
KR20060135207A (en) * 2005-06-24 2006-12-29 엘지.필립스 엘시디 주식회사 Light emitting diode lamp improving luminance and backlight assembly using the same
KR100665222B1 (en) * 2005-07-26 2007-01-09 삼성전기주식회사 Led package with diffusing material and method of manufacturing the same
WO2007021149A1 (en) 2005-08-19 2007-02-22 Lg Chem, Ltd. Side emitting lens, light emitting device using the side emitting lens, mold assembly for preparing the side emitting lens and method for preparing the side emitting lens
KR20070021873A (en) 2005-08-19 2007-02-23 주식회사 엘지화학 Side emitting lens and light emitting device using the same
JP2007081063A (en) 2005-09-13 2007-03-29 Citizen Electronics Co Ltd Light-emitting device
DE102005061798A1 (en) 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Lighting arrangement has radiation-emitting diode with two beam-shaping optical elements that deviate part of the light from the optical axis
KR100649758B1 (en) * 2005-11-15 2006-11-27 삼성전기주식회사 Lens for distributing quantity of light and optical emission device using the same
JP4714578B2 (en) * 2005-12-26 2011-06-29 矢崎総業株式会社 Arc-shaped lighting room light guide member and vehicle instrument
DE102006035635A1 (en) * 2006-07-31 2008-02-07 Osram Opto Semiconductors Gmbh lighting arrangement
JP4770676B2 (en) * 2006-09-26 2011-09-14 パナソニック電工株式会社 Light emitting device and lighting apparatus
JP5840823B2 (en) * 2007-03-30 2016-01-06 株式会社朝日ラバー Lens and lighting apparatus having the same
KR100869573B1 (en) 2007-05-29 2008-11-21 삼성전기주식회사 Difussion lense, optical device and lighting apparutus thereof
JP5213383B2 (en) * 2007-08-09 2013-06-19 シャープ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE EQUIPPED WITH THE SAME
JP4820348B2 (en) * 2007-08-31 2011-11-24 株式会社メニコン Contact lens and manufacturing method thereof
KR100908926B1 (en) 2007-09-05 2009-07-23 한국광기술원 LED package and its encapsulation method
KR100947440B1 (en) 2007-09-28 2010-03-12 서울반도체 주식회사 Orientation angle changing lens and light emitting device comprising the same
JP2009176471A (en) * 2008-01-22 2009-08-06 Stanley Electric Co Ltd Lens for led light source
JP2009218243A (en) * 2008-03-07 2009-09-24 Stanley Electric Co Ltd Optical lens, and illuminator and photodetector using the optical lens
KR20090104580A (en) 2008-03-31 2009-10-06 서울반도체 주식회사 Light emitting diode package using printed circuit board
JP4489843B2 (en) * 2008-08-07 2010-06-23 パナソニック株式会社 LIGHTING LENS AND LIGHT EMITTING DEVICE, SURFACE LIGHT SOURCE, AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
JP3148493U (en) * 2008-11-07 2009-02-19 一品光学工業股▲ふん▼有限公司 Convex Fresnel LED lens and its LED assembly
TW201024625A (en) * 2008-12-25 2010-07-01 Alliance Optotek Co Ltd Optical element for illumination device
CN101510581B (en) * 2009-03-19 2011-06-29 旭丽电子(广州)有限公司 LED and relevant backlight module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200824897A (en) * 2006-12-01 2008-06-16 Genius Electronic Optical Co Ltd Combination method of the silica-gel lens and carrying holder
TW200936952A (en) * 2008-02-26 2009-09-01 Alliance Optotek Co Ltd Lens element and light emitting apparatus having the same

Also Published As

Publication number Publication date
US8602605B2 (en) 2013-12-10
US20150204510A1 (en) 2015-07-23
CN105633255A (en) 2016-06-01
WO2011084001A3 (en) 2011-10-27
US20120014115A1 (en) 2012-01-19
TW201140893A (en) 2011-11-16
JP2013516785A (en) 2013-05-13
CN105633255B (en) 2018-10-12
US9022618B2 (en) 2015-05-05
JP5658282B2 (en) 2015-01-21
WO2011084001A2 (en) 2011-07-14
CN102696123B (en) 2016-02-03
US9574737B2 (en) 2017-02-21
CN102696123A (en) 2012-09-26
US20140071696A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
TWI422074B (en) Aspherical led lens and light emitting device including the same
US10139077B2 (en) Optical lens, light emitting module and light unit having the same
US10741729B2 (en) Light emitting apparatus and production method thereof
US9368690B2 (en) Semiconductor light-emitting device
EP2438631B1 (en) Solid state lighting device
US9224925B2 (en) Semiconductor light-emitting device and manufacturing method
KR101144635B1 (en) Aspherical led lens and light emitting device for backlight having the same
US20080112165A1 (en) Light-emitting device
TWI703743B (en) Lighting device and lighting module
TWI464923B (en) Optical emitter and manufacturing method thereof and lighting device
US10014453B2 (en) Semiconductor light-emitting device emitting light mixtures with substantially white tone
KR101644140B1 (en) Led lens having an asymmetric orientation angle pattern and light emitting device having the same
KR101708025B1 (en) Lens and light-emitting device having the same
KR102153082B1 (en) Light emitting apparatus
KR102388371B1 (en) Semiconductor device package
JP6477674B2 (en) Light source device
KR101662308B1 (en) Led lens and light emitting device having the same
KR102160774B1 (en) Light emitting device package and method for mafacturing the same
TW201340417A (en) Light-emitting device