TWI402504B - Biosensor, probe, sensing apparatus, and method for fabricatiing biosensor - Google Patents

Biosensor, probe, sensing apparatus, and method for fabricatiing biosensor Download PDF

Info

Publication number
TWI402504B
TWI402504B TW98122972A TW98122972A TWI402504B TW I402504 B TWI402504 B TW I402504B TW 98122972 A TW98122972 A TW 98122972A TW 98122972 A TW98122972 A TW 98122972A TW I402504 B TWI402504 B TW I402504B
Authority
TW
Taiwan
Prior art keywords
nanowire
dopamine
probe
field effect
effect transistor
Prior art date
Application number
TW98122972A
Other languages
Chinese (zh)
Other versions
TW201102652A (en
Inventor
Yuh Shyong Yang
William Wang
Cheng Hsien Liu
Long Hsu
Chih Heng Lin
Cheng Yun Hsiao
Chung Cheng Chou
Original Assignee
Raydium Semiconductor Corp
Yuh Shyong Yang
Cheng Hsien Liu
Long Hsu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raydium Semiconductor Corp, Yuh Shyong Yang, Cheng Hsien Liu, Long Hsu filed Critical Raydium Semiconductor Corp
Priority to TW98122972A priority Critical patent/TWI402504B/en
Publication of TW201102652A publication Critical patent/TW201102652A/en
Application granted granted Critical
Publication of TWI402504B publication Critical patent/TWI402504B/en

Links

Description

生物感測器、探針、感測設備以及生物感測器製作方法 Biosensor, probe, sensing device, and biosensor manufacturing method

本發明係關於一種用以感測腦中多巴胺濃度之生物感測器以及感測設備,本發明係關於一種利用奈米線場效電晶體構成之生物感測器以及感測設備。 The present invention relates to a biosensor and a sensing device for sensing the concentration of dopamine in the brain. The present invention relates to a biosensor and a sensing device constructed using a nanowire field effect transistor.

人類的腦中具有高達1兆個神經細胞,其間以複雜的神經網路互相連結,並且各神經細胞之間係以化學分子作為訊息的傳導媒介。其中,多巴胺是一種控制大腦功能,例如動作、情緒以及高等認知能力,的重要神經傳導物質。 The human brain has up to 1 trillion nerve cells, which are interconnected by a complex neural network, and each nerve cell uses a chemical molecule as a medium for communication. Among them, dopamine is an important neurotransmitter that controls brain functions such as movement, emotions and higher cognitive abilities.

根據研究所得,腦中的多巴胺濃度不足會令人失去控制肌肉的能力,嚴重者可能會導致帕金森式症。相反地,若多巴胺濃度過高也可能令患者產生幻覺、妄想、煩躁甚至強迫症。因此,腦中的多巴胺濃度需維持於正常範圍內,否則將可能產生上述病症。 According to the research, the lack of dopamine concentration in the brain can make people lose the ability to control muscles, and severe cases may lead to Parkinson's disease. Conversely, if the dopamine concentration is too high, it may cause hallucinations, delusions, irritability, and even obsessive-compulsive disorder. Therefore, the concentration of dopamine in the brain needs to be maintained within the normal range, otherwise the above conditions may occur.

因此,腦中的多巴胺濃度的量測為疾病防治以及腦部研究不可或缺的一環。於先前技術中,一種使用3-氨基丙基三甲氧基甲矽烷以及離子敏感性場效電晶體的多巴胺感測器已被揭露。然而,離子選擇性的場效電晶體其靈敏度並不高(量測範圍約為1 μM),並且由於腦中的多巴胺濃度較低,因此,離子選擇性的場效電晶體並無法準確地反應腦中多巴胺濃度的變化。 Therefore, the measurement of dopamine concentration in the brain is an integral part of disease prevention and brain research. In the prior art, a dopamine sensor using 3-aminopropyltrimethoxymethane and an ion-sensitive field effect transistor has been disclosed. However, ion-selective field-effect transistors are not very sensitive (measurement range is about 1 μM), and ion-selective field-effect transistors do not respond accurately due to the low concentration of dopamine in the brain. Changes in dopamine concentration in the brain.

因此,有必要設計一種具有較高靈敏度的多巴胺濃度生物感測器。 Therefore, it is necessary to design a dopamine concentration biosensor with higher sensitivity.

本發明之一範疇在於提供一種生物感測器以準確感測多巴胺濃度,以解決上述問題。 One aspect of the present invention is to provide a biosensor to accurately sense dopamine concentration to solve the above problems.

根據一具體實施例,本發明之生物感測器包含奈米線場效電晶體、連接官能基以及測試基。其中,奈米線場效電晶體上具有奈米線,官能基則連接於奈米線上,並且測試基連接於連接官能基上。測試基可用以連接多巴胺,奈米線場效電晶體可根據測試基連接多巴胺之數量產生感測訊號。 According to a specific embodiment, the biosensor of the present invention comprises a nanowire field effect transistor, a linking functional group, and a test group. Wherein, the nanowire field effect transistor has a nanowire, the functional group is connected to the nanowire, and the test group is attached to the linking functional group. The test base can be used to connect dopamine, and the nanowire field effect transistor can generate a sensing signal depending on the amount of dopamine attached to the test substrate.

本發明之另一範疇在於提供一種探針,可精準地偵測腦中的多巴胺濃度,以解決先前技術之問題。 Another aspect of the present invention is to provide a probe that accurately detects the concentration of dopamine in the brain to solve the problems of the prior art.

根據一具體實施例,本發明之探針包含探針本體以及生物探測器,其中生物探測器係設置於探針本體之針尖上並透過針尖電連接探針本體。生物感測器可包含奈米場效電晶體、連接官能基以及測試基,其中,連接官能基連接於奈米線場效電晶體之奈米線上,並且測試基連接於連接官能基上。 According to a specific embodiment, the probe of the present invention comprises a probe body and a biodetector, wherein the biodetector is disposed on the tip of the probe body and electrically connected to the probe body through the tip. The biosensor can comprise a nano field effect transistor, a linking functional group, and a test group, wherein the linking functional group is attached to the nanowire of the nanowire field effect transistor, and the test substrate is attached to the linking functional group.

於本具體實施例中,測試基可用以連接多巴胺,奈米線場效電晶體則可根據測試基連接多巴胺之數量產生感測訊號。於實務中,奈米線場效電晶體所產生之感測訊號可透過針尖以及探針本體傳送至外部電子裝置以進行感測。 因此,本具體實施例之探針可用來感測腦中的多巴胺濃度。 In this embodiment, the test substrate can be used to connect dopamine, and the nanowire field effect transistor can generate a sensing signal according to the amount of dopamine attached to the test substrate. In practice, the sensing signal generated by the nanowire field effect transistor can be transmitted to the external electronic device through the tip and the probe body for sensing. Thus, the probe of this embodiment can be used to sense dopamine concentrations in the brain.

本發明之另一範疇在於提供一種感測設備,可精準地偵測腦中的多巴胺濃度,以解決先前技術之問題。 Another aspect of the present invention is to provide a sensing device that accurately detects the concentration of dopamine in the brain to solve the problems of the prior art.

根據一具體實施例,本發明之感測設備包含探針、生物感測器以及資料處理裝置。生物感測器係設置於探針的針尖上,並且探針連接到資料處理裝置上。 According to a specific embodiment, the sensing device of the present invention comprises a probe, a biosensor, and a data processing device. The biosensor is placed on the tip of the probe and the probe is attached to the data processing device.

於本具體實施例中,生物探測器包含奈米線場效電晶體、連接官能基以及測試基,其中連接官能基連接至奈米線場效電晶體上之奈米線,並且測試基連接至連接官能基上。測試基可用以連接腦中的多巴胺。當測試基連接多巴胺時,奈米線場效電晶體可根據測試基所連接之多巴胺數量產生感測訊號,並透過探針將感到訊號傳送至資料處理裝置,接著資料處理裝置可根據感測訊號判斷腦中的多巴胺濃度。 In this embodiment, the biodetector comprises a nanowire field effect transistor, a linking functional group, and a test group, wherein the linking functional group is attached to the nanowire on the nanowire field effect transistor, and the test substrate is connected to Attached to a functional group. Test sites can be used to link dopamine in the brain. When the test base is connected with dopamine, the nanowire field effect transistor can generate a sensing signal according to the amount of dopamine connected to the test base, and transmit the sensor signal to the data processing device through the probe, and then the data processing device can be based on the sensing signal Determine the concentration of dopamine in the brain.

本發明之另一範疇在於提供一種生物感測器製作方法。應用此方法作製作出之生物感測器可精確地感測腦中的多巴胺濃度,進而解決先前技術之問題。 Another aspect of the present invention is to provide a method of fabricating a biosensor. The biosensor fabricated by this method can accurately sense the concentration of dopamine in the brain, thereby solving the problems of the prior art.

根據一具體實施例,本發明之生物感測器製作方法包含以下步驟:首先,將連接官能基連接於奈米線場效電晶體之奈米線的表面上;接著,將可用來連接多巴胺之測試基連接至連接官能基上,以形成生物感測器。 According to a specific embodiment, the biosensor manufacturing method of the present invention comprises the steps of: first, attaching a linking functional group to a surface of a nanowire of a nanowire field effect transistor; and then, connecting the dopamine The test substrate is attached to a linking functional group to form a biosensor.

關於本發明之優點與精神可以藉由以下的發明詳述及 所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention can be as detailed by the following invention and The drawings are further understood.

請參閱圖一,圖一係繪示根據本發明之一具體實施例之生物感測器1的示意圖。如圖一所示,生物感測器1包含奈米線場效電晶體10、連接官能基12以及測試基14,其中奈米線場效電晶體10上設置有奈米線100,連接官能基12則連接於奈米線100之表面上。此外,測試基14係連接於連接官能基12之上。請注意,為了圖面簡潔起見,圖一僅繪示一側之奈米線100上連接測試基14以及連接官能基12,但於實務中,另一側之奈米線100亦可連接測試基14以及連接官能基12。 Referring to FIG. 1, FIG. 1 is a schematic diagram of a biosensor 1 according to an embodiment of the present invention. As shown in FIG. 1, the biosensor 1 comprises a nanowire field effect transistor 10, a linking functional group 12, and a test base 14, wherein the nanowire field effect transistor 10 is provided with a nanowire 100, and a functional group is attached. 12 is attached to the surface of the nanowire 100. In addition, test substrate 14 is attached to a linking functional group 12. Please note that for the sake of simplicity of the drawing, only the one side of the nanowire 100 is connected to the test substrate 14 and the functional group 12 is connected. However, in practice, the other side of the nanowire 100 can also be connected for testing. The group 14 and the linking functional group 12.

於實務中,奈米線100兩端可連接兩電極作為此奈米線場效電晶體10之汲極以及源極。當奈米線100之性質改變時,奈米線場效電晶體10會改變其電氣特性進而產生訊號變化。舉例而言,當奈米線表面連接有不同物質時,奈米線的導電性可能根據其連接物質的數量產生變化致使奈米線場效電晶體處於不同的操作狀態。 In practice, two electrodes can be connected at both ends of the nanowire 100 as the drain and source of the nanowire field effect transistor 10. When the nature of the nanowire 100 changes, the nanowire field effect transistor 10 changes its electrical characteristics to produce a signal change. For example, when the surface of the nanowire is connected with different substances, the conductivity of the nanowire may change according to the amount of the connecting substance, so that the nanowire field effect transistor is in different operating states.

於本具體實施例中,奈米線100可為矽奈米線,連接官能基12可為3-氨基丙基三乙氧基甲矽烷,並且測試基14可為4-羥基苯硼酸,然而,本發明對此並不加以限制。連接官能基12(3-氨基丙基三乙氧基甲矽烷)中的矽基可與矽奈米線100表面的氧基鍵結,此外,連接官能基12中的氨基可與測試基14(4-羥基苯硼酸)的羧基鍵結。測試基14可連接多巴胺,並且當測試基14連接多巴胺 時,奈米線100的導電性會改變導致奈米線場效電晶體10產生一訊號。請注意,奈米線100上所連接之連接官能基12以及測試基14的數量於實務中可依據使用者或設計者需求而定,並不限定於本具體實施例。當越多的測試基14連接多巴胺時,奈米線100之特性改變得越明顯,同樣地亦會改變奈米線場效電晶體10所產生之訊號。 In this embodiment, the nanowire 100 can be a nanowire, the linking functional group 12 can be 3-aminopropyltriethoxymethane, and the test group 14 can be 4-hydroxybenzeneboronic acid. The invention is not limited thereto. The thiol group in the linking functional group 12 (3-aminopropyltriethoxymethane) can be bonded to the oxy group on the surface of the nanowire 100, and in addition, the amino group in the linking functional group 12 can be bonded to the test group 14 ( Carboxyl linkage of 4-hydroxybenzeneboronic acid). Test group 14 can be attached to dopamine and when test group 14 is linked to dopamine At this time, the conductivity of the nanowire 100 changes to cause the nanowire field effect transistor 10 to generate a signal. Please note that the number of the linking functional groups 12 and the test groups 14 connected to the nanowire 100 can be determined according to the needs of the user or the designer in practice, and is not limited to the specific embodiment. The more the test group 14 is attached to the dopamine, the more pronounced the characteristics of the nanowire 100 change, as well as the signal generated by the nanowire field effect transistor 10.

請再參閱圖一,圖一之奈米場效電晶體10進一步包含基板102、介電層104以及支撐結構106,其中,介電層104係覆蓋於基板102上,並且支撐結構106係設置於介電層104之上。奈米線100係設置於支撐結構106之兩側並由支撐結構106所支撐。於實務中,奈米線的形成可先對支撐結構及其周圍沈積奈米線之材料,例如,若所需求之奈米線材料為矽,則沈積矽材料層於支撐結構及其周圍。接著,對支撐結構及其周圍之材料層進行蝕刻,其中,位於鄰近支撐結構底部之材料層於蝕刻過後會根據蝕刻方法以及其參數而殘留不同份量。由於支撐結構於本具體實施例中為長條狀,因此沿著支撐結構底部延伸並殘留下來的材料會形成長條形的奈米線。請注意,於實務中,上述奈米線場效電晶體也可具有不同結構,並不限定於本發明所列舉之具體實施例。更甚者,奈米線場效電晶體亦可以奈米碳管場效電晶體取代,其端看使用者或設計者需求而定。 Referring to FIG. 1 again, the nano field effect transistor 10 further includes a substrate 102, a dielectric layer 104, and a support structure 106, wherein the dielectric layer 104 covers the substrate 102, and the support structure 106 is disposed on Above the dielectric layer 104. The nanowires 100 are disposed on both sides of the support structure 106 and supported by the support structure 106. In practice, the formation of the nanowires may first deposit the material of the nanowires around the support structure and its surroundings. For example, if the desired nanowire material is tantalum, a layer of tantalum material is deposited on and around the support structure. Next, the support structure and the material layer around it are etched, wherein the material layer located near the bottom of the support structure remains different after the etching according to the etching method and its parameters. Since the support structure is elongated in this embodiment, the material extending along the bottom of the support structure and remaining may form elongated strips of nanowires. Please note that in practice, the above-described nanowire field effect transistors may have different structures and are not limited to the specific embodiments of the present invention. What's more, the nanowire field effect transistor can also be replaced by a carbon nanotube field effect transistor, depending on the needs of the user or the designer.

於上述具體實施例中,生物感測器1之奈米線場效電晶體10可以根據測試基14連接多巴胺之數量改變所產生之訊號。因此,其可用於感測腦中的多巴胺濃度。 In the above specific embodiment, the nanowire field effect transistor 10 of the biosensor 1 can change the signal generated according to the number of dopamine connected to the test substrate 14. Therefore, it can be used to sense the concentration of dopamine in the brain.

請參閱圖二,圖二係繪示根據本發明之另一具體實施例之探針2的示意圖。探針2可用來作為腦探針,以探測腦中之多巴胺濃度。如圖二所示,探針2包含探針本體20以及生物感測器22,其中,生物感測器22係設置於探針本體20之針尖上。 Referring to FIG. 2, FIG. 2 is a schematic diagram of a probe 2 according to another embodiment of the present invention. Probe 2 can be used as a brain probe to detect dopamine concentrations in the brain. As shown in FIG. 2, the probe 2 includes a probe body 20 and a biosensor 22, wherein the biosensor 22 is disposed on the tip of the probe body 20.

於本具體實施例中,生物感測器22進一步包含奈米線場效電晶體220、連接官能基222以及測試基224。連接官能基222係連接於奈米線場效電晶體220之奈米線2200上,測試基224則連接於連接官能基222上,並且,測試基224之另一端可連接多巴胺。奈米線場效電晶體220可透過針尖與探針本體20電連接。請注意,本具體實施例之生物感測器22係與上一具體實施例之生物感測器1大體上相同,於此不再贅述。因此,當生物感測器22之測試基224連接多巴胺時,奈米線場效電晶體220所產生之感測訊號可傳至探針本體20。 In the present embodiment, biosensor 22 further includes a nanowire field effect transistor 220, a linking functional group 222, and a test substrate 224. The linking functional group 222 is attached to the nanowire 2200 of the nanowire field effect transistor 220, the test substrate 224 is attached to the linking functional group 222, and the other end of the test substrate 224 is linked to dopamine. The nanowire field effect transistor 220 can be electrically connected to the probe body 20 through the tip of the needle. Please note that the biosensor 22 of the present embodiment is substantially the same as the biosensor 1 of the previous embodiment, and details are not described herein again. Therefore, when the test base 224 of the biosensor 22 is connected to the dopamine, the sensing signal generated by the nanowire field effect transistor 220 can be transmitted to the probe body 20.

上述具體實施例之探針2還可進一步連接到一感測設備,以處理生物感測器所產生之感測訊號進而判斷多巴胺濃度。請參閱圖三,圖三係繪示根據本發明之另一具體實施例之感測設備3的示意圖。如圖三所示,感測設備3包含探針30、生物感測器32以及資料處理裝置34。 The probe 2 of the above specific embodiment can be further connected to a sensing device to process the sensing signal generated by the biosensor to determine the dopamine concentration. Referring to FIG. 3, FIG. 3 is a schematic diagram of a sensing device 3 according to another embodiment of the present invention. As shown in FIG. 3, the sensing device 3 includes a probe 30, a biosensor 32, and a data processing device 34.

於本具體實施例中,生物感測器32係設置於探針30本體之針尖上,並且生物感測器32包含奈米場效電晶體320、連接官能基322以及測試基324。同樣地,連接官能基322係連接於奈米線場效電晶體320之奈米線3200 上,測試基324則連接於連接官能基322上,並且,測試基324之另一端可連接多巴胺。由於本具體實施例之生物感測器32係與上述具體實施例之生物感測器1、22大體上相同,故於此不再贅述。奈米場效電晶體320可透過探針30之針尖以及本體與資料處理裝置34電連接。 In the present embodiment, the biosensor 32 is disposed on the tip of the probe 30 body, and the biosensor 32 includes a nano field effect transistor 320, a connection functional group 322, and a test base 324. Similarly, the linking functional group 322 is attached to the nanowire 3200 of the nanowire field effect transistor 320. The test group 324 is attached to the linking functional group 322, and the other end of the test group 324 is linked to dopamine. Since the biosensor 32 of the present embodiment is substantially the same as the biosensors 1 and 22 of the above specific embodiment, it will not be described herein. The nano field effect transistor 320 is electrically coupled to the data processing device 34 through the tip of the probe 30 and the body.

於本具體實施例中,當測試基324連接多巴胺時,奈米場效電晶體320可根據測試基324所連接之多巴胺數量產生感測訊號,並且,此感測訊號可透過探針30傳送至資料處理裝置34。資料處理裝置34可根據所接收到的感測訊號來判斷多巴胺濃度。於實務中,本發明之感測設備所能感測的多巴胺濃度範圍可為1fM~1pM(亦即,10-15M~10-12M),因此可精確地感測多巴胺濃度,並且適用於腦中的多巴胺濃度感測。 In the present embodiment, when the test substrate 324 is connected to the dopamine, the nano field effect transistor 320 can generate a sensing signal according to the amount of dopamine to which the test substrate 324 is connected, and the sensing signal can be transmitted to the probe 30 to the probe 30. Data processing device 34. The data processing device 34 can determine the dopamine concentration based on the received sensing signal. In practice, the sensing device of the present invention can sense a dopamine concentration ranging from 1 fM to 1 pM (ie, 10 -15 M to 10 -12 M), thereby accurately sensing dopamine concentration and is suitable for use in Dopamine concentration sensing in the brain.

此外,請參閱圖四A。圖四A係繪示根據本發明之另一具體實施例之感測設備4的示意圖。如圖四A所示,本具體實施例與上述具體實施例不同處,在於本具體實施例之感測設備4進一步包含警示裝置46連接資料處理裝置44。當所判斷出之多巴胺濃度高於第一預設值時,資料處理裝置44可發送第一控制訊號以控制警示裝置46發送第一警示訊號。另一方面,若所判斷出之多巴胺濃度低於第二預設值時,資料處理裝置44可發送第二控制訊號以控制警示裝置46發送第二警示訊號。於實務中,第一預設值以及第二預設值可根據腦中的正常多巴胺濃度範圍來設定,因此,當資料處理裝置判斷出腦中的多巴胺濃度不正常時,即可控制警示裝置通知醫護或其他相 關人員。請注意,本具體實施例之感測設備4的其他單元(探針40、生物感測器42以及資料處理裝置44等)係與上述具體實施例之相對應單元大體上相同,故於此不再贅述。 In addition, please refer to Figure 4A. Figure 4A is a schematic illustration of a sensing device 4 in accordance with another embodiment of the present invention. As shown in FIG. 4A, the specific embodiment differs from the above specific embodiment in that the sensing device 4 of the specific embodiment further includes an alerting device 46 connected to the data processing device 44. When the determined dopamine concentration is higher than the first predetermined value, the data processing device 44 may send the first control signal to control the alert device 46 to send the first alert signal. On the other hand, if the determined dopamine concentration is lower than the second predetermined value, the data processing device 44 can transmit the second control signal to control the alert device 46 to send the second alert signal. In practice, the first preset value and the second preset value may be set according to the normal dopamine concentration range in the brain. Therefore, when the data processing device determines that the dopamine concentration in the brain is abnormal, the warning device notification can be controlled. Medical care or other phase Close personnel. Please note that other units of the sensing device 4 of the present embodiment (the probe 40, the biosensor 42 and the data processing device 44, etc.) are substantially the same as the corresponding units of the above specific embodiments, so Let me repeat.

請參閱圖四B,圖四B係繪示根據本發明之另一具體實施例之感測設備5的示意圖。如圖五所示,本具體實施例與上述具體實施例不同處,在於本具體實施例之感測設備5進一步包含回饋裝置58連接資料處理裝置54。資料處理裝置54可根據所判斷出之多巴胺濃度發送第三控制訊號致使回饋裝置58對多巴胺濃度進行回饋控制。舉例而言,當資料處理裝置54判斷腦中的多巴胺濃度過高時,回饋裝置58可降低腦中的多巴胺濃度,另一方面,當資料處理裝置54判斷腦中的多巴胺濃度過低時,回饋裝置58可提升腦中的多巴胺濃度。上述回饋控制於實務中可由資料處理裝置54自行判斷並控制,也可結合前一具體實施例之警示裝置46以通知醫護人員並由醫護人員手動控制。同樣地,本具體實施例之感測設備5的其他單元(探針50、生物感測器52以及資料處理裝置54等)係與上述具體實施例之相對應單元大體上相同,故於此不再贅述。 Please refer to FIG. 4B. FIG. 4B is a schematic diagram of the sensing device 5 according to another embodiment of the present invention. As shown in FIG. 5, the specific embodiment is different from the above specific embodiment in that the sensing device 5 of the specific embodiment further includes a feedback device 58 connected to the data processing device 54. The data processing device 54 can send a third control signal based on the determined dopamine concentration to cause the feedback device 58 to feedback control the dopamine concentration. For example, when the data processing device 54 determines that the dopamine concentration in the brain is too high, the feedback device 58 can reduce the dopamine concentration in the brain, and on the other hand, when the data processing device 54 determines that the dopamine concentration in the brain is too low, feedback Device 58 can increase the concentration of dopamine in the brain. The above-mentioned feedback control can be judged and controlled by the data processing device 54 in practice, or can be combined with the warning device 46 of the previous embodiment to notify the medical staff and manually controlled by the medical staff. Similarly, other units of the sensing device 5 of the present embodiment (probe 50, biosensor 52, data processing device 54, etc.) are substantially the same as the corresponding units of the above specific embodiments, so Let me repeat.

請注意,上述各具體實施例間的訊號傳遞,皆可透過有線或無線傳輸的方式來進行,本發明並不對此加以限制。 It should be noted that the signal transmission between the above specific embodiments can be performed by wired or wireless transmission, and the present invention does not limit this.

請一併參閱圖一以及圖五,圖五係繪示根據本發明之 一具體實施例之生物感測器製作方法的步驟流程圖,該方法可用以製作如圖一所示之生物感測器1。以下藉由圖一之生物感測器1說明本具體實施例之方法的流程步驟。 Please refer to FIG. 1 and FIG. 5 together. FIG. 5 is a diagram showing the invention according to the present invention. A flow chart of the steps of a biosensor manufacturing method of a specific embodiment, which can be used to fabricate the biosensor 1 as shown in FIG. The flow steps of the method of the specific embodiment are illustrated by the biosensor 1 of FIG.

如圖五所示,本具體實施例之方法包含如下述之步驟。於步驟S60,以含有3-氨基丙基三乙氧基甲矽烷(APTES)之酒精溶液處理奈米線場效電晶體10之奈米線100之表面,進而將APTES連接於奈米線100之表面。其中,連接於奈米線100上之APTES即為圖一所示之連接官能基12。於實務中,可使用具有2% APTES濃度的酒精水溶液於奈米線100表面反應30分鐘,然而本發明並不以此為限。 As shown in Figure 5, the method of this embodiment includes the steps as described below. In step S60, the surface of the nanowire 100 of the nanowire field effect transistor 10 is treated with an alcohol solution containing 3-aminopropyltriethoxymethane (APTES), and then the APTES is connected to the nanowire 100. surface. Among them, the APTES attached to the nanowire 100 is the linking functional group 12 shown in FIG. In practice, the surface of the nanowire 100 can be reacted for 30 minutes using an aqueous alcohol solution having a 2% APTES concentration, although the invention is not limited thereto.

於步驟S62,藉由交鍵劑的輔助將4-羥基苯硼酸(CPBA)連接於APTES的氨基上以形成生物感測器1。其中,連接於APTES上之CPBA即為圖一所示之測試基14。 In step S62, 4-hydroxybenzeneboronic acid (CPBA) is attached to the amino group of APTES by the aid of a crosslinking agent to form biosensor 1. The CPBA connected to the APTES is the test base 14 shown in FIG.

於步驟S64,將奈米線場效電晶體設置於探針之針尖上。步驟S64可整合生物感測器1於腦探針上而可直接用來進行腦中之多巴胺濃度感測。請注意,本發明並不限定步驟S64之順序,舉例而言,奈米線場效電晶體可先設置於探針再於其奈米線上連接測試基以及連接官能基,亦可先連接測試基以及連接官能基於奈米線的表面再設置奈米線場效電晶體於探針上。 In step S64, the nanowire field effect transistor is placed on the tip of the probe. Step S64 can integrate the biosensor 1 on the brain probe and can be directly used to perform dopamine concentration sensing in the brain. Please note that the present invention does not limit the sequence of step S64. For example, the nanowire field effect transistor can be first placed on the probe and then connected to the test substrate and the functional group on the nanowire, or the test base can be connected first. And the surface of the nanowire-based device is connected to the probe and the nanowire field effect transistor is placed on the probe.

請參閱圖六,圖六係繪示圖五之方法所製作出之生物感測器7連接多巴胺分子8的部分示意圖。如圖六所示, 連接官能基72(APTES)之一端連接於感測器7之多晶矽奈米線70上,並且連接官能基72之另一端則連接測試基74(CPBA)。測試基74可連接多巴胺分子8,並且當試基74連接多巴胺分子8時,奈米線場效電晶體(為了圖面簡潔起見,圖六並未繪示出奈米場效電晶體)根據所連接之多巴胺分子8的數量產生感測訊號。 Referring to FIG. 6 , FIG. 6 is a partial schematic diagram showing the connection of the dopamine molecule 8 by the biosensor 7 produced by the method of FIG. 5 . As shown in Figure 6, One end of the linking functional group 72 (APTES) is attached to the polycrystalline silicon nanowire 70 of the sensor 7, and the other end of the linking functional group 72 is coupled to a test substrate 74 (CPBA). The test base 74 can be attached to the dopamine molecule 8, and when the test group 74 is attached to the dopamine molecule 8, the nanowire field effect transistor (for the sake of simplicity of the drawing, FIG. 6 does not depict the nano field effect transistor) The number of connected dopamine molecules 8 produces a sensing signal.

相較於先前技術,應用奈米線場效電晶體所製成之生物感測器可靈敏地感測到多巴胺,因此可用在腦探針等需要精確量測之儀器。此外,結合此生物感測器、探針以及資料處理裝置的感測設備可即時監測患者腦內的多巴胺濃度,更甚者,此種感測設備還可用以調節腦內多巴胺濃度以預防因多巴胺濃度失調而造成的疾病。 Compared with the prior art, a biosensor made of a nanowire field effect transistor can sensitively sense dopamine, and thus can be used in an instrument such as a brain probe that requires accurate measurement. In addition, the sensing device combined with the biosensor, probe and data processing device can instantly monitor the dopamine concentration in the brain of the patient. Moreover, the sensing device can also be used to adjust the concentration of dopamine in the brain to prevent dopamine. A disease caused by a concentration imbalance.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。因此,本發明所申請之專利範圍的範疇應該根據上述的說明作最寬廣的解釋,以致使其涵蓋所有可能的改變以及具相等性的安排。 The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed. Therefore, the scope of the patented scope of the invention should be construed as broadly construed in the

1、22、32、42、52、7‧‧‧生物感測器 1, 22, 32, 42, 52, 7‧‧‧ biosensors

10、220、320、420、520‧‧‧奈米線場效電晶體 10, 220, 320, 420, 520‧‧‧ nanometer field effect transistor

12、222、322、422、522、72‧‧‧連接官能基 12, 222, 322, 422, 522, 72‧‧‧ linkage functional groups

14、224、324、424、524、74‧‧‧測試基 14, 224, 324, 424, 524, 74‧‧‧ test base

100、2200、3200、4200、5200、70‧‧‧奈米線 100, 2200, 3200, 4200, 5200, 70‧‧‧ nanowires

102‧‧‧基板 102‧‧‧Substrate

104‧‧‧介電層 104‧‧‧ dielectric layer

106‧‧‧支撐結構 106‧‧‧Support structure

2、30、40、50‧‧‧探針 2, 30, 40, 50‧ ‧ probe

20‧‧‧探針本體 20‧‧‧ probe body

3、4、5‧‧‧感測設備 3, 4, 5‧‧‧ sensing equipment

34、44、54‧‧‧資料處理裝置 34, 44, 54‧‧‧ data processing equipment

46‧‧‧警示裝置 46‧‧‧Warning device

58‧‧‧回饋裝置 58‧‧‧Return device

S60~S64‧‧‧流程步驟 S60~S64‧‧‧ Process steps

8‧‧‧多巴胺分子 8‧‧‧Dopamine molecule

圖一係繪示根據本發明之一具體實施例之生物感測器的示意圖。 1 is a schematic diagram of a biosensor according to an embodiment of the present invention.

圖二係繪示根據本發明之另一具體實施例之探針的示意圖。 Figure 2 is a schematic illustration of a probe in accordance with another embodiment of the present invention.

圖三係繪示根據本發明之另一具體實施例之感測設備的示意圖。 3 is a schematic diagram of a sensing device in accordance with another embodiment of the present invention.

圖四A係繪示根據本發明之另一具體實施例之感測設備的示意圖。 4A is a schematic diagram of a sensing device in accordance with another embodiment of the present invention.

圖四B係繪示根據本發明之另一具體實施例之感測設備的示意圖。 Figure 4B is a schematic diagram of a sensing device in accordance with another embodiment of the present invention.

圖五係繪示根據本發明之一具體實施例之生物感測器製作方法的步驟流程圖。 FIG. 5 is a flow chart showing the steps of a method for fabricating a biosensor according to an embodiment of the present invention.

圖六係繪示圖五之方法所製作出之生物感測器連接多巴胺分子的部分示意圖。 Figure 6 is a partial schematic view showing the biosensor connected to the dopamine molecule produced by the method of Figure 5.

1‧‧‧生物感測器 1‧‧‧Biosensor

10‧‧‧奈米線場效電晶體 10‧‧‧Nano line field effect transistor

12‧‧‧連接官能基 12‧‧‧Connecting functional groups

14‧‧‧測試基 14‧‧‧Test base

100‧‧‧奈米線 100‧‧‧Nami Line

102‧‧‧基板 102‧‧‧Substrate

104‧‧‧介電層 104‧‧‧ dielectric layer

106‧‧‧支撐結構 106‧‧‧Support structure

Claims (14)

一種探針,用以偵測腦中之一多巴胺濃度,該探針包含:一探針本體,包含一針尖;以及一生物感測器,設置於該針尖,該生物感測器包含:一奈米線場效電晶體,透過該針尖與該探針本體電連接,該奈米線場效電晶體具有一奈米線;一連接官能基,連接該奈米線;以及一測試基,連接於該連接官能基,該測試基係用以連接至少一多巴胺;其中,當該測試基連接該至少一多巴胺時,該奈米線場效電晶體根據該至少一多巴胺之數量產生一感測訊號。 A probe for detecting a concentration of dopamine in the brain, the probe comprising: a probe body including a tip; and a biosensor disposed on the tip, the biosensor comprising: a rice-line field effect transistor electrically connected to the probe body through the tip of the probe, the nanowire field effect transistor having a nanowire; a connecting functional group connecting the nanowire; and a test base connected to The linking functional group is used to connect at least one dopamine; wherein, when the test group is linked to the at least one dopamine, the nanowire field effect transistor generates a sensing signal according to the amount of the at least one dopamine. 如申請專利範圍第1項所述之探針,其中該連接官能基係3-氨基丙基三乙氧基甲矽烷。 The probe of claim 1, wherein the linking functional group is 3-aminopropyltriethoxymethane. 如申請專利範圍第1項所述之探針,其中該測試基係4-羥基苯硼酸。 The probe of claim 1, wherein the test is 4-hydroxybenzeneboronic acid. 如申請專利範圍第1項所述之探針,其中該奈米線場效電晶體進一步包含:一基板;一介電層,覆蓋於該基板上;以及一支撐結構,設置於介電層上,該奈米線係設置於該支撐結構之側邊以及該介電層之上。 The probe of claim 1, wherein the nanowire field effect transistor further comprises: a substrate; a dielectric layer covering the substrate; and a support structure disposed on the dielectric layer The nanowire is disposed on a side of the support structure and above the dielectric layer. 一種感測設備,用以感測腦中之一多巴胺濃度,該感測設備包含: 一探針,包含一探針本體,該探針本體具有一針尖;一生物感測器,設置於該針尖,該生物感測器包含:一奈米線場效電晶體,透過該針尖與該探針本體電連接,該奈米線場效電晶體具有一奈米線;一連接官能基,連接該奈米線;以及一測試基,連接於該連接官能基,該測試基係用以連接腦中之至少一多巴胺;以及一資料處理裝置,連接該探針;其中,當該測試基連接該至少一多巴胺時,該奈米線場效電晶體根據該至少一多巴胺之數量產生一感測訊號,並透過該探針傳送該感測訊號至該資料處理裝置,該資料處理裝置根據該感測訊號判斷該多巴胺濃度。 A sensing device for sensing a concentration of dopamine in the brain, the sensing device comprising: a probe comprising a probe body having a tip; a biosensor disposed on the tip, the biosensor comprising: a nanowire field effect transistor through which the tip The probe body is electrically connected, the nanowire field effect transistor has a nanowire; a connecting functional group is connected to the nanowire; and a test base is connected to the connecting functional group, and the test base is used for connecting At least one dopamine in the brain; and a data processing device coupled to the probe; wherein the nanowire field effect transistor generates a sensing based on the amount of the at least one dopamine when the test group is attached to the at least one dopamine And transmitting, by the probe, the sensing signal to the data processing device, the data processing device determining the dopamine concentration according to the sensing signal. 如申請專利範圍第5項所述之感測設備,其中該連接官能基係3-氨基丙基三乙氧基甲矽烷。 The sensing device of claim 5, wherein the linking functional group is 3-aminopropyltriethoxymethane. 如申請專利範圍第5項所述之感測設備,其中該測試基係4-羥基苯硼酸。 The sensing device of claim 5, wherein the test is 4-hydroxybenzeneboronic acid. 如申請專利範圍第5項所述之感測設備,其中該奈米線場效電晶體進一步包含:一基板;一介電層,覆蓋於該基板上;以及一支撐結構,設置於介電層上,該奈米線係設置於該支撐結構之側邊以及該介電層之上。 The sensing device of claim 5, wherein the nanowire field effect transistor further comprises: a substrate; a dielectric layer covering the substrate; and a support structure disposed on the dielectric layer The nanowire is disposed on a side of the support structure and above the dielectric layer. 如申請專利範圍第5項所述之感測設備,進一步包含一警示裝置連接該資料處理裝置,當該資料處理裝置判斷該 多巴胺濃度高於一第一預設值時發送一第一控制訊號,並且該警示裝置根據該第一控制訊號發送一第一警示訊號。 The sensing device of claim 5, further comprising a warning device connected to the data processing device, when the data processing device determines The first control signal is sent when the dopamine concentration is higher than a first preset value, and the warning device sends a first warning signal according to the first control signal. 如申請專利範圍第5項所述之感測設備,進一步包含一警示裝置連接該資料處理裝置,當該資料處理裝置判斷該多巴胺濃度低於一第二預設值時發送一第二控制訊號,並且該警示裝置根據該第二控制訊號發送一第二警示訊號。 The sensing device of claim 5, further comprising a warning device connected to the data processing device, and transmitting a second control signal when the data processing device determines that the dopamine concentration is lower than a second preset value, And the alerting device sends a second alert signal according to the second control signal. 如申請專利範圍第5項所述之感測設備,進一步包含一回饋裝置連接該資料處理裝置,該資料處理裝置根據所判斷出之該多巴胺濃度發送一第三控制訊號,並且該回饋裝置根據該第三控制訊號回饋控制該多巴胺濃度。 The sensing device of claim 5, further comprising a feedback device connected to the data processing device, the data processing device transmitting a third control signal according to the determined dopamine concentration, and the feedback device is The third control signal feedback controls the dopamine concentration. 一種探針製作方法,用以製作一探針,該探針係用以感測腦中之一多巴胺濃度,該方法包含下列步驟:將一3-氨基丙基三乙氧基甲矽烷連接於一奈米線場效電晶體之一奈米線之表面;將一4-羥基苯硼酸連接於該3-氨基丙基三乙氧基甲矽烷之一末端胺基以形成該生物感測器;以及設置該奈米線場效電晶體於一探針之一針尖。 A probe making method for making a probe for sensing a concentration of dopamine in the brain, the method comprising the steps of: attaching a 3-aminopropyltriethoxymethane to one a surface of a nanowire of a nanowire field effect transistor; a 4-hydroxyphenylboronic acid attached to one of the terminal amino groups of the 3-aminopropyltriethoxymethane to form the biosensor; The nanowire field effect transistor is placed on one of the probe tips. 如申請專利範圍第12項所述之方法,進一步包含下列步驟:以含有該3-氨基丙基三乙氧基甲矽烷之一酒精溶液處理該奈米線之表面,進而將該3-氨基丙基三乙氧基甲矽烷連接於該奈米線之表面。 The method of claim 12, further comprising the step of treating the surface of the nanowire with an alcohol solution containing one of the 3-aminopropyltriethoxymethane, and then the 3-aminopropane A triethoxymethoxymethane is attached to the surface of the nanowire. 如申請專利範圍第12項所述之方法,進一步包含下列步驟:以一交鍵劑輔助該4-羥基苯硼酸連接於該3-氨基丙基三乙氧基甲矽烷之該末端胺基。 The method of claim 12, further comprising the step of assisting attachment of the 4-hydroxybenzeneboronic acid to the terminal amine group of the 3-aminopropyltriethoxymethane by a crosslinking agent.
TW98122972A 2009-07-07 2009-07-07 Biosensor, probe, sensing apparatus, and method for fabricatiing biosensor TWI402504B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98122972A TWI402504B (en) 2009-07-07 2009-07-07 Biosensor, probe, sensing apparatus, and method for fabricatiing biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98122972A TWI402504B (en) 2009-07-07 2009-07-07 Biosensor, probe, sensing apparatus, and method for fabricatiing biosensor

Publications (2)

Publication Number Publication Date
TW201102652A TW201102652A (en) 2011-01-16
TWI402504B true TWI402504B (en) 2013-07-21

Family

ID=44837520

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122972A TWI402504B (en) 2009-07-07 2009-07-07 Biosensor, probe, sensing apparatus, and method for fabricatiing biosensor

Country Status (1)

Country Link
TW (1) TWI402504B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708736B (en) * 2017-12-28 2020-11-01 中央研究院 Nanowire field effect transistor detection device and the detection method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060009805A1 (en) * 2004-04-26 2006-01-12 Ralph Jensen Neural stimulation device employing renewable chemical stimulation
US20060079740A1 (en) * 2000-05-15 2006-04-13 Silver James H Sensors for detecting substances indicative of stroke, ischemia, or myocardial infarction
TW201040282A (en) * 2009-05-05 2010-11-16 Nat Univ Tsing Hua Utilizing shield effect for dopamine detection and reagent development

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060079740A1 (en) * 2000-05-15 2006-04-13 Silver James H Sensors for detecting substances indicative of stroke, ischemia, or myocardial infarction
US20060009805A1 (en) * 2004-04-26 2006-01-12 Ralph Jensen Neural stimulation device employing renewable chemical stimulation
TW201040282A (en) * 2009-05-05 2010-11-16 Nat Univ Tsing Hua Utilizing shield effect for dopamine detection and reagent development

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lin, Chih-Heng; Hsiao,Cheng-Yun; Hung, Cheng-Che; Lee, Chun-Jung; Su,Horng-Chin; Lin,Fu-Hsiang; Ko,Tiao-Yuan; Huang, Cheng-Hsiung; Yang, Yuh-Shyong; 'An Ultrasensitive Biosensor for Highly Specific Detection of the Neurotransmitter Dopamine’, Proceedings of the 4th Asia Pacific Conference on Transducers and Micro-Nano Technologies (APCOT 2008), National Cheng Kung University, Tainan, Taiwan, Confe *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708736B (en) * 2017-12-28 2020-11-01 中央研究院 Nanowire field effect transistor detection device and the detection method thereof

Also Published As

Publication number Publication date
TW201102652A (en) 2011-01-16

Similar Documents

Publication Publication Date Title
Liu et al. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids
Kim et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics
Wang et al. Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode
Ghosh et al. Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices
Segev-Bar et al. Tunable touch sensor and combined sensing platform: toward nanoparticle-based electronic skin
Gou et al. Carbon nanotube chemiresistor for wireless pH sensing
Heller et al. Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors
Kano et al. All-painting process to produce respiration sensor using humidity-sensitive nanoparticle film and graphite trace
US7849581B2 (en) Nanopore electrode, nanopore membrane, methods of preparation and surface modification, and use thereof
US10060916B2 (en) Electrical biosensor for detecting a substance in a bodily fluid, and method and system for same
Turner et al. Wearable bioelectronics
US20090112115A1 (en) Apparatus for detecting human's breathing
US20200093429A1 (en) Tetrahydrocannabinol sensor
EP2029013A2 (en) Nanoelectronic breath analyzer and asthma monitor
Chang et al. Flexible direct-growth CNT biosensors
US20200378920A1 (en) Method for making polymer single nanowires and sensors utilizing the same
KR100999451B1 (en) pH SENSOR USING ELECTROLYSIS AND HYDROGEN ABSORPTION OF Pd AND METHOD FOR MANUFACTURING THE SAME
WO2015001286A1 (en) Biosensor
Bian et al. Detection of Stress Hormone with Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors
TWI402504B (en) Biosensor, probe, sensing apparatus, and method for fabricatiing biosensor
CN101961240B (en) Biosensor, probe, sensing device and biosensor manufacturing method
Lee et al. An ultrasensitive electrochemical detection of tryptase using 3D macroporous reduced graphene oxide nanocomposites by one-pot electrochemical synthesis
KR101112498B1 (en) Portable glycated protein measuring device
Gill et al. Advances in nanomaterials integration in CMOS-based electrochemical sensors: a review
Liu et al. Implantable Sufficiently Integrated Multimodal Flexible Sensor for Intracranial Monitoring

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees