TWI401806B - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
TWI401806B
TWI401806B TW97146837A TW97146837A TWI401806B TW I401806 B TWI401806 B TW I401806B TW 97146837 A TW97146837 A TW 97146837A TW 97146837 A TW97146837 A TW 97146837A TW I401806 B TWI401806 B TW I401806B
Authority
TW
Taiwan
Prior art keywords
layer
nano
semiconductor device
grain
oxide layer
Prior art date
Application number
TW97146837A
Other languages
Chinese (zh)
Other versions
TW201023368A (en
Inventor
Chao Sung Lai
Yu Ching Fang
Li Hsu
Hui Chun Wang
Pai Chi Chou
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW97146837A priority Critical patent/TWI401806B/en
Publication of TW201023368A publication Critical patent/TW201023368A/en
Application granted granted Critical
Publication of TWI401806B publication Critical patent/TWI401806B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

半導體元件及其製造方法 Semiconductor component and method of manufacturing same

本發明係關於一種半導體元件與製作該半導體元件的方法。並且特別地,本發明係關於一種包含鉿釓奈米晶粒層之半導體元件及其製作方法。 The present invention relates to a semiconductor device and a method of fabricating the same. In particular, the present invention relates to a semiconductor device comprising a nanocrystalline layer of germanium and a method of fabricating the same.

記憶體依據資料的儲存情況,可分為兩大類:揮發性記憶體(volatile memory),以及非揮發性記憶體(non-volatile)。分類的依據為電源中斷或沒有電力的情況下時,記憶體是否能夠續存資料。不能續存資料的記憶體為揮發性記憶體,能續存資料的為非揮發性記憶體。目前揮發性記憶體以DRAM為主流,其優點為操作電壓低、運作速度快,然而其缺點為無法續存資料。而非揮發性記憶體目前以快閃記憶體(Flash Memory)為主流。 Memory can be divided into two categories based on the storage of data: volatile memory and non-volatile memory. The classification is based on whether the memory can renew the data when the power is interrupted or there is no power. The memory that cannot renew the data is a volatile memory, and the non-volatile memory that can renew the data. At present, volatile memory is dominated by DRAM. Its advantages are low operating voltage and fast operation. However, its shortcoming is that it cannot be renewed. Non-volatile memory is currently dominated by Flash Memory.

非揮發性記憶體以快閃記憶體作代表,快閃記憶體藉由浮動閘極(Floating Gate)是否存有電荷,作為區別數位訊號0與1之使用,換句話說,電子藉由通道熱電子注入(channel hot electron injection)或穿隧注入(Fowler-Nordheim tunneling injection)至浮動閘極中,以達到電荷儲存的目的。當關機或者是沒有電力的情形之下,內部的資料還是保存著,因此快閃記憶體為非揮發性記憶體(non-volatile memory)。 The non-volatile memory is represented by flash memory. The flash memory uses the floating gate to store the charge, which is used to distinguish the digital signals 0 and 1. In other words, the electrons are heated by the channel. Channel hot electron injection or tunneling (Fowler-Nordheim tunneling injection) into the floating gate for charge storage purposes. When the power is turned off or there is no power, the internal data is still stored, so the flash memory is a non-volatile memory.

請參閱圖一,圖一係繪示先前技術中的快閃記憶體1 示意圖。如圖一所示,習知的快閃記憶體1包含基板(substrate)11、穿隧層(tunneling)13、浮動閘極15、控制氧化層(control oxide layer)17,以及閘極(Gate)19。其中,基板11上具有源極(source)111和汲極(drain)113,在基板11上,由下而上依序形成穿隧氧化層13、浮動閘極15、控制氧化層17以及閘極19。其中,浮動閘極15係用以做為電荷儲存層,其通常利用複晶矽(poly-silicon)作為浮動閘極15之材料,而複晶矽作為浮動閘極15材料的優點為:可以和互補式金氧半導體(CMOS)的製造流程相容。 Please refer to FIG. 1. FIG. 1 is a diagram showing the flash memory 1 in the prior art. schematic diagram. As shown in FIG. 1, the conventional flash memory 1 includes a substrate 11, a tunneling 13, a floating gate 15, a control oxide layer 17, and a gate. 19. The substrate 11 has a source 111 and a drain 113. On the substrate 11, a tunnel oxide layer 13, a floating gate 15, a control oxide layer 17, and a gate are sequentially formed from bottom to top. 19. The floating gate 15 is used as a charge storage layer, which usually uses poly-silicon as the material of the floating gate 15, and the advantage of the polysilicon as the floating gate 15 material is: Complementary metal oxide semiconductor (CMOS) manufacturing processes are compatible.

當快閃記憶體1透過通道熱電子的模式操作時,外加電壓於閘極19,形成一垂直於基板11的電場,同時施加一偏壓於汲極113(drain)上,形成從源極111至汲極113的電場,使電子獲得加速,變成熱電子。熱電子受到垂直電場的吸引,經由穿隧層13而拉向浮動閘極15,當電子儲存在浮動閘極15時,數位訊號紀錄為0。當閘極19接地且外加高壓於源極111時,浮動閘極15上的電子將會自浮動閘極19中拉至源極111,當電子離開浮動閘極15時,數位訊號紀錄為1。 When the flash memory 1 is operated through the channel hot electron mode, a voltage is applied to the gate 19 to form an electric field perpendicular to the substrate 11, and a bias is applied to the drain 113 to form the source 111. The electric field to the drain 113 accelerates the electrons and becomes hot electrons. The hot electrons are attracted by the vertical electric field and are pulled toward the floating gate 15 via the tunneling layer 13. When the electrons are stored in the floating gate 15, the digital signal is recorded as zero. When the gate 19 is grounded and a high voltage is applied to the source 111, the electrons on the floating gate 15 are pulled from the floating gate 19 to the source 111. When the electrons leave the floating gate 15, the digital signal is recorded as 1.

理想的記憶體,必須兼具非揮發性、操作電壓低、運作速度快、記憶時間長及元件體積小等優點,然而為了達到操作電壓低、元件體積小以及減少記憶體寫入和抹除的時間(即運作速度快)的要求,在製備快閃記憶體時必須減少穿隧氧化層的厚度。然而穿隧氧化層的厚度愈薄,則越容易產生漏電流路徑貫穿整個穿隧氧化層的缺陷,如此將導致浮動閘極所儲存的電荷從缺陷的地方流失,因此為了 減少快閃記憶體的漏電流,則穿隧氧化層必須有足夠厚度,如此將導致快閃記憶體體積變大、操作電壓過大、寫入/抹除時間較長等問題。 The ideal memory must have the advantages of non-volatility, low operating voltage, fast operation speed, long memory time and small component size. However, in order to achieve low operating voltage, small component size and reduced memory writing and erasing. The requirement of time (ie, fast operation) must reduce the thickness of the tunneling oxide layer when preparing the flash memory. However, the thinner the thickness of the tunnel oxide layer, the more easily the defect of the leakage current path runs through the entire tunnel oxide layer, which will cause the charge stored in the floating gate to be lost from the defect, so To reduce the leakage current of the flash memory, the tunnel oxide layer must have a sufficient thickness, which will cause the flash memory to become bulky, the operating voltage is too large, and the writing/erasing time is long.

因此本發明提供了一種半導體元件以及製作此半導體元件的方法。此半導體元件可作為記憶體使用,並且在降低穿隧氧化層的厚度的情況下,可減少漏電流的產生、維持適當的操作電壓、減少寫入/抹除的時間,以解決先前技術的問題。 The present invention therefore provides a semiconductor component and a method of fabricating the same. The semiconductor device can be used as a memory, and in the case of reducing the thickness of the tunnel oxide layer, the generation of leakage current can be reduced, the appropriate operating voltage can be maintained, and the writing/erasing time can be reduced to solve the problems of the prior art. .

根據一具體實施例,本發明之半導體元件包含有:基板、穿隧層、鉿釓奈米晶粒層、控制氧化層以及閘極。其中,基板具有源極和汲極,而穿遂層形成於基板上並位於源極以及汲極之間。於實務中,穿隧層為高介電層,製作此穿隧層的材質可為二氧化鉿(HfO2),但不以此為限。 According to a specific embodiment, the semiconductor device of the present invention comprises: a substrate, a tunneling layer, a nanocrystalline layer, a controlled oxide layer, and a gate. Wherein, the substrate has a source and a drain, and the through layer is formed on the substrate and located between the source and the drain. In practice, the tunneling layer is a high dielectric layer, and the material of the tunneling layer can be made of hafnium oxide (HfO 2 ), but not limited thereto.

鉿釓奈米晶粒層形成於穿隧層上,作為浮動閘極用,特別地,鉿釓奈米晶粒層中包含複數個奈米晶粒。此外,控制氧化層形成於鉿釓奈米晶粒層上,而閘極則形成於該控制氧化層上。於實務中,控制氧化層亦為高介電材料,製作此控制氧化層的材質可為二氧化鉿,但不以此為限。 The nano-grain layer is formed on the tunneling layer and functions as a floating gate. Specifically, the nano-grain layer includes a plurality of nano-grains. Further, a control oxide layer is formed on the nano-grain layer, and a gate is formed on the control oxide layer. In practice, the control oxide layer is also a high dielectric material, and the material for making the control oxide layer may be cerium oxide, but not limited thereto.

本發明的另一範疇為提供一種用以製作半導體元件的方法。特別地,根據本發明之方法所製造的半導體元件可減少漏電流的產生、維持適當的操作電壓、減少寫入/抹除的時間。此外,其也具有較薄的穿隧氧化層。 Another aspect of the invention is to provide a method for fabricating a semiconductor component. In particular, the semiconductor device fabricated according to the method of the present invention can reduce the generation of leakage current, maintain an appropriate operating voltage, and reduce the time of writing/erasing. In addition, it also has a thin tunneling oxide layer.

根據一具體實施例,本發明之方法包含下列步驟:首先形成穿隧層於基板上,且穿隧層位於基板之源極以及汲極之間。隨後形成鉿釓奈米晶粒層於穿隧層上,接著熱處理鉿釓奈米晶粒層致使複數個釓奈米晶粒析出形成於鉿釓奈米晶粒層中。接著,形成控制氧化層於鉿釓奈米晶粒層上。最後,形成閘極於控制氧化層上以獲得本發明之半導體元件。 According to a specific embodiment, the method of the present invention comprises the steps of first forming a tunneling layer on a substrate, and the tunneling layer is between the source and the drain of the substrate. Subsequently, a nano-grain layer is formed on the tunneling layer, and then the heat-treated nano-grain layer is formed to precipitate a plurality of nano-grain crystal grains formed in the nano-grain layer. Next, a controlled oxide layer is formed on the nanocrystalline layer. Finally, a gate is formed on the control oxide layer to obtain the semiconductor element of the present invention.

綜上所述,由於本發明之半導體元件利用鉿釓奈米晶粒層作為浮動電極,且穿隧層使用高介電材料,致使穿遂層的最小之有效厚度可薄於先前技術中的穿隧層。因此,根據本發明之方法所製作的半導體元件具有減少漏電流、操作電壓低、運作速度快、元件體積小等優點。 In summary, since the semiconductor device of the present invention utilizes a nanocrystalline layer as a floating electrode and a high dielectric material is used in the tunneling layer, the minimum effective thickness of the through layer can be thinner than that in the prior art. Tunnel layer. Therefore, the semiconductor device fabricated by the method of the present invention has the advantages of reducing leakage current, low operating voltage, fast operation speed, and small component size.

關於本發明之優點與精神可以藉由以下的創作詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention can be further understood from the following detailed description of the invention and the accompanying drawings.

本發明提供一種半導體元件以及製造此半導體元件的方法,並且可運用此半導體元件為記憶體使用。 The present invention provides a semiconductor device and a method of fabricating the same, and can be used as a memory for the semiconductor device.

請參閱圖二,圖二係繪示根據本發明之一具體實施例的半導體元件2示意圖。如圖二所示,本發明之半導體元件2包含有:基板21、穿隧層23、鉿釓奈米晶粒層25、控制氧化層27以及閘極29。 Referring to FIG. 2, FIG. 2 is a schematic diagram of a semiconductor device 2 according to an embodiment of the present invention. As shown in FIG. 2, the semiconductor device 2 of the present invention comprises a substrate 21, a tunneling layer 23, a nano-crystal layer 25, a control oxide layer 27, and a gate 29.

基板21具有源極211以及汲極213。穿隧層23以薄膜技術形成於基板21上,並位於源極211以及汲極213 之間。穿隧層23為高介電層,且製作此穿隧層23的材質可為二氧化鉿(HfO2),但不以此為限。 The substrate 21 has a source 211 and a drain 213. The tunneling layer 23 is formed on the substrate 21 by a thin film technique and is located between the source 211 and the drain 213. The tunneling layer 23 is a high dielectric layer, and the material of the tunneling layer 23 may be cerium oxide (HfO 2 ), but is not limited thereto.

鉿釓奈米晶粒層25形成於穿遂層23上,且鉿釓奈米晶粒層25包含複數個奈米晶粒。控制氧化層27以薄膜技術形成於鉿釓奈米晶粒層25上。於實務中,控制氧化層27同樣可為高介電層,且其材質可為二氧化鉿(HfO2),但不以此為限。最後,閘極29形成於控制氧化層27上。 The nano-grain layer 25 is formed on the through-layer 23, and the nano-grain layer 25 includes a plurality of nano-grains. The control oxide layer 27 is formed on the nano-grain layer 25 by a thin film technique. In practice, the control oxide layer 27 can also be a high dielectric layer, and the material thereof can be cerium oxide (HfO 2 ), but is not limited thereto. Finally, a gate 29 is formed on the control oxide layer 27.

請參閱圖三,圖三係繪示根據本發明之一具體實施例之半導體元件製作方法流程圖。如圖三所示,根據本發明之方法包含下列步驟: Referring to FIG. 3, FIG. 3 is a flow chart showing a method for fabricating a semiconductor device according to an embodiment of the present invention. As shown in Figure 3, the method according to the invention comprises the following steps:

步驟S50:製備基板,其具有源極以及汲極。 Step S50: preparing a substrate having a source and a drain.

步驟S52:形成穿隧層於基板上方,且此穿隧層位於源極和汲極之間。如前所述,此穿隧層可為高介電層,且製作此穿隧層的材質可為二氧化鉿(HfO2),但不以此為限。 Step S52: forming a tunneling layer above the substrate, and the tunneling layer is located between the source and the drain. As described above, the tunneling layer may be a high dielectric layer, and the material of the tunneling layer may be cerium oxide (HfO 2 ), but not limited thereto.

步驟S54:形成鉿釓奈米晶粒層於穿遂層上。於實務中,可利用電漿輔助化學氣相沉積法、低壓化學氣相沉積法、濺鍍法或有機金屬化學氣相沉積法等方法形成鉿釓奈米晶粒層。 Step S54: forming a nanocrystalline layer of germanium on the through layer. In practice, the nano-grain layer can be formed by a plasma-assisted chemical vapor deposition method, a low-pressure chemical vapor deposition method, a sputtering method, or an organometallic chemical vapor deposition method.

步驟S56:熱處理鉿釓奈米晶粒層,致使複數個奈米晶粒析出形成於鉿釓奈米晶粒層中。於實務中,鉿釓奈米晶粒層可在氮氣氛中,以及一溫度範圍(例如,但不限於700℃~900℃)內,進行預定時間(例如,但不限於30秒) 的熱處理,致使複數個釓奈米晶粒析出並形成在鉿釓奈米晶粒層中。 Step S56: heat-treating the nano-grain layer, so that a plurality of nano-grain grains are precipitated and formed in the nano-grain layer. In practice, the nanocrystalline layer may be subjected to a predetermined time (eg, but not limited to 30 seconds) in a nitrogen atmosphere and a temperature range (eg, but not limited to 700 ° C to 900 ° C). The heat treatment causes a plurality of nanocrystalline grains to precipitate and form in the nanocrystalline layer.

步驟S58:形成控制氧化層於鉿釓奈米晶粒層上。此控制氧化層可為高介電層,且製作控制氧化層的材質可為二氧化鉿,但不以此為限。於實務中,控制氧化層可用來阻止電荷流入閘極中,有效降低漏電流。最後,進行步驟S60:形成閘極於控制氧化層。 Step S58: forming a controlled oxide layer on the nanocrystalline layer. The control oxide layer may be a high dielectric layer, and the material for the control oxide layer may be cerium oxide, but not limited thereto. In practice, the control oxide layer can be used to prevent charge from flowing into the gate, effectively reducing leakage current. Finally, step S60 is performed: forming a gate to control the oxide layer.

於實際應用中,若要獲得HfO2介電層鉿釓奈米晶半導體元件(TaN/HfO2/HfGdO/HfO2/Si,簡稱MHHHS),本發明的方法可包含以下步驟。 In practical applications, in order to obtain a HfO 2 dielectric layer nanocrystalline semiconductor device (TaN/HfO 2 /HfGdO/HfO 2 /Si, abbreviated as MHHHS), the method of the present invention may comprise the following steps.

首先,以n-type(100)的矽晶片作為基板,經過RCA清洗後,放入射頻濺鍍機(Radio Frequency Sputtering System)中,濺鍍機則事先裝置好製程所需的兩種靶材(99.9%的鉿靶及釓靶)。接著,在遮蔽釓靶的狀態之下,以反應式濺鍍方式沉積5 nm之二氧化鉿作為穿隧層。濺鍍的環境為室溫下,壓力為20 mtorr,製程氣體為O2(2 sccm)以及Ar(20 sccm)。RF濺鍍機的功率控制在150 W。 First, an n-type (100) tantalum wafer is used as a substrate, and after RCA cleaning, it is placed in a Radio Frequency Sputtering System, and the sputtering machine is preliminarily equipped with two kinds of targets required for the process ( 99.9% of target and target). Next, 5 nm of cerium oxide was deposited as a tunneling layer by reactive sputtering under the condition of shielding the target. The sputtering environment was at room temperature, the pressure was 20 mtorr, and the process gases were O 2 (2 sccm) and Ar (20 sccm). The power of the RF sputter is controlled at 150 W.

接下來,同時使用鉿及釓金屬耙材,沉積10 nm的鉿釓氧化層。接著將晶片放入快速退火系統中,在700℃下及N2氣氛中退火30秒。由於氧化物薄膜內金屬濃度過飽和及表面張力等驅動力,氧化層內會析出圓球狀之奈米晶粒。然後再使用濺鍍方式,沉積30 nm的二氧化鉿作為控制氧化層。最後於此鉿釓奈米晶半導體元件背面鍍鋁電 極,以進行後續電性量測。 Next, a 10 nm niobium oxide layer was deposited using both tantalum and niobium metal coffins. The wafer was then placed in a rapid annealing system and annealed at 700 ° C for 30 seconds in a N 2 atmosphere. Due to the driving force such as supersaturation of the metal concentration in the oxide film and surface tension, spherical nanocrystal grains are precipitated in the oxide layer. Then, a sputtering method was used to deposit 30 nm of cerium oxide as a control oxide layer. Finally, an aluminum electrode is plated on the back side of the nanocrystalline semiconductor device for subsequent electrical measurement.

將上述之HfO2介電層鉿釓奈米晶半導體元件(TaN/HfO2/HfGdO/HfO2/Si,MHHHS)與SiO2介電層鉿釓奈米晶半導體元件(TaN/SiO2/HfGdO/SiO2/Si,MOHOS)及SiO2介電層鉿奈米晶半導體元件(Al/SiO2/HfO2/SiO2/Si,HfO2 MOHOS)做電性比較。請參閱圖四,圖四係繪示比較HfO2介電層鉿釓奈米晶半導體元件與SiO2介電層鉿釓奈米晶半導體元件,及SiO2介電層鉿奈米晶半導體元件之室溫下電荷保存特性。 The above-mentioned HfO 2 dielectric layer 铪釓 nanocrystalline semiconductor device (TaN/HfO 2 /HfGdO/HfO 2 /Si, MHHHS) and SiO 2 dielectric layer 铪釓 nanocrystalline semiconductor device (TaN/SiO 2 /HfGdO /SiO 2 /Si, MOHOS) and SiO 2 dielectric layer 铪 nanocrystalline semiconductor components (Al / SiO 2 / HfO 2 / SiO 2 / Si, HfO 2 MOHOS) for electrical comparison. See Figure IV, Figure IV shows comparison based HfO 2 dielectric layer, a hafnium crystal semiconductor element gadolinium nm SiO 2 dielectric layer with a hafnium crystal gadolinium nm semiconductor element, and SiO 2 nm hafnium oxide dielectric layer of a polycrystalline semiconductor element Charge retention characteristics at room temperature.

請注意,於圖四中,橫軸表示記憶時間(retention time),單位為秒;縱軸表示平帶電壓(flat band voltage)以VFB表示,單位為伏特;P表示寫入;E表示抹除,平帶電壓差異值(VFB shift)為寫入時的平帶電壓減去抹除時的平帶電壓,平帶電壓的差異值越大越能區別數位訊號。 Note that in Figure 4, the horizontal axis represents the retention time in seconds; the vertical axis represents the flat band voltage expressed in V FB in volts; P is the write; E is the wipe In addition, the flat band voltage difference value (V FB shift) is the flat band voltage at the time of writing minus the flat band voltage at the time of erasing, and the larger the difference value of the flat band voltage, the more distinguishing the digital signal.

如圖四所示,比較三種半導體元件在寫入時的平帶電壓,可以發現HfO2介電層鉿釓奈米晶半導體元件在寫入時(MHHHS/P),其平帶電壓VFB值為三者中最大,與其他兩種半導體元件相較,HfO2介電層鉿釓奈米晶半導體元件,具備較佳的電荷保存特性。將平帶電壓值外插至10年處,由圖四可得知HfO2介電層半導體元件平帶電壓差異值仍可維持1V左右,足可區別數位訊號0與1。 As shown in Figure 4, comparing the flat-band voltages of the three semiconductor components at the time of writing, it can be found that the HfO 2 dielectric layer is at the time of writing (MHHHS/P), and the flat-band voltage V FB value The largest of the three, the HfO 2 dielectric layer has a better charge retention characteristic than the other two semiconductor elements. The flat-band voltage value is extrapolated to 10 years. It can be seen from Fig. 4 that the flat-band voltage difference value of the HfO 2 dielectric layer semiconductor component can still be maintained at about 1V, which is sufficient to distinguish the digital signals 0 and 1.

上述三種半導體元件於其他溫度條件下的比較,請參閱圖五,圖五係繪示比較圖四中三種半導體元件在85℃下的電荷保存特性。請注意,於圖五中,橫軸表示記憶時 間(retention time),單位為秒;縱軸表示平帶電壓(flat band voltage)以VFB表示,單位為伏特;P表示寫入;E表示抹除,平帶電壓差異值(VFB shift)為寫入時的平帶電壓減去抹除時的平帶電壓。比較結果顯示與其他兩種半導體元件相較,HfO2介電層鉿釓奈米晶半導體元件(MHHHS)為三者中,最具備電荷保存的特性,其原因如上所述,在此不再贅述。將平帶電壓值外插至10年處,由圖五所示,平帶電壓差異值仍可維持在0.6V左右,仍舊可以區別數位訊號0與1。 For comparison of the above three semiconductor components under other temperature conditions, please refer to FIG. 5, which is a comparison of the charge storage characteristics of the three semiconductor components in FIG. 4 at 85 ° C. Note that in Figure 5, the horizontal axis represents the retention time in seconds; the vertical axis represents the flat band voltage expressed in V FB in volts; P is the write; E is the wipe In addition, the flat band voltage difference value (V FB shift) is the flat band voltage at the time of writing minus the flat band voltage at the time of erasing. The comparison results show that compared with the other two kinds of semiconductor components, the HfO 2 dielectric layer MH nanocrystalline semiconductor device (MHHHS) has the most charge storage characteristics, and the reason is as described above, and will not be described here. . The flat-band voltage value is extrapolated to 10 years. As shown in Figure 5, the flat-band voltage difference value can still be maintained at about 0.6V, and the digital signals 0 and 1 can still be distinguished.

請參閱圖六,圖六係繪示比較HfO2介電層鉿釓奈米晶半導體元件與SiO2介電層鉿釓奈米晶半導體元件的忍耐度特性。如圖六所示,將HfO2介電層鉿釓奈米晶半導體元件與SiO2介電層鉿釓奈米晶半導體元件相比,結果顯示兩者經104次的反覆讀寫後,VFB值差異都可維持在1V左右,足可區別數位訊號0與1,顯示兩者均具有極佳的忍耐度。 Referring to FIG. 6 , FIG. 6 illustrates the endurance characteristics of the HfO 2 dielectric layer 铪釓 nanocrystalline semiconductor device and the SiO 2 dielectric layer 铪釓 nanocrystalline semiconductor device. As shown in FIG. 6, the HfO 2 dielectric layer and the nanocrystalline semiconductor device are compared with the SiO 2 dielectric layer and the nanocrystalline semiconductor device. The results show that after repeated reading and writing for 10 4 times, V The difference in FB values can be maintained at around 1V, which is sufficient to distinguish between digital signals 0 and 1, indicating that both have excellent tolerance.

本發明之特徵在於以鉿釓奈米晶粒層作為半導體元件的浮動閘極,並透過熱處理析出一顆顆能量不連續,且高密度之鉿釓奈米晶粒於鉿釓奈米晶粒層中,使得電荷通過穿隧氧化層進入鉿釓奈米晶粒層中,而分別儲存在奈米晶粒中。由於奈米晶粒屬零維量子點結構,在三維空間中能量不連續,故可有效將電荷侷限於奈米晶粒中來減少漏電流產生。 The invention is characterized in that the nano-grain layer is used as a floating gate of a semiconductor element, and a heat discontinuous and high-density nano-grain is deposited in the nano-grain layer by heat treatment. The charge is passed through the tunneling oxide layer into the nano-grain layer and stored in the nano-grain, respectively. Since the nanocrystallites are zero-dimensional quantum dot structures, the energy is discontinuous in three-dimensional space, so the charge can be effectively confined to the nanocrystal grains to reduce the leakage current.

當穿隧氧化層產生缺陷時,只有靠近缺陷的奈米晶粒 所儲存的電荷會流失掉。而且釓奈米晶粒層具有較多的靠近費米能階附近之深層能階(deep trap state),可以避免受到其他深層能階的干擾,且具備較多的金屬功函數選擇及調變。且鉿釓奈米晶層會促使電荷注入較均勻,進而使臨界電壓的控制更精確。除此之外,鉿釓金屬的熱穩定性極佳,在元件後段製程中有些步驟需在極高的溫度下進行,熱穩定度佳可避免元件受到高溫的影響而產生缺陷。 When the tunnel oxide layer produces defects, only the nanocrystals near the defect The stored charge is lost. Moreover, the nano-grain layer has more deep trap states near the Fermi level, which can avoid interference from other deep levels, and has more metal work function selection and modulation. And the nanocrystalline layer promotes uniform charge injection, which makes the control of the threshold voltage more precise. In addition, the thermal stability of base metals is excellent. Some steps in the back-end part of the component need to be carried out at extremely high temperatures. The thermal stability is good to avoid defects caused by high temperature.

此外,在製作穿隧氧化層與控制氧化層材料上的選用,使用高介電材料(如HfO2),可使本發明之半導體元件具有較小的等效氧化物厚度。 In addition, the use of a high dielectric material such as HfO 2 in the fabrication of the tunnel oxide layer and the control oxide layer material allows the semiconductor device of the present invention to have a smaller equivalent oxide thickness.

綜上所述,本發明之半導體元件,可作為記憶體使用,且此半導體元件利用鉿釓奈米晶粒層作為浮動閘極,並且製作氧化層的材料為高介電材料,藉此降低氧化物的厚度,使得穿隧介電層允許做得更薄,有效減少漏電流的產生,進而降低操作電壓、增加操作速度、縮小元件尺度、降低漏電流及增長記憶時間(retention time)。 In summary, the semiconductor device of the present invention can be used as a memory, and the semiconductor device utilizes a nano-grain layer as a floating gate, and the material for forming the oxide layer is a high dielectric material, thereby reducing oxidation. The thickness of the material allows the tunneling dielectric layer to be made thinner, effectively reducing the generation of leakage current, thereby reducing operating voltage, increasing operating speed, reducing component dimensions, reducing leakage current, and increasing retention time.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。 The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

1‧‧‧快閃記憶體 1‧‧‧flash memory

11、21‧‧‧基板 11, 21‧‧‧ substrate

111、211‧‧‧源極 111, 211‧‧‧ source

113、213‧‧‧汲極 113, 213‧‧ ‧ bungee

13、23‧‧‧穿隧層 13, 23‧‧‧ Tunneling

15‧‧‧浮動閘極 15‧‧‧Floating gate

17、27‧‧‧控制氧化層 17, 27‧‧‧Control oxide layer

19、29‧‧‧閘極 19, 29‧‧ ‧ gate

2‧‧‧半導體元件 2‧‧‧Semiconductor components

25‧‧‧鉿釓奈米晶粒層 25‧‧‧铪釓 nano grain layer

S50~S60‧‧‧流程步驟 S50~S60‧‧‧ Process steps

圖一係繪示先前技術中的快閃記憶體示意圖。 FIG. 1 is a schematic diagram of a flash memory in the prior art.

圖二係繪示根據本發明一具體實施例的半導體元件示意圖。 2 is a schematic view of a semiconductor device in accordance with an embodiment of the present invention.

圖三係繪示根據本發明之一具體實施例之半導體元件製作方法流程圖。 3 is a flow chart showing a method of fabricating a semiconductor device in accordance with an embodiment of the present invention.

圖四係繪示比較HfO2介電層鉿釓奈米晶半導體元件與SiO2介電層鉿釓奈米晶半導體元件,及SiO2介電層鉿奈米晶半導體元件之室溫下電荷保存特性。 Figure 4 is a diagram showing the comparison of HfO 2 dielectric layer 铪釓 nanocrystalline semiconductor device and SiO 2 dielectric layer 铪釓 nanocrystalline semiconductor device, and SiO 2 dielectric layer 铪 nanocrystalline semiconductor device at room temperature charge storage characteristic.

圖五係繪示比較圖四中三種半導體元件在85℃下的電荷保存特性。 Figure 5 is a graph showing the charge retention characteristics of the three semiconductor elements in Figure 4 at 85 °C.

圖六係繪示比較HfO2介電層鉿釓奈米晶半導體元件與SiO2介電層鉿釓奈米晶半導體元件的忍耐度特性。 Figure 6 is a graph showing the endurance characteristics of a HfO 2 dielectric layer 铪釓 nanocrystalline semiconductor device and a SiO 2 dielectric layer 铪釓 nanocrystalline semiconductor device.

S50~S60‧‧‧流程步驟 S50~S60‧‧‧ Process steps

Claims (9)

一種用以製作一半導體元件之方法,該方法包含下列步驟:形成一穿遂層於一基板上,其中該穿遂層係位於該基板之一源極以及一汲極之間;形成一鉿釓奈米晶粒層於該穿遂層上;熱處理該鉿釓奈米晶粒層致使複數個奈米晶粒析出形成於該鉿釓奈米晶粒層中;形成一控制氧化層於該鉿釓奈米晶粒層上;以及形成一閘極於該控制氧化層以獲得該半導體元件。 A method for fabricating a semiconductor device, the method comprising the steps of: forming a pass-through layer on a substrate, wherein the pass-through layer is between a source and a drain of the substrate; forming a stack a nano-grain layer on the puncture layer; heat-treating the nano-grain layer to cause a plurality of nano-grains to precipitate in the nano-grain layer; forming a control oxide layer on the crucible And forming a gate on the control oxide layer to obtain the semiconductor device. 如申請專利範圍第1項所述之方法,其中該穿遂層係一高介電層。 The method of claim 1, wherein the through layer is a high dielectric layer. 如申請專利範圍第2項所述之方法,其中該穿遂層之材質係二氧化鉿。 The method of claim 2, wherein the material of the threading layer is cerium oxide. 如申請專利範圍第1項所述之方法,其中該控制氧化層係一高介電層。 The method of claim 1, wherein the control oxide layer is a high dielectric layer. 如申請專利範圍第4項所述之方法,其中該控制氧化層之材質係二氧化鉿。 The method of claim 4, wherein the material of the control oxide layer is cerium oxide. 如申請專利範圍第1項所述之方法,其中該鉿釓奈米晶粒層係以電漿輔助化學氣相沉積法、低壓化學氣相沉積法、濺鍍法或有機金屬化學氣相沉積法形成於該穿遂層上。 The method of claim 1, wherein the nano-grain layer is plasma-assisted chemical vapor deposition, low-pressure chemical vapor deposition, sputtering, or organometallic chemical vapor deposition. Formed on the piercing layer. 如申請專利範圍第1項所述之方法,進一步包含下列步驟:於氮氣氛下加熱該鉿釓奈米晶粒層至一溫度範圍,並維持該溫度範圍一預定時間。 The method of claim 1, further comprising the step of: heating the nanocrystalline layer of the germanium to a temperature range under a nitrogen atmosphere and maintaining the temperature range for a predetermined time. 如申請專利範圍第7項所述之方法,其中該溫度範圍包含700℃至900℃。 The method of claim 7, wherein the temperature range comprises from 700 ° C to 900 ° C. 如申請專利範圍第7項所述之方法,其中該預定時間包含30秒。 The method of claim 7, wherein the predetermined time comprises 30 seconds.
TW97146837A 2008-12-02 2008-12-02 Semiconductor device and method for manufacturing the same TWI401806B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146837A TWI401806B (en) 2008-12-02 2008-12-02 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146837A TWI401806B (en) 2008-12-02 2008-12-02 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201023368A TW201023368A (en) 2010-06-16
TWI401806B true TWI401806B (en) 2013-07-11

Family

ID=44833344

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146837A TWI401806B (en) 2008-12-02 2008-12-02 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI401806B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045058A (en) * 2005-08-08 2006-02-16 Univ Of Ryukyus Nanocrystal structure, manufacturing method of the nanocrystal structure and thermoelectric element
US20070077712A1 (en) * 2004-08-24 2007-04-05 Samsung Electronics Co., Ltd. Methods of fabricating non-volatile memory devices including nanocrystals
US20080150008A1 (en) * 2006-12-21 2008-06-26 Dong-Hyun Kim Non-volatile memory devices and methods of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077712A1 (en) * 2004-08-24 2007-04-05 Samsung Electronics Co., Ltd. Methods of fabricating non-volatile memory devices including nanocrystals
JP2006045058A (en) * 2005-08-08 2006-02-16 Univ Of Ryukyus Nanocrystal structure, manufacturing method of the nanocrystal structure and thermoelectric element
US20080150008A1 (en) * 2006-12-21 2008-06-26 Dong-Hyun Kim Non-volatile memory devices and methods of manufacturing the same

Also Published As

Publication number Publication date
TW201023368A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US7504280B2 (en) Nonvolatile memory device and method of manufacturing the same
CN107134487B (en) Ferroelectric gate structure based on hafnium oxide and preparation process thereof
JP6411820B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7517747B2 (en) Nanocrystal non-volatile memory cell and method therefor
US8638614B2 (en) Non-volatile memory device and MOSFET using graphene gate electrode
US20060170033A1 (en) Nonvolatile memory device and method of manufacturing the same
JP2005311379A (en) Memory device with multiple dielectric layer, and its manufacturing method
KR20070052667A (en) Nanocrystal silicon quantum dot memory device
KR100636022B1 (en) Method for forming a thin film in semiconductor device and manufacturing a non-volatile memory device using the same
JP2005328029A (en) Nonvolatile semiconductor storage element and method for manufacturing the same
CN104882490B (en) A kind of preparation method of the floating-gate memory based on metal hetero quntum point
JPWO2006059368A1 (en) Semiconductor memory device and manufacturing method thereof
US8824208B2 (en) Non-volatile memory using pyramidal nanocrystals as electron storage elements
TWI401806B (en) Semiconductor device and method for manufacturing the same
JP4492930B2 (en) Charge storage memory and manufacturing method thereof
US20100044775A1 (en) Semiconductor memory device and semiconductor device
US20070267679A1 (en) Nonvolatile memory devices including floating gates formed of silicon nano-crystals and methods of manufacturing the same
US20060192246A1 (en) Semiconductor memory device that uses metal nitride as trap site and method of manufacturing the same
JP4703116B2 (en) Memory element and manufacturing method thereof
WO2006095890A1 (en) Semiconductor device and method for manufacturing same
US20080121967A1 (en) Nanocrystal non-volatile memory cell and method therefor
KR101065060B1 (en) Charge trap type nonvolatile memory
Wang et al. Nickel Nanocrystals Embedded in Metal–Alumina–Nitride–Oxide–Silicon Type Low-Temperature Polycrystalline-Silicon Thin-Film Transistor for Low-Voltage Nonvolatile Memory Application
CN103545316B (en) Based on the New Charge trap type memorizer of band gap regulation and control, its preparation method and application
Wang et al. Iridium Nanocrystal Thin-Film Transistor Nonvolatile Memory with Si3N4/SiO2 Stack of Asymmetric Tunnel Barrier