TWI394396B - 在一多天線通信系統中的空間擴張 - Google Patents

在一多天線通信系統中的空間擴張 Download PDF

Info

Publication number
TWI394396B
TWI394396B TW93139437A TW93139437A TWI394396B TW I394396 B TWI394396 B TW I394396B TW 93139437 A TW93139437 A TW 93139437A TW 93139437 A TW93139437 A TW 93139437A TW I394396 B TWI394396 B TW I394396B
Authority
TW
Taiwan
Prior art keywords
data symbol
steering
block
data
sub
Prior art date
Application number
TW93139437A
Other languages
English (en)
Other versions
TW200534632A (en
Inventor
Jay Rodney Walton
John W Ketchum
Mark S Wallace
Steven J Howard
Lizhong Zheng
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200534632A publication Critical patent/TW200534632A/zh
Application granted granted Critical
Publication of TWI394396B publication Critical patent/TWI394396B/zh

Links

Landscapes

  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

在一多天線通信系統中的空間擴張
本發明大體而言係關於資料通信,且更具體言之,係關於用於在多天線通信系統中傳輸資料之技術。
多輸入多輸出(MIMO)通信系統在一傳輸實體處使用多個(NT 個)傳輸天線且在一接收實體處使用多個(NR 個)接收天線來傳輸資料且被表示為(NT ,NR )系統。可將由NT 個傳輸天線及NR 個接收天線形成之MIMO通道分解成NS 個空間通道,其中NS min{NT ,NR }。NS 個空間通道可用來以一方式傳輸資料以達成該系統之較大的可靠性及/或較高的總流通量。
MIMO通道之NS 個空間通道可經歷不同的通道條件(例如:不同的衰減(fading)、多路徑、及干擾效應)且可達成不同的訊號對雜訊及干擾比(SNR)。空間通道之SNR決定其傳輸性能,該傳輸性能一般由可在空間通道上可靠地傳輸之特定資料傳輸率來量化。對於一時變(time variant)MIMO通道而言,通道條件隨時間改變且每一空間通道之SNR亦隨時間改變。為了最大化流通量,MIMO系統可利用某種形式之反饋,由此,接收實體評估空間通道並提供指示每一空間通道之傳輸性能之反饋資訊。然後,傳輸實體將基於該反饋資訊調整空間通道上之資料傳輸。
然而,由於多種原因,此反饋資訊可能不可用。舉例而言,MIMO系統也許不支持來自接收實體之反饋之傳輸。作 為另一實例,MIMO通道可比接收實體估計通道及/或發送反饋資訊之速率改變得更快。無論如何,若傳輸實體不知道通道條件,則其可能需要以一非常低的速率傳輸資料,以使得甚至在最壞的通道條件下接收實體亦能可靠地解碼資料傳輸。因而該系統之效能將由預期的最壞通道條件來支配。
在一實施例中,描述了一種用於在無線多輸入多輸出(MIMO)通信系統中處理資料傳輸之方法,在該方法中處理資料以獲取至少一資料符號塊。用複數個導引矩陣對該至少一資料符號塊執行空間處理以獲取用於複數個傳輸天線之傳輸符號之複數個序列,其中該等複數個導引矩陣為該至少一資料符號塊隨機化由接收實體觀測之有效MIMO通道。
在另一實施例中,描述了一種在無線多輸入多輸出(MIMO)通信系統中之裝置,其包括一用以處理資料以獲取至少一資料符號塊的資料處理器、及一用以用複數個導引矩陣對至少一資料符號塊執行空間處理以獲取用於複數個傳輸天線之傳輸符號之複數個序列的空間處理器,其中該等複數個導引矩陣為至少一資料符號塊隨機化由接收實體觀測之有效MIMO通道。
在另一實施例中,描述了一種在無線多輸入多輸出(MIMO)通信系統中之裝置,其包括用於處理資料以獲取至少一資料符號塊之構件、及用於用複數個導引矩陣對該至 少一資料符號塊執行空間處理以獲取用於複數個傳輸天線之傳輸符號之複數個序列之構件,其中該等複數個導引矩陣為該至少一資料符號塊隨機化由接收實體觀測之有效MIMO通道。
在另一實施例中,描述了一種用於處理資料以便在無線多輸入單輸出(MISO)通信系統中傳輸之方法,在該種方法中處理資料以獲取一資料符號塊。用複數個導引向量對該資料符號塊執行空間處理以獲取用於複數個傳輸天線之傳輸符號之複數個序列,其中該等複數個導引向量為該資料符號塊隨機化由接收實體觀測之有效MISO通道。
在另一實施例中,描述了一種用於在無線多輸入多輸出(MIMO)通信系統中接收資料傳輸之方法,在該種方法中獲取接收到之資料符號,該等接收到之資料符號用於在經由一MIMO通道傳輸之前藉由複數個導引矩陣加以空間處理之至少一資料符號塊。獲取由MIMO通道及複數個導引矩陣所形成之有效MIMO通道之通道回應估計。藉由該通道回應估計對接收到之資料符號執行接收器空間處理以獲取用於該至少一資料符號塊之資料符號估計。
在另一實施例中,描述了一種在無線多輸入多輸出(MIMO)通信系統中之裝置,其包括:複數個接收器單元,其獲取接收到之資料符號,該等接收到之資料符號用於在經由一MIMO通道傳輸之前藉由複數個導引矩陣加以空間處理之至少一資料符號塊;一通道估計器,其獲取由MIMO通道及複數個導引矩陣所形成之有效MIMO通道之通道回 應估計;及一空間處理器,其用以用該通道回應估計對該等接收到之資料符號執行接收器空間處理以獲取用於該至少一資料符號塊之資料符號估計。
在另一實施例中,描述了一種在無線多輸入多輸出(MIMO)通信系統中之裝置,其包括:獲取接收到之資料符號之構件,該等接收到之資料符號用於在經由一MIMO通道傳輸之前藉由複數個導引矩陣加以空間處理之至少一資料符號塊;用於獲取由MIMO通道及複數個導引矩陣所形成之有效MIMO通道之通道回應估計之構件;及用於藉由通道回應估計對接收到之資料符號執行接收器空間處理以獲取用於該至少一資料符號塊的資料符號估計之構件。
在另一實施例中,描述了一種在無線多輸入單輸出(MISO)通信系統中接收資料傳輸之方法,在該種方法中獲取接收到之資料符號,該等接收到之資料符號用於在經由MISO通道傳輸之前藉由複數個導引向量加以空間處理的一資料符號塊。獲取由MISO通道及複數個導引向量所形成之有效MISO通道之通道回應估計;且藉由該通道回應估計對接收到的資料符號執行偵測以獲取用於該資料符號塊的資料符號估計。
本文所用詞語"例示性"意謂"用作一實例、例子、或說明"。不必將本文描述為"例示性"之任何實施例解釋為比其它實施例較佳或有利。
本文描述在多天線通信系統中執行空間擴張之技術。多 天線通信系統可為MIMO系統或多輸入單輸出(MISO)系統。空間擴張係指可能以由用於一資料符號(其為資料之調變符號)之導引向量所決定之不同的振幅及/或相位同時自多個傳輸天線傳輸該資料符號之傳輸。亦可將空間擴張稱為傳輸導引、偽隨機傳輸導引、導引分集(steering diversity)、矩陣偽隨機導引、向量偽隨機導引等等。空間處理技術可為由傳輸實體傳輸之每一資料符號塊隨機化一由接收實體觀測之"有效"MIMO或MISO通道,使得系統效能並非由最壞通道條件支配。
在MIMO系統中以空間擴張傳輸資料之實施例中,傳輸實體處理(例如:編碼及交錯)用於ND 個資料流之資料且產生ND 個編碼資料塊,其中ND 1。亦可將一編碼資料塊稱為一碼塊或一編碼資料封包。將每一碼塊在傳輸實體處單獨編碼且在接收實體處單獨解碼。符號映射每一碼塊以獲取對應之資料符號塊。將用於ND 個碼塊之ND 個資料符號塊分割成NM 個資料符號子塊以在NM 個傳輸範圍內傳輸,每一傳輸範圍內一子塊,其中NM >1。如以下所述,傳輸範圍可涵蓋時間及/或頻率維。為NM 個資料符號子塊中的每一子塊選擇(例如,自L個導引矩陣之集合之中選擇)一導引矩陣。對每一資料符號子塊用為該子塊所選之導引矩陣進行空間處理以產生傳輸符號,該等傳輸符號經進一步處理並在一個傳輸範圍內經由NT 個傳輸天線傳輸。實際上,用NM 個導引矩陣對ND 個資料符號塊進行空間處理且該等ND 個資料符號塊因此觀測通道之全體,其與所有塊觀測同一通道相 反。用於空間擴張之導引矩陣為具有正交的行或向量之單位矩陣(unitary matrix)且可如以下描述產生其。
如以下所述,MISO系統亦可以空間擴張傳輸資料。以下以進一步的細節描述本發明之多種態樣及實施例。
本文所描述之空間擴張技術可用於MIMO及MISO系統。該等技術亦可用於單載波及多載波系統。可用正交頻分多工(OFDM)、某些其它多載波調變技術、或某些其它建構獲得多載波。OFDM有效地將總的系統頻寬分割成多個(NF 個)正交的子頻帶(subband),其亦被稱為音調(tone)、副載波、區間(bin)、及頻率通道。使用OFDM,每一子頻帶與一可調變有資料之各別副載波有關聯。
1. MIMO系統
對於一單載波MIMO系統而言,由傳輸實體處之NT個傳輸天線及接收實體處之NR 個接收天線形成之MIMO通道可由一NR ×NT 通道回應矩陣H表現其特徵,可將該矩陣表達為: 其中,項hi,j (i=1...NR 且j=1...NT )表示傳輸天線j與接收天線i之間之耦合或複合增益(complex gain)。
在MIMO系統中可以多種方式傳輸資料。在一簡單傳輸方案中,不進行任何空間處理自每一傳輸天線傳輸一資料符號流,且自NT 個傳輸天線同時傳輸高達NS 個資料符號流。 可將此傳輸方案之MIMO系統之模式表達為:r =Hs +n , 方程式(2)其中,s 為一NT ×1向量,其具有用於NS 個資料符號之NS 個非零項,該等NS 個資料符號將在H 之NS 個空間通道上傳輸;r 為一NR ×1向量,其具有用於經由NR 個接收天線獲取之NR 個接收到之符號的項;且n 為在接收實體處觀測到之雜訊向量。
可假定該雜訊為具有一零均值向量及一協方差矩陣Λ =σ 2 I 之加成性白色高斯雜訊(AWGN),其中σ2 為雜訊之方差且I 為恆等矩陣(identity matrix)。
自NT 個傳輸天線傳輸之NS 個資料符號流在接收實體處彼此干擾。自一傳輸天線傳輸之一給定資料符號流一般由所有的NR 個接收天線以不同的振幅及相位接收。每一接收到的符號流包括每一該等NS 個經傳輸的資料符號流之一分量。NR 個接收到之符號流將共同包括所有該等NS 個資料符號流。然而,該等NS 個資料符號流分散於NR 個接收到之符號流之中。接收實體對NR 個接收到之符號流執行接收器空間處理以恢復由傳輸實體發送之NS 個資料符號流。
MIMO系統可達成之效能(在很大程度上)取決於通道回應矩陣H 。若H 內存在高度的相關性,則每一資料符號流將觀測到大量來自其它流之干擾。此干擾或串擾不可在接收實體處藉由空間處理來移除。高水準之干擾會降級每一受影響的資料符號流之SNR,有可能將其降級到資料符號流 不能由接收實體正確解碼之地步。
對於一給定的通道回應矩陣H 而言,當傳輸實體使用源自H 之特徵向量(eigenvector)在MIMO通道之NS 個特徵模式(eigenmode)(或正交空間通道)上傳輸資料時可達成系統性能。若接收實體可向傳輸實體提供完全的抑或部分的通道狀態資訊(CSI),則傳輸實體可以最大化該等流之總流通量之方式(例如,藉由使用每一資料流之最佳或接近最佳的資料傳輸率)處理資料流。然而,若傳輸實體未被通知或被誤通知(misinformed),則為資料流所使用之該(等)資料傳輸率可在通道實現(channel realization)中導致一定百分比之訊框或碼塊錯誤。舉例而言,當H 顯示出高度的相關性或當無線通道中存在不足的散射、多路徑(大相干頻寬(coherence bandwidth))及/或時間衰減(大相干時間(coherence time))時,可發生"不良"通道回應。"不良"通道之發生為隨機的,且對於一給定資料傳輸率選擇而言需要最小化可發生此情況之時間百分比。
對於某些MIMO系統而言,效能可由最壞通道條件支配。舉例而言,若接收實體不可發送反饋資訊來指示用於每一資料符號流之適當的資料傳輸率(例如,因為反饋不被系統支持或通道條件比反饋速率改變得更快),則傳輸實體可能需要以低速率傳輸資料符號流,以使得甚至在最壞通道條件下亦可恢復該等流。因而系統效能將由預期的最壞通道條件支配,此為非常不理想的。
空間擴張可用來隨機化由接收實體觀測之有效MIMO通 道,使得系統效能不由最壞通道條件支配。使用空間擴張,傳輸實體用不同的導引矩陣執行空間處理以有效地隨機化MIMO通道,使得用於每一資料流之每一碼塊可觀測通道之全體而不會長時間停留在一不良通道上。
可將用於空間擴張之在傳輸實體處之空間處理表達為:x (m)=V (m).s (m), 方程式(3)其中,s (m)為一NS ×1向量,其具有將在傳輸範圍m中發送之NS 個資料符號;V (m)為用於傳輸範圍m之NT ×NS 導引矩陣;且x (m)為一NT ×1向量,其具有將在傳輸範圍m中自NT 個傳輸天線發送之NT 個傳輸符號。
一般而言,使用H (m)之NS 個空間通道可同時傳輸高達NS 個資料符號流。為簡明起見,以下大量描述假定同時傳輸NS 個資料符號流。
傳輸範圍可涵蓋時間及/或頻率維。舉例而言,在單載波MIMO系統中,傳輸範圍可對應於一符號週期,其為傳輸一資料符號之持續時間。作為另一實例,在諸如利用OFDM之MIMO系統之多載波MIMO系統中,傳輸範圍可對應於一OFDM符號週期中之一子頻帶。傳輸範圍亦可涵蓋多個符號週期及/或多個子頻帶。因此,m可為時間及/或頻率之指數。亦可將傳輸範圍稱為傳輸區間、訊號傳輸區間、時槽等等。
可如以下描述產生L個導引矩陣之集合且將其用於空間擴張。此導引矩陣集合表示為{V }或V (i)(i=1...L),其中L 可為大於1之任何整數。可為每一傳輸範圍m選擇該集合中的一個導引矩陣。然後,傳輸實體將為每一傳輸範圍m用為該傳輸範圍所選之導引矩陣V (m)執行空間處理,其中V (m){V }。空間處理之結果為NT 個傳輸符號流,其經進一步調節並自NT 個傳輸天線傳輸。
可將經空間擴張的在接收實體處的接收到之符號表達為:r (m)=H (m).V (m).s (m)+n (m)=H eff (m).s (m)+n (m), 方程式(4)其中,H (m)為用於傳輸範圍m之NR ×NT 通道回應矩陣;H eff (m)為用於傳輸範圍m之NR ×NS 有效通道回應矩陣,其為H eff (m)=H (m).V (m);r (m)為一NR ×1向量,其具有傳輸範圍m之NR 個接收到之符號;且n (m)為傳輸範圍m之雜訊向量。
如方程式(4)中所展示,由於由傳輸實體執行之空間擴張,NS 個資料符號流觀測有效通道回應H eff (m)而不是實際通道回應H (m)。因此將每一資料符號流在H eff (m)而不是H (m)之一空間通道上發送。可選擇導引矩陣使得每一資料符號流觀測H (m)之空間通道之全體。此外,若跨越一碼塊使用不同的導引矩陣,則用於該碼塊之資料符號將跨越該碼塊觀測不同的通道。
接收實體可用有效通道回應矩陣之估計對接收到之符號執行接收器空間處理以恢復所傳輸之資料符號流。若接收實體瞭解傳輸實體用於每一傳輸範圍m之導引矩陣,則接收 實體可估計通道回應矩陣(例如,基於接收到之引導符號)並按照計算一估計的有效通道回應矩陣,其中"^"指示實際矩陣之估計。或者,接收實體可直接估計有效通道回應矩陣H eff (m),例如,基於已使用V (m)傳輸之接收到之引導符號。引導符號為用於引導之調變符號,其為由傳輸與接收實體二者事先得知之資料。
一般而言,可經由MIMO通道同時傳輸任何數目之(ND 個)資料流,其中。舉例而言,若ND =NS ,則可在H eff (m)之NS 個空間通道之每一上傳輸一資料流。若ND =1,則可解多工(demultiplex)一資料流並在H eff (m)之所有的NS 個空間通道上傳輸其。無論如何,如以下所描述,處理(例如:編碼、交錯、及調變)每一資料流以獲取資料符號,且將用於所有的ND 個資料流之資料符號解多工為用於H eff (m)之NS 個空間通道之NS 個資料符號流。一導引矩陣用於一傳輸範圍之空間處理,其可涵蓋一或多個資料符號向量。
圖1展示用於以空間擴張傳輸資料之程序100。初始地,處理資料以獲取用於ND 個資料流的ND 個資料符號塊之集合,一個塊用於一資料流(塊112)。每一資料符號塊包含自經編碼資料之一碼塊(或一經編碼之資料封包)產生之資料符號。可如以下描述執行資料處理。將ND 個資料符號塊分割成將在NM 個傳輸範圍內傳輸之NM 個資料符號子塊,每一傳輸範圍中一子塊(塊114)。NM 亦稱為塊長度且NM >1。每一子塊可包含來自每一該等ND 個塊之一或多個資料符號。舉例而言,若ND =NS ,則每一子塊可包含來自用於NS 個資料 流之NS 個塊之NS 個資料符號。作為另一實例,若ND =1,則每一子塊可包含來自用於一資料流之一個塊之NS 個資料符號。將用來表示資料符號塊之當前集合之傳輸範圍之指數m設定為1(塊116)。
使用一導引矩陣V (m)來針對每一傳輸範圍m進行空間處理。此導引矩陣V (m)可選自L個導引矩陣之集合{V }(塊118)。然後,用導引矩陣V (m)對資料符號子塊m執行空間處理以獲取傳輸符號(塊120)。若傳輸範圍m涵蓋一個資料符號向量,則如方程式(3)所展示,由資料符號子塊m形成一具有多達NS 個資料符號之向量s (m)並用導引矩陣V (m)對其進行空間處理以獲取對應的傳輸符號向量x (m)。若傳輸範圍m涵蓋多個(NV 個)資料符號向量,則由資料符號子塊m形成NV 個向量s l (m)(l=1...NV ),且用相同的導引矩陣V (m)對每一向量s l (m)進行空間處理以獲取對應的傳輸符號向量x l (m)。無論如何,相同的導引矩陣V (m)用於針對傳輸範圍m中之所有的資料符號向量之空間處理,且對所得的傳輸符號向量進行處理並在傳輸範圍m中經由NT 個傳輸天線傳輸(塊122)。
然後,做NM 個資料符號子塊是否已經處理並傳輸之判定(意即,是否m=NM )(塊124)。若答案為"否",則為下一子塊/傳輸範圍而將指數m加1(塊126),且程序返回塊118。若針對塊124之答案為"是",則做一是否存在待傳輸之更多資料之判定(塊128)。若答案為"是",則程序返回塊112來開始處理資料符號塊之下一集合。否則,程序終止。
如圖1中所展示,用NM 個導引矩陣對各個資料符號塊集合進行空間處理以獲取NT 個傳輸符號序列。在NM 個傳輸範圍中將每一傳輸符號序列經由該等NT 個傳輸天線中的各別天線予以傳輸。NM 個導引矩陣為ND 個資料符號塊隨機化了由接收實體觀測之有效MIMO通道。MIMO通道之隨機化係由針對不同的傳輸範圍使用不同的導引矩陣而產生,不必借助於導引矩陣之元素的隨機性。
如以上所說明,可將傳輸範圍界定為涵蓋一或多個符號週期及/或一或多個子頻帶。為了改良效能,需要選擇盡可能小的傳輸範圍,以使得(1)更多的導引矩陣可用於每一資料符號塊且(2)接收實體可為每一資料符號塊獲取盡可能多的MIMO通道之"外觀(look)"。傳輸範圍亦應比MIMO通道之相干時間更短,該相干時間係可假定MIMO通道於其中近似地為靜態之持續時間。類似地,對於基於OFDM之系統而言,傳輸範圍應比通道之相干頻寬更小。
圖2展示了用空間擴張來接收資料之程序200。初始地將指數m設定成1(塊212),該指數m用於表示資料符號塊之當前集合的傳輸範圍。自NR 個接收天線為資料符號子塊m獲取接收到的資料符號(塊214)。判定由傳輸實體為子塊m使用之導引矩陣V (m)(塊216),且將該矩陣用於導出由子塊m觀測之有效MIMO通道的通道回應估計。然後,將此通道回應估計用於對接收到之資料符號執行接收器空間處理,以便為子塊m獲取偵測到之符號(或資料符號估計)(塊218)。
然後,做是否已接收到當前的資料符號塊集合之NM 個資 料符號子塊之判定(意即,是否m=NM )(塊220)。若答案為"否",則為下一子塊/傳輸範圍而將指數m加1(塊222),且程序返回塊214。若針對塊220之答案為"是",則處理(例如:解調變、解交錯、及解碼)用於所有NM 個子塊之偵測到之符號,以獲取當前資料符號塊集合之經解碼資料(塊224)。然後,做是否存在更多的待接收之資料之判定(塊226)。若答案為"是",則程序返回塊212以開始接收資料符號塊之下一集合。否則,程序終止。
A.導引矩陣選擇
如以上所說明,可產生L個導引矩陣之集合並將其用於空間擴張。可以多種方式選擇集合中之導引矩陣來使用。在一實施例中,以一確定性方式自集合中選擇導引矩陣。舉例而言,可循環於L個導引矩陣中且以順序來選擇之:以第一導引矩陣V (1)開始、然後為第二導引矩陣V (2)、等等、且然後為最末導引矩陣V (L)。在另一實施例中,以偽隨機方式自集合中選擇導引矩陣。舉例而言,可基於一函數f(m)或導引矩陣V (f(m))來選擇用於每一傳輸範圍m之導引矩陣,該函數f(m)會偽隨機地選擇該等L個導引矩陣中之一者。在另一實施例中,以"完全變化"的方式自該集合選擇導引矩陣。舉例而言,可循環於L個導引矩陣中且以順序來選用之。然而,可以偽隨機方式選擇每一次循環之開始導引矩陣,而不總是將第一導引矩陣V (1)當作開始導引矩陣。亦可以多種其它方式來選擇L個導引矩陣,且此在本發明之範疇內。
導引矩陣之選擇亦可取決於集合中之導引矩陣之數目(L)及塊長度(NM )。一般而言,導引矩陣之數目可大於、等於、或小於塊長度。可如以下所述來執行在該等三種狀況下的導引矩陣之選擇。
若L=NM ,則導引矩陣之數目與塊之長度匹配。在此種狀況下,可為用於傳輸資料符號塊之集合的NM 個傳輸範圍中之每一傳輸範圍選擇一個不同的導引矩陣。如以上所描述,可以確定性、偽隨機、或完全變化的方式為NM 個傳輸範圍選擇NM 個導引矩陣。舉例而言,可為各個資料符號塊集合順序選擇集合中之L個導引矩陣,其中為各個資料符號塊集合使用相同的(預選的)或不同的(偽隨機選擇的)開始導引矩陣。
若L<NM ,則塊長度比集合中之導引矩陣之數目更大。在此種狀況下,為每一資料符號塊集合重複使用該等導引矩陣且可如上所述地選擇其。
若L>NM ,則將導引矩陣之子集用於每一資料符號塊集合。用於每一資料符號塊集合之特定子集之選擇可為確定性的或偽隨機的。舉例而言,用於當前資料符號塊集合之第一個導引矩陣可為用於前一資料符號塊集合之最末一個導引矩陣之後的導引矩陣。
B.系統
圖3展示MIMO系統300中之傳輸實體310及接收實體350之方塊圖。在傳輸實體310處,傳輸(TX)資料處理器320接收並處理(例如:編碼、交錯、及調變)用於ND 個資料流的 流量資料且提供NS 個資料符號流,其中。TX空間處理器330接收並空間處理NS 個資料符號流以進行空間擴張、多工入(multiplex in)引導符號、並將NT 個傳輸符號流提供至NT 個傳輸器單元(TMTR)332a至332t。以下描述由TX資料處理器320進行之處理,且由TX空間處理器330進行之空間處理如以上所描述。各個傳輸器單元332調節(例如:轉換成類比、濾波、放大、及頻率向上轉換)各別的傳輸符號流以產生經調變訊號。NT 個傳輸器單元332a至332t分別提供用於自NT 個天線334a至334t傳輸之NT 個經調變的訊號。
在接收實體350處,NR 個天線352a至352r接收NT 個經傳輸之訊號,且各個天線352將一接收到之訊號提供至各別的接收器單元(RCVR)354。每一接收器單元354執行與由傳輸器單元332所執行之處理互補之處理,且(1)將接收到之資料符號提供至接收(RX)空間處理器360並(2)將接收到之引導符號提供至控制器380內之通道估計器384。藉由來自通道估計器384之通道估計,接收空間處理器360對來自NR 個接收器單元354a至354r之NR 個接收到之符號流執行空間處理,且提供NS 個偵測到之符號流,該等符號流是由傳輸實體310發送之NS 個資料符號流之估計值。然後,RX資料處理器370處理(例如:解映射、解交錯、及解碼)該等NS 個偵測到之符號流且提供ND 個經解碼之資料流,該等經解碼之資料流是ND 個資料流之估計。
控制器340及380分別控制傳輸實體310及接收實體350處 之多種處理單元之操作。記憶體單元342及382分別儲存由控制器340及380使用之資料及/或程式碼。
圖4展示傳輸實體310處之處理單元之方塊圖。對於圖4中所展示之實施例而言,TX資料處理器320包括用於ND 個資料流{dl }(其中l=1...ND )的ND 個資料流處理器410a至410nd。在每一資料流處理器410內,一編碼器412接收資料流{dl }並基於一編碼方案將其編碼並提供碼位元。該編碼方案可包括循環冗餘檢查(CRC)產生、迴旋編碼(convolutional coding)、渦輪碼編碼(Turbo coding)、低密度同位檢查(LDPC)編碼、區塊編碼(block coding)、其它種編碼、或其組合。通道交錯器414基於一交錯方案來交錯(意即重新排序)該等碼位元,以達成頻率、時間、及/或空間分集。符號映射單元416基於一調變方案來映射該等經交錯之位元,且提供資料符號{sl }流。單元416將每B個經交錯之位元分入一組以形成B位元值(其中B1),且基於所選之調變方案(例如:QPSK、M-PSK、或M-QAM,其中M=2B )而進一步將每一B位元值映射至一特定調變符號。一般對每一資料流{dl }中之每一資料封包獨立地執行編碼以獲取一對應的經編碼的資料封包或碼塊,且然後對每一碼塊執行符號映射以獲取一對應的資料符號塊。
在圖4中,ND 個資料流處理器410a至410nd處理ND 個資料流且為NM 個傳輸範圍之每個塊長度提供ND 個資料符號塊。單個資料流處理器410亦可(例如)以一分時多工(TDM)方式處理ND 個資料流。可為該等ND 個資料流使用相同的或 不同的編碼及調變方案。此外,可為該等ND 個資料流使用相同的或不同的資料傳輸率。多工器/解多工器(Mux/Demux)420接收用於ND 個資料流之資料符號並將其多路傳輸/解多路傳輸成NS 個資料符號流,H eff (m)中之每一空間通道一資料符號流。若ND =NS ,則多工器/解多工器420可簡單地將用於每一資料流之資料符號作為一個資料符號流來提供。若ND =1,則多工器/解多工器420將用於一個資料流之資料符號解多工成NS 個資料符號流。
TX空間處理器330為NM 個傳輸範圍之每個塊長度自TX資料處理器320接收NS 個資料符號塊且自控制器340接收NM 個導引矩陣V (m)。該等導引矩陣可擷取自記憶體單元342內之導引矩陣(SM)儲存器442或由控制器340視需要產生。TX空間處理器330藉由用於各傳輸範圍m之導引矩陣V (m)來對各傳輸範圍m之資料符號執行空間處理且提供用於該傳輸範圍的傳輸符號。TX空間處理器330將用於每一傳輸範圍m的傳輸符號多工化以獲取NT 個傳輸符號序列,其將在一或多個符號週期中及/或在一或多個子頻帶上自NT 個傳輸天線發送。TX空間處理器330進一步將該等NT 個傳輸符號序列多工化以用於不同的傳輸範圍,且為NT 個傳輸天線提供NT 個傳輸符號流{xj }(j=1...NT )。
圖5展示接收實體350處之處理單元之方塊圖。NR 個接收器單元354a至354r將接收到之引導符號{ri P }(i=1...NR )提供至通道估計器384。在一實施例中,通道估計器384基於接收到之引導符號而導出通道回應矩陣H (m)之估計(m)。通道 估計器384進一步接收用於每一傳輸範圍m的導引矩陣V (m)且按照導出估計得的有效通道回應矩陣。對於此實施例,接收及傳輸實體經同步,以使得兩個實體為每一傳輸範圍m使用相同的導引矩陣V (m)。在另一實施例中,通道估計器384基於接收到之引導符號而直接導出有效通道回應矩陣H eff (m)之估計。對於該等兩個實施例而言,通道估計器384都將所估計之有效通道回應矩陣提供至RX空間處理器360。
RX空間處理器360亦自NR 個接收器單元354a至354r獲取接收到之資料符號{ri d }(i=1...NR )。RX空間處理器360藉由並使用此項技術中已知之許多接收器空間處理技術中之任一技術來對接收到之資料符號執行接收器空間處理。RX空間處理器360將偵測到之符號(或資料符號估計)提供至RX資料處理器370。
對於圖5中所展示之實施例而言,RX資料處理器370包括多工器/解多工器(Mux/Demux)508及用於ND 個資料流之ND 個資料流處理器510a至510nd。多工器/解多工器508接收H eff (m)中的NS 個空間通道之NS 個偵測到之符號流並將其多工/解多工成用於ND 個資料流之ND 個偵測到之符號流。多工器/解多工器508以與圖4中之傳輸實體310處之多工器/解多工器420互補的方式操作。在每一資料流處理器510內,為獲取相關聯的資料流,符號解映射單元512根據用於該流之調變方案來解調變偵測到之符號,且提供經解調變的資料。通道解交錯器514解交錯該等經解調變之資料,其解交 錯方式與由傳輸實體310對該流所執行之交錯過程互補。然後,解碼器516解碼經解交錯之資料,其解碼方式與由傳輸實體310對該流所執行之編碼過程互補。舉例而言,若在傳輸實體310處分別執行渦輪碼編碼或迴旋編碼,則可將渦輪解碼器或維特比解碼器(Viterbi decoder)用作解碼器516。解碼器516為每一資料符號塊提供一經解碼之資料封包。
C.MIMO-OFDM系統
使用OFDM,可於每一OFDM符號週期中在NF 個子頻帶上傳輸多達NF 個調變符號。在傳輸之前,使用NF 點反向快速傅立葉轉換(IFFT)將該等調變符號轉換到時間域以產生一包含NF 個時間域碼片之"經轉換"符號。為了抵抗由頻率選擇性衰減導致之符號間干擾(ISI),重複每一經轉換之符號中的一部分(或Ncp 個碼片)以形成一對應的OFDM符號。每一OFDM符號在一個OFDM符號週期(NF +Ncp 個碼片週期)中予以傳輸,其中Ncp 為循環字首長度。
對於一利用OFDM之MIMO系統(意即,MIMO-OFDM系統)而言,可為用於資料傳輸之每一子頻帶執行空間擴張。因此,用於傳輸範圍之指數m被以k、n替代(子頻帶k及OFDM符號週期n)。可為每一OFDM符號週期n中的每一子頻帶k形成一個向量s (k,n)。每一向量s (k,n)在OFDM符號週期n中為子頻帶k包含用於經由H eff (k,n)之NS 個空間通道來傳輸的多達NS 個資料符號。可於一個OFDM符號週期中在NF 個子頻帶上同時傳輸多達NF 個向量s (k,n)(k=1...NF )。
在MIMO-OFDM系統中可以多種方式傳輸ND 個資料符號 塊之集合。舉例而言,每一資料符號塊可作為用於NF 個子頻帶中的各個子頻帶的向量s (k,n)之一個項來傳輸。在此種狀況下,每一資料符號塊在所有的NF 個子頻帶上傳輸且達成頻率分集。每一資料符號塊可進一步跨越一或多個OFDM符號週期。因此,每一資料符號塊可跨越頻率及/或時間維(由系統設計)外加空間維(用空間擴張)。
對於MIMO-OFDM系統而言,亦可以多種方式選擇導引矩陣。如以上所描述,可以確定性、偽隨機、或完全變化的方式為子頻帶選擇導引矩陣。舉例而言,可循環於集合中之L個導引矩陣中且以順序選擇其(為OFDM符號週期n中的子頻帶1至NF 進行選擇、然後為OFDM符號週期n+1中的子頻帶1至NF 進行選擇、等等)。可將傳輸範圍界定為涵蓋一或多個子頻帶及一或多個OFDM符號週期。集合中之導引矩陣之數目可小於、等於、或大於子頻帶之數目。以上所描述之三種狀況L=NM 、L<NM 、及L>NM 亦可應用於子頻帶,其中以NF 取代NM
對於MIMO-OFDM系統而言,每一傳輸器單元332對用於相關聯的傳輸天線之所有NF 個子頻帶的傳輸符號執行OFDM調變,以獲取對應的OFDM符號流。每一傳輸器單元332進一步調節OFDM符號流以產生經調變之訊號。每一接收器單元354對其接收到之訊號執行互補的OFDM解調變,以獲取接收到之資料符號及接收到之引導符號。OFDM調變及解調變為此項技術所習知且本文不加以描述。
D.導引矩陣產生
用於空間擴張之導引矩陣應為單位矩陣且滿足以下條件:V H (i).V (i)=I (i=1...L), 方程式(5)其中"H "表示共軛轉置(conjugate transpose)。每一導引矩陣包括NS 個行且可被表達為。對於一給定的導引矩陣V (i)而言,方程式(5)中的條件指示(1)V (i)之每一行應具有單位長度,或∥v a (i)∥=v a (i)=1(a=1...NS ),且(2)V (i)之任何兩行之厄密共軛(Hermitian)內積應為零,或v b (i)=0(a=1...NS ,b=1...NS ,且a≠b)。此條件確保使用導引矩陣V (i)來同時傳輸之NS 個資料符號具有相同的功率(power)且在傳輸之前彼此正交。
亦可將某些導引矩陣不相關化(uncorrelated),以使得任何兩個經不相關化的導引矩陣之間之相關性為零或一低值。可將此條件表達為: 其中,C (ij)為V (i)與V (j)之相關矩陣且0 是全為0之矩陣。
使集合中之所有導引矩陣皆滿足方程式(6)中之條件可能很難。可導出導引矩陣,使得所有可能的導引矩陣對之相關矩陣之最大能量為最小化的。可如方程式(6)中所示計算一給定導引矩陣對之相關矩陣C (ij)。可按照計算C (ij)之能量,其中cm,n (ij)為C (ij)之第m列及第n行之元素。能量E(ij)亦為(1)C H (ij).C (ij)之跡(trace)及(2)C (ij)之弗羅貝尼烏斯範數(Frobenius norm)之平方。產生導引矩陣使得所有對導引矩陣之最大能量E(ij)為 最小化的。
可以多種方式產生L個導引矩陣{V }之集合,以下描述其中之一些。可在傳輸及接收實體處預計算並儲存導引矩陣之集合且其後視需要而擷取其來使用。或者,可視需要即時計算該等導引矩陣。
圖6展示用於產生導引矩陣{V }之集合之第一方案之例示性程序600。初始地,為將產生之第一引導矩陣將指數i設定成1(塊612)。然後產生隨機變數之NS ×NT 矩陣G (塊614)。G 之元素為獨立同態分佈(IID)的複高斯隨機變數,其各具有零均值及單位方差。然後,按照R =G HG 來計算G 之NT ×NT 相關矩陣(塊616)。
緊接著,執行G之相關矩陣之特徵值分解(塊618)如下:R =EDE H , 方程式(7)其中,E 為特徵向量R 的NT ×NS 單位矩陣;且D 為特徵值R 的NS ×NS 對角矩陣。
對角矩陣D 包含沿對角線之非負實值及別處之零。該等對角項被稱為特徵值R 且表示G 之NS 個特徵模式之功率增益。
然後檢查特徵向量矩陣E 與已為集合產生之每一導引矩陣之間的相關性(塊620)。對於第一導引矩陣而言跳過塊620。該檢查可(例如)藉由以下步驟來實現:(1)計算矩陣E與已產生之每一導引矩陣V (j)(j=1...(i-1))之間之相關矩陣C (j);(2)如以上所描述計算每一相關矩陣C (j)之能量;(3)將每一相關矩陣之能量與一臨限值相比較;及(4)若所有的i-1個相關矩陣之能量小於該臨限值則宣佈低相關性。亦可 使用檢查低相關性之其它測試,且此在本發明之範疇內。然後,為特徵向量矩陣E 做是否符合低相關性標準之判定(塊622)。若矩陣E 與任何先前產生的導引矩陣之間之相關性超過了臨限值,則不符合低相關性標準。若為此種狀況,則程序返回塊614以產生另一矩陣G 。否則,若符合低相關性標準,則設定引導矩陣V (i)等於矩陣E (塊624)。如方程式(7)中所展示,因為矩陣E 係經由特徵值分解而獲得,所以導引矩陣V (i)為一單位矩陣。
然後,做是否已產生用於該集合之所有L個導引矩陣之判定(塊626)。若答案為"否",則指數i加1(塊628),且程序返回塊614以產生下一導引矩陣。否則,程序終止。
可藉由以下步驟來改良用程序600產生之導引矩陣:(1)識別出一對導引矩陣,其相關矩陣具有最高能量;及(2)藉由以單位矩陣自左乘(pre-multiply)該等兩個導引矩陣來"分離"該等導引矩陣(使得所得矩陣亦為單位矩陣)。可選擇用於自左乘之單位矩陣來以確定性或隨機的方式修改該等兩個導引矩陣。可重複該程序直到相關矩陣之最大能量不可進一步減少。
在第二方案中,基於(log2 L)+1個獨立各向同性分佈(independent isotropically distributed)的單位矩陣之集合來產生L個導引矩陣之集合。一隨機單位矩陣若在被任何確定性的NT ×NT 單位矩陣自左乘時其概率密度(probability density)不變,則該隨機單位矩陣為各向同性分佈的。可將集合中之導引矩陣之指數i表示為i=l1 l2 ...lQ ,其中Q=log2 L, l1 為指數i之第一位元,lQ 為指數i之最末位元,且每一位元的值可為0或1。然後,可如下產生L個導引矩陣: 其中,V 0 為NT ×NS 獨立各向同性分佈單位矩陣;且(j=1...Q)為NT ×NT 獨立各向同性分佈單位矩陣。
可將矩陣V 0 定義為(例如),其中為NS ×NS 恆等矩陣。T.L.Marzetta等人在2002年4月之"Structured Unitary Space-Time Autocoding Constellations,"IEEE Transaction on Information Theory,第48卷,第4號中以進一步的細節描述了第二方案。
在第三方案中,藉由在NT 維複空間(complex space)中逐步旋轉一初始麼正導引矩陣V (1)來產生L個導引矩陣之集合,如下:V (i+1)=Θ iV (1),(i=1...L-1), 方程式(9)其中Θ i 為NT ×NT 對角單位矩陣,其可定義如下: 且u1 、u2 、…、為NT 個不同的值,各自在0至L-1之範圍內,挑選其使得用矩陣Θ i 產生之所得導引矩陣之間的相關性盡可能的低。Θ i 之NT 個對角元素為第L個單位根(root of unity)。可用NT ×NT 傅立葉矩陣D 之NS 個不同行來形成初始麼正導引矩陣V (1),其中給出第(n,m)個項Wn,m 為: 其中,n為列指數且m為行指數。B.M.Hochwald等人在2000年9月之"Systematic Design of Unitary Space-Time Constellations,"IEEE Transaction on Information Theory,第46卷,第6號中以進一步的細節描述了第三方案。
在第四方案中,以基底矩陣B 及不同的純量來產生L個導引矩陣之集合。基底矩陣可為沃爾什矩陣(Walsh matrix)、傅立葉矩陣、或某些其它矩陣。可將一2×2沃爾什矩陣表達為。可自較小的沃爾什矩陣W N×N 形成較大的沃爾什矩陣W 2N×2N ,如下:
該等沃爾什矩陣的維數為2的乘方。如方程式(11)中所展示,可形成具有任一平方維數(square dimension)(例如:2、3、4、5等)之傅立葉矩陣。
NT ×NT 沃爾什矩陣W 、傅立葉矩陣D 、或某些其它矩陣可用作基底矩陣B 以形成其它導引矩陣。可將基底矩陣之第2至NT 列中的每一列獨立地與M個不同的可能的純量之一相乘,其中M>1。自用於該等NT -1列的M個純量之種不同的排列可獲取個不同的導引矩陣。舉例而言,第2至NT 列中的每一列可與純量+1、-1、+j、或-j獨立地相乘,其中。對於NT =4且M=4,可用四個不同的純量自基底矩陣B 產生64個不同的導引矩陣。可用其它純量(例如:e±j3π/4 ,e±jπ/4 ,e±jπ/8 等等)產生額外的導引矩陣。一般而言,基底矩陣之每一列可與具有e 之形式(其中θ可為任何相位值)的任 何純量相乘。可按照V (i)=B (i)產生NT ×NT 導引矩陣,其中B (i)為用基底矩陣B 產生之第i個矩陣。由來定標確保了V (i)之每一行具有單位功率(unit power)。
其它方案亦可用於產生導引矩陣之集合,且此在本發明之範疇內。一般而言,可以偽隨機方式(例如,諸如第一方案)或確定性方式(例如,諸如第二及第三方案)產生導引矩陣。
E.效能
圖7展示了在一例示性MIMO系統中所達成之總頻譜效率之累積分佈函數(CDF)之曲線。對於此MIMO系統,傳輸實體配備有四個傳輸天線(NT =4),且接收實體配備有四個接收天線(NR =4)。假定MIMO通道如以上針對方程式(1)所描述。假定接收到之SNR為20 dB,則該接收到的SNR為在進行接收器空間處理之前所接收到的符號之SNR。假定接收實體使用最小均方誤差(MMSE)接收器空間處理技術。
曲線710展示未執行空間擴張之狀況下之總頻譜效率之CDF。以每赫茲中位元/秒(bps/Hz)之單位給出頻譜效率。對於給定的頻譜效率x,CDF指示了總頻譜效率比x差之概率。舉例而言,點712指示不進行空間擴張時總頻譜效率比9 bps/Hz差的概率為百分之一(10-2 )。若傳輸實體以9 bps/Hz之總速率編碼並傳輸資料,則接收實體不能正確地解碼資料之概率為百分之一。通常將此概率稱為"中斷"概率。
曲線720、730及740展示分別使用4、16及64個導引矩陣進行空間擴張而達成之總頻譜效率之CDF。點722、732及 742指示了分別在使用4、16及64個導引矩陣時,總頻譜效率分別劣於12.5、14.6及15.8 bps/Hz之概率為百分之一。對於百分之一的中斷概率而言,空間擴張之使用將該例示性MIMO系統之總頻譜效率自9 bps/Hz改良至近似為15.8 bps/Hz(用64個導引矩陣)。線750代表50%的概率且可參考其來判定該等四種狀況的平均總頻譜效率。
圖7展示具有某些具體假定之例示性MIMO系統之效能。一般而言,改良的量可取決於多種因素,諸如(例如)MIMO通道之特徵、傳輸及接收天線之數目、在接收實體處所使用之空間處理技術、用於資料傳輸之編碼及調變方案等等。
2.MISO系統
MISO系統在傳輸實體處使用多個(NT 個)傳輸天線且在接收實體處使用單一接收天線來傳輸資料。由NT 個傳輸天線及單一接收天線形成之MISO通道由單一空間通道組成。MISO通道可由1×NT 通道回應列向量h 表現其特徵,h =〔h1 h2 ...〕,其中項hj (j=1...NT )表示傳輸天線j與單一接收天線之間的耦合。
空間擴張可用於隨機化由單一天線接收實體觀測之有效MISO通道,以使得效能不會受到最壞通道條件的支配。對於MISO系統而言,傳輸實體用導引向量之集合執行空間處理。
用於在MISO系統中進行空間擴張而在傳輸實體處進行之空間處理可表達為:x miso (m)=v (m).s(m), 方程式(13) 其中s(m)為將在傳輸範圍m中發送之資料符號;v (m)為用於傳輸範圍m之NT ×1導引向量;且x miso (m)為NT ×1向量,其具有將在傳輸範圍m中自NT 個傳輸天線發送之NT 個傳輸符號。
可產生L個導引向量之集合且將其表示為{v }或v (i)(i=1...L)。可為每一傳輸範圍m選擇集合中之一個導引向量(例如,以偽隨機或確定性方式,類似於以上針對導引矩陣所描述之方式)。針對每一傳輸範圍m,傳輸實體用為該傳輸範圍所選之導引向量v (m)來執行空間處理。
可將在接收實體處用空間擴張接收到之符號表達為:r(m)=h (m).v (m).s(m)+n(m)=heff (m).s(m)+n(m), 方程式(14)其中r(m)為傳輸範圍m之接收到之符號;heff (m)為傳輸範圍m之有效通道回應,其為heff (m)=h (m).v (m);且n(m)為傳輸範圍m之雜訊。
如方程式(14)中所展示,因為由傳輸實體執行空間擴張,所以資料符號流觀測有效通道回應heff (m),其包括實際通道回應h (m)及導引向量v (m)。接收實體可用有效通道回應估計來對接收到之符號r(m)執行偵測(例如,匹配濾波或均衡)以獲取偵測到之符號(m),此為此項技術所習知。接收實體進一步處理(例如:解調變、解交錯、及解碼)偵測到之符號r(m)以獲取經解碼之資料。
在MISO系統中用於空間擴張之導引向量應具有相等的能量(例如,∥v (i)∥2 =v H (i).v (i)=1(i=1...L)),以使得用於資料符號 之傳輸功率不會由空間擴張改變。亦可將某些導引向量不相關化,使得任何兩個經不相關化的導引向量之間之相關性為零或一低值。可將此條件表達為: 其中,c(ij)為導引向量v (i)與v (j)之間之相關性。
可以多種方式(例如,以偽隨機或確定性方式,類似於以上針對導引矩陣所描述之方式)產生L個導引向量之集合。如以上所描述而產生之導引矩陣之行可用於導引向量以進行空間擴張。
可用多種方式實施本文所描述之空間擴張技術。舉例而言,可在硬體、軟體、或其組合中實施該等技術。對於硬體實施而言,用來在傳輸實體處執行空間擴張之處理單元可實施於一或多個特殊應用積體電路(ASIC)、數位訊號處理器(DSP)、數位訊號處理裝置(DSPD)、可程式化邏輯裝置(PLD)、現場可程式化閘極陣列(FPGA)、處理器、控制器、微控制器、微處理器、設計來執行本文所描述之功能之其它電子單元、或其組合內。用來在接收實體處執行空間處理之處理單元亦可實施於一或多個ASIC、DSP、處理器等等內。
對於軟體實施而言,可用執行本文所描述之功能之模組(例如:程序、函式等等)來實施空間擴張技術。可將軟體程式碼儲存於記憶體單元中(例如,圖3中之記憶體單元342及382)且由處理器(例如,控制器340及380)執行其。可在處理器內部或外部建構記憶體單元,在於處理器外部建構記憶 體單元之狀況下,可經由此項技術所習知之多種方式將記憶體單元通信地耦接至處理器。
本文所包括之標題用於參考及幫助定位特定部分。不希望該等標題限制其下所描述之概念之範疇,且該等概念亦可應用在整個專利說明書全文之其它部分中。
提供對所揭示之實施例的先前描述來使任何熟習此項技術者可製作或使用本發明。對於彼等熟習此項技術者而言對該等實施例之多種修改將顯而易見,且在不脫離本發明之精神或範疇的情況下可將本文所界定之通用原則應用於其它實施例。因此,並不希望本發明被限制於本文所展示之實施例,而希望本發明符合與本文所揭示之原則及新穎特點一致之廣闊範疇。
1、10-1、10-2、10-3‧‧‧概率
6、8、10、12、14、16、18、20、22‧‧‧頻譜效率
100‧‧‧程序
200‧‧‧程序
300‧‧‧MIMO系統
310‧‧‧傳輸實體
320‧‧‧傳輸資料處理器
330‧‧‧傳輸空間處理器
332a至332t‧‧‧傳輸單元
334a至334t‧‧‧天線
340‧‧‧控制器
342‧‧‧記憶體
350‧‧‧接收實體
352a至352r‧‧‧天線
354a至354r‧‧‧接收器單元
360‧‧‧接收空間處理器
370‧‧‧接收資料處理器
380‧‧‧控制器
382‧‧‧記憶體
384‧‧‧通道估計器
410a至410nd‧‧‧資料流處理器
412a至412nd‧‧‧編碼器
414a至414nd‧‧‧通道交錯器
416a至416nd‧‧‧符號映射單元
420‧‧‧多工器/解多工器
442‧‧‧導引矩陣儲存器
508‧‧‧多工器/解多工器
510a至510nd‧‧‧資料流處理器
512a至512nd‧‧‧符號解映射單元
514a至514nd‧‧‧通道解交錯器
516a至516nd‧‧‧解碼器
710、720、730、740‧‧‧曲線
712、722、732、742‧‧‧點
750‧‧‧線
圖1展示用於以空間擴張傳輸資料之程序。
圖2展示用於以空間擴張接收資料之程序。
圖3展示一MIMO系統中之一傳輸實體及一接收實體。
圖4展示在傳輸實體處之處理單元。
圖5展示在接收實體處之處理單元。
圖6展示用於產生用於空間擴張之導引矩陣之集合之程序。
圖7展示一4×4 MIMO系統所達成之總頻譜效率之曲線。
100‧‧‧程序

Claims (96)

  1. 一種處理用於在一無線多輸入多輸出(MIMO)通信系統中傳輸之資料之方法,其包含:處理資料以獲取至少一資料符號塊;及用複數個導引矩陣對該至少一資料符號塊執行空間處理,以獲取用於複數個傳輸天線的傳輸符號之複數個序列,其中該等複數個導引矩陣為該至少一資料符號塊隨機化一由一接收實體觀測之有效MIMO通道。
  2. 如請求項1之方法,其中該處理資料以獲取該至少一資料符號塊包含:編碼資料以產生至少一編碼資料塊,且符號映射每一編碼資料塊以獲取一對應的資料符號塊。
  3. 如請求項1之方法,其進一步包含:將該至少一資料符號塊分割成複數個資料符號子塊;且為每一資料符號子塊選擇一導引矩陣,且其中該對該至少一資料符號塊執行空間處理包含:藉由為每一資料符號子塊所選定之導引矩陣來對該子塊執行空間處理。
  4. 如請求項3之方法,其中該對該至少一資料符號塊進行之分割包含:將一單一資料符號塊分割成複數個資料符號子塊。
  5. 如請求項3之方法,其中該對該至少一資料符號塊進行之分割包含:將複數個資料符號塊分割成複數個資料符號子塊。
  6. 如請求項3之方法,其中該對該至少一資料符號塊進行之分割包含:將該至少一資料符號塊分割成複數個資料符號子塊,使得每一子塊包括來自該至少一塊中的每一塊之資料符號。
  7. 如請求項3之方法,其進一步包含:在複數個傳輸範圍中傳輸該等複數個經空間處理資料符號子塊,每一傳輸範圍中一子塊。
  8. 如請求項3之方法,其進一步包含:自該等複數個傳輸天線將每一經空間處理資料符號子塊在一符號週期中進行傳輸。
  9. 如請求項3之方法,其進一步包含:自該等複數個傳輸天線將每一經空間處理資料符號子塊在至少一子頻帶之一各別群上進行傳輸。
  10. 如請求項1之方法,其進一步包含:自該等複數個傳輸天線傳輸傳輸符號之該等複數個序列。
  11. 如請求項1之方法,其進一步包含:自L個導引矩陣之一集合之中選擇該等複數個導引矩陣,其中L為一大於1之整數。
  12. 如請求項1之方法,其進一步包含:以一確定性方式自L個導引矩陣之一集合之中選擇該等複數個導引矩陣,其中L為一大於1之整數。
  13. 如請求項1之方法,其進一步包含: 藉由以順序循環於該等L個導引矩陣中而自該等L個導引矩陣之一集合之中選擇該等複數個導引矩陣,其中L為一大於1之整數。
  14. 如請求項1之方法,其進一步包含:以一偽隨機方式自L個導引矩陣之一集合之中選擇該等複數個導引矩陣,其中L為一大於1之整數。
  15. 如請求項3之方法,其進一步包含:為該等複數個資料符號子塊之每一資料符號子塊選擇一不同的導引矩陣。
  16. 如請求項3之方法,其進一步包含:為該等複數個子塊中的L個子塊之每一子集選擇不同順序的L個導引矩陣,其中L為一大於1之整數。
  17. 如請求項1之方法,其中該等複數個導引矩陣為單位矩陣。
  18. 如請求項1之方法,其中該等複數個導引矩陣中的任何兩個導引矩陣之間具有低相關性。
  19. 如請求項1之方法,其進一步包含:用一基底矩陣及複數個純量來產生該等複數個導引矩陣。
  20. 如請求項1之方法,其進一步包含:基於一初始單位矩陣及一具有第L個單位根之對角矩陣來產生該等複數個導引矩陣,其中L為一大於1之整數。
  21. 如請求項1之方法,其進一步包含:基於獨立各向同性分佈單位矩陣之一集合來產生該等 複數個導引矩陣。
  22. 如請求項1之方法,其進一步包含:處理傳輸符號之該等複數個序列以用於正交頻分多工(OFDM)。
  23. 如請求項1之方法,其進一步包含:為用於資料傳輸之複數個子頻帶之每一子頻帶選擇一不同的導引矩陣。
  24. 如請求項1之方法,其進一步包含:將該至少一資料符號塊分割成複數個資料符號子塊,每一資料符號子塊被指派用於在至少一子頻帶之一各別群上並自該等複數個傳輸天線傳輸,且其中該執行空間處理包含:藉由該等複數個導引矩陣中的一各別導引矩陣來對用於至少一子頻帶之每一群之資料符號子塊執行空間處理。
  25. 一種在一無線多輸入多輸出(MIMO)通信系統中之裝置,其包含:一資料處理器,其處理資料以獲取至少一資料符號塊;及一空間處理器,其藉由複數個導引矩陣對該至少一資料符號塊執行空間處理,以獲取用於複數個傳輸天線的傳輸符號之複數個序列,其中該等複數個導引矩陣為該至少一資料符號塊隨機化一由一接收實體觀測之有效MIMO通道。
  26. 如請求項25之裝置,其中資料被編碼以產生至少一編碼 資料塊,且其中每一編碼資料塊被映射以獲取一對應的資料符號塊。
  27. 如請求項25之裝置,其中該等複數個導引矩陣為單位矩陣。
  28. 如請求項25之裝置,其中該空間處理器將該至少一資料符號塊分割成複數個資料符號子塊並藉由該等複數個導引矩陣之一來對該等複數個資料符號子塊中的每一資料符號子塊執行空間處理。
  29. 如請求項28之裝置,其進一步包含:一控制器,其為該等複數個資料符號子塊之每一資料符號子塊自L個導引矩陣之一集合之中選擇一導引矩陣,其中L為一大於1之整數。
  30. 如請求項29之裝置,其中該控制器以一確定性方式自L個導引矩陣之該集合之中選擇該等複數個導引矩陣。
  31. 如請求項29之裝置,其中該控制器以一偽隨機方式自L個導引矩陣之該集合之中選擇該等複數個導引矩陣。
  32. 如請求項28之裝置,其中該MIMO系統利用正交頻分多工(OFDM)。
  33. 一種在一無線多輸入多輸出(MIMO)通信系統中之裝置,其包含:用於處理資料以獲取至少一資料符號塊之構件;及用於藉由複數個導引矩陣來對該至少一資料符號塊執行空間處理以獲取用於複數個傳輸天線的傳輸符號之複數個序列之構件,其中該等複數個導引矩陣為該至少一 資料符號塊隨機化一由一接收實體觀測之有效MIMO通道。
  34. 如請求項33之裝置,其進一步包含:用於將該至少一資料符號塊分割成複數個資料符號子塊之構件;及用於為該等複數個資料符號子塊中之每一資料符號子塊選擇一導引矩陣之構件,且其中該用於執行空間處理之構件包含:藉由為該等複數個資料符號子塊中之每一資料符號子塊所選定之導引矩陣來對該子塊執行空間處理之構件。
  35. 如請求項33之裝置,其中該等複數個導引矩陣為單位矩陣。
  36. 如請求項33之裝置,其進一步包含:用於以一確定性方式自L個導引矩陣之一集合之中選擇該等複數個導引矩陣之構件,其中L為一大於1之整數。
  37. 如請求項33之裝置,其進一步包含:用於以一偽隨機方式自L個導引矩陣之一集合之中選擇該等複數個導引矩陣之構件,其中L為一大於1之整數。
  38. 一種處理用於在一無線多輸入單輸出(MISO)通信系統中傳輸之資料之方法,其包含:處理資料以獲取一資料符號塊;將該資料符號塊分割成複數個資料符號子塊;為每一資料符號子塊選擇一導引向量;藉由複數個導引向量來對該資料符號塊空間處理,以 獲取每一個與該資料符號塊的一個不同部份相對應的傳輸符號之複數個序列,其中該空間處理該資料符號塊包含藉由為該子塊所選定之導引向量來對每一資料符號子塊空間處理;及提供該複數個傳輸符號序列至複數個傳輸天線以用於傳輸,其中該等複數個導引向量為以該複數個導引向量來執行該空間處理之該資料符號塊隨機化一由一接收實體觀測之有效MISO通道。
  39. 如請求項38之方法,其中該等複數個導引向量中的任何導引向量對具有低相關性。
  40. 如請求項38之方法,其進一步包含:用一基底矩陣及至少一純量來產生該等複數個導引向量。
  41. 如請求項38之方法,其進一步包含:以一確定性方式自L個導引向量之一集合之中選擇該等複數個導引向量,其中L為一大於1之整數。
  42. 如請求項38之方法,其進一步包含:以一偽隨機方式自L個導引向量之一集合之中選擇該等複數個導引向量,其中L為一大於1之整數。
  43. 一種在一無線多輸入多輸出(MIMO)通信系統中接收一資料傳輸之方法,其包含:獲取接收到之資料符號,其用於在經由一MIMO通道傳輸之前藉由複數個導引矩陣加以空間處理之至少一資料符號塊; 獲取由該MIMO通道及該等複數個導引矩陣所形成之一有效MIMO通道之一通道回應估計;及藉由該通道回應估計來對該等接收到之資料符號執行接收器空間處理,以獲取用於該至少一資料符號塊的資料符號估計。
  44. 如請求項43之方法,其進一步包含:為每一傳輸範圍選擇一導引矩陣,且其中該執行接收器空間處理包含:基於為每一傳輸範圍所選定之導引矩陣來對用於該傳輸範圍之該等接收到之資料符號執行接收器空間處理。
  45. 如請求項43之方法,其進一步包含:處理用於該至少一資料符號塊的該等資料符號估計,以獲取用於該至少一資料符號塊的經解碼之資料。
  46. 如請求項43之方法,其中該等複數個導引矩陣為單位矩陣。
  47. 一種在一無線多輸入多輸出(MIMO)通信系統中之裝置,其包含:複數個接收器單元,其用以獲取接收到之資料符號,該等接收到之資料符號用於在經由一MIMO通道傳輸之前藉由複數個導引矩陣加以空間處理之至少一資料符號塊;一通道估計器,其用以獲取由該MIMO通道及該等複數個導引矩陣所形成之一有效MIMO通道之一通道回應估計;及 一空間處理器,其用以藉由該通道回應估計來對該等接收到之資料符號執行接收器空間處理,以獲取用於該至少一資料符號塊的資料符號估計。
  48. 如請求項47之裝置,其中該等複數個導引矩陣為單位矩陣。
  49. 一種在一無線多輸入多輸出(MIMO)通信系統中之裝置,其包含:用於獲取接收到之資料符號之構件,該等接收到之資料符號用於在經由一MIMO通道傳輸之前藉由複數個導引矩陣加以空間處理之至少一資料符號塊;用於獲取由該MIMO通道及該等複數個導引矩陣所形成之一有效MIMO通道之一通道回應估計之構件;及用於藉由該通道回應估計來對該等接收到之資料符號執行接收器空間處理以獲取用於該至少一資料符號塊的資料符號估計之構件。
  50. 如請求項49之裝置,其進一步包含:用於為每一傳輸範圍自L個導引矩陣之一集合之中選擇一導引矩陣之構件,其中L為一大於1之整數,且其中該用於執行接收器空間處理之構件包含:基於為每一傳輸範圍所選定之導引矩陣來對用於該傳輸範圍之該等接收到之資料符號執行接收器空間處理之構件。
  51. 一種在一無線多輸入單輸出(MISO)通信系統中接收一資料傳輸之方法,其包含:獲取接收到之資料符號,該等接收到之資料符號用於 一在經由一MISO通道傳輸之前藉由複數個導引向量加以空間處理之資料符號塊;獲取由該MISO通道及該等複數個導引向量所形成之一有效MISO通道之一通道回應估計;及藉由該通道回應估計對該等接收到之資料符號執行偵測,以獲取用於該資料符號塊的資料符號估計。
  52. 如請求項51之方法,其進一步包含:為每一傳輸範圍自L個導引向量之一集合之中選擇一導引向量,其中L為一大於1之整數,且其中基於用於每一傳輸範圍之所選定的導引向量來獲取用於該傳輸範圍之通道回應估計。
  53. 一種處理用於在一無線多輸入多輸出(MIMO)通信系統中提供資料之方法,其包含:處理資料以獲取至少一資料符號塊;將該至少一資料符號塊分割成複數個資料符號子塊;為每一資料符號子塊選擇一導引矩陣;用複數個導引矩陣空間處理該至少一資料符號塊,以獲取每一個與該至少一資料符號塊的一個不同部份相對應的傳輸符號之複數個序列,其中該對該至少一資料符號塊之空間處理包含藉由為該子塊所選定之導引矩陣來對該每一資料符號子塊空間處理;及為了以一訊框傳送,提供該傳輸符號之複數個序列至一複數個傳輸天線,其中該複數個導引矩陣為以該複數個導引向量來執行該空間處理之該至少一資料符號塊隨 機化一由一接收實體觀測之有效MIMO通道。
  54. 如請求項53之方法,其中對該至少一資料符號塊分割包含:將至少兩個資料符號塊分割成複數個資料符號子塊,以致於每一子塊包含該至少兩個資料符號塊中之資料符號。
  55. 如請求項53之方法,其進一步包含:自該等複數個傳輸天線將每一經空間處理資料符號子塊在一子頻帶之一各別群上進行傳輸。
  56. 如請求項53之方法,其進一步包含:自該等複數個傳輸天線傳輸傳輸符號之該複數個序列。
  57. 如請求項53之方法,其進一步包含:自L個導引矩陣之一集合之中選擇該等複數個導引矩陣,其中L為一大於1之整數。
  58. 如請求項57之方法,其進一步包含:以一確定性方式自L個導引矩陣之一集合之中選擇該等複數個導引矩陣,其中L為一大於1之整數。
  59. 如請求項53之方法,其進一步包含:藉由以順序循環於該等L個導引矩陣中而自該等L個導引矩陣之一集合之中選擇該等複數個導引矩陣,其中L為一大於1之整數。
  60. 如請求項53之方法,其進一步包含:以一偽隨機方式自L個導引矩陣之一集合之中選擇該 複數個導引矩陣,其中L為一大於1之整數。
  61. 如請求項53之方法,其進一步包含:為該複數個序列中的L個序列之每一序列選擇不同順序的L個導引矩陣,其中L為一大於1之整數。
  62. 如請求項53之方法,其中該複數個導引矩陣為單位矩陣。
  63. 如請求項53之方法,其中該複數個導引矩陣中的任何兩個導引矩陣之間具有低相關性。
  64. 如請求項53之方法,其進一步包含:用一基底矩陣及複數個純量來產生該等複數個導引矩陣。
  65. 如請求項53之方法,其進一步包含:基於一初始單位矩陣及一具有第L個單位根之對角矩陣來產生該複數個導引矩陣,其中L為一大於1之整數。
  66. 如請求項53之方法,其進一步包含:基於獨立各向同性分佈單位矩陣之一集合來產生該複數個導引矩陣。
  67. 如請求項53之方法,其進一步包含:將該至少一資料符號塊分割成複數個資料符號子塊,每一資料符號子塊被指派用於在至少一子頻帶之一各別群上並自該複數個傳輸天線傳輸,且其中該空間處理包含:藉由該複數個導引矩陣中的一各別導引矩陣空間處理至少一子頻帶之每一群之資料符號子塊。
  68. 一種無線通信裝置,其包含:一資料處理器,其被配置成處理資料以獲取至少一資 料符號塊,其中該資料處理器被配置以將該至少一資料符號塊分割成複數個資料符號子塊;及一空間處理器,其被配置成用複數個導引矩陣空間處理該至少一資料符號塊,以獲取每一個與該至少一資料符號塊的一個不同部份相對應的傳輸符號之複數個序列,其中該空間處理器被配置以為每一資料符號子塊選擇一導引矩陣,且其中該對該至少一資料符號塊之空間處理包含藉由為該子塊所選定之導引矩陣來對該每一資料符號子塊空間處理,該空間處理器進一步被配置以為了以一訊框傳送,提供該傳輸符號之複數個序列至一複數個傳輸天線,其中該等複數個導引矩陣為以該複數個導引向量來執行該空間處理之該至少一資料符號塊隨機化一由一接收實體觀測之有效MIMO通道。
  69. 如請求項68之裝置,其中該空間處理器被配置成將至少兩個資料符號塊分割成複數個資料符號子塊,以致於每一子塊包含該至少兩個資料符號塊中之資料符號。
  70. 如請求項68之裝置,進一步包含一傳輸處理器,其被配置成自該複數個傳輸天線將每一經空間處理資料符號子塊在一子頻帶之一各別群上進行傳輸。
  71. 如請求項68之裝置,進一步包含一傳輸處理器,其被配置成自該複數個傳輸天線傳輸傳輸符號之該複數個序列。
  72. 如請求項68之裝置,其中該空間處理器被配置成自L個導 引矩陣之一集合之中,選擇該複數個導引矩陣,其中L為一大於1之整數。
  73. 如請求項68之裝置,其中該空間處理器被配置成以一確定性方式自L個導引矩陣之一集合之中,選擇該等複數個導引矩陣,其中L為一大於1之整數。
  74. 如請求項68之裝置,其中該空間處理器被配置成藉由以順序循環於該等L個導引矩陣中而自該等L個導引矩陣之一集合之中,選擇該複數個導引矩陣,其中L為一大於1之整數。
  75. 如請求項68之裝置,其中該空間處理器被配置成以一偽隨機方式自L個導引矩陣之一集合之中,選擇該等複數個導引矩陣,其中L為一大於1之整數。
  76. 如請求項68之裝置,其中該空間處理器被配置成為該複數個序列中的L個序列之每一序列選擇不同順序的L個導引矩陣,其中L為一大於1之整數。
  77. 如請求項68之裝置,其中該等複數個導引矩陣為單位矩陣。
  78. 如請求項68之裝置,其中該複數個導引矩陣中的任何兩個導引矩陣之間具有低相關性。
  79. 如請求項68之裝置,其中該空間處理器被配置成用一基底矩陣及複數個純量來產生該複數個導引矩陣。
  80. 如請求項68之裝置,其中該空間處理器被配置成基於一初始單位矩陣及一具有第L個單位根之對角矩陣來產生該複數個導引矩陣,其中L為一大於1之整數。
  81. 如請求項68之裝置,其中該空間處理器被配置成基於獨立各向同性分佈單位矩陣之一集合來產生該複數個導引矩陣。
  82. 如請求項68之裝置,其中:該資料處理器被配置成將該至少一資料符號塊分割成複數個資料符號子塊,每一資料符號子塊被指派用於在至少一子頻帶之一各別群上並自該等複數個傳輸天線傳輸,以及該空間處理器被配置成藉由該複數個導引矩陣中的一各別導引矩陣空間處理至少一子頻帶之每一群之資料符號子塊。
  83. 一種處理用於在一無線多輸入多輸出(MIMO)通信系統中傳輸之資料之裝置,其包含:一處理構件,處理資料以獲取至少一資料符號塊;一分割構件,將該至少一資料符號塊分割成複數個資料符號子塊;一選擇構件,為每一資料符號子塊選擇一導引矩陣;一空間處理該至少一資料符號塊之構件,用複數個導引矩陣空間處理該至少一資料符號塊,以獲取每一個與該至少一資料符號塊的一個不同部份相對應的傳輸符號之複數個序列,其中該空間處理該至少一資料符號塊之構件包含空間處理該每一資料符號子塊之構件,其藉由為該子塊所選定之導引矩陣來空間處理該每一資料符號子塊;及 一提供構件,為了以一訊框傳送,提供該傳輸符號之複數個序列至一複數個傳輸天線,其中該複數個導引矩陣為以該複數個導引向量來執行該空間處理之該至少一資料符號塊隨機化一由一接收實體觀測之有效MIMO通道。
  84. 如請求項83之裝置,其進一步包含:一傳輸構件,自該等複數個傳輸天線將每一經空間處理資料符號子塊在一子頻帶之一各別群上進行傳輸。
  85. 如請求項83之裝置,其進一步包含:一傳輸構件,自該等複數個傳輸天線傳輸傳輸符號之該複數個序列。
  86. 如請求項83之裝置,其進一步包含:一選擇構件,自L個導引矩陣之一集合之中選擇該複數個導引矩陣,其中L為一大於1之整數。
  87. 如請求項83之裝置,其進一步包含:一選擇構件,以一確定性方式自L個導引矩陣之一集合之中選擇該複數個導引矩陣,其中L為一大於1之整數。
  88. 如請求項86之裝置,其進一步包含:一選擇構件,藉由以順序循環於該等L個導引矩陣中而自該等L個導引矩陣之一集合之中選擇該等複數個導引矩陣,其中L為一大於1之整數。
  89. 如請求項83之裝置,其進一步包含:一選擇構件,以一偽隨機方式自L個導引矩陣之一集合之中選擇該複數個導引矩陣,其中L為一大於1之整數。
  90. 如請求項83之裝置,其進一步包含:一選擇構件,為該複數個序列中的L個序列之每一序列選擇不同順序的L個導引矩陣,其中L為一大於1之整數。
  91. 如請求項83之裝置,其中該等複數個導引矩陣為單位矩陣。
  92. 如請求項83之裝置,其中該複數個導引矩陣中的任何兩個導引矩陣之間具有低相關性。
  93. 如請求項83之裝置,其進一步包含:用一基底矩陣及複數個純量來產生該複數個導引矩陣。
  94. 如請求項83之裝置,其進一步包含:一產生構件,基於一初始單位矩陣及一具有第L個單位根之對角矩陣來產生該複數個導引矩陣,其中L為一大於1之整數。
  95. 如請求項83之裝置,其進一步包含:基於獨立各向同性分佈單位矩陣之一集合來產生該複數個導引矩陣。
  96. 如請求項83之裝置,其進一步包含:一分割構件,將該至少一資料符號塊分割成複數個資料符號子塊,每一資料符號子塊被指派用於在至少一子頻帶之一各別群上並自該複數個傳輸天線傳輸,且其中該空間處理構件包含空間處理構件,藉由該複數個導引矩陣中的一各別導引矩陣來空間處理至少一子頻帶之每一群之資料符號子塊。
TW93139437A 2003-12-17 2004-12-17 在一多天線通信系統中的空間擴張 TWI394396B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53102103P 2003-12-17 2003-12-17

Publications (2)

Publication Number Publication Date
TW200534632A TW200534632A (en) 2005-10-16
TWI394396B true TWI394396B (zh) 2013-04-21

Family

ID=48803340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93139437A TWI394396B (zh) 2003-12-17 2004-12-17 在一多天線通信系統中的空間擴張

Country Status (1)

Country Link
TW (1) TWI394396B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100296554A1 (en) * 2009-05-19 2010-11-25 Ralink Technology (Singapore) Corporation Method and system for detecting data from multiple antennas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757845A (en) * 1994-02-10 1998-05-26 Ntt Mobile Communications Network Adaptive spread spectrum receiver
EP1009124A2 (en) * 1998-12-07 2000-06-14 Lucent Technologies Inc. Wireless transmission method for antenna arrays using unitary space-time signals
WO2001056218A1 (en) * 2000-01-27 2001-08-02 Telefonaktiebolaget Lm Ericsson (Publ) A method and apparatus for efficient transmit diversity using complex space-time block codes
EP1223702A1 (en) * 2000-12-29 2002-07-17 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757845A (en) * 1994-02-10 1998-05-26 Ntt Mobile Communications Network Adaptive spread spectrum receiver
EP1009124A2 (en) * 1998-12-07 2000-06-14 Lucent Technologies Inc. Wireless transmission method for antenna arrays using unitary space-time signals
WO2001056218A1 (en) * 2000-01-27 2001-08-02 Telefonaktiebolaget Lm Ericsson (Publ) A method and apparatus for efficient transmit diversity using complex space-time block codes
EP1223702A1 (en) * 2000-12-29 2002-07-17 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas

Also Published As

Publication number Publication date
TW200534632A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
US11171693B2 (en) Spatial spreading in a multi-antenna communication system
CN1985484B (zh) 在多天线通信系统中广播数据和接收广播发射的方法和设备
CN1930790B (zh) 在无线多输入多输出通信系统中发射和接收数据的方法和装置
JP2010063097A (ja) Ofdmをベースにしたマルチアンテナ通信システムのための送信ダイバーシティおよび空間拡散
TWI394396B (zh) 在一多天線通信系統中的空間擴張
EP1933513B1 (en) Method and transmitter for broadcast transmission with spatial spreading in a multi-antenna communication system
DK2257008T3 (en) Method and transmitter for radio transmission with spatial spread in a multi-antenna communication system
KR100828466B1 (ko) 다중-안테나 통신 시스템에서 공간 확산을 이용한브로드캐스트 송신