TWI386308B - It is possible to enlarge the composite material in which the original constituent material absorbs the light range - Google Patents

It is possible to enlarge the composite material in which the original constituent material absorbs the light range Download PDF

Info

Publication number
TWI386308B
TWI386308B TW99105118A TW99105118A TWI386308B TW I386308 B TWI386308 B TW I386308B TW 99105118 A TW99105118 A TW 99105118A TW 99105118 A TW99105118 A TW 99105118A TW I386308 B TWI386308 B TW I386308B
Authority
TW
Taiwan
Prior art keywords
oxygen
oxide
composite material
deficient
film layer
Prior art date
Application number
TW99105118A
Other languages
Chinese (zh)
Other versions
TW201129465A (en
Original Assignee
Instr Technology Res Ct Nat Applied Res Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instr Technology Res Ct Nat Applied Res Lab filed Critical Instr Technology Res Ct Nat Applied Res Lab
Priority to TW99105118A priority Critical patent/TWI386308B/en
Publication of TW201129465A publication Critical patent/TW201129465A/en
Application granted granted Critical
Publication of TWI386308B publication Critical patent/TWI386308B/en

Links

Description

可以擴大原構成材料吸收光範圍之複合材料A composite material that can expand the range of light absorbed by the original constituent material

本發明一種可以擴大原構成材料吸收光範圍之複合材料,係應用於化學工程、環境工程與太陽能電池應用等綠色科技中需要應用到光驅動(photo-induced)物理或化學反應,以增加原構成材料之操作反應效率。The composite material of the invention capable of expanding the absorption range of the original constituent materials is applied to green technologies such as chemical engineering, environmental engineering and solar cell applications, and needs to be applied to photo-induced physical or chemical reactions to increase the original composition. The operational efficiency of the material.

近年來由於石油能源用量激增而面臨儲存量不足的問題外,更因為石油能源的使用造成了二氧化碳排放量不斷增加,使溫室效應日趨嚴重。為了有效地解決石油能源短缺及二氧化碳排放量不斷激增的問題,已有許多學者專家投入研究能源應用之改進與消除二氧化碳排放的問題。In recent years, due to the surge in the use of petroleum energy, the problem of insufficient storage is faced. Moreover, the use of petroleum energy has caused an increase in carbon dioxide emissions, which has made the greenhouse effect increasingly serious. In order to effectively solve the problem of oil shortage and carbon dioxide emissions, many scholars and experts have been investigating the improvement of energy applications and the elimination of carbon dioxide emissions.

在能源開發的研究上,太陽光的捕獲(harvest)與轉化成可以使用能源是一項乾淨、且為大部份人接受的重要技術。除了原有以矽(Si)、鎘(Cd),三五族(III-IV group)材料為基礎的太陽能電池以外,以二氧化鈦(TiO2 )為基礎的染料敏化太陽能電池(dye-sensitized photovoltaic),如美國專利4190950、4127738與4105470等,因具有極大的價格與製造材料優勢而吸引許多研究開發人員的注意與投入。此外在大氣中二氧化碳含量的減低上,利用以二氧化鈦、碳化矽(SiC)、磷化鎵(GaP)等半導體光觸媒對二氧化碳進行光催化還原反應,得到甲醛(HCHO)及甲醇(CH3 OH)等產物的方法。In the study of energy development, the harvesting and conversion of sunlight into usable energy is an important technology that is clean and accepted by most people. In addition to the original solar cells based on bismuth (Si), cadmium (Cd), and III-IV group materials, titanium dioxide (TiO 2 )-based dye-sensitized solar cells (dye-sensitized photovoltaic) ), such as U.S. Patents 4190950, 4127738, and 4105470, etc., attracting the attention and input of many research and development personnel due to their great price and manufacturing material advantages. In addition, in the reduction of the carbon dioxide content in the atmosphere, a photocatalytic reduction reaction of carbon dioxide with a semiconductor photocatalyst such as titanium dioxide, lanthanum carbide (SiC) or gallium phosphide (GaP) is carried out to obtain formaldehyde (HCHO) and methanol (CH 3 OH). Product method.

二氧化鈦在前述兩項最先進熱門的綠色化學技術(green chemical technology)皆為重要的構成材料優先選項之一,但由於二氧化鈦之本質的帶隙能量為3.2V,僅有波長小於400nm的紫外線波段(UV band)光的能量才能被二氧化鈦吸收並轉換為所需的光化學反應能量。為此擴大二氧化鈦可以吸收與應用的光波長範圍至可見光波段,進而增加二氧化鈦的操作效率成為一重要之課題,許多的材料改質(modification of material)技術也相對產生,例如美國專利6306343、5981426、5780380、6592842與5853866等所述,但仍缺乏一種於具撓性、質量輕、價格便宜及不需高溫製程之材料改質方法與技術。Titanium dioxide is one of the most important constituent materials in the two most advanced green chemical technologies mentioned above, but since the band gap energy of titanium dioxide is 3.2V, only the ultraviolet band with a wavelength of less than 400nm ( UV band) The energy of light can be absorbed by titanium dioxide and converted into the required photochemical reaction energy. Therefore, it is an important issue to expand the range of wavelengths of light that can be absorbed and applied to the visible light band, thereby increasing the operating efficiency of titanium dioxide. Many materials of modification technology are also relatively produced, for example, US Pat. No. 6,306,343, 5,981,426, 5780380, 6592842 and 5853866, etc., but still lack a material modification method and technology for flexibility, light weight, low cost and no high temperature process.

本案發明人鑑於之前習用方式所衍生的各項缺點,亟思加以改良創新,並經苦心孤詣潛心研究後,終於成功研發完成本件一種可以擴大原構成材料吸收光範圍之複合材料。In view of the shortcomings derived from the previous usage methods, the inventor of this case has improved and innovated, and after painstaking research, finally successfully developed a composite material that can expand the absorption range of the original constituent materials.

本發明之主要目的即在於提出一種不同氧化程度同質材料間接觸固定之複合材料,藉由接觸固定包含有一個或一個以上材料之氧化物與其缺氧氧化物,達到有效激發光驅動反應之吸收光波段範圍增加之目的。The main object of the present invention is to provide a composite material which is contact-fixed between homogenized materials with different degrees of oxidation. By contacting and fixing an oxide containing one or more materials and an oxygen-deficient oxide thereof, the absorption light for effectively exciting the light-driven reaction is achieved. The purpose of increasing the band range.

本發明之次要目的即在於提出一種不同氧化程度同質材料間接觸固定之複合材料之製程,氧化物及缺氧氧化物組合成複合材料時,於接觸固定操作過程中不需高溫鍛燒處理(Calcinations process),因此可適用於以塑膠或其他不適合高溫加熱的基板。The secondary object of the present invention is to propose a process for contacting and fixing a composite material with different oxidation degrees of homogenous materials. When the oxide and the oxygen-deficient oxide are combined into a composite material, high-temperature calcination treatment is not required during the contact fixation operation ( Calcinations process), therefore suitable for use in plastic or other substrates that are not suitable for high temperature heating.

本發明之目的即在於提出一種具撓性、質量輕、價格便宜及不需高溫之複合材料組成方式,達到方便且快速製程之目的。The object of the present invention is to provide a composite material composition method which is flexible, light in weight, inexpensive and does not require high temperature, and achieves the purpose of convenient and rapid process.

可達成上述發明目的之一種可以擴大原構成材料吸收光範圍之複合材料及其製程,係於該基板之表面電鍍或沉積一缺氧氧化物膜層,或該基材本身即為缺氧氧化物膜層,該缺氧氧化物膜層之缺氧氧化物與一氧化物接觸後固定,成為一複合材料,當太陽光或外加光照射後,光能可被該缺氧氧化物接收,使光能得以於該缺氧氧化物內傳遞,或轉移至與該缺氧氧化物接觸固定之氧化物內,使該氧化物內電子(electron)、電洞(hole)分離,而驅使該氧化物進行光觸媒反應之功能。A composite material which can expand the absorption range of the original constituent material and a process thereof can be achieved by plating or depositing an oxygen-deficient oxide film layer on the surface of the substrate, or the substrate itself is an oxygen-deficient oxide a film layer, the oxygen-deficient oxide layer of the oxygen-deficient oxide film layer is contacted with the first oxide and fixed to form a composite material. After sunlight or external light is irradiated, the light energy can be received by the oxygen-deficient oxide to make the light Can be transferred into the oxygen-deficient oxide, or transferred to the oxide fixed in contact with the oxygen-deficient oxide, so that the electrons and holes in the oxide are separated to drive the oxide Photocatalytic reaction function.

請參考圖一~ 圖二所示,為本發明一種可以擴大原構成材料吸收光範圍之複合材料的構造示意圖,包含:一基板1,其材質係為具有結構支持強度的玻璃或塑膠,係可將該基板1表面上鍍製或沉積缺氧氧化物顆粒,而於該基板1上,形成一缺氧氧化物膜層2(請參考圖一A及圖一B所示);或者,該基板亦可為鈦(Ti)、鎢(W)、鋅(Zn)、矽(Si)、鉑(Pt)、銀(Ag)、鎘(Cd)、鐵(Fe)、錫(Sn)、銦(In)、銻(Sb)、鉍(Bi)、釩(V)、鉬(Mo)、鉛(Pb)或鍶(Sr)等金屬或半導體材料本身、其氧化物,或其與其他材料複合物,使得該基板亦為一缺氧氧化物膜層2(請參考圖二A及圖二B所示);一缺氧氧化物膜層2,其係由缺氧氧化物之顆粒所堆積或嵌入之缺氧氧化物膜層2組成,該缺氧氧化物膜層2之缺氧氧化物顆粒,係為鈦(Ti)、鎢(W)、鋅(Zn)、矽(Si)、鉑(Pt)、銀(Ag)、鎘(Cd)、鐵(Fe)、錫(Sn)、銦(In)、銻(Sb)、鉍(Bi)、釩(V)、鉬(Mo)、鉛(Pb)或鍶(Sr)等金屬或半導體材料本身、其氧化物,或其與其他材料複合物所構成;一氧化物3,該氧化物3係為受光照射後具有光觸媒活性之奈米氧化物顆粒所組成,係用以與一缺氧氧化物膜層2接觸固定後,形成一複合材料。Please refer to FIG. 1 to FIG. 2 , which is a schematic structural view of a composite material capable of expanding the absorption range of the original constituent material, comprising: a substrate 1 made of glass or plastic having structural support strength. Anodized oxide particles are plated or deposited on the surface of the substrate 1, and an oxygen-deficient oxide film layer 2 is formed on the substrate 1 (refer to FIG. 1A and FIG. 1B); or, the substrate It may also be titanium (Ti), tungsten (W), zinc (Zn), bismuth (Si), platinum (Pt), silver (Ag), cadmium (Cd), iron (Fe), tin (Sn), indium ( a metal or semiconductor material such as In), bismuth (Sb), bismuth (Bi), vanadium (V), molybdenum (Mo), lead (Pb) or strontium (Sr) itself, an oxide thereof, or a composite thereof with other materials The substrate is also an oxygen-deficient oxide film layer 2 (please refer to FIG. 2A and FIG. 2B); an oxygen-deficient oxide film layer 2 is deposited or embedded by particles of anoxic oxide. The oxygen-deficient oxide film layer 2 is composed of the oxygen-deficient oxide particles of the oxygen-deficient oxide film layer 2, which are titanium (Ti), tungsten (W), zinc (Zn), bismuth (Si), and platinum (Pt). ), silver (Ag), cadmium (Cd), iron (Fe), tin (Sn), indium (In), antimony (Sb), antimony (B) i) a metal or semiconductor material such as vanadium (V), molybdenum (Mo), lead (Pb) or strontium (Sr), an oxide thereof, or a composite thereof with other materials; an oxide 3, the oxidation The material 3 is composed of nano-oxide particles having photocatalytic activity after being irradiated with light, and is used for contact with an anoxic oxide film layer 2 to form a composite material.

另外,亦可將氧化物顆粒沈積或鍍製於一基板上,成為一氧化物膜層,或是該氧化物膜層本身即為基板,而將與該氧化物同組成成分之缺氧氧化物與該氧化物接觸固定後,而形成一複合材料(圖式中未繪出)。In addition, the oxide particles may be deposited or plated on a substrate to form an oxide film layer, or the oxide film layer itself is a substrate, and the oxygen-deficient oxide having the same composition as the oxide may be used. After being fixed in contact with the oxide, a composite material (not shown in the drawings) is formed.

其中,若該基板1之材質為塑膠,由於缺氧氧化物具有紫外線光之反射或吸收能力,進而在以塑膠材質作為基板1時,能延長塑膠材質基板之使用壽命;其中,該氧化物3及缺氧氧化物膜層2之缺氧氧化物係為同質材料,但具有不同之氧化程度,該缺氧氧化物之氧含量不足以使材料形成完全氧化狀態之化合物狀態,其缺氧程度可以是原材料完全氧化時所需氧含量之50%以上;其中,該氧化物3及氧氧化物膜層2缺氧氧化物之氧化物顆粒,可以是受外加光照射後具有特定功能,例如光觸媒之化合物。Wherein, if the material of the substrate 1 is plastic, the oxygen-deficient oxide has the ability of reflecting or absorbing ultraviolet light, and when the plastic material is used as the substrate 1, the service life of the plastic substrate can be prolonged; wherein the oxide 3 And the anoxic oxide layer of the anoxic oxide film layer 2 is a homogenous material, but has a different degree of oxidation, and the oxygen content of the anoxic oxide is insufficient to cause the material to form a fully oxidized state of the compound, and the degree of hypoxia can be It is 50% or more of the oxygen content required for the complete oxidation of the raw material; wherein the oxide particles of the oxide 3 and the oxygen oxide film layer 2 may have a specific function after being irradiated with external light, such as a photocatalyst. Compound.

請參考圖三~ 圖四所示,為本發明一種可以擴大原構成材料吸收光範圍之複合材料實施示意圖:係於該基板1之表面上電鍍或沉積一缺氧氧化物膜層2,該缺氧氧化物膜層2之缺氧氧化物21顆粒與一氧化物3顆粒接觸固定後,即形成一複合材料4,吸收光源5,例如太陽光或外加光照射之能量可被該缺氧氧化物21顆粒接收,使能量6得以於該缺氧氧化物21顆粒內傳遞,或轉移至與該缺氧氧化物21接觸固定之氧化物3顆粒內,而氧化物3顆粒內之能量傳遞,會使該氧化物的電子31(electron)、電洞32(hole)分離,而驅使該氧化物3進行光觸媒反應之功能,光能量亦可轉換為聲、光、熱、力、電或磁等其他型式能量之功能。Referring to FIG. 3 to FIG. 4 , a schematic diagram of a composite material capable of expanding the absorption range of the original constituent material is performed by plating or depositing an oxygen-deficient oxide film layer 2 on the surface of the substrate 1 . After the oxygen-deficient oxide 21 particles of the oxygen oxide film layer 2 are fixed in contact with the oxide 3 particles, a composite material 4 is formed, and the energy absorbed by the light source 5, such as sunlight or external light, can be absorbed by the oxygen-deficient oxide. The particles are received so that the energy 6 can be transferred into the particles of the anoxic oxide 21 or transferred to the oxide 3 particles fixed in contact with the anoxic oxide 21, and the energy transfer in the oxide 3 particles causes The electrons 31 and the holes of the oxide are separated to drive the oxide 3 to perform a photocatalytic reaction, and the light energy can be converted into other types such as sound, light, heat, force, electricity or magnetism. The function of energy.

另外,亦可於該基板之表面上電鍍或沉積一氧化物膜層,或該基板本身即為氧化物膜層,該氧化物膜層之氧化物顆粒與一缺氧氧化物顆粒接觸固定後,即形成一複合材料(圖式未繪出)。In addition, an oxide film layer may be plated or deposited on the surface of the substrate, or the substrate itself is an oxide film layer, and after the oxide particles of the oxide film layer are in contact with an anoxic oxide particle, That is, a composite material is formed (not shown).

另外,其中,本身即為缺氧氧化物膜層之基板,可經過高溫處理以形成更進一步之晶格穩定(圖式未繪出);其中,該氧化物3與缺氧氧化物21顆粒間之接觸固定後,形成之複合材料4可以攝氏100度以下溫度加熱一小時以上,以去除氧化物3與缺氧氧化物21間之水份;其中,該氧化物3與缺氧氧化物21顆粒間之接觸固定形成複合材料4的方法,可為:將基板1表面上之缺氧氧化物膜層2,或是本身即為基板缺氧氧化物膜層浸泡於氧化物膠體溶液內,取出該缺氧氧化物膜層後,使該缺氧氧化物膜層上殘留溶劑揮發去除;其中,該氧化物3與缺氧氧化物21顆粒間之接觸固定形成複合材料4的方法,可為:利用高溫加熱、電子束加熱、氬離子加速撞擊、雷射剝離或化學氣相反應,使得氧化物3顆粒漂浮於載體氣體或真空中,而接觸吸附於缺氧氧化物21;另外,亦可將漂浮於載體氣體之氧化物3顆粒注入含有氧化物3顆粒之膠體溶液中,隨著載體氣體離開膠體溶液而漂浮於載體氣體中;其中,氧化物3與缺氧氧化物21顆粒間之接觸固定後,可以為了進一步之功能需求,額外添加其他有機物、氧化物或金屬等材料;其中,該本身即為基板之氧化物膜層或缺氧氧化物膜層,可以經過高溫處理,以形成更穩定之晶格。In addition, the substrate itself is an oxygen-deficient oxide film layer, which can be subjected to high temperature treatment to form further lattice stability (not shown); wherein the oxide 3 and the oxygen-deficient oxide 21 particles are interposed After the contact is fixed, the formed composite material 4 can be heated at a temperature below 100 degrees Celsius for more than one hour to remove moisture between the oxide 3 and the anoxic oxide 21; wherein the oxide 3 and the oxygen-deficient oxide 21 particles The method of forming the composite material 4 by contact between the two can be: immersing the oxygen-deficient oxide film layer 2 on the surface of the substrate 1 or the substrate anoxic oxide film layer in the oxide colloid solution, and taking out the After the oxygen-deficient oxide film layer, the residual solvent on the oxygen-deficient oxide film layer is volatilized and removed; wherein the contact between the oxide 3 and the anoxic oxide 21 particles is fixed to form the composite material 4, which may be: High temperature heating, electron beam heating, argon ion accelerated impact, laser stripping or chemical vapor phase reaction, so that the oxide 3 particles float in the carrier gas or vacuum, and the contact is adsorbed to the oxygen-deficient oxide 21; Yu Zai The oxide 3 particles of the body gas are injected into the colloidal solution containing the oxide 3 particles, and float in the carrier gas as the carrier gas leaves the colloidal solution; wherein, after the contact between the oxide 3 and the anoxic oxide 21 particles is fixed, Other organic materials, oxides or metals may be additionally added for further functional requirements; wherein the oxide layer or the oxygen-deficient oxide layer of the substrate itself may be subjected to high temperature treatment to form a more stable crystal. grid.

實施例:Example:

本發明之實施例為二氧化鈦(TiO2 )(氧化物)與缺氧二氧化鈦(TiOx ,其中x小於2)基板(缺氧氧化物本身即為基板)接觸固定之可見光範圍吸收擴大,且能應用於光觸媒甲基橙脫色反應之實驗。Embodiments of the present invention are titanium dioxide (TiO 2 ) (oxide) and oxygen-deficient titanium dioxide (TiO x , wherein x is less than 2) substrate (anoxic oxide itself is a substrate) in the visible range of visible light absorption expansion, and can be applied Experiment on photochromic methyl orange decolorization reaction.

其操作方式描述如下:在聚苯乙烯基板上以缺氧二氧化鈦(TiO2 )為靶材,濺鍍覆蓋一層60奈米的TiOx 薄膜,其中x小於2。在未經後續大於100℃加熱處理下,完成缺氧二氧化鈦薄膜鍍著基板。將平均顆粒尺寸為21奈米的P-25二氧化鈦以10g/L的比例溶解於去離子水中形成膠體溶液。將前述缺氧二氧化鈦薄膜鍍著基板置入P-25二氧化鈦膠體溶液中,靜置5分鐘後取出。將前述附著有P25膠體溶液之缺氧二氧化鈦基板以加熱板在一般大氣環境中90℃加熱10分鐘,將基板上殘留溶劑揮發去除。完成之不同結構複合材料基板以流速大於3L/min之大量清水沖洗約1分鐘,於一般大氣環境中自然風乾,完成了不同氧化程度複合材料鍍著基板。其吸收光譜如圖五所示,原有P-25二氧化鈦奈米顆粒之主要吸收峰邊界約為380nm。將其附著在TiOx 基板上後,其主要吸收峰被延伸至可見光波段的502nm。The mode of operation is described as follows: on a polystyrene substrate, an oxygen-deficient titanium dioxide (TiO 2 ) is used as a target, and a 60 nm TiO x film is sputtered, wherein x is less than 2. The substrate is plated with an oxygen-deficient titanium dioxide film without subsequent heat treatment at more than 100 °C. P-25 titanium dioxide having an average particle size of 21 nm was dissolved in deionized water at a ratio of 10 g/L to form a colloidal solution. The anoxic titanium dioxide film-coated substrate was placed in a P-25 titania colloidal solution, and allowed to stand for 5 minutes, and then taken out. The anoxic titanium dioxide substrate to which the P25 colloidal solution was attached was heated by a hot plate at 90 ° C for 10 minutes in a general atmosphere, and the residual solvent on the substrate was volatilized and removed. The completed composite substrate of different structures is rinsed with a large amount of fresh water having a flow rate of more than 3 L/min for about 1 minute, and is naturally air-dried in a general atmosphere, and the composite substrate is plated with different oxidation degrees. The absorption spectrum is shown in Figure 5. The main absorption peak boundary of the original P-25 titanium dioxide nanoparticles is about 380 nm. After attaching it to the TiO x substrate, its main absorption peak was extended to 502 nm in the visible light band.

將前述總面積約為8cm2 的不同氧化程度複合材料鍍著基板,置入濃度為4uM之50cc甲基橙溶液中靜置,在6W去除紫外線螢光燈照射下觀察溶液中甲基橙濃度隨時間之變化。如圖六所示,在可見光照射下,24小時後,溶液中甲基橙濃度減低至原始濃度之15%以下。本發明之不同結構複合材料基板可以吸收原P-25二氧化鈦奈米顆粒所無法使用之可見光波段之光,並進行甲基橙溶液之光觸媒脫色反應。The composite materials of different oxidation degrees with a total area of about 8 cm 2 were plated, placed in a 50 cc methyl orange solution at a concentration of 4 uM, and allowed to stand under a 6 W removal ultraviolet ray lamp to observe the concentration of methyl orange in the solution. The change of time. As shown in Fig. 6, under visible light irradiation, the concentration of methyl orange in the solution was reduced to less than 15% of the original concentration after 24 hours. The composite structural substrate of the different structures of the present invention can absorb the light in the visible light band which cannot be used by the original P-25 titanium dioxide nanoparticle, and perform the photocatalytic decolorization reaction of the methyl orange solution.

本發明所提供之一種可以擴大原構成材料吸收光範圍之複合材料,與其他習用技術相互比較時,更具備下列優點:The composite material provided by the invention can enlarge the absorption range of the original constituent material, and has the following advantages when compared with other conventional technologies:

1.實現了特定材料在用於光誘發化學反應與光能量轉移反應上,激發光波段吸收範圍之擴張。1. Achieving the expansion of the absorption range of the excitation light band in a specific material for the photoinduced chemical reaction and the light energy transfer reaction.

2.本發明不需高溫製程,故可使用塑膠或玻璃等材質為基板,可以延長基板之使用壽命。2. The invention does not require a high temperature process, so a material such as plastic or glass can be used as the substrate, which can extend the service life of the substrate.

上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。The detailed description of the preferred embodiments of the present invention is intended to be limited to the scope of the invention, and is not intended to limit the scope of the invention. The patent scope of this case.

綜上所述,本案不但在技術思想上確屬創新,並能較習用物品增進上述多項功效,應已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。To sum up, this case is not only innovative in terms of technical thinking, but also able to enhance the above-mentioned multiple functions compared with conventional articles. It should fully comply with the statutory invention patent requirements of novelty and progressiveness, and apply in accordance with the law. I urge you to approve this article. Invention patent application, in order to invent invention, to the sense of virtue.

1...基板1. . . Substrate

2...缺氧氧化物膜層2. . . Oxygen-deficient oxide film

3...氧化物3. . . Oxide

4...複合材料4. . . Composite material

5...光源5. . . light source

21...缺氧氧化物twenty one. . . Oxygen-deficient oxide

31...電子31. . . electronic

32...電洞32. . . Hole

6...能量6. . . energy

圖一A、圖一B為一種可以擴大原構成材料吸收光範圍之複合材料之製程分解圖及合成圖;FIG. 1A and FIG. 1B are process decomposition diagrams and composite diagrams of a composite material capable of expanding the absorption range of the original constituent material;

圖二A、圖二B為一種可以擴大原構成材料吸收光範圍之複合材料之製程另一分解圖及合成圖;2A and 2B are another exploded view and a composite view of a process for expanding a composite material absorbing light range of the original constituent material;

圖三為一種可以擴大原構成材料吸收光範圍之複合材料之製程實施示意圖;Figure 3 is a schematic view showing a process for realizing a composite material capable of expanding the range of light absorbed by the original constituent material;

圖四為一種可以擴大原構成材料吸收光範圍之複合材料之另一實施示意圖;Figure 4 is a schematic view showing another embodiment of a composite material which can expand the range of light absorbed by the original constituent material;

圖五為一種可以擴大原構成材料吸收光範圍之複合材料之光譜量測圖;Figure 5 is a spectrogram of a composite material that can expand the range of light absorbed by the original constituent material;

圖六為一種可以擴大原構成材料吸收光範圍之複合材料之用於甲基橙溶液之光觸媒除色反應,在螢光燈照射下甲基橙濃度與原濃度比率隨作用時間的變化圖。Fig. 6 is a photocatalytic color removal reaction for a methyl orange solution which can enlarge the composite material absorbing light range, and the ratio of methyl orange concentration to the original concentration ratio with the action time under the illumination of the fluorescent lamp.

21...缺氧氧化物twenty one. . . Oxygen-deficient oxide

3...氧化物3. . . Oxide

31...電子31. . . electronic

32...電洞32. . . Hole

4...複合材料4. . . Composite material

5...光源5. . . light source

6...能量6. . . energy

Claims (21)

一種可以擴大原構成材料吸收光範圍之複合材料,係由相同組成物質不同含氧量之材料組成,包含:一氧化物,該氧化物係與一缺氧氧化物接觸固定後,即形成複合材料,該複合材料受光源照射後,會產生電子電洞分離的現象。A composite material capable of expanding the range of light absorbed by the original constituent material, which is composed of a material having different oxygen content of the same constituent material, comprising: a monooxide which is contacted with an anoxic oxide to form a composite material. After the composite material is irradiated by the light source, electron hole separation occurs. 如申請專利範圍第1項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該缺氧氧化物之氧含量,係該氧化物之含氧量的50%以上。A composite material according to claim 1, wherein the oxygen content of the oxygen-deficient oxide is 50% or more of the oxygen content of the oxide. 如申請專利範圍第1項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該氧化物之組成物質為鈦(Ti)、鎢(W)、鋅(Zn)、矽(Si)、鉑(Pt)、銀(Ag)、鎘(Cd)、鐵(Fe)、錫(Sn)、銦(In)、銻(Sb)、鉍(Bi)、釩(V)、鉬(Mo)、鉛(Pb)或鍶(Sr)等金屬或半導體材料本身或其與其他材料複合物。A composite material according to the first aspect of the patent application, which can expand the absorption range of the original constituent material, wherein the constituent materials of the oxide are titanium (Ti), tungsten (W), zinc (Zn), and antimony (Si). , platinum (Pt), silver (Ag), cadmium (Cd), iron (Fe), tin (Sn), indium (In), antimony (Sb), antimony (Bi), vanadium (V), molybdenum (Mo) A metal or semiconductor material such as lead (Pb) or strontium (Sr) itself or a composite thereof with other materials. 如申請專利範圍第1項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該缺氧氧化物之組成物質為鈦(Ti)、鎢(W)、鋅(Zn)、矽(Si)、鉑(Pt)、銀(Ag)、鎘(Cd)、鐵(Fe)、錫(Sn)、銦(In)、銻(Sb)、鉍(Bi)、釩(V)、鉬(Mo)、鉛(Pb)或鍶(Sr)等金屬或半導體材料本身或其與其他材料複合物。A composite material according to the first aspect of the invention, which can expand the absorption range of the original constituent material, wherein the constituent materials of the anoxic oxide are titanium (Ti), tungsten (W), zinc (Zn), and antimony ( Si), platinum (Pt), silver (Ag), cadmium (Cd), iron (Fe), tin (Sn), indium (In), antimony (Sb), antimony (Bi), vanadium (V), molybdenum ( A metal or semiconductor material such as Mo), lead (Pb) or strontium (Sr) itself or a composite thereof with other materials. 一種可以擴大原構成材料吸收光範圍之複合材料,係由以下步驟所組成,包含:一基板,其材質係為具有結構支持強度的玻璃或塑膠,係可將該基板表面上鍍製或沉積缺氧氧化物顆粒,而於該基板上,形成一缺氧氧化物膜層;一缺氧氧化物膜層,其係由缺氧氧化物之顆粒所組成;一氧化物,該氧化物係為奈米氧化物顆粒所組成,係用以與一缺氧氧化物膜層之缺氧氧化物接觸固定後,形成一複合材料。The composite material capable of expanding the absorption range of the original constituent material comprises the following steps, comprising: a substrate, the material of which is a glass or plastic having structural support strength, which can be plated or deposited on the surface of the substrate. Oxygen oxide particles, on the substrate, forming an oxygen-deficient oxide film layer; an oxygen-deficient oxide film layer composed of particles of anoxic oxide; and an oxide, the oxide is Nye The rice oxide particles are formed by contact with an oxygen-deficient oxide layer of an anoxic oxide film to form a composite material. 如申請專利範圍第5項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該缺氧氧化物膜層之缺氧氧化物顆粒,係為鈦(Ti)、鎢(W)、鋅(Zn)、矽(Si)、鉑(Pt)、銀(Ag)、鎘(Cd)、鐵(Fe)、錫(Sn)、銦(In)、銻(Sb)、鉍(Bi)、釩(V)、鉬(Mo)、鉛(Pb)或鍶(Sr)等金屬或半導體材料本身、其氧化物,或其與其他材料複合物所構成。A composite material according to claim 5, which can expand the absorption range of the original constituent material, wherein the oxygen-deficient oxide particles of the oxygen-deficient oxide film layer are titanium (Ti), tungsten (W), Zinc (Zn), bismuth (Si), platinum (Pt), silver (Ag), cadmium (Cd), iron (Fe), tin (Sn), indium (In), antimony (Sb), antimony (Bi), A metal or semiconductor material such as vanadium (V), molybdenum (Mo), lead (Pb) or strontium (Sr) itself, an oxide thereof, or a composite thereof with other materials. 如申請專利範圍第5項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該缺氧氧化物膜層係由缺氧氧化物之顆粒堆積或嵌入之缺氧氧化物膜層所組成。A composite material according to claim 5, which is capable of expanding the absorption range of the original constituent material, wherein the oxygen-deficient oxide film layer is deposited by or embedded in an oxygen-deficient oxide film layer of an anoxic oxide particle. composition. 如申請專利範圍第5項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該缺氧氧化物膜層,更包含可經過高溫處理以形成更穩定之晶格。A composite material according to claim 5, which can expand the absorption range of the original constituent material, wherein the oxygen-deficient oxide film layer further comprises a high temperature treatment to form a more stable crystal lattice. 如申請專利範圍第5項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中缺氧氧化物膜層之缺氧氧化物顆粒間接觸固定的方法,更包含將基板表面上之缺氧氧化物膜層,浸泡於氧化物膠體溶液內,取出該缺氧氧化物膜層後,使該缺氧氧化物膜層上殘留溶劑揮發去除。A composite material according to claim 5, which can expand the absorption range of the original constituent material, wherein the method of contacting and fixing the oxygen-deficient oxide particles of the oxygen-deficient oxide film layer further comprises vacating the surface of the substrate The oxygen oxide film layer is immersed in the oxide colloid solution, and after removing the oxygen-deficient oxide film layer, the residual solvent on the oxygen-deficient oxide film layer is volatilized and removed. 如申請專利範圍第5項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該氧化物與該缺氧氧化物膜層之缺氧氧化物顆粒接觸固定的方法,更包含:利用高溫加熱、電子束加熱、氬離子加速撞擊、雷射剝離或化學氣相反應,使得氧化物顆粒漂浮於載體氣體或真空中,而接觸吸附於缺氧氧化物。A composite material according to claim 5, which can expand the absorption range of the original constituent material, wherein the method of contacting the oxide with the oxygen-deficient oxide particle of the oxygen-deficient oxide film layer further comprises: utilizing High temperature heating, electron beam heating, argon ion accelerated impact, laser stripping or chemical vapor phase reaction causes the oxide particles to float in a carrier gas or a vacuum while contacting the adsorbed oxygen-deficient oxide. 如申請專利範圍第10項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該漂浮於載體氣體中之氧化物顆粒更包含:注入含有氧化物顆粒之膠體溶液中,隨著載體氣體離開膠體溶液而漂浮於載體氣體中。The composite material according to claim 10, which can expand the absorption range of the original constituent material, wherein the oxide particles floating in the carrier gas further comprise: injecting into the colloidal solution containing the oxide particles, along with the carrier The gas leaves the colloidal solution and floats in the carrier gas. 如申請專利範圍第5項所述之一種可以擴大原構成材料吸收光範圍之複合材料,該氧化物與缺氧氧化物膜層之缺氧氧化物顆粒間接觸固定後,形成之複合材料,更包含以攝氏100度以下溫度加熱一小時以上,以去除氧化物與缺氧氧化物間之水份。A composite material according to claim 5, which can enlarge the absorption range of the original constituent material, and the composite material formed by the contact between the oxide and the oxygen-deficient oxide film of the oxygen-deficient oxide film layer is further formed. It is heated at a temperature below 100 degrees Celsius for more than one hour to remove moisture between the oxide and the oxygen-deficient oxide. 如申請專利範圍第5項所述之一種可以擴大原構成材料吸收光範圍之複合材料,缺氧氧化物膜層之缺氧氧化物顆粒間接觸固定後,更包含額外添加其他有機物、氧化物或金屬等材料。A composite material according to claim 5, which can enlarge the absorption range of the original constituent material, and the contact between the anoxic oxide particles of the anoxic oxide film layer is further fixed, and further includes adding other organic substances, oxides or Materials such as metal. 一種可以擴大原構成材料吸收光範圍之複合材料,係由以下步驟所組成,包含:一缺氧氧化物膜層,係由缺氧氧化物之顆粒所組成,其本身即為具有結構強度之基板;一氧化物,該氧化物係為奈米氧化物顆粒所組成,係用以與一缺氧氧化物膜層之缺氧氧化物接觸固定後,形成一複合材料。A composite material capable of expanding the range of light absorbed by the original constituent material comprises the following steps: comprising: an oxygen-deficient oxide film layer composed of particles of anoxic oxide, which itself is a substrate having structural strength The monooxide, which is composed of nano-oxide particles, is used to form a composite material after being contacted with an oxygen-deficient oxide layer of an anoxic oxide film layer. 如申請專利範圍第14項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該缺氧氧化物膜層之缺氧氧化物顆粒,係為鈦(Ti)、鎢(W)、鋅(Zn)、矽(Si)、鉑(Pt)、銀(Ag)、鎘(Cd)、鐵(Fe)、錫(Sn)、銦(In)、銻(Sb)、鉍(Bi)、釩(V)、鉬(Mo)、鉛(Pb)或鍶(Sr)等金屬或半導體材料本身、其氧化物,或其與其他材料複合物所構成。A composite material according to claim 14, wherein the oxygen-deficient oxide particles of the oxygen-deficient oxide film layer are titanium (Ti), tungsten (W), Zinc (Zn), bismuth (Si), platinum (Pt), silver (Ag), cadmium (Cd), iron (Fe), tin (Sn), indium (In), antimony (Sb), antimony (Bi), A metal or semiconductor material such as vanadium (V), molybdenum (Mo), lead (Pb) or strontium (Sr) itself, an oxide thereof, or a composite thereof with other materials. 如申請專利範圍第14項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該缺氧氧化物膜層係由缺氧氧化物之顆粒堆積或嵌入之缺氧氧化物膜層所組成。A composite material according to claim 14, wherein the oxygen-deficient oxide film layer is deposited or embedded in an oxygen-deficient oxide film layer of particles of anoxic oxide. composition. 如申請專利範圍第14項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該缺氧氧化物膜層,更包含可經過高溫處理以形成更穩定之晶格。A composite material according to claim 14, which can expand the absorption range of the original constituent material, wherein the oxygen-deficient oxide film layer further comprises a high temperature treatment to form a more stable crystal lattice. 如申請專利範圍第14項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該氧化物與該缺氧氧化物膜層之缺氧氧化物顆粒接觸固定的方法,更包含:利用高溫加熱、電子束加熱、氬離子加速撞擊、雷射剝離或化學氣相反應,使得氧化物顆粒漂浮於載體氣體或真空中,而接觸吸附於缺氧氧化物。A composite material according to claim 14 which can expand the absorption range of the original constituent material, wherein the method for contacting the oxide with the oxygen-deficient oxide particles of the oxygen-deficient oxide film layer further comprises: utilizing High temperature heating, electron beam heating, argon ion accelerated impact, laser stripping or chemical vapor phase reaction causes the oxide particles to float in a carrier gas or a vacuum while contacting the adsorbed oxygen-deficient oxide. 如申請專利範圍第18項所述之一種可以擴大原構成材料吸收光範圍之複合材料,其中該漂浮於載體氣體中之氧化物顆粒更包含:注入含有氧化物顆粒之膠體溶液中,隨著載體氣體離開膠體溶液而漂浮於載體氣體中。A composite material according to claim 18, which can expand the absorption range of the original constituent material, wherein the oxide particles floating in the carrier gas further comprise: injecting into the colloidal solution containing the oxide particles, along with the carrier The gas leaves the colloidal solution and floats in the carrier gas. 如申請專利範圍第14項所述之一種可以擴大原構成材料吸收光範圍之複合材料,該氧化物與缺氧氧化物膜層之缺氧氧化物顆粒間接觸固定後,形成之複合材料,更包含以攝氏100度以下溫度加熱一小時以上,以去除氧化物與缺氧氧化物間之水份。A composite material according to claim 14 which can enlarge the absorption range of the original constituent material, and the composite material formed by the contact between the oxide and the oxygen-deficient oxide film of the oxygen-deficient oxide film layer is further formed. It is heated at a temperature below 100 degrees Celsius for more than one hour to remove moisture between the oxide and the oxygen-deficient oxide. 如申請專利範圍第14項所述之一種可以擴大原構成材料吸收光範圍之複合材料,缺氧氧化物膜層之缺氧氧化物顆粒間接觸固定後,更包含額外添加其他有機物、氧化物或金屬等材料。A composite material according to claim 14 which can enlarge the absorption range of the original constituent material, and the contact between the oxygen-deficient oxide particles of the anoxic oxide film layer is further fixed, and further includes adding other organic substances, oxides or Materials such as metal.
TW99105118A 2010-02-23 2010-02-23 It is possible to enlarge the composite material in which the original constituent material absorbs the light range TWI386308B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99105118A TWI386308B (en) 2010-02-23 2010-02-23 It is possible to enlarge the composite material in which the original constituent material absorbs the light range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99105118A TWI386308B (en) 2010-02-23 2010-02-23 It is possible to enlarge the composite material in which the original constituent material absorbs the light range

Publications (2)

Publication Number Publication Date
TW201129465A TW201129465A (en) 2011-09-01
TWI386308B true TWI386308B (en) 2013-02-21

Family

ID=48222401

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99105118A TWI386308B (en) 2010-02-23 2010-02-23 It is possible to enlarge the composite material in which the original constituent material absorbs the light range

Country Status (1)

Country Link
TW (1) TWI386308B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190950A (en) * 1977-06-01 1980-03-04 The United States Of America As Represented By The Department Of Energy Dye-sensitized solar cells
US6306343B1 (en) * 1996-11-25 2001-10-23 Ecodevice Laboratory Co., Ltd Photocatalyst having visible light activity and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190950A (en) * 1977-06-01 1980-03-04 The United States Of America As Represented By The Department Of Energy Dye-sensitized solar cells
US6306343B1 (en) * 1996-11-25 2001-10-23 Ecodevice Laboratory Co., Ltd Photocatalyst having visible light activity and uses thereof

Also Published As

Publication number Publication date
TW201129465A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
Sun et al. Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light
Ma et al. Construction of Z-scheme system for enhanced photocatalytic H2 evolution based on CdS quantum dots/CeO2 nanorods heterojunction
Khanchandani et al. Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis
Zhou et al. Highly efficient photoelectrochemical water splitting from hierarchical WO3/BiVO4 nanoporous sphere arrays
Wheeler et al. Photoelectrochemical properties and stability of nanoporous p-type LaFeO3 photoelectrodes prepared by electrodeposition
Tian et al. Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells
Zhang et al. Tuning photoelectrochemical performances of Ag− TiO2 nanocomposites via reduction/oxidation of Ag
Zhang et al. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye‐sensitized solar cells
Chang et al. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture
Mor et al. Vertically oriented Ti− Fe− O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis
Zhang et al. Double-layered TiO2− SiO2 nanostructured films with self-cleaning and antireflective properties
Wang et al. Aligned ZnO/CdTe core− shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties
Barpuzary et al. Enhanced photovoltaic performance of semiconductor-sensitized ZnO–CdS coupled with graphene oxide as a novel photoactive material
Cao et al. Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blue
KR101056132B1 (en) Thin film type solar cell and manufacturing method thereof
Ranjith et al. Promotional effect of Cu2S–ZnS nanograins as a shell layer on ZnO nanorod arrays for boosting visible light photocatalytic H2 evolution
JP2015199065A (en) Photocatalyst and production method therefor
Hsu et al. UV and visible light induced photocatalytic degradation on p–n Cu2O/ZnO nanowires decorated with Au–Pd alloy nanoparticles
KR102286438B1 (en) Method of manufacturing patterned metal nanosphere array layer, method of manufacturing electronic device comprising the same and electronic device manufactured thereby
Huang et al. Preparation and photocatalytic activity of CuO/ZnO composite nanostructured films
Kong et al. Boosting interfacial interaction in hierarchical core–shell nanostructure for highly effective visible photocatalytic performance
Esakki et al. Influence on the efficiency of dye-sensitized solar cell using Cd doped ZnO via solvothermal method
Kalpana et al. Enhancement of photocatalytic dye degradation efficiency of ZnO/Ag film deposited on flexible stainless steel meshes through g-C3N4 addition
Cruz et al. MgO and Mg (OH) 2 thin films prepared by the SILAR method and their CO2 photocatalytic performance
Javed et al. Plasmonic Dye‐Sensitized Solar Cells: Fundamentals, Recent Developments, and Future Perspectives

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees