TWI375210B - - Google Patents

Download PDF

Info

Publication number
TWI375210B
TWI375210B TW96125715A TW96125715A TWI375210B TW I375210 B TWI375210 B TW I375210B TW 96125715 A TW96125715 A TW 96125715A TW 96125715 A TW96125715 A TW 96125715A TW I375210 B TWI375210 B TW I375210B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
pixel
crystal display
voltage
pixel data
Prior art date
Application number
TW96125715A
Other languages
Chinese (zh)
Other versions
TW200820209A (en
Inventor
Yuusuke Fujino
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of TW200820209A publication Critical patent/TW200820209A/en
Application granted granted Critical
Publication of TWI375210B publication Critical patent/TWI375210B/zh

Links

Description

13752101375210

九、發明說明 【發明所屬之技術領域】 * 本發明係關於主動矩陣型的液晶顯示元件,以及利用 w 該液晶顯示元件進行影像顯示之液晶顯示裝置及液晶顯示 元件之驅動方法。 【先前技術】 # 近年來’係廣範使用採用液晶爲顯示元件之液晶顯示 裝置。此液晶顯示裝置,例如有於大型的玻璃基板上形成 液晶驅動電路,並將此背光等光源、偏光板及彩色濾光片 等一同組合而成之所謂的直視型裝置,或是於微小基板上 形成像素,並將此與光學系列一同組合並進行擴大投射之 所謂的投射型(投影型)裝置等之可提供高精細的畫像之種 種方式,而達成商品化。此外,關於這些裝置中所使用之 液晶的驅動模式,係開發出活用下列方式之種種裝置,例 •如垂直配向方式、水平配向方式、強介電液晶、 OCB(Optically Compensated Bend:光學補償彎曲)方式 等。 於此液晶顯示裝置中,一般係獨立對構成顯示區域之 像素’往基板的垂直方向施加電壓以藉此驅動液晶顯示元 件。於某一像素與該鄰接像素之間的驅動電壓差極端的大 時’係於這些像素間產生橫向電場,而可能導致液晶配向 的紊亂。起因於鄰接像素間的電壓差之液晶的配向不良係 稱爲向錯,一旦產生此配向不良,則無法依據各像素的像 -4- 1375210 4 素資料進行正確的影像顯不。亦即,例如會產生亮度的降 低或對比的劣化,及細微影像圖案的破壞等,此外,例如 於使用3原色進行色彩重現時,可能因當中I色的亮度改 變而產生色差等。 此問題並不限定於液晶的種類或驅動方式,而是於幾 乎所有的液晶顯示裝置中會產生,尤其是起因於該擴大率 較高之緣故,此現象於投射型的液晶顯示裝置中特別顯 著。因此,於以往的投射型液晶顯示裝置中,較多爲採用 下列手法,亦即例如以黒色遮罩覆蓋產生向錯之部分,並 且於開口部配置微透鏡陣列以進行擴大投影,而藉此抑制 向錯的影像等之手法’然而,此手法中係具有光利用效率 的降低等缺點,因此係要求更進一步的改善。 因此,例如於非專利文獻1中,係提出一種於反射型 的微顯示器中,藉由計算而對液晶的配向方向及配向限制 力與向錯的產生進行最適化處理者。此外,例如於專利文 獻1中’係提出一種控制多數個液晶顯示元件之配向方位 者。 [非專利文獻1]D. Cuypers,其他兩名,「Fringe-field induced disclinations in VAN LCos panels」,ID W, 04 Proceedings of The 11th International Display Workshops, Society for information Display, 2004 年 12 月8日,發表號碼LAD-3 [專利文獻1]日本特開200 5 -9 1 5 27號公報 -5- 1375210 * r v 【發明內容】 (發明所欲解決之課題) 然而,於上述非專利文獻1中,並未具體顯示出用以 實現如此參數之方法,因此實際上係難以實現。另一方 面,根據上述專利文獻1的技術,係能夠將起因於上述液 晶的配向不良(向錯)的產生之色差現象降低某種程度。然 而,就一邊對應於隨時產生變化之鄰接像素彼此的驅動狀 況一邊予以降低此現象之觀點來看,仍然不夠充分。 本發明係鑒於該問題點而創作之發明,其目的在於提 供一種,不論顯示影像的內容爲何,均可減少液晶的配向 不良之產生,而能夠進行良好畫質的影像顯示之畫像顯示 元件、畫像顯示裝置及畫像顯示元件之驅動方法。 (用以解決課題之手段) 本發明之液晶顯示元件,係具備:包含用以進行影像 顯示的多數個像素而構成之液晶顯示面板;及以使對1個 像素的施加電壓與對該鄰接像素的施加電壓之間的電壓比 變得更小之方式,一邊逐次校正各像素的像素資料,一邊 進行上述液晶顯示面板的顯示驅動之驅動手段。 此時,上述驅動手段亦可構成爲,以特定的多數個圖 框期間之像素的反射率之時間積分作爲判斷指標,進行像 素資料的逐次校正。在此,「多數個圖框期間」是指多數 個影像圖框期間或是多數個影像圖場期間。 本發明之液晶顯不裝置’爲具備上述液晶顯示元件, -6 - 1375210 V * i 且使用藉由此液晶顯示元件所調變後之光以進行影像顯示 之液晶顯示裝置》此時,可構成爲液晶投影器,此液晶投 影器係具備光源:及將從該光源所發出且藉由上述液晶顯 示元件所調變後之光投射至螢幕之投射手段》 於本發明之液晶顯示元件及液晶顯示裝置中,係以使 對1個像素的施加電壓與對該鄰接像素的施加電壓之間的 電壓比變得更小之方式,逐次校正各像素的像素資料。並 根據此校正後的像素資料,進行液晶顯示面板的顯示驅 動。 本發明之液晶顯示元件之驅動方法,爲具備包含用以 進行影像顯示的多數個像素之液晶顯示面板之液晶顯示元 件之驅動方法’係比較1個像素的像素資料與該鄰接像素 的像素資料,並從該比較結果中,於判斷對1個像素的施 加電壓與對鄰接像素的施加電壓之間的電壓比,較特定閾 値還大時’以使上述電壓比變得較閾値還小之方式地逐次 校正各像素的像素資料’之後根據校正後的像素資料進行 顯示驅動。 於本發明之液晶顯示元件之驅動方法中,係比較1個 像素的像素資料與該鄰接像素的像素資料,於判斷對1個 像素的施加電壓與對鄰接像素的施加電壓之間的電壓比, 較特定閾値還大時’以使該電壓比變得較閾値還小之方式 地逐次校正各像素的像素資料。之後根據校正後的像素資 料進行顯示驅動。 1375210 4. 發明之效果: 根據本發明之液晶顯示元件、液晶顯示裝置及液晶顯 示元件之驅動方法’由於係構成爲以使對〗個像素的施加 電壓與對該鄰接像素的施加電壓之間的電壓比變得更小之 方式地逐次校正各像素的像素資料,並且根據此校正後的 像素資料進行液晶顯示面板的顯示驅動,因此可逐次地減 少起因於鄰接像素間的施加電壓比之液晶的配向不良 (DiSClinati〇n:向錯)之產生,而抑制畫像重現性的劣化。 因此’不論顯示影像的內容爲何,均能夠實現良好畫質的 影像顯示。 【實施方式】 以下係參照圖式,詳細說明本發明的實施型態。 [第1實施型態] • <液晶顯示元件的構成> 第1圖係顯示本發明的第1實施型態之液晶顯示元件 的構成。此液晶顯示元件係具備:對來自於外部之輸入畫 像訊號Din進行特定的校正之像素訊號校正部5 ;及根據 由該像素訊號校正部5所校正後之畫像訊號(輸出畫像訊 號Dout)進行影像顯示之液晶顯示部1,且如之後所述 般’爲反射型的液晶顯示元件。 液晶顯示部1係具備:以矩陣狀配置有多數個像素 Π而成之顯示區域10;及作爲影像顯示用的驅動器之資 -8-[Technical Field] The present invention relates to an active matrix type liquid crystal display element, and a liquid crystal display device and a liquid crystal display element driving method using the liquid crystal display element for image display. [Prior Art] # In recent years, a wide range of liquid crystal display devices using liquid crystals as display elements have been used. The liquid crystal display device is, for example, a so-called direct-view device in which a liquid crystal driving circuit is formed on a large glass substrate, and a light source such as a backlight, a polarizing plate, and a color filter are combined, or on a micro substrate. A so-called projection type (projection type) device in which a pixel is combined with an optical series and expanded projection is provided, and various forms of high-definition images can be provided, and commercialization is achieved. In addition, regarding the driving mode of the liquid crystal used in these devices, various devices have been developed which are used in the following manners, such as a vertical alignment mode, a horizontal alignment mode, a ferroelectric liquid crystal, and an OCB (Optically Compensated Bend). Ways, etc. In this liquid crystal display device, a voltage is applied to the vertical direction of the substrate by the pixels constituting the display region, thereby driving the liquid crystal display element. The extreme difference in driving voltage difference between a certain pixel and the adjacent pixel is caused by a lateral electric field between the pixels, which may cause disorder of liquid crystal alignment. The misalignment of the liquid crystal due to the voltage difference between adjacent pixels is called a disclination. When this alignment failure occurs, accurate image display cannot be performed based on the image of the pixel -4- 1375210 4 . That is, for example, deterioration of brightness or deterioration of contrast, deterioration of fine image patterns, and the like may occur, and for example, color reproduction using three primary colors may cause chromatic aberration or the like due to change in brightness of the I color. This problem is not limited to the type of liquid crystal or the driving method, but is generated in almost all liquid crystal display devices, and this phenomenon is particularly remarkable in a projection type liquid crystal display device because of the high expansion ratio. . Therefore, in the conventional projection type liquid crystal display device, the following method is often employed, that is, for example, a portion where a disclination is generated by a dim mask, and a microlens array is disposed in the opening portion to perform an enlarged projection, thereby suppressing A technique such as a wrong image. However, this technique has disadvantages such as a decrease in light use efficiency, and therefore requires further improvement. For this reason, for example, in the non-patent document 1, it is proposed to optimize the alignment direction of the liquid crystal, the alignment control force, and the generation of the disclination in the reflection type microdisplay. Further, for example, in Patent Document 1, a method of controlling the alignment orientation of a plurality of liquid crystal display elements is proposed. [Non-Patent Document 1] D. Cuypers, two others, "Fringe-field induced disclinations in VAN LCos panels", ID W, 04 Proceedings of The 11th International Display Workshops, Society for information Display, December 8, 2004, [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. The method used to implement such parameters is not specifically shown, and thus is actually difficult to implement. On the other hand, according to the technique of Patent Document 1, it is possible to reduce the chromatic aberration caused by the misalignment (dislocation) of the liquid crystal to some extent. However, it is still insufficient from the viewpoint of lowering this phenomenon in response to the driving condition of adjacent pixels which change at any time. The present invention has been made in view of the above problems, and an object of the invention is to provide an image display element and an image capable of reducing image alignment failure of a liquid crystal regardless of the content of a displayed image. A display device and a method of driving an image display element. (Means for Solving the Problem) The liquid crystal display device of the present invention includes: a liquid crystal display panel including a plurality of pixels for performing image display; and an applied voltage for one pixel and the adjacent pixel A driving means for driving the display of the liquid crystal display panel while sequentially correcting the pixel data of each pixel so that the voltage ratio between the applied voltages becomes smaller. In this case, the driving means may be configured to sequentially correct the pixel data by using the time integral of the reflectance of the pixel in the specific plurality of frame periods as the determination index. Here, "majority of frame periods" refers to a period of a plurality of image frames or a period of a plurality of image fields. The liquid crystal display device of the present invention is a liquid crystal display device including the above liquid crystal display element, -6 - 1375210 V * i and using light modulated by the liquid crystal display element for image display. In the liquid crystal projector, the liquid crystal display device includes a light source: and a projection means for projecting light modulated by the light source and modulated by the liquid crystal display element onto the screen. In the device, the pixel data of each pixel is sequentially corrected so that the voltage ratio between the applied voltage to one pixel and the applied voltage to the adjacent pixel is made smaller. The display driving of the liquid crystal display panel is performed based on the corrected pixel data. The driving method of the liquid crystal display device of the present invention is a method for driving a liquid crystal display element including a liquid crystal display panel including a plurality of pixels for image display, and compares pixel data of one pixel with pixel data of the adjacent pixel. From the comparison result, when it is judged that the voltage ratio between the applied voltage of one pixel and the applied voltage to the adjacent pixel is larger than the specific threshold ', the method is such that the voltage ratio becomes smaller than the threshold '. The pixel data of each pixel is sequentially corrected, and then the display is driven based on the corrected pixel data. In the driving method of the liquid crystal display device of the present invention, the pixel data of one pixel and the pixel data of the adjacent pixel are compared, and a voltage ratio between an applied voltage of one pixel and an applied voltage to an adjacent pixel is determined. When it is larger than a specific threshold ', the pixel data of each pixel is sequentially corrected in such a manner that the voltage ratio becomes smaller than the threshold 値. Then, display driving is performed based on the corrected pixel data. 1375210 4. Effects of the Invention: The liquid crystal display device, the liquid crystal display device, and the driving method of the liquid crystal display device according to the present invention are configured such that between an applied voltage of a pixel and an applied voltage to the adjacent pixel The pixel data of each pixel is sequentially corrected in such a manner that the voltage ratio becomes smaller, and the display driving of the liquid crystal display panel is performed based on the corrected pixel data, so that the applied voltage ratio between the adjacent pixels can be sequentially reduced. Defective alignment (DiSClinati〇n: disclination) occurs, and deterioration of image reproducibility is suppressed. Therefore, regardless of the content of the displayed image, it is possible to achieve a good image quality display. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. [First Embodiment] <Configuration of Liquid Crystal Display Element> Fig. 1 shows a configuration of a liquid crystal display element according to a first embodiment of the present invention. The liquid crystal display element includes a pixel signal correcting unit 5 that specifically corrects an input image signal Din from the outside, and an image signal (output image signal Dout) corrected by the pixel signal correcting unit 5; The liquid crystal display unit 1 is displayed as a reflective liquid crystal display element as will be described later. The liquid crystal display unit 1 includes a display area 10 in which a plurality of pixels are arranged in a matrix, and a driver for image display.

1375210 V 料驅動器]2及掃描驅動器】3。 於各像素11內形成有像素驅動電路14,於顯示區域 10的周邊配置有上述資料驅動器12及掃描驅動器13«於 資料驅動器12中,係經由訊號線15輸入有來自於像素訊 號校正部5的輸出畫像訊號D out。像素驅動電路14係形 成於之後所述之各反射型像素電極42的下層,一般爲具 有切換電晶體T1及將電壓供應至液晶2之輔助電容Cl 而構成。 於像素驅動電路14中,於列方向配置有多數條資料 線1 2 A ’於行方向配置有多數條掃描線! 3 a。各條資料線 12A與各條掃描線13A的交叉點,係對應於1個像素。各 切換電晶體T1的源極電極係連接於資料線〗2A,閘極電 極連接於掃描線1 3 A。各切換電晶體T 1的汲極電極係連 接於各反射型像素電極42及輔助電容C1。各條資料線 12A係連接於資料驅動器12,從該資料驅動器12中供應 有畫像訊號。各條掃描線1 3 A係連接於掃描驅動器1 3, 從該掃描驅動器13中依序供應有掃描訊號。 第2圖係顯示液晶顯示部1的剖面構成。於此液晶顯 示部1中,係具備:互爲對向配置之一對的對向基板30 及像素電極基板4 0 ;及注入於這些基板間之垂直配向液 晶2。 對向基板3 0係具備:玻璃基板3 1 ·,及層積於此玻璃 基板31上之透明電極32。於透明電極32之接觸於垂直 配向液晶2的一面側,更於全面層積有配向膜3 3。透明 -9- 1375210 電極32爲具有光的透射作用之電極材料,一般係使用成 爲氧化錫(Sn02)與氧化銦(Ιη203)的固溶體物質之 ITO(Indium Tin Oxide :氧化銦錫膜)。於透明電極 32 上,施加有全像素區域中爲共通之電位(例如爲接地電 位)。 像素電極基板40,爲例如於單晶矽基板41上,以矩 陣狀配置形成有反射型像素電極42而成。於矽基板41 上,CMOS(Complementary Metal Oxide Semiconductor : 互補金氧半導體)或 NMOS(Negative Metal Oxide Semiconductor:負通道金氧半導體)等之由切換電晶體ΤΙ 及電容器(輔助電容)Cl所形成之主動型驅動電路。於像 素電極基板40之接觸於垂直配向液晶2的一面側,更於 全面層積有配向膜43。 反射型像素電極42係由以鋁(A1)或銀(Ag)所代表之 金屬膜所構成。於使用鋁電極等作爲反射型像素電極42 時,係兼具光的反射膜之功能及施加電壓於液晶之電極之 功能兩者。此外,爲了提高反射率,亦可於鋁電極上形成 如電介質反射鏡般之由多層膜所構成的反射層。 此反射型的液晶顯示元件中所使用之垂直配向液晶 2,該分子長軸於施加電壓爲零時,係配向於對各基板面 幾乎呈垂直之方向,一旦施加電壓,則往面內傾斜而使偏 光狀態產生傾斜。於驅動時若液晶分子的傾斜方向並非一 定,則會產生明暗波紋,爲了避免此現象,乃必須預先於 一定方向(一般爲裝置的對角方向)賦予些微的預傾角而產 -10- 1375210 < 生垂直配向。若預傾角過大,則垂直配向性會劣化,導致 黒階的提高使對比降低,因此,一般而言係將預傾角控制 於1°〜7°之間。 配向膜33、43,例如可使用以二氧化矽(Si02)所代表 之氧化矽膜的斜向蒸鍍膜。此時,藉由改變斜向蒸鍍時的 蒸鍍角度,可控制上述垂直配向液晶2的預傾角。此外, 配向膜33、43亦可使用對聚亞醯胺系的有機化合物進行 磨刷(配向)處理之膜。此時,可藉由改變磨刷條件而控制 預傾角。 在此,係參照第3圖及第4圖,說明於以往的液晶顯 示元件中所產生之配向不良(向錯)。第3圖及第4圖係表 示配向不良的產生型態,(A)表示液晶顯示部內的位置與 光的反射強度之間的關係,(B)表示液晶顯示部內的位置 與垂直配向液晶1 02的配向方向之間的關係。圖中的圖號 R10、R20係表示理想的反射強度特性,圖號ri 1、R21 表示實際的反射強度特性。此外,圖中的箭頭P1、P4係 表示垂直配向液晶1 02的預傾方向(爲對各像素施加電壓 時之垂直配向液晶分子的傾斜方向,係由預傾方向所決 定)’圖號142W、142W1、14 2W2係模式性表示施加白階 電壓之像素,亦即以較第1特定灰階還高的亮度所顯示之 像素(白顯示像素),圖號M2B、I42B1、142B2係模式性 表示施加黑階電壓之像素,亦即以較第1特定灰階還低且 較第2特定灰階更低的亮度所顯示之像素(黑顯示像素)。 從第3圖(B)及第4圖(B)中可得知,於白顯示像素 -11 - 1375210 142W與黑顯示像素142B1之交界附近,以及於白 素142WI與黑顯示像素142B之交界附近,由於互 之白階的施加電壓與黑階的施加電壓之間的電壓差 因此於這些像素間會產生橫向電場,且如圖號P2、 分別顯示般,液晶1 02的配向產生紊亂。亦即,於 像素142W1、142W中,原先液晶應配向於水平方 由於像素間所產生之橫向電場,而配向於垂直方 此,由於此液晶2的配向不良,如圖中的圖號P 3、 分別顯示般,光的反射強度於該部分中產生局部性 此外亦於液晶顯示部上產生黑條紋。除此之外亦產 亮度的降低或對比的劣化,及細微影像圖案的破壞 如於使用3原色進行色彩重現時,可能因當中1色 改變而產生色差等。 此外’從第3圖(B)及第4圖(B)中可得知,此 良’於沿著垂直配向液晶1 0 2的預傾方向P 1、P 4 示像素往黑顯示像素所依序排列之鄰接像素彼此中 生於白顯示像素的位置。因此,爲了更有效率地進 所述般之依據像素訊號校正部5所進行之像素訊號 校正’較理想爲選擇性地(優先地)對鄰接像素彼此 詳細內容將於之後敘述(第8圖)。 返回第1圖的說明’像素訊號校正部5,爲對 外部之輸入畫像訊號Din進行特定的逐次校正者。 第5圖係顯示畫像訊號校正部5的功能方塊構 畫像訊號校正部5係具備:伽瑪校正部5 1 ;記憶若 顯示像 相鄰接 極大, P5所 白顯示 向,但 向。因 P6所 降低, 生例如 等,例 的亮度 配向不 從白顯 ,係產 行之後 的逐次 進行。 來自於 成。此 β 52 ; -12- 1375210 比較部53;校正量決定部54;及向錯用校正部55。 伽瑪校正部51,係對來自於外部之輸入畫像訊號Din 進行特定的伽瑪校正。所謂的伽瑪校正,是指對應於因各 兀件之液晶層的厚度或輸出光波長等的不同而不同之所謂 的V-T曲線(驅動電壓-光輸出曲線),而對各像素所進行 之校正。 5己憶部52’係將由伽瑪校正部51進行伽瑪校正後之 各像素的畫像訊號(像素資料),記憶爲於比較部5 3中所 需的像素數量,亦即如下述般之與鄰接像素的像素資料進 行比較時所需的像素數量之部分,例如由SRAM(Static Random Access Memory :靜態隨機存取記憶體)等所構 成。 比較部53,係參照記憶部5 2中所記憶之像素資料, 以比較各像素的畫像素資料及鄰接像素的像素資料。具體 而言,係比較對1個像素的施加電壓(驅動電壓)與對該鄰 接像素的施加電壓之間的電位差。 校正量決定部5 4,係因應比較部5 3的比較結果,判 斷對1個像素的施加電壓與對該鄰接像素的施加電壓之間 的電壓比是否較特定閾値還大,且於判斷此電壓比較特定 閾値還大時,以使電壓比變得較小之方式,使用特定的校 正表而決定各像素的像素資料之校正量。 第6圖係顯示,用以規定互相鄰接之像素11A、11B 的校正量之校正表7的一例以作爲校正表的一例,第6圖 (A)係顯示,校正前之像素ΠΑ、HB的像素資料VinA、 -13- 13752101375210 V material driver] 2 and scan driver] 3. A pixel driving circuit 14 is formed in each of the pixels 11, and the data driver 12 and the scan driver 13 are disposed around the display area 10. The data driver 12 is input with the signal from the pixel signal correcting unit 5 via the signal line 15. The image signal D out is output. The pixel driving circuit 14 is formed in a lower layer of each of the reflective pixel electrodes 42 to be described later, and is generally constituted by a switching capacitor T1 and a storage capacitor C1 for supplying a voltage to the liquid crystal 2. In the pixel drive circuit 14, a plurality of data lines 1 2 A ' are arranged in the column direction, and a plurality of scanning lines are arranged in the row direction! 3 a. The intersection of each of the data lines 12A and the respective scanning lines 13A corresponds to one pixel. The source electrode of each switching transistor T1 is connected to the data line 〖2A, and the gate electrode is connected to the scanning line 13 A. The drain electrode of each switching transistor T 1 is connected to each of the reflective pixel electrode 42 and the auxiliary capacitor C1. Each of the data lines 12A is connected to the data drive 12, and an image signal is supplied from the data drive 12. Each of the scanning lines 1 3 A is connected to the scan driver 13 , and scan signals are sequentially supplied from the scan driver 13 . Fig. 2 shows a cross-sectional configuration of the liquid crystal display unit 1. The liquid crystal display unit 1 includes a counter substrate 30 and a pixel electrode substrate 40 that are opposed to each other, and a vertical alignment liquid crystal 2 injected between the substrates. The counter substrate 30 includes a glass substrate 31 and a transparent electrode 32 laminated on the glass substrate 31. On the side of the transparent electrode 32 that is in contact with the vertical alignment liquid crystal 2, the alignment film 33 is further laminated. Transparent -9- 1375210 The electrode 32 is an electrode material having a light transmitting effect, and generally ITO (Indium Tin Oxide) which is a solid solution of tin oxide (Sn02) and indium oxide (?n203) is used. On the transparent electrode 32, a potential common to the entire pixel region (for example, a ground potential) is applied. The pixel electrode substrate 40 is formed by, for example, forming a reflective pixel electrode 42 in a matrix on the single crystal germanium substrate 41. On the germanium substrate 41, a CMOS (Complementary Metal Oxide Semiconductor) or an NMOS (Negative Metal Oxide Semiconductor) is formed by switching between an transistor ΤΙ and a capacitor (auxiliary capacitor) Cl. Type drive circuit. On the side of the pixel electrode substrate 40 that is in contact with the vertical alignment liquid crystal 2, the alignment film 43 is further laminated. The reflective pixel electrode 42 is composed of a metal film represented by aluminum (A1) or silver (Ag). When an aluminum electrode or the like is used as the reflective pixel electrode 42, both the function of the light reflecting film and the function of applying a voltage to the electrode of the liquid crystal are obtained. Further, in order to increase the reflectance, a reflective layer composed of a multilayer film such as a dielectric mirror may be formed on the aluminum electrode. In the vertical alignment liquid crystal 2 used in the reflective liquid crystal display device, when the applied voltage is zero, the long axis of the molecule is aligned in a direction substantially perpendicular to each substrate surface, and when a voltage is applied, it is tilted inward. The tilt state is tilted. If the tilt direction of the liquid crystal molecules is not constant during driving, light and dark ripples will be generated. In order to avoid this phenomenon, it is necessary to give a slight pretilt angle in a certain direction (generally the diagonal direction of the device) to produce -10- 1375210 <; Vertical alignment. If the pretilt angle is too large, the vertical alignment property is deteriorated, and the increase in the 黒 step causes the contrast to be lowered. Therefore, generally, the pretilt angle is controlled to be between 1 ° and 7 °. As the alignment films 33 and 43, for example, an oblique vapor deposition film of a hafnium oxide film represented by cerium oxide (SiO 2 ) can be used. At this time, the pretilt angle of the vertical alignment liquid crystal 2 can be controlled by changing the vapor deposition angle at the time of oblique vapor deposition. Further, as the alignment films 33 and 43, a film which is subjected to a rubbing (alignment) treatment with a polyiminamide-based organic compound may be used. At this time, the pretilt angle can be controlled by changing the brushing conditions. Here, the misalignment (dislocation) generated in the conventional liquid crystal display element will be described with reference to Figs. 3 and 4 . Figs. 3 and 4 show the generation pattern of the alignment failure, (A) shows the relationship between the position in the liquid crystal display unit and the reflection intensity of light, and (B) shows the position in the liquid crystal display unit and the vertical alignment liquid crystal 102. The relationship between the orientation directions. The figure numbers R10 and R20 in the figure indicate ideal reflection intensity characteristics, and the figure numbers ri 1 and R21 represent actual reflection intensity characteristics. In addition, the arrows P1 and P4 in the figure indicate the pretilt direction of the vertical alignment liquid crystal 102 (the oblique direction of the vertical alignment liquid crystal molecules when a voltage is applied to each pixel, which is determined by the pretilt direction) 'Fig. 142W, 142W1, 14 2W2 schematically represent pixels to which a white-order voltage is applied, that is, pixels displayed by brightness higher than the first specific gray scale (white display pixels), and pattern numbers M2B, I42B1, and 142B2 are pattern-applied. The pixel of the black-order voltage, that is, the pixel (black display pixel) displayed at a lower luminance than the first specific gray scale and lower than the second specific gray scale. It can be seen from Fig. 3 (B) and Fig. 4 (B) that the vicinity of the boundary between the white display pixel -11 - 1375210 142W and the black display pixel 142B1 and the boundary between the white 142 WI and the black display pixel 142B are known. Due to the voltage difference between the applied voltage of the white level and the applied voltage of the black level, a transverse electric field is generated between the pixels, and as shown by the figure P2, the alignment of the liquid crystal 102 is disturbed. That is, in the pixels 142W1, 142W, the original liquid crystal should be aligned to the horizontal side due to the transverse electric field generated between the pixels, and the vertical direction is aligned. Since the alignment of the liquid crystal 2 is poor, the figure P 3 in the figure, As shown in the figure, the reflection intensity of the light locally is generated in the portion, and black streaks are also generated on the liquid crystal display portion. In addition to this, the reduction in brightness or the deterioration of contrast, and the destruction of fine image patterns, such as the use of the three primary colors for color reproduction, may result in chromatic aberration due to the change of one color. In addition, as can be seen from Fig. 3 (B) and Fig. 4 (B), this good 'in the pretilt direction P 1 , P 4 along the vertical alignment liquid crystal 1 0 2 indicates that the pixel is toward the black display pixel. The adjacent pixels of the sequence are born to each other at the position of the white display pixel. Therefore, in order to more efficiently perform the pixel signal correction by the pixel signal correcting unit 5 as described above, it is preferable that the details of the adjacent pixels are selectively (preferred) to be described in detail later (Fig. 8). . Returning to the description of Fig. 1, the pixel signal correcting unit 5 performs a specific successive correction for the external input image signal Din. Fig. 5 is a diagram showing the functional block configuration of the image signal correcting unit 5. The image correcting unit 5 includes a gamma correcting unit 5 1 and a memory image display adjacent to each other, and P5 is displayed in the direction of the image. Since P6 is reduced, for example, etc., the brightness alignment of the example is not white, and the system is successively performed after the production. From Cheng. This β 52 ; -12 - 1375210 comparison unit 53; correction amount determining unit 54; and misalignment correcting unit 55. The gamma correction unit 51 performs specific gamma correction on the input image signal Din from the outside. The so-called gamma correction refers to a correction of each pixel corresponding to a so-called VT curve (driving voltage-light output curve) which differs depending on the thickness of the liquid crystal layer of each element or the wavelength of the output light. . The image data (pixel data) of each pixel subjected to gamma correction by the gamma correction unit 51 is stored as the number of pixels required in the comparison unit 53, that is, as follows The portion of the number of pixels required for comparison of the pixel data of the adjacent pixels is composed of, for example, an SRAM (Static Random Access Memory). The comparing unit 53 refers to the pixel data stored in the memory unit 52 to compare the pixel data of each pixel with the pixel data of the adjacent pixels. Specifically, the potential difference between the applied voltage (driving voltage) for one pixel and the applied voltage to the adjacent pixel is compared. The correction amount determining unit 54 determines whether the voltage ratio between the applied voltage to one pixel and the applied voltage to the adjacent pixel is larger than a specific threshold 因, and determines the voltage, based on the comparison result of the comparing unit 53. When the comparison specific threshold is still large, the correction amount of the pixel data of each pixel is determined using a specific correction table so that the voltage ratio becomes smaller. Fig. 6 is a view showing an example of a correction table 7 for specifying correction amounts of pixels 11A and 11B adjacent to each other as an example of a correction table, and Fig. 6(A) shows pixels of pixels H and HB before correction. Information VinA, -13- 1375210

VinB之値與校正後之像素1 1 A、1 1B的像素資料VoutA、 VoutB之値之間的關係。此外,第6圖(B)係顯示於此校 正表7當中,用以規定於VinA = 40時之VinB與VoutA、 VoutB之値之間的關係之校正表71。於這些圖式中, VinA' VinB、VoutA、VoutB 之値爲「0」〜「100」者, 係分別表示對像素11A、11B的施加電壓(驅動電壓)之大 小’且以「〇」爲黑階顯示、以「100」爲白階顯示時之百 分比。此外,第6圖(B)中的圖號Al、B1分別表示VinA 及VinB的特性,圖號A2、B2分別表示VoutA、VoutB 的特性。 根_ ’第6圖(A)'第6圖(B)的校正表7、71,例如 從比較部5 3的比較結果中,於得知像素n a的像素資料 V in A =40及像素1 1 B的像素資料VinB =0時,校正量決 定部54 ’係以使校正後之像素〗丨a的像素資料V〇utA =60及像素1 1 B的像素資料VoutB =6之方式地逐次決定 像素資料VinA、VinB的校正量。 此外’第6圖(B)中所示之資料範圍w 1,係規定用以 判斷是否進行像素資料的逐次校正時之閾値。亦即,於此 校正表7 1中,例如於像素〗I a、1 1 B當中像素資料爲較 大之値與較小之値之比値爲2倍以上,具體而言,相對於 VinA =40,VinB =20以下或VinB =8〇以上時(資料範圍 W 1的外側)’係進行像素資料的逐次校正。 更具體而言,例如第7圖(A)所示般,於VinA =40且 VinB =] 〇〇時’校正量決定部54係藉由校正表,如第 -14 - 1375210 4 6圖(B)及第7圖(A)中的箭頭P72、p7〗所分別顯示般, 以使Vo ut A =4 5及Vo utB =90之方式地逐次決定像素資料 V j n A、V i η B的校正量。亦即’係以使像素資料的比値從 VinB/VinA=l〇〇/40 變成較小的 v〇utB/V〇utA = 90/45 之方 式地決定校正量》 此外,例如第7圖(B)所示般,於VinA =40且VinB 時’校正量決定部54係藉由校正表71,如第6圖(B) 及第7圖(B)中的箭頭P73、P74所分別顯示般,以使 VoutA =60及 VoutB =5之方式地逐次決定像素資料 Vin A、Vi nB的校正量。亦即,係以使像素資料的比値從 VinB/VinA = 40/0 變成較小的 v〇utB/VoutA = 60/5 之方式地 決定校正量。此外’於如此之一邊的像素資料爲黑階(或 是黑階附近)時,較理想爲優先提高該黒階的像素資料之 値,亦即增加黑顯示像素的施加電壓。藉此,即使像素資 料之値未產生較大變化,亦能夠使降低像素資料的比値之 效果大幅提高(此時係從無限大(~)減少至15)。 此外,例如第8圖所示般,於VinA =40且VinB =0 時,校正量決定部54亦能夠以使'VoutA =40及VoutB =5 之方式地逐次決定像素資料 VinA、VinB的校正量。如 此,於對上述預傾角方向上從白顯示像素往黑顯示像素所 依序排列之鄰接像素彼此,選擇性地(優先地)進行校正 時,像素資料的比値係從 VinB/VinA = 40/0變成更小的 VoutB/VoutA = 40/5,因而較爲理想。 如此,係使用校正表7 1並藉由校正量決定部54以逐 -15- 1375210 次決定像素資料的校正量,該校正量係被輸出至向錯用校 正部5 5。 返回第5圖的說明,向錯用校正部55係將校正量決 定部54中所決定之校正量,加算於記億部52中所記億之 像素資料,藉此產生成爲校正後的畫像訊號之輸出畫像資 料Dout ’並輸出至液晶顯示部】內的資料驅動器12。 接下來說明本實施型態之液晶顯示元件的作用。 於此反射型液晶顯示元件中,如第2圖所示般,係藉 由反射型像素電極42的反射功能,將從對向基板30側入 射且通過垂直配向液晶2之入射光L 1予以反射。於反射 型像素電極42中所反射之光L1,係以與入射時爲相反方 向’通過垂直配向液晶2及對向基板30而射出。此時, 垂直配向液晶2係因應對向的電極間之電位差,使該光學 特性產生變化而將通過的光L1予以調變。藉由此光調 變,可實現色階表現,該調變後的光L2係利用於影像顯 不 ° 對垂直配向液晶2之電壓的施加,係藉由第1圖所示 之像素驅動電路1 4而進行。資料驅動器1 2係因應從像素 訊號校正部5經由訊號線15所輸入之輸出畫像訊號 Dout,將畫像訊號供應至資料線1 2 A。掃描驅動器1 3係 於特定的時序中,依序將掃描訊號供應至各條掃描線 13A。藉此,由來自於掃描線13A的掃描訊號所掃描且施 加有來自於資料線1 2 A的畫像訊號之部分的像素,係選 擇性地被驅動。 -16- 1375210 在此’於第5圖所示之像素訊號校正部5中,係根據 來自於外部的輸入畫像訊號Din,對於顯示區域10內的 各像素1 1 ’以使對1個像素的施加電壓(驅動電壓)與對該 鄰接像素的施加電壓之間的電壓比變得較小之方式,對各 像素的像素資料進行逐次校正。具體而言,由伽瑪校 正部5 1進行伽瑪校正後之像素資料係被記錄至記憶部 52 ’並根據該記億後的像素資料,藉由比較部53以比較 1個像素的像素資料及該鄰接像素的像素資料。之後根據 該比較結果’於校正量決定部54中,使用例如第6圖所 示之校正表7、71,於判斷對1個像素的施加電壓與對鄰 接像素的施加電壓之間的電壓比較特定閾値還大時,例如 第6圖〜第8圖所示般,係以使該電壓比變得較小,且各 像素11的顯示色階或色階比接近於期望値之方式,逐次 校正各像素的像素資料。之後根據此校正後的像素資料 (輸出畫像訊號Dout),於液晶顯示部1中進行上述顯示驅 動。 如上述般,於本實施型態之液晶顯示元件中,於像素 訊號校正部5中,係以使對1個像素的施加電壓與對該鄰 接像素的施加電壓之間的電壓比變得較小之方式,對各像 素1 1的像素資料(輸入畫像訊號Din)進行逐次校正,並且 根據此校正後的像素資料(輸出畫像訊號Dout),進行液晶 顯示部1的顯示驅動,因此可逐次地減少起因於鄰接像素 間的施加電壓差之液晶的配向不良(Disclination :向錯)之 產生,而抑制畫像重現性的劣化。因此,不論顯示影像的 -17- 1375210 內容(輸入畫像訊號Din之値)爲何,均能夠實現良好畫質 的影像顯示。 再者’像素訊號校正部5內的校正量決定部54,係 使用例如第6圖所示之特定的校正表而決定校正量,因此 僅需選擇預先規定的校正量而能夠簡單且高速地進行校 正。 此外’於一邊的像素資料爲黑階(或是黑階附近)時, 於優先提高該黑階的像素資料之値,亦即增加黒顯示像素 的施加電壓之情況下,即使像素資料之値未產生較大變 化’亦更可有效降低像素資料的比値。因此可更容易消除 液晶的配向不良。 此外’於對沿著垂直配向液晶2的預傾方向從白顯示 像素往黑顯示像素所依序排列之鄰接像素彼此,選擇性地 (優先地)進行校正時’由於係對容易產生液晶的配向不良 之部分進行校正,因此能夠更有效率地像素訊號的逐次校 正。此外,由於係決定校正的優先順序而進行校正,因此 可避免於校正處理中產生遺漏之情形。於垂直配向液晶2 的預傾方向例如爲像素的對角方向(於像素爲正方形時, 爲對水平方向或垂直方向成45度之方向)時,係構成爲, 沿著表示出液晶分子的預傾方向之向量的水平或垂直成分 的方向’選擇性地(優先地)對從表示白顯示像素之狀態遷 移至表示黑顯示像素之狀態之各鄰接像素對進行校正。具 體而言’係使比較部5 3可偵測出各像素爲白顯示像素或 黑顯示像素而構成。之後,於以液晶分子對像素從右下方 -18- 1375210 朝左上方傾斜之方式地於像素電極上形成配向膜時,於比 較部5 3偵測出鄰接像素對處於在左側爲黑顯示像素,在 右側爲白顯示像素而依序排列之狀態時,校正量決定部 54係選擇性地(優先地)進行校正而構成。 此外,例如第9圖的時序圖所示般’係以於特定的多 數個圖框期間(或多數個圖場期間之時序tlO〜113爲止的3 個水平期間(1個水平期間=1H))中之各像素11的反射率之 時間積分作爲判斷指標,且例如圖中的箭頭P7 5、P76所 示般,進行像素資料的逐次校正。於如此構成時,於像素 訊號涵蓋多數個圖框期間中未產生變化的情況下,可有效 地抑制因向錯的產生所造成之畫質重現性的劣化》 <液晶顯示裝置的構成> 接下來說明使用有第1圖所示的構成之液晶顯示元件 之液晶顯示裝置的例子。在此,如第1 〇圖所示般,係說 明以反射型的液晶顯示元件作爲光燈泡而使用之反射型液 晶投影器(液晶投影器8)的例子。 此液晶投影器8爲使用3片之紅、藍及綠的各色用液 晶光燈泡8R、8G、8B而進行彩色畫像顯示之所謂的3片 式。此反射型液晶投影器,係沿著光軸OL具備光源8 1 ; 二色性分光鏡8 2、8 3 ;及全反射鏡8 4。此外,此液晶投 影器8係具備偏光分光鏡8 5、8 6、8 7 ;合成稜鏡8 8 :投 射透鏡89 ;及螢幕80。 光源8 I爲發出包含彩色畫像顯示所需之紅色光(R)、 -19- 1375210 藍色光(B)、綠色光(G)之白色光者,例如由鹵素燈、金屬 鹵化物燈或氙氣燈等所構成。 . 二色性分光鏡82係具有將來自於光源81的光分離爲 . 藍色光與其他色的光之功能。二色性分光鏡83係具有將 通過二色性分光鏡82的光分離爲紅色光與綠色光之功 能。全反射鏡84係將由二色性分光鏡82所分離之藍色 光,朝向偏光分光鏡87反射。 # 偏光分光鏡85、86、87,係分別沿著紅色光、綠色 光、藍色光的光路徑而設置。這些偏光分光鏡85、86、 87係分別具有偏光分離面85A、86A、87A,於此偏光分 離面85A、86A、87A中,具有將入射的各色光分離爲互 呈直交之2個偏光成分之功能。偏光分離面85A、86A、 87A係將一邊的偏光成分(例如爲S偏光成分)予以反射, 且讓另一邊的偏光成分(例如爲P偏光成分)透射。 液晶光燈泡8R、8G ' 8B,係由上述構成的反射型液 # 晶顯示元件(第1圖、第2圖)所構成。由偏光分光鏡85、 86、87的偏光分離面85A、86A、87A所分離之特定的偏 光成分(例如爲S偏光成分)的色彩光,係入射於這些液晶 光燈泡8 R、8 G、8 B中。液晶光燈泡8 R、8 G、8 B係具 有,因應根據像素訊號所賦予之驅動電壓所驅動,將入射 光予以調變,且將調變後的光朝向偏光分光鏡85、86、 8 7反射之功能。 合成稜鏡88係具有,將從液晶光燈泡8R、8G、8B 所射出,且通過偏光分光鏡85、86、87之特定的偏光成 -20- 1375210 分(例如爲p偏光成分)之色彩光予以合成之功能。投射透 鏡89係具有,將從合成稜鏡88所射出之合成光朝向螢幕 • 8 0投射之投射手段的功能。 . 於以上構成之反射型液晶投影器8中,從光源81所 射出之白色光,首先藉由二色性分光鏡82的功能而分離 爲藍色光與其他色的光(紅色光及綠色光)。當中,藍色光 係藉由全反射鏡84的功能而朝向偏光分光鏡87反射。另 # 一方面,紅色光及綠色光係藉由二色性分光鏡83的功 能,更分離爲紅色光與綠色光。分離後的紅色光及綠色 光,係分別入射於偏光分光鏡85、86。 偏光分光鏡85、86、87,於偏光分離面85A、8 6A、 87A中,係將入射的各色光分離爲互呈直交之2個偏光成 分。此時,偏光分離面 85A、86A、87A係將一邊的偏光 成分(例如爲S偏光成分)朝向液晶光燈泡8R、8G、8B反 射。 • 液晶光燈泡8R、8G、8B係因應根據像素訊號所賦予 之驅動電壓所驅動,並以像素單位將入射之特定偏光成分 的色彩光予以調變。此時,由於液晶光燈泡8R、8G、8B 係由第I圖、第2圖所示之反射型痺晶顯示元件所構成, 因此關於對比等特性及畫質,乃能夠實現良好特性。 液晶光燈泡8R、8G、8B,係將調變後的各色光朝向 偏光分光鏡85、86、87反射。偏光分光鏡85、86、87’ 於來自於液晶光燈泡 8R、8G、8B的反射光(調變光)當 中,僅讓特定的偏光成分(例如爲p偏光成分)通過,並朝 -21 - 1375210 向合成稜鏡88射出。合成稜鏡88係通過偏光分光鏡 85、86、87之特定的偏光成分之色彩光予以合成,並朝 向投射透鏡89射出。投射透鏡89,係將從合成稜鏡8 8 所射出之合成光朝向螢幕80投射》藉此,因應由液晶光 燈泡8R、8G、8B所調變後的光之影像,係投影於螢幕 80上,而進行期望的影像顯示。 如以上所述,於本實施型態之液晶投影器中,由於使 用第1圖、第2圖所示之反射型液晶顯示元件作爲液晶光 燈泡8R、8G、8B,因此可逐次地減少起因於鄰接像素間 的施加電壓差之液晶的配向不良(向錯)之產生,而抑制畫 像重現性的劣化。因此可實現高畫質且於重現性極高的畫 質下之影像顯示。 [第2實施型態] 接下來說明本發明之第2實施型態。於第1實施型態 中,係說明根據畫像資料而改變施加電壓(驅動電壓)之所 謂的類比方式,但於本實施型態中,係說明根據畫像資料 而進行PWM(Pulse Width Modulation:脈衝寬度調變)驅 動之所謂的數位方式。 第1 1圖係顯示作爲一般的數位方式之液晶顯示元件 的驅動方法之時序圖,(A)〜(H)分別表示 1色階(= 「000000 1」的像素資料;黑階)、2色階(=「00000 1 0」的 像素資料)、4色階(=「〇〇〇〇 1 〇〇」的像素資料)、8色階 「000〗000」的像素資料)、16色階(=「0010000」的像素 -22- 1375210 資料)、32色階(=「0 1 0000」的像素資料)、64色階(= 「1 000000」的像素資料)及127色階】丨】】】〗」的像 素資料;白階)。 於此數位方式的驅動方法中,藉由對像素資料的各位 元賦予權重,可改變施加電壓於各像素11之期間的寬 度’而進行色階顯示。此外,係對1個圖場的時間進行 128分割,且以當中第1〜64、64〜96、96-112、112〜120、 120~124、 124〜126、 126-127號之分割區域的組合施加 V100電壓或V0電壓。因此,於本實施型態之液晶顯示元 件中,鄰接像素間的電壓比爲較大者,係對應於,對應 「0(L;低)」位準之施加電壓與對應「i(H;高)」位準之 施加電壓之間的電壓比。 因此’於本實施型態中,例如第1 2圖(A) ' (B)的時 序圖所示般,係將對應「0 (L ;低)」位準之施加電壓設定 爲較高(此時由「0」變更爲「10」),且將對應「1(H; 高)」位準之施加電壓設定爲較低(此時由「100」變更爲 「95」)。 此外,例如第1 3圖(A)、(B)的時序圖所示般,亦可 只變更對應「〇(L ;低)」位準之施加電壓的設定(變更爲 更高)。此時,與第1實施型態中所說明者相同,係因爲 即使設定値未改變較大,亦可容易降低電壓比之故。 再者,例如第14圖(A)、(B)的時序圖所示般,亦能 夠以使電壓的施加期間於鄰接像素1 1 A、1 1 B彼此之間更 長時間地一致之方式,將電壓的施加期間往時間軸方向移 -23- 1375210 位。此係因爲,如第1 1圖所示般,由於在以往數位方式 的驅動方法中,例如對1個圖場的時間進行1 2 8分割,且 以當中第 1~64、64-96 ' 96〜112、112-120、1 20- 1 24 ' 124〜126、126〜127號之分割區域的組合施加V100電壓或 V0電壓,因此較常產生電壓的施加期間於鄰接像素彼此 之間不會一致之故。若具體說明第14圖,則如圖中的箭 頭P77、P78所分別顯示般,係將像素11B的電壓施加期 間,於每1個水平期間中,以與像素1 1A的電壓施加期 間呈最大限度地一致之方式進行移位(係以使電壓施加期 間位於時序t53〜t54之間、及時序t55〜t56之間之方式地 往時間軸方向移位)。於如此構成時,不需如上述般變更 對應「〇 (L ;低)」位準之施加電壓或對應「1 (Η ;高)」位 準之施加電壓,而能夠將鄰接像素間之電壓比變大的期間 抑制於最低限度。 如上述般,於本實施型態之液晶顯示元件中,由於在 像素訊號校正部5中’亦以使對1個像素的施加電壓與對 該鄰接像素的施加電壓之間的電壓比變得更小之方式進行 逐次校正’因此可獲得與第〗實施型態相同之效果。亦 即’可逐次降低起因於鄰接像素間的施加電壓差之液晶的 配向不良(向錯)之產生,而抑制畫像重現性的劣化。因 此’不論顯示影像的內容爲何’均能夠實現良好畫質的影 像顯示。 本實施型態之液晶顯示元件,與第1實施型態相同, 亦可適用於液晶投影器寺之一驚顯不裝置,並且可獲得與 -24- 1375210 第〗實施型態相同之效果。 [實施例] 接下來以實施例說明上述實施型態之液晶顯示元件的 具體特性。以下,於說明實施例之前,首先係以比較例說 明以往之液晶顯示元件的特性。 Φ [比較例1 ] 以下列方式製作出比較例1之反射型液晶顯示元件的 樣本。首先’於洗淨形成有透明電極之玻璃基板、及矽基 板後,導入至蒸鍍裝置,並以蒸鍍角度爲45〜55。的範圍內 斜向蒸鍍Si02膜以作爲配向膜而形成。配向膜的膜厚設 定於25~100nm,且以使液晶的預傾角成爲大約3。之方式 的進行配向控制。之後於形成有配向膜之上述兩基板間, 僅以適當數量使大約2μηι直徑的玻璃珠散佈並將兩者貼 ® 合’將Merck公司製之介電常數異向性△ £爲負、折射率 異向性△ η = 0· 1 1之垂直配向液晶材料注入,藉此製作出具 有大約2μιη的液晶層厚之反射型液晶顯示元件。於上述 矽基板上’獨立設置可用以控制驅動電壓之像素電極,這 些像素電極係由一邊爲6μιη的正方形所形成,各像素大 約以0·3μηι的溝槽區隔,此外,於此表面上,形成鋁反射 膜。 於製作後’將相當於約60Hz的交流矩形波之電壓施 加於這些像素’而獲得對振幅電壓之關係。此外,係求取 -25- 1375210 表示出最大反射率之電壓V100,並將此時 爲T100。之後將反射率對T100爲X%時之 TX,並將此時的電壓設定爲電壓Vx。 之後使用此反射型液晶顯示元件,以第 所示的種種像素圖案(分別爲每2列各爲黑 2x2像素之西洋棋盤的圖案)進行影像顯示 接之像素1、2及像素3、4中測定反射率。 鄰接像素的各反射效率E(=實際的積分反射 所期待的反射率之比値的平均値),以及於 接像素之間的對比C(=實際的積分反射率的 中所期待的反射率的比値之比値),以分別· 及第2指標。 第16圖係顯示如此求取之透射率T與 對比C之間的關係(於鄰接像素當中之一的 V40時)。於第16圖中,鄰接像素間的電 係隨著透射率T遠離T40),反射效率E及 逐漸遠離1 〇〇,因此可確認出從期待値偏難 大0 [實施例1-】、1-2] 以基本上與上述比較例1爲相同之方沒 出反射型液晶顯示元件的樣本。惟於本實 中,與上述比較例1爲不同者在於,分別 型態之第6圖〜第8圖或第9圖所說明般, 的透射率設定 透射率設定爲 15 圖(A) ' (B) 白之圖案以及 ,並於互爲鄰 此外,係求取 率對各像素中 某一像素與鄰 比値對各像素 专爲第1指標 反射效率E及 校正前電壓爲 壓比變大(此時 對比C之値均 之誤差逐漸增 :及規格,製作 施例丨-〗、1 - 2 丨上述第1實施 係以使鄰接像 -26- 1375210 素間的電壓比儘可能降低之方式地進行逐次校正 15圖(A)、(B)所示的像素圖案進行影像顯示。 第1表係顯示比較例1及實施例1 -〗、1 - 2 率E及對比C的測定結果之一例(於鄰接像素當 校正前電壓爲V40時在此,若反射效率E爲 且對比C爲0 · 60以上,則可視爲顯示影像畫像 用上極爲充分之畫質。於比較例1中,於一部分 這些値,相對於此,於實施例1 -1、1 -2中,所 均高於這些値。因此可得知,鄰接像素間的電壓 例1還低,且顯示品質亦有所提升。此外’實施 若干値較實施例1-2還高,因此得知顯示品質可 提升。 ,且以第 之反射效 中之一的 0.7 0以上 可保持實 中係低於 有的數値 比較比較 例1 -1的 更進一步The relationship between the VinB and the pixel data VoutA and VoutB of the corrected pixels 1 1 A and 1 1B. Further, Fig. 6(B) shows a correction table 71 for specifying the relationship between VinB and VoutA and VoutB at VinA = 40 in this correction table 7. In these figures, the number of VinA' VinB, VoutA, and VoutB is "0" to "100", which indicates the magnitude of the applied voltage (drive voltage) to the pixels 11A and 11B, respectively, and is "black". The order display, the percentage when "100" is displayed as white level. Further, the figure numbers A1 and B1 in Fig. 6(B) indicate the characteristics of VinA and VinB, respectively, and the figure numbers A2 and B2 indicate the characteristics of VoutA and VoutB, respectively. In the correction tables 7 and 71 of the sixth figure (A)'Fig. 6(B), for example, from the comparison result of the comparison unit 53, the pixel data V in A = 40 and the pixel 1 of the pixel na are known. When the pixel data VinB of 1 B is =0, the correction amount determining unit 54' successively determines the pixel data V〇utA=60 of the corrected pixel 丨a and the pixel data VoutB=6 of the pixel 1 1 B. Correction amount of pixel data VinA, VinB. Further, the data range w1 shown in Fig. 6(B) is a threshold 规定 for determining whether or not to perform pixel correction successively. That is, in the correction table 71, for example, the ratio of the pixel data to the larger of the pixel data Ia, 1 1 B is greater than 2 times, specifically, relative to VinA = 40. When VinB = 20 or less or VinB = 8〇 or more (outside of the data range W 1), the pixel data is sequentially corrected. More specifically, for example, as shown in Fig. 7(A), when VinA = 40 and VinB = 〇〇 ', the correction amount determining unit 54 is represented by a correction table such as the -14 - 752510 4 (Fig. And the arrows P72 and p7 in Fig. 7(A) are respectively displayed, and the correction of the pixel data V jn A, V i η B is sequentially determined so that Vo ut A = 4 5 and Vo utB = 90. the amount. That is, 'the correction amount is determined such that the ratio of the pixel data is changed from VinB/VinA=l〇〇/40 to a smaller v〇utB/V〇utA=90/45. Further, for example, FIG. 7 ( As shown in B), when VinA = 40 and VinB, the correction amount determining unit 54 is displayed by the correction table 71 as shown by arrows P73 and P74 in Figs. 6(B) and 7(B), respectively. The amount of correction of the pixel data Vin A, Vi nB is successively determined so that VoutA = 60 and VoutB = 5. That is, the correction amount is determined in such a manner that the ratio of the pixel data is changed from VinB/VinA = 40/0 to a smaller v〇utB/VoutA = 60/5. In addition, when the pixel data of such a side is black level (or near the black level), it is preferable to preferentially increase the pixel data of the order, that is, increase the applied voltage of the black display pixel. As a result, even if the pixel data does not change significantly, the effect of reducing the pixel data can be greatly improved (in this case, it is reduced from infinity (~) to 15). Further, as shown in Fig. 8, when VinA = 40 and VinB = 0, the correction amount determining unit 54 can sequentially determine the correction amounts of the pixel data VinA and VinB so that 'VoutA = 40 and VoutB = 5 . In this way, when the adjacent pixels sequentially arranged from the white display pixel to the black display pixel in the pretilt direction are selectively (preferred) corrected, the ratio of the pixel data is from VinB/VinA = 40/. 0 becomes smaller VoutB/VoutA = 40/5, which is ideal. In this manner, the correction amount determination unit 54 determines the correction amount of the pixel data by -15 to 1375210 times, and the correction amount is output to the error correction correction unit 55. Returning to the description of FIG. 5, the disclination correction unit 55 adds the correction amount determined by the correction amount determining unit 54 to the pixel data of the billions recorded in the unit 52, thereby generating the corrected image signal. The output image data Dout' is output to the data driver 12 in the liquid crystal display unit. Next, the action of the liquid crystal display element of this embodiment will be described. In the reflective liquid crystal display device, as shown in FIG. 2, the incident light L1 incident from the opposite substrate 30 side and passing through the vertical alignment liquid crystal 2 is reflected by the reflection function of the reflective pixel electrode 42. . The light L1 reflected by the reflective pixel electrode 42 is emitted perpendicularly to the liquid crystal 2 and the counter substrate 30 in the opposite direction to the incident direction. At this time, the vertical alignment liquid crystal 2 changes the optical characteristics due to the potential difference between the electrodes facing the direction, and modulates the passing light L1. By the optical modulation, the gradation expression can be realized, and the modulated light L2 is used for applying the voltage of the vertical alignment liquid crystal 2 by the image display, and the pixel driving circuit 1 shown in FIG. 1 is used. 4 and proceed. The data driver 12 supplies the image signal to the data line 1 2 A in response to the output image signal Dout input from the pixel signal correcting unit 5 via the signal line 15. The scan driver 13 is in a specific timing, and sequentially supplies scan signals to the respective scan lines 13A. Thereby, the pixel scanned by the scanning signal from the scanning line 13A and applied with the portion of the image signal from the data line 1 2 A is selectively driven. -16- 1375210 Here, in the pixel signal correcting unit 5 shown in Fig. 5, for each pixel 1 1 ' in the display area 10 based on the input image signal Din from the outside, one pixel is used. The pixel data of each pixel is sequentially corrected so that the voltage ratio between the applied voltage (driving voltage) and the applied voltage to the adjacent pixel becomes smaller. Specifically, the pixel data subjected to gamma correction by the gamma correction unit 51 is recorded in the memory unit 52 ′, and the pixel data of one pixel is compared by the comparison unit 53 based on the pixel data of the megapixel. The pixel data of the adjacent pixel. Then, based on the comparison result, the correction amount determining unit 54 compares the voltage between the applied voltage of one pixel and the voltage applied to the adjacent pixel by using, for example, the correction tables 7 and 71 shown in FIG. When the threshold 値 is still large, for example, as shown in FIGS. 6 to 8 , the voltage ratio is made smaller, and the display gradation or gradation ratio of each pixel 11 is close to the desired ,, and each of them is sequentially corrected. Pixel data of the pixel. Then, based on the corrected pixel data (output image signal Dout), the display driving is performed in the liquid crystal display unit 1. As described above, in the liquid crystal display device of the present embodiment, in the pixel signal correcting portion 5, the voltage ratio between the applied voltage to one pixel and the applied voltage to the adjacent pixel is made smaller. In this manner, the pixel data (input image signal Din) of each pixel 11 is sequentially corrected, and the display driving of the liquid crystal display unit 1 is performed based on the corrected pixel data (output image signal Dout), so that it can be successively reduced. The occurrence of alignment failure (Disclination) of the liquid crystal due to a voltage difference between adjacent pixels is suppressed, and deterioration of image reproducibility is suppressed. Therefore, regardless of the content of the -17-1375210 of the displayed image (after inputting the image signal Din), it is possible to achieve good image quality. Further, the correction amount determining unit 54 in the pixel signal correcting unit 5 determines the amount of correction using, for example, a specific correction table shown in Fig. 6. Therefore, it is only necessary to select a predetermined correction amount and perform the processing at a simple and high speed. Correction. In addition, when the pixel data of one side is black level (or near the black level), after the pixel data of the black level is preferentially increased, that is, when the applied voltage of the display pixel is increased, even if the pixel data is not Producing large changes' is also more effective in reducing the ratio of pixel data. Therefore, it is easier to eliminate misalignment of the liquid crystal. Further, when the adjacent pixels sequentially arranged from the white display pixel to the black display pixel in the pretilt direction along the vertical alignment liquid crystal 2 are selectively (preferred) corrected, the liquid crystal alignment is easily generated due to the alignment. The defective part is corrected so that the pixel signals can be corrected more efficiently. Further, since the correction is performed by determining the priority order of the correction, it is possible to avoid the occurrence of omission in the correction processing. The pretilt direction of the vertical alignment liquid crystal 2 is, for example, a diagonal direction of the pixel (in the direction of a horizontal direction or a vertical direction of 45 degrees when the pixel is square), and is configured to follow a liquid crystal molecule The direction of the horizontal or vertical component of the vector of the tilt direction selectively (preferredly) corrects each adjacent pixel pair that transitions from a state representing a white display pixel to a state representing a black display pixel. Specifically, the comparison unit 53 can detect that each pixel is a white display pixel or a black display pixel. Then, when the alignment film is formed on the pixel electrode by tilting the liquid crystal molecules from the lower right side -18-1375210 to the upper left side, the comparison portion 53 detects that the adjacent pixel pair is a black display pixel on the left side. When the right side is a white display pixel and is sequentially arranged, the correction amount determining unit 54 is configured to selectively (predeterminely) perform correction. Further, for example, as shown in the timing chart of FIG. 9 , it is used for a specific plurality of frame periods (or three horizontal periods (one horizontal period = 1H) up to the timings t10 to 113 of the plurality of field periods) The time integral of the reflectance of each of the pixels 11 is used as a determination index, and the pixel data is sequentially corrected as shown by arrows P7 5 and P76 in the figure, for example. In such a configuration, when the pixel signal does not change during the plurality of frame periods, the deterioration of the image quality reproducibility due to the occurrence of the disclination can be effectively suppressed. <Configuration of Liquid Crystal Display Device> Next, an example of a liquid crystal display device using the liquid crystal display element having the configuration shown in Fig. 1 will be described. Here, as shown in Fig. 1, an example of a reflective liquid crystal projector (liquid crystal projector 8) using a reflective liquid crystal display element as a light bulb will be described. The liquid crystal projector 8 is a so-called three-piece type in which a liquid crystal light bulb 8R, 8G, and 8B are used for displaying three colors of red, blue, and green colors. This reflective liquid crystal projector is provided with a light source 8 1 along the optical axis OL; a dichroic beam splitter 8 2, 8 3 ; and a total reflection mirror 84. Further, the liquid crystal projector 8 is provided with polarizing beamsplitters 8 5, 86, and 8 7; a composite lens 8 8 : a projection lens 89; and a screen 80. The light source 8 I is a white light that emits red light (R), -19- 1375210 blue light (B), and green light (G) required for color image display, such as a halogen lamp, a metal halide lamp, or a xenon lamp. And so on. The dichroic beam splitter 82 has a function of separating light from the light source 81 into blue light and light of other colors. The dichroic beam splitter 83 has a function of separating the light passing through the dichroic beam splitter 82 into red light and green light. The total reflection mirror 84 reflects the blue light separated by the dichroic beam splitter 82 toward the polarization beam splitter 87. The polarizing beamsplitters 85, 86, and 87 are disposed along the light paths of red light, green light, and blue light, respectively. Each of the polarization beam splitters 85, 86, and 87 has polarization separation surfaces 85A, 86A, and 87A, and the polarization separation surfaces 85A, 86A, and 87A have two polarization components that are orthogonal to each other. Features. The polarization separation surfaces 85A, 86A, and 87A transmit a polarization component (for example, an S polarization component) on one side and transmit a polarization component (for example, a P polarization component) on the other side. The liquid crystal light bulbs 8R and 8G' 8B are composed of the reflective liquid crystal display elements (Fig. 1 and Fig. 2) having the above configuration. The color light of a specific polarized component (for example, an S-polarized component) separated by the polarization separation surfaces 85A, 86A, and 87A of the polarization beam splitters 85, 86, and 87 is incident on the liquid crystal light bulbs 8 R, 8 G, and 8 B. The liquid crystal light bulbs 8 R, 8 G, and 8 B have a function of modulating the incident light according to the driving voltage given by the pixel signal, and directing the modulated light toward the polarizing beamsplitters 85, 86, 8 7 The function of reflection. The synthetic 稜鏡88 system has color light which is emitted from the liquid crystal light bulbs 8R, 8G, and 8B and which is polarized by the polarizing beamsplitters 85, 86, 87 to a specific polarization of -20 to 1375210 (for example, a p-polarized component). The function to be synthesized. The projection lens 89 has a function of projecting a projection light that is emitted from the composite pupil 88 toward the screen 80. In the reflective liquid crystal projector 8 configured as described above, the white light emitted from the light source 81 is first separated into blue light and other colors (red light and green light) by the function of the dichroic beam splitter 82. . Among them, the blue light is reflected toward the polarization beam splitter 87 by the function of the total reflection mirror 84. On the other hand, the red light and the green light are separated into red light and green light by the function of the dichroic beam splitter 83. The separated red light and green light are incident on the polarization beam splitters 85 and 86, respectively. The polarization beam splitters 85, 86, and 87 separate the incident light beams into two orthogonal polarization components in the polarization separation surfaces 85A, 86A, and 87A. At this time, the polarization separation surfaces 85A, 86A, and 87A reflect the polarized component (for example, the S-polarized component) on one side toward the liquid crystal light bulbs 8R, 8G, and 8B. • The liquid crystal light bulbs 8R, 8G, and 8B are driven by the driving voltage given by the pixel signal, and the color light of the specific polarizing component incident is modulated in units of pixels. At this time, since the liquid crystal light bulbs 8R, 8G, and 8B are composed of the reflective twin crystal display elements shown in FIG. 1 and FIG. 2, good characteristics can be realized with respect to characteristics such as contrast and image quality. The liquid crystal light bulbs 8R, 8G, and 8B reflect the modulated color lights toward the polarization beam splitters 85, 86, and 87. Among the reflected light (modulated light) from the liquid crystal light bulbs 8R, 8G, and 8B, the polarizing beamsplitters 85, 86, and 87' pass only a specific polarizing component (for example, a p-polarizing component), and are directed toward - 21 - 1375210 is injected into the synthetic 稜鏡88. The synthetic 稜鏡88 is synthesized by the color light of the specific polarizing components of the polarizing beamsplitters 85, 86, 87, and is emitted toward the projection lens 89. The projection lens 89 projects the synthesized light emitted from the composite 稜鏡8 8 toward the screen 80. Thus, the image of the light modulated by the liquid crystal light bulbs 8R, 8G, and 8B is projected on the screen 80. And perform the desired image display. As described above, in the liquid crystal projector of the present embodiment, since the reflective liquid crystal display elements shown in FIGS. 1 and 2 are used as the liquid crystal light bulbs 8R, 8G, and 8B, the cause can be reduced successively. The occurrence of alignment failure (dislocation) of the liquid crystal with a voltage difference between adjacent pixels is suppressed, and deterioration of image reproducibility is suppressed. Therefore, it is possible to realize image display with high image quality and high reproducibility. [Second embodiment] Next, a second embodiment of the present invention will be described. In the first embodiment, a so-called analog method in which an applied voltage (driving voltage) is changed according to image data is described. However, in the present embodiment, PWM (Pulse Width Modulation) is performed based on image data. Modulation) The so-called digital way of driving. Fig. 1 is a timing chart showing a driving method of a liquid crystal display element as a general digital method, and (A) to (H) respectively represent one color gradation (= pixel data of "000000 1"; black level), two colors Level (= pixel data of "00000 1 0"), pixel data of 4 gradation (= "〇〇〇〇1 〇〇"), pixel data of 8 gradation "000〗000", 16 gradation (= "0010000" pixel -22- 1375210 data), 32 gradation (= "0 1 0000" pixel data), 64 gradation (= "1 000000" pixel data) and 127 color gradation] 丨]]] Pixel data; white order). In the driving method of the digital method, by giving weight to each pixel of the pixel data, the width ‘ of the period during which the voltage is applied to each pixel 11 can be changed to perform gradation display. In addition, the time of one field is divided into 128, and the divided areas of the first to 64, 64 to 96, 96-112, 112 to 120, 120 to 124, 124 to 126, and 126 to 127 are included. A V100 voltage or a V0 voltage is applied in combination. Therefore, in the liquid crystal display device of the present embodiment, the voltage ratio between adjacent pixels is larger, corresponding to the applied voltage corresponding to the "0 (L; low)" level and the corresponding "i (H; high) ) The voltage ratio between the applied voltages. Therefore, in the present embodiment, as shown in the timing chart of FIG. 2(A)'(B), the applied voltage corresponding to the "0 (L; low)" level is set to be higher (this is The time is changed from "0" to "10", and the applied voltage corresponding to the "1 (H; high)" level is set to be low ("100" is changed to "95" at this time). Further, as shown in the timing chart of Figs. 3(A) and (B), the setting of the applied voltage corresponding to the "〇 (L; low)" level may be changed (changed to be higher). At this time, as described in the first embodiment, the voltage ratio can be easily lowered even if the setting is not changed largely. Further, for example, as shown in the timing charts of FIGS. 14(A) and (B), the application period of the voltage can be made to match the adjacent pixels 1 1 A and 1 1 B for a longer period of time. The period during which the voltage is applied is shifted by -23-1375210 bits in the time axis direction. This is because, as shown in FIG. 1 , in the conventional digital driving method, for example, the time of one field is divided by 1 2 8 and the first to 64, 64-96 '96 The combination of the divided regions of ~112, 112-120, 1 20- 1 24 '124 to 126, and 126 to 127 applies the V100 voltage or the V0 voltage, so the application period of the more frequently generated voltage does not coincide with the adjacent pixels. The reason. Specifically, in the case of Fig. 14, the voltage application period of the pixel 11B is maximized in the voltage application period of the pixel 11B in each horizontal period as shown by the arrows P77 and P78 in the figure. The shift is performed in the same manner (the voltage application period is shifted in the time axis direction between the timings t53 to t54 and the timings t55 to t56). In such a configuration, it is not necessary to change the applied voltage corresponding to the "〇 (L; low)" level or the applied voltage corresponding to the "1 (Η; high)" level as described above, and the voltage ratio between adjacent pixels can be changed. The period of becoming larger is suppressed to a minimum. As described above, in the liquid crystal display device of the present embodiment, in the pixel signal correcting portion 5, the voltage ratio between the applied voltage to one pixel and the applied voltage to the adjacent pixel is also increased. The small method is used for the successive corrections', so that the same effect as the first embodiment can be obtained. In other words, the occurrence of alignment failure (dislocation) of the liquid crystal due to the applied voltage difference between the adjacent pixels can be sequentially reduced, and the deterioration of the image reproducibility can be suppressed. Therefore, the image display of good image quality can be achieved regardless of the content of the displayed image. The liquid crystal display element of this embodiment can be applied to one of the liquid crystal projectors in the same manner as in the first embodiment, and the same effect as that of the embodiment of the invention can be obtained. [Embodiment] Next, specific characteristics of the liquid crystal display element of the above embodiment will be described by way of examples. Hereinafter, before describing the embodiment, the characteristics of the conventional liquid crystal display element will be described first by way of a comparative example. Φ [Comparative Example 1] A sample of the reflective liquid crystal display device of Comparative Example 1 was produced in the following manner. First, the glass substrate on which the transparent electrode was formed and the ruthenium substrate were washed, and then introduced into a vapor deposition apparatus at a vapor deposition angle of 45 to 55. Within the range, the SiO 2 film was vapor-deposited to form an alignment film. The film thickness of the alignment film is set to 25 to 100 nm so that the pretilt angle of the liquid crystal becomes about 3. The way of the alignment control. Then, between the two substrates on which the alignment film is formed, only about 2 μm diameter of the glass beads are dispersed in an appropriate amount and the two are attached together. The dielectric anisotropy Δ £ made by Merck is negative, and the refractive index is negative. The vertical alignment liquid crystal material of the anisotropy Δ η = 0·1 1 is implanted, whereby a reflective liquid crystal display element having a liquid crystal layer thickness of about 2 μm is produced. Pixel electrodes which can be used to control the driving voltage are independently provided on the above-mentioned germanium substrate. These pixel electrodes are formed by squares having a side of 6 μm, and each pixel is separated by a groove of 0·3 μηι, and further, on the surface, An aluminum reflective film is formed. After the production, a voltage corresponding to an AC rectangular wave of about 60 Hz is applied to these pixels to obtain a relationship with the amplitude voltage. In addition, the voltage V100 of the maximum reflectivity is expressed as -25-1375210 and will be T100 at this time. Then, the reflectance is TX at X% of T100, and the voltage at this time is set to the voltage Vx. Then, the reflective liquid crystal display element is used to measure the pixels 1 and 2 and the pixels 3 and 4 which are image-displayed in the various pixel patterns (the pattern of the western checkerboard which is black 2x2 pixels for each of the two columns). Reflectivity. The respective reflection efficiency E of the adjacent pixels (=the average 値 of the ratio 値 of the expected reflectance of the actual integral reflection), and the contrast C between the connected pixels (=the expected reflectance of the actual integrated reflectance) The ratio of 値 to 値), respectively, and the second indicator. Fig. 16 shows the relationship between the transmittance T thus obtained and the contrast C (when V40 is one of the adjacent pixels). In Fig. 16, the electric system between adjacent pixels is far from T40 with the transmittance T, and the reflection efficiency E is gradually away from 1 〇〇. Therefore, it can be confirmed that it is difficult to be large from the expectation. [Example 1], 1 -2] A sample of the reflective liquid crystal display element was not substantially obtained in the same manner as in Comparative Example 1 described above. However, in the present embodiment, the difference from the above-described Comparative Example 1 is that the transmittance setting transmittance is set to 15 (A) ' (as shown in Fig. 6 to Fig. 8 or Fig. 9 of the respective types). B) The pattern of white and the neighboring ones are also adjacent to each other. The ratio of the pixel to the pixel in the pixel and the ratio of the neighboring ratio to the pixel are the first index reflection efficiency E and the voltage before the correction becomes larger. At this time, the error of the comparison of C is gradually increased: and the specification, the production example 丨-〗, 1 - 2 丨 The first embodiment is such that the voltage ratio between the adjacent -26-1375210 elements is reduced as much as possible. The pixel pattern shown in FIGS. (A) and (B) is sequentially corrected to perform image display. The first table shows an example of the measurement results of Comparative Example 1 and Example 1 -, 1 - 2 rate E, and contrast C ( When the voltage before correction is V40 in the adjacent pixel, if the reflection efficiency E is 0 and the contrast C is 0·60 or more, it is considered that the image image is extremely excellent in image quality. In Comparative Example 1, some of these are used. In contrast, in Examples 1-1 and 1-2, both of them are higher than these ruthenium. The voltage between adjacent pixels is still low, and the display quality is also improved. In addition, 'the implementation of several 値 is higher than that of the embodiment 1-2, so that the display quality can be improved, and the first reflection effect is One of 0.70 or more can maintain the actual system lower than the number of comparisons. Comparative Example 1-1 goes further.

-27- 1375210-27- 1375210

m m 遯 -1.3 V95/5 0.93 0.93 0.93 1.20 V90/20 0.91 1.12 0.91 1.12 0.91 1.12 V50/45 〇 〇 0.98 1.00 0.98 1.00 0.98 V45/50 0.98 1.00 0.98 1.00 0.98 1.00 pillj ϋ V20/90 0.70 0.63 0.94 0.84 0.82 0.72 V5/95 0.56 0.48 0.92 0.82 0.80 0.70 電壓比(像素1/像素2) V95/5 0.93 1.10 0.98 1.05 0.93 1.10 V90/20 0.95 1.08 0.97 s 0.96 1.08 V50/45 1.00 1.01 1.00 1.00 1.00 1.01 V45/50 0.98 1.00 1.00 1.00 0.98 1.00 V20/90 0.70 0.71 0.88 0.70 0.85 0.73 V5/9 5 0.58 0.53 0.85 0.70 0.85 0.68 u PQ u U 比較例 1 實施例 1-1 實施例 1-2 -28- 1375210 [比較例2] 以基本上與上述比較例1爲相同之方法及規格,製作 出反射型液晶顯示元件的樣本。惟於本比較例2中,與上 述比較例1爲不同者在於,係以第1 1圖所說明之數位方 式的驅動方法,亦即以對1個圖場的時間進行1 2 8分割, 且以當中第卜64、 64〜96、 96〜112、 112〜120、 120〜124、 124〜126、126〜127號之分割區域的組合施加V100電壓或 VO電壓之7位元數位方式的驅動方法,以第15圖(A)、 (B)所示的像素圖案進行影像顯示。 [實施例2-1、2-2] 以基本上與上述比較例1爲相同之方法及規格,製作 出反射型液晶顯示元件的樣本。惟於本實施例2-1、2-2 中,與上述比較例2爲不同者在於,分別進行如第2實施 型態之第1 2圖或第1 4圖所說明之逐次校正,且以第1 5 圖(A)、(B)所示的像素圖案進行影像顯示。 第2表係顯示比較例2及實施例2-1、2-2之反射效 率E及對比C的測定結果之一例(於鄰接像素當中之一的 校正前色階爲(40/1 2 8)色階時)。與第1表相同’於比較例 2中,於一部分中係低於這些値,相對於此,於實施例2 -1、2_2中,所有的數値均高於這些値。因此可得知’鄰 接像素間的電壓比較比較例2還低’且顯示品質亦有所提 升。此外,實施例2 -2的若干値較實施例2 _ 1還高’因此 得知顯示品質可更進一步提升。 -29- 1375210Mm 遁-1.3 V95/5 0.93 0.93 0.93 1.20 V90/20 0.91 1.12 0.91 1.12 0.91 1.12 V50/45 〇〇0.98 1.00 0.98 1.00 0.98 V45/50 0.98 1.00 0.98 1.00 0.98 1.00 pillj ϋ V20/90 0.70 0.63 0.94 0.84 0.82 0.72 V5/95 0.56 0.48 0.92 0.82 0.80 0.70 Voltage ratio (pixel 1 / pixel 2) V95/5 0.93 1.10 0.98 1.05 0.93 1.10 V90/20 0.95 1.08 0.97 s 0.96 1.08 V50/45 1.00 1.01 1.00 1.00 1.00 1.01 V45/50 0.98 1.00 1.00 1.00 0.98 1.00 V20/90 0.70 0.71 0.88 0.70 0.85 0.73 V5/9 5 0.58 0.53 0.85 0.70 0.85 0.68 u PQ u U Comparative Example 1 Example 1-1 Example 1-2 -28- 1375210 [Comparative Example 2] Basically, in the same manner and specifications as in Comparative Example 1, a sample of a reflective liquid crystal display element was produced. However, in Comparative Example 2, the difference from the above-described Comparative Example 1 is that the driving method of the digital method described in FIG. 1 is performed, that is, the time of one field is divided by 1 2 8 and A 7-bit digital bit driving method in which a V100 voltage or a VO voltage is applied in a combination of divided areas of the first 64, 64 to 96, 96 to 112, 112 to 120, 120 to 124, 124 to 126, and 126 to 127 Image display is performed by the pixel pattern shown in Fig. 15 (A) and (B). [Examples 2-1 and 2-2] A sample of a reflective liquid crystal display element was produced in substantially the same manner and specifications as in Comparative Example 1 described above. However, in the second and second embodiments, the second embodiment is different from the first comparative example described above, and the successive corrections as described in the second embodiment or the fourth embodiment of the second embodiment are respectively performed. The pixel patterns shown in Figs. 1(A) and (B) are displayed as images. The second table shows an example of the measurement results of the reflection efficiency E and the comparison C of Comparative Example 2 and Examples 2-1 and 2-2 (the pre-correction gradation of one of the adjacent pixels is (40/1 2 8)) When the color scale is). It is the same as in the first table. In Comparative Example 2, it is lower than the enthalpy in a part. In contrast, in Examples 2-1 and 2_2, all the numbers are higher than these enthalpies. Therefore, it can be seen that the voltage between the adjacent pixels is lower than that of Comparative Example 2, and the display quality is also improved. Further, several 値 of the embodiment 2-4 are higher than the embodiment 2 _ 1 so that the display quality can be further improved. -29- 1375210

電壓比(像素3/像素4) V95/5 0.89 0.33 0.91 0.70 0.93 0.72 V90/20 0.93 0.77 0.95 0.90 0.94 0.92 V50/45 0.63 0.30 0.81 0.71 0.99 0.98 V45/50 0.62 0.25 0.81 0.65 0.99 0.98 V20/90 0.47 0.37 0.75 0.70 0.80 0.75 V5/95 0.28 0.26 0.71 0.71 0.76 0.73 電壓比(像素1/像素2) V95/5 0.93 0.48 0.94 0.75 0.94 0.77 V90/20 0.96 0.81 0.97 0.90 0.98 0.93 V50/45 0.72 0.47 0.87 0.78 1.00 0.98 V45/50 0.72 0.40 0.87 0.66 0.99 0.98 V20/90 0.59 0.51 0.79 0.77 0.84 0.82 V5/95 0.43 0.42 0.74 0.70 0.75 0.73 U Ρ-1 U U 比較例2 實施例2-1 實施例2-2 -30- 1375210 [比較例3] 以基本上與上述比較例1爲相同之方法及規格,製作 出反射型液晶顯不兀件的樣本。惟於本比較例3中,係以 像素驅動電壓爲不同之鄰接像素(設定爲像素A、B)彼此 之間的電壓差(=(像素B的電壓VB-像素A的電壓VA))爲 判斷指標’以使該電壓比變得更小之方式進行校正。 Φ [實施例3] 同樣的’以基本上與上述比較例1爲相同之方法及規 格’製作出反射型液晶顯示元件的樣本。此外,於本實施 例3中,與上述實施例1-1、1-2、2-1、2-2相同,以像素 A、像素B彼此之間的電壓比( = (VB/VA))爲判斷指標,以 使該電壓比變得更小之方式進行校正。 第1 8圖(A)係顯示’根據比較例3的測定結果之鄰接 像素彼此之間的電壓差與反射效率E之間的相關關係之一 ® 例(於將 VA 改變爲 V1、V5、V20、V40、V60、V80、 V95、V100時)。此外,第18圖(B)係顯示,根據實施例3 的測定結果之鄰接像素彼此之間的電壓比與反射效率E之 間的相關關係之一例(於將VA改變爲VI、V5、V20、 V40、V60、V80、V95、V100 時)。 從這些,第18圖(A)、(B)中可.得知,因鄰接像素之 像素驅動電壓的不同所產生之向錯而造成之反射效率E的 下降,相較於比較例3般的電壓差,乃更明確地依存於實 施例3般電壓比。因此,於決定進行校正時的閩値或優先 -31 - 1375210 順序時,相較於鄰接像素彼此之間的電壓差,若以鄰接像 素彼此之間的電壓比作爲判斷指標以選擇(決定)校正對象 的像素,則更可有效率地進行校正。此外,關於校正量, 相較於鄰接像素彼此之間的電壓差,係以使電壓比之値變 得更小之方式進行校正,因此更可有效地進行校正。 以上係以第1及第2實施型態以及這些實施型態的實 施例說明本發明,但是本發明並不限定於這些實施型態 等,可進行種種變形。 例如,於上述實施型態等當中,係說明液晶顯示部1 內的液晶爲垂直配向液晶2之情況,但除此之外,本發明 亦可適用於例如水平配向液晶、強介電性液晶、 TN (Twisted Nematic :扭轉陣列)模式的液晶OCB方式的 液晶等之種種方式的液晶模式。 此外,於上述實施型態等當中,係說明反射型的液晶 顯示元件及液晶顯示裝置之情況,但除此之外,本發明亦 可適用於例如透射型或半反射半透射型的液晶顯示元件及 液晶顯示裝置。惟於反射型時,如第2圖所示般,像素驅 動電路14係形成於像素電極42的下方,而具有像素間距 及像素間隙較透射型更爲狹窄之傾向,所以更容易產生配 向不良(向錯)。因此,尤其於適用於反射型時,該效果更 大。 此外,於本發明中’例如第17圖(A)、(B)所示般, 較理想爲藉由圖框反轉驅動或圖場反轉驅動來進行液晶顯 示元件的驅動,此圖框反轉驅動或圖場反轉驅動,係於每 -32- 1375210 個圖框或圖場中,以正方向(於第17圖(A)中,將各像素 1】中之施加方向模式性顯示爲「+」)及負方向(於第17圖 (B)中’將各像素1 1中之施加方向模式性顯示爲「·」)將 像素驅動電壓的施加方向予以反轉。此係由於在進行此驅 動時,更可減少配向不良(向錯)的產生之故。 再者’於上述實施型態等當中,係說明以液晶顯示元 件作爲光燈泡而使用之反射型液晶投影器(液晶投影器 8),作爲使用有本發明的液晶顯示元件之液晶顯示裝置的 例子,但本發明之液晶顯示元件亦可適用於 TV(Television)裝置 ' PDA(Personal Digital Assistants : 個人數位助理)、或行動電話等。第19圖係顯示將上述實 施型態中所說明之液晶顯示元件(液晶顯示部1及像素訊 號校正部5)適用於TV裝置時之電路構成的一例。此TV 裝置9例如具備:將類比廣播波訊號予以受訊並進行解調 變,且分別輸出畫像訊號及聲音訊號作爲基頻訊號之類比 調諧器9 1 A ;將數位廣播波訊號予以受訊並進行解調變, 且作爲 MPEG-TS資料串流訊號而輸出之數位調諧器 91B;輸入外部輸入資料D1(MPEG-TS資料串流訊號等)之 選擇器91C;將從數位調諧器91B或選擇器91C所輸出之 MPEG-TS資料串流訊號予以解調變,且作爲數位元件訊 號而輸出之 MPEG(Moving Picture Experts Group:數位影 像壓縮格式)解碼器92B ;將畫像的基頻訊號予以解調變 並進行A/D (數位/類比)轉換,且作爲數位元件訊號而輸出 之畫像訊號轉換電路92A ;對於從類比調諧器9IA所輸出 -33- 1375210 之聲音的基頻訊號進行A/D轉換且作爲數位聲音訊號而 輸出之聲音訊號A/D(Analog/Digital)電路93A;對於從聲 音訊號A/D電路93 A或之後所述之聲音.畫像訊號解碼 器98D所輸出之數位聲音訊號,進行例如音平調整、合 成或立體處理等之特定的聲音訊號處理之聲音訊號處理電 路93B;以使聲音訊號成爲期望的音量之方式地進行增幅 之聲音訊號增幅電路93C;將增幅後的聲音訊號輸出至外 部之喇叭96 ;對於從畫像訊號轉換電路92A或MPEG解 碼器92B所輸出之數位聲音訊號,進行例如對比調整、色 彩調整或明亮度調整等之特定的畫像訊號處理之畫像訊號 處理電路WB;上述實施型態中所說明之像素訊號校正部 5及液晶顯示部1;將來自於遙控器之搖控訊號S1予以受 訊之遙控感光部97A ;例如經由有線區域網路(LAN : Local Area Network)等的外部網路(圖中未顯示),輸入外 部輸入資料D2(聲音訊號及畫像訊號)之網路端子部97B ; 作爲從網路端子部9 7B所輸入至聲音訊號及畫像訊號的介 面部分之網路I/F(介面)97C ;控制TV裝置9全體的動作 之 CPU(Central Processing Unit:中央處理單元)98A;儲 存有由CPU98A所使用之特定的軟體等之非揮發性的記憶 部之快閃R0M(Read Only Memory:唯讀記憶體)98B;作 爲對應於CPU9SA的執行區域之記億部之SDRAM (Synchronous Dynamic Random Access Memory :同步動態 隨機存取記憶體)98C ;以及將經由網路端子部97B及網路 I/F97C從外部所輸入之影像訊號及聲音訊號予以解調 -34- 1375210Voltage ratio (pixel 3/pixel 4) V95/5 0.89 0.33 0.91 0.70 0.93 0.72 V90/20 0.93 0.77 0.95 0.90 0.94 0.92 V50/45 0.63 0.30 0.81 0.71 0.99 0.98 V45/50 0.62 0.25 0.81 0.65 0.99 0.98 V20/90 0.47 0.37 0.75 0.70 0.80 0.75 V5/95 0.28 0.26 0.71 0.71 0.76 0.73 Voltage ratio (pixel 1 / pixel 2) V95/5 0.93 0.48 0.94 0.75 0.94 0.77 V90/20 0.96 0.81 0.97 0.90 0.98 0.93 V50/45 0.72 0.47 0.87 0.78 1.00 0.98 V45 /50 0.72 0.40 0.87 0.66 0.99 0.98 V20/90 0.59 0.51 0.79 0.77 0.84 0.82 V5/95 0.43 0.42 0.74 0.70 0.75 0.73 U Ρ-1 UU Comparative Example 2 Example 2-1 Example 2-2 -30- 1375210 [Comparative Example 3] A sample of a reflective liquid crystal display element was produced in substantially the same manner and specifications as in Comparative Example 1 described above. However, in Comparative Example 3, the voltage difference between the adjacent pixels (set to the pixels A and B) having different pixel driving voltages is determined (= (voltage of pixel B VB - voltage VA of pixel A)) The indicator 'corrects in such a way that the voltage ratio becomes smaller. Φ [Example 3] A sample of a reflective liquid crystal display element was produced in the same manner as in the above-described Comparative Example 1. Further, in the third embodiment, as in the above-described embodiments 1-1, 1-2, 2-1, and 2-2, the voltage ratio between the pixels A and the pixels B (= (VB/VA)) is used. In order to judge the index, correction is performed in such a manner that the voltage ratio becomes smaller. Fig. 18(A) shows one of the correlations between the voltage difference between adjacent pixels and the reflection efficiency E according to the measurement result of Comparative Example 3 (in the case of changing VA to V1, V5, V20) , V40, V60, V80, V95, V100). Further, Fig. 18(B) shows an example of the correlation between the voltage ratio between adjacent pixels and the reflection efficiency E according to the measurement result of the embodiment 3 (in the case of changing VA to VI, V5, V20, V40, V60, V80, V95, V100). From these, it can be seen from Fig. 18 (A) and (B) that the reflection efficiency E due to the disclination caused by the difference in the pixel driving voltage of the adjacent pixels is lower than that of the comparative example 3. The voltage difference is more clearly dependent on the voltage ratio of the third embodiment. Therefore, when determining the order of the correction or the priority -31 - 1375210, the voltage difference between the adjacent pixels is used as the judgment index to select (determine) the correction as compared with the voltage difference between the adjacent pixels. The pixels of the object are more efficiently corrected. Further, with respect to the correction amount, the correction is performed in such a manner that the voltage difference between the adjacent pixels is made smaller, so that the correction can be performed more effectively. The present invention has been described above with reference to the first and second embodiments and the embodiments thereof. However, the present invention is not limited to these embodiments and can be variously modified. For example, in the above-described embodiment, the liquid crystal in the liquid crystal display unit 1 is a case where the liquid crystal 2 is vertically aligned. However, the present invention is also applicable to, for example, a horizontal alignment liquid crystal, a ferroelectric liquid crystal, or the like. A liquid crystal mode of various modes such as liquid crystal OCB liquid crystal of TN (Twisted Nematic) mode. Further, in the above-described embodiment and the like, a case of a reflective liquid crystal display device and a liquid crystal display device will be described, but the present invention is also applicable to, for example, a transmissive or semi-reflective semi-transmissive liquid crystal display device. And a liquid crystal display device. However, in the case of the reflection type, as shown in FIG. 2, the pixel drive circuit 14 is formed under the pixel electrode 42, and the pixel pitch and the pixel gap tend to be narrower than the transmissive type, so that alignment failure is more likely to occur ( Wrong). Therefore, this effect is more effective especially when applied to a reflective type. Further, in the present invention, as shown in Fig. 17 (A) and (B), it is preferable to drive the liquid crystal display element by frame inversion driving or field inversion driving, and this frame is reversed. Rotary drive or field reversal drive, in each -32- 1375210 frames or fields, in the positive direction (in Figure 17 (A), each pixel 1] is applied in the mode direction as "+") and the negative direction (in the Fig. 17 (B), 'the direction of the application direction in each pixel 1 is shown as "·"), the direction in which the pixel driving voltage is applied is reversed. This is because the occurrence of misalignment (dislocation) is reduced when this drive is performed. In the above-described embodiment, a reflective liquid crystal projector (liquid crystal projector 8) using a liquid crystal display element as a light bulb is described as an example of a liquid crystal display device using the liquid crystal display element of the present invention. However, the liquid crystal display element of the present invention can also be applied to a TV (Television) device 'PDA (Personal Digital Assistants), a mobile phone, or the like. Fig. 19 is a view showing an example of a circuit configuration when the liquid crystal display element (the liquid crystal display unit 1 and the pixel signal correcting unit 5) described in the above embodiment is applied to a TV device. For example, the TV device 9 includes: an analog analog tuner 9 1 A that receives an analog broadcast wave signal and performs demodulation, and outputs an image signal and an audio signal as a baseband signal; and the digital broadcast wave signal is received. A digital tuner 91B that performs demodulation and is output as an MPEG-TS data stream signal; a selector 91C that inputs an external input data D1 (MPEG-TS data stream signal, etc.); a slave tuner 91B or a selection The MPEG-TS data stream signal outputted by the device 91C is demodulated, and the MPEG (Moving Picture Experts Group) decoder 92B is output as a digital component signal; the fundamental frequency signal of the image is demodulated. The A/D (digital/analog ratio) conversion is performed, and the image signal conversion circuit 92A, which is output as a digital component signal, performs A/D conversion on the fundamental frequency signal of the sound output from the analog tuner 9IA to -33-1375210. And an audio signal A/D (Analog/Digital) circuit 93A output as a digital audio signal; outputted from the audio signal A/D circuit 93 A or the sound image signal decoder 98D described later a sound signal processing circuit 93B for performing a specific sound signal processing such as level adjustment, synthesis, or stereo processing; and an audio signal amplifying circuit 93C for amplifying the sound signal to a desired volume; The subsequent audio signal is output to the external speaker 96. For the digital audio signal output from the image signal conversion circuit 92A or the MPEG decoder 92B, a specific image signal processing such as contrast adjustment, color adjustment, or brightness adjustment is performed. The signal processing circuit WB; the pixel signal correcting unit 5 and the liquid crystal display unit 1 described in the above embodiment; the remote control light receiving unit 97A that receives the remote control signal S1 from the remote controller; for example, via a wired area network ( An external network (not shown) such as LAN: Local Area Network), and a network terminal portion 97B for inputting external input data D2 (audio signal and image signal); as input from the network terminal portion 9 7B to the audio signal And the network I/F (interface) 97C of the interface part of the image signal; the CPU that controls the overall operation of the TV device 9 (Central Processing Unit) : central processing unit 98A; flash ROM (Read Only Memory) 98B storing a non-volatile memory unit of a specific software or the like used by the CPU 98A; as a record corresponding to the execution area of the CPU 9SA SDRAM (Synchronous Dynamic Random Access Memory) 98C; and demodulation of image signals and audio signals input from the outside via the network terminal unit 97B and the network I/F 97C-34 - 1375210

變’並分別作爲數位元件訊號及數位聲音訊號而輸出之聲 音·畫像訊號解碼器 98D。此外,網路I/F97C、 CPU98A、快閃ROM98B、SDRAM98C及聲音.畫像訊號 解碼器 98D ,例如藉由 PCI(Peripheral ComponentSound and image signal decoder 98D which is changed as a digital component signal and a digital audio signal. In addition, network I/F97C, CPU98A, flash ROM98B, SDRAM98C and audio. Image signal decoder 98D, for example, by PCI (Peripheral Component)

Interconnect :周邊零件連接介面)匯流排等之內部匯流排 B1而互爲共通連接。於以如此構成所形成之TV裝置9 中,亦可使用上述實施型態中所說明之液晶顯示元件,因 此可藉由與上述實施型態中相同之作用,而實現高對比及 良好畫質下的影像顯示。 明 說 單 簡 式 圖 第1圖係顯示本發明的第1實施型態之液晶顯示元件 的構成之說明圖。 第2圖係顯示第1圖所示之液晶顯示部的構成之剖面 圖。 第3圖係顯示用以說明於以往的液晶顯示元件中所產 生之配向不良之剖面圖。 第4圖係顯示接著第3圖之用以說明配向不良之剖面 圖。 第5圖係顯示第1圖所示之畫像訊號校正部的詳細構 成之功能方塊圖。 第6圖係顯示用以說明校正表之圖式。 第7圖係顯示用以說明第1實施型態之畫像訊號校正 功能之圖式。 -35- 1375210 第8圖係顯示用以說明第1實施型態的變形例之畫像 訊號校正功能之圖式。 第9圖係顯示用以說明第丨實施型態的變形例之畫像 訊號校正功能之圖式。 第1 〇圖係顯示使用第1圖所示的液晶顯示元件所構 成之液晶顯示裝置的一例之構成圖。 第Π圖係顯示用以說明依據數位方式之液晶顯示元 件的驅動方法之時序圖。 第1 2圖係顯示用以說明第2實施型態之畫像訊號校 正功能之圖式。 第1 3圖係顯示用以說明第2實施型態的變形例之畫 ' 、、 像訊號校正功能之圖式。 第1 4圖係顯示用以說明第2實施型態的變形例之畫 像訊號校正功能之圖式。 第1 5圖係顯示於實施例及比較例中所使用之液晶顯 示元件的像素圖案之說明圖。 第〗6圖係顯示比較例之液晶顯示元件的透射率與像. 素的反射效率及對比之間的關係之特性圖。 第1 7圖係顯示用以說明本發明的變形例之畫像訊號 校正功能之圖式。 第1 8圖係顯示用以比較說明比較例3及實施例3的 反射效率之特性圖。 第1 9圖係顯示使用本發明的液晶顯示元件所構成之 液晶顯示裝置的其他例子之構成圖。 -36- 1375210 【主要元件符號說明】 1 :液晶顯不部 • I 〇 :顯不區域 . 1 1 :像素 1 2 :資料驅動器 1 2 A :資料線 13 :掃描驅動器 1 3 A :掃描線 1 4 :像素驅動電路 1 5 ·訊號線 2:液晶(垂直配向液晶) 30 :對向基板 3 1 :玻璃基板 3 2 :透明電極 33、43 :配向膜 • 40 :像素電極基板 41 :矽基板 42 :反射型像素電極 5 :像素訊號校正部 5 1 :伽瑪校正部 5 2 :記憶部 5 3 :比較部 54:校正量決定部 5 5 :向錯用校正部 -37- 1375210 7、7 1 :校正表 8 :液晶投影器 . 8R、8G、8B :液晶光燈泡 . 80 :螢幕 8 1 :光源 82、83 :二色性分光鏡 84 :全反射鏡 # 85~87 :偏光分光鏡 88 :合成稜鏡 8 9 :投射透鏡 9 : TV裝置 9 1 A :類比調諧器 9 1 B :數位調諧器 91C :選擇器 92A :畫像訊號轉換電路 φ 92B : MPEG解碼器 93A :聲音訊號A/D電路 93B :聲音訊號處理電路 93C :聲音訊號增幅電路 94B :畫像訊號處理電路 96 :喇叭 97A :遙控感光部 97B :網路端子 97C :網路I/F(介面) -38- 1375210Interconnect: the peripheral component connection interface) The internal busbars B1 of the busbars and the like are connected in common. In the TV device 9 formed in such a configuration, the liquid crystal display element described in the above embodiment can also be used, so that the same effect as in the above embodiment can be achieved, and high contrast and good image quality can be achieved. The image is displayed. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an explanatory view showing a configuration of a liquid crystal display element of a first embodiment of the present invention. Fig. 2 is a cross-sectional view showing the configuration of a liquid crystal display unit shown in Fig. 1. Fig. 3 is a cross-sectional view showing the alignment failure occurring in the conventional liquid crystal display device. Fig. 4 is a cross-sectional view showing the misalignment following Fig. 3. Fig. 5 is a functional block diagram showing the detailed construction of the image signal correcting unit shown in Fig. 1. Figure 6 is a diagram showing the correction table. Fig. 7 is a view for explaining the image signal correction function of the first embodiment. -35 - 1375210 Fig. 8 is a view showing a pattern correction function for explaining a modification of the first embodiment. Fig. 9 is a view showing a pattern correction function for explaining a modification of the second embodiment. Fig. 1 is a block diagram showing an example of a liquid crystal display device constructed using the liquid crystal display element shown in Fig. 1. The figure is a timing chart showing the driving method of the liquid crystal display element according to the digital mode. Fig. 1 is a view showing a pattern correction function for explaining the second embodiment. Fig. 1 is a view showing a drawing of the image of the modification of the second embodiment, and an image signal correction function. Fig. 14 is a view showing a picture signal correction function for explaining a modification of the second embodiment. Fig. 15 is an explanatory view showing a pixel pattern of the liquid crystal display element used in the examples and the comparative examples. Fig. 6 is a characteristic diagram showing the relationship between the transmittance of the liquid crystal display element of the comparative example and the reflection efficiency and contrast of the image. Fig. 17 is a view showing a pattern signal correction function for explaining a modification of the present invention. Fig. 18 is a characteristic diagram for comparing the reflection efficiencies of Comparative Example 3 and Example 3. Fig. 19 is a view showing a configuration of another example of a liquid crystal display device using the liquid crystal display element of the present invention. -36- 1375210 [Explanation of main component symbols] 1 : LCD display part • I 〇: display area. 1 1 : Pixel 1 2 : Data driver 1 2 A : Data line 13 : Scan driver 1 3 A : Scan line 1 4: pixel drive circuit 1 5 · signal line 2: liquid crystal (vertical alignment liquid crystal) 30: opposite substrate 3 1 : glass substrate 3 2 : transparent electrode 33, 43 : alignment film • 40 : pixel electrode substrate 41 : germanium substrate 42 : reflective pixel electrode 5 : pixel signal correction unit 5 1 : gamma correction unit 5 2 : memory unit 5 3 : comparison unit 54 : correction amount determination unit 5 5 : error correction unit - 37 - 1375210 7 , 7 1 : Correction Table 8: Liquid crystal projector. 8R, 8G, 8B: Liquid crystal light bulb. 80: Screen 8 1 : Light source 82, 83: Dichroic beam splitter 84: Total reflection mirror # 85~87 : Polarizing beam splitter 88: Synthetic 稜鏡 8 9 : Projection lens 9 : TV device 9 1 A : Analog tuner 9 1 B : Digital tuner 91C : Selector 92A : Image signal conversion circuit φ 92B : MPEG decoder 93A : Acoustic signal A/D circuit 93B: audio signal processing circuit 93C: audio signal amplifying circuit 94B: picture signal processing circuit 96: speaker 97A: remote control unit 97B: Network Terminal 97C: Network I/F (Interface) -38- 1375210

98A : CPU 98B :快閃 ROM 98C: SDRAM 98D :聲音·畫像訊號解碼器 -3998A : CPU 98B : Flash ROM 98C: SDRAM 98D : Sound · Image Signal Decoder -39

Claims (1)

1375210 十、申請專利範圍 1·—種液晶顯示元件,其特徵爲: 係具備:包含用以進行影像顯示的多數個像素而構成 之液晶顯示面板;及 以使對I個像素的施加電壓與對該鄰接像素的施加電 壓之間的電壓比變得更小之方式,一邊逐次校正各像素的 像素資料’一邊進行上述液晶顯示面板的顯示驅動之驅動 手段。 2 .如申請專利範圍第〗項所記載之液晶顯示元件, 其中上述驅動手段係具備:比較1個像素的像素資料與該 鄰接像素的像素資料之比較電路;及 從依據上述比較電路之比較結果中,於判斷上述電壓 比較特定閾値還大時,以使此電壓比變得較上述閾値還小 之方式地逐次校正各像素的像素資料之校正電路;及 根據藉由上述校正電路所校正後的像素資料進行顯示 驅動之驅動電路。 3 ·如申請專利範圍第1項所記載之液晶顯示元件, 其中上述驅動手段,係參照用以規定1個像素的像素資料 及該鄰接像素的像素資料之値以及對這些像素之校正量之 間的關係之校正表,進行上述像素資料的逐次校正。 4 _如申請專利範圍第1項所記載之液晶顯示元件, 其中上述驅動手段,係藉由將對黑顯示像素的施加.電壓設 定爲較原先的電壓還高,而進行上述像素資料的逐次校 正。 -40- 1375210 5 .如申請專利範圍第1項所記載之液晶顯示元件, 其中上述驅動手段’係根據上述像素資料進行PWM(Pulse Width Modulation:脈衝寬度調變)驅動,將Pwm脈衝的 「L(低)」位準電壓設定爲較高,且將pwM脈衝的 「Η (高)」位準電壓設定爲較低。 6.如申請專利範圍第1項所記載之液晶顯示元件, 其中上述驅動手段,係根據上述像素資料進行PWM驅 動’且以電壓的施加期間於鄰接像素彼此間互相重疊更長 之方式,將電壓的施加期間往時間軸方向予以移位。 7 ·如申請專利範圍第1項所記載之液晶顯示元件, 其中,上述液晶顯示面板係包含具有特定的預傾角之垂直 配向液晶分子而構成。 8·如申請專利範圍第7項所記載之液晶顯示元件, 其中上述驅動手段,係對於沿著表示出電壓施加於像素時 上述垂直配向液晶分子所傾斜的方向之.向量的水平成分或 垂直成分的方向而從白顯示狀態遷移至黑顯示狀態之各鄰 接像素對,選擇性地進行上述像素資料的逐次校正。 9 ·如申請專利範圍第1項所記載之液晶顯示元件, 其中,上述液晶顯示面板爲反射型的液晶顯示面板; 上述驅動手段係根據多數個圖框期間之像素的反射率 之時間積分値,進行上述像素資料的逐次校正。 10.如申請專利範圍第1項所記載之液晶顯示元件, 其中,上述驅動手段係以圖場反轉驅動方式或圖框反轉驅 動方式,進行上述顯示驅動。 -41 - 1375210 1 1 .如申請專利範圍第〗項所記載之液晶顯示元件, 其中上述液晶顯示面板係具備:具有多數個反射型的像素 電極之像素電極基板:及具有與上述像素電極對向的對向 電極之對向基板;及注入於上述像素電極基板與上述對向 基板之間之液晶; 且構成爲反射型的液晶顯示元件。 12. —種液晶顯示裝置,爲具備液晶顯示元件,且使 用藉由此液晶顯示元件所調變後之光以進行影像顯示之液 晶顯示裝置,其特徵爲: 上述液晶顯示元件係具備:包含用以進行影像顯示的 多數個像素而構成之液晶顯示面板;及 以使對1個像素的施加電壓與對該鄰接像素的施加電 壓之間的電壓比變得更小之方式,一邊逐次校正各像素的 像素資料’一邊進行上述液晶顯示面板的顯示驅動之驅動 手段。 1 3 ·如申請專利範圍第1 2項所記載之液晶顯示裝 置’其中係構成爲液晶投影器,此液晶投影器係具備光 源;及將從上述光源所發出且藉由上述液晶顯示元件所調 變後之光投射至螢幕之投射手段。 1 4.—種液晶顯示元件之驅動方法,爲具備包含用以 進行影像顯示的多數個像素之液晶顯示面板之液晶顯示元 件之驅動方法,其特徵爲: 係比較1個像素的像素資料與該鄰接像素的像素資 料; -42- 13752101375210 X. Patent Application No. 1 - A liquid crystal display device, comprising: a liquid crystal display panel including a plurality of pixels for performing image display; and a voltage applied to one pixel A driving means for driving display driving of the liquid crystal display panel while sequentially correcting the pixel data of each pixel so that the voltage ratio between the applied voltages of the adjacent pixels becomes smaller. 2. The liquid crystal display device as claimed in claim 1, wherein the driving means comprises: comparing a pixel data of one pixel with a pixel data of the adjacent pixel; and comparing results from the comparison circuit a correction circuit for sequentially correcting pixel data of each pixel so that the voltage ratio becomes smaller than the threshold 于 when determining that the voltage is greater than a specific threshold ;; and correcting by the correction circuit The pixel data is used to drive the display drive. 3. The liquid crystal display device according to claim 1, wherein the driving means refers to a pixel material for defining one pixel and a pixel data of the adjacent pixel and a correction amount between the pixels The correction table of the relationship performs the successive correction of the above pixel data. The liquid crystal display device according to claim 1, wherein the driving means performs the successive correction of the pixel data by setting the application voltage of the black display pixel to be higher than the original voltage. . The liquid crystal display element according to the first aspect of the invention, wherein the driving means is based on the pixel data to perform PWM (Pulse Width Modulation) driving, and the Pwm pulse is "L". The (low)" level voltage is set higher and the "Η (high)" level voltage of the pwM pulse is set lower. 6. The liquid crystal display device according to claim 1, wherein the driving means performs PWM driving based on the pixel data and applies voltage during a voltage application period in which adjacent pixels overlap each other for a longer period of time. The application period is shifted in the direction of the time axis. The liquid crystal display device according to the first aspect of the invention, wherein the liquid crystal display panel comprises a vertical alignment liquid crystal molecule having a specific pretilt angle. 8. The liquid crystal display device according to claim 7, wherein the driving means is a horizontal component or a vertical component of a vector along a direction in which the vertical alignment liquid crystal molecules are tilted when a voltage is applied to the pixel. The direction of the neighboring pixel pair moving from the white display state to the black display state selectively performs the successive correction of the pixel data. The liquid crystal display device according to claim 1, wherein the liquid crystal display panel is a reflective liquid crystal display panel; and the driving means is based on a time integral of a reflectance of a pixel during a plurality of frames. Perform successive correction of the above pixel data. 10. The liquid crystal display device according to claim 1, wherein the driving means performs the display driving by a field inversion driving method or a frame inversion driving method. The liquid crystal display device according to the above aspect of the invention, wherein the liquid crystal display panel comprises: a pixel electrode substrate having a plurality of reflective pixel electrodes; and having a surface opposite to the pixel electrode a counter substrate opposite to the electrode; and a liquid crystal injected between the pixel electrode substrate and the counter substrate; and configured as a reflective liquid crystal display element. 12. A liquid crystal display device comprising a liquid crystal display device and using a light modulated by the liquid crystal display device for image display, wherein the liquid crystal display device is provided with: a liquid crystal display panel configured by a plurality of pixels for image display; and sequentially correcting each pixel so that a voltage ratio between an applied voltage to one pixel and an applied voltage to the adjacent pixel is made smaller The pixel data 'drives the display drive of the liquid crystal display panel described above. A liquid crystal display device as described in claim 12 is configured as a liquid crystal projector, wherein the liquid crystal projector includes a light source; and is emitted from the light source and modulated by the liquid crystal display element The projected light is projected onto the screen. 1 . A method of driving a liquid crystal display element, which is a method for driving a liquid crystal display element including a liquid crystal display panel including a plurality of pixels for performing image display, wherein: comparing pixel data of one pixel with the pixel data Pixel data of adjacent pixels; -42- 1375210 從比較結果中,於判斷對上述丨個像素的施加電壓與 對上述鄰接像素的施加電壓之間的電壓比.,較特定閎値還 大時,以使上述電壓比變得較上述閾値還小之方式地逐次 校正各像素的像素資料; 根據校正後的像素資料進行顯示驅動。 -43-From the comparison result, when it is determined that the voltage ratio between the applied voltage of the one of the pixels and the applied voltage of the adjacent pixel is larger than a specific threshold, the voltage ratio is made smaller than the threshold The pixel data of each pixel is sequentially corrected; the display driving is performed according to the corrected pixel data. -43-
TW96125715A 2006-07-18 2007-07-13 Liquid crystal display device, liquid crystal display and method of driving liquid crystal display device TW200820209A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006195176 2006-07-18
JP2007178367A JP5045278B2 (en) 2006-07-18 2007-07-06 Liquid crystal display device and driving method of liquid crystal display device

Publications (2)

Publication Number Publication Date
TW200820209A TW200820209A (en) 2008-05-01
TWI375210B true TWI375210B (en) 2012-10-21

Family

ID=39180356

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96125715A TW200820209A (en) 2006-07-18 2007-07-13 Liquid crystal display device, liquid crystal display and method of driving liquid crystal display device

Country Status (2)

Country Link
JP (1) JP5045278B2 (en)
TW (1) TW200820209A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720843B2 (en) * 2008-03-27 2011-07-13 ソニー株式会社 Video signal processing circuit, liquid crystal display device, and projection display device
JP5217734B2 (en) * 2008-07-29 2013-06-19 セイコーエプソン株式会社 Electro-optical device, driving method, and electronic apparatus
JP5217813B2 (en) * 2008-09-10 2013-06-19 セイコーエプソン株式会社 Liquid crystal device and electronic device
JP5392856B2 (en) 2008-12-26 2014-01-22 Necディスプレイソリューションズ株式会社 Video display device, video signal processing method, and program
JP5229162B2 (en) * 2009-09-01 2013-07-03 セイコーエプソン株式会社 VIDEO PROCESSING CIRCUIT, ITS PROCESSING METHOD, LIQUID CRYSTAL DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP5233920B2 (en) * 2009-09-01 2013-07-10 セイコーエプソン株式会社 VIDEO PROCESSING CIRCUIT, ITS PROCESSING METHOD, LIQUID CRYSTAL DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP5279055B2 (en) * 2009-09-30 2013-09-04 Necディスプレイソリューションズ株式会社 Liquid crystal display device, program, and adjustment method of liquid crystal display device
JP5304669B2 (en) * 2010-01-25 2013-10-02 セイコーエプソン株式会社 VIDEO PROCESSING CIRCUIT, ITS PROCESSING METHOD, LIQUID CRYSTAL DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP5304684B2 (en) * 2010-02-22 2013-10-02 セイコーエプソン株式会社 VIDEO PROCESSING CIRCUIT, ITS PROCESSING METHOD, LIQUID CRYSTAL DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP5598014B2 (en) * 2010-02-22 2014-10-01 セイコーエプソン株式会社 VIDEO PROCESSING CIRCUIT, ITS PROCESSING METHOD, LIQUID CRYSTAL DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP5381804B2 (en) * 2010-02-25 2014-01-08 セイコーエプソン株式会社 Video processing circuit, video processing method, liquid crystal display device, and electronic apparatus
JP5556234B2 (en) * 2010-02-25 2014-07-23 セイコーエプソン株式会社 VIDEO PROCESSING CIRCUIT, ITS PROCESSING METHOD, LIQUID CRYSTAL DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP5720110B2 (en) * 2010-04-08 2015-05-20 セイコーエプソン株式会社 Electro-optical device, control method of electro-optical device, and electronic apparatus
JP5720221B2 (en) * 2010-12-13 2015-05-20 セイコーエプソン株式会社 Video processing method, video processing circuit, liquid crystal display device, and electronic apparatus
JP5744586B2 (en) * 2011-03-24 2015-07-08 キヤノン株式会社 Liquid crystal display device and program used therefor
JP2012242798A (en) * 2011-05-24 2012-12-10 Seiko Epson Corp Correction voltage setup method, video processing method, correction voltage setup device, video processing circuit, liquid crystal display device, and electronic apparatus
KR101910114B1 (en) * 2012-02-10 2018-10-22 삼성디스플레이 주식회사 Display device and arranging method for image data thereof
JP6051544B2 (en) * 2012-03-13 2016-12-27 セイコーエプソン株式会社 Image processing circuit, liquid crystal display device, electronic apparatus, and image processing method
JP5903954B2 (en) * 2012-03-15 2016-04-13 セイコーエプソン株式会社 VIDEO PROCESSING CIRCUIT, VIDEO PROCESSING METHOD, AND ELECTRONIC DEVICE
JP6078959B2 (en) 2012-03-16 2017-02-15 セイコーエプソン株式会社 VIDEO PROCESSING CIRCUIT, VIDEO PROCESSING METHOD, AND ELECTRONIC DEVICE
JP5929538B2 (en) * 2012-06-18 2016-06-08 セイコーエプソン株式会社 Display control circuit, display control method, electro-optical device, and electronic apparatus
JP5510580B2 (en) * 2013-03-15 2014-06-04 セイコーエプソン株式会社 Signal processing device, signal processing method, liquid crystal display device, and electronic apparatus
JP5574000B2 (en) * 2013-03-22 2014-08-20 セイコーエプソン株式会社 Signal processing device, liquid crystal display device, electronic device, and signal processing method
EP3579045A4 (en) * 2017-02-02 2020-08-26 Toppan Printing Co., Ltd. Dimmer device
JP6827650B2 (en) * 2017-10-11 2021-02-10 株式会社Jvcケンウッド Phase modulator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000330084A (en) * 1999-05-21 2000-11-30 Victor Co Of Japan Ltd Color liquid crystal display device
US20030156121A1 (en) * 2002-02-19 2003-08-21 Willis Donald Henry Compensation for adjacent pixel interdependence
JP2003316332A (en) * 2002-04-25 2003-11-07 Sanyo Electric Co Ltd Liquid crystal display device
JP2005031264A (en) * 2003-07-09 2005-02-03 Canon Inc Display device
JP2007316460A (en) * 2006-05-29 2007-12-06 Epson Imaging Devices Corp Electro-optical device and electronic device

Also Published As

Publication number Publication date
JP2008046613A (en) 2008-02-28
JP5045278B2 (en) 2012-10-10
TW200820209A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
TWI375210B (en)
US20080018630A1 (en) Liquid crystal display device, liquid crystal display and method of driving liquid crystal display device
JP4720843B2 (en) Video signal processing circuit, liquid crystal display device, and projection display device
JP2005156717A (en) Liquid crystal display element and liquid crystal display device
JP2005084586A (en) Reflection type liquid crystal display element and its manufacturing method, and liquid crystal display
US8162485B2 (en) Intermediate image formation optical system, image formation device, and methods thereof
US8068076B2 (en) Liquid crystal display apparatus
JP4211745B2 (en) Liquid crystal device, electronic device and projection display device
JP6492427B2 (en) Liquid crystal display device, electronic apparatus, and driving method of liquid crystal display device
JP3888344B2 (en) Liquid crystal display device and optical block
JP4777134B2 (en) Image projection device
JPH11212053A (en) Liquid crystal display device, driving method therefor and liquid crystal projector
JP4029786B2 (en) Liquid crystal display element and liquid crystal display device
JP6683198B2 (en) Display device manufacturing method
JP2005173544A (en) Liquid crystal apparatus and electronic equipment
JP2005141227A (en) Reflective liquid crystal display element and projector using the same
JP2003015123A (en) Liquid crystal display device
JP2001059957A (en) Liquid crystal device and driving method therefor, and projection display device
JP3960152B2 (en) Projection apparatus using reflective liquid crystal element
JP3829479B2 (en) Display device and driving method thereof
JPH06202140A (en) Display device
WO2021166711A1 (en) Projection display device
JP2004004502A (en) Optical apparatus and display apparatus
JP2000221948A (en) Color irregularity correction device
JP2001133747A (en) Liquid crystal device and liquid crystal display device using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees