TWI358966B - Light-emitting device and application thereof - Google Patents

Light-emitting device and application thereof Download PDF

Info

Publication number
TWI358966B
TWI358966B TW96142909A TW96142909A TWI358966B TW I358966 B TWI358966 B TW I358966B TW 96142909 A TW96142909 A TW 96142909A TW 96142909 A TW96142909 A TW 96142909A TW I358966 B TWI358966 B TW I358966B
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
emitting
organic light
resin
Prior art date
Application number
TW96142909A
Other languages
Chinese (zh)
Other versions
TW200922373A (en
Inventor
Jinquan Huang
Yankuin Su
Chunliang Lin
wen yao Huang
Hsinnan Chen
Original Assignee
Chi Mei Lighting Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Lighting Tech Corp filed Critical Chi Mei Lighting Tech Corp
Priority to TW96142909A priority Critical patent/TWI358966B/en
Publication of TW200922373A publication Critical patent/TW200922373A/en
Application granted granted Critical
Publication of TWI358966B publication Critical patent/TWI358966B/en

Links

Landscapes

  • Led Device Packages (AREA)

Description

【發明所屬之技術領域】 本發明是有關於一種發光元件及其應用,且特別是有關 於種發光二極體元件及其在多色發光模組上的應用。 【先前技術】 在目Θ之白光發光二極體的製作技術中,大都係利用短 波長之發光二極體晶粒來激發螢光粉(Phosphor),經原發光 二極體晶粒所發出之光與螢光粉經激發後所產生之光混合 後,可產生白光。然而,在可見光波段的螢光粉,其光轉換 效率不佳’因此造成發忠元件所發出之光的波長範圍控制不 易,更導致發光效能不佳。· 此外’在傳統之無機綠光發光二極體晶粒中,受限於氮 化銦鎵(InGaN)相關材料在綠光波段的磊晶品質較差的影 響,因此無機綠光發光二極體晶粒的發光效率通常偏低。 另一方面,目前之發光二極體晶粒在紅綠_藍(RGB)背 光模組或顯示面板的應用上,由於紅、綠、藍發光二極體晶 粒之壽命各有差異’且大多需配合施加不同之驅動電壓,因 此整個發光模組的控制電路在設計上相當複雜,不利於發光 二極體晶粒在多色彩產品上的應用。 【發明内容】 因此,本發明之目的就是在提供—種發光元件,其係在 藍光或紫外光等短波長氮化物發光二極體晶粒上覆設具有 適當比例之有機光轉換材料C545P樹脂,而經藍光或紫外 1358966 光激發後可產生所需之綠光或紅光等可見光波長的光。由於 有機光轉換材料C545P具有優良之光轉換效率,因此可確 實獲得所需波長之色光,並可提升發光效能。 本發明之另一目的是在提供一種多色發光模組,可在單 一種類的短波長發光二極體晶粒上設置不同比例之有機光 轉換材料C545P樹脂,經短波長發光二極體晶粒激發這些 有機光轉換材料C545P樹脂後,可使模組同時發出多種色 光’而可應用於全彩背光模组或顯示器上。由於只使用單一 種類之短波長發光二極體晶粒,而可使用同一種驅動電壓, 再加上操作壽命接近,因此可大大地降低驅動電路設計的複 雜度。 ·* · ·- - . · · 根據本發明之上述目的,提出一種發光元件,至少包 括:一短波長氮化物發光二極體晶粒,可發出具有第一發光 波長範圍之光;以及一有機光轉換樹脂覆蓋在短波長氮化物 發光二極體晶粒上’其中有機光轉換樹脂至少包括一聚合物 材料以及一有機光轉化材料C545P,且有機光轉化材料 C545P與聚合物材料之間具有一預設混合比例,有機光轉換 樹脂經由短波長氮化物發光二極體晶粒之光激發後發出具 有一第二發光波長範圍之光。 依照本發明一較佳實施例,上述發光元件之發光波長範 圍為白光’且有機光轉化材料C545P與聚合物材料之間之 預設混合比例介於1/15〇至0.02之間。 根據本發明之目的,提出一種多色發光模組,至少包 括:至少一藍色氮化物發光二極體晶粒;以及一第―有機光 轉換樹脂覆蓋在上述至少一藍色氮化物發光二極體晶粒之 1358966 第一區域上,其中第一有機光轉換樹脂至少包括第一聚合物 材料以及第一有機光轉化材料C545P,且第一有機光轉化材 料C545P與第一聚合物材料之間具有一第一預設混合比 例,該第一有機光轉換樹脂經由至少一藍色氮化物發光二極 體晶粒之光激發後發出不同於藍色之具有第一發光波長範 圍之光,而使多色發光模組發出藍光與具有第一發光波長範 圍之光。 依照本發明一較佳實施例,上述之多色發光模組更至少 包括第二有機光轉換樹脂覆蓋在藍色氮化物發光二極體晶 粒之第二區域上’其中第二有機光轉換樹脂至少包括第二聚 合物材料以及第;有機光轉化材料C545p,且第二有機光轉 化材料C545P與第二聚合物材料之間具有第二預設混合比 .例,第二有機光轉換樹脂經由藍色氮化物發光二極體晶粒之 光激發後發出具有第二發光波長範圍之光,而不同於藍色與 具有該第一發光波長範圍之光,藉以使多色發光模組發出藍 光、具有第一發光波長範圍之光 '與具有第二發光波長範圍 之光。 根據本發明之另一目的’提出一種多色發光模組,至少 包括:至少一紫外光氮化物發光二極體晶粒;以及一第一有 機光轉換樹脂覆蓋在至少一紫外光氮化物發光二極體晶粒 之第一區域上,其中第一有機光轉換樹脂至少包括第一聚合 物材料以及第一有機光轉化材料C545p,且第一有機光轉化 材料C545P與第一聚合物材料之間具有第一預設混合比 例,第一有機光轉換樹脂經由至少一紫外光氮化物發光二極 體晶粒之光激發後發出具有第一發光波長範圍之光;以及一 1358966 第二有機光轉換樹脂覆蓋在至少一紫外光氮化物發光二極 體晶粒之第二區域上,其中第二有機光轉換樹脂至少包括第 二聚合物材料以及第二有機光轉化材料C545P,且第二有機 光轉化材料C545P與第二聚合物材料之間具有第二預設混 合比例,第二有機光轉換樹脂經由至少一紫外光氮化物發光 二極體晶粒之光激發後發出具有第二發光波長範圍之光,而 使多色發光模組發出彼此不同之具有第一發光波長範圍之 光與具有第二發光波長範園之光。 依照本發明一較佳實施例’上述具有第一發光波長範圍 之光為綠光,且具有第二發光波長範圍之光為紅光。 【實施方式】 本發明揭露一種發光元件及其應用。為了使本發明之敘 述更加詳盡與完備,可參照下列描述並配合第1A圖至第7 圖之圖式。 請參照第1A圖’其係繪示依照本發明第一較佳實施例 的一種發光元件之剖面示意圖 '在一示範實施例中,發光元 件100a主要包括短波長氮化物發光二極體晶粒1〇2與有機 光轉換樹脂104。在發光元件i〇〇a中,短波長氮化物發光 二極體晶粒102通常可透過黏著層106而設置在導線架ι〇8 之表面上。短波長氮化物發光二極體晶粒1〇2所發出之光的 發光波長範圍較佳係介於約380nm至約465nm之簡。舉例 而言’短波長氮化物發光二極體晶粒1〇2可為發出藍光波段 的氮化物發光二極體晶粒、或者可為發出紫外光波段的氮化 物發光二極體晶粒,其中藍光波段的氮化物發光二極體晶粒 之發光波長範圍較佳係介於約450nm與約465nm之間,而 紫外光波段的氮化物發光二極體晶粒之發光波長範圍較佳 係^於約38〇nm與約405nm之間。有機光轉換樹脂1〇4則 覆蓋在短波長氮化物發光二極體晶粒1〇2上,也就是覆蓋於 此短波長氮化物發光二極體晶粒1〇2的光路徑上。有機光轉 換樹脂104通常也會一併覆蓋在短波長氮化物發光二極體 晶粒102鄰近之導線架ι〇8表面上。 在一不範實施例中,有機光轉換樹脂至少包括有機光轉 化材料C545P與聚合物材料,其中有機光轉化材料c545P 通系可利用摻設方式而均勻地散佈在聚合物材料之中。聚合 物材料可例如為環氧樹脂(Ep〇xy)或矽樹脂(SiHc〇ne)纟在本 發明中’有機光轉化材料C545P之結構式為 l〇-(2.benzothiazolyl)-l,3,3,7,7-pentamethyl-2,3,657-tetrahy dro lH,5H,llH-benzo[l]pyrano[6,7,8-ij]quinolizin-ll_one 〇 由於有機光轉化材料C545P具有相當優異之光轉換效率, 且可透過適當比例的調整,就可以透過藍光或紫外光等短波 長發光二極體晶粒的激發,而發出具有另一波長範圍之可見 光’進而混合出具有所需之可見光波長的光。也就是說,有 機光轉化材料C545P經短波長氮化物發光二極體晶粒ι〇2 激發後’所發出之光的發光波長範圍通常不同於短波長氮化 物發光二極體晶粒1〇2所發出之光的發光波長範圍。因此, 可依照發光元件l〇〇a欲發出之光的波長範圍,而調整有機 光轉化材料C545P摻入聚合物材料中的濃度,進而使有機 光轉化材料C545P與聚合物材料之間具有對應於所需色光 的預设混合比例。 10 1358966 在一實施例中’發光元件l〇〇a之發光波長範圍為綠 光,有機光轉換掛脂104之有機光轉化材料C545P與聚人 物材料之間的預設混合比例介於0.002至0.005之間。在發 光元件100a之發光波長範圍為綠光之情況下的一較佳實施 例中,短波長氮化物發光二極體晶粒1〇2為藍光,且發光波 長為460nm,而有機光轉化材料C545P與聚合物材料之間 的預設混合比例可為1/300,其中此發光元件1〇〇a所發出 之光的色度座標為(0.324, 0.584)。 在另一實施例中,發光元件100a之發光波長範圍為紅 光’有機光轉換樹脂104之有機光轉化材料C545P與聚人 物材料..之間的預設滿合比例介於〇. 〇2 5至〇 1之間。在發光 元件100a之發光波長範圍為紅光之情況下之一較佳實施例 中’短波長氮化物發光二極體晶粒102為藍光,且發光波長 為460nm,而有機光轉化材料C545p與聚合物材料之間的 預設混合比例可為1/30,其中此發光元件1〇〇a所發出之光 的色度座標為(0.641,0.256)。 在又一實施例中,發光元件100a之發光波長範圍為白 光,有機光轉換樹脂104之有機光轉化材料C545p與聚合 物材料之間的預設混合比例介於1/;1 5〇至〇 〇2之間。在發 光元件100a之發光波長範圍為白光之情況下之一較佳實施 例中,短波長氮化物發光二極體晶粒1〇2為紫外光且發光 波長為380nm,而有機光轉化材料C545p與聚合物材料之 間的預設混合比例可為(UH,其中此發光元件所發出 之光的色度座標為(0.308, 0.335;)。 在本發明之其他實施例中’發光元件可另包括一或多層 11 比8966 光學透明膠體。請參照第1B圖,其係繪示依照本發明第二 較佳實施例的一種發光元件之剖面示意圖。發光元件100b 更包括二光學透明膠體110與112。其中,光學透明膠體110 在有機光轉換樹脂104尚未覆蓋在短波長氮化物發光二極 體晶粒102上之前,先覆蓋在短波長氮化物發光二極體晶粒 102上’有機光轉換樹脂1〇4再覆蓋在光學透明膠體u〇 上’因而光學透明膠體110介於短波長氮化物發光二極體晶 粒102與有機光轉換樹脂1〇4之間,而後另一光學透明膠體 U2則覆蓋在有機光轉換樹脂1〇4上。 請參照第1C圖’其係繪示依照本發明第三較佳實施例 的.....種發光元件之剖面示意圖。發光元件100c僅~額.外包括 一光學透明膠體114。其中,光學透明膠體114同樣係在有 機光轉換樹脂104尚未覆蓋在短波長氮化物發光二極體晶 粒102上之前,先覆蓋在短波長氮化物發光二極體晶粒1〇2 上’而有機光轉換樹脂1〇4再覆蓋在光學透明膠體114上, 同樣使得光學透明膠體114介於短波長氮化物發光二極體 晶粒102與有機光轉換樹脂1 〇4之間。 請參照第1D圖,其係繪示依照本發明第四較佳實施例 的一種發光元件之剖面示意圖。發光元件1〇〇d同樣僅額外 包括:光學透明膠體U“其中,有機光轉換樹脂ι〇4先覆 蓋在短波長氮化物發光二極體晶♦立1〇2上光學透明膠體 110再覆蓋在有機光轉換樹脂1〇4上。 可應用發光元件來製作多色發光模組,以提供多色光輸 出功能。請參照第2圖,其係'繪示依照本發明—較佳實施例 的-種多色發光模組之剖面示意圖。在一示範時施例中,多 12 1358966 色發光模組200a主要包括一或多顆藍色氮化物發光二極體 晶粒202a以及一或多個有機光轉換樹脂,其中藍色氮化物 發光二極體晶粒202a之發光波長可介於約450nm與約 465nm之間》在本實施例中,多色發光模組2〇〇a具有單一 顆藍色氮化物發光二極體晶粒202a以及二有機光轉換樹脂 212與214。有機光轉換樹脂212與214均至少包括有機光 轉化材料C545P與聚合物材料,其中有機光轉化材料C545p 通常可利用摻設方式而均勻地散佈在聚合物材料之中。在一 實施例中,有機光轉換樹脂212與214之有機光轉化材料 C545P與聚合物材料之間具有不同之預設混合比例,以在藍 .......色亂化物發.光一極體晶粒202a激發後分_別產生不同之色 光’其中有機光轉換樹脂212與214.經激發所產生之色光的 發光波長範圍不同於藍色氮化物發光二極體晶粒2〇2a所發 出之藍光。在其他實施例中,有機光轉換樹脂212與214 之有機光轉化材料C545P與聚合物材料之間可具有相同之 預設混合比例,但二者經激發後產生相同之色光。有機光轉 換樹脂212覆蓋在藍色氮化物發光二極體晶粒2〇2a之一局 部區域上,而有機光轉換樹脂214則覆蓋在藍色氮化物發光 二極體晶粒202a之另一區域上’藉以在藍色氮化物發光二 極體晶粒202a激發後而提供不同之色光。在一實施例中, 有機光轉換樹脂212與214可完全覆蓋住藍色氮化物發光二 極體晶粒202a之出光路徑的範圍上,以提供二種不同色 光。在本示範實施例中’有機光轉換樹脂212與214僅覆蓋 在藍色氮化物發光二極體晶粒202a之出光路徑的一部分範 圍上’而未完全遮蓋住藍色氮化物發光二極體晶粒.2〇2a之 13 出光路技,如此一來此多色發光模組200a可同時發出藍光 以及其他二種色光。 在實施例中,有機光轉換樹脂212與214經藍色氮化 : 物發光二極體晶粒202a激發後,所發出之光的發光波長分 別落在綠光與紅光範圍内,此時多色發光模組2〇〇a可同時 發出藍光、.紅光與綠光,其中有機光轉換樹脂212之有機光 轉化材料C545P與聚合物材料之間的預設混合比例較佳係 控制在介於0.002至0.005之間,而有機光轉換樹脂214之 • 有機光轉化材料C545P與聚合物材料之間的預設混合比例 較佳係控制在介於0.025至0.1之間。在一較佳實施例中, • .............藍色氮化物發光二極體晶粒202a之發光波長為46〇nm,且 有機光轉換樹脂212之有機光轉化材料C545p與聚合物材 料之間的預δ又混合比例可為1/300,而此時有機光轉換樹脂 214之有機光轉化材料C545p與聚合物材料之間的預設混 合比例可為1/30。 在其他實施例中,一多色發光模組具有至少一顆藍色氮 φ 化物發光二極體晶粒以及一有機光轉換樹脂,其中當此有機 光轉換樹脂覆蓋在藍色氮化物發光二極體晶粒之出光路徑 範圍的局部區域上時,多色發光模組可提供藍光以及不同於 藍光之發光波長範圍的另一色光。舉例而言,有機光轉換樹 . 脂經藍色氮化物發光二極體晶粒激發後,所發出之光的發光 波長落在綠光範圍内,此時多色發光模組可同時發出藍光與 綠光其中有機光轉換樹脂之有機光轉化材料C545P與聚 合物材料之間的預設混合比例較佳係控制在介於〇 〇〇2至 0.005之間。在一較佳實施例中,藍色氮化物發光二極體晶 1358966 粒之發光波長為460nm,且此有機光轉換樹脂之有機光轉化BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a light-emitting element and its use, and more particularly to a light-emitting diode element and its use in a multi-color light-emitting module. [Prior Art] In the fabrication technology of the white light-emitting diodes, most of them use short-wavelength light-emitting diode crystals to excite phosphor powder, which is emitted by the original light-emitting diode crystal grains. When light is mixed with the light generated by the phosphor after excitation, white light is produced. However, the phosphor powder in the visible light region has poor light conversion efficiency. Therefore, the wavelength range of the light emitted by the loyalty element is not easily controlled, and the luminescent performance is poor. · In addition, 'in the traditional inorganic green light-emitting diode grains, limited by the inferior epitaxial quality of indium gallium nitride (InGaN) related materials in the green light band, so inorganic green light emitting diode crystal The luminous efficiency of the particles is usually low. On the other hand, current LED dipoles have different lifetimes of red, green, and blue LEDs in the application of red, green, and blue LED backlights or display panels. It is necessary to apply different driving voltages, so the control circuit of the entire lighting module is quite complicated in design, which is not conducive to the application of the light-emitting diode die in multi-color products. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light-emitting element which is coated with a suitable ratio of organic light-converting material C545P resin on short-wavelength nitride light-emitting diode crystals such as blue light or ultraviolet light. When excited by blue light or ultraviolet 1358966 light, it can produce light of visible wavelengths such as green light or red light. Since the organic light-converting material C545P has excellent light conversion efficiency, it is possible to obtain color light of a desired wavelength and improve luminous efficiency. Another object of the present invention is to provide a multi-color light-emitting module capable of providing different ratios of organic light-converting material C545P resin on a single type of short-wavelength light-emitting diode die, through short-wavelength light-emitting diode crystal grains. After exciting these organic light conversion materials C545P resin, the module can simultaneously emit multiple colors of light', and can be applied to a full color backlight module or display. Since only a single type of short-wavelength light-emitting diode dies can be used, the same driving voltage can be used, and the operational life is close, so that the complexity of the driving circuit design can be greatly reduced. According to the above object of the present invention, a light-emitting element is provided, comprising: at least: a short-wavelength nitride light-emitting diode die, which emits light having a first light-emitting wavelength range; and an organic The light conversion resin is coated on the short-wavelength nitride light-emitting diode die. The organic light conversion resin includes at least one polymer material and an organic light conversion material C545P, and the organic light conversion material C545P and the polymer material have a The preset mixing ratio, the organic light conversion resin is excited by the light of the short-wavelength nitride light-emitting diode crystal grains to emit light having a second light-emitting wavelength range. According to a preferred embodiment of the present invention, the light-emitting element has an emission wavelength range of white light' and a predetermined mixing ratio between the organic light-converting material C545P and the polymer material is between 1/15 〇 and 0.02. According to an object of the present invention, a multi-color light emitting module is provided, comprising: at least one blue nitride light emitting diode die; and an organic light converting resin covering the at least one blue nitride light emitting diode 1358966 on the first region, wherein the first organic light conversion resin comprises at least a first polymer material and a first organic light conversion material C545P, and the first organic light conversion material C545P and the first polymer material have a first predetermined mixing ratio, the first organic light converting resin is excited by light of at least one blue nitride light emitting diode crystal grain to emit light having a first light emitting wavelength range different from blue, and The color light emitting module emits blue light and light having a first wavelength range of light. According to a preferred embodiment of the present invention, the multi-color light-emitting module further includes at least a second organic light-converting resin covering the second region of the blue nitride light-emitting diode die, wherein the second organic light-switching resin Included at least a second polymer material and a first organic light conversion material C545p, and a second predetermined mixing ratio between the second organic light conversion material C545P and the second polymer material. For example, the second organic light conversion resin is via blue The light of the color nitride light-emitting diode crystal emits light having a second light-emitting wavelength range, and is different from the blue light and the light having the first light-emitting wavelength range, thereby causing the multi-color light-emitting module to emit blue light, having Light in the first illuminating wavelength range and light having a second illuminating wavelength range. According to another object of the present invention, a multi-color light-emitting module includes at least one ultraviolet nitride nitride light-emitting diode die, and a first organic light-converting resin covering at least one ultraviolet light nitride light-emitting diode a first region of the polar body grain, wherein the first organic light conversion resin comprises at least a first polymer material and a first organic light conversion material C545p, and the first organic light conversion material C545P and the first polymer material have a first predetermined mixing ratio, the first organic light converting resin is excited by light of at least one ultraviolet light nitride emitting diode crystal to emit light having a first light emitting wavelength range; and a 1358966 second organic light converting resin is covered a second region of the at least one ultraviolet light nitride light emitting diode die, wherein the second organic light converting resin comprises at least a second polymer material and a second organic light converting material C545P, and the second organic light converting material C545P Having a second predetermined mixing ratio with the second polymeric material, the second organic light converting resin emitting light via at least one ultraviolet light nitride After the crystal grains of the excitation light to emit light having a light emission wavelength range of a second, so that the multicolor light-emitting module emits light having a wavelength range different from the first light-emitting light having a second emission wavelength range of each other with garden. According to a preferred embodiment of the present invention, the light having the first light emission wavelength range is green light, and the light having the second light emission wavelength range is red light. Embodiments The present invention discloses a light-emitting element and an application thereof. In order to make the description of the present invention more detailed and complete, reference is made to the following description in conjunction with the drawings of Figures 1A through 7. 1A is a schematic cross-sectional view showing a light-emitting element according to a first preferred embodiment of the present invention. In an exemplary embodiment, the light-emitting element 100a mainly includes a short-wavelength nitride light-emitting diode die 1 〇 2 and organic light conversion resin 104. In the light-emitting element i〇〇a, the short-wavelength nitride light-emitting diode die 102 is usually provided on the surface of the lead frame 〇8 through the adhesive layer 106. The light-emitting wavelength range of the light emitted by the short-wavelength nitride light-emitting diode crystal 1〇2 is preferably from about 380 nm to about 465 nm. For example, the short-wavelength nitride light-emitting diode crystal 1〇2 may be a nitride light-emitting diode crystal that emits a blue light band, or may be a nitride light-emitting diode crystal that emits an ultraviolet light band, wherein The light-emitting wavelength range of the nitride light-emitting diode of the blue light band is preferably between about 450 nm and about 465 nm, and the light-emitting wavelength range of the nitride light-emitting diode crystal in the ultraviolet light band is preferably Between about 38 〇 nm and about 405 nm. The organic light-converting resin 1〇4 is overlaid on the short-wavelength nitride light-emitting diode crystal 1〇2, that is, over the light path of the short-wavelength nitride light-emitting diode crystal 1〇2. The organic light-transforming resin 104 is also typically overlaid on the surface of the lead frame 8 adjacent to the short-wavelength nitride light-emitting diode die 102. In an exemplary embodiment, the organic light converting resin comprises at least an organic photoconverting material C545P and a polymeric material, wherein the organic photoconverting material c545P can be uniformly dispersed in the polymeric material by means of blending. The polymer material may be, for example, an epoxy resin (Ep〇xy) or a ruthenium resin (SiHc〇ne). In the present invention, the structural formula of the organic light conversion material C545P is l〇-(2.benzothiazolyl)-1,3. 3,7,7-pentamethyl-2,3,657-tetrahy dro lH,5H,llH-benzo[l]pyrano[6,7,8-ij]quinolizin-ll_one 〇 Due to the excellent optical conversion of organic light conversion material C545P Efficiency, and through appropriate scaling, can emit light with another wavelength range through the excitation of short-wavelength light-emitting diode grains such as blue or ultraviolet light, and then mix the light with the desired wavelength of visible light. . That is to say, the light-emitting wavelength range of the light emitted by the organic light conversion material C545P after being excited by the short-wavelength nitride light-emitting diode crystal ι 2 is usually different from the short-wavelength nitride light-emitting diode crystal 1〇2. The range of wavelengths of light emitted by the emitted light. Therefore, the concentration of the organic light conversion material C545P incorporated into the polymer material can be adjusted according to the wavelength range of the light to be emitted by the light-emitting element 10a, thereby corresponding to the organic light conversion material C545P and the polymer material. The preset blend ratio of the desired shade. 10 1358966 In one embodiment, the luminous wavelength range of the light-emitting element 10a is green light, and the preset mixing ratio between the organic light conversion material C545P of the organic light conversion grease 104 and the poly-person material is between 0.002 and 0.005. between. In a preferred embodiment in the case where the light-emitting wavelength of the light-emitting element 100a is green light, the short-wavelength nitride light-emitting diode crystal 1〇2 is blue light, and the light-emitting wavelength is 460 nm, and the organic light conversion material C545P The preset mixing ratio with the polymer material may be 1/300, wherein the chromaticity coordinates of the light emitted by the light-emitting element 1〇〇a are (0.324, 0.584). In another embodiment, the light-emitting wavelength range of the light-emitting element 100a is a predetermined full-scale ratio between the organic light conversion material C545P of the red light 'organic light conversion resin 104 and the poly-person material. 〇. 〇 2 5 Between 〇1. In a preferred embodiment where the light-emitting wavelength range of the light-emitting element 100a is red light, the short-wavelength nitride light-emitting diode die 102 is blue light, and the light-emitting wavelength is 460 nm, and the organic light-converting material C545p is polymerized. The preset mixing ratio between the material materials may be 1/30, wherein the chromaticity coordinates of the light emitted by the light-emitting element 1〇〇a are (0.641, 0.256). In still another embodiment, the light emitting wavelength range of the light emitting element 100a is white light, and the preset mixing ratio between the organic light converting material C545p of the organic light converting resin 104 and the polymer material is between 1/1; Between 2. In a preferred embodiment in the case where the light-emitting wavelength of the light-emitting element 100a is white light, the short-wavelength nitride light-emitting diode crystal 1〇2 is ultraviolet light and the light-emitting wavelength is 380 nm, and the organic light-converting material C545p and The predetermined mixing ratio between the polymer materials may be (UH, wherein the chromaticity coordinates of the light emitted by the illuminating element are (0.308, 0.335;). In other embodiments of the invention, the illuminating element may further comprise a Or a multilayer 11 to 8966 optically transparent colloid. Please refer to FIG. 1B, which is a schematic cross-sectional view of a light emitting device according to a second preferred embodiment of the present invention. The light emitting device 100b further includes two optical transparent colloids 110 and 112. The optical transparent colloid 110 is coated on the short-wavelength nitride light-emitting diode die 102 before the organic light-converting resin 104 is not covered on the short-wavelength nitride light-emitting diode die 102. 4 is then overlaid on the optically transparent colloidal layer u' so that the optically transparent colloid 110 is interposed between the short-wavelength nitride light-emitting diode die 102 and the organic light-converting resin 1〇4, and then another light The transparent colloid U2 is overlaid on the organic light-converting resin 1〇4. Please refer to FIG. 1C, which is a cross-sectional view showing a light-emitting element according to a third preferred embodiment of the present invention. 100c only includes an optically transparent colloid 114. The optically transparent colloid 114 is also covered with short-wavelength nitrogen before the organic light-converting resin 104 is not covered on the short-wavelength nitride light-emitting diode die 102. The organic light-emitting diode 1〇4 is overlaid on the optically transparent colloid 114, and the optically transparent colloid 114 is also interposed between the short-wavelength nitride light-emitting diode die 102 and the organic Referring to FIG. 1D, a cross-sectional view of a light-emitting element according to a fourth preferred embodiment of the present invention is shown. The light-emitting element 1〇〇d also includes only an optically transparent colloid. U", wherein the organic light-converting resin ι 4 is first covered on the short-wavelength nitride light-emitting diode crystal 立立1〇2, and the optical transparent colloid 110 is overlaid on the organic light-switching resin 1〇4. system The multi-color light-emitting module provides a multi-color light output function. Please refer to FIG. 2, which is a schematic cross-sectional view of a multi-color light-emitting module according to the present invention. The multi-color 12 1358966 color light-emitting module 200a mainly includes one or more blue nitride light-emitting diode crystal grains 202a and one or more organic light-switching resins, wherein the blue nitride light-emitting diode crystal grains 202a The illuminating wavelength can be between about 450 nm and about 465 nm. In this embodiment, the multi-color light emitting module 2 〇〇 a has a single blue nitride light emitting diode die 202a and two organic light converting resin 212 and 214. The organic light-converting resins 212 and 214 each include at least an organic photo-converting material C545P and a polymer material, wherein the organic photo-converting material C545p can be uniformly dispersed in the polymer material by means of blending. In an embodiment, the organic light conversion resin 212 and the organic light conversion material C545P of the organic light conversion resin 212 and the polymer material have different preset mixing ratios to each other in the blue color. After the bulk crystal grains 202a are excited, different color lights are generated, wherein the organic light conversion resins 212 and 214 are excited to emit light having a wavelength range different from that of the blue nitride light-emitting diode crystals 2〇2a. Blu-ray. In other embodiments, the organic light converting resin C545P of the organic light converting resin 212 and 214 may have the same predetermined mixing ratio with the polymer material, but both are excited to produce the same color light. The organic light conversion resin 212 covers a partial region of the blue nitride light-emitting diode crystal 2 2a, and the organic light conversion resin 214 covers another region of the blue nitride light-emitting diode die 202a. The upper portion provides a different color of light after being excited by the blue nitride light-emitting diode die 202a. In one embodiment, the organic light converting resins 212 and 214 may completely cover the range of the light exit path of the blue nitride light emitting diode die 202a to provide two different colors of light. In the present exemplary embodiment, 'the organic light-converting resins 212 and 214 cover only a portion of the light-emitting path of the blue nitride light-emitting diode die 202a' and do not completely cover the blue nitride light-emitting diode crystal. The granules of the .2〇2a 13 light-emitting circuit technology, so that the multi-color light-emitting module 200a can simultaneously emit blue light and two other color lights. In the embodiment, after the organic light conversion resins 212 and 214 are excited by the blue luminescence: the light-emitting diode crystal grains 202a, the emitted light wavelengths fall within the range of green light and red light, respectively. The color light-emitting module 2〇〇a can simultaneously emit blue light, red light and green light, wherein the preset mixing ratio between the organic light conversion material C545P of the organic light conversion resin 212 and the polymer material is preferably controlled. Between 0.002 and 0.005, the predetermined mixing ratio between the organic light converting resin C545P and the polymer material is preferably controlled to be between 0.025 and 0.1. In a preferred embodiment, the blue nitride light-emitting diode die 202a has an emission wavelength of 46 〇 nm, and the organic light of the organic light-switching resin 212 The pre-δ mixing ratio between the conversion material C545p and the polymer material may be 1/300, and the preset mixing ratio between the organic light conversion material C545p of the organic light conversion resin 214 and the polymer material may be 1/. 30. In other embodiments, a multi-color light-emitting module has at least one blue nitrogen GaAs light-emitting diode die and an organic light-switching resin, wherein the organic light-switching resin is covered in a blue nitride light-emitting diode The multi-color light-emitting module can provide blue light and another color light different from the light-emitting wavelength range of the blue light when the body grain is in a partial region of the light-emitting path range. For example, the organic light conversion tree. After the grease is excited by the blue nitride light-emitting diode crystal grains, the emitted light of the light falls within the green light range, and the multi-color light-emitting module can simultaneously emit blue light and The predetermined mixing ratio between the organic light conversion material C545P and the polymer material of the organic light conversion resin is preferably controlled to be between 〇〇〇2 and 0.005. In a preferred embodiment, the blue nitride light-emitting diode crystal 1358966 has an emission wavelength of 460 nm, and the organic light conversion resin of the organic light conversion resin

材料C545P與聚合物材料之-間的預設混合比例可為1/300。 再舉另一例’若有機光轉換樹脂經藍色氮化物發光二極體晶 粒激發後,所發出之光的發光波長落在紅光範圍内,此時多 色發光模組可同時發出藍光與紅光,其中有機光轉換樹脂之 有機光轉化材料C545P與聚合物材料之間的預設混合比例 較佳係控制在介於〇_〇25至0.1之間。此時,在一較佳實施 例中,藍色氮化物發光二極體晶粒之發光波長為46〇nm,且 此有機光轉換樹脂之有機光轉化材料C545P與聚合物材料 之間的預設混合比例可為1/30。然而,當有機光轉換樹脂 70全覆蓋在藍色氮化物發光二極體晶粒^^出光路徑範圍上 時,發光模組僅可提供一種色光。 在本不範實施例中,多色發光模組2〇〇3更包括二光 予 透明膠體208與216。一般,藍色氮化物發光二極體晶粒2〇2a 通㊉成置在導線架204上,再利用例如打線接合方式形成金 屬線210,例如金線,分別將藍色氮化物發光二極體晶粒 202a之二不同電性電極電性接合至導線架2〇4上之二對應 電極206。接著,先形成光學透明谬體期包覆在藍色氮化 物發光二極體晶粒202&與導線架2〇4上,再於藍色氮化物 發光二極體晶粒202a之出光路徑範圍的不同區域上分別設 置有機光轉換樹脂212與214。此時,有機光轉換樹脂212 與214僅位於藍色氮化物發光二極體晶粒202a之出光路徑 範圍的局部區域上方的光學透明膠體208上,且有機光轉換 樹脂212與214並未完全瑭霜付轸A亡 锝 遮覆住藍色氮化物發光二極體晶粒 出光路徑範圍,而暴露出部分之光學透明膠體208, 15 1358966 如第2圖所示。然後,形成光學透明膠體216包覆在有機光 轉換樹脂212、有機光轉換樹脂214與光學透明膠體208之 ** 暴露區域上’其中光學透明膠體208與216、以及有機光轉 • 換樹脂212與214較佳係完全包覆住金屬線210,以確保多 色發光模組200a之電性品質。 請參照第3圖,其係繪示依照本發明另一較佳實施例的 一種多色發光模組之剖面示意圖。在多色發光模組2〇〇b 中’包括三顆藍色氮化物發光二極體晶粒2〇2a以及有機光 φ 轉換樹脂212與214 ’其中有機光轉換樹脂212係覆蓋在其 中一顆藍色氮化物發光二極體晶粒202a上,而有機光轉換 .樹脂214則覆蓋在另一顆藍色氮化物發光二極體晶粒2〇2a 上。在另一實施例中’當多色發光模組僅具有單一有機光轉 換樹脂時,此有機光轉換樹脂可覆蓋在一或多顆的藍色氮化 物發光二極體晶粒上。 在一示範例子中,有機光轉換樹脂212與214經藍色氮 化物發光二極體晶粒202a激發後,所發出之光的發光波長 φ 分別落在綠光與紅光範圍内,此時多色發光模組200b同樣 可同時發出藍光、紅光與綠光,其中有機光轉換樹脂212 之有機光轉化材料C545P與聚合物材料之間的預設混合比 例較佳係控制在介於O.OOUO侧之間,而有機光轉換樹 • 脂214之有機光轉化材料C545P與聚合物材料之間的預設 混合比例較佳係控制在介於0.025至〇」之間。在一較佳實 .^例中’藍色氮化物發光二極體晶粒2〇2a之發光波長為 • 46〇咖,且有機光轉換樹脂212之有機光轉化材料C545p^ 聚合物材料之間的㈣混合比例可為1/3⑽,而此時有機光 16 1358966 轉換樹脂214之有機光轉化材料C545P與聚合物材料之間 的預設混合比例可為1 /30。 在本示範實施例中,多色發光模組200b更包括一光學 透明膠體218。所有藍色氮化物發光二極體晶粒2〇2a通常 設置在導線架204上’接著先形成有機光轉換樹脂212與 214分別覆蓋在二藍色氮化物發光二極體晶粒2〇2a與導線 架204上,再形成光學透明膠體218包覆在有機光轉換樹脂 212與214以及導線架204之暴露區域上。The preset mixing ratio between the material C545P and the polymer material may be 1/300. Another example is that if the organic light conversion resin is excited by the blue nitride light-emitting diode crystal grains, the emitted light wavelength falls within the red light range, and the multi-color light-emitting module can simultaneously emit blue light and The red light, wherein the predetermined mixing ratio between the organic light conversion material C545P of the organic light conversion resin and the polymer material is preferably controlled to be between 〇_〇25 and 0.1. At this time, in a preferred embodiment, the blue nitride light emitting diode crystal grain has an emission wavelength of 46 〇 nm, and the organic light conversion resin C545P and the polymer material are preset between the organic light conversion resin. The mixing ratio can be 1/30. However, when the organic light-converting resin 70 is completely covered on the blue nitride light-emitting diode pattern, the light-emitting module can provide only one color light. In the present embodiment, the multi-color light emitting module 2〇〇3 further includes two light transparent gels 208 and 216. Generally, the blue nitride light-emitting diode die 2〇2a is placed on the lead frame 204, and the metal line 210, such as a gold wire, is formed by, for example, wire bonding, respectively, and the blue nitride light-emitting diodes are respectively formed. Two different electrical electrodes of the die 202a are electrically coupled to the two corresponding electrodes 206 on the lead frame 2〇4. Then, an optically transparent corpus call phase is formed on the blue nitride light-emitting diode die 202& and the lead frame 2〇4, and then in the light-emitting path range of the blue nitride light-emitting diode die 202a. Organic light conversion resins 212 and 214 are disposed on different regions, respectively. At this time, the organic light converting resins 212 and 214 are located only on the optically transparent colloid 208 above the partial region of the light path of the blue nitride light emitting diode die 202a, and the organic light converting resins 212 and 214 are not completely defective. Frost 轸 A 锝 锝 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色Then, the optically transparent colloid 216 is formed to be coated on the exposed regions of the organic light converting resin 212, the organic light converting resin 214 and the optical transparent colloid 208, wherein the optically transparent colloids 208 and 216, and the organic light transducing resin 212 are Preferably, 214 completely covers the metal line 210 to ensure the electrical quality of the multi-color lighting module 200a. Please refer to FIG. 3, which is a cross-sectional view of a multi-color light emitting module according to another preferred embodiment of the present invention. In the multi-color light-emitting module 2〇〇b, 'comprising three blue nitride light-emitting diode crystals 2〇2a and organic light-φ conversion resins 212 and 214', wherein the organic light-converting resin 212 is covered in one of them The blue nitride light-emitting diode die 202a is bonded to the other blue nitride light-emitting diode die 2〇2a. In another embodiment, when the multi-color light-emitting module has only a single organic light-transferring resin, the organic light-switching resin may cover one or more of the blue nitride light-emitting diode dies. In an exemplary embodiment, after the organic light-converting resins 212 and 214 are excited by the blue nitride light-emitting diode die 202a, the light-emitting wavelength φ of the emitted light falls within the range of green light and red light, respectively. The color light-emitting module 200b can simultaneously emit blue light, red light and green light, wherein the preset mixing ratio between the organic light conversion material C545P of the organic light conversion resin 212 and the polymer material is preferably controlled between O.OOUO. Between the sides, the predetermined mixing ratio between the organic light conversion material C545P of the organic light conversion tree and the fat 214 and the polymer material is preferably controlled between 0.025 and 〇". In a preferred embodiment, the blue nitride light-emitting diode die 2〇2a has an emission wavelength of 46 Å, and the organic light-converting resin 212 is an organic light-converting material C545p^ between the polymer materials. The (four) mixing ratio may be 1/3 (10), and at this time, the preset mixing ratio between the organic light conversion material C545P of the organic light 16 1358966 conversion resin 214 and the polymer material may be 1 / 30. In the exemplary embodiment, the multi-color lighting module 200b further includes an optical transparent colloid 218. All blue nitride light-emitting diode grains 2〇2a are usually disposed on the lead frame 204. Then, organic light-converting resins 212 and 214 are formed first to cover the two blue nitride light-emitting diode grains 2〇2a and On the lead frame 204, an optically transparent colloid 218 is formed to cover the exposed areas of the organic light converting resins 212 and 214 and the lead frame 204.

請參照第4圖’其係繪示依照本發明又一較佳實施例的 一種多色發光模組之剖面示意圖。在多色發光模組2〇〇c 中,包括三顆藍色氮化物發光士極體晶粒2〇2a以及有機光 轉換樹脂212與214,其中有機光轉換樹脂212係覆蓋在其 中一顆藍色氮化物發光二極體晶粒2〇2a上,而有機光轉換 樹月曰214則覆蓋在另一顆藍色氮化物發光二極體晶粒2〇2a 上。在另一實施例中,當多色發光模組僅具有單一有機光轉 換樹脂時,此有機光轉換樹脂可覆蓋在一或多顆的藍色氮化 物發光二極體晶粒上。 在一示範例子中,有機光轉換樹脂212與214經藍色氮 化物發光二極體晶粒202a激發後,所發出之光的發光波長 分別落在綠光與紅光範圍内,此時多色發光模組2〇〇c同樣 可同時發出藍光、紅光與綠光’其中有機光轉換樹脂212 之有機光轉化材料C545P與聚合物材料之間的預設混合比 例較佳係控制在介於至請5之間,而有機光轉換樹 脂2U之有機光轉化材料C545p與聚合物材料之間的預設 混合比例較佳係控制在介於0.025 i ^之間。在一較佳實 17 1358966 施例中’藍色氮化物發光二極體晶粒202a之發光波長為 460nm,且有機光轉換樹脂212之有機光轉化材料C545P與 聚合物材料之間的預設混合比例可為1/300,而此時有機光 轉換樹脂214之有機光轉化材料C545P與聚合物材料之間 的預設混合比例可為1/30。 在本示範實施例中,多色發光模組200c更包括二光學 透明膠體220與222。一般,藍色氮化物發光二極體晶粒2〇2a 通常設置在·導線架204上,接著先形成光學透明膠體220 包覆在這些藍色氮化物發光二極體晶粒202a與導線架204 上’再於這些藍色氮化物發光二極體晶粒2〇2a之出光路徑 範圍的不同區域上分別設置友機光轉換樹脂212與214。此 時’有機光轉換樹脂212與214僅位於藍色氮化物發光二極 體晶粒202a之出光路徑範圍的局部區域上方的光學透明膠 體220上,且有機光轉換樹脂212與214並未完全遮覆住藍 色氮化物發光二極體晶粒202a之出光路徑範圍,而暴露出 部分之光學透明膠體220,如第4圖所示。接下來,形成光 學透明膠體222包覆在有機光轉換樹脂212、有機光轉換樹 脂214與光學透明膠體2〇8之暴露區域上。 請參照第5圖,其係繪示依照本發明再一較佳實施例的 一種多色發光模組之剖面示意圖。在一示範時施例中,多色 發光模組200d主要包括一或多顆紫外光氮化物發光二極體 晶粒202b以及二個有機光轉換樹脂23〇與232,其中紫外 光氮化物發光二極體晶粒202b之發光波長範圍可介於約 3 80nm與約405nm之間。在本實施例中,多色發光模組2〇〇d 具有單一顆紫外光氮化物發光二極體晶粒202b。同樣地, 18 1358966 有機光轉換樹脂230與232均至少包括有機光轉化材料 C545P與聚合物材料,其中有機光轉化材料C545P通常可 均勻地散佈在聚合物材料之中。在一實施例中,有機光轉換 樹脂230與232之有機光轉化材料C545P與聚合物材料之 間具有不同之預設混合比例,以在紫外光氮化物發光二極體 晶粒202b激發後分別產生不同之色光,其中有機光轉換樹 脂23 0與232經激發所產生之色光的發光波長範圍不同於紫 外光氮化物發光二極體晶粒202b所發出之紫外光。在其他 實施例中,有機光轉換樹脂230與232之有機光轉化材料 C545P與聚合物材料之間亦可具有相同之預設混合比例,但 具有相同之預設混合比例之有機光轉換樹脂經激發後產生 相同之色光。有機光轉換樹脂230覆蓋在紫外光氮化物發光 二極體晶粒202b之一局部區域上,有機光轉換樹脂232則 覆蓋在紫外光氮化物發光二極體晶粒202b之另一區域上, 藉以在紫外光氮化物發光二極體晶粒202b激發後而提供二 種不同之色光。有機光轉換樹脂230與232較佳係完全覆蓋 住紫外光氮化物發光二極體晶粒202b之出光路徑的範圍 上。 在一實施例中,有機光轉換樹脂230與232經紫外光氮 化物發光二極體晶粒202b激發後,所發出之光的發光波長 可分別落在綠光與紅光範圍内,此時多色發光模組200d可 同時發出綠光與紅光,其中有機光轉換樹脂230之有機光轉 化材料C545P與聚合物材料之間的預設混合比例較佳係控 制在介於0.002至0.005之間,而有機光轉換樹脂232之有 機光轉化材料C545P與聚合物材料之間的預設混合比例較 1358966 佳係控制在介於0.025至0.1之間。在一較佳實施例中有 機光轉換樹脂230之有機光轉化材料c545P與聚合物材料 之間的預設混合比例可為1/300 ’而此時有機光轉換樹脂 232之有機光轉化材料C545P與聚合物材料之間的預設混 合比例可為1/30。 在本示範實施例中’多色發光模組20〇d更包括二光學 透明膠體224與226。先形成光學透明膠體224包覆在紫外 光氮化物發光二極體晶粒202b與其所設置之導線架204 上’再於紫外光氣化物發光一極體晶粒202b之出光路徑範 圍的不同區域的光學透明膠體224上分別設置有機光轉換 樹脂230與232。然後·,形成光學透明膠體226包覆在有機 光轉換樹脂230與232上,其中光學透明膠體224與226、 以及有機光轉換樹脂230與232較佳係完全包覆住金屬線 210 ’以確保多色發光模組200d之電性品質。 請參照第6圖,其係繪示依照本發明再一較佳實施例的 一種多色發光模組之剖面示意圖。在多色發光模組2〇〇e 中’与括二顆紫外光氮化物發光二極體晶粒202b以及有機 光轉換樹脂230與232,其中有機光轉換樹脂230係覆蓋在 其中一顆紫外光氮化物發光二極體晶粒202b上,而有機光 轉換樹脂232覆蓋在另一顆紫外光氮化物發光二極體晶粒 202b 上。 在一示範例子中,有機光轉換樹脂230與232經紫外光 氮化物發光二極體晶粒202b激發後,所發出之光的發光波 長分別洛在綠光與紅光範圍内,此時多色發光模組2〇〇e同 樣可同時發出綠光與紅光,其中有機光轉換樹脂23〇之有機 20 1358966 光轉化材料C545P與聚合物材料之間的預設混合比例較佳 係控制在介於0.002至0.005之間,而有機光轉換樹脂232 之有機光轉化材料C545P與聚合物材料之間的預設混合比 例較佳係控制在介於0.025至0.1之間。在一較佳實施例 中,有機光轉換樹脂230之有機光轉化材料C545P與聚合 物材料之間的預設混合比例可為1/300,而此時有機光轉換 樹脂232之有機光轉化材料C545P與聚合物材料之間的預 設混合比例可為1/30。 在本示範實施例中,多色發光模組200e更包括一光學 透明膠體228。所有紫外光氮化物發光二極體晶粒202b通 常設置在導線架?.Q4 _上,接著先形成有機光轉換樹脂230 與232分別覆蓋在紫外光氮化物發光二極體晶粒202b與導 線架204上,再形成光學透明膠體228包覆在有機光轉換樹 脂230與232上。 請參照第7圖,其係繪示依照本發明再一較佳實施例的 一種多色發光模組之剖面示意圖。在多色發光模組200f 中,包括二顆紫外光氮化物發光二極體晶粒202b以及有機 光轉換樹脂230與232,其中有機光轉換樹脂230係覆蓋在 其中一顆紫外光氮化物發光二極體晶粒202b上,而有機光 轉換樹脂232則覆蓋在另一顆紫外光氮化物發光二極體晶 粒202b上。 在一示範例子中,有機光轉換樹脂.230與232經紫外光 氮化物發光二極體晶粒202b激發後,所發出之光的發光波 長分別落在綠光與紅光範圍内,此時多色發光模組200f同 樣可同時發出綠光與紅光,其中有機光轉換樹脂230之有機 21 1358966 光轉化材料C545P與聚合物材料之間的預設混合比例較佳 係控制在介於〇歲至請5之間,而有機光轉換樹脂232 之有機光轉化材料C545P與聚合物材料之間的預設混合比 例較佳係控制在介於〇·025至〇丨之間。在一較佳實施例 中,有機光轉換樹脂230之有機光轉化材料C545P與聚合 物材料之間的預設混合比例可為1/3〇〇,而此時有機光轉換 樹脂232之有機光轉化材料C545p與聚合物材料之間的預 設混合比例可為1/30。 在本示範實施例中’多色發光模組2〇〇f更包括二光學 透明膠體236與238。一般,紫外光氮化物發光二極體晶粒 202b通常設置在導線架2〇4上,接著先形成光學透明膠體 238包覆在這些紫外光氮化物發光二極體晶粒2〇2b與導線 架204上’再於這些紫外光氮化物發光二極體晶粒2〇2b之 出光路徑範圍的不同區域上分別設置有機光轉換樹脂23〇 與232。接下來’形成光學透明膠體236包覆在有機光轉換 樹脂230與232上》 由上述實施例可知,本發明之一優點就是發光元件係在 藍光或紫外光等短波長氮化物發光二極體晶粒上覆設具有 適當比例之有機光轉換材料C545P樹脂,而經藍光或紫外 光激發後可產生所需之綠光或紅光等可見光波長的光。由於 有機光轉換材料C545P具有優良之光轉換效率,因此可確 實獲得所需波長之色光,並可提升發光效能》 由上述實施例可知,本發明之另一優點就是因為多色發 光模組可在單一種類的短波長發光二極體晶粒上設置不同 比例之有機光轉換材料C545P樹脂,經短波長發光二極體 22 1358966 晶粒激發這些有機光轉換材料C545P樹脂後,可使發光模 组同時發出多種色光,而可應用於全彩背光模組或顯示器 . 上。由於只使用單一種類之短波長發光二極體晶粒,因而可 使用同一種驅動電壓,再加上操作壽命接近,因此可大大地 降低驅動電路設計的複雜度。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,當可作各種之更動與潤飾,因此 φ 本發明之保護範圍當視後附之申請專利範圍所界定者為準》 【圖式簡單說明】 第1A圖係繪示依照本發明第一較佳實施例的一種發光 元件之剖面示意圖。 第1B圖係繪不依照本發明第二較佳實施例的一種發光 元件之剖面示意圖。Please refer to FIG. 4, which is a cross-sectional view showing a multi-color light emitting module according to another preferred embodiment of the present invention. In the multi-color light-emitting module 2〇〇c, three blue nitride illuminant crystal grains 2〇2a and organic light conversion resins 212 and 214 are included, wherein the organic light conversion resin 212 is covered in one of the blue The color nitride emits light on the diode 2 〇 2a, and the organic light conversion tree 曰 214 covers the other blue nitride light emitting diode 2 〇 2a. In another embodiment, when the multi-color light-emitting module has only a single organic light-transferring resin, the organic light-switching resin may cover one or more of the blue nitride light-emitting diode dies. In an exemplary embodiment, after the organic light-converting resins 212 and 214 are excited by the blue nitride light-emitting diode die 202a, the emitted light wavelengths fall within the range of green light and red light, respectively. The light-emitting module 2〇〇c can simultaneously emit blue light, red light and green light. The preset mixing ratio between the organic light conversion material C545P and the polymer material of the organic light conversion resin 212 is preferably controlled to Between 5, the predetermined mixing ratio between the organic light conversion material C545p of the organic light conversion resin 2U and the polymer material is preferably controlled to be between 0.025 μm. In a preferred embodiment of the invention, the blue nitride light-emitting diode die 202a has an emission wavelength of 460 nm, and a predetermined mixture between the organic light conversion material C545P of the organic light conversion resin 212 and the polymer material. The ratio may be 1/300, and the predetermined mixing ratio between the organic light conversion material C545P of the organic light conversion resin 214 and the polymer material may be 1/30. In the exemplary embodiment, the multi-color lighting module 200c further includes two optical transparent colloids 220 and 222. Generally, the blue nitride light-emitting diode die 2〇2a is usually disposed on the lead frame 204, and then an optically transparent colloid 220 is formed to cover the blue nitride light-emitting diode die 202a and the lead frame 204. The friend light conversion resins 212 and 214 are respectively disposed on different regions of the light-emitting path range of the blue nitride light-emitting diode crystal chips 2〇2a. At this time, the organic light conversion resins 212 and 214 are located only on the optically transparent colloid 220 above the partial region of the light path of the blue nitride light emitting diode die 202a, and the organic light conversion resins 212 and 214 are not completely covered. The light-emitting path of the blue nitride light-emitting diode die 202a is covered, and a portion of the optically transparent colloid 220 is exposed, as shown in FIG. Next, an optical transparent colloid 222 is formed to be coated on the exposed regions of the organic light converting resin 212, the organic light converting resin 214, and the optical transparent colloid 2〇8. Please refer to FIG. 5, which is a cross-sectional view of a multi-color light emitting module according to still another preferred embodiment of the present invention. In an exemplary embodiment, the multi-color light emitting module 200d mainly includes one or more ultraviolet light nitride light emitting diode crystal grains 202b and two organic light converting resins 23 and 232, wherein the ultraviolet light emitting light emitting light The polar crystal grains 202b may have an emission wavelength ranging between about 380 nm and about 405 nm. In this embodiment, the multi-color light-emitting module 2〇〇d has a single ultraviolet nitride nitride light-emitting diode die 202b. Similarly, 18 1358966 organic light conversion resins 230 and 232 each include at least an organic light conversion material C545P and a polymer material, wherein the organic light conversion material C545P is generally uniformly dispersed in the polymer material. In one embodiment, the organic light converting resin 230 and the organic light converting material C545P of the organic light converting resin 230 and the polymer material have different preset mixing ratios to be respectively generated after the ultraviolet light nitride light emitting diode die 202b is excited. Different color lights, wherein the color light of the color light generated by the excitation of the organic light conversion resins 230 and 232 is different from the ultraviolet light emitted by the ultraviolet light nitride light emitting diode die 202b. In other embodiments, the organic light conversion resin 230 and the organic light conversion material C545P and the polymer material may have the same predetermined mixing ratio, but the organic light conversion resin having the same preset mixing ratio is excited. The same color is produced afterwards. The organic light conversion resin 230 covers a portion of the ultraviolet light nitride light emitting diode die 202b, and the organic light conversion resin 232 covers the other region of the ultraviolet light nitride light emitting diode die 202b. Two different shades of light are provided after the ultraviolet nitride nitride LED die 202b is excited. The organic light-switching resins 230 and 232 preferably completely cover the range of the light-emitting path of the ultraviolet-photonitride light-emitting diode die 202b. In one embodiment, after the organic light converting resin 230 and 232 are excited by the ultraviolet light nitride emitting diode die 202b, the emitted light wavelengths may fall within the range of green light and red light, respectively. The color light emitting module 200d can simultaneously emit green light and red light, wherein the preset mixing ratio between the organic light converting material C545P of the organic light converting resin 230 and the polymer material is preferably controlled between 0.002 and 0.005. The preset mixing ratio between the organic light conversion material C545P of the organic light conversion resin 232 and the polymer material is controlled to be between 0.025 and 0.1. In a preferred embodiment, the predetermined mixing ratio between the organic light converting material c545P of the organic light converting resin 230 and the polymer material may be 1/300'. At this time, the organic light converting material C545P of the organic light converting resin 232 and The preset mixing ratio between the polymer materials may be 1/30. In the exemplary embodiment, the multi-color light emitting module 20〇d further includes two optical transparent colloids 224 and 226. First, an optically transparent colloid 224 is formed on the ultraviolet light nitride light-emitting diode die 202b and the lead frame 204 disposed thereon, and then in a different region of the light-emitting path of the ultraviolet light vaporized light-emitting one-pole die 202b. Organic light conversion resins 230 and 232 are disposed on the optically transparent colloid 224, respectively. Then, the optically transparent colloid 226 is formed to be coated on the organic light converting resins 230 and 232, wherein the optically transparent colloids 224 and 226, and the organic light converting resins 230 and 232 are preferably completely covered with the metal wires 210' to ensure more The electrical quality of the color light-emitting module 200d. Please refer to FIG. 6, which is a cross-sectional view of a multi-color light emitting module according to still another preferred embodiment of the present invention. In the multi-color light-emitting module 2〇〇e, a plurality of ultraviolet light nitride light-emitting diode crystal grains 202b and organic light-converting resins 230 and 232 are covered, wherein the organic light-converting resin 230 is covered with one ultraviolet light. The nitride light-emitting diode die 202b is coated on the other ultraviolet light nitride light-emitting diode die 202b. In an exemplary embodiment, after the organic light converting resin 230 and 232 are excited by the ultraviolet light nitride light emitting diode die 202b, the emitted light has a wavelength of light that is in the range of green light and red light, respectively. The light-emitting module 2〇〇e can also emit green light and red light at the same time, wherein the organic light-transfer resin 23 is organic. 20 1358966 The light mixing material C545P and the polymer material are preferably mixed with a predetermined ratio. The predetermined mixing ratio between the organic light conversion material C545P of the organic light conversion resin 232 and the polymer material is preferably controlled to be between 0.025 and 0.1. In a preferred embodiment, the predetermined mixing ratio between the organic light converting material C545P of the organic light converting resin 230 and the polymer material may be 1/300, and the organic light converting material C545P of the organic light converting resin 232 at this time. The preset mixing ratio with the polymer material may be 1/30. In the exemplary embodiment, the multi-color lighting module 200e further includes an optical transparent colloid 228. Are all UV photonitride LED pads 202b typically placed on the leadframe? .Q4 _, then the organic light conversion resin 230 and 232 are respectively formed on the ultraviolet light nitride light emitting diode die 202b and the lead frame 204, and then the optical transparent colloid 228 is formed to be coated on the organic light conversion resin 230 and 232. Referring to FIG. 7, a cross-sectional view of a multi-color lighting module in accordance with still another preferred embodiment of the present invention is shown. In the multi-color light emitting module 200f, two ultraviolet light nitride light emitting diode crystal grains 202b and organic light conversion resins 230 and 232 are included, wherein the organic light conversion resin 230 is covered with one ultraviolet light nitride light emitting light On the polar crystal grain 202b, the organic light-converting resin 232 is overlaid on the other ultraviolet photo-nitride light-emitting diode die 202b. In an exemplary embodiment, after the organic light conversion resin .230 and 232 are excited by the ultraviolet light nitride light emitting diode die 202b, the emitted light wavelength falls within the range of green light and red light, respectively. The color light-emitting module 200f can also emit green light and red light at the same time, wherein the preset mixing ratio between the organic 21 1358966 light conversion material C545P and the polymer material of the organic light conversion resin 230 is preferably controlled between Between 5, the predetermined mixing ratio between the organic light conversion material C545P of the organic light conversion resin 232 and the polymer material is preferably controlled between 〇·025 and 〇丨. In a preferred embodiment, the predetermined mixing ratio between the organic light converting material C545P of the organic light converting resin 230 and the polymer material may be 1/3 〇〇, and at this time, the organic light converting resin 232 is converted into organic light. The predetermined mixing ratio between the material C545p and the polymer material may be 1/30. In the exemplary embodiment, the multi-color light-emitting module 2〇〇f further includes two optical transparent colloids 236 and 238. Generally, the ultraviolet light nitride light-emitting diode die 202b is usually disposed on the lead frame 2〇4, and then an optically transparent colloid 238 is formed to cover the ultraviolet light nitride light-emitting diode die 2〇2b and the lead frame. On the 204 side, organic light conversion resins 23A and 232 are respectively disposed on different regions of the light path range of the ultraviolet light nitride light-emitting diode crystal grains 2〇2b. Next, the formation of the optically transparent colloid 236 is coated on the organic light-converting resins 230 and 232. It is apparent from the above embodiments that one of the advantages of the present invention is that the light-emitting element is a short-wavelength nitride light-emitting diode such as blue light or ultraviolet light. The particle is coated with an appropriate proportion of the organic light conversion material C545P resin, and after being excited by blue light or ultraviolet light, light of a visible wavelength such as green light or red light can be generated. Since the organic light conversion material C545P has excellent light conversion efficiency, it can surely obtain color light of a desired wavelength, and can improve luminous efficiency. According to the above embodiments, another advantage of the present invention is that the multicolor light emitting module can be used in A different type of organic light conversion material C545P resin is disposed on a single type of short-wavelength light-emitting diode crystal, and the organic light conversion material C545P resin is excited by the short-wavelength light-emitting diode 22 1358966 crystal grain, so that the light-emitting module can be simultaneously A variety of shades of light can be applied to a full-color backlight module or display. Since only a single type of short-wavelength light-emitting diode die is used, the same driving voltage can be used, and the operating life is close, so that the complexity of the driving circuit design can be greatly reduced. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is intended that various modifications may be made without departing from the spirit and scope of the invention. And the scope of protection of the present invention is defined by the scope of the appended claims. [FIG. 1A] FIG. 1A illustrates a light-emitting element according to a first preferred embodiment of the present invention. Schematic diagram of the section. Fig. 1B is a schematic cross-sectional view showing a light-emitting element which is not in accordance with the second preferred embodiment of the present invention.

一第1C圖係繪不依照本發明第三較佳實施例的一種發光 元件之剖面示意圖。 一第1E)圖係繪示依照本發明第四較佳實施例的一種發光 元件之剖面示意圖。 ,第2®係输示依照本發明一較佳實施例的一種多色發 光模組之剖面示意圖。 較佳實施例的一種多色 較佳實施例的一種多色 第3圖係繪示依照本發明另— 發光模組之剖面示意圖。 第4圖係繪示依照本發明又一 發光模組之剖面示意圖。 23 1358966 第5圖係、繪示依照本發明再一較佳實施例的一種多色 發光极組之剖面示意圖。 第6圖係繪示依照本發明再一較佳實施例的一種多色 發光模組之剖面示意圖。 第7圖係繪示依照本發明再一較佳實施例的一種多色 發光模組之剖面示意圖。 主要元件符號說明 100a :發光元件 發光元件 100c 102 104 108 112 116 题波長氮.化.物發光二極體晶粒 有機光轉換樹脂 106 :黏著層 導線架 光學透明膠體 光學透明膠體 200b :多色發光模組 200d :多色發光模組 100b :發光元件 100d :發光元件 11 〇 :光學透明膠體 114 :光學透明膠體 200a:多色發光模組 200c :多色發光模組 200e :多色發光模組 200f :多色發光模組 202a :藍色氮化物發光二極體晶粒 202b :紫外光氮化物發光二極體晶粒 204 :導線架 208 :光學透明膠體 212 :有機光轉換樹脂 216 :光學透明膠體 220 :光學透明膠體 206 :電極 210 :金屬線 214:有機光轉換樹脂 218:光學透明膠體 222 :光學透明膠體 24 1358966 224 :光學透明膠體 226 : 228 :光學透明膠體 230 : 232 :有機光轉換樹脂 236 : 238 :光學透明膠體 光學透明膠體 有機光轉換樹脂 光學透明膠體A 1C drawing is a schematic cross-sectional view of a light-emitting element which is not in accordance with the third preferred embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1E is a cross-sectional view showing a light-emitting element in accordance with a fourth preferred embodiment of the present invention. The 2nd is a schematic cross-sectional view of a multi-color light emitting module in accordance with a preferred embodiment of the present invention. A multi-color preferred embodiment of a preferred embodiment of a multi-color 3 is a cross-sectional view of another embodiment of a lighting module in accordance with the present invention. Figure 4 is a cross-sectional view showing still another light emitting module in accordance with the present invention. 23 1358966 FIG. 5 is a cross-sectional view showing a multi-color illuminating electrode assembly in accordance with still another preferred embodiment of the present invention. Figure 6 is a cross-sectional view showing a multi-color lighting module in accordance with still another preferred embodiment of the present invention. Figure 7 is a cross-sectional view showing a multi-color lighting module in accordance with still another preferred embodiment of the present invention. Main element symbol description 100a: light-emitting element light-emitting element 100c 102 104 108 112 116 problem wavelength nitrogen. material light-emitting diode crystal organic light conversion resin 106: adhesive layer lead frame optical transparent colloid optical transparent colloid 200b: multi-color light Module 200d: multi-color light-emitting module 100b: light-emitting element 100d: light-emitting element 11 〇: optical transparent colloid 114: optical transparent colloid 200a: multi-color light-emitting module 200c: multi-color light-emitting module 200e: multi-color light-emitting module 200f Multi-color light-emitting module 202a: blue nitride light-emitting diode die 202b: ultraviolet light nitride light-emitting diode die 204: lead frame 208: optical transparent colloid 212: organic light conversion resin 216: optical transparent colloid 220: optical transparent colloid 206: electrode 210: metal wire 214: organic light conversion resin 218: optical transparent colloid 222: optical transparent colloid 24 1358966 224: optical transparent colloid 226: 228: optical transparent colloid 230: 232: organic light conversion resin 236 : 238 : Optical transparent colloid optical transparent colloid organic light conversion resin optical transparent colloid

2525

Claims (1)

1358966 .......... 20丨1年12月9日修正替換頁 十、申請專利範圍 ___ _吲1日修正替^ , ------- 1. 一種發光元件,至少包括: 一短波長氮化物發光二極體晶粒,可發出具有一第一 發光波長範圍之光’其中該短波長氮化物發光二極體晶粒 係一藍光發光二極體晶粒或一紫外光發光二極體晶粒;以 及 有機光轉換樹爿a ’覆盍在該短波長氮化物發光二極 體晶粒上,其中該有機光轉換樹脂至少包括一聚合物材料 以及一有機光轉化材料C545P,該有機光轉化材料C545P 之結 構式為 10-(2-benzothiazolyl)-l,3,3,7,7-pentamethyl-2}3,6,7-tetra hydro-lH,5H,llH-benzo[l]pyrano[6,7,8-ij]quinolizin-ll-o ne’且該有機光轉化材料C545P與該聚合物材料之間具 有一預設混合比例,該預設混合比例介於0.002至0.005 之間,該有機光轉換樹脂經由該短波長氮化物發光二極體 晶粒之光激發後發出具有一第二發光波長範圍之光。 2. 如申請專利範圍第1項所述之發光元件,其中該 發光元件之發光波長範圍為綠光。 3. 如申請專利範圍第2項所述之發光元件,其中該 短波長氣化物發光二極體晶粒之發光波長為460nm,且該 預設混合比例為1/300。 4. 如申請專利範圍第1項所述之發光元件,更至少 26 1358966 Γ~___ 〖如年/V月7日修正替換頁 2011年12月9曰替換頁-' 包括7第一光學透明膠體覆蓋在該短波長氮化物發光二 •極體粒上且&quot;於該短波長氮化物發光二極體晶粒與該 有機光轉換樹脂之間。 5.如申請專利範圍第4項所述之發光元件,更至少 包括一第二光學透明膠體覆蓋在該有機光轉換樹脂上。 6·如申請專利範圍第1項所述之發光元件,更至少 包括一光學透明璆體覆蓋在該有機光轉換樹脂上。 7. 如申請專利範圍第1項所述之發光元件,其中該 聚合物材料為矽樹脂或環氧樹脂。 8. 如申請專利範圍第丨項所述之發光元件,其中該 第發光波長範圍介於3 8 Onm至465 nm之間。 9,一種發光元件,至少包括: 一短波長氮化物發光二極體晶粒,可發出具有一第一 發光波長範圍之光,其中該短波長氮化物發光二極體晶粒 係一藍光發光二極體晶粒或一紫外光發光二極體晶粒;以 及 ' 一有機光轉換樹脂,覆蓋在該短波長氮化物發光二極 體aa粒上,其中s亥有機光轉換樹脂至少包括一聚合物材料 以及一有機光轉化材料C545P,該有機光轉化材料C545P 之結 構式為 10-(2-benzothiazolyI)-i53,3,7,7-pentamethyl-2,3,6,7-tetra 27 1358966 日修正替換頁 2011年12月9日修正替換頁 hydro-lH,5H,llH-benzo[l]pyrano[6,7,8-ij]quinolizin-ll-o ne,且該有機光轉化材料C545P與該聚合物材料之間具 有一預設混合比例’該預設混合比例介於〇 〇25至〇丨之 間’該有機光轉換樹脂經由該短波長氮化物發光二極體晶 粒之光激發後發出具有一第二發光波長範圍之光。 10. 如申請專利範圍第9項所述之發光元件,其中該 發光元件之發光波長範圍為紅光。 11. 如申請專利範圍第1〇項所述之發光元件,其中 該短波長氮化物發光二極體晶粒之發光波長為46〇nm,且 該預設混合比例為1 /3 〇。 12. 如申請專利範圍第9項所述之發光元件,更至少 包括一第一光學透明膠體覆蓋在該短波長氮化物發光二 極體阳粒上’且介於該短波長氮化物發光二極體晶粒與該 有機光轉換樹脂之間。 I 13.如申請專利範圍第12項所述之發光元件,更至 乂包括第一光學透明膠體覆蓋在該有機光轉換樹脂上。 14’如申請專利範圍第9項所述之發光元件,更至少 匕括%學透明膠體覆蓋在該有機光轉換樹脂上。 1 5.如申清專利範圍第9項所述之發光元件,其中該 ’ α物材料切樹脂或環氧樹脂。 28 1358966 2011年12月9日修正替換頁 &amp;年〜月1日修正替換頁 16.如申請專利範圍第9項所述之發光元件,其中該—-- 第一發光波長範圍介於380ηιη至465nm之間。 17· —種發光元件,至少包括: 一短波長氮化物發光二極體晶粒’可發出具有一第一 發光波長範圍之光,其中該短波長氮化物發光二極體晶粒 係一藍光發光二極體晶粒或一紫外光發光二極體晶粒;以 及 一有機光轉換樹脂,覆蓋在該短波長氮化物發光二極 體晶粒上’其中該有機光轉換樹脂至少包括一聚合物材料 以及一有機光轉化材料C545P,該有機光轉化材料C545P 之 結 構式為 10-(2-benzothiazolyl)-i,3,3,7,7-pentamethyl-2,3,6,7 -tetra hydro-lH,5H,ll H-benzo[l]pyrano[6,7,8-ij]quinolizin -11 - ο ne’且該有機光轉化材料C545P與該聚合物材料之間具 有一預設混合比例,該預設混合比例介於ιη 5〇至〇〇2 之間’該有機光轉換樹脂經由該短波長氮化物發光二極體 晶粒之光激發後發出具有一第二發光波長範圍之光。 18.如申請專利範圍第17項所述之發光元件,其中 該發光元件之發光波長範圍為白光。 19·如申請專利範圍第丨8項所述之發光元件,其中 該短波長氮化物發光二極體晶粒之發光波長為38〇nm,且 該預設混合比例為〇, 〇 1。_ 29 1358966 2011年12月9日修正替換頁 崎,Ή日修正替換頁 20. 如申請專利範圍第17項所述之發光元件,更至二--- 少包括一第一光學透明膠體覆蓋在該短波長氮化物發光 一極體晶粒上,且介於該短波長氮化物發光二極體晶粒與 該有機光轉換樹脂之間。 21. 如申請專利範圍第2〇項所述之發光元件,更至 少包括一第二光學透明膠體覆蓋在該有機光轉換樹脂上。 22. 如申請專利範圍第17項所述之發光元件,更至 少包括一光學透明膠體覆蓋在該有機光轉換樹脂上。 23. 如申請專利範圍第I?項所述之發光元件,其中 該聚合物材料為矽樹脂或環氧樹脂。 24. 如申請專利範圍第1 7項所述之發光元件,其中 δ玄第一發光波長範圍介於38〇ηιη至465nm之間。 25. —種多色發光模組,至少包括: 至少一藍色氮化物發光二極體晶粒; 一第一有機光轉換樹脂,覆蓋在該至少一藍色氮化物 發光二極體晶粒之一第一區域上,其中該第一有機光轉換 樹脂至少包括一第一聚合物材料以及一第一有機光轉化 材料C545P ’該有機光轉化材料C545P之結構式為 l〇-(2-benzothiazolyl)-l,3,357,7-pentamethyl-2,3)6,7-tetra hydro-lH,5H,llH-benzo[l]pyrano[6,7,8-ij]quinolizin-ll-o 30 1358966 卜啐日修正替換頁丨 2011年12月9曰修正替換頁 ne,且該第一有機光轉化材料c545p與該第一聚合物材 . 料之間具有一第一預設混合比例,該第一有機光轉換樹脂 經由該至少一藍色氮化物發光二極體晶粒之光激發後發 出不同於藍色之具有一第一發光波長範圍之光;以及 一第二有機光轉換樹脂,覆蓋在該至少一藍色氮化物 發光一極體晶粒之一第二區域上,其中該第二有機光轉換 樹月曰至少包括一第一聚合物材料以及一第二有機光轉化 材料C545P,且該第二有機光轉化材料C545p與該第二 聚合物材料之間具有一第二預設混合比例,該第二有機光 轉換樹脂經由該至少一藍色氮化物發光二極體晶粒之光 激發後發出具有一第二發光波長範圍之光,而不同於藍色 與該具有該第一發光波長範圍之光,藉以使該多色發光模 組發出藍光、具有該第一發光波長範圍之光、與具有該第 二發光波長範圍之光。 26. 如申請專利範圍第25項所述之多色發光模組, 其中具有該第一發光波長範圍之光為綠光。 27. 如申請專利範圍第26項所述之多色發光模組, 其中該第一預設混合比例介於0.002至0.005之間。 28. 如申請專利範圍第26項所述之多色發光模組, 其中該至少一藍色氮化物發光二極體晶粒之發光波長為 46〇nm ’且該第一預設混合比例為1/3〇〇。 29. 如申請專利範圍第25項所述之多色發光模組, 31 1358966 201丨年丨2月9日修正替換頁 其中具有該第一發光波長範圍之光為紅光。 哞丨4 1日修正替換頁 30. 如申請專利範圍第29項所述之多色發光模組, : 其中該第一預設混合比例介於0.025至0·1之間。 31. 如申請專利範圍第29項所述之多色發光模組, 其中該至少一藍色氮化物發光二極體晶粒之發光波長為 460nm,且該第一預設混合比例為1/3〇。 32·如申請專利範圍第25項所述之多色發光模組, 其中該至少一藍色氮化物發光二極體晶粒僅包括單一藍 色氮化物發光二極體晶粒。 33. 如申請專利範圍第32項所述之多色發光模組, 其中具有該第一發光波長範圍之光為綠光,且具有該第二 發光波長範圍之光為紅光。 34. 如申請專利範圍第33項所述之多色發光模組, 其中S玄第一預设混合比例介於〇 Q 〇 2至〇 〇 〇 5之間,且該 第二預設混合比例介於0.025至〇. 1之間。 35·如申請專利範圍第33項所述之多色發光模組, . 其中該藍色氮化物發光二極體晶粒之發光波長為 460nm,該第一預設混合比例4 1/3〇〇,且該第二預設混 合比例為1/30。 32 1358966 啤日修正替換頁 201丨年12月9曰修正替換頁 36.如申請專利範圍第32項所述之多色發光模組, 更至少包括: 一第一光學透明膠體’包覆在該藍色氮化物發光二極 體晶粒上,其中該第一有機光轉換樹脂與該第二有機光轉 換樹脂係位於該第一光學透明膠體上;以及 一第二光學透明膠體,包覆在該第一有機光轉換樹 月曰該第一有機光轉換樹脂與該第一光學透明膠體之暴露 區域上。 3 7·如申請專利範圍第25項所述之多色發光模組, 其中該至少一藍色氮化物發光二極體晶粒包括三藍色氮 化物發光二極體晶粒,且該第一有機光轉換樹脂覆蓋在該 些藍色氮化物發光二極體晶粒之一第一者上。 38. 如申請專利範圍第37項所述之多色發光模組, 其中該第二有機光轉換樹脂覆蓋在該些藍色氣化物發光 二極體晶粒之一第二者上。 39. 如申請專利範圍第38項所述之多色發光模組, 其中具有該第一發光波長範圍之光為綠光,且具有該第二 發光波長範圍之光為紅光。 40. 如_請專利範圍帛39項所述之多色發光模組, 其中該第一預設混合比例介於〇.0〇2至〇〇〇5之間,且該 第二預設混合比例介於0·〇25至〇.丨之間。 33 丄 201丨年12月9日修正替換頁 41.如申諳專利範圍第3 盆由呤此誌ac; 項所迷之多色發光模組’ 460nm &gt; ^ ^ —極體日日粒之發光波長為 46〇nm 該第一預設混人士仏丨丛 顶认庇〇比例為1/3〇 合比例為1/30。 五涊笫一預叹混 42.如申請專利範圍第 更至少包括: 38項所述之多色發光模組, 心Γ第—光學透明勝體,包覆在該些藍色氮化物發光二 :粒上’其中該第一有機光轉換樹脂與該第二有機光 轉,係分別位於該些藍色氮化物發光二極體晶粒之 該第—者與該第二者上方之該第—光學透明膠體上;以及 …一第二光學透明膠n,包覆在t亥第一有機光轉換樹 月曰該第一有機光轉換樹脂與該第一光學透明膠體之暴露 區域上。 43.如申清專利範圍第38項所述之多色發光模組, ^至少包括一光學透明膠體覆蓋在該第一有機光轉換樹 脂、該第二有機光轉換樹脂與該些藍色氮化物發光二極體 晶粒之一第三者上。 44·如申請專利範圍第25項所述之多色發光模組, 其中該至少一藍色氮化物發光二極體晶粒之發光波長範 圍介於450nm與465nm之間。 4 5. —種多色發光模組,至少包括: 至少一紫外光氮化物發光二極體晶粒;以及 34 時日修正替換頁 2011年12月9日修正替換頁 '第一有機光轉換樹脂’覆蓋在該至少一紫外光氮化 勿發光二極體晶粒之一第一區域上,其中該第一有機光轉 換树脂至少包括一第一聚合物材料以及一第一有機光轉 化柯料C545P’該有機光轉化材料C545P之結構式為 H(2-benZ〇thiaz〇lyl)-l,3,3,7,7-pentamethyl-2,3,6,7-tetra r〇-1 H,5H, 1 lH-benzo[l]pyrano[6,7,8-ij]quinolizin-11 -〇 ne ’且該第一有機光轉化材料C545P與該第一聚合物材 料之間具有一第一預設混合比例,該第一有機光轉換樹脂 A由該至少一紫外光氮化物發光二極體晶粒之光激發後 發出具有一第一發光波長範圍之光;以及 一第二有機光轉換樹脂’覆蓋在該至少一紫外光氮化 物發光二極體晶粒之一第二區域上,其中該第二有機光轉 換樹脂至少包括一第二聚合物材料以及一第二有機光轉 化材料C545P,且該第二有機光轉化材料C545p與該第 一聚合物材料之間具有一第二預設混合比例,該第二有機 光轉換樹脂經由該至少一紫外光氮化物發光二極體晶粒 之光激發後發出具有一第二發光波長範圍之光’而使該多 色發光模組發出彼此不同之具有該第一發光波長範圍之 光與具有該第二發光波長範圍之光。 46. 如申請專利範圍第45項所述之多色發光模組, 其中具有該第一發光波長範圍之光為綠光。 47. 如申請專利範圍第46項所述之多色發光模組, 其中該第一預設混合比例介於〇 〇〇2至〇 〇〇5之間。 35 1358966 時卜月1日修正替換頁 2011年12月9日修正替換頁 48. 如申請專利範圍第46項所述之多色發光模組, 其中該第一預設混合比例為1 /300。 49. 如申請專利範圍第46項所述之多色發光模組, 其中具有該第二發光波長範圍之光為紅光。 50. 如申請專利範圍第49項所述之多色發光模組, 其中該第二預設混合比例介於0.025至〇. 1之間。 5 1.如申請專利範圍第49項所述之多色發光模組, 其中該第二預設混合比例為1/30。 52. 如申請專利範圍第45項所述之多色發光模組, 其中該至少一紫外光氮化物發光二極體晶粒僅包括單一 紫外光氮化物發光二極體晶粒。 53. 如申請專利範圍第52項所述之多色發光模組, 更至少包括: 一第一光學透明膠體,包覆在該紫外光氮化物發光二 極體晶粒上’其中該第一有機光轉換樹脂與該第二有機光 轉換樹脂係位於該第一光學透明膠體上;以及 一第二光學透明膠體,包覆在該第一有機光轉換樹脂 與§亥第一有機光轉換樹腊上。 54. 如申請專利範圍第45項所述之多色發光模組, 其中該至少一紫外光氮化物發光二極體晶粒包括二紫外 36 1358966 - w啐卜月1日修正替換頁 2011年12月9日^正替換頁 ; 光氮化物發光二極體晶粒,且該第一有機光轉換樹脂與該 第二有機光轉換樹脂分別對應覆蓋在該些紫外光氮化物 發光二極體晶粒上。 55·如申請專利範圍第54項所述之多色發光模組, 更至少包括: 一第一光學透明膠體,包覆在該些紫外光氮化物發光 二極體晶粒上,其中該第—有機光轉換樹脂與該第二有機 光轉換樹脂係分別位於對應之該些紫外光氮化物發光二 極體晶粒上方之該第一光學透明膠體上;以及 一第二光學透明膠體,包覆在該第一有機光轉換樹脂 與該第二有機光轉換樹脂上。 56·如申請專利範圍第54項所述之多色發光模組, 更至少包括一光學透明膠體覆蓋在該第一有機光轉換樹 脂與該第二有機光轉換樹脂上。 57.如申請專利範圍第45項所述之多色發光模組, 其中該紫外光氮化物發光二極體晶粒之發光波長範圍介 於380nm與405nm之間。 371358966 .......... December 9th, 9th, revised replacement page 10, the scope of patent application ___ _ 吲 1 day correction ^, ------- 1. A light-emitting element, The method at least includes: a short-wavelength nitride light-emitting diode die that emits light having a first light-emitting wavelength range, wherein the short-wavelength nitride light-emitting diode die is a blue light-emitting diode die or a An ultraviolet light-emitting diode crystal; and an organic light-converting tree 爿a' overlying the short-wavelength nitride light-emitting diode crystal, wherein the organic light-switching resin comprises at least a polymer material and an organic light conversion Material C545P, the organic light conversion material C545P has the structural formula of 10-(2-benzothiazolyl)-l,3,3,7,7-pentamethyl-2}3,6,7-tetrahydro-lH, 5H, llH- Benz[l]pyrano[6,7,8-ij]quinolizin-ll-o ne' and the organic light conversion material C545P has a predetermined mixing ratio with the polymer material, and the preset mixing ratio is between 0.002 Between 0.005, the organic light-converting resin is excited by the light of the short-wavelength nitride light-emitting diode crystal to emit a second light-emitting wavelength. Wai Light. 2. The light-emitting element according to claim 1, wherein the light-emitting element has an emission wavelength range of green light. 3. The light-emitting element according to claim 2, wherein the short-wavelength vapor-emitting diode crystal grain has an emission wavelength of 460 nm, and the predetermined mixing ratio is 1/300. 4. For the illuminating element mentioned in the first paragraph of the patent application, at least 26 1358966 Γ~___ 〖如年/V月7日修正Replacement page December 2011 曰 Replacement page-' Includes 7 first optical transparent colloid Covering the short-wavelength nitride light-emitting diode body and &quot; between the short-wavelength nitride light-emitting diode die and the organic light-switching resin. 5. The illuminating element of claim 4, further comprising at least a second optically transparent colloid overlying the organic light converting resin. 6. The light-emitting element according to claim 1, further comprising an optically transparent body covering the organic light-switching resin. 7. The light-emitting element of claim 1, wherein the polymer material is a enamel resin or an epoxy resin. 8. The illuminating element of claim 2, wherein the first illuminating wavelength range is between 3 8 Onm and 465 nm. 9. A light-emitting element comprising: at least: a short-wavelength nitride light-emitting diode die emitting light having a first light-emitting wavelength range, wherein the short-wavelength nitride light-emitting diode die is a blue light-emitting diode a polar crystal grain or an ultraviolet light emitting diode crystal grain; and an organic light conversion resin covering the short wavelength nitride light emitting diode aa particle, wherein the organic light conversion resin includes at least one polymer Material and an organic light conversion material C545P, the structural formula of the organic light conversion material C545P is 10-(2-benzothiazolyI)-i53,3,7,7-pentamethyl-2,3,6,7-tetra 27 1358966 Replacement page December 9, 2011 revised replacement page hydro-lH, 5H, llH-benzo[l]pyrano[6,7,8-ij]quinolizin-ll-o ne, and the organic photoconverting material C545P and the polymerization Between the materials, there is a predetermined mixing ratio 'the predetermined mixing ratio is between 〇〇25 and 〇丨'. The organic light converting resin is excited by the light of the short-wavelength nitride light-emitting diode grains to emit a second range of wavelengths of light. 10. The light-emitting element according to claim 9, wherein the light-emitting element has an emission wavelength range of red light. 11. The light-emitting element according to claim 1, wherein the short-wavelength nitride light-emitting diode has an emission wavelength of 46 〇 nm, and the predetermined mixing ratio is 1 / 3 〇. 12. The light-emitting element of claim 9, further comprising at least a first optically transparent colloid overlying the short-wavelength nitride light-emitting diode positive particles and interposed between the short-wavelength nitride light-emitting diodes Between the bulk crystal grains and the organic light conversion resin. The light-emitting element according to claim 12, further comprising a first optically transparent colloid covering the organic light-switching resin. 14', wherein the light-emitting element according to claim 9 is further covered with at least a transparent transparent colloid on the organic light-switching resin. The light-emitting element according to claim 9, wherein the 'α material is cut with a resin or an epoxy resin. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Between 465nm. 17. A light-emitting element comprising: at least: a short-wavelength nitride light-emitting diode die ′ emitting light having a first light-emitting wavelength range, wherein the short-wavelength nitride light-emitting diode grain is a blue light-emitting a diode crystal or an ultraviolet light emitting diode crystal; and an organic light converting resin overlying the short-wavelength nitride light-emitting diode die, wherein the organic light-switching resin comprises at least one polymer material And an organic light conversion material C545P having a structural formula of 10-(2-benzothiazolyl)-i, 3,3,7,7-pentamethyl-2,3,6,7-tetra hydro-lH , 5H, ll H-benzo[l]pyrano[6,7,8-ij]quinolizin -11 - ο ne' and the organic light conversion material C545P has a predetermined mixing ratio with the polymer material, the pre- The mixing ratio is between ιη 5〇 and 〇〇2. The organic light-converting resin is excited by light of the short-wavelength nitride light-emitting diode crystal grains to emit light having a second light-emitting wavelength range. 18. The light-emitting element according to claim 17, wherein the light-emitting element has an emission wavelength range of white light. The light-emitting element of claim 8, wherein the short-wavelength nitride light-emitting diode has an emission wavelength of 38 〇 nm, and the predetermined mixing ratio is 〇, 〇 1. _ 29 1358966 December 9th, 2011, the revised replacement page, the next day correction replacement page 20. The illuminating element according to claim 17 of the patent application, and even more than two - a first optically transparent colloid covered The short-wavelength nitride emits light on the one-pole crystal grain and is interposed between the short-wavelength nitride light-emitting diode crystal grain and the organic light-switching resin. 21. The illuminating element of claim 2, further comprising a second optically transparent colloid overlying the organic light converting resin. 22. The illuminating element of claim 17, further comprising an optically transparent colloid covering the organic light converting resin. 23. The luminescent element of claim 1, wherein the polymeric material is an enamel resin or an epoxy resin. 24. The illuminating element of claim 17, wherein the δ 第一 first illuminating wavelength ranges from 38 〇ηηη to 465 nm. 25. A multi-color light emitting module comprising: at least one blue nitride light emitting diode die; a first organic light converting resin overlying the at least one blue nitride light emitting diode die a first region, wherein the first organic light conversion resin comprises at least a first polymer material and a first organic light conversion material C545P 'the organic light conversion material C545P has the structural formula l〇-(2-benzothiazolyl) -l,3,357,7-pentamethyl-2,3)6,7-tetra hydro-lH,5H,llH-benzo[l]pyrano[6,7,8-ij]quinolizin-ll-o 30 1358966 The correction replacement page 12 December 9th, 2011, the correction replacement page ne, and the first organic light conversion material c545p and the first polymer material have a first predetermined mixing ratio, the first organic light conversion The resin is excited by the light of the at least one blue nitride light emitting diode crystal grain to emit light having a first light emitting wavelength range different from blue; and a second organic light converting resin covering the at least one blue color a color nitride emitting light on one of the second regions of the polar crystal, wherein the second organic light is transferred The tree-cut layer comprises at least a first polymer material and a second organic light conversion material C545P, and the second organic light conversion material C545p and the second polymer material have a second predetermined mixing ratio. The second organic light conversion resin is excited by the light of the at least one blue nitride light emitting diode crystal grain to emit light having a second light emitting wavelength range, different from the blue color and having the first light emitting wavelength range Light, whereby the multi-color light-emitting module emits blue light, light having the first light-emitting wavelength range, and light having the second light-emitting wavelength range. 26. The multicolor lighting module of claim 25, wherein the light having the first range of illumination wavelengths is green. 27. The multi-color lighting module of claim 26, wherein the first predetermined mixing ratio is between 0.002 and 0.005. The multi-color light-emitting module of claim 26, wherein the at least one blue nitride light-emitting diode has an emission wavelength of 46 〇 nm ' and the first preset mixing ratio is 1 /3〇〇. 29. The multi-color lighting module according to claim 25, 31 1358966 201 丨 丨 丨 丨 丨 丨 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中哞丨 4 1 Modified Replacement Page 30. The multi-color lighting module of claim 29, wherein the first preset mixing ratio is between 0.025 and 0.1. The multi-color light-emitting module of claim 29, wherein the at least one blue nitride light-emitting diode has an emission wavelength of 460 nm, and the first predetermined mixing ratio is 1/3. Hey. 32. The multicolor light emitting module of claim 25, wherein the at least one blue nitride light emitting diode die comprises only a single blue nitride light emitting diode die. 33. The multicolor light emitting module of claim 32, wherein the light having the first light emission wavelength range is green light, and the light having the second light emission wavelength range is red light. 34. The multi-color light-emitting module according to claim 33, wherein the S-first first preset mixing ratio is between 〇Q 〇2 and 〇〇〇5, and the second preset mixing ratio is Between 0.025 and 〇. 1. 35. The multi-color light-emitting module according to claim 33, wherein the blue nitride light-emitting diode has an emission wavelength of 460 nm, and the first preset mixing ratio is 4 1/3. And the second preset mixing ratio is 1/30. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; a blue nitride light emitting diode die, wherein the first organic light converting resin and the second organic light converting resin are on the first optical transparent colloid; and a second optical transparent colloid is coated on the The first organic light conversion tree is on the exposed area of the first organic light conversion resin and the first optical transparent colloid. The multi-color light-emitting module of claim 25, wherein the at least one blue nitride light-emitting diode die comprises a three-blue nitride light-emitting diode die, and the first The organic light conversion resin covers the first one of the blue nitride light emitting diode crystal grains. 38. The multicolor light emitting module of claim 37, wherein the second organic light converting resin covers a second one of the blue vaporized light emitting diode dies. 39. The multicolor light emitting module of claim 38, wherein the light having the first light emission wavelength range is green light, and the light having the second light emission wavelength range is red light. 40. The multi-color lighting module of claim 39, wherein the first preset mixing ratio is between 〇.0〇2 and 〇〇〇5, and the second preset mixing ratio Between 0·〇25 and 〇.丨. 33 12 201丨 12 12 12 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 The illuminating wavelength is 46 〇 nm. The ratio of the first preset 仏丨 仏丨 认 认 认 认 认 为 为 为 为 。 。 。 。 。 。 。 。 The 涊笫 预 预 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 </ RTI> wherein the first organic light converting resin and the second organic light are respectively located at the first of the blue nitride light emitting diode grains and the first optical of the second a transparent colloid; and a second optically transparent adhesive n coated on the exposed area of the first organic light-converting resin and the first optically transparent colloid. 43. The multicolor light emitting module of claim 38, wherein at least an optically transparent colloid covers the first organic light converting resin, the second organic light converting resin, and the blue nitride One of the light-emitting diode grains is on the third. The multi-color light-emitting module of claim 25, wherein the at least one blue nitride light-emitting diode has an emission wavelength ranging between 450 nm and 465 nm. 4 5. A multi-color light-emitting module comprising at least: at least one ultraviolet light nitride light-emitting diode die; and 34 time correction replacement page December 9, 2011 revised replacement page 'first organic light conversion resin Covering a first region of the at least one ultraviolet light nitriding light-emitting diode crystal grain, wherein the first organic light conversion resin comprises at least a first polymer material and a first organic light conversion material C545P 'The structural formula of the organic light conversion material C545P is H(2-benZ〇thiaz〇lyl)-l,3,3,7,7-pentamethyl-2,3,6,7-tetra r〇-1 H,5H , 1 lH-benzo[l]pyrano[6,7,8-ij]quinolizin-11 -〇ne ' and having a first predetermined mixing between the first organic light converting material C545P and the first polymeric material a ratio, the first organic light converting resin A is excited by light of the at least one ultraviolet light nitride light emitting diode crystal grain to emit light having a first light emitting wavelength range; and a second organic light converting resin is covered a second region of the at least one ultraviolet light nitride light emitting diode die, wherein the second organic light converting resin is A second polymer material and a second organic light conversion material C545P are included, and the second organic light conversion material C545p and the first polymer material have a second predetermined mixing ratio, and the second organic light conversion The resin is excited by the light of the at least one ultraviolet light nitride light emitting diode to emit light having a second light emitting wavelength range, and the multicolor light emitting module emits different wavelengths from the first light emitting wavelength range. Light and light having the second wavelength range of illumination. 46. The multicolor light emitting module of claim 45, wherein the light having the first light emission wavelength range is green light. 47. The multicolor lighting module of claim 46, wherein the first preset mixing ratio is between 〇2 and 〇5. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 49. The multicolor light emitting module of claim 46, wherein the light having the second light emitting wavelength range is red light. The multi-color light-emitting module according to claim 49, wherein the second preset mixing ratio is between 0.025 and 0.1. 5. The multi-color lighting module of claim 49, wherein the second preset mixing ratio is 1/30. 52. The multicolor light emitting module of claim 45, wherein the at least one ultraviolet light nitride light emitting diode die comprises only a single ultraviolet light nitride light emitting diode die. 53. The multi-color light-emitting module of claim 52, further comprising: a first optically transparent colloid coated on the ultraviolet light nitride light-emitting diode die] wherein the first organic The light conversion resin and the second organic light conversion resin are disposed on the first optical transparent colloid; and a second optical transparent colloid is coated on the first organic light conversion resin and the first organic light conversion tree wax . 54. The multicolor light emitting module of claim 45, wherein the at least one ultraviolet light nitride light emitting diode die comprises two ultraviolet rays 36 1358966 - w啐1 month correction replacement page 2011 12 On the 9th of the month, the positive replacement page; the photo-nitride emits the diode crystal grains, and the first organic light-converting resin and the second organic light-converting resin respectively cover the ultraviolet-photonitride light-emitting diode crystal grains. on. 55. The multi-color light-emitting module of claim 54, further comprising: a first optically transparent colloid coated on the ultraviolet light nitride light-emitting diode crystal grains, wherein the first The organic light conversion resin and the second organic light conversion resin are respectively located on the first optical transparent colloid corresponding to the ultraviolet light nitride light emitting diode crystal grains; and a second optical transparent colloid is coated on the first optical transparent colloid The first organic light conversion resin and the second organic light conversion resin. 56. The multicolor light emitting module of claim 54, further comprising an optically transparent colloid covering the first organic light conversion resin and the second organic light conversion resin. The multicolor light-emitting module of claim 45, wherein the ultraviolet light nitride light-emitting diode has an emission wavelength ranging between 380 nm and 405 nm. 37
TW96142909A 2007-11-13 2007-11-13 Light-emitting device and application thereof TWI358966B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96142909A TWI358966B (en) 2007-11-13 2007-11-13 Light-emitting device and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96142909A TWI358966B (en) 2007-11-13 2007-11-13 Light-emitting device and application thereof

Publications (2)

Publication Number Publication Date
TW200922373A TW200922373A (en) 2009-05-16
TWI358966B true TWI358966B (en) 2012-02-21

Family

ID=44728152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96142909A TWI358966B (en) 2007-11-13 2007-11-13 Light-emitting device and application thereof

Country Status (1)

Country Link
TW (1) TWI358966B (en)

Also Published As

Publication number Publication date
TW200922373A (en) 2009-05-16

Similar Documents

Publication Publication Date Title
JP6549165B2 (en) Light source device and light emitting device
JP3645422B2 (en) Light emitting device
JP6102273B2 (en) Light emitting device and manufacturing method thereof
CN100411202C (en) White light emitting diode
TWI324834B (en) Phosphor-converted led devices having improved light distribution uniformity
JP5528794B2 (en) AC drive type light emitting device
US7602116B2 (en) Light apparatus capable of emitting light of multiple wavelengths using nanometer fluorescent material, light device and manufacturing method thereof
JP4932078B2 (en) Light emitting device and manufacturing method thereof
US20080315217A1 (en) Semiconductor Light Source and Method of Producing Light of a Desired Color Point
JP5443959B2 (en) Lighting device
JP2010103522A (en) Ac drive type light-emitting element with delay phosphor and light-emitting element module
JP2006527501A (en) Light emitting element and phosphor of light emitting element
US20130015461A1 (en) Light-emitting Device Capable of Producing White Light And Light Mixing Method For Producing White Light With Same
TW201010125A (en) White light light-emitting diodes
CN107466428A (en) Light supply apparatus and light-emitting device
JP2005317873A (en) Light emitting diode, method for driving the same lighting device, and liquid crystal display device
JP2007005549A (en) White-light emitting diode lamp
JP5606342B2 (en) Light emitting device
JP2013239551A (en) Light emitting device
KR20220097816A (en) Led lighting apparatus
KR20100076655A (en) White light emitting device
JP2002344021A (en) Light-emitting device
JP2003234513A (en) Resin for wavelength conversion light-emitting diode allowing fluorescent dye or fluorescent pigment to be added
CN1719630A (en) White light illuminating method and apparatus capable of regulating colour temp.
TWI358966B (en) Light-emitting device and application thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees