TWI358214B - Multi-antenna transmission for spatial division mu - Google Patents

Multi-antenna transmission for spatial division mu Download PDF

Info

Publication number
TWI358214B
TWI358214B TW093135455A TW93135455A TWI358214B TW I358214 B TWI358214 B TW I358214B TW 093135455 A TW093135455 A TW 093135455A TW 93135455 A TW93135455 A TW 93135455A TW I358214 B TWI358214 B TW I358214B
Authority
TW
Taiwan
Prior art keywords
transmitting
symbol streams
data symbol
entity
vector
Prior art date
Application number
TW093135455A
Other languages
Chinese (zh)
Other versions
TW200537834A (en
Inventor
J Rodney Walton
John W Ketchum
John Edward Smee
Mark S Wallace
Steven J Howard
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200537834A publication Critical patent/TW200537834A/en
Application granted granted Critical
Publication of TWI358214B publication Critical patent/TWI358214B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • H04B1/71072Successive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0678Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different spreading codes between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering

Description

1358214 九、發明說明: 【發明所屬之技術領域】 本發明概言之係關於資料通信,更具體而言係關於在一 多輸入多輸出(ΜΙΜΟ)通信系統中用於空間劃分多重進接 (SDMA)之多天線傳輸。 【先前技術】 ΜΙΜΟ系統係使用彡個個)發射天線及多個㈧個)接收 天線進行資㈣輸。-叫個發射天線及㉞接收天線構 成之mIM⑽道可分解认個空間通道,其中 馬}。該料個空間通道可用於發射勒獨立之資料流, 以獲得更大之總通量。 在多重進接_系統中,一存取點可在任一既定時刻 與一或多個使用者終端進行通信。若該存取點與一單個使 用者終端進行通信,則該等馬個發射天線與-個發射實體 (s亥存取點或該使用者终姐_ 仉用H)相關聯’而該等馬個接收天線 與一個接收實體(該使用者終端或該存取點)相關聯。該存 取點亦可藉由SDMA同時與多個使用者終端進行通产。對 於刪AM,存取料㈣乡個天線料㈣發射及接 收,且每一該等使用者終端通常係利用一個天線進行資料 發射、利用多個天線進行資料接收。 、 對於多重進接ΜΙΜΟ系统中夕ςηλ/Γ Λ t 杻1m 糸、、克十之SDMA而言,某些關鍵之 —==正二使用者終端組進行同時發射及⑺以 炊端及/:自广统效此之方式發射資料至每-所選使用者 4及或自母一所選使用者終端發射資料。因此,在此 97550.doc 1358214 項技術中需要-種技術來有效地支援多重進接mim〇系統 之SDMA。 【發明内容】 本文闡述用於在刪〇系統中執行SDMA多天線傳輸之 技術。該等技術可與諸如以下等各種無線技術組合使用: 分碼多重進接(CDMA),正交頻分多工(〇FDM),分時多重 進接(TDMA),料。對於由多個使用者終端傳輪至一單 -存取點之上行鏈路傳輸,針對每—現用使用者終端(例 如-期望在上行鏈路上發射之終端)獲得一上行鍵路通道 響f矩陣並分解之,以獲得對應於該使用者終端的一導引 向量。若被選定進行上行鏈路傳輸,則每一使用者終端皆 使用其導引向量進行空間處理以在該上行鏈路上發射。對 於每-使用者終端,皆根據對應於該使用者終端之導引向 量及上行鏈路通道響應矩陣形成一「有效」之 道響應向量。 對於每一排程間隔(例如每一時槽),皆根據各現用使用 者終端之有效通道響應向量(或其通道響應矩陣)形 現用使用者終端’以確定最佳的一組~個使用者終端在 彼排程間隔中進行上行鏈路傳輸1例而言,可選擇 最高總通量之使用者組。實際上’如下文所述,利用使用 者終端之空間簽章及多使用者分集來選擇一組「在空間上 相容」之使用者終端同時在上行鏈路上發射。在不= 程間隔中,可選擇相同或不同數量之使用者終 鏈路傳輸。 埯仃上仃 97550.doc 1358214 每一選定進行上行鏈路傳輸之使用者終端皆根據基礎無 線技術(例如CDMA,OFDM,或TDMA)來處理其資料流, 以獲得一資料符號流。每一使用者終端皆進一步使用其導 引向量對其資料符號流執行空間處理,以獲得一組發射符 號流,其中該使用者終端處之每一天線皆對應於一個發射 符號流。然後,每一使用者終端皆自其多個天線、經由其 ΜΙΜΟ通道發射其發射符號流至存取點。該等個所選使 用者終端同時經由其各自之ΜΙΜΟ通道發射其個資料符 號流(例如每一個終端對應於一個資料符號流)至存取點。 該存取點自其多個天線獲得多個接收符號流。然後,該存 取點根據一線性或非線性接收機空間處理技術對該等接收 符號流執行接收機空間處理,以恢復由該等沁;》個所選使 用者終端發射之該等個資料符號流,如下文所述。 本發明亦闡述用於支援下行鏈路上之SDMA傳輸之技 術。下文將更詳細地闡述本發明之各態樣及實施例。 【實施方式】 本文所用「實例性」一詞意指「用作一實例、例子或例 證」。任一在本文中描述爲「實例性」之實施例皆未必應 視爲較其他實施例爲佳或有利。 本文所述之多天線傳輸技術可與諸如CDMA、OFDM、 TDMA等各種無線技術組合使用。多個使用者終端可藉由 不同之(1)正交碼通道(對於CDMA而言),(2)時槽(對於 TDMA而言),或(3)次頻帶(對於OFDM而言)來同時發射/接 收資料。CDMA系統可執行IS-2000 ’ IS-95 ’ IS-856 ’寬 97550.doc 1358214 頻-CDMA(W-CDMA),或某些其他標準。TDMA系統可執 行GSM或某些其他標準。該等不同之標準已爲此項技術所 習知。如下文所述,多天線傳輸之空間處理可緊挨著(之 前或之後)基礎無線技術之資料處理實施。 ,圖1顯示一具有若干存取點及若干使用者終端之多重進 接Μ細系統⑽。爲簡明起見,圖】中僅顯示—個存取點 Π〇。存取點通常係一與若干使用者终端進行通信之固定 台,亦可稱作基地台或某些其他術語。使用者終端既可固 定亦可行動,且亦可稱作行動台、無線裝置、或某歧盆他 術語。存取點m可在任一既定時刻在下行鏈路及上行鏈 路上與-或多個使用者終端120進行通信。下行鏈路(即正 向鍵路)係自存取點至使用者終端之通信鏈路,上行鍵路 。山鏈路)係自使用者終端至存取點之通信鍵路。一使 終端亦可與另—使用者終端進行點對點通信。 控制器1 30耦合至兮笙六1 系、,先 控制。 寻存取點並爲該等存取點提供協調及 系統⑽使用多個發射天線 :上行鏈路上進行資料傳輸。存取點u = ^ :鍵:::二行:::輪”代表多個一= 終端⑵對心行::Π)同代,個所選使用者 上行鏈路傳輸,、5代表夕個輪出、對於 言,若對庙 同代表多個輸入°對於純_入而 〜於该等 <個使用者终 種方法以碼、頻率“切旎流並非以某 辜或時間之形式多工於-起,則期望使 97550.doc 1358214 。若可以CDMA使用不同之碼通道、以OFDM中 使用不連貫之次頻帶集合等等將該等資料符號流多工於一 起’則达可大於义p。每一所選使用者終端皆發射使用者 特定資料至存取點及/或自存取點接收使用者特定資料。 一般而言,每一所選使用者終端可配備一或多個天線(即 乂,之1)。該等AM固所選使用者終端可具有相同或不同數量 之天線。 系統1〇〇可係一時分雙工(TDD)系統或頻分雙工(FDD)系 統。對於TDD系統,下行鏈路與上行鏈路共享同一頻帶。 對於FDD系統,下行鏈路與上行鏈路使用不同之頻帶。 M_系統刚亦可利用一單一載波或多個载波進行發射。 爲簡明起見,在下文之說明中假定(1)系統1〇〇爲一單載波 系統及(2)每一使用者終端皆配備有多個天線。爲清楚起 見,在下文t闡述上行鏈路上之資料傳輸。 -由存取點處之〜個天線及一既定使用者終端所處之 乂㈣個天線構成之上行鏈路MIM〇通道可由一W X 比 通道響應矩陣辽…,來表徵,該通道響 :二:階 ώ . Τ J 衣不 爲· K, K' A】2 . · A22… • * • « ·*· 其中元素方 (其中ί -1 ... 方程式(1) π且y —1 ... I, w)係存取 與使用者終端天線y·之間之#人f … 耦合(即複增益)。爲簡明起貝, 亥MW0通道爲非離散(即平坦衰落)通道’且—_、 97550.doc 1358214 射天線與接收天線對之間 一,…. 之耦σ由―早-複增益纪表示。 身又而έ ,母一使用者終端一 虛化土 不间之上行鏈路通道塑 應矩陣相關聯,該上行鏈路 胃 使用者終端處之天線數量。㈣取決於彼 對應於使用者終端w之上行絲故 切料㈣冑應料U藉 助奇異值分解或特徵值分解來「對角化」,以獲得扎 I個特徵模癌。过叩m之奇異值分解可表示爲: Ηκρ,ηι —upjn^upjn^Lupjn y ^ 方程式(2) ”中LLp爲江仏",之左特徵向量之#叮χ Λ^階麼正矩陣; ^,《爲U奇異值之〜X階對角矩陣; 爲U右特徵向量之^ x u麼正 陣;及 「w」表示共輛轉置。 麼正矩陣_由性質Μ"Μ=ί來表徵,其中i爲單位矩陣。 一麼正矩陣令之各排係相互正交。 ILp,",之相關矩陣之特徵值分解可表示爲·· δΗρΛ =Χιν,»ιΔν,η ’ 方程式(3) 其中Βα/ρ,«,爲iLp,,«之A^,,w X ;V„, 階相關矩陣;及 «,爲心,,„之特徵值之7\^, w X 階對角矩陣。 奇異值分解及特徵值分解爲此項技術所習知且(舉例而 5 )由Gilbert Strang闡述於「線性代數及其應用(^^以訂1358214 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to data communication, and more particularly to spatial division multiple access (SDMA) in a multiple input multiple output (MIMO) communication system ) Multiple antenna transmissions. [Prior Art] The ΜΙΜΟ system uses two transmit antennas and multiple (eight) receive antennas for the (four) input. - A mIM (10) channel consisting of a transmitting antenna and a 34 receiving antenna can be decomposed to recognize a spatial channel, where horse}. This spatial channel can be used to launch a separate data stream for a larger total throughput. In a multiple access system, an access point can communicate with one or more user terminals at any given time. If the access point is in communication with a single user terminal, the horse-transmitting antennas are associated with a transmitting entity (single access point or the user's final sister _ 仉 H) and the horses The receiving antennas are associated with a receiving entity (the user terminal or the access point). The access point can also be simultaneously communicated with a plurality of user terminals by SDMA. For deleting AM, accessing (4) rural antenna materials (4) transmitting and receiving, and each of these user terminals usually uses one antenna for data transmission and multiple antennas for data reception. For the multi-input system, ςλλ/Γ Λ t 杻1m 糸, 克十之 SDMA, some key -== positive two user terminal group for simultaneous transmission and (7) terminal and /: self In the same way, Guangxu transmits data to each selected user 4 and or from a selected user terminal. Therefore, a technique is needed in this 97550.doc 1358214 technique to effectively support SDMA for multiple-input mim〇 systems. SUMMARY OF THE INVENTION Techniques for performing SDMA multi-antenna transmission in a deduplication system are set forth herein. These techniques can be used in combination with various wireless technologies such as: Code Division Multiple Access (CDMA), Orthogonal Frequency Division Multiplexing (〇FDM), Time Division Multiple Access (TDMA), and materials. For uplink transmissions from multiple user terminals to a single-access point, an uplink channel channel f matrix is obtained for each active user terminal (eg, a terminal desiring to transmit on the uplink) And decomposed to obtain a steering vector corresponding to the user terminal. If selected for uplink transmission, each user terminal uses its steering vector for spatial processing to transmit on the uplink. For each user terminal, an "effective" channel response vector is formed according to the steering vector and the uplink channel response matrix corresponding to the user terminal. For each scheduling interval (eg, each time slot), the user terminal 'is determined according to the effective channel response vector (or its channel response matrix) of each active user terminal to determine the optimal group of user terminals. For the case of uplink transmission in the scheduling interval, the user group with the highest total throughput can be selected. In fact, as described below, a set of "spatially compatible" user terminals are simultaneously transmitted on the uplink using the space stamp of the user terminal and multi-user diversity. In the non-interval interval, the same or a different number of user terminal link transmissions can be selected.埯仃上仃 97550.doc 1358214 Each user terminal selected for uplink transmission processes its data stream according to a basic wireless technology (e.g., CDMA, OFDM, or TDMA) to obtain a data symbol stream. Each user terminal further performs spatial processing on its data symbol stream using its index vector to obtain a set of transmitted symbol streams, wherein each antenna at the user terminal corresponds to a transmitted symbol stream. Each user terminal then transmits its transmitted symbol stream from its multiple antennas via its channel to the access point. The selected user terminals simultaneously transmit their data symbol streams (e.g., each terminal corresponds to a data symbol stream) to their access points via their respective channels. The access point obtains a plurality of received symbol streams from its plurality of antennas. The access point then performs receiver spatial processing on the received symbol streams in accordance with a linear or non-linear receiver spatial processing technique to recover the data symbol streams transmitted by the selected user terminals , as described below. The present invention also describes techniques for supporting SDMA transmissions on the downlink. Various aspects and embodiments of the invention are set forth in more detail below. [Embodiment] The term "exemplary" is used herein to mean "serving as an example, instance or instance." Any embodiment described herein as "exemplary" is not necessarily considered to be preferred or advantageous over other embodiments. The multi-antenna transmission techniques described herein can be used in combination with various wireless technologies such as CDMA, OFDM, TDMA, and the like. Multiple user terminals can simultaneously be different by (1) orthogonal code channel (for CDMA), (2) time slot (for TDMA), or (3) sub-band (for OFDM) Transmit/receive data. The CDMA system may implement IS-2000 ' IS-95 ' IS-856 ' wide 97550.doc 1358214 frequency-CDMA (W-CDMA), or some other standard. The TDMA system can implement GSM or some other standard. These different standards are well known in the art. As described below, the spatial processing of multi-antenna transmissions can be implemented immediately before (or after) the data processing of the underlying wireless technology. Figure 1 shows a multiple access system (10) having a number of access points and a number of user terminals. For the sake of simplicity, only one access point 显示 is shown in the figure. An access point is typically a fixed station that communicates with a number of user terminals, and may also be referred to as a base station or some other terminology. The user terminal can be either fixed or mobile and can also be referred to as a mobile station, a wireless device, or a certain terminology. Access point m can communicate with - or multiple user terminals 120 on the downlink and uplink links at any given time. The downlink (ie, the forward link) is the communication link from the access point to the user terminal, and the uplink key. Mountain link) is the communication key from the user terminal to the access point. The terminal can also communicate peer-to-peer with the other user terminal. Controller 1 30 is coupled to the 16 1 system, first controlled. Finding access points and providing coordination and systems for the access points (10) using multiple transmit antennas: data transmission on the uplink. Access point u = ^ : key ::: two lines ::: round" for multiple one = terminal (2) for heart line:: Π) same generation, one selected user uplink transmission, 5 for eve round Out, for words, if the temple is represented by multiple inputs, for pure _ 入 ~ ~ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ - From, then expect to make 97550.doc 1358214. If the CDMA can use different code channels, use contiguous sub-band sets in OFDM, etc., the data symbol streams can be multiplexed to be greater than the sense p. Each selected user terminal transmits user specific data to the access point and/or receives user specific data from the access point. In general, each selected user terminal can be equipped with one or more antennas (i.e., 1). The AM-fixed user terminals may have the same or different number of antennas. System 1 can be a time division duplex (TDD) system or a frequency division duplex (FDD) system. For a TDD system, the downlink and the uplink share the same frequency band. For FDD systems, the downlink and the uplink use different frequency bands. The M_ system can also be transmitted using a single carrier or multiple carriers. For the sake of brevity, it is assumed in the following description that (1) system 1 is a single carrier system and (2) each user terminal is equipped with multiple antennas. For the sake of clarity, the data transmission on the uplink is explained below. - The uplink MIM channel formed by the ~ antenna at the access point and the 四 (four) antennas of a given user terminal can be characterized by a WX ratio channel response matrix, which is: ώ J 衣 J 衣不为· K, K' A] 2 · A22... • * • « ·*· where the element side (where ί -1 ... equation (1) π and y -1 ... I, w) is the #人f ... coupling (ie, complex gain) between the user access and the user terminal antenna y. For the sake of simplicity, the MW0 channel is a non-discrete (ie flat fading) channel and the coupling σ between the antenna and the receiving antenna pair is represented by the “early-complex gain”. In addition, the parent-user terminal is associated with an imaginary uplink channel plastic matrix, the number of antennas at the uplink gastric user terminal. (4) Depending on the upstream wire corresponding to the user terminal w, the material (U) is “diagonalized” by singular value decomposition or eigenvalue decomposition to obtain a characteristic model cancer. The singular value decomposition of 叩m can be expressed as: Ηκρ,ηι—upjn^upjn^Lupjn y ^ Equation (2) ”LLp is Jiang Yan", the left eigenvector of the #特征 Λ^ order positive matrix; ^, "It is the U-order diagonal matrix of the U singular value; it is the ^uu positive matrix of the U right eigenvector; and "w" means the total vehicle transpose. The positive matrix _ is characterized by the property Μ"Μ=ί, where i is the identity matrix. A positive matrix makes each row orthogonal to each other. The eigenvalue decomposition of the correlation matrix of ILp,", can be expressed as ··δΗρΛ =Χιν,»ιΔν,η ' Equation (3) where Βα/ρ,«, is iLp,,«, A^,,w X ; V„, order correlation matrix; and «, for the heart, „the eigenvalue of the 7\^, w X-order diagonal matrix. Singular value decomposition and eigenvalue decomposition are known in the art and (for example, 5) are described by Gilbert Strang in "Linear Algebra and Its Applications (^^

Algebra and Its Applications)」(第二版,Academic press, 1980年)中。 如方程式(2)及(3)所示,之各排係艮〃"”之右特徵向 97550.doc 1358214 2旦⑼之特徵向!。也”之右特徵向量亦稱作「導引」 °里’可由使用者終端⑺用於空間處理 4± ^ At , 人社 kluP,m 之 個 …上發射資料。該等特徵模態可視爲藉由分解獲得 之正交空間通道。 對角矩陣匕”沿對角線包含非負零值而在其他位置上包 含零。該等對角線元素稱作^之奇異值,其代表對應於 Ul個特徵模態的通道增益。u之奇異值亦爲 m特徵值之平方根。u各奇異值可自最大至最 J排序,中之特徵向量可相應地排序。主(即主要的) 特徵核態係與u之最大奇異值(其係排序後之第一奇 異值)相關聯之特徵模態。對應於iL”之主特徵模態之特 徵向1係在排序後U之第—排,且標記爲〜〆 在一實際系統中,僅可獲得iL_之估計值,且僅可導出 ,1_及ILP,„^估計值。爲簡明起見,在本文之說明 中假疋通道估計及分解無錯誤。 對於SDMA而言’ αγ„ρ個使用者終端可同時在上行鍵路上 發射資料至存取點。每一使用者終端皆可使用—導引向量 對其資料執行空間處理’該導引向量可⑴根據對應於彼終 端之無線通道之主特徵模態之特徵向量W或(2)以某種其 他方式導出《該等個使用者終端中每一使用者終端皆 可如下文所述使帛「束成形」或「束導引」在其上行鍵路 ΜΙΜΟ通道之主特徵模態上發射資料。 1.束成形 對於束成形而言’每—使用者終端m皆如下式所示使用 97550.doc •12- 1358214 其導引向量來處理其資料符號流,以獲得 個發射符號流: ^up^n ~lup^ 'SuPtm , j # A (4 ) 其中爲欲由使用者終端W發射之資料符號;及 ZLup, m係一八《ί,/η X 1維向量,其具有欲自使用者終端w處之 AUm個天線發送之個發射符號。 本文中所述「資料符號」係指一資料調變符號,「引示 符號」則係指一引示調變符號。儘管爲簡明起見在方程式 (4)中未圖示,然而,每一使用者終端w皆可進一步使用一 比例因數來按比例縮放向量Lp,,»中個發射符號中之 每一發射符號,以使該等個發射符號之總能量爲1或 某一其他選定值。每一使用者終端W皆藉由其上行鏈路 ΜΙΜΟ通道將其7\^,,„個發射符號流發射至存取點。 在存取點處,所獲得的對應於每一使用者終端m的接收 符號可表示爲: —up,m Βιιρ,ιιι ~^-vp^nY.upim^upj7i ^Bup^n ~—up^ff^n^up^n ιψ^ι 方程式(5) 其中爲一 x 1維向量,其具有自對應於使用者終 端m之個存取點天線獲得之個接收符號; kup,e//,,«爲一對應於使用者終端所之x 1維「有效」上行 鍵路通道響應向量,其爲= ;及 bp, m爲一對應於使用者終端历之7Vap X 1維雜訊向量。 每一使用者終端W所執行之空間處理會有效地將其具有 一通道響應矩陣ILp之ΜΙΜΟ通道變換成一具有一通道響 應向量之單輸入多輸出(SIMO)通道。 97550.doc -13- 1358214 存取點處對應於所有Μ〆固同時進行發射之使用者終端 之接收符號可表示爲: 〜=iW W |‘令― m 1 , 方程式(6) 具有由該等個使用者终 fP =[*%,1 ‘,2 ,〜Γ;Algebra and Its Applications) (Second Edition, Academic Press, 1980). As shown in equations (2) and (3), the right features of each row 艮〃"" are toward the characteristics of 97550.doc 1358214 2 (9). The right feature vector is also called "guide". ° ° can be used by the user terminal (7) for spatial processing 4 ± ^ At, human society kluP, m ... launch data. These characteristic modes can be regarded as orthogonal spatial channels obtained by decomposition. The diagonal matrix 匕" contains non-negative zero values along the diagonal and zeros at other locations. These diagonal elements are called singular values of ^, which represent the channel gains corresponding to the U1 eigenmodes. The value is also the square root of the m eigenvalue. The singular values of u can be ordered from the largest to the most J, and the eigenvectors can be ordered accordingly. The main (ie main) eigenstates and the largest singular value of u (the ordering The first singular value is associated with the characteristic modality. The characteristic of the main eigenmode corresponding to iL" is 1 in the first row of the sorted U, and is marked as ~〆 in an actual system, only Obtain the estimated value of iL_, and only derive, 1_ and ILP, „^ estimates. For the sake of simplicity, in this description, the false channel estimation and decomposition are error-free. For SDMA, 'αγ„ρ The user terminal can simultaneously transmit data to the access point on the uplink key. Each user terminal can perform spatial processing on its data using a steering vector. The steering vector can (1) according to a feature vector W or (2) corresponding to a dominant modality of a wireless channel of the terminal. Method Derivation "Each user terminal in each of the user terminals can cause the "beam shaping" or "beam steering" to transmit data on the main characteristic mode of its uplink key channel as described below. 1. Beamforming For beamforming, 'per-user terminal m' is used as follows: 97550.doc • 12- 1358214 Its steering vector is used to process its data symbol stream to obtain a stream of transmitted symbols: ^up^ n ~lup^ 'SuPtm , j # A (4 ) where is the data symbol to be transmitted by the user terminal W; and ZLup, m is a series of eight ί, / η X 1 dimensional vector, which has a user terminal The transmitted symbol sent by the AUm antenna at w. The term "data symbol" as used herein refers to a data modulation symbol, and "introduction symbol" refers to a derivative symbol. Although not shown in equation (4) for simplicity, each user terminal w may further use a scaling factor to scale the vector Lp, » each of the transmitted symbols, So that the total energy of the transmitted symbols is 1 or some other selected value. Each user terminal W transmits its 7#^, „ transmit symbol stream to the access point by its uplink channel. At the access point, the obtained corresponding to each user terminal m The receiving symbol can be expressed as: —up,m Βιιρ,ιιι ~^-vp^nY.upim^upj7i ^Bup^n ~—up^ff^n^up^n ιψ^ι Equation (5) where is an x a 1-dimensional vector having a received symbol obtained from an access point antenna corresponding to the user terminal m; kup, e//,, « is an x 1st "valid" uplink key corresponding to the user terminal The channel channel response vector, which is = ; and bp, m is a 7Vap X 1 -dimensional noise vector corresponding to the user terminal. The spatial processing performed by each user terminal W effectively transforms its channel having a channel response matrix ILp into a single input multiple output (SIMO) channel having a channel response vector. 97550.doc -13- 1358214 The receiving symbol at the access point corresponding to all tamping simultaneously transmitting user terminals can be expressed as: ~=iW W | '令- m 1 , equation (6) has such User end fP = [*%, 1 ', 2, ~Γ;

其中爲一 A^p X 1維向量,其 端發射之Ip個資料符號,其爲IWhere is an A^p X 1 -dimensional vector, and its Ip data symbols are transmitted at the end, which is I

Rup.eff爲一對藤於所有Ν 效上行鏈路通道響應矩陣, ^個使用者終端之Ναρ X Nup階有 其爲BL;^ = [^^,丨心抑,及 江叮爲存取點處的_ 1維雜訊向量。 存取點可使用諸如以下等各種接收機處理技術來恢復由 该等個使用者終端發射之Ip個資料符號流:通道相關 矩陣求反(CCMI)技術(其亦通常稱作一逼零技術),最小均 方誤差(MMSE)技術,順序性干擾消除(SIC)技術,等等。 A. CCMI空間處理 對於CCMI技術,存取點可按下式執行接收機空間處 理: ~ B.up^ (S.up,eff 5»p + BUp ), Ί, 方程式⑺ 其中爲一對應於CCMI技術之X A^a/J階空間滤波 耘式矩陣,其爲n二二#,其中; 爲一 X 1維向量’其具有使用CCMI技術時對應於 個使用者終端之個已恢復資料符號;及 爲CCMI已濾波雜訊。 爲簡明起見,假定雜訊爲具有零平均值、一方差 97550.doc -14- θ、及一自協方差矩陣之加性白高斯雜訊 (AWGN),其中五[幻爲X之預期值。在此種情況下,對應於 每一使用者終端历之已恢復資料符號流也〜}之訊號對雜訊 及干擾比(SNR)可表示爲: ,其中所=1…, 方程式(8) 其中户《μ«爲使用者終端w所用之發射功率; 7’請爲Rj<p,e//·之弟W個對角線元素;及Rup.eff is a pair of vines in all effective uplink channel response matrices. The Ναρ X Nup order of a user terminal has BL; ^ = [^^, 丨心 suppressed, and 叮 叮 is the access point _ 1D noise vector at the location. The access point may use various receiver processing techniques, such as the following, to recover the Ip data symbol streams transmitted by the user terminals: Channel Correlation Matrix Inversion (CCMI) technology (which is also commonly referred to as a zero-forcing technique). , Minimum Mean Square Error (MMSE) techniques, Sequential Interference Cancellation (SIC) techniques, and more. A. CCMI spatial processing For CCMI technology, the access point can perform receiver spatial processing as follows: ~ B.up^ (S.up, eff 5»p + BUp ), Ί, equation (7) where one corresponds to CCMI The XA^a/J-order spatial filtering matrix of the technique, which is n 二二#, where; is an X 1 -dimensional vector 'which has a recovered data symbol corresponding to a user terminal when using CCMI technology; Filtered noise for CCMI. For the sake of simplicity, the noise is assumed to be an additive white Gaussian noise (AWGN) with zero mean, one side difference 97550.doc -14- θ, and one autocovariance matrix, five of which are the expected values of X . In this case, the signal-to-noise and interference ratio (SNR) corresponding to the recovered data symbol stream of each user terminal can be expressed as: where =1..., equation (8) The user "μ« is the transmission power used by the user terminal w; 7' is the diagonal element of the brother Rj<p,e//·;

Yccmi,’”爲使用CCMI技術時使用者終端所之snR。 歸因於^»,e//之結構’ C C ΜI技術可放大雜訊。 B. MMSE空間處理 對於MMSE技術,導出一空間濾波程式矩陣,其導 出方式使根據该MMSE空間據波程式估計出之資料向量與 資料向量之間之均方誤差最小化。該MMSE準則可表示 爲: g^[(M 剛心 ΆΜ 崎 rn)] ’ 方程式(9) 其中延《_爲對應於MMSE技術之X 階空間濾波程 式矩陣。 在方程式(9)中提出之最佳化問題解決方案可藉由各種 方式獲得。在一實例性方法中,以如下形式導出MMSE空 間渡波程式矩陣: = 叫对 Η^ρ,ς^+〇: J] ·】。 士 γ 、 方程式(10) 該空間濾波程式矩陣包含個列,該等汉叮個列對 應於該等#„p個使用者終端之斤吓個MMSE空間濾波程式列 向量。對應於每一使用者終端之MMSE空間濾波程式列向 9755〇,d〇c -15 - 1358214 虿可表示爲®— =S二^,其中e = 二+ <1广。 該存取點按下式執行接收機空間處理:Yccmi, '" is the snR of the user terminal when using CCMI technology. Due to ^», e// structure 'CC ΜI technology can amplify noise. B. MMSE spatial processing for MMSE technology, export a spatial filter program The matrix is derived in such a way that the mean square error between the data vector estimated from the MMSE spatial data program and the data vector is minimized. The MMSE criterion can be expressed as: g^[(M 刚心ΆΜ崎 rn)] ' Equation (9) where _ is the X-order spatial filter matrix corresponding to the MMSE technique. The optimization problem solution proposed in equation (9) can be obtained in various ways. In an exemplary method, The MMSE space wave matrix is derived as follows: = Η^ρ, ς^+〇: J] ·]. γ, equation (10) The spatial filter matrix contains columns, which correspond to These #„p user terminal jacks scare an MMSE spatial filter program column vector. The MMSE spatial filter program corresponding to each user terminal is listed as 9755 〇, d〇c -15 - 1358214 虿 can be expressed as о_ = S ^ ^, where e = two + <1 wide. The access point performs receiver spatial processing as follows:

方程式(11) /、中D"_se爲一 XW«p階對角矩陣,其對角線元素爲 之對角線元素,即fi_=diag; 曰爲一對應於MMSE技術之M維已恢復資料符號向 里,及2™„«=Μ哪,sup MMSE已遽波雜訊。 在方程式(U)中,MMSE空間紐程式提供〜之未正規 化估計值,且由對角矩陣進行之換算提供&之正規化 估計值。 對應於每一使用者終端讲之已恢復資料符號流 > iti/7U6,nt y SNR可表示爲: ,其中 w=l... 方程式(12) 及 句 mm—Uhnmse, %謂ie,,"爲在MMSE技術中每一使用者終端W2SNR。 C. 順序性干擾消除空間處理 存取點可使用SIC技術來處理該等〜個接收符號流以 恢復該等〜個資料符號流。董子於SIC技術而纟,存取點首 先對該等‘個接收符號流執行空間處理⑼如.使用c(:Mi, mMSE,或某種其他技術),並獲得—個已恢復資料符號 流。然後,該存取點處理(例如解調/符號解映射,解交 97550.doc -16- 1358214 解馬)忒已恢復資料符號流,以獲得一已解碼資料 ^。、接下來,該存取點估計該流對其他‘·丨個資料符號流 化成之干擾並自戎等、個接收符號流中消除所估計干 擾X獲得個已修改符號流。然後,該存取點對該等 〜個已修改$號流重複相同之處理,以恢復另—資料符 號流。 對於sic技術而言,級£(其中η..〜)之輸入(即所接收 或已修改之)符號流可表示爲: ELW = H;^s;+n;, 方程式(13) 其中!:"t爲一 X 1維向量,其具有對應於級f ^個輸 入符號,且對於第一級,; si爲一對應於在級{處尚未得到恢復之Mr個資料符號流 之XI維向量,其中心=\_m ;及 试^爲一對應於級f之階已減小之有效通道響應 矩陣。 方程式(13)假定消除了在£_丨個先前級中恢復之資料符號 流。當恢復並消除一資料符號流時,在每一級中,該有效 通道響應矩陣e//之維數皆順次減少一排。對於級β,係 藉由移除原始矩陣过叩,你中對應於在先前級中已恢復之f 1 個資料符號流的£-1個排來獲得已減小之有效通道響應矩 陣’即sU=[]Wj,乂⑽心,其中爲一對應 於使用者終端之ΛΓαρ XI維有效通道響應向量。對於級疋, 在各先前級中恢復之fl個資料符號流帶有下標认;2…;>/},且 尚未恢復之個資料符號流帶有下標认yw…坎}。 97550.doc •17· 工358214 對於級f ’存取點使用CCMI、MMSE、或某種其他技術 根據該已減小之有效通道響應矩陣ML (而非原始矩陣 也/^//)導出一 χΛ^階空間濾波程式矩陣。由於每一 級之Sk^皆不相同,因而每一級之空間濾波程式矩陣ML亦 皆不相同。 存取點按下式將對應於^^^個已修改符號流之向量4乘 以空間濾波程式矩陣M:fc,以獲得一對應於%,個所偵測符 號流之向量砬:Equation (11) /, D"_se is an XW«p-order diagonal matrix whose diagonal elements are diagonal elements, ie fi_=diag; 曰 is a M-dimensional recovered data corresponding to MMSE technology The symbol is inward, and 2TM „«=Μ,, sup MMSE has chopped noise. In equation (U), the MMSE space program provides an unnormalized estimate of ~ and is provided by the conversion of the diagonal matrix. The normalized estimate of & corresponds to the recovered data symbol stream for each user terminal> iti/7U6, nt y SNR can be expressed as: where w = l... Equation (12) and sentence mm - Uhnmse, % means ie,, " is the W2SNR of each user terminal in the MMSE technology. C. Sequential Interference Cancellation Space Processing Access Points can use SIC techniques to process the ~ received symbol streams to recover such ~ A data symbol stream. Dong Zi is stunned by SIC technology. The access point first performs spatial processing on these 'received symbol streams (9), such as using c(:Mi, mMSE, or some other technique), and obtains - The recovered data symbol stream is then processed by the access point (eg demodulation/symbol demapping, 975) 50.doc -16- 1358214 Solution 忒 The data symbol stream has been restored to obtain a decoded data ^. Next, the access point estimates the stream's interference with other '· 资料 data symbols and The modified interference stream is obtained by eliminating the estimated interference X in the received symbol stream, and then the access point repeats the same processing for the ~ modified $ number stream to recover the other data symbol stream. For sic technology, the input (ie, received or modified) symbol stream of level £ (where η..~) can be expressed as: ELW = H; ^s; +n;, equation (13) where !:&quot ;t is an X 1 -dimensional vector having an input symbol corresponding to the level f ^, and for the first level, si is a XI-dimensional vector corresponding to the Mr data stream of the data that has not been recovered at the level {, Its center = \_m ; and test ^ is a valid channel response matrix corresponding to the order of the level f. Equation (13) assumes that the data symbol stream recovered in the previous stage is eliminated. When eliminating a data symbol stream, in each stage, the dimension of the effective channel response matrix e// Decrease by one row. For level β, by removing the original matrix, you get the reduced effective channel corresponding to £-1 rows of the f 1 data symbol streams that have been recovered in the previous level. The response matrix 'is sU=[]Wj, 乂(10), which is a valid channel response vector corresponding to the user's terminal ΛΓαρ XI dimension. For the level fl, the fl data symbol streams recovered in each previous stage are Mark; 2...;>/}, and the data symbol stream that has not been recovered has the following label yw...kan}. 97550.doc •17· 358214 For class f 'access points using CCMI, MMSE, or some other technique to derive a 根据 based on the reduced effective channel response matrix ML (instead of the original matrix also /^//) ^ Order spatial filter matrix. Since the Sk^ of each level is different, the spatial filter matrix ML of each stage is also different. The access point multiplies the vector 4 corresponding to the modified symbol stream by the spatial filter matrix M:fc to obtain a vector corresponding to %, the detected symbol stream:

Isic = MLrL » ~5tfic§ifp +5i»e J 方程式(14) 其中=mLh。且爲對應於級{之已濾波雜訊。 然後,該存取點選擇該等Mr個所偵測符號流之一進行恢 復’其中該選擇準則可基於SNR及/或其他因素。舉例而 言,可選擇該等個所偵測符號流中具有最高snr之所偵 測符號流進行恢復。由於在每一級中僅恢復一個資料符號 流’因而該存取點可僅導出一個對應於欲在級^中恢復之 資料符號流(V;,}之1 xiVflp維空間濾波程式列向量扭丨:。列向 量:爲矩陣之一列。在此種情形中,級f的用於恢復資 料符號流沁J之空間處理可表示爲: ’ 方程式(15) 其中么爲齓中對應於資料符號流沁之列。 總之’該存取點按比例縮放所伯測符號流氏;./,},以獲得 一已恢復資料符號流並進一步解調、解交插及解碼 97550.doc •18- 該流得解碼f料流{<u。該存取點亦形成— 5亥流對其他尚未得到恢復之資料符號流之干擾之估計值。 爲估冲4干擾’存取點以與在使用者終端h處相同之執行 方式再為碼、父插及調變該已解碼資料流U,並獲得— 「經再調變」符號流{‘},該「經再調變」符號流U係 剛恢復之㈣符號流丨W之估計值 '錢,存取點使用對 應於使用者終端力之有效通道響應向量1W",對該經再調變 之符號流進行空間處理,以獲得一具有由該流造成之 個干擾分量之向量iA。’然後,自級£之‘個已修改符號流 申減去該等乂〃個干擾分量l,以獲得下一級趴1之 ^已修改符號流C,即叫該已修改符 代表假右未發射資料符號流{<α}(即假定有效執行干擾 消除)時該存取點將接收到的流。 存取點在個順次級中處理該等汄〃個接收符號流。在 每一級中,存取點皆(1)對來自前一級之#。〆固接收符號流 或個已修改符號流執行接收機空間處理,以獲得一個 已恢復資料符號流’(2)處理該已恢復資料符號流,以獲得 一對應之已解碼資料流,(3)估計並消除因該流造成之干 擾’及(4)獲得下一級之個已修改符號流。若可精確地 估計並消除因每一資料流引起之干擾,則此後之已恢復資 料流會經受更小之干擾且可獲得更高之SNr。 對於SIC技術’每一已恢復資料符號流之snr皆相依於 (1)每一級所用之空間處理技術(例如CCMI或MMSE),(2) 該資料符號流在其中得到恢復之具體級,及(3)因在後續級 97550.doc -19- 1358214 中得到恢復之資料符號流造成之干擾量。一般而言,由於 消除了來自在先前級中得到恢復之資料符號流之干擾’因 而在後續級中得到恢復之資料符號流之SNR會漸次提高。 因而此容許對後續恢復之資料符號流使用更高之速率。 2·束導引 對於束導引而言’每一使用者終端所皆使用一使用導引 向置中之相位資訊導出之正規化導引向量L^執行空間 處理。該正規化導引向量可表示爲: 无州=[Je风.丨凡.,…如〜叫r ’ 方程式(16) 其中J爲一常數(例如j=1/V^T);及 爲使用者終端w處天線/之相位,其 θαί = = tan_ll ] LRe(W>J 〇 方程式(I 7)Isic = MLrL » ~5tfic§ifp +5i»e J Equation (14) where =mLh. And is the filtered noise corresponding to the level {. The access point then selects one of the Mr detected symbol streams for recovery' wherein the selection criteria can be based on SNR and/or other factors. For example, the detected symbol stream with the highest snr of the detected symbol streams can be selected for recovery. Since only one data symbol stream is restored in each stage, the access point can only derive one xiVflp dimensional spatial filter program vector vector corresponding to the data symbol stream (V;,} to be recovered in the level ^: Column vector: is a column of the matrix. In this case, the spatial processing of the level f for restoring the data symbol stream J can be expressed as: ' Equation (15) where 齓 corresponds to the data symbol flow In summary, the access point scales the quantized symbol stream; ./,} to obtain a recovered data symbol stream and further demodulates, deinterleaves, and decodes 97550.doc •18- Decoding the f stream {<u. The access point also forms an estimate of the interference of the 5 stream to other unrecovered data symbol streams. To estimate the 4 interference 'access point' with the user terminal h The same execution mode is to code, parent insert and modulate the decoded data stream U, and obtain - "remodulated" symbol stream {'}, the "remodulated" symbol stream U system just recovered (4) The estimated value of the symbol flow ' 'money, the use of the access point corresponding to the user terminal The channel response vector 1W" spatially processes the remodulated symbol stream to obtain a vector iA having an interference component caused by the stream. Then, the modified symbol stream from the level is decremented The equal interference component 1 is obtained to obtain the modified symbol stream C of the next level ,1, that is, the modified symbol represents the pseudo right untransmitted data symbol stream {<α} (ie, the interference cancellation is effectively performed The access point will receive the stream. The access point processes the received symbols stream in a secondary subroutine. In each level, the access point is (1) paired from the previous level. The received symbol stream or the modified symbol stream performs receiver spatial processing to obtain a recovered data symbol stream '(2) processes the recovered data symbol stream to obtain a corresponding decoded data stream, and (3) estimates and Eliminate the interference caused by the flow' and (4) obtain a modified symbol stream of the next level. If the interference caused by each data stream can be accurately estimated and eliminated, then the recovered data stream will experience a smaller one. Interference and get a higher SNr For SIC technology, the snr of each recovered data symbol stream depends on (1) the spatial processing technology used by each stage (such as CCMI or MMSE), and (2) the specific level at which the data symbol stream is recovered, and 3) The amount of interference caused by the recovered data symbol stream in the subsequent stage 97550.doc -19- 1358214. In general, since the interference from the data symbol stream recovered in the previous stage is eliminated, it is at a subsequent stage. The SNR of the recovered data symbol stream will gradually increase. This allows a higher rate to be used for subsequent recovered data symbol streams. 2. Beam guidance for beam guidance 'Each user terminal uses one The spatial processing is performed using the normalized steering vector L^ derived from the phase information in the steering orientation. The normalized steering vector can be expressed as: no state = [Je wind. 丨凡., ... such as ~ called r ' Equation (16) where J is a constant (eg j = 1 / V ^ T); and for use The phase of the antenna/ at the terminal w, θαί = = tan_ll ] LRe(W>J 〇 equation (I 7)

如方程式(16)所示,之# L 〜 之'/,«個兀素之大小相等。如方 程式(17)所示,中每一开去+ 松 * ^ 素之相位荨於中一對應元 、之目位(即U系自% W獲得,其中‘=卜_、。 / 一使用者終心皆按下式制其正規化導^量I來 二間處理其資料符號流丨 流: 以獲仔《個發射符號 —*&lt;Ρ^ι ~Σμρμ» 'S^ 方程式⑽中之常數义之選 方程式⑽ 符號之蛐台t县s , 使向里一柳中Ιο»個發射 夺號之、“量爲1或某個其他選定值 對應於每-使用者終端在東導引情況下’ 向量1,^可表示爲·· % Χ 1維有效上行鏈路通道響應 97550.doc -20- 1358214 —HP^jn ~ ^ιφ^ηΣιφ^ 方程式(19) · 因而’對於束導引而言,對應於所有‘個使用者終端-,階有效上行鏈路通道響應矩陣鼠^爲‘ =[Ενι^ ^硪,2 …£咐〜;1。 存取點可使用上述CCMI、MMSE或SIC技術、或某種其 他技術執行接收機空間處理。然而,空間遽波程式矩陣係 使用矩陣鱼衬而非矩陣iLP.e//導出。 3.SDMA傳輸 圖2顯示-在SDMA之上行鏈路上執行多天線傳輸之過程鲁 2〇〇。首先,對於每一期望在上行鏈路上進行發射之現用 使用者終端’皆獲得—上行鏈路通道響應矩陣u塊 210)然後,分解對應於每一使用者終端之矩陣I”,以 獲得一對應於該使用者終端之導引向量^或一、塊. 212)。然後’對於每一使用者終端,皆根據對應於該使用 者終端之導引向量及上行鏈路通道響應矩陣形成一有效上 行鍵路通道響應向量|^^(塊214)。塊21〇至214係用於執籲 订通道估计及分解’其可由存取點、由使用者終端,或由 二者同時執行。 接下來,形成不同組現用使用者終端,並根據其有效上 行鍵路通道響應向量,你或其上行鏈路通道響應矩陣 4價之(塊220)。可如下文所述實施評價。然後,選 擇最佳的一組鸠〃個使用者終端進行發射(亦爲塊2 2 0)。將 · 欲由每—所選使用者終端使用之速率(根據塊220中之評價 · 獲得)發送至該使用者終端(塊222)。塊22〇及222係用於進 97550.doc 行使用者排程,其通常由存取點執行。 二所選使用者終端皆使用其導引向量^或^對其資 料符號机{〜&quot;„}執行空間處理,並將U發射符號流自 天線鉍由其MIM0通道發射至存取點(塊230)。 該等~個所選使用者終端經由其Μ鹏通道同時發射其 〜個資料符號流至該存取點。塊23〇係用於進行資料傳 輸’其由每一所選使用者終端執行。 Λ X存取點自其個天線獲得乂Ρ個接收符號流 (塊24〇)。然後,該存取點根據CCMI、MMSE、SIC或某種 其他,對該等~個接收符號流執行接收機空間處理, 以獲得、個已恢復資料符號流’該等‘個已恢復資料符 ,流係由該等^個所選使用者終端發射之〜個資料符號 流之估計值(塊242)。塊24()及242用於進行資料接收, 存取點執行。 ~ °選擇多個使用者終端同時在上行鏈路上發射。可根據 :種因素來選擇使用者。某些因素可能係關於系統約束條 要求’例如服務品質、最大料、平均資料速率、等 等。該等因素可能需要針對每一使用者終端得到滿足。其 他因素可能係、關於系統效能,其可由總系統通量或某些其 他效能指標來量化…排程方案可根據—或多個量度及— 或多個因素來評價待傳輪之使用者終端。+同 : 可使用不同之吾;s: ± 系 门之$度、慮及不同之因素及/或以不同方式對 该專置度及因素加權。 無响所選用之特㈣程方案如何,皆可根據該排程方案 97550.doc •22· 1358214 來評價不同組使用者終端。可利用各使用者终端之「空間 簽章」(例如其ΜΙΜ0通道響應)及多使用者分集來選擇 「最佳」的一組「在空間上相容」之使用者終端進行同時 發射。空間相容性可由諸如總通量或某一其他效能量度等 量度來量化。最佳使用者組可爲一個獲得最高之量度記分 (例如最高總通量)同時符合系統約束條件及要求者。 爲清楚起見,下文將闡述一根據總通量來選擇使用者终 端之具體排程方案。在下文之說明中,有肩使用者終 端現用並期望在上行鏈路上發射資料。 圖3顯示一用於評價及選擇欲在上行鏈路上進行發射之 使用者終端之過程220a。過程220a代表一具體排程方案, 其可用於圖2中之塊220。首先,將一最高總通量變數 設定爲零(塊310)。 自該等個現用使用者終端中選擇新的一組使用者終 端(塊3 1 2)。該使用者組構成一欲受到評價之假說並標記.爲 = Κ”’2…W&quot;〜} ’其中《表示正受到評價之第《個使用者組, w„,,·係組《中之第z•個使用者終端。對於使用者組”,使用對 應於組《中個使用者終端之有效上行鏈路通道響應向量 至匕,心•〜構成一有效上行鏈路通道響應矩陣 (塊 314)。 然後’根據有效上行鏈路通道響應矩陣、使用由 存取點所用之CCMI、MMSE、SIC或某種其他技術來計算 組w中每一使用者終端之SNR(塊316)。在使用CCMI及 MMSE技術時,使用者終端之SNR可分別如方程式(8)及 97550.doc -23, 1358214 ⑽所不進行計算。在使㈣c技術時,使用者終端之讀 係相依於各使㈣終端得到恢復之次序。對於SIC技術而 言,可評價-或多種使用者終端定序。舉例而言,可評價 一其中由存取點處理每一級中且古 可成T具有最高SNR之使用者終端 之具體定序。總之,★且w φ Μ相技m ''中個使用者終端之SNR標記爲 ^&quot;,ι 7„λ — y„,frv} 〇 然後,根據使用者終端之雜按下式計算組„中每一使 用者終端之通量(塊318): / X. i+y ’ 其中卜, rm = -i〇g2 方程式(20) 量义可按下式計算(塊320): 其中〜.爲一正的常數,其反映欲由使用者終端、使用 之編碼及調變方案所達成之理論容量之比值(例如對於一 相對向農容量爲3分貝之編媽及調變方案而言,〜=2), 且〜爲對應於使用者終端〜之通量或頻譜效率,其以位 凡/秒•赫師PS/HZ)爲單位表*。由使用者組4成之總通 方程式(21) 然後’判定使用者組;z之總冑量九是否大於迄今已評價 之所有使用者組所獲得之最大總體容量(塊33〇)。若答案爲 疋,則保存使用者組《及該組之總通量塊332)。反之, 捨棄使用者纟且《。 後,判定是否所有使用者組皆已得到評價(塊34〇)。 右答案爲是,則該過程返回至塊312來選擇另一組 終端進行評價。反之,排程所保存組中之各使用者終端進 97550.doc -24- 1358214 行上行鏈路傳輸(塊342)。 對於上述實施例,係使用一基於理論容量之量度(雖然 帶有一補償因數C/U)來選擇最佳使用者組進行上行鏈路傳 輸。在另一實施例中,則使用一基於可達成之通量之量度 來選擇最佳使用者組。對於該實施例而言,可根據該系統 所支援的一組「速率」來評價各使用者組。該等速率可視 爲在方程式(20)中計算出之通量之量化值。每一非零速率 皆與具體編碼及調變方案、一特定頻譜效率(其通常以 bps/Hz爲單位來表示)、及一特定之所需SNR相關聯。可藉 由電腦模擬、經驗量測值等等並根據一 AWGN通道之假 定,來確定每一速率所需之SNR。一查詢表(LUT)可儲存 u、’且所支援速率及其所需。每一使用者終端之snr皆 映射至一所選速率,該所選速率係該查詢表中之最高速 率,具有一等於或小於該使用者終端之SNR的所需snr。 然後,累加每一組中所有使用者終端之所選速率,以獲得 該組之總速率。然後,排程具有最高總速率之使用者組進 行傳輸。 爲確定進行傳輸之最佳使用者組,可評價不同尺寸之使 用者組。舉例而言,可首先評價具有—個使用者終端(即 之組,然後接著評價具有兩個使用者終端(即#^ = 2)之組’依此類推,最德輝_伸日 只作联傻T严饧具有A/叮個使用者終端(即 Λ^=Α^βρ)之組。 視〜’ AU及~之值而定’爲徹查最佳使用者組,可 月b需要δ平價大量使用者组。可益 嘗 了糟由將各現用使用者終端按 97550.doc -25* 1358214 優先次序排序、考慮其他因素等等來減少欲評價之使用者 組之數量。可根據各種因素確定每一現用使用者終端之優 先權,例如根據使用者終端之服務類別(例如高級或普 通)、使用者終端所達成之平均通量、使用者終端鬚髮送 之資料置、使用者終端所經歷之延遲、等等。每一使用者 終端之優先權可隨時間更新,以反映使用者終端之當前狀 態。作爲-實例,在每-排程Γβ1隔中僅可評價^個最高 優先權使用者終端。As shown in equation (16), the number of 'L' and '/, « individual elements are equal. As shown in equation (17), the phase of each open + loose * ^ 荨 is in the middle one corresponding to the target position (ie, the U system is obtained from % W, where '= _ _, . / a user In the end, the normalized derivative I is used to process the data symbol stream turbulence: to obtain the constant in the "one emission symbol - * &lt; Ρ ^ι ~ Σ μρμ» 'S^ equation (10) The choice of the righteous formula (10) symbol of the Taiwanese t county s, so that the Xiangli Liuzhong Ι ο 个 发射 发射 » » » » » » » » » » » 发射 » “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ Vector 1,^ can be expressed as ·· % Χ 1D effective uplink channel response 97550.doc -20- 1358214 —HP^jn ~ ^ιφ^ηΣιφ^ Equation (19) · Thus 'for beam guidance, Corresponding to all 'user terminals', the order of the effective uplink channel response matrix is '=[Ενι^ ^硪, 2 ... £咐~; 1. The access point can use the above CCMI, MMSE or SIC technology, Or some other technique to perform receiver spatial processing. However, the spatial chopping matrix is derived using a matrix fish lining instead of the matrix iLP.e//. Figure 2 shows the process of performing multi-antenna transmission on the uplink of the SDMA. First, for each active user terminal that is expected to transmit on the uplink, the uplink channel response matrix is obtained. Block 210), then decomposing the matrix I" corresponding to each user terminal to obtain a navigation vector corresponding to the user terminal or a block. 212). Then, for each user terminal, an effective uplink channel response vector is formed according to the steering vector and the uplink channel response matrix corresponding to the user terminal (block 214). Blocks 21A through 214 are used to perform channel estimation and decomposition 'which may be performed by the access point, by the user terminal, or by both. Next, different sets of active user terminals are formed and you or its uplink channel response matrix is priced according to its valid uplink channel response vector (block 220). The evaluation can be carried out as described below. Then, select the best set of user terminals to transmit (also block 2 2 0). The rate to be used by each of the selected user terminals (obtained according to the evaluation in block 220) is sent to the user terminal (block 222). Blocks 22 and 222 are used to enter the user schedule, which is typically performed by the access point. The selected user terminal uses its steering vector ^ or ^ to perform spatial processing on its data symbol machine {~&quot; „}, and transmits the U-transmitted symbol stream from the antenna 铋 from its MIM0 channel to the access point (block 230) The selected user terminals simultaneously transmit their ~data symbol streams to the access point via their Kun Peng channel. Block 23 is used for data transmission 'which is performed by each selected user terminal The ΛX access point obtains one received symbol stream from its antenna (block 24〇). Then, the access point performs reception on the received symbol streams according to CCMI, MMSE, SIC or some other. The machine space processing obtains a recovered data symbol stream 'these' recovered data symbols, and the stream is an estimated value of the data symbol streams transmitted by the selected user terminals (block 242). 24() and 242 are used for data reception and access point execution. ~ ° Select multiple user terminals to transmit simultaneously on the uplink. Users can be selected according to various factors. Some factors may be related to system constraint Requirements 'eg service quality, maximum material, flat Data rate, etc. These factors may need to be met for each user terminal. Other factors may be related to system performance, which may be quantified by total system throughput or some other performance indicator... scheduling options may be based on - Or multiple measures and - or a number of factors to evaluate the user terminal of the to-be-transmitted wheel. + Same: You can use a different one; s: ± the threshold of $, considering different factors and / or different ways The degree of specialization and factor weighting. If you choose the special (four) program, you can evaluate different groups of user terminals according to the scheduling scheme 97550.doc •22· 1358214. You can use the space of each user terminal. The signature (for example, its 通道0 channel response) and multi-user diversity select the "best" set of "space-compatible" user terminals for simultaneous transmission. Spatial compatibility can be quantified by measures such as total flux or some other effective energy. The best user group can be one that obtains the highest metric score (eg, the highest total flux) while meeting system constraints and requirements. For the sake of clarity, a specific scheduling scheme for selecting a user terminal based on the total throughput will be explained below. In the description below, the shoulder user terminal is active and expects to transmit data on the uplink. Figure 3 shows a process 220a for evaluating and selecting a user terminal to be transmitted on the uplink. Process 220a represents a specific scheduling scheme that can be used for block 220 in FIG. First, a maximum total flux variable is set to zero (block 310). A new set of user terminals is selected from the active user terminals (block 3 12). The user group constitutes a hypothesis to be evaluated and marked as = Κ"'2...W&quot;~} 'where "there is a user group that is being evaluated, w„,··· The zth user terminal. For the user group, the valid uplink channel response vector corresponding to the group of the user terminals is used, and the heart•~ constitutes an effective uplink channel response matrix (block 314). Then 'based on the effective uplink The channel channel response matrix, using the CCMI, MMSE, SIC, or some other technique used by the access point to calculate the SNR of each user terminal in group w (block 316). When using CCMI and MMSE techniques, the user terminal The SNR can be calculated as shown in equations (8) and 97550.doc -23, 1358214 (10). In the case of the (4)c technique, the reading of the user terminal depends on the order in which the (four) terminals are restored. For the SIC technology. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> The SNR of the user terminal of the w φ Μ phase m'' is marked as ^&quot;, ι 7„λ — y„, frv} 〇 Then, according to the user terminal, the calculation group „ The throughput of the terminal (block 318): / X. i+y Where 卜, rm = -i〇g2 Equation (20) The metric can be calculated as follows (block 320): where ~ is a positive constant that reflects the coding and modulation scheme to be used by the user terminal, The ratio of the theoretical capacity achieved (for example, for a mother and a modulation scheme with a relative agricultural capacity of 3 dB, ~=2), and ~ is the flux or spectral efficiency corresponding to the user terminal~ Table* in units of bits/seconds • Hertz PS/HZ). The total number of equations (21) formed by the user group 4 then determines the user group; whether the total amount of z is greater than the maximum total capacity obtained by all user groups evaluated so far (block 33〇). If the answer is 疋, the user group "and the total flux block 332 of the group" is saved. Conversely, discard the user and ". After that, it is determined whether all user groups have been evaluated (block 34〇). If the right answer is yes, then the process returns to block 312 to select another set of terminals for evaluation. Conversely, each user terminal in the scheduled save group enters 97550.doc - 24 - 1358214 uplink transmissions (block 342). For the above embodiment, a measure based on theoretical capacity (although with a compensation factor C/U) is used to select the best user group for uplink transmission. In another embodiment, a measure based on the achievable flux is used to select the best user group. For this embodiment, each user group can be evaluated based on a set of "rates" supported by the system. These rates can be considered as quantized values of the flux calculated in equation (20). Each non-zero rate is associated with a particular coding and modulation scheme, a particular spectral efficiency (which is typically expressed in bps/Hz), and a particular desired SNR. The SNR required for each rate can be determined by computer simulations, empirical measurements, and the like, based on the assumption of an AWGN channel. A lookup table (LUT) stores u, 'and the supported rate and its requirements. The snr of each user terminal is mapped to a selected rate which is the highest rate in the lookup table and has a required snr equal to or less than the SNR of the user terminal. Then, the selected rates of all user terminals in each group are accumulated to obtain the total rate of the group. The user group with the highest total rate is then scheduled for transmission. To determine the best user group for transmission, you can evaluate user groups of different sizes. For example, it is possible to first evaluate a user terminal (ie, a group, and then evaluate a group having two user terminals (ie, #^ = 2), and so on, and the most German-only Stupid T Yan has a group of A/叮 user terminals (ie Λ^=Α^βρ). Depending on the value of 'AU and ~' is the best user group, but the monthly b requires δ parity. A large number of user groups. It is beneficial to reduce the number of user groups to be evaluated by prioritizing each active user terminal by 97550.doc -25* 1358214, taking into account other factors, etc. It can be determined according to various factors. The priority of each active user terminal, for example, based on the service category of the user terminal (eg, advanced or normal), the average throughput achieved by the user terminal, the information that the user terminal must send, and the user terminal experience Delay, etc. The priority of each user terminal can be updated over time to reflect the current state of the user terminal. As an example, only the highest priority user terminal can be evaluated in the per-schedule Γβ1 compartment. .

在上文針對圖3所述之實例性排程方案中,係僅根據 應於使用者終端之上行鏈路通道響應矩㈣、針對每 使用者終端獨立地(或「就地」)導出有效上行鏈路通道 應向量W。每一使用者組„之有效通道響應矩陣‘ 係由對應於:該組中各使用者終端之該等獨立導出之有效 道響應向量構成。矩陵ρ· , 攻矩陣江-心中之各向量1W〜(其t ζ. 1 ·· 可能不會産生使用者組In the exemplary scheduling scheme described above with respect to FIG. 3, the effective uplink is derived independently (or "in place") for each user terminal based only on the uplink channel response moment (4) to be applied to the user terminal. The link channel should be vector W. The effective channel response matrix of each user group is composed of the independently derived effective channel response vectors corresponding to each user terminal in the group. The ridge ρ· , the attack matrix river - each vector in the heart 1W ~ (its t ζ. 1 ·· may not generate user groups

4取Ν可旎總通量。可&lt; 對母一使用者組評價多個子假說,· ^ ^ H 1 /、τ對於母一子假說 了將iL^,e/。中之向量調整不同 益 7 , 里羋例而5,可針j 母一子假說以一確定性方式(例如 隨機方式修改組《中么#田j 乂改某一土百分比)或4 時將每一= 端…向量之相位4 D Ϊ:之冪保持在丨(即 ^ θ4 take the total flux. It is possible to &lt; evaluate multiple sub-hypotheses for the parent-user group, ^ ^ H 1 /, τ for the mother-child hypothesis iL^, e/. The vector in the adjustment is different from the benefit of 7, and the example is 5, which can be a deterministic way (for example, a random way to modify the group "中么#田j tamper with a certain percentage of soil" or 4 will be One = end...the phase of the vector 4 D Ϊ: the power remains at 丨 (ie ^ θ

一單位範數)。 π母一導引向量皆I 終端之上行鏈路ΜΙΜ0通道響用者組种各使用者 路通道響應向量IW〜來評價該 二而非有效上行鏈 J在組《中所有使用者 97550.doc -26· 、,冬*而之存在下針對該组中&gt; 、 中母一使用者終端(「以全局方 式」)導出一導引向量 &quot;。可根據該(以全局方式導出之) 導引向量及上行鏈路 崎通道響應矩陣按下式計算對 應於每一使用者終端 h, 有效上行鏈路通道響應向量 〜。然後,根據對應於該組中各使用 终端之^效上行鏈路通道響應向量^形成對應於 使用者^之有效上行鏈路通道響應矩陣足_。然後,使 用矩陣一(而非矩陣I·)評價使用者組α之效能(例如 總通量)。作爲一實例,可針對使用者組《評價多個子假 說、,其中每-子假說對應於該組中各使用者終端的一不同 之導引向量經。然後,針對使用者組《選擇最佳子假說。 I以一類似方式評價多個使用者組並選擇最佳使用者組進 行上行鏈路傳輸。 亦可構建各種其他排程方案,此仍歸屬於本發明之範疇 内不同之排知方案可在選擇每一組之使用者終端時考量 不^因素’可以不同方式導出對應於各使用者終端之導 =向量,可使用其他量度來量化每一使用者組之效能,等 等。 可以各種方式來估計對應於每一使用者终端所之上行鏈 路通道響應矩陣U於TDD及觸系統,可使用不同 之通道估計技術。 在刚系統中,下行鏈路與上行鍵路使用不同之頻帶。 其中-鏈路之通道響應可能不與另—鏈路之通道響應相 關。在此種情形中,存取點可根據由每_使用者終端發射 97550.doc 27· 1J58214 之引不符號來估計該使用者終端之上行鏈路MIM〇通道響 應。存取點可對對應於每-使用者終端之也”執行分解, 導出導引向莖ip或心〃,並發送該導引向量至每一選定 進行發射之使用者終端。 對於FDD系統而言,每—使用者終端讲皆可發射一未經 導引之弓I示符號(或一 ΜΙΜΟ引示符號),以使存取點能夠 估計上行鏈路ΜΙΜ0通道響應並獲得矩陣。該未經導 引之引不符號包含自义⑽個使用者終端天線發送之讲個 正交引示傳輸’其中可以時間、頻率、碼或其一組合:形 式達成正極性。對於碼正極性而言,使用者終端所自其 個天線同時發送個引示傳輸,其中來自每一天線 之引示傳輸皆「覆蓋…不同之正交(例如沃爾什)序 歹J。然後,存取點使用由使用者終端所所用之相同之 1固正交序列將自每一存取點天線丨接收之引示符號「解覆 蓋」,以獲得存取點天線z•與每一該等鸠…個使用者終端天 線之間之複通道增益估計值。使用者終端處之覆蓋作業及 存取點處之解覆蓋作業可以與分碼多重進接(cdma)系統 中相同之方式執行。對於頻率正交性而言,可在整個系統 頻寬之不同:欠頻帶上同時發送料^個使用者終端天線 之U引示傳輸。對於時間正交性而言,可在不同時槽 中發送該等u固使用者終端天線之u引示傳輸。總 之該等U引不傳輸之間的正交性使存取點能夠區分 來自每一使用者終端天線之引示傳輸。 多個使用者終端可同時在上行鏈路上發射未經導引之引 97550.doc •28· 1358214 不符號至存取點’所有使用者終端之引示傳輸皆以碼、時 間 '及/或頻率形式正交,以使存取點能夠估計對應於每 一使用者終端之上行鏈路通道響應。 在TDD系統中,下行鏈路與上行鏈路共享同一頻帶。在 下行鏈路通道響應與上行鏈路通道響應之間通常存在高度 之相關性。然而,存取點處發射/接收鏈之響應可能不與 使用者終端處發射/接收鏈之響應相同。若可藉由校準確 疋出《玄荨差別並藉由在存取點及/或使用者終端處應用正 確之修正矩陣來補償之,則可假定總體下行鏈路通道響應 與上行鏈路通道響應彼此互反(即轉置)。 對於TDD系統,存取點可自乂〃個存取點天線發射—未 I導引之引不符號。每一使用者終端所皆可處理該下行 鏈路未經導引之引示符號以獲得其下行鏈路Mim〇通道響 應矩陣,(2)將上行鏈路MIM〇通道響應作爲該下行鏈 路ΜΙΜΟ通道響應之轉.置進行估計(即^,⑺根據 U出導引向 或‘ ’及⑷計算有效上行鏈路通One unit norm). The π mother-vector vector is the uplink of the I terminal, the channel of the user channel, and the user channel channel response vector IW~ to evaluate the two instead of the effective uplink J in the group "all users 97550.doc - 26·,, in the presence of winter*, a navigation vector &quot; is derived for a user terminal in the group ("global mode"). The effective uplink channel response vector 〜 can be calculated for each user terminal h according to the (globally derived) steering vector and the uplink satisive channel response matrix. Then, an effective uplink channel response matrix corresponding to the user is formed according to the corresponding uplink channel response vector corresponding to each of the terminals in the group. Then, the matrix one (rather than the matrix I·) is used to evaluate the performance of the user group α (e.g., total throughput). As an example, a plurality of sub-hypotheses may be evaluated for a group of users, wherein each-sub-hypothesis corresponds to a different vector of guidance for each user terminal in the group. Then, select the best sub-hypothesis for the user group. I evaluates multiple user groups in a similar manner and selects the best user group for uplink transmission. Various other scheduling schemes may also be constructed, which are still within the scope of the present invention. Different troubleshooting schemes may be considered when selecting each group of user terminals. Factors may be derived in different ways corresponding to each user terminal. Lead = vector, other metrics can be used to quantify the performance of each user group, and so on. Different uplink estimation techniques can be used in various ways to estimate the uplink channel response matrix U corresponding to each user terminal in the TDD and touch system. In the immediate system, the downlink and the uplink are used in different frequency bands. The channel response of the link may not be related to the channel response of the other link. In this case, the access point can estimate the uplink MIM channel response of the user terminal based on the unsigned symbol transmitted by each user terminal 97550.doc 27· 1J58214. The access point may perform a decomposition on the corresponding per-user terminal, derive the guidance to the stem ip or heart, and send the steering vector to each selected user terminal for transmission. For the FDD system Each user terminal can transmit an unguided bow symbol (or a pilot symbol) to enable the access point to estimate the uplink ΜΙΜ0 channel response and obtain a matrix. The quoted non-symbol includes self-sense (10) user terminal antennas to transmit an orthogonal pilot transmission 'where time, frequency, code or a combination thereof can be achieved: form positive polarity. For code positive polarity, the user The terminal simultaneously transmits a pilot transmission from its antenna, wherein the pilot transmission from each antenna "overwrites...different orthogonal (eg, Walsh) sequence J. Then, the access point is used by the user terminal. The same 1 fixed orthogonal sequence used to "uncover" the received symbols received from each access point antenna to obtain an access point antenna z and each of the user terminal antennas Complex channel gain Dollars. The overlay job at the user terminal and the uncovering operation at the access point can be performed in the same manner as in the code division multiple access (cdma) system. For frequency orthogonality, the U-indication transmission of the user terminal antenna can be simultaneously transmitted on the difference of the entire system bandwidth: the underband. For time orthogonality, the u-introduction transmission of the u-guder user terminal antennas can be transmitted in different time slots. In general, the orthogonality between the U-transmissions enables the access point to distinguish between the pilot transmissions from each of the user terminal antennas. Multiple user terminals can simultaneously transmit unguided signals on the uplink. 97550.doc • 28· 1358214 No symbol to access point 'All user terminals are transmitted in code, time' and/or frequency The forms are orthogonal to enable the access point to estimate the uplink channel response corresponding to each user terminal. In a TDD system, the downlink and the uplink share the same frequency band. There is typically a high degree of correlation between the downlink channel response and the uplink channel response. However, the response of the transmit/receive chain at the access point may not be the same as the response of the transmit/receive chain at the user terminal. If the Xuanzang difference can be accurately identified by the school and compensated by applying the correct correction matrix at the access point and/or user terminal, the overall downlink channel response and uplink channel response can be assumed. Reciprocal (ie transpose). For TDD systems, the access point can be transmitted from one of the access point antennas. Each user terminal can process the downlink unguided pilot symbol to obtain its downlink Mim〇 channel response matrix, and (2) use the uplink MIM〇 channel response as the downlink link. The channel response is rotated and estimated (ie, (7) according to the U outbound direction or '' and (4) to calculate the effective uplink pass

道響應向量。每一使用者終端皆可以—直接形式 (*例如藉φ發送b, e// m中之各個元素)或以一間接形式⑽如 稭由發射-使用上行鏈路傳輸所用之導引向量^或U 産生之經導引向量)將向送至存取點。 爲β邊起見,上文係針對上行鏈路傳輸來闡述sdma傳 輸技術。該等技術亦可用於下行鏈路傳輸。可針對每一使 用者終端m獲得一下行鏈路MIM〇通道響應矩陣也”並分 解之,以S得-對應於該使用者終端之下行鏈路導引向量 97550.doc -29- 1358214 〜,m。存取點可評價欲用於下行鏈路傳輸之不同使用者終 端組(例#以上文針對上行鏈路所述之相同方式),並選擇 最佳的一組個使用者終端進行下行鏈路傳輸。 對於下行鏈路傳輸,存取點係使用對應於#心個所選使 用者終端之個下行鏈路導引向量按下式來空間處理 個資料符號流,以獲得乂p個發射符號流: ’ 方程式(22) 其中〜η爲一 X 1維向量,其具有^個欲在不行鏈路上 發射之該等個所選使用者終端之資料符號; 爲一 階矩陣,其具有沁”個對應於該等沁^固 所選使用者終端之下行鏈路導引向量,其爲 兄/λ - [Xrfn.l ΐώι,2 …X办,&quot;Α ],及 爲一 A^xl維向量,其具有個欲自該等個存取 點天線發送之發射符號。 對於束導引而言,存取點亦可使用一正規化下行鏈路導 引向量h·&quot;來空間處理對應於每一使用者終端之下行鏈路 資料符號流。 若一使用者終端配備有至少個天線(即iv%), 則該使用者終端可使用CCMI、MMSE或某種其他技術執行 接收機空間處理’以隔離並恢復其下行鍵路資料符號流。 若一使用者終端配備有少於個天線(即,則該 使用者終端可在存在來自其他資料符號流之串擾之情況下 恢復其下行鏈路資料符號流。 爲清楚起見,上文係針對一具有平坦衰落之單載波窄頻 97550.doc -30. 1358214 ΜΙΜΟ系統來闡述SDMA傳輸技術'該等技術亦可用於寬 頻ΜΙΜΟ系統及多載波MIM〇系統。冑頻顧〇系統可利用 CDMA作爲基礎無線技術。多載波MIM〇系统可利用 或某種其他多載波調變技術。〇FDM會有效地將整個系統 頻寬劃分成多個個)正交次頻帶。每一次頻帶皆與一可 使用資料進行調變之相應載波相關聯。 在Μ励GFDM系統巾,對於每_使料終端,可針對 該等馬個次頻帶中每一次頻帶實施通道估計,以獲得對應 於該等iVH固次頻帶之個頻域通道響應矩陣。可以各種^ 式執行空間處理。在—實施例中,獨立地分解該等心個通 道響應矩陣巾之每-通道響應矩陣,以獲得對應於該等^ 個次頻帶认個導引向量。然後,使用針對每—次頻帶獲 得之導引向量對彼次頻帶執行空間處理。在另-實施^ 中,根據該等仏個通道響應矩陣爲每—使用者終端導出一 單個頻率相依之導引向量。_,使㈣㈣Μ向 ㈣㈣行^處理。總之’對於每—使用者線 端,皆使用單個或勒導引向量構机個有效上行鏈路通 道響應向量iw“k),其中㈠·.备可根據各使用者 終端之頻率相依之有效通道響應向量來評價使用者终端。 在寬頻M麵“中,對於每-使用者終端,可針對該 ΜΙΜΟ通道巾多個(^個)可解析信號路獲中每— 號路徑獲得-時域通道脈衝響應料。在—實施例中^ 據該等AM®通道脈衝響應矩陣爲每—使用者終端導出%個 導引向量,並用其來補償Mim〇通道之頻率選擇性性質' 97550.doc -31 - 1358214 在另一實施例中’根據(舉例而言)對應於具有最高能量之 主信號路徑之通道脈衝響應矩陣爲每一使用者終端導出一 個導引向量。總之,該(該等)導引向量可用於導出一或多 個有效通道響應向量,該等有效通道響應向量又用於評價 及選擇使用者終端進行發射。 4.實例性ΜΙΜΟ系統 圖4顯示ΜΙΜΟ系統1〇〇中存取點11〇及兩個使用者終端 120m及120χ之方塊圖。存取點η〇配備有乂〆固天線^“至 424ap。使用者終端12〇m配備有^固天線452咖至 452mu,使用者終端12〇χ配備有u固天線‘Μα至 452XU。存取點110對於下行鏈路而言係一發射實體、對於 上行鏈路而言則係-接收實體。每一使用者終端12〇對於 上行鏈路而言皆係-發射實體、對於下行鍵路而言皆係一 接收實體。本文中所述「發射眘縣 ..., 、 發射實體」係一能夠經由無線通 道發射資料之獨立運作設備或裝置.,「接收實體」則係一. 能夠經由無線通道接收資料之獨立運作設備或裝置。在下 文之說明中,下標「dnj表示下行鏈路,下標、」表示 上订㈣’選擇◎使用者終㈣時 輸’選擇4個使用者终端同時推… 路傳 、鲕J時進仃下行鏈路傳輸,其中 既可等於亦可不等於# 八 、”且7^^及沁&quot;既可爲靜態值亦 用束導引。 爲簡明起見,在下文說明中使 97550.doc -32- 1358214 資料並自-控制器彻接收控制資料。τχ資料處理器糊 根據與選擇用於該使用者終端之速率相關聯之編碼及調變 f案來處理(例如編碼,交插及調變)該使用者終端之流量 資料{、,《},並提供-資料符號流{;}。—丁乂空間處理 器490使用導引向量^對該資料符號流執行空間處Channel response vector. Each user terminal can be either in direct form (* for example by φ transmitting b, each element in e//m) or in an indirect form (10) such as straw-transmitted-using the pilot vector used for uplink transmission^ or The guided vector generated by U is sent to the access point. For the beta side, the above describes the sdma transmission technique for uplink transmission. These techniques can also be used for downlink transmissions. The downlink MIM channel response matrix can also be obtained for each user terminal m and decomposed to correspond to the downlink guidance vector 97550.doc -29- 1358214 〜 of the user terminal. m. The access point can evaluate different user terminal groups to be used for downlink transmission (example #above the same way as described above for the uplink), and select the best set of user terminals for downlink For downlink transmission, the access point spatially processes the data symbol streams using the downlink steering vectors corresponding to the selected user terminals to obtain 乂p transmitted symbol streams. : ' Equation (22) where ~η is an X 1 -dimensional vector having the data symbols of the selected user terminals to be transmitted on the non-link; as a first-order matrix, which has 沁" corresponds to The 导引 固 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选 所选Has a transmit symbol to be sent from the antennas of the access pointsFor beam steering, the access point may also use a normalized downlink pilot vector h&quot; to spatially process the stream of symbol data streams corresponding to each user terminal. If a user terminal is equipped with at least one antenna (i.e., iv%), the user terminal can perform receiver spatial processing using CCMI, MMSE, or some other technique to isolate and recover its downstream key data symbol stream. If a user terminal is equipped with fewer than one antenna (ie, the user terminal can recover its downlink data symbol stream in the presence of crosstalk from other data symbol streams. For clarity, the above is for A single-carrier narrow-band with a flat fading 97550.doc -30. 1358214 ΜΙΜΟ system to illustrate SDMA transmission technology 'These technologies can also be used in broadband ΜΙΜΟ systems and multi-carrier MIM 〇 systems. 胄 〇 〇 system can use CDMA as the basis Wireless technology. Multi-carrier MIM〇 systems can utilize some other multi-carrier modulation technology. 〇FDM effectively divides the entire system bandwidth into multiple) orthogonal sub-bands. Each frequency band is associated with a respective carrier that can be modulated using the data. In the GFDM system, the channel estimation may be performed for each of the horse sub-bands for each of the sub-bands to obtain a frequency domain channel response matrix corresponding to the iVH sub-bands. Space processing can be performed in a variety of ways. In an embodiment, the per-channel response matrix of the concentric channel response matrix is independently decomposed to obtain a steering vector corresponding to the sub-bands. Then, spatial processing is performed on the other frequency bands using the steering vectors obtained for each of the sub-bands. In another implementation, a single frequency dependent steering vector is derived for each user terminal based on the one of the channel response matrices. _, (4) (4) Μ (4) (4) line ^ processing. In short, for each user line, a single or Le navigation vector is used to construct an effective uplink channel response vector iw “k), where (1)·. can be valid according to the frequency of each user terminal. The response vector is used to evaluate the user terminal. In the wide-band M-plane, for each-user terminal, a plurality of (^) resolvable signal paths can be obtained for the ΜΙΜΟ channel to obtain a time-domain channel pulse. Response material. In the embodiment, the AM® channel impulse response matrix is used to derive % steering vectors for each user terminal and used to compensate for the frequency selective nature of the Mim〇 channel. 97550.doc -31 - 1358214 In one embodiment, a steering vector is derived for each user terminal based on, for example, a channel impulse response matrix corresponding to the primary signal path having the highest energy. In summary, the (these) steering vectors can be used to derive one or more valid channel response vectors, which in turn are used to evaluate and select the user terminal for transmission. 4. Example ΜΙΜΟ System Figure 4 shows a block diagram of the access point 11〇 in the ΜΙΜΟ system 1〇〇 and the two user terminals 120m and 120χ. The access point η〇 is equipped with a tamping antenna ^" to 424ap. The user terminal 12 〇 m is equipped with a solid antenna 452 to 452 mu, and the user terminal 12 〇χ is equipped with a u solid antenna 'Μα to 452XU. Access Point 110 is a transmitting entity for the downlink and a receiving-receiving entity for the uplink. Each user terminal 12 is a transmitting-transmitting entity for the uplink, and for the downlink key Each is a receiving entity. In this article, "Emissions Shenxian..., the transmitting entity" is an independently operated device or device capable of transmitting data via a wireless channel. The "receiving entity" is a wireless channel. Independently operated equipment or device that receives data. In the following description, the subscript "dnj indicates the downlink, subscript," indicates the subscription (4) 'select ◎ user end (four) when the input 'select 4 user terminals simultaneously push... Downlink transmission, which can be equal to or not equal to #八," and 7^^ and 沁&quot; can be used for both static values and bundle guidance. For the sake of brevity, in the following description, make 97550.doc -32 - 1358214 data and receive control data from the controller. The data processor paste is processed according to the encoding and modulation f associated with the rate selected for the user terminal (eg, encoding, interleaving, and modulation). The traffic data of the user terminal {,, "}, and provide - data symbol stream {;}. - Ding Hao space processor 490 uses the steering vector ^ to execute the space of the data symbol stream

理,根據需要將其多工於引示符號中,並提供對應H 個天線之個發射符號流。如上文所述,導引向量讲 係根據對應於該制者終端之上行鏈路通道響應矩 導出。每一發射機單元(TMTR)454皆接收並處理(例如 =類㈣式 '放大、滤波、及上變頻)一相應之發射符號 机,以産生一上行鏈路信號。個發射機單元454提供Rationally, it is multiplexed into the pilot symbol as needed, and provides a stream of transmitted symbols corresponding to the H antennas. As described above, the steering vector is derived from the uplink channel response moment corresponding to the manufacturer terminal. Each transmitter unit (TMTR) 454 receives and processes (e.g., = (4) type 'amplify, filter, and upconverts' a corresponding transmit symbol to generate an uplink signal. Transmitter unit 454 provides

Am個上行鏈路信號以供自乂⑶個天線Μ?傳輸至存取 點。 可排程…〃個使用者終端在上行鏈路上同時傳輸。每一 該等使用者終端皆使用其導引向量對其資料符號流執行空 間處理,並在上行鏈路上將其發射符號流組發射至存取 點。 在存取點110處,個天線42物至424邛自所有^^^個在 上行鏈路上進行發射之使用者終端接收上行鏈路信號。每 一天線424皆提供一接收信號至一相應之接收機單元 (RCVRM22。每-接收機單元422皆執行與發射機單元454 所執行之處理互補之處理,並提供一接收符號流。_ 空間處理器440對來自iVep個接收機單元422之^^^個接收符 號流執行接收機空間處理,並提供#叩個已恢復上行鏈路 97550.doc •33· 1358214 貝料符號抓。接收機空間處理係根據ccmi、mmse、 SIC、或某種其他技術來執行。根據⑴存取點所用之接收 機工間處理技術及(2)對應於‘個使用者終端之有效上行 鏈路通道響應矩陣I一導出存取點m慮波程式矩 陣Map °每-已恢復上行鏈路f料符號流{^}皆係一由一 相應使用者終端發射之資料符號之估計值…^ 資料處理器442根據每_已恢復上行鏈路資料符號流d 所用速率來處理⑼如解調,解交插及解碼)彼流,以獲得 已解碼資料°對應於每-❹者終端之已解碼資料可提供 至資料七444進行儲存及/或提供至一控制器43〇進行進 一步處理。 在下行鏈路上,在存取點丨丨〇處,一 τχ資料處理器4 ^ 〇 自一對應於排程進行下行鏈路傳輸之沁&quot;個使用者終端之 資料源408接收流量資料、自一控制器43〇接收控制資料、 並可能自—排程器434接收其他資料。可在不同傳輸通道 ^發达各種類型之資料。τχ資料處理器41〇根據選定用於 每一使用者終端之速率來處理(例如編碼 '交插及調變)對 應於彼使用者終端之流量資料。ΤΧ資料處理器410提供對 應於化&quot;個使用者終端之沁&quot;個下行鏈路資料符號流。—τχ 二間處理益420使用一由對應於該等^^個使用者終端之^ 個下行鏈路導引向量構成之矩陣^對馬&quot;個下行料資Ζ 符號机執仃空間處理,將其多工於引示符號中並爲&quot; 個天線提供個發射符號流。每一發射機單元422皆接收 並處理一相應之發射符號流,以産生一下行鏈路信號。 97550.doc -34· 1358214 八叮個發射機單元422提供#個下&quot; 扠倂八叩個下仃鏈路信號以供自% 天線424發射至各使用者終端。 在每一使用者終端120處,皆有U天線452自存取點 110接收‘個下行鏈路信號。每—接收機單元454皆處理 一來自相關聯天線452之接收”並提供—接收符號流。 一 RX空間處理器460對來自U接收機單元454之^固 Μ符號Μ行接收機空間處理’並爲該使用者終端提供 一已恢復下行鏈路資料我流D。接收機空間處理係根 據cCMI、MMSE、或某些其他技術來執行。根據⑴該使 用者終端所用之接收機空間處理技術及⑺對應於該使用者 終端之下行鏈路通道響應矩陣U導出—對應於每一使 用者終端之空間濾波程式矩陣延^。一 RX資料處理器47〇 處理(例如解調、解交插及解碼)該已恢復下行鏈路資料符 號流,以獲得對應於該使用者終端之已解碼資料。 在每一使用者終端120處,一通道估計器478估計下行鏈 路通道響應並提供下行鏈路通道估計值,該等下行鏈路通 道估計值可包括通道增益估計值、snr估計值、等等。同 樣地’ 一通道估計器428估計上行鏈路通道響應並提供上 打鏈路通道估計值。如上文所述,下行鏈路及上行鏈路傳 輸之導引向量可以各種方式導出’此視該MIM〇系統係 TDD系統還是FDD系統而定。若導引向量係由其中一個實 體(例如存取點)導出並爲另一實體(例如使用者終端)所 需’則該其中一個實體將該導引向量發送至該另一實體。 每一使用者終端之控制器480皆根據對應於彼使用者終 97550.doc -35- 下行鏈路通道響應矩卩車u出對應於彼使用者終端 之工間濾波程式矩陣t’〆控制器430則根據有效上行鏈 、C響應矩陣心你導出對應於存取點之空間渡波程式 車每—使用者終端之控制器480可發送回饋資訊 (例如下行鏈路及/或上行料導引向量、咖料值等等) 至存取點。控制器43〇及48〇亦分別控制存取點㈣與使用 者終端12〇處各處理單元之運作。 :5 A’4不-支援CDMA2 τχ資料處理器彻a之方塊圖。 X貝料處理盗410a可用於圖4中之τχ資料處理器彻及 ==TXf料處判41_ ’ 1碼請接收並根據用 選速率之編财案來編碼—對應於制者終端历之資 ,然後提供媽位元。該資料流可載送一或多個資 ^祖匕iI資料封包皆通常單獨編碼以獲得一已編碼 =枓封包。該編碼作業會提高資料傳輸之可靠性、編碼方 牌可包括循環冗餘檢查(CRC)編碼、卷積編碼、編 交插:編碼等等、或其一組合一通道交插器514根據一 ::案來交插該等碼位心該交插作業可爲該等碼位元 ==間、頻率、及/或空間分集。一符號映射單元516根 ^^選速率之調變方案來映射已交插位元,然後提供 :料符號。單元516將每一㈣個已交插位元組合形成一 B· =進製值(其中阳),並進1根據調變方案(例如 二κ,M_PSK,或M_QAM,其中μ,將每一 β位元值 :至:具體調變符號。在由該調變方案界定之信號星象 圖中’每一調變符號皆係一複數值。 97550.doc -36- 1358214 CDMA調變器520執行CDMA調變°在CDMA調變器520 内’一通道化器522接收並將該等資料符號及引示符號通 道化至不同碼通道上。每一碼通道皆與一相應之正交序列 相關聯,該相應之正交序列可爲一沃爾什序列、一正交可 變展頻因數(OVSF)序列、等等。該通道化作業在IS_2〇〇〇 及IS-95中稱作「.覆蓋」,在w-CDMA中則稱作「展頻」。 一拌碼器524接收並使用一僞隨機數(pN)序列將多個碼通 道之已通道化資料展頻,然後提供一資料碼片流,爲簡明 起見’將6玄-貝料碼片流標記爲一資料符號流。該展頻 作業在IS-2000及is-95中稱作「展頻」’在w-CDMA中則稱 作「拌碼」。通道化及展頻作業爲此項技術所習知,在本 文中不再贅述之。 對於上行鏈路而言’每一資料符號流皆在一藉由使用一 正交序列實施通道化而獲得之相應碼通道上發射。個 所選使用者終端可能會在不同正交碼通道上同時發射 個或更多個資料流。每一使用者終端皆使用相同之導引向 量Lp或對所有其資料符號流(或其資料碼片流)執行空 間處理。對於下行鏈路亦進行類似處理。 圖5Β顯示一支援0FDMi τχ資料處理器41〇b之方塊圖。 TX資料處理器41〇b亦可用於圖4中之TX資料處理器41〇及 488。TX資料處理器410b包含編碼器512、通道交插器 514、及符號映射單元516,其皆如上文針對圖5八所述來運 作。TX資料處理器410b進一步包含一用於執行〇fdm調變 之OFDM調變器530。在0FDM調變器53〇内,一 97550.doc •37- 1358214 葉反邊換(IFFT)單元532接收來自符號映射單元516之資料 符號並接收?丨示符號,然後在指定用於資料及引示傳輪之 Λ頻帶上提供該等資料及引示符號,並爲每一未用於資料 /引不傳輸之次頻帶提供一信號值零(一「零」符號。對於 每一 OFDM符號週期,IFFT單元532皆使用一〜·點快速傅 立葉反變換將一組馬個資料符號、引示符號、及零符號變 換至時域,然後提供—含有〜個碼片之對應已變換符號。 循%子首產生器534重複每一已變換符號之一部分,以 獲得一含有個個碼片之對應〇FDM符號。所重複部 分稱作循環字首,且‘係所重複W之數量1環字首 會保證在存在由頻率選擇性衰落(即頻率響應不平坦)所致 之多路徑延遲擴展時0FDM符號保持其正交性。循環字首 產生器534提供-0FDM符號流’爲簡明起見,將該〇刪 符號流標記爲一資料符號流{iSw}。 對於上行鏈路而言,每一資料符號流皆在一指定給彼流 之相應次頻帶組上發射。Λτκρ個所選使用者終端可在不同 之不連貫次頻帶組上同時發射乂ρ個或更多個資料流,其 中每-該等AM固次頻帶皆指配給至多一個組。每一:用者 終端皆使用相同之導引向量k,”或^對所有其資料符號流 (或其OFDM符號流)執行空間處理。 〜机 類似處理。 冑於下仃鍵路亦進行 爲簡明起見,圖5A及5B顯示處理一個資料流 得一個資料符號流{^}。可使用γχ資料處理 W又 ^ 4固 _Lh- 來處理多個資料流(例如在下行鏈路上對應於多個使用者 97550.doc •38· 1358214 終端之多個資料流),以獲得多個資料符號流。 圖5A及5B顯示其中在多天線傳輸之空間處理之前實施 CDMA及OFDM處理之具體實施方案。在此種情形中,TX 資料處理器包含CDMA調變器或OFDM調變器,如圖5A及 5B所示。亦可在多天線傳輸之空間處理之後實施CDMA及 OFDM處理。在此種情形中,每一發射機單元(TMTR)將包 含一用於對一相應發射符號流執行CDMA或OFDM處理以 産生一對應已調變信號之CDMA調變器或OFDM調變器。 圖6顯示在存取點110及一個使用者終端120m處之下行鏈 路及上行鏈路傳輸之空間處理。對於上行鏈路,在使用者 終端120m處,由TX空間處理器490m將資料符號流{hp,,,,} 乘以導引向量,以獲得上行鏈路之發射符號向量 。在存取點11 〇處,由一單元640將所接收符號向量 (對應於使用者終端120m以及其他使用者終端)乘以一空 間濾波程式矩陣,並由一單元642使用一對角矩陣e;:進 一步換算之,以獲得上行鏈路之已恢復資料符號向量L 單元。640及642屬於一 RX空間處理器440a之一部分。矩 陣及β係根據有效上行鏈路通道響應矩陣並使用 CCMI、MMSE或某種其他技術導出。 對於下行鏈路,在存取點11 〇處,由TX空間處理器420 將資料符號向量(其包含對應於使用者終端120m以及其 他使用者終端之下行鏈路資料符號流)乘以下行鏈路導引 矩陣,以獲得下行鏈路之發射符號向量。在使用者 終端120m處,由一單元660將所接收符號向量乘以一 97550.doc •39· 1358214 空間濾波程式矩陣Mu,,w,並由一單元662使用一對角矩陣 2;^進一步換算之,以獲得對應於使用者終端120m之下行 鏈路已恢復資料符號流也J。單元660及662屬於RX空間處 理器460m之一部分。矩陣及L·1&quot;係根據對應於使用者 終端120m之下行鏈路通道響應矩陣並使用CCMI、 MMSE或某種其他技術導出。 圖7顯示一RX空間處理器440b及一 RX資料處理器442b之 方塊圖,該RX空間處理器440b及RX資料處理器442b執行 SIC技術並可用於存取點110。RX空間處理器440b及RX資 料處理器442b構建有對應於由個使用者終端發射之 個資料符號流的##個順次性(即串級)接收器處理級。級1 至皆包含一空間處理器710、一干擾消除器720、一 RX資料流處理器730、及一 ΤΧ資料流處理器740。最末級 則僅包含一空間處理器71〇u及一RX資料流處理器730u。 在級1中,空間處理器710a對//#個接收符號流執行接收 機空間處理,並提供一個對應於正在第一級中恢復之使用 者終端力之已恢復資料符號流。RX資料流處理器730a 解調、解交插及解碼該已恢復資料符號流心J,然後提供 一已解碼資料流。ΤΧ資料流處理器740a以與使用者終 端力對該已解碼資料流執行之相同方式來編碼、交插 及調變彼流,然後提供一經再調變之符號流。干擾消 除器720a使用對應於使用者終端)!之有效通道響應向量 對經再調變之符號流該執行發射機空間處理, 以獲得因資料符號流沁,,丨分量。然後,自個接收符號流 97550.doc -40- 1358214 中減去該等Λτβρ個干擾分量,以獲得^^個經修改之符號 机,然後將該等個經修改之符號流提供至級2。 級2至乂厂1中每一級皆執行與級1相同之處理,儘管係對 來自則一級之個經修改之符號流而非對#叮個接收符號 训執行處理,最末級則對來自級乂厂丨之#叩個經修改之符 號流執行空間處理及解碼,且不執行干擾估計消除。 空間處理器710a至710u皆可執行CCMI、MMSE或某種其 ,技術。每一空間處理器71〇皆將一輸入(所接收或經修改) 符號向I 乘以一空間遽波程式矩陣Mi以獲得一所偵測 付號向畺1v,並選擇及換算其中一個所偵測符號流,然後 提供經換算之符號流作爲彼級之已恢復資料符號流。矩陣 係根據該級的減小之有效通道響應矩陣導出。 圖8顯示用於評價及排程各使用者終端進行下行鏈路及 上行鏈路傳輸之控制器430及排程器434之一實施例之方塊 圖。在控制器430内,一請求處理器810接收由使用者終端 120發送之存取請求及可能來自其他源之存取請求。該等 存取請求係請求在下行鏈路及/或上行鏈路上傳輸資料。 爲清楚起見’下文將闡述對上行鏈路傳輸之排程。 請求處理器810處理所接收之存取請求並提供所有現用 使用者終端之身份(ID)及狀態。一使用者選擇器82〇自所 有現用使用者終端中選擇不同之使用者終端組進行評價。 可根據諸如使用者優先權、欲發送之資料量、系統要求等 各種因素來選擇使用者終端進行評價。 一評價單元830評價每一組使用者終端並爲該組提供— 97550.doc 41 1358214 量度值。爲簡明起見,在下文說明中假定(1)使用總通量作 爲量度及(2)有效上行鏈路通道響應向量可供用於每一現用 使用者終端。評價單元830包含一矩陣計算單元84〇及一速 率選擇器850。矩陣計算單元840對每—組使用者終端執行 SNR計算。對於每一組,單元84〇皆形成對應於該組之有 效上行鏈路通道響應矩陣心也&quot;,並根據及存取點 所用之接收機空間處理技術來計算該組中每一使用者終端 之SNR。速率選擇器85〇接收每一使用者組的一組snr,並 確定用於該組中每-使用者終端之速率以及該組之總通量 及”。速率選擇器850可存取一查詢表(LUT)852,該查詢表 852儲存有由㈣統所支援的—組速率及其所需之s皿。 速率選擇器850根據針對每—使用者終端計算出之賭來 確定可由該使用者終端用於進行上行鏈路傳輸之最高速 率。速率選擇器850亦累加每一組中所有使用者終端之速 率或通量,以獲得該組之總通量^。 排程器434接收⑴來自使用者選擇器820之不同使用者 料組及⑺來自速率選擇器85〇之各使用者終端之速率及 母組之總通量。為鞋95 /1 *3 /1 士 排耘盗434在每一排程間隔中皆在所評 價之所有組中選擇最佳的一組使用者終端,並排程所選使 用者終料行上賴路料。㈣㈣愤供排程資訊, 排程資訊包含所選❹麵端Μ份、其料 輸時間(例如該傳輪之起始 疋傳 、谢及符續時間)等等❶該排 係發送至所選使用者終端。 ° 對下行鏈路傳輪之排程可以相同方式執行。 97550.doc •42· 1358214 本文所述SDMA傳輸技術可由各種構件來構建。舉例而 言,該等技術可構建於硬體、軟體、或其一組合令。對於 硬體構建方案,用於支援基礎無線技術(例如CDMA或 OFDM)及下行鏈路及上行鏈路上之Sdma傳輸(例如,存取 點及使用者終端處之發射及接收空間處理,對不同使用者 組之評價’等等)的各處理單元可構建於一或多個應用專 用積體電路(ASIC)、數位信號處理器(DSP)、數位信號處 理裝置(DSPD).、可程式化邏輯裝置(pLD)、現場可程式化 閘陣列(FPGA)、處理器、控制器、微控制器、微處理器、 其他設計用於執行本文所述功能之電子單元、或其一組合 中0 對於軟體構建方案,可使用執行本文所述功能之模組 (例如程序、功能等等)來執行本文所述之sdma傳輪技 術。軟冑碼可儲存於記憶體單元(例如圖4所示記憶體單元 432及482)中並由—處理器(例如控制H43G及48G)執行。該 。己It體單既可構建於處理器内,亦可構建於處理器外 卩在構建於處理器外部之情況下,該記憶體單元可藉由 此項技術中習知的各種構件以通信方式_處理器。 本文包含有各標題以便於查閲並有助於衫某些部分之 位置。該等標題並非意欲限定其下面料概念之 等概念亦可適用於通篇說明中之其他部分。 ^ 子所揭不實施例之說明旨在使任何熟習此 皆能夠製作或利用去孤Βη 只议竹者 一 — 。熟習此項技術者易於得出該# 實施例之各種修改方式于出該等 ^ 1本文所界定之一般原理亦可應 97550.doc -43- 1358214 用於其他實施例,此並不背離本發明之精神或範疇。因 此,本發明並非意欲限定爲本文所示之實施例,而是欲賦 予其與本文所揭示之原理及新穎特徵相一致之最廣範疇。 【圖式簡單說明】 圖1顯示一多重進接ΜΙΜΟ系統; 圖2顯示一用於執行SDMA上行鏈路多天線傳輸之過程; 圖3顯示一用於評價及選擇供用於在上行鏈路上同時傳 輸之各使用者終端之過程; 圖4顯示一存取點及兩個使用者終端之方塊圖; 圖5Α及5Β分別顯示CDMA及OFDM之發射(ΤΧ)資料處理 器之方塊圖; 圖6顯示存取點及一個使用者終端處之下行鏈路及上行 鏈路傳輸空間處理; 圖7顯示一接收空間處理器及一接收資料處理器;及 圖8顯示存取點處的一控制器及一排程器。 【主要元件符號說明】 100 多重進接ΜΙΜΟ系統 110 存取點 120a-120i 使用者終端 120m 使用者終端(UT) 120x 使用者終端(UT) 130 系統控制器 408 資料源 410 ΤΧ資料處理器 97550.doc -44- 1358214 410a TX資料處理器 410b TX資料處理器 420 ΤΧ空間處理器 422 發射機單元(TMTR)/接收機單元(RCVR) 424 天線 424a-424ap 天線 428 通道估計器 430 控制器 432 記憶體 434 排程器 440 RX空間處理器 440a RX空間處理器 440b RX空間處理器 442 RX資料處理器 442b RX資料處理器 444 資料槽 452ma-452mu 天線 452xa-452xu 天線 454ma-454mu RCVR/TMTR 454m RCVR/TMTR 454xa-454xu RCVR/TMTR 460m RX空間處理器 460x RX空間處理器 470m RX資料處理器 97550.doc -45 · 1358214 470x RX資料處理器 472m 資料槽 472x 資料槽 478m 通道估計器 478x 通道估計器 480m 控制器 480x 控制器 482m 記憶體 482x 記憶體 486m 資料源 486x 資料源 488m TX資料處理器 488x TX資料處理器 490m TX空間處理器 490x TX空間處理器 512 編碼器 514 通道交插器 516 符號映射單元 520 CDMA調變器 522 通道化器 524 拌碼器 530 OFDM調變器 532 快速傅立葉反變換(IFFT)單元 534 循環字首產生器 97550.doc -46 - 1358214 640 矩陣乘法單元 642 換算器單元 660 矩陣乘法單元 662 換算器單元 710a-710u 空間處理器 720a-720u 干擾消除器 730a-730u RX資料流處理器 740a-740u TX資料流處理器 810 請求處理器 820 使用者選擇器 830 評價單元 840 矩陣計算單元 850 速率選擇器 97550.doc - 47 -Am uplink signals are transmitted from the (3) antennas to the access point. Can be scheduled... One user terminal transmits simultaneously on the uplink. Each of the user terminals performs spatial processing on its data symbol stream using its steering vector and transmits its transmitted symbol stream group to the access point on the uplink. At access point 110, antennas 42 to 424 接收 receive uplink signals from all of the user terminals transmitting on the uplink. Each antenna 424 provides a received signal to a corresponding receiver unit (RCVRM 22. Each of the receiver units 422 performs processing complementary to that performed by the transmitter unit 454 and provides a received symbol stream. _ Spatial Processing The 440 performs receiver spatial processing on the received received symbol streams from the iVep receiver units 422 and provides #叩 recovered uplinks 97550.doc • 33· 1358214. Performed according to ccmi, mmse, SIC, or some other technique. According to (1) the receiver inter-process processing technique used by the access point and (2) the effective uplink channel response matrix I corresponding to the 'user terminals' The access point m filter program matrix Map ° per-recovered uplink f-symbol stream {^} is an estimated value of a data symbol transmitted by a corresponding user terminal...^ data processor 442 according to each_ The rate used to recover the uplink data symbol stream d is processed (9) such as demodulation, deinterleaving and decoding) to obtain decoded data. The decoded data corresponding to each terminal can be provided to the data of seven 444. The line is stored and/or supplied to a controller 43 for further processing. On the downlink, at the access point, a data processor 4 receives data from a data source 408 of the user terminal corresponding to the scheduled downlink transmission. A controller 43 receives control data and may receive other data from the scheduler 434. Various types of data can be developed in different transmission channels. The τ χ data processor 41 处理 processes (e.g., encodes &apos;interleaving and modulating) the traffic data corresponding to the user terminal based on the rate selected for each user terminal. The data processor 410 provides a &quot;downlink data symbol stream corresponding to the &quot;user terminals&quot;. - τχ The two processing benefits 420 use a matrix consisting of ^ downlink steering vectors corresponding to the user terminals Multiplexed in the pilot symbol and provides a stream of transmitted symbols for the &quot; antennas. Each transmitter unit 422 receives and processes a respective transmit symbol stream to generate a downlink signal. 97550.doc -34· 1358214 Eight transmitter units 422 provide #下下&quot; 倂 叩 仃 仃 仃 link signals for transmission from the % antenna 424 to each user terminal. At each user terminal 120, a U antenna 452 receives &apos;downlink signals from access point 110. Each of the receiver units 454 processes a reception from the associated antenna 452 and provides a received symbol stream. An RX spatial processor 460 performs spatial processing on the receiver from the U receiver unit 454. Providing the user terminal with a recovered downlink data stream D. The receiver spatial processing is performed according to cCMI, MMSE, or some other technology. According to (1) the receiver space processing technology used by the user terminal and (7) corresponding Derived from the downlink channel response matrix U of the user terminal - a spatial filter matrix corresponding to each user terminal. An RX data processor 47 is processed (eg, demodulated, deinterleaved, and decoded). The downlink data symbol stream has been recovered to obtain decoded data corresponding to the user terminal. At each user terminal 120, a channel estimator 478 estimates the downlink channel response and provides downlink channel estimates. The downlink channel estimate may include a channel gain estimate, a snr estimate, etc. Similarly, a channel estimator 428 estimates the uplink pass. The channel responds and provides an uplink link channel estimate. As described above, the pilot vectors for downlink and uplink transmissions can be derived in a variety of ways. 'This depends on whether the MIM system is a TDD system or an FDD system. The steering vector is derived by one of the entities (eg, an access point) and is required by another entity (eg, a user terminal). Then one of the entities sends the steering vector to the other entity. The controller 480 of the terminal is based on the inter-machine filter program matrix t' 对应 corresponding to the end user of the user's terminal 97550.doc -35 - downlink channel response, and the controller 430 is valid according to Uplink, C response matrix heart, you derive the space corresponding to the access point, the controller 480 of the user terminal can send feedback information (such as downlink and / or upstream guidance vector, coffee value, etc.) And to the access point. The controllers 43〇 and 48〇 also control the operation of each processing unit of the access point (4) and the user terminal 12 respectively. : 5 A'4 not - support CDMA2 τχ data processor Block diagram. X shell The handling of theft 410a can be used for the τχ data processor in Fig. 4 and the ==TXf material is judged 41_ '1 code, please receive and encode according to the selection rate of the financial code - corresponding to the manufacturer terminal calendar, and then provide The data stream can carry one or more resources. The iI data package is usually separately coded to obtain an encoded = 枓 packet. The coding operation can improve the reliability of data transmission, and the coding square card can include Cyclic Redundancy Check (CRC) coding, convolutional coding, interleaving, coding, etc., or a combination thereof, a channel interleaver 514 interleaving the code points according to a:: case, the interleaving operation may be The code bits ==, frequency, and/or spatial diversity. A symbol mapping unit 516 maps the interpolated bits by a modulation scheme of the rate, and then provides: a symbol. Unit 516 combines each (four) interleaved bits to form a B· = hexadecimal value (in which yang), and proceeds to 1 according to a modulation scheme (eg, two κ, M_PSK, or M_QAM, where μ, each β position Meta-value: to: specific modulation symbol. In the signal star image defined by the modulation scheme, 'each modulation symbol is a complex value. 97550.doc -36- 1358214 CDMA modulator 520 performs CDMA modulation The 'channelizer 522 receives and channelizes the data symbols and the pilot symbols to different code channels in the CDMA modulator 520. Each code channel is associated with a corresponding orthogonal sequence, the corresponding The orthogonal sequence may be a Walsh sequence, an orthogonal variable spreading factor (OVSF) sequence, etc. The channelization operation is referred to as ".overlay" in IS_2〇〇〇 and IS-95, in In w-CDMA, it is called "spreading frequency." A codec 524 receives and uses a pseudo-random number (pN) sequence to spread the channelized data of a plurality of code channels, and then provides a data chip stream. For the sake of simplicity, 'the 6 Xuan-Bei material chip stream is marked as a data symbol stream. The spread spectrum operation is in IS-2000 and is-95. "Spreading frequency" is called "mixing code" in w-CDMA. Channelization and spread-spectrum operations are well known in the art and will not be described in this article. For the uplink, 'Every The data symbol streams are transmitted on a corresponding code channel obtained by channelizing using an orthogonal sequence. A selected user terminal may simultaneously transmit one or more data streams on different orthogonal code channels. A user terminal uses the same steering vector Lp or performs spatial processing on all of its data symbol streams (or its data chip streams). Similar processing is performed for the downlink. Figure 5A shows a supported 0FDMi τ data processor. A block diagram of 41 〇b. The TX data processor 41〇b can also be used for the TX data processors 41A and 488 of FIG. 4. The TX data processor 410b includes an encoder 512, a channel interleaver 514, and a symbol mapping unit. 516, which operates as described above for Figure 5 8. The TX data processor 410b further includes an OFDM modulator 530 for performing 〇fdm modulation. Within the 0FDM modulator 53〇, a 97550.doc •37- 1358214 Leaf Reverse Side (IFFT) Unit 532 receives the data symbols from symbol mapping unit 516 and receives the symbols, and then provides the data and the pilot symbols on the frequency band designated for data and pilot transmission, and for each unused data. The sub-band of the non-transmission provides a signal value of zero (a "zero" symbol. For each OFDM symbol period, the IFFT unit 532 uses a ~-point fast Fourier inverse transform to group a set of horse data symbols, pilot symbols And zero symbols are transformed into the time domain, and then - the corresponding transformed symbols containing ~ chips are provided. A portion of each transformed symbol is repeated by a % sub-header 534 to obtain a corresponding 〇FDM symbol containing a plurality of chips. The repeated part is called the cyclic prefix, and the number of 'repeated W's 1 ring prefix guarantees that the 0FDM symbol remains positive when there is multipath delay spread due to frequency selective fading (ie, frequency response is not flat). Intercourse. The cyclic prefix generator 534 provides an -of-Frequency symbol stream&apos; for the sake of brevity, marking the 〇-deleted symbol stream as a data symbol stream {iSw}. For the uplink, each data symbol stream is transmitted on a corresponding sub-band group assigned to the other stream.所选τκρ selected user terminals can simultaneously transmit 乂ρ or more data streams on different sets of discontinuous sub-bands, wherein each of the AM fixed sub-bands is assigned to at most one group. Each: the user terminal uses the same steering vector k, "or ^ performs spatial processing on all its data symbol streams (or its OFDM symbol stream). ~ Machine similar processing. 胄 仃 仃 亦 亦 亦 亦 亦 亦For example, Figures 5A and 5B show that one data stream is processed to generate a data symbol stream {^}. γχ data processing can be used to process multiple data streams (for example, corresponding to multiple on the downlink). User 97550.doc • 38· 1358214 multiple data streams of the terminal) to obtain multiple data symbol streams. Figures 5A and 5B show specific implementations in which CDMA and OFDM processing is performed prior to spatial processing of multi-antenna transmission. In this case, the TX data processor includes a CDMA modulator or an OFDM modulator, as shown in Figures 5A and 5B. CDMA and OFDM processing can also be performed after spatial processing of multi-antenna transmission. Each transmitter unit (TMTR) will include a CDMA modulator or OFDM modulator for performing CDMA or OFDM processing on a respective transmitted symbol stream to produce a corresponding modulated signal. Figure 6 shows the access point. 110 and a user terminal 1 Spatial processing of downlink and uplink transmissions at 20 m. For the uplink, at the user terminal 120m, the data symbol stream {hp,,,,} is multiplied by the steering vector by the TX spatial processor 490m. Obtaining a transmitted symbol vector of the uplink. At the access point 11 ,, the received symbol vector (corresponding to the user terminal 120m and other user terminals) is multiplied by a unit 640 by a spatial filter matrix. A unit 642 uses a pair of angular matrices e; further scaled to obtain the recovered recovered symbol vector L unit of the uplink. 640 and 642 belong to a portion of an RX spatial processor 440a. The matrix and the beta are based on the effective uplink The channel response matrix is derived using CCMI, MMSE, or some other technique. For the downlink, at access point 11 ,, the data symbol vector is included by TX spatial processor 420 (which includes the user terminal 120m and other The downlink data symbol stream of the user terminal is multiplied by the following downlink steering matrix to obtain a downlink transmitted symbol vector. At the user terminal 120m, a unit 660 The received symbol vector is multiplied by a 97550.doc • 39· 1358214 spatial filter matrix Mu, w, and used by a unit 662 using a pair of angular matrices 2; further converted to obtain a row chain corresponding to the user terminal 120m The path has recovered the data symbol stream J. Units 660 and 662 are part of the RX space processor 460m. The matrix and L·1&quot; are based on the line channel response matrix corresponding to the user terminal 120m and use CCMI, MMSE or some Other techniques are derived. Figure 7 shows a block diagram of an RX spatial processor 440b and an RX data processor 442b that performs SIC techniques and can be used for access point 110. The RX spatial processor 440b and the RX data processor 442b are constructed with ## contiguous (i.e., cascading) receiver processing stages corresponding to the stream of data symbols transmitted by the user terminals. Stages 1 through include a spatial processor 710, an interference canceller 720, an RX data stream processor 730, and a data stream processor 740. The last stage includes only a spatial processor 71〇u and an RX data stream processor 730u. In stage 1, spatial processor 710a performs receiver spatial processing on //# received symbol streams and provides a recovered data symbol stream corresponding to the user terminal forces being recovered in the first stage. The RX stream processor 730a demodulates, deinterleaves, and decodes the recovered data symbol stream J, and then provides a decoded data stream. The data stream processor 740a encodes, interleaves, and modulates the stream in the same manner as the user terminal force performs on the decoded data stream, and then provides a remodulated symbol stream. The interference canceller 720a is used corresponding to the user terminal)! The effective channel response vector performs the transmitter spatial processing on the remodulated symbol stream to obtain the 丨 component due to the data symbol flow. Then, the Λτβρ interference components are subtracted from the received symbol streams 97550.doc -40 - 1358214 to obtain the modified symbol machines, and then the modified symbol streams are provided to level 2. Each of the levels 2 to 11 performs the same processing as level 1, although the modified symbol stream from the first level is executed instead of the # 接收 receiving symbol training, and the last level is from the level The modified symbol stream of 乂厂丨 performs spatial processing and decoding, and does not perform interference estimation cancellation. The spatial processors 710a through 710u can each perform CCMI, MMSE, or some of their techniques. Each spatial processor 71 乘 multiplies an input (received or modified) symbol by I by a spatial chopping matrix Mi to obtain a detected payee to 畺1v, and selects and converts one of them. The symbol stream is measured and then the converted symbol stream is provided as a recovered data symbol stream for that level. The matrix is derived from the reduced effective channel response matrix for that stage. Figure 8 shows a block diagram of one embodiment of a controller 430 and scheduler 434 for evaluating and scheduling each user terminal for downlink and uplink transmissions. Within controller 430, a request processor 810 receives access requests sent by user terminal 120 and possibly access requests from other sources. The access requests request to transmit data on the downlink and/or uplink. For the sake of clarity, the scheduling of uplink transmissions will be explained below. Request processor 810 processes the received access request and provides the identity (ID) and status of all active user terminals. A user selector 82 selects a different user terminal group from among all active user terminals for evaluation. The user terminal can be selected for evaluation based on various factors such as user priority, amount of data to be sent, system requirements, and the like. An evaluation unit 830 evaluates each set of user terminals and provides a value of - 97550.doc 41 1358214 for the group. For the sake of brevity, it is assumed in the following description that (1) the total flux is used as the metric and (2) the effective uplink channel response vector is available for each active user terminal. The evaluation unit 830 includes a matrix calculation unit 84 and a rate selector 850. The matrix calculation unit 840 performs an SNR calculation for each set of user terminals. For each group, unit 84〇 forms an effective uplink channel response matrix corresponding to the group, and calculates each user terminal in the group according to the receiver spatial processing technology used by the access point. SNR. The rate selector 85 receives a set of snr for each user group and determines the rate for each user terminal in the group and the total throughput of the group and ". The rate selector 850 can access a lookup table. (LUT) 852, the lookup table 852 stores the group rate supported by the (4) system and its required containers. The rate selector 850 determines that the user terminal can be determined based on the bet calculated for each user terminal. The highest rate for uplink transmission. The rate selector 850 also accumulates the rate or throughput of all user terminals in each group to obtain the total throughput of the group. The scheduler 434 receives (1) the user. The rate of the different user groups of the selector 820 and (7) the rate of each user terminal from the rate selector 85 and the total flux of the parent group. For the shoe 95 / 1 * 3 / 1 row of thieves 434 in each row During the interval, the best set of user terminals are selected among all the groups evaluated, and the selected users are scheduled to use the materials. (4) (4) Indignation scheduling information, scheduling information includes selected pages End time, its material delivery time (for example, the beginning of the pass The sequel is sent to the selected user terminal. ° The schedule for the downlink pass can be performed in the same way. 97550.doc •42· 1358214 The SDMA transmission techniques described in this article can be used in a variety of ways. Components can be built. For example, the techniques can be built on hardware, software, or a combination of them. For hardware construction, to support basic wireless technologies (such as CDMA or OFDM) and downlink and uplink Each processing unit of Sdma transmission on the road (eg, transmission and reception space processing at the access point and user terminal, evaluation of different user groups, etc.) may be constructed in one or more application-specific integrated circuits ( ASIC), digital signal processor (DSP), digital signal processing unit (DSPD), programmable logic device (pLD), field programmable gate array (FPGA), processor, controller, microcontroller, micro A processor, other electronic unit designed to perform the functions described herein, or a combination thereof. For a software build scheme, modules (eg, programs, functions, etc.) that perform the functions described herein may be used. The sdma transmission technology described herein is implemented. The soft weight code can be stored in a memory unit (such as memory units 432 and 482 shown in FIG. 4) and executed by a processor (eg, control H43G and 48G). The It body can be built into the processor or built outside the processor. When the processor unit is built outside the processor, the memory unit can be processed by various means known in the art. This article contains headings to facilitate review and contribute to the location of certain parts of the shirt. These headings are not intended to limit the concept of the underlying fabric concept and may apply to other parts of the description. The description of the embodiments is intended to enable any person skilled in the art to make or use the arsenal. It will be readily apparent to those skilled in the art that the various modifications of the embodiment can be used in other embodiments as defined herein, and may be used in other embodiments, without departing from the invention. The spirit or scope. Therefore, the present invention is not intended to be limited to the embodiments shown herein, but is intended to be accorded to the broadest scope of the principles and novel features disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a multiple access system; Figure 2 shows a process for performing SDMA uplink multi-antenna transmission; Figure 3 shows an evaluation and selection for simultaneous use on the uplink. Figure 4 shows a block diagram of an access point and two user terminals; Figures 5 and 5 show block diagrams of the CDMA and OFDM data processors respectively; Figure 6 shows The access point and the downlink and uplink transmission space processing at the user terminal; FIG. 7 shows a receiving space processor and a receiving data processor; and FIG. 8 shows a controller and an access point Scheduler. [Main component symbol description] 100 Multiple access system 110 Access point 120a-120i User terminal 120m User terminal (UT) 120x User terminal (UT) 130 System controller 408 Data source 410 ΤΧ Data processor 97550. Doc -44- 1358214 410a TX data processor 410b TX data processor 420 ΤΧ spatial processor 422 transmitter unit (TMTR) / receiver unit (RCVR) 424 antenna 424a-424ap antenna 428 channel estimator 430 controller 432 memory 434 Scheduler 440 RX Space Processor 440a RX Space Processor 440b RX Space Processor 442 RX Data Processor 442b RX Data Processor 444 Data Slot 452ma-452mu Antenna 452xa-452xu Antenna 454ma-454mu RCVR/TMTR 454m RCVR/TMTR 454xa-454xu RCVR/TMTR 460m RX Space Processor 460x RX Space Processor 470m RX Data Processor 97550.doc -45 · 1358214 470x RX Data Processor 472m Data Slot 472x Data Slot 478m Channel Estimator 478x Channel Estimator 480m Controller 480x controller 482m memory 482x memory 486m data source 486x data source 488m T X Data Processor 488x TX Data Processor 490m TX Space Processor 490x TX Space Processor 512 Encoder 514 Channel Interleaver 516 Symbol Mapping Unit 520 CDMA Modulator 522 Channelizer 524 Mixer 530 OFDM Modulator 532 Inverse Fast Fourier Transform (IFFT) unit 534 Cyclic prefix generator 97550.doc -46 - 1358214 640 Matrix multiplication unit 642 scaler unit 660 matrix multiplication unit 662 scaler unit 710a-710u spatial processor 720a-720u interference canceller 730a -730u RX data stream processor 740a-740u TX data stream processor 810 request processor 820 user selector 830 evaluation unit 840 matrix calculation unit 850 rate selector 97550.doc - 47 -

Claims (1)

1358214 r---- 修正替換頁 十、申請專利範圍: 第093135455號專利申請案 中文申請專利範圍替換本(100年10月) 一種於一多輸入多輸出(ΜΙΜΟ)通信系統中接收資料之方 法,其包括: 自一接收實體處之複數個接收天線獲得複數個接收符 號流’該等複數個接收符號流對應於由複數個發射實體 發送之複數個資料符號流’其中每一發射實體對應於一 個資料符號抓,其_對應於每—發射實體之該資料符號 流係使用該發射實體的一導引向量來空間處理並由該發 射實體處之複數個發射天線發送;及 根據一接收機空間處理技術處理該等複數個接收符號 流:以獲得複數個已恢復資料符號流,該等複數個已恢 復資料符號流係該等複數個資料符號流之估計值, 其中藉由如下來導出每一發射實體之該導引向量: 分解一用於該發射實體之通道響應矩陣以獲得複數個 特徵向量及複數個奇異值,及 根據一對應於該等複數個奇異值中一最大奇異值之特 徵向量,形成該發射實體之該導引向量。 2·如請求们之方法,其中該接收機空間處理技術係一通 道相關矩陣求反(CCMI)技術或一最小均方誤差(mmse) 技術。 3.如請求们之方法,其中該接收機空間處理技術係一順 序性干擾消除(SIC)技術。 4·如請求们之方法’其中每一發射實體之該導引向量等 於對應於該最大奇異值之該特徵向量。 97550·丨 WH027.doc 5·如請求項1之方法,其中每一發射實體之該導引向量包 含複數個具有相同大小及相位之元素’該等相位等於對 應於該最大奇異值之該特徵向量中複數個元素之相位。 6. —種於一多輸入多輸出(ΜΙΜΟ)通信系統中接收資料之方 法’其包括: 自一接收實體處之複數個接收天線獲得複數個接收符 號流’該等複數個接收符號流對應於由複數個發射實體 發送之複數個資料符號流,每一發射實體對應於一個資 料符號流,其中對應於每一發射實體之該資料符號流係 使用該發射實體的一導引向量來空間處理並由該發射實 體處之複數個發射天線發送; 根據一接收機空間處理技術處理該等複數個接收符號 々IL ’以獲得複數個已恢復資料符號流,該等複數個已恢 復資料符號流係該等複數個資料符號流之估計值; 根據一量度及該組内該等發射實體之導引向量來評價 複數組發射實體中每一組供可能之傳輸;及 選擇一組具有一最高量度值之發射實體進行傳輸。 7· 一種位於一多輸入多輸出(ΜΙΜΟ)通信系統中一接收實體 處之裝置,其包括: 複數個接收機卓元’其用於自複數個接收天線獲得複 數個接收符號流,該等複數個接收符號流對應於由複數 個發射實體發送之複數個資料符號流,其中每一發射實 體對應於一個資料符號流,其中對應於每一發射實體之 該資料符號流係使用該發射實體的一導引向量來空間處 97550-1001027.doc -2 - Λ 咖㈣Β修正替換頁丨 ;及 理並由該發射實體處之複數個發射天線發送 一接收空間處理器,其用於根據一接收機空間處理技 術處理該等複數個接收符號流,以獲得複數個已恢復資 料符號流,該等複數個已恢復資料符號流係該等複數個 資料符號流之估計值, 其中每一發射實體之該導引向量係藉由如下來導出: 分解一用於該發射實體之通道響應矩陣以獲得複數個 特徵向量及複數個奇異值,及 根據一對應於該等複數個奇異值中一最大奇異值之特 徵向量,形成該發射實體之該導引向量。 8.如請求項7之裝置,其中读接收機空間處理技術係一通 道相關矩陣求反(CCMI)技術或一最小均方誤差(mmse) 技術。 9. 種位於一多輸入多輸出(ΜΙΜΟ)通信系統中一接收實體 處之裝置,其包括: 獲得構件,其用於自複數個接收天線獲得複數個接收 符號流’該等複數個接收符號流對應於由複數個發射實 體發送之複數個資料符號流’其中每一發射實體對應於 一個資料符號流,其中對應於每一發射實體之該資料符 號流係使用該發射實體的一導引向量來空間處理並由該 發射實體處之複數個發射天線發送;及 處理構件,其用於根據一接收機空間處理技術處理該 等複數個接收符號流,以獲得複數個已恢復資料符號 流’該等複數個已恢復資料符號流係該等複數個資料符 97550-1001027.doc ^58214. 號流之估計值, 其中每一發射實體之該導引向量係藉由如下來導出: 分解一用於該發射實體之通道響應矩陣以獲得複數個 特徵向量及複數個奇異值,及 根據一對應於該等複數個奇異值中一最大奇異值之特 徵向量’形成該發射實體之該導引向量。 如請求項9之裝置,其中該接收機空間處理技術係一通 道相關矩陣求反(CCMI)技術或一最小均方誤差(mmse) 技術。 U. —種於一多輸入多輸出(MIM〇)通信系統中導出用於資料 傳輸之導引向量之方法,其包括: 獲得一表示該ΜΙΜΟ系統中一發射實體與一接收實體 之間一 ΜΙΜΟ通道的一響應的通道響應矩陣; 分解該通道響應矩陣,以獲得複數個特徵向量及複數 個奇異值,其中每一奇異值對應於一個特徵向量;及 根據一對應於該等複數個奇異值中—最大奇異值之特 徵向量,導出該發射實體之導引向量,及 其中針對複數個發射實體導出複數個導引向量,該等 複數個導引向量由該等複數個發射實體用於空間處理, 以同時發射複數個資料符號流至該接收實體。 12·如凊求項11之方法,其中每一發射實體之該導引向量係 對應於該最大奇異值之該特徵向量。 13.如請求項11之方法,其中每一發射實體之該導引向量包 含複數個具有相同大小及相位之元素,該等相位等於對 97550-1001027.doc 1358214 /t»% 〇月?修主眷搡貝j 應於該最大奇異值之該特徵向量中複數個元素之相位。 14· 一種位於一多輸入多輸出(ΜΙΜΟ)通信系統中之裝置,其 包括: 一通道估計器,其用於獲得一表示該ΜΙΜΟ系統中一 發射實體與一接收實體之間一 ΜΙΜΟ通道的一響應的通 道響應矩陣;及 一控制器,其用於分解該通道響應矩陣以獲得複數個 特徵向量及複數個奇異值,其中每一奇異值對應於一個 特徵向量’並用於根據一對應於該等複數個奇異值中一 最大奇異值之特徵向量來導出該發射實體之導引向量,及 其中針對複數個發射實體導出複數個導引向量,該等 複數個導弓丨向量由該等複數個發射實體用於空間處理, 以同時發射複數個資料符號流至該接收實體。 15. —種位於一多輸入多輸出(ΜΙΜ〇)通信系統中之裝置,其 包括: 獲得構件’其用於獲得一表示該ΜΙΜΟ系統中一發射 實體與一接收實體之間一 ΜΙΜ〇通道的一響應的通道響 應矩陣; 分解構件,其用於分解該通道響應矩陣,以獲得複數 個特徵向量及複數個奇異值,其中每—奇異值對應於一 個特徵向量;及 導出構件,其用於根據一對應於該等複數個奇異值中 最大奇異值之特徵向量來導出該發射實體之導引向 量,及 9755〇'l〇〇l〇27.di 1358214 r—-. - 丨;P % 勒修正替^贾 — 其中針對複數個發射實體導出複數個導引向量,該等 複數個導引向量由該等複數個發射實體用於空間處理, 以同時發射複數個資料符號流至該接收實體。 97550-1001027.doc1358214 r---- Correction of replacement page X. Patent application scope: Patent application No. 093135455 Patent application replacement scope (October 100) A method for receiving data in a multiple input multiple output (ΜΙΜΟ) communication system The method includes: obtaining a plurality of received symbol streams from a plurality of receiving antennas at a receiving entity, wherein the plurality of received symbol streams correspond to a plurality of data symbol streams transmitted by the plurality of transmitting entities, wherein each of the transmitting entities corresponds to a data symbol grab, the data symbol stream corresponding to each of the transmitting entities is spatially processed using a steering vector of the transmitting entity and transmitted by a plurality of transmitting antennas at the transmitting entity; and according to a receiver space The processing technique processes the plurality of received symbol streams: obtaining a plurality of recovered data symbol streams, the plurality of recovered data symbol streams being estimates of the plurality of data symbol streams, wherein each of the plurality of data symbol streams is derived by The steering vector of the transmitting entity: decompose a channel response matrix for the transmitting entity to obtain a plurality of A plurality of eigenvectors and singular values, and according to an eigenvector corresponding to a largest singular value among the plurality of singular values of those forming the steering vector of the transmitting entity. 2. The method of claimants, wherein the receiver spatial processing technique is a channel correlation matrix inversion (CCMI) technique or a minimum mean square error (mmse) technique. 3. The method of claimants, wherein the receiver spatial processing technique is a sequential interference cancellation (SIC) technique. 4. The method of claimants wherein the steering vector of each of the transmitting entities is equal to the eigenvector corresponding to the largest singular value. The method of claim 1, wherein the steering vector of each transmitting entity comprises a plurality of elements having the same size and phase 'the phases are equal to the eigenvector corresponding to the maximum singular value The phase of multiple elements in the middle. 6. A method of receiving data in a multiple input multiple output (MIMO) communication system, comprising: obtaining a plurality of received symbol streams from a plurality of receiving antennas at a receiving entity, wherein the plurality of received symbol streams correspond to a plurality of data symbol streams transmitted by a plurality of transmitting entities, each transmitting entity corresponding to a data symbol stream, wherein the data symbol stream corresponding to each transmitting entity is spatially processed using a steering vector of the transmitting entity Transmitting by a plurality of transmit antennas at the transmitting entity; processing the plurality of received symbols 々IL' according to a receiver spatial processing technique to obtain a plurality of recovered data symbol streams, the plurality of recovered data symbol streams And an estimate of the plurality of data symbol streams; evaluating each of the plurality of complex transmit entities for possible transmission based on a measure and a steering vector of the transmit entities in the set; and selecting a set having a highest metric value The transmitting entity transmits. 7. Apparatus for a receiving entity in a multiple input multiple output (MIMO) communication system, comprising: a plurality of receiver elements for obtaining a plurality of received symbol streams from a plurality of receiving antennas, said plurality The received symbol streams correspond to a plurality of data symbol streams transmitted by a plurality of transmitting entities, wherein each transmitting entity corresponds to a data symbol stream, wherein the data symbol stream corresponding to each transmitting entity uses one of the transmitting entities The steering vector is spatially located at 97550-1001027.doc -2 - 咖 咖 (4) Β correction replacement page 及; and is processed by a plurality of transmitting antennas at the transmitting entity to transmit a receiving spatial processor for use according to a receiver space The processing technique processes the plurality of received symbol streams to obtain a plurality of recovered data symbol streams, the plurality of recovered data symbol streams being estimates of the plurality of data symbol streams, wherein the each of the transmitting entities The vector is derived by decomposing a channel response matrix for the transmitting entity to obtain a plurality of eigenvectors and A plurality of singular values, based on the steering vectors and a feature vector corresponding to a largest singular value among the plurality of singular values of those forming the transmitting entities. 8. The apparatus of claim 7, wherein the read receiver spatial processing technique is a channel correlation matrix inversion (CCMI) technique or a minimum mean square error (mmse) technique. 9. Apparatus for a receiving entity in a multiple input multiple output (MIMO) communication system, comprising: obtaining means for obtaining a plurality of received symbol streams from a plurality of receiving antennas - said plurality of received symbol streams Corresponding to a plurality of data symbol streams transmitted by a plurality of transmitting entities, wherein each transmitting entity corresponds to a data symbol stream, wherein the data symbol stream corresponding to each transmitting entity uses a steering vector of the transmitting entity Spatially processed and transmitted by a plurality of transmit antennas at the transmitting entity; and processing means for processing the plurality of received symbol streams in accordance with a receiver spatial processing technique to obtain a plurality of recovered data symbol streams The plurality of recovered data symbol streams are estimates of the plurality of data symbols 97550-1001027.doc ^58214., wherein the steering vector of each transmitting entity is derived by: decomposing one for the Transmitting a channel response matrix of the entity to obtain a plurality of eigenvectors and a plurality of singular values, and corresponding to the plurality of singular values A feature vector of a maximum singular value in the singular value forms the steering vector of the transmitting entity. The apparatus of claim 9, wherein the receiver spatial processing technique is a channel correlation matrix inversion (CCMI) technique or a minimum mean square error (mmse) technique. U. A method for deriving a steering vector for data transmission in a multiple input multiple output (MIM) communication system, comprising: obtaining a representation between a transmitting entity and a receiving entity in the system a response channel response matrix of the channel; decomposing the channel response matrix to obtain a plurality of eigenvectors and a plurality of singular values, wherein each singular value corresponds to a eigenvector; and corresponding to the plurality of singular values a eigenvector of a maximum singular value, deriving a steering vector of the transmitting entity, and deriving a plurality of steering vectors for the plurality of transmitting entities, the plurality of steering vectors being used by the plurality of transmitting entities for spatial processing, Simultaneously transmitting a plurality of data symbols to the receiving entity. 12. The method of claim 11, wherein the vector of each of the transmitting entities corresponds to the feature vector of the largest singular value. 13. The method of claim 11, wherein the steering vector of each transmitting entity comprises a plurality of elements of the same size and phase, the phases being equal to 97550-1001027.doc 1358214 /t»% 〇月? The cultivator muj should be the phase of the plurality of elements in the eigenvector of the largest singular value. 14. A device in a multiple input multiple output (MIMO) communication system, comprising: a channel estimator for obtaining a channel representing a channel between a transmitting entity and a receiving entity in the system a channel response matrix of the response; and a controller for decomposing the channel response matrix to obtain a plurality of feature vectors and a plurality of singular values, wherein each singular value corresponds to a feature vector 'and is used to correspond to the one Deriving a vector of the largest singular value of the plurality of singular values to derive a steering vector of the transmitting entity, and deriving a plurality of steering vectors for the plurality of transmitting entities, wherein the plurality of steering vectors are transmitted by the plurality of vectors The entity is used for spatial processing to simultaneously transmit a plurality of data symbol streams to the receiving entity. 15. Apparatus for a multi-input multiple-output (ΜΙΜ〇) communication system, comprising: obtaining means for obtaining a channel between a transmitting entity and a receiving entity in the system a response channel response matrix; a decomposition component for decomposing the channel response matrix to obtain a plurality of eigenvectors and a plurality of singular values, wherein each singular value corresponds to a feature vector; and a deriving component for A steer vector corresponding to the largest singular value of the plurality of singular values is used to derive a steering vector of the transmitting entity, and 9755 〇 'l〇〇l 〇 27.di 1358214 r —- — — 丨; P % 勒 correction And a plurality of steering vectors are derived for a plurality of transmitting entities, and the plurality of steering vectors are used by the plurality of transmitting entities for spatial processing to simultaneously transmit a plurality of data symbol streams to the receiving entity. 97550-1001027.doc
TW093135455A 2003-11-21 2004-11-18 Multi-antenna transmission for spatial division mu TWI358214B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/719,802 US7298805B2 (en) 2003-11-21 2003-11-21 Multi-antenna transmission for spatial division multiple access

Publications (2)

Publication Number Publication Date
TW200537834A TW200537834A (en) 2005-11-16
TWI358214B true TWI358214B (en) 2012-02-11

Family

ID=34591435

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093135455A TWI358214B (en) 2003-11-21 2004-11-18 Multi-antenna transmission for spatial division mu

Country Status (15)

Country Link
US (7) US7298805B2 (en)
EP (1) EP1685660B1 (en)
JP (3) JP2007512773A (en)
KR (1) KR100862408B1 (en)
CN (3) CN1906864A (en)
AU (2) AU2004310663B2 (en)
BR (1) BRPI0416781A (en)
CA (3) CA2787797A1 (en)
HK (1) HK1207489A1 (en)
IL (1) IL175699A0 (en)
MX (1) MXPA06005709A (en)
RU (1) RU2346391C2 (en)
SG (3) SG150536A1 (en)
TW (1) TWI358214B (en)
WO (1) WO2005053186A1 (en)

Families Citing this family (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047032A1 (en) * 2001-11-29 2003-06-05 Interdigital Technology Corporation Efficient multiple input multiple output system for multi-path fading channels
US8194770B2 (en) * 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7715508B2 (en) 2005-11-15 2010-05-11 Tensorcomm, Incorporated Iterative interference cancellation using mixed feedback weights and stabilizing step sizes
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8169944B2 (en) * 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US7151809B2 (en) 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8452294B2 (en) * 2003-04-23 2013-05-28 Qualcomm Incorporated In-band ate indicator methods and apparatus
US9049722B2 (en) * 2004-04-23 2015-06-02 Qualcomm Incorporated Methods and apparatus of enhancing performance in wireless communication systems
US7298805B2 (en) * 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US20070110172A1 (en) * 2003-12-03 2007-05-17 Australian Telecommunications Cooperative Research Channel estimation for ofdm systems
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US8027417B2 (en) 2003-12-19 2011-09-27 Nortel Networks Limited Interference-weighted communication signal processing systems and methods
US7804762B2 (en) * 2003-12-30 2010-09-28 Intel Corporation Method and apparatus for implementing downlink SDMA in a wireless network
US7336746B2 (en) 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US7742533B2 (en) 2004-03-12 2010-06-22 Kabushiki Kaisha Toshiba OFDM signal transmission method and apparatus
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US9826537B2 (en) * 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US9819403B2 (en) * 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US8170081B2 (en) 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US7633994B2 (en) 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US7418053B2 (en) 2004-07-30 2008-08-26 Rearden, Llc System and method for distributed input-distributed output wireless communications
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10200094B2 (en) * 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US7636381B2 (en) * 2004-07-30 2009-12-22 Rearden, Llc System and method for distributed input-distributed output wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US7885354B2 (en) * 2004-04-02 2011-02-08 Rearden, Llc System and method for enhancing near vertical incidence skywave (“NVIS”) communication using space-time coding
US10886979B2 (en) * 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US7711030B2 (en) * 2004-07-30 2010-05-04 Rearden, Llc System and method for spatial-multiplexed tropospheric scatter communications
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US8160121B2 (en) * 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
US8923785B2 (en) 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US8285226B2 (en) 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
ATE509441T1 (en) * 2004-06-18 2011-05-15 Nokia Corp FREQUENCY RANGE EQUALIZATION OF FREQUENCY SELECTIVE MIMO CHANNELS
US7978649B2 (en) 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US7372913B2 (en) * 2004-07-22 2008-05-13 Qualcomm Incorporated Pilot tones in a multi-transmit OFDM system usable to capture transmitter diversity benefits
US9685997B2 (en) * 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US20060025079A1 (en) * 2004-08-02 2006-02-02 Ilan Sutskover Channel estimation for a wireless communication system
JP4744965B2 (en) 2004-08-09 2011-08-10 パナソニック株式会社 Wireless communication device
US8270512B2 (en) 2004-08-12 2012-09-18 Interdigital Technology Corporation Method and apparatus for subcarrier and antenna selection in MIMO-OFDM system
US7711762B2 (en) * 2004-11-15 2010-05-04 Qualcomm Incorporated Efficient computation for eigenvalue decomposition and singular value decomposition of matrices
US7895254B2 (en) * 2004-11-15 2011-02-22 Qualcomm Incorporated Eigenvalue decomposition and singular value decomposition of matrices using Jacobi rotation
US8995547B2 (en) * 2005-03-11 2015-03-31 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
US8724740B2 (en) * 2005-03-11 2014-05-13 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
US7729325B2 (en) * 2005-04-05 2010-06-01 Toshiba America Research, Inc. Beamforming and distributed opportunistic scheduling in wireless networks
US7826516B2 (en) 2005-11-15 2010-11-02 Rambus Inc. Iterative interference canceller for wireless multiple-access systems with multiple receive antennas
US7991088B2 (en) * 2005-11-15 2011-08-02 Tommy Guess Iterative interference cancellation using mixed feedback weights and stabilizing step sizes
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7680211B1 (en) * 2005-05-18 2010-03-16 Urbain A. von der Embse MIMO maximum-likelihood space-time architecture
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
BRPI0614854B1 (en) * 2005-08-22 2019-05-14 Qualcomm Incorporated METHOD AND EQUIPMENT FOR VIRTUAL ANTENNA SELECTION
US7826555B2 (en) 2005-08-24 2010-11-02 Panasonic Corporation MIMO-OFDM transmission device and MIMO-OFDM transmission method
US8855704B2 (en) * 2005-08-26 2014-10-07 Qualcomm Incorporated Fast cell selection in TD-CDMA (UMTS TDD)
KR100973726B1 (en) 2005-09-22 2010-08-04 캔트릴 텔레콤 코. 엘엘씨 Method for selection of an optimized number of subscribes in mobile radio systems
EP1938543B1 (en) 2005-09-29 2009-09-09 Interdigital Technology Corporation Mimo beamforming-based single carrier frequency division multiple access system
JP4504293B2 (en) * 2005-09-29 2010-07-14 株式会社東芝 Wireless communication apparatus, wireless communication system, and wireless communication method provided with multiple antennas
EP2858264B1 (en) * 2005-09-30 2019-12-18 Apple Inc. MIMO communication system
JP2007110456A (en) * 2005-10-14 2007-04-26 Hitachi Ltd Radio communication apparatus
US7602837B2 (en) * 2005-10-20 2009-10-13 Freescale Semiconductor, Inc. Beamforming for non-collaborative, space division multiple access systems
US8130727B2 (en) * 2005-10-27 2012-03-06 Qualcomm Incorporated Quasi-orthogonal allocation of codes in TD-CDMA systems
US8068464B2 (en) 2005-10-27 2011-11-29 Qualcomm Incorporated Varying scrambling/OVSF codes within a TD-CDMA slot to overcome jamming effect by a dominant interferer
JP4754325B2 (en) * 2005-10-28 2011-08-24 京セラ株式会社 Radio base station and channel allocation method
ATE400932T1 (en) * 2005-10-31 2008-07-15 Mitsubishi Electric Corp METHOD FOR CONTROLLING THE TRANSMISSION OF MESSAGE SIGNALS
US20070110135A1 (en) 2005-11-15 2007-05-17 Tommy Guess Iterative interference cancellation for MIMO-OFDM receivers
US7940640B2 (en) * 2006-01-20 2011-05-10 Nortel Networks Limited Adaptive orthogonal scheduling for virtual MIMO system
KR100922936B1 (en) 2006-02-07 2009-10-22 삼성전자주식회사 Method and system for transmitting/receiving data in a communication system
US8077595B2 (en) * 2006-02-21 2011-12-13 Qualcomm Incorporated Flexible time-frequency multiplexing structure for wireless communication
CA2641935C (en) * 2006-02-21 2015-01-06 Qualcomm Incorporated Feedback channel design for multiple-input multiple-output communication systems
US9461736B2 (en) * 2006-02-21 2016-10-04 Qualcomm Incorporated Method and apparatus for sub-slot packets in wireless communication
US8689025B2 (en) * 2006-02-21 2014-04-01 Qualcomm Incorporated Reduced terminal power consumption via use of active hold state
US9130791B2 (en) 2006-03-20 2015-09-08 Qualcomm Incorporated Uplink channel estimation using a signaling channel
CN101427537A (en) * 2006-03-20 2009-05-06 高通股份有限公司 Uplink channel estimation using a signaling channel
US8543070B2 (en) * 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US8290089B2 (en) 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
US20080007453A1 (en) * 2006-06-12 2008-01-10 Bill Vassilakis Smart antenna array over fiber
US8787841B2 (en) * 2006-06-27 2014-07-22 Qualcomm Incorporated Method and system for providing beamforming feedback in wireless communication systems
JP4767771B2 (en) * 2006-06-27 2011-09-07 京セラ株式会社 Base station apparatus and spatial multiplexing method
KR101177165B1 (en) * 2006-08-07 2012-08-27 인터디지탈 테크날러지 코포레이션 Method, apparatus and system for implementing multi-user virtual multiple-input multiple-output
CN101127747B (en) * 2006-08-14 2010-09-08 大唐移动通信设备有限公司 A method and system for frequency domain scheduling in time division duplex multiplexing system
RU2417527C2 (en) 2006-09-06 2011-04-27 Квэлкомм Инкорпорейтед Codeword permutation and reduced feedback for grouped antennae
KR100712606B1 (en) * 2006-09-25 2007-05-02 (주)카이로넷 Method of determining a variable quantization step size for improving channel decoding, method and apparatus of performing channel decoding operation based on a variable quantization step size
US7551682B2 (en) * 2006-10-25 2009-06-23 Cisco Technology, Inc. Method for improving the performance of a wireless network utilizing beamforming weighting vectors
KR101530789B1 (en) * 2006-10-27 2015-06-22 인터디지탈 테크날러지 코포레이션 Method and apparatus for enhancing discontinuous reception in wireless systems
KR20080040105A (en) * 2006-11-02 2008-05-08 한국전자통신연구원 Efficient transmission apparatus and method based on beam
CN101548479A (en) * 2006-12-08 2009-09-30 诺基亚公司 Calibration in a spread spectrum communications system
KR101002877B1 (en) * 2007-03-06 2010-12-21 한국과학기술원 A method and Apparatus for scheduling Multiple Users In communication
US20080260051A1 (en) * 2007-04-23 2008-10-23 Federico Boccardi Method and apparatus for transmitting information simultaneously to multiple destinations over shared wireless resources
JP5138974B2 (en) * 2007-04-27 2013-02-06 株式会社日立製作所 MIMO wireless communication system, MIMO wireless communication apparatus, and wireless communication method
US20080317178A1 (en) * 2007-06-25 2008-12-25 Joonsuk Kim Method and system for sfbc/stbc using interference cancellation
US7953188B2 (en) * 2007-06-25 2011-05-31 Broadcom Corporation Method and system for rate>1 SFBC/STBC using hybrid maximum likelihood (ML)/minimum mean squared error (MMSE) estimation
US9668225B2 (en) * 2007-07-10 2017-05-30 Qualcomm Incorporated Methods and apparatus for active successive interference cancellation based on one rate feedback and probability adaptation in peer-to-peer networks
US8433349B2 (en) * 2007-07-10 2013-04-30 Qualcomm Incorporated Methods and apparatus for successive interference cancellation based on transmit power control by interfering device with success probability adaptation in peer-to-peer wireless networks
US9521680B2 (en) * 2007-07-10 2016-12-13 Qualcomm Incorporated Methods and apparatus for successive interference cancellation based on three rate reports from interfering device in peer-to-peer networks
US8849197B2 (en) * 2007-07-10 2014-09-30 Qualcomm Incorporated Methods and apparatus for active successive interference cancellation in peer-to-peer networks
US8855567B2 (en) * 2007-07-10 2014-10-07 Qualcomm Incorporated Methods and apparatus for successive interference cancellation based on two rate feedback in peer-to-peer networks
US8874040B2 (en) * 2007-07-10 2014-10-28 Qualcomm Incorporated Methods and apparatus for successive interference cancellation based on rate capping in peer-to-peer networks
EP2017973A1 (en) * 2007-07-20 2009-01-21 Lucent Technologies Inc. Method and apparatuses for selecting a subchannels subset in wireless communications network using relays
US8989155B2 (en) * 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
US7447276B1 (en) * 2007-08-29 2008-11-04 Harris Corporation Receiver and method for blind adaptive thresholding using noise estimator
US20090093222A1 (en) * 2007-10-03 2009-04-09 Qualcomm Incorporated Calibration and beamforming in a wireless communication system
US7782755B2 (en) * 2007-12-21 2010-08-24 Motorola, Inc. Method for uplink collaborative SDMA user pairing in WIMAX
US8064408B2 (en) 2008-02-20 2011-11-22 Hobbit Wave Beamforming devices and methods
US9300371B1 (en) 2008-03-07 2016-03-29 Marvell International Ltd. Beamforming systems and methods
US8493916B2 (en) 2008-07-29 2013-07-23 Panasonic Corporation MIMO transmission device and MIMO transmission method
JP5398722B2 (en) * 2008-09-22 2014-01-29 パナソニック株式会社 Wireless communication apparatus and wireless communication method
WO2010079748A1 (en) * 2009-01-07 2010-07-15 パナソニック株式会社 Wireless communication apparatus, wireless communication system and wireless communication method
WO2010088843A1 (en) * 2009-02-06 2010-08-12 大唐移动通信设备有限公司 Method, system and apparatus for space division multiple access and data demodulation
US8494031B2 (en) * 2009-02-27 2013-07-23 Qualcomm Incorporated Protocol operation and message design for SDMA data transmission to a plurality of stations
KR101800294B1 (en) * 2009-04-02 2017-12-20 삼성전자주식회사 Apparatus and method for error minimization of cell boundary users in multi-call communication system
CN101877689B (en) * 2009-04-28 2012-10-17 华为技术有限公司 Data transmitting method and device thereof as well as data receiving method and device thereof
WO2010124456A1 (en) * 2009-04-28 2010-11-04 华为技术有限公司 Data transmitting processing method and apparatus, data receiving processing method and apparatus
EP2495612B1 (en) * 2009-10-30 2019-11-27 Fujitsu Limited Optical signal processing device, receiver, and optical network system
US9474082B2 (en) 2009-11-09 2016-10-18 Apple Inc. Method and apparatus for co-scheduling transmissions in a wireless network
US8434336B2 (en) * 2009-11-14 2013-05-07 Qualcomm Incorporated Method and apparatus for managing client initiated transmissions in multiple-user communication schemes
JP2013517647A (en) * 2010-01-12 2013-05-16 ゼットティーイー コーポレーション Method and system for spatial channel state information feedback based on Kronecker product
US20110194655A1 (en) * 2010-02-10 2011-08-11 Qualcomm Incorporated Methods and apparatus to perform residual frequency offset estimation and correction in ieee 802.11 waveforms
WO2011124028A1 (en) 2010-04-07 2011-10-13 Nokia Corporation Relay control channel search space configuration
US9667318B2 (en) 2010-05-11 2017-05-30 Texas Instruments Corporation Device and frame structure for powerline communications
US9112753B2 (en) * 2010-05-11 2015-08-18 Texas Instruments Incorporated Interleaver design and header structure for ITU G.hnem
EP2439856B1 (en) * 2010-10-08 2014-01-15 Alcatel Lucent Setting uplink antenna transmission weights in soft handover
US9059821B2 (en) * 2011-08-02 2015-06-16 Celeno Communications (Israel) Ltd. Carrier grouping schemes for wireless local area networks
WO2013134506A2 (en) * 2012-03-07 2013-09-12 Hobbit Wave, Inc. Devices and methods using the hermetic transform
US9154353B2 (en) 2012-03-07 2015-10-06 Hobbit Wave, Inc. Devices and methods using the hermetic transform for transmitting and receiving signals using OFDM
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US20140169234A1 (en) * 2012-12-14 2014-06-19 Futurewei Technologies, Inc. Systems and Methods for Interference Avoidance, Channel Sounding, and Other Signaling for Multi-User Full Duplex Transmission
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
RU2767777C2 (en) 2013-03-15 2022-03-21 Риарден, Ллк Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output
US9531431B2 (en) 2013-10-25 2016-12-27 Hobbit Wave, Inc. Devices and methods employing hermetic transforms for encoding and decoding digital information in spread-spectrum communications systems
US9829568B2 (en) 2013-11-22 2017-11-28 VertoCOMM, Inc. Radar using hermetic transforms
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
WO2015194500A1 (en) * 2014-06-20 2015-12-23 株式会社ニコン Information storage device, information storage system, and information storage control program
US11304661B2 (en) 2014-10-23 2022-04-19 VertoCOMM, Inc. Enhanced imaging devices, and image construction methods and processes employing hermetic transforms
US9871684B2 (en) 2014-11-17 2018-01-16 VertoCOMM, Inc. Devices and methods for hermetic transform filters
FR3029375A1 (en) * 2014-11-28 2016-06-03 Orange METHOD AND DEVICE FOR SOFT AND SELECTIVE SSDF RELAY
CN105871483A (en) * 2015-01-21 2016-08-17 中兴通讯股份有限公司 Wireless channel measurement system, transmitter and receiver
US9552510B2 (en) 2015-03-18 2017-01-24 Adobe Systems Incorporated Facial expression capture for character animation
US9576356B2 (en) * 2015-05-08 2017-02-21 Siemens Healthcare Gmbh Region clustering forest for analyzing medical imaging data
DE102015111638B4 (en) * 2015-07-17 2023-01-05 Apple Inc. beam shaping device
CN106487436B (en) * 2015-09-01 2021-03-23 中兴通讯股份有限公司 Hybrid beam forming uplink multi-user pairing method and device
US20170170884A1 (en) * 2015-12-14 2017-06-15 Qualcomm Incorporated Mu-mimo scheduler transmit mode probing with transmit mode scoring
US10305717B2 (en) 2016-02-26 2019-05-28 VertoCOMM, Inc. Devices and methods using the hermetic transform for transmitting and receiving signals using multi-channel signaling
WO2017165556A1 (en) 2016-03-23 2017-09-28 The Regents Of The University Of California Interference-tolerant multiple-user radar system
CN107248878A (en) * 2016-03-29 2017-10-13 北京信威通信技术股份有限公司 A kind of method and device of precoding
CN107508661B (en) * 2016-06-14 2020-07-21 华为技术有限公司 Data processing method, network equipment and terminal
CN107846266B (en) * 2016-09-18 2022-03-04 中兴通讯股份有限公司 Time-frequency resource space division scheduling method and device
US9942020B1 (en) * 2017-04-26 2018-04-10 Cisco Technology, Inc. Minimum delay spatio-temporal filtering for interference rejection
CN108880641B (en) * 2017-05-16 2022-02-25 中兴通讯股份有限公司 Resource allocation method and device for wireless mobile communication system
US10404336B1 (en) * 2017-07-17 2019-09-03 Marvell International Ltd. Systems and methods for channel correlation based user detection in an uplink multi-user transmission of a multiple-input multiple-output network
KR102118389B1 (en) * 2018-06-27 2020-06-03 에스케이텔레콤 주식회사 Basement apparatus, and control method thereof
US11950237B2 (en) * 2019-09-24 2024-04-02 Qualcomm Incorporated Sequence based physical uplink control channel transmission
CN113141229B (en) * 2020-01-20 2022-07-01 大唐移动通信设备有限公司 Interference suppression method and device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515378A (en) 1991-12-12 1996-05-07 Arraycomm, Inc. Spatial division multiple access wireless communication systems
US5592490A (en) * 1991-12-12 1997-01-07 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems
US5828658A (en) 1991-12-12 1998-10-27 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems with spatio-temporal processing
CA2302289C (en) * 1996-08-29 2005-11-08 Gregory G. Raleigh Spatio-temporal processing for communication
US6128276A (en) * 1997-02-24 2000-10-03 Radix Wireless, Inc. Stacked-carrier discrete multiple tone communication technology and combinations with code nulling, interference cancellation, retrodirective communication and adaptive antenna arrays
RU2192094C1 (en) * 2001-02-05 2002-10-27 Гармонов Александр Васильевич Method for coherent staggered signal transmission
GB0104610D0 (en) * 2001-02-23 2001-04-11 Koninkl Philips Electronics Nv Radio communication system
US8290098B2 (en) 2001-03-30 2012-10-16 Texas Instruments Incorporated Closed loop multiple transmit, multiple receive antenna wireless communication system
US7047016B2 (en) 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US7149254B2 (en) 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US6760388B2 (en) * 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7020482B2 (en) * 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US7317750B2 (en) 2002-10-31 2008-01-08 Lot 41 Acquisition Foundation, Llc Orthogonal superposition coding for direct-sequence communications
US7280625B2 (en) * 2002-12-11 2007-10-09 Qualcomm Incorporated Derivation of eigenvectors for spatial processing in MIMO communication systems
US7742546B2 (en) 2003-10-08 2010-06-22 Qualcomm Incorporated Receiver spatial processing for eigenmode transmission in a MIMO system
US7298805B2 (en) 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access

Also Published As

Publication number Publication date
RU2006121997A (en) 2007-12-27
CN104393899A (en) 2015-03-04
RU2346391C2 (en) 2009-02-10
CA2546749A1 (en) 2005-06-09
EP1685660B1 (en) 2016-05-11
US20050111599A1 (en) 2005-05-26
JP5456540B2 (en) 2014-04-02
JP5595746B2 (en) 2014-09-24
US20080025425A1 (en) 2008-01-31
CN102123023A (en) 2011-07-13
US20080037681A1 (en) 2008-02-14
AU2008243127A1 (en) 2008-11-27
US9548851B2 (en) 2017-01-17
CA2787842A1 (en) 2005-06-09
US20170126290A1 (en) 2017-05-04
KR100862408B1 (en) 2008-10-08
JP2010213288A (en) 2010-09-24
CA2787797A1 (en) 2005-06-09
MXPA06005709A (en) 2006-08-23
WO2005053186A1 (en) 2005-06-09
KR20060094985A (en) 2006-08-30
CN102123023B (en) 2012-09-05
US20090092087A1 (en) 2009-04-09
AU2004310663A1 (en) 2005-06-09
US20080025444A1 (en) 2008-01-31
JP2010183578A (en) 2010-08-19
US10128920B2 (en) 2018-11-13
BRPI0416781A (en) 2007-03-06
SG150537A1 (en) 2009-03-30
US20120213302A1 (en) 2012-08-23
CA2546749C (en) 2012-10-23
TW200537834A (en) 2005-11-16
US7298805B2 (en) 2007-11-20
IL175699A0 (en) 2006-09-05
CN1906864A (en) 2007-01-31
EP1685660A1 (en) 2006-08-02
CN104393899B (en) 2017-11-07
HK1207489A1 (en) 2016-01-29
AU2004310663B2 (en) 2009-01-08
CA2787842C (en) 2013-08-20
SG150536A1 (en) 2009-03-30
JP2007512773A (en) 2007-05-17
SG150535A1 (en) 2009-03-30

Similar Documents

Publication Publication Date Title
TWI358214B (en) Multi-antenna transmission for spatial division mu
TWI335155B (en) Mimo system with multiple spatial multiplexing modes and method using the same
TWI358914B (en) Channel estimation and spatial processing for tdd
US8325844B2 (en) Data transmission with spatial spreading in a MIMO communication system
JP4604545B2 (en) Wireless communication system, wireless communication apparatus, and wireless communication method
US7194042B2 (en) Data transmission with spatial spreading in a mimo communication system
TWI360333B (en) Receiver spatial processing for eigenmode transmis
JP4543737B2 (en) Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
JP2005184730A (en) Radio communication system, radio communication apparatus, and radio communication method, as well as computer program
KR20080005609A (en) On-demand reverse-link pilot transmission
CN102356566B (en) Communication means and its equipment in the multiple-user network using precoding
CN103166692B (en) Receiving device