TWI335451B - Method of repairing bright pixel defect of display device - Google Patents

Method of repairing bright pixel defect of display device Download PDF

Info

Publication number
TWI335451B
TWI335451B TW097122723A TW97122723A TWI335451B TW I335451 B TWI335451 B TW I335451B TW 097122723 A TW097122723 A TW 097122723A TW 97122723 A TW97122723 A TW 97122723A TW I335451 B TWI335451 B TW I335451B
Authority
TW
Taiwan
Prior art keywords
laser
color filter
bright pixel
wavelength
liquid crystal
Prior art date
Application number
TW097122723A
Other languages
Chinese (zh)
Other versions
TW200907466A (en
Inventor
Il Ho Kim
Original Assignee
Cowindst Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cowindst Co Ltd filed Critical Cowindst Co Ltd
Publication of TW200907466A publication Critical patent/TW200907466A/en
Application granted granted Critical
Publication of TWI335451B publication Critical patent/TWI335451B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Description

13354511335451

九、發明說明: 【發月所屬之技術領域】 有關。詳!係肖#修復顯示裝置上之亮像素缺陷的 方法有M言之係與一種修復顯示裝置上之亮像素缺 擇性地,其可相對於具有亮像素缺陷的彩色遽光片 =使用-具有高吸收光譜之波長帶的雷射,藉以 該彩色濾光片的亮像素缺陷。 【先前技術】 近年來,液晶顯示器因為低耗電、高可攜性技 集以及具有高附加價值’已成為下一世代高科技顯示 :焦點。主動陣列式液晶顯示器包括一用來切換施加 一像素上之電位的切換元件,此切換元件因為解析度 可用於動作片的優點而受到高度關注。 參照第1圖,建構一液晶面板5〇0,其中將一彩 光片基板530(作為上方基板)和一薄膜電晶體(TFT)陣 板510(作為下方基板),彼此面對面黏合並在基板 入液晶層520。利用切換已連接到數以千計之像素上的 來驅動液晶面板5 〇 〇,經由位址線來選擇像素,以施 位到相對應的像素上。在此,彩色濾光片基板53〇包 璃基板531、紅/綠/藍(RGB)彩色濾光片532、形成在 濾光片532之間的黑色矩陣533、用於共用電極之銦 化物(ITO)膜535、和配向膜536。在玻璃頂部則附接 偏光板537。 方法 陷的 來選 修復 術密 裝置 到每 高和 色滤 列基 間注 TFT 加電 括玻 彩色 錫氧 有一 1335451Nine, invention description: [Technical field to which the moon belongs] Related. detailed! The method of repairing the bright pixel defects on the display device is in the form of a system and a bright pixel on the repair display device, which can be used with respect to a color light film with bright pixel defects. A laser that absorbs the wavelength band of the spectrum, whereby the bright pixel defects of the color filter. [Prior Art] In recent years, liquid crystal displays have become the focus of the next generation of high-tech displays because of low power consumption, high portability and high added value. The active array type liquid crystal display includes a switching element for switching the potential applied to a pixel, which is highly concerned because of the advantages that the resolution can be used for the action sheet. Referring to FIG. 1 , a liquid crystal panel 5 〇 0 is constructed in which a color light substrate 530 (as an upper substrate) and a thin film transistor (TFT) array 510 (as a lower substrate) are bonded to each other in a substrate. Liquid crystal layer 520. The liquid crystal panel 5 驱动 is driven by switching the connections that have been connected to thousands of pixels, and the pixels are selected via the address lines to be applied to the corresponding pixels. Here, the color filter substrate 53 〇 the glass substrate 531, the red/green/blue (RGB) color filter 532, the black matrix 533 formed between the filters 532, and the indium compound for the common electrode ( ITO) film 535, and alignment film 536. A polarizing plate 537 is attached to the top of the glass. The method of trapping is to repair the secret device to each high and color filter column. Note that the TFT is charged. The color of the tin oxide is 1335451.

執行一薄膜電晶體陣列基板製程、一彩色濾光片基 製程、和一液晶胞製程,以製造出此液晶面板。 上述之薄膜電晶體陣列基板製程是一種重複實施 積、光微影蝕刻,以及在玻璃基板上餘刻形成閘極線、 料線、薄膜電晶體和像素電極的製程。 上述之彩色濾光片基板製程是一種用來製造RGB 色濾光片的製程’該些彩色濾光片是以—預定順序配置 具有黑色矩陣的玻璃上,以實施彩色和形成共用電極所 的銦錫氧化物(ITO)膜。 上述之液晶胞製程使一種用來接合薄膜電晶體陣列 板和彩色濾光片基板的製程,使得薄膜電晶體陣列基板 彩色遽、光片基板之間可維持一定間隙,並在該間隙中注 液晶’以形成液晶層。或者,近年來,已有人使用一次 落填充(one drop filling, 〇DF)製程以均勻地施加液晶 薄膜電晶體陣列基板上’之後再將此薄膜電晶體陣列基 與彩色濾光片基板彼此連接在_起。 在檢查這類液晶顯示器時,於液晶面板上顯示一測 圖樣’以偵測是否有缺陷像素存在。當發現具有缺陷的 素時’即實施一種可修復缺陷像素的製程。液晶缺陷可 括點缺陷(spot defect)、線缺陷(Hne defect)、和顯示不 (display nonuniformity)。點缺陷通常因為TFT不佳、像 電極不佳或彩色濾光片連線不佳所致。線缺陷則肇因於 間出現開放電路、線間出現短路、TFT因靜電而崩潰或 與驅動電路連接不良。顯示不均通常肇因於液晶胞厚度 板 沉 資 彩 在 需 基 和 入 掉 到 板 試 像 包 均 素 線 是 不 6 1335451A thin film transistor array substrate process, a color filter base process, and a liquid crystal cell process are performed to fabricate the liquid crystal panel. The above-mentioned thin film transistor array substrate process is a process of repeatedly performing product, photolithography etching, and forming a gate line, a material line, a thin film transistor and a pixel electrode on a glass substrate. The above-described color filter substrate process is a process for manufacturing RGB color filters. The color filters are arranged on a glass having a black matrix in a predetermined order to perform color and form indium of a common electrode. Tin oxide (ITO) film. The liquid crystal cell process described above enables a process for bonding the thin film transistor array plate and the color filter substrate, so that the thin film transistor array substrate can be colored, a certain gap can be maintained between the light substrate, and liquid crystal is injected in the gap. 'To form a liquid crystal layer. Or, in recent years, a one-drop filling (〇DF) process has been used to uniformly apply a liquid crystal film on a transistor array substrate, and then the thin film transistor array substrate and the color filter substrate are connected to each other. _ from. When such a liquid crystal display is inspected, a test pattern is displayed on the liquid crystal panel to detect the presence or absence of defective pixels. When a defective element is found, a process for repairing defective pixels is implemented. Liquid crystal defects may include spot defects, Hne defects, and display nonuniformity. Point defects are usually caused by poor TFTs, poor image electrodes, or poor color filter wiring. Line defects are caused by open circuits, short circuits between lines, TFT breakdown due to static electricity, or poor connection to the drive circuit. The display unevenness is usually caused by the thickness of the liquid crystal cell. The sinking color is on the basis of the substrate and the image is taken into the board. The average line is not 6 1335451

均、液晶配向不均、TFT分佈在特定位置或連線時 太向。 蓺點缺陷和線缺陷一般多因為連線不佳所致。在 «中备發現開玫電路時,該開放電路連線僅彼此 而田發現%路時’短路電路連線僅彼此分離。 在上述缺陷t,包括灰塵、有機物、金屬等雜 液明面板製造期間吸附到液晶面板上。當這些雜質 到靠近%色濾光片附近的區域時對應至彩色濾光 素會發出比其餘像素更明亮的光線,因此稱此為漏 (light-leakage phenomenon)。目前正在研發使用雷 復此亮像素缺陷的方法。 曰本專利申凊案2006·7229號揭示了一種照射 配向膜,使配向膜受損,以減弱液晶配向性質並因 液晶所發出的光線,藉以排除漏光現象的技術。但 技術的問題在於無法完全排除液晶的配向性質,且 費大量的時間才能完成此種處理。 為了解決上述問題,韓國專利申請案10-2006 號提出了以飛秒(femtosecond)雷射來使缺陷像素黑. 法。 當使用飛秒雷射時,可有效地使缺陷像素黑化; 用來震盪產生飛秒雷射的設備相當昂貴。 【發明内容】 因此,本發明目地在克服上述問題,因此本發 間常數 習知技 連接, 質會在 被吸附 片的像 光現象 射來修 雷射至 此降低 是,此 需要耗 -86569 化的方 但是, 目地 7 1335451 之一為提供一種一種修復一顧千凿蒈金说士 顦不裝置上之亮像素缺陷的方 法,其可使用相對於個別傻去1亡古m b 乃J像素具有N吸收光譜之波長帶的 雷射’來有效地修復一亮像素缺陷。Uniformity, uneven liquid crystal alignment, TFT distribution at a specific location or wiring is too direction. Defects and line defects are generally caused by poor wiring. When the system is found to be open, the open circuit is only connected to each other. When the field is found, the short circuit connection is only separated from each other. The above defects t, including dust, organic matter, metal, and the like, are adsorbed onto the liquid crystal panel during the manufacture of the liquid crystal panel. When these impurities are close to the area near the % color filter, the color filter corresponds to a brighter light than the rest of the pixels, so it is called a light-leakage phenomenon. A method of using this bright pixel defect is currently being developed. The patent application No. 2006.7229 discloses a technique for illuminating an alignment film to damage the alignment film to weaken the alignment property of the liquid crystal and to emit light due to the liquid crystal, thereby eliminating light leakage. However, the technical problem is that the alignment property of the liquid crystal cannot be completely ruled out, and it takes a lot of time to complete the treatment. In order to solve the above problem, Korean Patent Application No. 10-2006 proposes a femtosecond laser to make a defective pixel black. When femtosecond lasers are used, the defective pixels are effectively blackened; the equipment used to oscillate to generate femtosecond lasers is quite expensive. SUMMARY OF THE INVENTION Therefore, the present invention has been made in an effort to overcome the above problems. Therefore, the conventional constant connection between the hair and the hair is caused by the phenomenon of light incident on the image of the adsorbed sheet, which is required to be reduced by 8686. However, one of the objects 7 1335451 provides a method for repairing bright pixel defects on the device, which can be used with respect to individual stupidity. The wavelength of the laser 'is effectively repairing a bright pixel defect.

依據本發明,上述和其他特點可利用提供_種修復一 不具有偏光板之顯示器裝置的亮像素缺陷的方法來完成, 此方法包括··當具有一亮像素缺陷的彩色濾光片是一紅光 (R)區域時,照射一波長在27〇〜55〇 nm間的雷射當具有 一亮像素缺陷的彩色濾光片是一綠光(G)區域時,照射一波 長在270〜480 nm間或600〜75〇 nm間的雷射,和/或當具 有一亮像素缺陷的彩色濾光片是一藍光(B)區域時,照射一 波長在270〜390 nm間或520〜750 nm間的雷射。 較佳是,雷射的脈衝期間為1 00 ns或更小,且雷射具 有介於約1 Hz至1 kHz間的重複頻率。 較佳是,此方法更包括調整雷射的強度。 較佳是,此雷射具有一平坦頂部的波形。In accordance with the present invention, the above and other features can be accomplished by providing a method of repairing a bright pixel defect of a display device having no polarizing plate, the method comprising: when a color filter having a bright pixel defect is a red In the light (R) region, a laser having a wavelength between 27 〇 and 55 〇 nm is irradiated. When the color filter having a bright pixel defect is a green (G) region, the illumination is at a wavelength of 270 to 480 nm. Laser between 600~75〇nm, and/or when a color filter with a bright pixel defect is a blue (B) region, the illumination wavelength is between 270~390 nm or 520~750 nm The laser. Preferably, the laser has a pulse period of 100 ns or less and the laser has a repetition rate between about 1 Hz and 1 kHz. Preferably, the method further comprises adjusting the intensity of the laser. Preferably, the laser has a flat top waveform.

較佳是’此方法更包括調整雷射的強度和焦點距離, 使得彩色濾光片厚度的20%〜90%可被雷射所黑化。 較佳是’當顯示器沒有覆蓋層(overcoat layer)時,雷 射的脈衝期間為50ns或更小,且雷射具有介於約1 Hz至 100Hz間的重複頻率,且雷射功率約為i〇mW或更小。 較佳是,以掃描式雷射照射法將雷射照射到彩色濾光 片上。或者,以一阻隔照射式雷射照射法(a block shot type laser irradiation method)或多阻隔照射式雷射照射法(a multi block shot type laser irradiation method)將雷射照 8 1335451 較佳是冑用至少-選自下列的雷射來創造出所要的 雷射、Nd : 射、Nd 雷射,包括··鐘u, (erblum)雷射、鈦·藍寶石W ; YLF雷射、Nd:玻璃番私 雷射、Nd·叙駿鹽(γν〇4)雷 YAG雷射、纖維雷射和染料雷射。 • 以下將參照附圖來說明太 水兄明本發明較佳實施方式》 依據本發明一種用來依违as __叫 采修復顯不裝置上之亮像素缺陷的 方法是照射具有一亮傻去 素缺陷的像素(一彩色濾光片即其 周圍黑色矩陣),使該缺陷像素被黑化。 當雷射照射在一有播趙® 喝機膜層(如,一彩色濾光片)上時, 會打斷組成該膜層之有機物暂 ,機物質間的耦接,結果該有機膜層 • 被剝離並發射出自由基'群集物⑷usters)、電子和光子, 包括内含中性原子、分子和正離子與負離子的電裝,使得 該有機膜層被黑化。 • 剝離是一種有機物質因為有機物的耦接分子解離而被 分解成分子與離子的過程。但是,為了達成此種解離,需 要吸收比有機物質能階更高的能量。 已黑化像素的發射光被降低,因此,已黑化的像素無 _ 法透光,但是可吸收從顯示器光源產生的光。藉此,可修 復有缺陷的像素使得所偵測到的缺陷像素之亮像素變成暗 像素。 因此,在需要黑化的像素上照射透光度低之波長的雷 9 1335451 射(亦即’具有高吸收度的波長)。Preferably, the method further comprises adjusting the intensity and focus distance of the laser such that 20% to 90% of the thickness of the color filter can be blackened by the laser. Preferably, 'when the display has no overcoat layer, the pulse period of the laser is 50 ns or less, and the laser has a repetition frequency between about 1 Hz and 100 Hz, and the laser power is about i〇 mW or smaller. Preferably, the laser is irradiated onto the color filter by scanning laser irradiation. Alternatively, the laser shot 8 1335451 is preferably used by a block shot type laser irradiation method or a multi block shot type laser irradiation method. At least - a laser selected from the following to create the desired laser, Nd: N, laser, including · · u, (erblum) laser, titanium sapphire W; YLF laser, Nd: glass private Laser, Nd, Syrian salt (γν〇4) Ray YAG laser, fiber laser and dye laser. In the following, a preferred embodiment of the present invention will be described with reference to the accompanying drawings. According to the present invention, a method for repairing bright pixel defects on a display device according to the present invention is to illuminate a brightly-supplemented element. The defective pixel (a color filter, that is, a black matrix around it) causes the defective pixel to be blackened. When the laser is irradiated on a film layer (for example, a color filter), the organic matter that constitutes the film layer is interrupted, and the organic film layer is formed. The free radical 'cluster', electrons, and photons are stripped and emitted, including an electrical device containing neutral atoms, molecules, and positive ions and negative ions, such that the organic film layer is blackened. • Peeling is the process by which an organic substance is decomposed into ions and ions because of the dissociation of organic molecules. However, in order to achieve such dissociation, it is necessary to absorb higher energy than the energy level of organic matter. The emitted light of the blackened pixel is lowered, so that the blackened pixel has no light transmission, but absorbs light generated from the display light source. Thereby, the defective pixel can be repaired so that the bright pixel of the detected defective pixel becomes a dark pixel. Therefore, Ray 9 1335451 (i.e., a wavelength having a high absorbance) having a low transmittance is irradiated on a pixel which is required to be blackened.

參照第2圖來選擇波長。舉例來說,當具有一亮像素 缺陷的彩色濾光片是一紅光(R)區域時,可看到紅光區域中 具高吸收性的波長是5 50 nm或更小。當使用波長在550 nm 以上的雷射照射該紅光區域時,穿透度高,因此,需要大 量的能量’結果將會嚴重破壞彩色濾光片下方的數種膜 層,包括覆蓋層、ITO層和配向層。如果彩色渡光片下方 的膜層被破壞,液晶會跑到受損區域上方,結果產生氣泡, 導致彩色濾光片更嚴重的缺陷。 同時,波長小於270 nm的雷射無法穿透玻璃,結果雷 射無法到達彩色濾光片。波長大於750 nm的雷射可穿透 彩色濾光片’結果使得雷射無法在彩色濾光片上反應。Refer to Figure 2 to select the wavelength. For example, when a color filter having a bright pixel defect is a red (R) region, it can be seen that the wavelength of high absorbance in the red region is 550 nm or less. When a laser with a wavelength above 550 nm is used to illuminate the red region, the penetration is high, so a large amount of energy is required. The result will seriously damage several layers under the color filter, including the overlay layer, ITO. Layer and alignment layer. If the film under the color fascia is destroyed, the liquid crystal will run over the damaged area, resulting in bubbles, which will cause more serious defects in the color filter. At the same time, a laser with a wavelength of less than 270 nm cannot penetrate the glass, and as a result, the laser cannot reach the color filter. Lasers with wavelengths greater than 750 nm can penetrate color filters' as a result of the inability of the laser to react on the color filters.

結論是’當具有一亮像素缺陷的彩色濾光片是一紅光 (R)區域時,較佳是照射一波長在270〜550間的雷射到彩色 濾光片上,藉此可有效地使彩色濾光片被黑化,使得彩色 滤光片的亮像素缺陷可被修復,而不會傷害彩色濾光片下 方的膜層。 依此,當希望修復此類亮像素缺陷時,需要照射波長 為低彩色濾光片穿透度的雷射。對紅光(R)區域,較佳是照 射如前述之波長在2 7 0〜550間的雷射到彩色濾光片上》對 綠光(G)區域,較佳是照射波長在270〜480間或600~700 nm 間的雷射到彩色濾光片上。對藍光(B)區域,則是照射一波 長在27 0-3 90 nm間或520〜7 50 nm間的雷射。 第3 A〜3 C圖顯示照射雷射到具有亮像素缺陷之像素 ί S1 10 1335451 上的各種方法。明確的說,第3A圖顯示一掃描式雷射照 射方法,第3 B圖顯示一阻隔照射式雷射照射方法,和第 3C圖顯示多阻隔照射式雷射照射方法。The conclusion is that when a color filter having a bright pixel defect is a red (R) region, it is preferable to irradiate a laser having a wavelength between 270 and 550 to the color filter, thereby effectively The color filter is blackened so that the bright pixel defects of the color filter can be repaired without damaging the film layer under the color filter. Accordingly, when it is desired to repair such bright pixel defects, it is necessary to irradiate a laser having a wavelength of low color filter transmittance. For the red (R) region, it is preferred to irradiate a laser having a wavelength between 270 and 550 as described above to the color filter. For the green (G) region, preferably the wavelength is 270 to 480. A laser between 600~700 nm is applied to the color filter. For the blue (B) region, a laser with a wavelength between 27 0-3 90 nm or 520 to 7 50 nm is illuminated. Figures 3A to 3C show various methods of illuminating a laser to a pixel with bright pixel defects ί S1 10 1335451. Specifically, Fig. 3A shows a scanning laser irradiation method, Fig. 3B shows a barrier irradiation type laser irradiation method, and Fig. 3C shows a multi-barrier irradiation type laser irradiation method.

在此,掃描式雷射照射方法是掃描一光束形狀(參見第 3A圖之「S」)與一具有亮像素缺陷之像素區域之一部分相 對應的雷射,使該雷射可照射在整個像素區域上。阻隔照 射式雷射照射方法則是立即將一光束形狀與一具有亮像素 缺陷之像素整個區域相對應的雷射照射在整個像素區域上 一次。多阻隔照射式雷射照射方法則結合了掃描式雷射照 射方法與阻隔照射式雷射照射方法兩者。亦即,多阻隔照 射式雷射照射方法是依據阻隔照射式雷射照射方法來照射 雷射,同時,依據掃描式雷射照射方法繼續照射雷射。 雖然可使用上述任一種照射方法,較佳是將雷射照射 在彩色濾光片週圍的每一黑色矩陣之一部分上以及彩色濾 光片上。 參照第4圖,較佳是照雷射數次,以將彩色濾光片黑Here, the scanning laser irradiation method is to scan a beam shape (see "S" in FIG. 3A) and a laser corresponding to a portion of a pixel region having a bright pixel defect so that the laser can be irradiated over the entire pixel. On the area. The barrier laser irradiation method immediately irradiates a laser beam corresponding to the entire area of a pixel having a bright pixel defect to the entire pixel area once. The multi-blocking laser irradiation method combines both a scanning laser irradiation method and a barrier irradiation laser irradiation method. That is, the multi-blocking laser irradiation method irradiates the laser according to the barrier-illuminated laser irradiation method, and continues to irradiate the laser according to the scanning laser irradiation method. While any of the above illumination methods can be used, it is preferred to irradiate the laser onto a portion of each of the black matrices surrounding the color filter and on the color filter. Referring to Figure 4, it is preferred to use a laser several times to color the color filter black.

化。 詳言之,當第一次照射雷射時(S1),使用Z-軸移動掃 描來找出對應至彩色濾光片1 0%厚度之區域的焦點深度 (depth of focus,DOF),接著以XY-軸移動掃描來使彩色濾 光片黑化。當彩色濾光片的黑化程度已由電荷耦接裝置 (CCD)攝影機確認後,如果認定彩色濾光片的黑化程度並 不足夠,則驅動Z-軸移動掃描,再次找出對應至彩色濾光 片20%厚度之區域的焦點深度(D0F),接著以XY-軸移動掃 1335451 描進行第二次雷射掃描(S 2)。重複此步驟2〜4次,即可滿 意地將彩色濾光片黑化至欲求的黑化程度。 第5圖流程圖顯示用來黑化一彩色濾光片的方法,同 時依據上述方法移動焦點深度。Chemical. In detail, when the laser is irradiated for the first time (S1), the Z-axis movement scan is used to find the depth of focus (DOF) corresponding to the 10% thickness of the color filter, and then The XY-axis moves the scan to black out the color filter. When the degree of blackening of the color filter has been confirmed by a charge coupled device (CCD) camera, if it is determined that the degree of blackening of the color filter is not sufficient, the Z-axis is scanned for scanning, and the corresponding color is found again. The depth of focus (D0F) of the 20% thick region of the filter is then scanned for the second laser scan (S 2) with the XY-axis shift sweep 1335451. By repeating this step 2 to 4 times, the color filter can be satisfactorily blackened to the desired degree of blackening. Figure 5 is a flow chart showing a method for blackening a color filter while moving the depth of focus in accordance with the above method.

如第5圖所示,先以雷射照射彩色濾光片(S 1 0)使大約 10%的彩色濾光片被黑化(S20),接著確認彩色濾光片的黑 化程度(S 3 0),以決定彩色濾光片是否已黑化至欲求程度 (S4 0)。當確認彩色濾光片已被黑化至欲求程度後,即結束 此處理(S50)。相反的,如果認定認定彩色濾光片的黑化程 度並不足夠,則再次移動焦點距離(S60),接著,再次照射 雷射到彩色濾光片上,使其被更進一步地黑化。 可從Z -轴移動掃描和掃描透鏡間的焦點距離,以及2 微米或更小範圍内的入射光直徑可計算出焦點深度 (DOP)。 [數學式1]As shown in Fig. 5, about 10% of the color filters are blackened by laser irradiation of the color filter (S 10) (S20), and then the degree of blackening of the color filters is confirmed (S 3 0) to determine whether the color filter has been blackened to the desired level (S4 0). When it is confirmed that the color filter has been blackened to the desired degree, the processing is ended (S50). On the other hand, if it is determined that the degree of blackening of the color filter is not sufficient, the focal length is moved again (S60), and then the laser is irradiated again onto the color filter to be further blackened. The depth of focus (DOP) can be calculated by moving the focus distance between the scanning and scanning lenses from the Z-axis and the incident light diameter in the range of 2 microns or less. [Math 1]

DOF = λ/2{ΝΑ)2 [數學式2] NA = nsin Θ [數學式3] f/# = l/2(NA) [數學式4] //# = efl/φ 數學式5可從數學式3與數學式4兩者衍生而得。 [數學式5] 12 1335451 . ΝΑ = φΐ2、φ • 在以上的數學式中,να代表有效的孔徑值(numerical aPerature),又代表雷射的波長,e//代表有效的焦點長度。 可確認入射光束的直徑愈大,雷射波長愈短,也 愈淺。也可確認透鏡的焦點長度e//愈短,孔徑值(na)將 愈大,因此,DOF將愈淺》 黑化程度較佳是小於最大值的90%,較好是彩色滤光 片厚度的20%~40%間’以防止在液晶面板視角範圍中出現 漏光現象。當彩色濾光片厚度的2 0%以下範圍被黑化時, 可完全防止(100%)漏光現象。相反的,當9〇0/。以上的彩色 遽光片厚度均被黑化時,可能會使堆疊在彩色濾光片下方 的膜層受損。此外,雷射能量也在促使一有機膜層被黑化 至適當厚度這件事上,扮演相當重要的角色。換言之,可 依據所輸出雷射的能量來調整黑化的程度。 參照第6圖’圖上示出一不具有覆蓋層(〇verc〇at iayer) 的顯示器,用以降低製造成本並簡化製程β ^ 同時,一覆蓋層具有如第7圖所示的吸光性。可從第 7圊上看出,在紫外光(υν)範圍以下幾乎沒有透光性在 uv範圍内大約80%的光會被吸收,只有大約2〇%的光可 穿透。 - 因此,沒有覆蓋層的顯示器的修復方式將與有覆蓋層 的顯不器的修復方式不同。這是因為從用來修復亮像素缺 - 陷之雷射所產生的能量,會被覆蓋層吸收的緣故。因此, 在修復沒有覆蓋層之顯示器上的亮像素缺陷時穿透彩色 .[ 13 1335451 瀘、光片的能量到達液晶層,結果造成液晶層受損。 為此,可使用低能量雷射來避免液晶層受損,但是, 此時卻不會有任何反應發生。DOF = λ/2{ΝΑ)2 [Math 2] NA = nsin Θ [Math 3] f/# = l/2(NA) [Math 4] //# = efl/φ Math 5 can be Both Mathematical Formula 3 and Mathematical Formula 4 are derived. [Math 5] 12 1335451 . ΝΑ = φ ΐ 2, φ • In the above mathematical expression, να represents a valid aperture value (numerical aPerature), which also represents the wavelength of the laser, and e// represents an effective focal length. It can be confirmed that the larger the diameter of the incident beam, the shorter the laser wavelength and the shallower. It can also be confirmed that the shorter the focal length e// of the lens, the larger the aperture value (na), and therefore, the shallower the DOF will be. The degree of blackening is preferably less than 90% of the maximum value, preferably the thickness of the color filter. Between 20% and 40% to prevent light leakage in the viewing angle range of the LCD panel. When the range of 20% or less of the thickness of the color filter is blackened, (100%) light leakage can be completely prevented. Conversely, when 9〇0/. When the thickness of the above color stencil is blackened, the film layer stacked under the color filter may be damaged. In addition, laser energy plays a very important role in causing an organic film layer to be blackened to an appropriate thickness. In other words, the degree of blackening can be adjusted depending on the energy of the output laser. Referring to Fig. 6', a display without a cover layer is shown to reduce the manufacturing cost and simplify the process β ^ while a cover layer has absorbance as shown in Fig. 7. It can be seen from the seventh , that there is almost no light transmission below the ultraviolet (υν) range, and about 80% of the light is absorbed in the uv range, and only about 2% of the light is permeable. - Therefore, the repair of the display without the overlay will be different from the repair of the overlay with the overlay. This is because the energy generated by the laser used to repair the missing pixels is absorbed by the cover layer. Therefore, color is penetrated when repairing bright pixel defects on a display without a cover layer. [ 13 1335451 泸 The energy of the light sheet reaches the liquid crystal layer, resulting in damage to the liquid crystal layer. For this reason, a low-energy laser can be used to avoid damage to the liquid crystal layer, but no reaction occurs at this time.

因此,在考慮上述問題時,必須滿足低能量雷射以及 能量施加時間短的條件。實驗結果顯示當使用雷射脈衝持 續50 ns或更短,且重複頻率在1 Hz至100 Hz之間,功 率1 0 mW或更小的雷射時,可令人滿意地修復沒有覆蓋層 的顯示器上的亮像素缺陷。 第8圖示出依據本發明之雷射光束的形狀。 一開始從雷射震盪器發出的雷射為高斯式雷射光束, 其能量集中在中央區域。當雷射光束通過一光束成形器或 一光束均勻器之後,可使一特定範圍内的雷射光束強度被 均一化,結果可將雷射光束轉變成一放大尺寸的平坦頂部 形狀。此時,雷射照射區域也會隨著光束形狀的改變而改 變。此平坦頂部形狀也可變成一矩形平坦頂部300或是圓 形平坦頂部3 0 1。 也可使用光束成形器或光束均勻器來改變所照射的雷 射大小和強度。所照射的雷射面積愈小,所需用以將像素 完全黑化的時間就愈長。可均勻地轉變雷射光束的大小以 提高黑化的速度,藉此本發明可施用到生產線上以大量製 造產品。在構成液晶面板的有機膜層中,可利用Z軸移動 掃描,使被適當轉變成具有矩形平坦頂部3 00或是圓形平 坦頂部301的雷射強度,將RGB像素黑化。 依據本發明,除了以上說明之外,可選擇性地使用波 14 1335451 長帶具有高吸收光譜(相對於彩色濾光片來說)之雷射,來 有效地修復一彩色濾光片的亮像素缺陷。 特別是,當顯示裝置上附接有一偏光板時,考量偏光 板的穿透度,可依據其波長有效地使彩色濾光片被黑化。Therefore, in consideration of the above problems, it is necessary to satisfy the conditions of low energy laser and short energy application time. The experimental results show that when a laser pulse is used for 50 ns or less, and the repetition frequency is between 1 Hz and 100 Hz, and the power is 10 mW or less, the display without the cover layer can be satisfactorily repaired. Bright pixel defects on. Figure 8 shows the shape of a laser beam in accordance with the present invention. The laser emitted from the laser oscillator is a Gaussian laser beam whose energy is concentrated in the central region. When the laser beam passes through a beam shaper or a beam homogenizer, the intensity of the laser beam within a particular range is normalized, with the result that the laser beam is converted into a flat top shape of an enlarged size. At this time, the laser irradiation area also changes as the shape of the beam changes. This flat top shape can also become a rectangular flat top 300 or a round flat top 3 0 1 . A beam shaper or beam homogenizer can also be used to vary the size and intensity of the illuminated laser. The smaller the area of the laser that is illuminated, the longer it takes to completely blacken the pixel. The size of the laser beam can be uniformly converted to increase the speed of blackening, whereby the present invention can be applied to a production line to mass-produce a product. In the organic film layer constituting the liquid crystal panel, the RGB pixel can be blackened by Z-axis moving scanning so as to be appropriately converted into a laser intensity having a rectangular flat top 300 or a circular flat top 301. In accordance with the present invention, in addition to the above description, a wave having a high absorption spectrum (relative to a color filter) with a long band of waves 14 1335451 can be selectively used to effectively repair bright pixels of a color filter. defect. In particular, when a polarizing plate is attached to the display device, the transmittance of the polarizing plate is considered, and the color filter can be effectively blackened depending on the wavelength thereof.

雖然已參照特定實施例詳細敘述本發明精神,然而該 等實施例僅是用於說明本發明,而非限制本發明。須了解 熟悉此技術者可在不偏離本發明範圍及精神的情況下變化 或修改該實施例。 【圖式簡單說明】 第1圖示出含有雜質之液晶面板的部分示意圖; 第2圖示出依據彩色濾光片的波長,一彩色濾光片的 光穿透度圖; 第3A~3C圖詳細說明各種雷射照射方法; 第4圖示出一調整焦點距離並同時照射雷射的方法; 第5圖是黑化過程的流程圖; 第6圖是沒有覆蓋層之液晶面板的截面圖; 第7圖是一覆蓋層的光吸收性圖; 第8圖是依據本發明之雷射光束形狀的簡圖。 【主要元件符號說明】 300 矩形平坦頂部 301 圓形平坦頂部 500 液晶面板 510 薄膜電晶體陣列基板 520 液晶層 530 彩色濾光片基板 15 1335451 53 1 玻璃基板 532 彩色濾光片 533 黑色矩陣 535 銦錫氧化物(ITO)膜 536 配向膜 537 偏光板The present invention has been described in detail with reference to the particular embodiments thereof. It is to be understood that those skilled in the art can change or modify the embodiment without departing from the scope and spirit of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial schematic view showing a liquid crystal panel containing impurities; FIG. 2 is a view showing a light transmittance of a color filter according to the wavelength of the color filter; FIGS. 3A to 3C A detailed description of various laser irradiation methods; FIG. 4 shows a method of adjusting the focal length and simultaneously irradiating the laser; FIG. 5 is a flow chart of the blackening process; and FIG. 6 is a cross-sectional view of the liquid crystal panel without the cover layer; Fig. 7 is a light absorption diagram of a cover layer; Fig. 8 is a diagram showing the shape of a laser beam according to the present invention. [Main component symbol description] 300 Rectangular flat top 301 Round flat top 500 Liquid crystal panel 510 Thin film transistor array substrate 520 Liquid crystal layer 530 Color filter substrate 15 1335451 53 1 Glass substrate 532 Color filter 533 Black matrix 535 Indium tin Oxide (ITO) film 536 alignment film 537 polarizing plate

1616

Claims (1)

1335451 年月曰修正本 "· 3. 2 3 十、申請專利範圍: 1. 一種修復沒有附接偏光板之顯示器的亮像素缺陷的 方法,包含以下步驟: 當具有一亮像素缺陷的彩色濾光片是一紅光(R)區域 時,照射一波長在2 7 0 ~ 5 5 0 n m間的雷射;1335451 曰 曰 revised version "· 3. 2 3 10, the scope of application for patents: 1. A method for repairing bright pixel defects of a display without a polarizing plate, comprising the following steps: When the light sheet is a red (R) region, a laser having a wavelength between 270 mm and 550 nm is irradiated; 當具有一亮像素缺陷的彩色濾光片是一綠光(G)區域 時,照射一波長在270~480 nm間或600〜750 nm間的雷 射;和/或 當具有一亮像素缺陷的彩色濾光片是一藍光(B)區域 時,照射一波長在270~3 90 nm間或520〜750 nm間的雷射; 其中當該顯示器沒有覆蓋層(overcoat layer)時,雷射的 脈衝期間為50 ns或更小;及 其中該雷射具有介於約1 Hz至1 00 Hz間的重複頻率。 2. 如申請專利範圍第1項所述之方法,更包含以下When a color filter having a bright pixel defect is a green (G) region, irradiating a laser having a wavelength between 270 and 480 nm or between 600 and 750 nm; and/or when having a bright pixel defect When the color filter is a blue (B) region, a laser having a wavelength between 270 and 3 90 nm or between 520 and 750 nm is irradiated; wherein when the display has no overcoat layer, the laser pulse The period is 50 ns or less; and the laser has a repetition frequency between about 1 Hz and 100 Hz. 2. The method described in the first paragraph of the patent application includes the following 調整雷射的強度。 3. 如申請專利範圍第1項所述之方法,其中該雷射 具有一平坦頂部的波形。 4. 如申請專利範圍第1項所述之方法,更包括以下 步驟: r r- -I *_ i 17 1335451 調整雷射的強度和焦點距離,使得該彩色濾光片厚度 的20%〜90%可被雷射所黑化。 5. 如申請專利範圍第1項所述之方法,其中該雷射 功率約為1 0 m W或更小。Adjust the intensity of the laser. 3. The method of claim 1, wherein the laser has a flat top waveform. 4. The method of claim 1, further comprising the steps of: r r- -I *_ i 17 1335451 adjusting the intensity and focus distance of the laser such that the thickness of the color filter is 20% to 90 % can be blackened by the laser. 5. The method of claim 1, wherein the laser power is about 10 mW or less. 6. 如申請專利範圍第1項所述之方法,其中是以一 掃描式雷射照射法而將該雷射照射到該彩色濾光片上。 7. 如申請專利範圍第1項所述之方法,其中是以一 阻隔照射式雷射照射法(a block shot type laser irradiation method)或多阻隔照射式雷射照射法(a multi block shot type laser irradiation method)而將該雷射照射到該彩色滤 光片上。6. The method of claim 1, wherein the laser is irradiated onto the color filter by a scanning laser irradiation method. 7. The method of claim 1, wherein the method comprises a block shot type laser irradiation method or a multi block shot type laser (a multi block shot type laser) The laser is irradiated onto the color filter. 8. 如申請專利範圍第6或7項所述之方法,其中該 雷射是照射到該彩色濾光片上以及該彩色濾光片周圍的黑 色矩陣上。 9. 如申請專利範圍第1項所述之方法,其中該雷射 是以至少一種選自下列的雷射所產生的,包括:镱 (Ytterbium)雷射、欽-藍寶石雷射、Nd : YLF雷射、Nd : 玻璃雷射、Nd:釩酸鹽(YV04)雷射、Nd: YAG雷射、纖 18 1335451 維雷射和染料雷射。8. The method of claim 6 or claim 7, wherein the laser is incident on the color filter and on a black matrix around the color filter. 9. The method of claim 1, wherein the laser is produced by at least one laser selected from the group consisting of: Ytterbium laser, Chin-sapphire laser, Nd: YLF Laser, Nd: glass laser, Nd: vanadate (YV04) laser, Nd: YAG laser, fiber 18 1335451 dimensional laser and dye laser. 19 1335451 七、指定代表圖: 第(2)圖。 符號簡單說明: (一) 、本案指定代表圖為 (二) 、本代表圖之元件代 無元件符號19 1335451 VII. Designated representative figure: Picture (2). Brief description of the symbol: (1) The representative representative figure in this case is (2), the component generation of the representative figure, no component symbol ,請揭示最能顯示 八、本案若有化學式 發明特徵的化學式: 無Please reveal the best display. 8. If there is a chemical formula in this case, the chemical formula: 44
TW097122723A 2007-06-18 2008-06-18 Method of repairing bright pixel defect of display device TWI335451B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070059221 2007-06-18
KR1020080040573A KR100879010B1 (en) 2007-06-18 2008-04-30 Method of repairing flat pannel display

Publications (2)

Publication Number Publication Date
TW200907466A TW200907466A (en) 2009-02-16
TWI335451B true TWI335451B (en) 2011-01-01

Family

ID=40369645

Family Applications (3)

Application Number Title Priority Date Filing Date
TW097122723A TWI335451B (en) 2007-06-18 2008-06-18 Method of repairing bright pixel defect of display device
TW097122738A TWI335462B (en) 2007-06-18 2008-06-18 Method of repairing bright pixel defect of display device
TW097122725A TWI335461B (en) 2007-06-18 2008-06-18 Method of repairing bright pixel defect of display device

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW097122738A TWI335462B (en) 2007-06-18 2008-06-18 Method of repairing bright pixel defect of display device
TW097122725A TWI335461B (en) 2007-06-18 2008-06-18 Method of repairing bright pixel defect of display device

Country Status (4)

Country Link
JP (3) JP5256564B2 (en)
KR (3) KR100879012B1 (en)
CN (3) CN101796453A (en)
TW (3) TWI335451B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113230B1 (en) * 2010-03-24 2012-02-20 (주)미래컴퍼니 Apparatus and Method for repairing brightness defect
TWI430000B (en) 2010-07-02 2014-03-11 Ind Tech Res Inst Method and system for repairing flat panel display
CN102338942B (en) * 2010-07-21 2013-07-10 财团法人工业技术研究院 Method and system for repairing flat panel display
JP5707960B2 (en) * 2011-01-20 2015-04-30 凸版印刷株式会社 Color filter layer defect correcting method and color liquid crystal display element
JP5853331B2 (en) * 2011-03-11 2016-02-09 株式会社ブイ・テクノロジー Laser irradiation apparatus and method for correcting bright spot of liquid crystal display panel using the same
CN102845132B (en) * 2011-04-12 2015-12-16 株式会社日本有机雷特显示器 The manufacture method of organic EL element and focal position of laser establishing method
JP5744640B2 (en) * 2011-06-21 2015-07-08 三菱電機株式会社 Brightening point defect blackening method of liquid crystal panel
JP5733065B2 (en) 2011-07-07 2015-06-10 三菱電機株式会社 Liquid crystal display panel and repair method
CN102654661B (en) * 2012-05-04 2015-01-21 京东方科技集团股份有限公司 Repairing method of liquid crystal display panel
JP2014157335A (en) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp Bright spot defect correction method of liquid crystal display device, and manufacturing method of liquid crystal display device
US9304090B2 (en) 2013-03-11 2016-04-05 Electro Scientific Industries, Inc. Systems and methods for providing polarization compensated multi-spectral laser repair of liquid crystal display panels
JP6214197B2 (en) * 2013-04-24 2017-10-18 三菱電機株式会社 Method of darkening a bright spot defect in a liquid crystal panel
JP6265648B2 (en) * 2013-08-07 2018-01-24 三菱電機株式会社 Color filter, liquid crystal panel and repair method
KR20160139114A (en) 2015-05-26 2016-12-07 삼성디스플레이 주식회사 Display device and method for repairing display device
KR102499179B1 (en) * 2015-09-25 2023-02-10 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Liquid crystal display device and reparing method thereof
JP6714898B2 (en) 2016-03-30 2020-07-01 三菱電機株式会社 Color filter substrate and manufacturing method thereof
CN109212791A (en) 2017-07-07 2019-01-15 京东方科技集团股份有限公司 The undesirable restorative procedure of display panel, display panel bright spot
CN107450209B (en) * 2017-09-30 2021-01-15 京东方科技集团股份有限公司 Bright spot repairing method and color film substrate
KR102079455B1 (en) * 2018-10-05 2020-02-19 주식회사 코윈디에스티 Methdo and apparatus for repairing birght pixels of liquid crystal display

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051265A (en) * 1999-08-12 2001-02-23 Toray Ind Inc Manufacture of liquid crystal display device
JP2001183615A (en) * 1999-12-27 2001-07-06 Toshiba Corp Method for correcting luminescent point of liquid crystal display device and liquid crystal display device
US7199330B2 (en) * 2004-01-20 2007-04-03 Coherent, Inc. Systems and methods for forming a laser beam having a flat top
JP3969408B2 (en) * 2004-09-06 2007-09-05 セイコーエプソン株式会社 Defect repair method and defect repair device for liquid crystal display device
KR101087238B1 (en) * 2004-12-09 2011-11-29 엘지디스플레이 주식회사 Appartus And Method for Repairing Liquid Crystal Display Panel
KR20060086569A (en) * 2005-01-27 2006-08-01 임채용 Automatic switching appratus for vehicle door and method therein
KR101133765B1 (en) * 2005-02-15 2012-04-09 삼성전자주식회사 Repairing mechanism and method for display device
KR100716472B1 (en) * 2005-07-20 2007-05-10 (주)미래컴퍼니 Device and method for correcting faults of panel
KR101232136B1 (en) * 2005-09-14 2013-02-12 엘지디스플레이 주식회사 Method of repair an Liquid Crystal Cell, method of manufacturing Liquid Crystal Display Device using the same, and Liquid Crystal Display repaired using the same
KR100780012B1 (en) 2006-12-29 2007-11-27 참앤씨(주) Method and apparatus for repairing liquid crystal display panel
KR20080065748A (en) * 2007-01-10 2008-07-15 참앤씨(주) Method and apparatus for repairing liquid crystal display panel

Also Published As

Publication number Publication date
TW200907466A (en) 2009-02-16
JP5256564B2 (en) 2013-08-07
TW200912440A (en) 2009-03-16
KR100879011B1 (en) 2009-01-15
KR20080111385A (en) 2008-12-23
TWI335461B (en) 2011-01-01
JP2011504599A (en) 2011-02-10
KR20080111383A (en) 2008-12-23
CN101796453A (en) 2010-08-04
KR100879010B1 (en) 2009-01-15
CN101707897A (en) 2010-05-12
TWI335462B (en) 2011-01-01
TW200916886A (en) 2009-04-16
KR100879012B1 (en) 2009-01-15
JP5245144B2 (en) 2013-07-24
JP2011508895A (en) 2011-03-17
CN101779157A (en) 2010-07-14
KR20080111384A (en) 2008-12-23
CN101779157B (en) 2012-02-29
JP2010530991A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
TWI335451B (en) Method of repairing bright pixel defect of display device
TWI386709B (en) Method for repairing defective cell of liquid crystal panel
KR101117982B1 (en) Liquid Crystal Display Device And Method For Repairing Bright Spot Of The Same
CN1821836A (en) Reparing device and repairing method for display device
JP2007171905A (en) Method of repairing flat panel display device
US8928853B2 (en) Method and system for repairing flat panel display
JP2008009362A (en) Method for adjusting amount of liquid crystal in liquid crystal display device
WO2008156286A1 (en) Method of repairing flat pannel display
WO2008156280A1 (en) Method of repairing flat pannel display
JP5746065B2 (en) Method and apparatus for darkening dark spot defects in liquid crystal display devices
US7932983B2 (en) Method for adjusting amount of liquid crystal in an LCD device including reducing the thickness of a seal member to form a repair region by laser heating a metal pattern thereunder
JP6362013B2 (en) Display device, manufacturing method thereof, and manufacturing apparatus
WO2008156284A1 (en) Method of repairing flat pannel display
US10656485B2 (en) Display device and method for manufacturing the same
JP4371788B2 (en) Defective display pixel correction method and apparatus for liquid crystal display device
JP2014157335A (en) Bright spot defect correction method of liquid crystal display device, and manufacturing method of liquid crystal display device
JPH04274408A (en) Liquid crystal display device and its defect correcting method