TWI297714B - Carbon anocapsule/silicon rubber composition - Google Patents

Carbon anocapsule/silicon rubber composition Download PDF

Info

Publication number
TWI297714B
TWI297714B TW93141377A TW93141377A TWI297714B TW I297714 B TWI297714 B TW I297714B TW 93141377 A TW93141377 A TW 93141377A TW 93141377 A TW93141377 A TW 93141377A TW I297714 B TWI297714 B TW I297714B
Authority
TW
Taiwan
Prior art keywords
composite material
metal
carbon
rubber
sphere
Prior art date
Application number
TW93141377A
Other languages
Chinese (zh)
Other versions
TW200621890A (en
Inventor
Gan Lin Hwang
Shi Tsung Hung
Chao Kang Chang
Po Cheng Huang
Shih Jung Tsai
Original Assignee
Ind Tech Res Inst
Shin Etsu Silicone Taiwan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst, Shin Etsu Silicone Taiwan Co Ltd filed Critical Ind Tech Res Inst
Priority to TW93141377A priority Critical patent/TWI297714B/en
Publication of TW200621890A publication Critical patent/TW200621890A/en
Application granted granted Critical
Publication of TWI297714B publication Critical patent/TWI297714B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

1297714 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種矽橡膠複合材料,尤指一種奈米碳 球(Carbon Nanocapsules)/矽橡膠複合材料。 5 【先前技術】 傳統的矽橡膠材料若經過改質而具導電、導熱或防火 的特性,可廣泛的應用於各個領域,且具有較高的產品價 礼例如電子没備封裝、印表機滚筒、傳動尼龍布塗裝、 10真空導電膠…等產品。 傳統製備導電矽橡膠複材的方法主要是填充金、銀、 銅..等金屬或碳黑微粒於矽橡膠基材中。矽橡膠複合材料 的添加物可分為金屬粉體(例如:金、銀、銅.·等金屬)、金 屬?化物粉體(例如:氧化鐵、二氧化石夕、黏土層、氧化銘、 氧化鈦…等)、以及碳材三種。一般做法是將矽橡膠材與 “物此、、東而成複合材料。各種的添加物可引入不同粉體 特性。例如導電石夕橡膠,主要是以金或銀粉作為導電添加 /加黏土或—氧化;g夕可用於補強與阻氣丨添加碳黑或 奈米碳管可用於補強並增加導電度。 而傳、、充的填充微粒往往需填充到$〇〜7〇界⑼以上才 j 1足夠的電氣特性,如此高的填充量下常破壞矽橡膠 ^的機械性質’特別是彈性與壓縮變形。例如在石夕橡膠 、充70wt /〇的%I黑可發揮導電性能,但矽橡膠會變得硬 且脆,如同橡皮擦一般容易脫皮。 1297714 此外,目前製備導電梦橡膠複材主 體導電如K銀粉,其價格昂貴,原料成本已 因此,石夕橡膠材料若添加貴金屬粉體改質為導電石夕=材 料需添㈣〜70%粉體),價格將會大幅度的提高。若採用 便宜的碳黑作為填充物,則無法滿足導電度需长且 材料機械性質破壞。其他如採用較便宜的鐵粉氧 也無法使用。另外,膠材的防火耐燃 以上:f 前以填充金屬粉體或碳黑需達域 以上才能防火。 ίο 15 【發明内容】 本發明為-種複合材料,包括:一奈米碳球,盆外咬 ,閉的石墨層;以及一石夕橡膠,其中,該奈米碳球之; 里占该複合材料重量百分比之…至川。亦即,本發明之太 米碳球矽橡膠複合材料是將具有封閉的多層石墨殼層結: 的奈米碳球分散混於⑦橡膠材内所製成的複合材料。藉 此,本發明僅需填充單一種填充物,即可得到同時具有^ 電導熱、電磁屏蔽與防火性質之矽橡膠複合材料。 本發明之複合材料,其中該奈米碳球之粒徑範圍介於 γ 100 nm,較佳為3〇〜40 nm。本發明之複合材料,其中 該奈米碳球為中空奈米碳球、填充金屬奈米碳球、摻雜異 1、子的不米敌球或官能基化的奈米碳球。本發明之複合材 料,其中該填充金屬奈米碳球之内部填充金屬可為任何習 之盃屬,較佳為純金屬、金屬氧化物、金屬碳化物(metal 20 (3)1297714 CH^ CH,1297714 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a ruthenium rubber composite material, and more particularly to a carbon nanocapsules/rubber rubber composite material. 5 [Prior Art] Traditional enamel rubber materials can be widely used in various fields if they are modified to have electrical, thermal or fire-proof properties, and have high product price such as electronic package and printer roller. , transmission nylon cloth coating, 10 vacuum conductive adhesive... and other products. The conventional method for preparing the conductive ruthenium rubber composite material is mainly filled with metal or carbon black particles such as gold, silver, copper, etc. in the ruthenium rubber substrate. Additions to ruthenium rubber composites can be classified into metal powders (eg, metals such as gold, silver, copper, etc.) and metals? Powders (for example: iron oxide, sulphur dioxide, clay, oxidized, titanium oxide, etc.), and carbon materials. The general practice is to use a ruthenium rubber material and a composite material of "this material, east, east. Various additives can be introduced into different powder characteristics. For example, conductive stone rubber, mainly using gold or silver powder as conductive addition / adding clay or - Oxidation; g eve can be used to reinforce and block gas 丨 Add carbon black or carbon nanotubes can be used to reinforce and increase conductivity. The filled and filled particles often need to be filled to $ 〇 ~ 7 〇 (9) or more before j 1 Sufficient electrical characteristics, such high filling capacity often destroys the mechanical properties of 矽 rubber ^ especially elastic and compression deformation. For example, in Shixi rubber, 70% / 充% I black can exert electrical conductivity, but 矽 rubber will It becomes hard and brittle, and it is easy to peel off like an eraser. 1297714 In addition, the conductive body of the conductive dream rubber composite material is currently prepared such as K silver powder, which is expensive and the raw material cost has been changed. If the precious metal powder is modified, the stone metal material is modified to Conductive stone eve = material needs to add (four) ~ 70% powder), the price will be greatly improved. If cheap carbon black is used as the filler, it can not meet the long electrical conductivity and the mechanical properties of the material Others can not be used if it is cheaper to use iron powder. In addition, the fireproof and flame resistant of the rubber material is above: f is filled with metal powder or carbon black before it can reach the fire level. ίο 15 [Invention] The present invention is - The composite material comprises: a nano carbon ball, a bite outside the basin, a closed graphite layer; and a stone rubber, wherein the nano carbon ball; the percentage of the weight of the composite material is ... to Sichuan. The tamylene carbon ruthenium rubber composite material of the present invention is a composite material prepared by dispersing a nano carbon sphere having a closed multilayer graphite shell layer: 7 into a rubber material. Thus, the present invention only needs to fill a single sheet. A filler, which can obtain a ruthenium rubber composite material having both electrical heat conduction, electromagnetic shielding and fireproof properties. The composite material of the present invention, wherein the nano carbon sphere has a particle size ranging from γ 100 nm, preferably 3 〇~40 nm. The composite material of the present invention, wherein the nano carbon sphere is a hollow nanocarbon sphere, a filled metal nanocarbon sphere, a doped 1, a non-fertile ball or a functionalized nanocarbon Ball. Composite material of the invention Wherein the interior of the filler metal balls of carbon nano filler metal may be any conventional metal cup, preferably a pure metal, metal oxides, metal carbides (metal 20 (3) 1297714 CH ^ CH,

CH3 ch3 CH H2C=C —OSi —^SiOJ^SiOj—Si —*CH==CH2 CH3 ch3 ch3 ch3 f施例一:製備CNC/矽橡膠複t材料CH3 ch3 CH H2C=C —OSi —^SiOJ^SiOj—Si —*CH==CH2 CH3 ch3 ch3 ch3 f Example 1: Preparation of CNC/矽 rubber complex t material

取中空奈米碳球2g,加入40g之HO-2(如下式(4》溶 液中,經過90min的超音波震盪後,再加入Pt觸媒 10 2〇〇Ppm。以油浴法加熱反應物至l〇〇°C,反應6 hr。彳寺反 應完成後,取此產物和矽橡膠以三滾輪混煉製成矽橡膠複 合材料。 CH3 - CjH3 - 一 (jH3 一 CH3 H—Si—〇- -si-〇- -Si 〇 1 Si-H (4) CH3 Η η -CH3 _ m CH3 15 膏施例二:製備CNC-(官能某V矽橡膠趨合姑料 取50g中空奈米碳球,加入250ml H2SO4 + HN〇3莫 爾比3:2的濃硫酸與硝酸混合溶液,於約140°C下迴流2 20 小時後,冷卻,離心收集,並以去離子水清洗中空奈米碳 球3次以上,直到清洗液接近中性為止。最後乾燥產物, 此產物為含碳酸官能基奈米碳球。以〇· 1M NaOH逆滴定鑑 定此產物之-C00H官能基數目約13// m〇l/g。取產物和矽 橡膠以三滾筒混合矽橡膠製成矽橡膠複合材料。 8 25 1297714 CNC/矽橡膠複合材料之機械性質測試結果,整理於表 表1 添加量 (wt%) HS: 硬度 SG: 比重 TS: 拉力 TR: 撕裂 EL: 延伸 △L: 線收縮 RB: 反波彈 性係數 0 18.3 0.974 0.25 0.29 360 2.485 83 0.1 18.2 0.974 0.25 0.29 370 2.484 82 5 0.5 18.3 0.976 0.25 0.29 370 2.487 82.5 1 18.3 0.98 0.25 0.29 350 2.485 82 2 18.6 0.984 0.27 0.29 360 2.481 82 5 19.1 0.999 0.27 0.29 370 2.377 81.5 10 20.2 1.024 0.29 ^0.39 360 2.282 81 20 20 1.07 0.29 ^0.69 ΓΤδΟ 2.181 61 20(攪 拌機) 22.5 1.072 0.29 0.69 370 2.186 80 5 由於奈米碳球(Carb〇n Nanocapsules)外殼為完整封閉 的多層石墨結構,表面有許多不飽和雙鍵,可與矽橡膠材 鍵結而使結構穩定並保有良好的物性。因此,由奈米碳球 矽橡膠複材的機械性質測試可知,本實施例之奈米碳球在 20wt%以内的填充量下,矽橡膠複材仍可維持:當:的機 10 械物性。 胃 b.導電性質 四點探測三用 本實施例之CNC-(OH)/石夕橡膠之導電度係以 10 1297714 橡膠材有明顯導電性提升。因此,本發明之矽橡膠複材具 有明顯的進步性。 C.熱傳導性質 填充 lwt%之 CNC-(V02)與填充 10wt% CNC_(V02)之 石夕橡膠複材,測得知熱傳導係數分別為0.20與0.26 WnT1]^1。因此,本發明之矽橡膠複材具有導熱的特性。 d.耐燃性 本實施例CNC/石夕橡膠之财燃性測試,係依美國標準測 試規範UL94V0測試,其結果整理於表3。首先,將不同 填充量的奈米碳球石夕橡膠複材切成條狀,直立固定於火焰 上方一公分處燃燒十秒鐘;然後移開火焰,開始計時直到 火焰自然熄滅為止。 表3 矽橡膠填充奈 燃燒秒數 燃燒秒數 備註 米碳球含量 Tl(sec) T2(sec) 0 % CNC 燒光 — 火焰大,全部 燒光 5 % CNC 17.2 5.6 UL 94-V1 10 % CNC 15 3.8 UL 94-V1 15 % CNC ^ 3.2 2 '~ UL 94-V0 20 % CNC 8.1 1.6 UL 94-V0 12 1297714 表3顯示,本實施例之矽橡膠複材,僅添加15%之奈 米碳球即可達到UL94-V0之防火要求。這是由於奈米碳 球不僅結構穩定,而且具有極佳的掃除自由基能力。因此, 在氧氣下月b承受63〇Crlj溫而不破壞’而且在火焰燃燒 時能捕捉裂解的高分子碎片形成緊密的阻燃結構而達到防 火的目的。然而,習知之導電填充物如碳黑、碳纖維或碳 六十均未具有耐燃之特性。是以,本發明之矽橡膠複材可 同時兼具良好的導電性和防火難燃特性,具有極大的進步 10 性。 e.電磁屏避性質 本實施例CNC-(OH)/矽橡膠複材之電磁屏避(EMI Shielding)測試,係依ASTM-D4935-89標準檢測法之實驗 15 方法條件測試,其結果整理於表4。 表4 # \^dB \ 率 矽橡>\^ 填充CNci^\ 30 MHz 100 MHz 300 MHz 500 MHz 800 MHz 1000 MHz 1200 MHz 1500 MHz 1800 MHz 5wt% 4.0 5.6 6.9 7.6 8.5 9.8 12.9 13.2 14.8 l〇wt% 6.8 7.3 7.9 8.5 9.7 11.3 13.7 14.2 15.8 15wt% 5.6 7.0 7.6 8.3 9.4 10.9 13.1 13.9 14.3 20wt% 6.2 6.9 7.5 8.0 9.2 10.8 13.4 13.9 15.6 13 1297714 依ASTM-D4935-89標準檢測法,本實施例之矽橡膠複 材填,填充少量官能基化之奈米碳球,對於一般之手機頻 率(900〜1800MHz)已可達到8〇%以上之電磁屏蔽效果。因 5此,本發明之矽橡膠複材具有良好之電磁屏避性質。故本 發明之「複合材料」同時具有導電、導熱、電磁屏蔽與防 火的功能。 另外,習知之矽橡膠中的金屬填充物,除了無法同時 兼具導電、導熱、電磁屏蔽與防火的功能,還容易隨著電 10磁場擺動而在矽橡膠中擴散,時間越久,就越容易聚集在 一起。而本發明所使用之奈米碳球,其石墨殼層會形成 一受保護的空間。當使用填充金屬之奈米碳球時,可避免 内部的金屬顆粒聚集擴散、或受到環境氧化破壞,使其内 部奈米金屬結構以及量子效應等性質得以長久保存。而 15且,由於石墨殼層上之雙鍵或官能基會和矽橡膠形成鍵 結,使的本發明之奈米碳球可穩定在矽橡膠中。再者,習 知之填充物多會破會石夕橡膠之彈性,而本發明採用之奈^ 碳球則否。 20 因此’本發明結合奈米碳球所製備的導電石夕橡膠複合 材料可大幅提昇⑪橡膠的應用性能,解決目前使用金屬粒 子或碳黑微粒作為導電填充材的缺點與瓶頸。 7 而舉例而已,本發明所 圍所述為準,而非僅限Take hollow carbon nanosphere 2g, add 40g of HO-2 (in the following formula (4) solution, after 90min ultrasonic shock, add Pt catalyst 10 2〇〇Ppm. Heat the reaction to the oil bath method to l 〇〇 ° C, reaction 6 hr. After the completion of the reaction, the product and the ruthenium rubber were mixed with three rollers to form a ruthenium rubber composite. CH3 - CjH3 - one (jH3 - CH3 H - Si - 〇 - - Si-〇- -Si 〇1 Si-H (4) CH3 Η η -CH3 _ m CH3 15 Paste Example 2: Preparation of CNC-(functional V 矽 rubber tends to take 50g hollow nano carbon ball, add 250ml H2SO4 + HN〇3 molar ratio 3:2 mixed sulfuric acid and nitric acid mixed solution, reflux at about 140 ° C for 2 20 hours, cooled, collected by centrifugation, and washed hollow nanocarbon balls 3 times with deionized water Above, until the cleaning solution is close to neutral. Finally, the product is dried, and the product is a carbonate-containing functional carbon nanosphere. The number of -C00H functional groups identified by reverse titration with 〇·1M NaOH is about 13//m〇l/ g. The product and the enamel rubber are made of ruthenium rubber composite material with three-roller mixed enamel rubber. 8 25 1297714 Mechanical properties test of CNC/矽 rubber composite material The results are summarized in Table 1. Addition amount (wt%) HS: Hardness SG: Specific gravity TS: Tensile force TR: Tearing EL: Extension ΔL: Linear shrinkage RB: Backlash elastic coefficient 0 18.3 0.974 0.25 0.29 360 2.485 83 0.1 18.2 0.974 0.25 0.29 370 2.484 82 5 0.5 18.3 0.976 0.25 0.29 370 2.487 82.5 1 18.3 0.98 0.25 0.29 350 2.485 82 2 18.6 0.984 0.27 0.29 360 2.481 82 5 19.1 0.999 0.27 0.29 370 2.377 81.5 10 20.2 1.024 0.29 ^0.39 360 2.282 81 20 20 1.07 0.29 ^0.69 ΓΤδΟ 2.181 61 20 (mixer) 22.5 1.072 0.29 0.69 370 2.186 80 5 Since the outer shell of Carb〇n Nanocapsules is a completely closed multi-layer graphite structure, there are many unsaturated double bonds on the surface. The rubber material is bonded to make the structure stable and maintain good physical properties. Therefore, it can be seen from the mechanical property test of the nano carbon balloon rubber composite material that the nano carbon sphere of the present embodiment has a filling amount of 20 wt% or less. The material can still be maintained: when: the machine 10 mechanical properties. Stomach b. Conductive properties Four-point detection three-purpose The conductivity of CNC-(OH)/Shixi rubber of this example is improved by 10 1297714 rubber material. Therefore, the enamel rubber composite material of the present invention has a remarkable progress. C. Thermal Conductivity The CNC-(V02) filled with lwt% and the Shixi rubber composite filled with 10wt% CNC_(V02) were found to have thermal conductivity coefficients of 0.20 and 0.26 WnT1]^1, respectively. Therefore, the enamel rubber composite of the present invention has heat conducting properties. d. Flame resistance The fuel flammability test of the CNC/Shixi rubber of this example is tested according to the American Standard Test Specification UL94V0, and the results are summarized in Table 3. First, the nano carbon ball stone rubber composite material with different filling amounts is cut into strips, and it is erected and fixed in the flame for one ten minutes above the flame; then the flame is removed and the timing is started until the flame is naturally extinguished. Table 3 矽Rubber Filled Nye Burning Seconds Burning Seconds Remarks Meter Carbon Ball Content Tl(sec) T2(sec) 0 % CNC Burnout - Large flame, all burned out 5% CNC 17.2 5.6 UL 94-V1 10 % CNC 15 3.8 UL 94-V1 15 % CNC ^ 3.2 2 '~ UL 94-V0 20 % CNC 8.1 1.6 UL 94-V0 12 1297714 Table 3 shows that the rubber composite material of this example is only added with 15% carbon carbon balls. The UL94-V0 fire protection requirements can be achieved. This is because the carbon spheres are not only structurally stable, but also have excellent ability to sweep free radicals. Therefore, in the case of oxygen, the temperature b is subjected to 63 〇Crlj without breaking, and the cracked polymer fragments can be captured to form a tight flame-retardant structure to prevent fire. However, conventional conductive fillers such as carbon black, carbon fiber or carbon six have no flame resistance characteristics. Therefore, the ruthenium rubber composite material of the present invention can simultaneously have good electrical conductivity and fire retardant characteristics, and has great progress. e. Electromagnetic screen avoidance property The electromagnetic Shielding test of the CNC-(OH)/矽 rubber composite material of the present embodiment is tested according to the ASTM-D4935-89 standard test method 15 method condition, and the result is compiled in Table 4. Table 4 # \^dB \ rate 矽 rubber >\^ Fill CNci^\ 30 MHz 100 MHz 300 MHz 500 MHz 800 MHz 1000 MHz 1200 MHz 1500 MHz 1800 MHz 5wt% 4.0 5.6 6.9 7.6 8.5 9.8 12.9 13.2 14.8 l〇wt % 6.8 7.3 7.9 8.5 9.7 11.3 13.7 14.2 15.8 15wt% 5.6 7.0 7.6 8.3 9.4 10.9 13.1 13.9 14.3 20wt% 6.2 6.9 7.5 8.0 9.2 10.8 13.4 13.9 15.6 13 1297714 According to the ASTM-D4935-89 standard test method, the rubber of this example The composite material is filled with a small amount of functionalized nano carbon spheres, which can achieve electromagnetic shielding effect of more than 8〇% for the general mobile phone frequency (900~1800MHz). Because of this, the enamel rubber composite of the present invention has good electromagnetic avoidance properties. Therefore, the "composite material" of the present invention has both electrical conductivity, heat conduction, electromagnetic shielding and fire prevention. In addition, the metal filler in the conventional rubber can not only have the functions of conduction, heat conduction, electromagnetic shielding and fire prevention at the same time, but also easily spread in the rubber with the electric field 10 swinging. The longer the time, the easier it is to gather. Together. In the nanocarbon sphere used in the present invention, the graphite shell layer forms a protected space. When a metal-filled nanocarbon balloon is used, the internal metal particles can be prevented from being aggregated and diffused, or subjected to environmental oxidation damage, so that the properties of the inner nano metal structure and quantum effect can be preserved for a long time. Further, since the double bond or functional group on the graphite shell layer is bonded to the ruthenium rubber, the nano carbon sphere of the present invention can be stabilized in the ruthenium rubber. Furthermore, the conventional filler will break the elasticity of the stone eve rubber, and the carbon ball used in the present invention does not. Therefore, the conductive Shishi rubber composite prepared by the present invention in combination with nanocarbon spheres can greatly improve the application performance of the rubber, and solve the shortcomings and bottlenecks of using metal particles or carbon black particles as conductive fillers. 7 By way of example, the invention is intended to be

上述實施例僅係為了方便說明 主張之權利範圍自應以申請專利範 於上述實施例。 14 1297714 【圖式簡單說明】 無 5 【主要元件符號說明】The above-described embodiments are merely for the convenience of the description and the claims are intended to cover the above embodiments. 14 1297714 [Simple description of the diagram] None 5 [Description of main component symbols]

Claims (1)

1297714 十、申請專利範圍: 1 · 一種複合材料,包括: 一奈米碳球,其外殼為封閉的石墨結構;以及 一矽橡膠, 5 其中,該奈米碳球之含量占該複合材料重量百分比之 0.1至70,該奈米碳球與該矽橡膠係化學鍵結。 2 ·如申凊專利範圍第1項所述之複合材料,其中該奈 米碳球之粒徑範圍介於3至1〇〇 nm。 3 ·如申晴專利範圍第1項所述之複合材料,其中該奈 10米碳球為中空奈米碳球、填充金屬奈米碳球、摻雜異原子 的奈米碳球或官能基化的奈米碳球。 4·如申請專利範圍第3項所述之複合材料,其中該填 充金屬奈米碳球之内部填充有純金屬、金屬氧化物、金屬 碳化物(metal carbide)金屬硫化物、金屬氮化物、金屬硼 15 化物、或合金材料。 5·如申請專利範圍第3項所述之複合材料,其中該摻 雜異原子的奈米碳球中碳原子莫耳數:摻雜之異原子莫耳 數比為l:x,且X介於〇至〇·1之間。 6 ·如申請專利範圍第5項所述之複合材料,其中該掺 20雜之異原子為氮、磷、硼或硫原子。 7·如申請專利範圍第1項所述之複合材料,其中該矽 橡膠為聚矽氧烷化合物。 8.如申請專利範圍第7項所述之複合材料,其中該矽 橡膠具有乙烯基團(vinyl group)。 161297714 X. Patent application scope: 1 · A composite material comprising: a nano carbon sphere whose outer casing is a closed graphite structure; and a rubber layer, 5 wherein the content of the nano carbon sphere accounts for the weight percentage of the composite material From 0.1 to 70, the nanocarbon balloon is chemically bonded to the ruthenium rubber. 2. The composite material of claim 1, wherein the nanocarbon spheres have a particle size ranging from 3 to 1 〇〇 nm. 3. The composite material according to claim 1, wherein the 10 nm carbon sphere is a hollow nanocarbon sphere, a filled metal nanocarbon sphere, a heteroatom-doped nanocarbon sphere or functionalized. Nano carbon ball. 4. The composite material according to claim 3, wherein the filler metal nanocarbon sphere is filled with a pure metal, a metal oxide, a metal carbide metal sulfide, a metal nitride, a metal Boron 15 compound, or alloy material. 5. The composite material according to claim 3, wherein the heteroatom-doped carbon carbon has a molar number of carbon atoms: the doped heteroatomic molar ratio is 1:x, and X is Between Yu and 〇·1. 6. The composite material of claim 5, wherein the heteropolyatomic atom is a nitrogen, phosphorus, boron or sulfur atom. The composite material according to claim 1, wherein the ruthenium rubber is a polyoxy siloxane compound. 8. The composite material of claim 7, wherein the ruthenium rubber has a vinyl group. 16
TW93141377A 2004-12-30 2004-12-30 Carbon anocapsule/silicon rubber composition TWI297714B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93141377A TWI297714B (en) 2004-12-30 2004-12-30 Carbon anocapsule/silicon rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93141377A TWI297714B (en) 2004-12-30 2004-12-30 Carbon anocapsule/silicon rubber composition

Publications (2)

Publication Number Publication Date
TW200621890A TW200621890A (en) 2006-07-01
TWI297714B true TWI297714B (en) 2008-06-11

Family

ID=45069183

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93141377A TWI297714B (en) 2004-12-30 2004-12-30 Carbon anocapsule/silicon rubber composition

Country Status (1)

Country Link
TW (1) TWI297714B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471215B (en) 2007-12-29 2011-11-09 清华大学 Production method of thermoelectron source

Also Published As

Publication number Publication date
TW200621890A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
Feng et al. Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy
Wang et al. Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine
Zhao et al. Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles
KR101082932B1 (en) method for manufacturing metal coated carbon nano tube and metal coated carbon nano tube manufactured by the method
JPH1112481A (en) Thermally conductive polymer composition
JP2006526559A (en) Aluminum oxide produced by high pyrolysis method and surface-modified
TW201000559A (en) Thermally conductive silicone composition and electronic device
Jia et al. Octopus sucker-inspired hierarchical structure MXene@ carbon nanotubes enhancing the mechanical properties and fire safety of thermoplastic polyurethane composites through the interfacial engineering
JP2015004122A (en) Metal nanoparticle paste, bonding material containing the metal nanoparticle paste, and semiconductor device using the bonding material
Kim et al. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly (ethylene terephthalate) nanocomposites
Park et al. Enhanced thermal conductivity of epoxy/three-dimensional carbon hybrid filler composites for effective heat dissipation
KR20160027453A (en) Hybrid Composite Solder Alloys and Their Fabrication Methods
WO2012026466A1 (en) Em-absorbing/heat-conducting sheet and method for manufacturing em-absorbing/heat-conducting sheet
Feng et al. 0D-2D nanohybrids based on binary transitional metal oxide decorated boron nitride enabled epoxy resin efficient flame retardant coupled with enhanced thermal conductivity at ultra-low additions
KR101839983B1 (en) Additive for modifying polymer and manufacturing method thereof
Kumar et al. Study on epoxy resin based thermal adhesive composite incorporated with expanded graphite/silver flake hybrids
CN114213882B (en) High-temperature-resistant heat-dissipation coating and preparation method thereof
Zhuang et al. Enhanced thermal conductivity and mechanical properties of natural rubber-based composites co-incorporated with surface treated alumina and reduced graphene oxide
TWI297714B (en) Carbon anocapsule/silicon rubber composition
TW201422674A (en) Polyaniline composites and manufacturing method thereof
JP4666663B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
Wang et al. Enhanced thermal conductivity and retained electrical insulation of epoxy composites filled with Cu@ BaTiO3 core–shell particles
JP2017179428A (en) Conductive material, forming method of conducive film, circuit board, semiconductor device, and manufacturing method of semiconductor device
TWI243004B (en) Method for manufacturing low-temperature highly conductive layer and its structure
Kumari et al. Cu–Ni alloy decorated graphite layers for EMI suppression

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees