TWI292195B - Semiconductor chip assembly with metal containment wall and solder terminal - Google Patents

Semiconductor chip assembly with metal containment wall and solder terminal Download PDF

Info

Publication number
TWI292195B
TWI292195B TW095104307A TW95104307A TWI292195B TW I292195 B TWI292195 B TW I292195B TW 095104307 A TW095104307 A TW 095104307A TW 95104307 A TW95104307 A TW 95104307A TW I292195 B TWI292195 B TW I292195B
Authority
TW
Taiwan
Prior art keywords
metal
metal substrate
substrate
winding
wall
Prior art date
Application number
TW095104307A
Other languages
Chinese (zh)
Other versions
TW200709314A (en
Inventor
Wen Chiang Lin
jia-zhong Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/216,783 external-priority patent/US7419851B2/en
Application filed filed Critical
Publication of TW200709314A publication Critical patent/TW200709314A/en
Application granted granted Critical
Publication of TWI292195B publication Critical patent/TWI292195B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Wire Bonding (AREA)

Description

1292195 九、發明說明: 【發明所屬之技術領域】 本發明係為一半導體晶片封裝結構之製造方法’ 尤指銲接端具金屬壁之半導體晶片封裝結構及該半導 體晶片封裝結構之製造方法。 【先如技術】 _ 目前半導體晶片係具有輸入/輸出的腳位(pads), 該腳位必須連接至外部的電路,以使達成電子系統的 一部份功能。該連接的媒介主要是以金屬導線陣列(如 一個導線架)或為一辅助電路(support circuit)(如基板 substrate),雖然該連接的媒介可直接連接至電路操作 面板(如主機板)。目前有很多連接技術被廣泛地使 用,包括有打線接合(wire bonding)、捲帶自動接合 (tape automated bonding,TAB)及覆晶接合(flip-chip I bonding)等技術。 在下一層組合期間,該半導體晶片封裝結構合是 連續被連接至其它電路如印刷電路板(PCB)或主機 板。不同的半導體晶片封裝合在下一層組合被採用不 同的方式。例如,球格式陣列構裝(ball grid array, BGA),包含一錫球陣列,而該平面栅格陣列構裝(land grid array,LGA)係包含一金屬腳位陣列,該金屬腳位 陣列,其接收在印刷電路板上錫的痕跡。 5 1292195 • '球格式陣列構裝主要有錫球溶化在鎳端之金屬元 素表面,因此錫球為下一層組合之接觸端。當錫球與 該金屬元素表面分離時,該球格式陣列構裝係變成無 法接觸或無效。 人傳統的錫球接觸技術,其目的在允許錫球容易熔 合於金屬70素表面。例如,連續電錢錄和金的薄層於 f屬元素表面的-個平滑及偏平的表面允許錫球可以 鲁F日1易的☆合在金屬兀素表面,但是不能避免錫球分離 問題。 傳統的錫球接觸技術,域合在接觸絕緣體上, 例如· BT树月日(二氮雜苯雙馬來聚亞酿胺,則 poxy)對錫球’雖增強該錫球之機械接觸。然 亥=球容易由該樹脂分離,與前述的金屬元素表 面有相同的問題。 制及的半導體晶片封裝結構具有不同的限 故亟待在半導體晶片封裝結構上發展 更具有經濟性、可信賴性、可 ^ 供具優越的機械及電子特 :樣卜及提 °之技術使可適用於已知應用範圍之優點。 【發明内容】 本發明之主要目的& + # 壁之半導體晶片封裝# ^提供—銲接端具金屬 構,並提供-低成本、高經濟 6 1292195 性及高可靠度之構裝。 本發明之# —目㈣在於,储供―方便性及經 濟性之製造半導體晶片封裝結構之方法。 總而言之,本發明係提供一半導體晶片,係包括 具V電腳位之半導體晶片、—具繞線、金屬壁及鲜 接端之導電跡線及一可使該繞線及導電腳位間具電力 連接之連接部。該金屬壁係包含一孔洞,該鲜接端係 • 與該孔洞内之金屬壁接觸並與該繞線隔離。 本發明係亦提供一製造該半導體晶片封裝結構之 方法係包括一金屬基板、一繞線、一金屬壁及一銲 接層,其中,该金屬壁係具有一孔洞,使該鲜接端與 孔洞内之金屬壁接觸,並使該半導體晶片連接至該路 線,且形成一可使該繞線與導電腳位間具電力連接之 2接部,接著’名虫刻該金屬基板係減少該金屬基板與 •、繞,及金屬基板與金屬壁間之接觸區域,以及提供一 具銲接層之銲接端。 ^ *依據本發明之内容,該半導體晶片封裝結構具有 係第一垂直方向及相對的第二垂直方向,並與一橫向 * σ、父為半導體晶片封裝結構係包括具相對應之 第一Τ面及第二平面之半導體晶片,其中該半導體晶 縳之第一平面係包含一導電腳位,一導電跡線係包含 二線、金屬壁及銲接端,其中該路線係從該金屬壁及 吁接端k向延伸,該金屬壁係包含一孔洞,並具有一 7 1292195 一 :::<§# “金f壁係為該半導體晶片封裝結構中唯 厘” n铸接職觸’該銲接端與該孔洞内 、壁接觸’-連接部可使該繞線及導電腳位間星 有電力連接,該密封劑係與該半導體晶片接觸,一絕 繞線及金屬壁接觸。該半導體晶片係被嵌 =㈣劑内’該金屬壁係被嵌人㈣絕緣基板内, 從该銲接端之第—方向垂直延伸及從繞線之第二方 t垂直延伸’該孔洞係延伸至該絕緣基板内,該鐸接 1延伸至絕緣基板内但不被該半導體晶片封裝結構 =它材料覆蓋於該銲接端之第二方向上,整體之銲 接知延伸至該絕緣基板㈣於該孔洞之表面區域内, 並不被該金屬壁❹於該銲接端H向。 該半導體晶片係能為單一晶片被嵌入於該密封劑 或者為夕曰曰片被嵌入於該密封劑内。該半導體晶 片之第-平面係面對第—方向及該半導體晶片之第二 平面係面對第二方向’或者為該半導體晶片之第一平 =對第二方向及該半導體晶片之第二平面係面對 向忒半導體晶片係從該繞線、金屬壁、銲接 端及絕緣基板往第一方向垂直延伸。 =導電跡線往第-方向垂直延伸。另外,二; 曰曰片破嵌入該密封劑内係能從該導電跡線往 方向垂直延伸。 1292195 , 該繞線係能從該金屬壁及銲接端橫向延伸,並面 向該半導體晶片。該繞線係能從該金屬壁及銲接端往 第一方向垂直延伸及能從該半導體晶片往第二方向垂 直延伸。該繞線係能向該半導體晶片邊緣内外延伸, 或可被置於该半導體晶片邊緣外。該繞線亦為平坦並 與泫半導體晶片之第二平面平行。該繞線係能與該金 屬壁接觸,但不與該金屬壁整合為一體, 能與該金屬壁隔離。而且該繞線係於該金屬壁與任何 被嵌入於密封劑之半導體晶片間,及該銲接端與任何 被嵌入於密封劑之半導體晶片間係具有一具電力之導 電路徑。任何被嵌入於密封劑之半導體晶片係能盥該 金屬壁及銲接端間具電力連接係藉由包含繞線之 力之導電路徑。、 該金屬壁係能被嵌人該絕緣基板内。該金屬壁係 ^亥銲接端往第-方向垂直延伸並能從該半晶 1、繞線:連接部及密封劑往第二方向垂直延伸,且 導體晶片邊緣内或其邊緣外。該金屬壁 二: 日片封裝結構中唯-的導電體並與該銲 接^接觸,且橫向於延伸 、 外圍旋轉360度1全緣基板之整體銲接端 =Γυ字形並平行於第-方向及第二方向 面係為-圓形、一矩形或一正方 向及^方向正交,且於職狀Μ 口處。該金 1292195 •展壁之厚度係能同時地比繞線之厚度薄,並能為單一 金屬如鎳,且能包括一具連續單一表面用來定義該孔 洞。該金屬壁係只與該繞線、銲接端及絕緣基板接觸, 或者只與一金屬柱、該銲接端及絕緣基板接觸。 該孔洞係能延伸經過該金屬壁大部份之高度與直 徑,並能被該金屬壁覆蓋於第一方向及橫向方向上, 且包括一面向第二方向之開口,該孔洞係為一凹形。 春 該銲接端係能於該孔洞内部及外部延伸,或者能 被置於該孔洞内。該銲接端係能從該半導體晶片、繞 線、連接部及密封劑往第二方向垂直延伸,並被置於 该半導體晶片邊緣内或邊緣外。例如:該銲接端係能 於該孔洞内部及外部延伸,並從該金屬壁及絕緣基板 往第二方向垂直延伸,且被金屬壁覆蓋於第二方向。 該銲接端係能填滿該孔洞。另外,該銲接端延伸至該 絕緣基内的部份係於該孔洞内,並只與該金屬壁接 籲 觸,且被金屬限制於第一方向及橫向方向向内。而且 介於該銲接端與金屬壁間所有的接觸係於該孔洞内。 該連接部係於該繞線及導電腳位之間延伸並使該 繞線及導電腳位之間具電力連接。該連接部係能為電 鑛金屬、無電電鑛金屬、錫料、導電黏著劑或銲線。 該密封劑係能覆蓋該半導體晶片、繞線、金屬壁、 辉接端、連接部及絕緣基板於第一方向上,並能與該 金屬壁及銲接端隔離。 一 μ 1292195 • 该絕緣基板能從該金屬壁及鲜接端往第一方白 直延伸,從該半導體晶片、繞線、連接部及密封劑= 第二方向垂直延伸,並覆蓋於該半導體晶片於第二方 向上,且能與該銲接端隔離。該絕緣基板能橫向於該 金屬壁外圍旋轉360度。而且該絕緣基板能與該金屬 壁橫向排列於-朝向第二方向之平面,該焊接端係能 被置於該孔洞内,並橫向排列於該朝向第二方向之^ 面’或者該銲接端能於孔洞内部及外部延伸,^從^ 朝向第二方向之平面往第二方向垂直延伸。“ 該導電跡線係能包含一金屬柱,該金屬柱與該 線及金屬壁接觸’並使該繞線與金屬壁間具有電力連 接,但不與該繞線及金屬壁整合為一體,且使 與該金屬壁隔離,並從該金屬柱橫向延伸。·、’' 該金屬柱係能從金屬壁及銲接端往第一方向 延從該半導體晶片、繞線、連接部及密封‘往第 -向垂直延伸,並能被置於該半導體晶片之 =及1=系能被繞線覆蓋於第-方向㈣ /金屬壁及知接端覆蓋於第二方向。該 同時地比繞線之厚度較厚,並為_金 子二 金=為一圓錐形’其直徑大小係當該=二 I292195 之第—平面之表面積,該金屬壁之第一 至少比該金屬壁之第二平面之表面積大鳩。面積 密封體晶片封裝結構係能包含與半導體晶片* 片^絕緣基板,該絕緣基板係從該半導體曰 片在第二方向垂直延伸。 干蛤體曰曰 »亥半導體晶片封裝結構传 銲接端間之呈電力之導=包:於峨腳位與 錄、人J 控,該導電路徑係需要轉 盘、,屬壁及連接部。而且該繞㈣能於該導電腳: 屬f接端間提供水平繞線’但不提供垂直繞線,該金 壁係於該銲接端與其它導電_無提供繞線。、’ ,半導體晶片封裝結構係為第—層次構裳 曰曰片或多晶片構裝。 根據本發明其它方面來看,—種製造半導體晶片 封虞結構之方法係包括(1)提供一金屬基板、一繞線、 -金屬壁及一銲接層,其中該金屬基板係包含第一平 面及相對的第二平面,該金屬基板之第一平面係朝向 第一方向’該金屬基板之第二平面係朝向第二方向, 該金屬壁係延伸至金屬基板内,係從該金屬基板之第 一平面朝該金屬基板之第一平面延伸,並包括一孔 洞,該孔洞係從該金屬基板之第二平面朝 之第-平面延伸至該金屬基板内,並 方向之開口,該銲接層係與該孔洞内之金屬壁接觸, (2)機械地連接該半導體晶片至該繞線,其令該半導體 12 1292195 晶片係包括一導電腳位,(3)接著形成一使該繞線與導 電腳位間具有電力連接之連接部,(4)利用一種濕式化 學蝕刻方式對該金屬基板進行蝕刻,因此減少該金屬 基板與該繞線間及該金屬基板與金屬壁間之接觸區 域以及(5)h·供一銲接端,該鋅接端係可於該孔洞内 之金屬壁接觸並包含該銲接層。 。亥方法係包含形成繞線係藉由沈積該繞線於金屬 基板^而形成。例如:該方法係可包括形成一電鍍遮 罩於該金屬基板上,該電鍍遮罩係包含一開口使該金 屬基板有部份暴露,然後穿過該電鍍遮罩上之 該繞線電鍍於該金屬基板之暴露部份。 ,BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fabricating a semiconductor wafer package structure, and more particularly to a semiconductor chip package structure having a metal end of a solder end and a method of fabricating the semiconductor chip package structure. [First as technology] _ The current semiconductor chip has input/output pads, which must be connected to external circuits to achieve some of the functions of the electronic system. The medium to be connected is primarily an array of metal wires (e.g., a lead frame) or a support circuit (e.g., a substrate substrate), although the medium of the connection can be directly connected to a circuit operation panel (e.g., a motherboard). Many connection technologies are widely used, including wire bonding, tape automated bonding (TAB), and flip-chip I bonding. During the next layer of assembly, the semiconductor chip package structure is continuously connected to other circuits such as a printed circuit board (PCB) or motherboard. Different semiconductor chip packages are combined in the next layer in different ways. For example, a ball grid array (BGA) includes a solder ball array, and the planar grid array (LGA) system includes a metal pin array, the metal pin array, It receives traces of tin on the printed circuit board. 5 1292195 • 'The ball format array consists mainly of tin balls melted on the metal surface of the nickel end, so the solder balls are the contact ends of the next layer combination. When the solder ball is separated from the surface of the metal element, the ball format array structure becomes inaccessible or ineffective. The traditional solder ball contact technology is designed to allow the solder balls to be easily fused to the surface of the metal 70. For example, a continuous thin money record and a thin layer of gold on the surface of the f-elements have a smooth and flat surface that allows the tin ball to be fused on the surface of the metal enamel, but the problem of separation of the solder ball cannot be avoided. The traditional solder ball contact technology is combined with a contact insulator. For example, BT tree moon day (diaza bismuth polyamine, poxy) on the solder ball enhances the mechanical contact of the solder ball. However, the ball is easily separated from the resin and has the same problem as the surface of the aforementioned metal element. The semiconductor chip package structure has different limitations. It needs to be developed on the semiconductor chip package structure to be more economical, reliable, and capable of providing superior mechanical and electronic features: The advantages of the known application range. SUMMARY OF THE INVENTION The main object of the present invention is to provide a soldering end metal structure and to provide a low cost, high economy 6 1292195 and high reliability package. The present invention is based on the method of manufacturing a semiconductor wafer package structure which is convenient and economical. In summary, the present invention provides a semiconductor wafer comprising a semiconductor wafer having a V-pin position, a conductive trace having a winding, a metal wall and a fresh terminal, and a power supply between the winding and the conductive pin. Connection connection. The metal wall system includes a hole that is in contact with and is isolated from the metal wall in the hole. The invention also provides a method for fabricating the semiconductor chip package structure comprising a metal substrate, a wire, a metal wall and a solder layer, wherein the metal wall has a hole for the fresh terminal and the hole Contacting the metal wall and connecting the semiconductor wafer to the route, and forming a 2 joint portion for electrically connecting the winding and the conductive pin, and then 'minding the metal substrate to reduce the metal substrate •, winding, and the contact area between the metal substrate and the metal wall, and the soldering end of the solder layer. According to the content of the present invention, the semiconductor chip package structure has a first vertical direction and an opposite second vertical direction, and includes a first surface corresponding to a lateral * σ, parent semiconductor chip package structure. And a second planar semiconductor wafer, wherein the first plane of the semiconductor bonding comprises a conductive pin, and the conductive trace comprises a second wire, a metal wall and a soldering end, wherein the route is connected from the metal wall The end k extends, the metal wall comprises a hole, and has a 7 1292195 a:::<§# "the gold f wall system is the only one in the semiconductor chip package structure" n casting contact Contacting the inner wall and the wall of the hole can electrically connect the wire between the winding and the conductive pin. The sealing agent is in contact with the semiconductor wafer, and a winding wire and a metal wall are in contact. The semiconductor wafer is embedded in the (four) agent. The metal wall is embedded in the (four) insulating substrate, extending perpendicularly from the first direction of the soldering end and extending perpendicularly from the second side t of the winding. In the insulating substrate, the splicing 1 extends into the insulating substrate but is not covered by the semiconductor chip package structure in the second direction of the soldering end, and the overall soldering extends to the insulating substrate (4). In the surface area, the metal wall is not entangled in the welding end H direction. The semiconductor wafer can be embedded in the encapsulant as a single wafer or embedded in the encapsulant. The first plane of the semiconductor wafer faces the first direction and the second plane of the semiconductor wafer faces the second direction 'or the first flat = the second direction of the semiconductor wafer and the second plane of the semiconductor wafer The facing semiconductor wafer is vertically extended from the winding, the metal wall, the soldering end and the insulating substrate in a first direction. = The conductive trace extends vertically in the first direction. In addition, the inside of the sealant can be vertically extended from the conductive trace. 1292195, the winding system can extend laterally from the metal wall and the solder end and face the semiconductor wafer. The winding system can extend perpendicularly from the metal wall and the soldering end in a first direction and can extend vertically from the semiconductor wafer in a second direction. The winding can extend inside and outside the edge of the semiconductor wafer or can be placed outside the edge of the semiconductor wafer. The winding is also flat and parallel to the second plane of the germanium semiconductor wafer. The winding system can be in contact with the metal wall but is not integrated with the metal wall and can be isolated from the metal wall. Moreover, the winding is between the metal wall and any semiconductor wafer embedded in the encapsulant, and the soldering end has a conductive path between the semiconductor wafer and any semiconductor wafer embedded in the encapsulant. Any semiconductor wafer embedded in a sealant can have a conductive connection between the metal wall and the soldered end by a conductive path containing the force of the winding. The metal wall can be embedded in the insulating substrate. The metal wall is vertically extending in the first direction and can extend perpendicularly from the semi-crystal 1, the winding: the connecting portion and the encapsulant in the second direction, and outside the edge of the conductor wafer or outside the edge thereof. The metal wall 2: the only conductor in the solar package structure and is in contact with the solder, and is transverse to the extension and the periphery is rotated 360 degrees. 1 The entire soldered end of the substrate is Γυ-shaped and parallel to the first direction and the first The two-direction plane is - round, a rectangle or a positive direction and the ^ direction is orthogonal, and is at the mouth of the job. The gold 1292195 • The thickness of the wall can be simultaneously thinner than the thickness of the wire and can be a single metal such as nickel and can include a continuous single surface to define the hole. The metal wall is only in contact with the winding, the soldering end and the insulating substrate, or only with a metal post, the soldering end and the insulating substrate. The hole can extend through a height and a diameter of a majority of the metal wall and can be covered by the metal wall in a first direction and a lateral direction, and includes an opening facing the second direction, the hole being a concave shape . Spring The welded end can extend inside or outside the hole or can be placed in the hole. The solder end can extend perpendicularly from the semiconductor wafer, the wire, the connection and the encapsulant in a second direction and be placed within or outside the edge of the semiconductor wafer. For example, the soldering end can extend inside and outside the hole, and extends perpendicularly from the metal wall and the insulating substrate in the second direction, and is covered by the metal wall in the second direction. The welded end can fill the hole. Further, a portion of the soldering end extending into the insulating base is in the hole and is only in contact with the metal wall and is restricted in the first direction and the lateral direction by the metal. Moreover, all contact between the welded end and the metal wall is in the hole. The connecting portion extends between the winding and the conductive pin and electrically connects the winding and the conductive pin. The joint can be an electrometallic metal, an electroless metal, a tin, a conductive adhesive or a wire. The encapsulant can cover the semiconductor wafer, the winding, the metal wall, the fused end, the connecting portion and the insulating substrate in the first direction, and can be isolated from the metal wall and the soldering end. a μ 1292195 • the insulating substrate can extend straight from the metal wall and the fresh terminal to the first side, and vertically extend from the semiconductor wafer, the winding, the connecting portion and the sealant=the second direction, and cover the semiconductor wafer In the second direction, and can be isolated from the soldering end. The insulating substrate can be rotated 360 degrees transverse to the periphery of the metal wall. Moreover, the insulating substrate can be laterally arranged with the metal wall in a plane facing the second direction, and the soldering end can be placed in the hole and laterally arranged in the direction facing the second direction or the soldering end can Extending inside and outside the hole, ^ extends perpendicularly from the plane toward the second direction toward the second direction. "The conductive trace can comprise a metal post that is in contact with the wire and the metal wall and provides electrical connection between the winding and the metal wall, but is not integrated with the winding and the metal wall, and Isolating from the metal wall and extending laterally from the metal column. ·, '' The metal pillar can extend from the metal wall and the soldering end to the first direction from the semiconductor wafer, the winding, the connecting portion and the sealing - extending vertically and capable of being placed on the semiconductor wafer = and 1 = can be covered by the winding in the first direction (four) / metal wall and the known end covering the second direction. The thickness of the simultaneous winding Thicker, and _ gold two gold = a conical shape whose diameter is the surface area of the plane = the second plane of the second I292195, the first of the metal walls is at least larger than the surface area of the second plane of the metal wall. The area sealing body chip packaging structure can comprise an insulating substrate with a semiconductor wafer, the insulating substrate extending perpendicularly from the semiconductor chip in the second direction. The dry body 曰曰»海 semiconductor chip package structure transmission end Power guide = package In the foot position and recording, the person J control, the conductive path requires a turntable, a wall and a connecting portion, and the winding (four) can be used for the conductive foot: a horizontal winding is provided between the ends of the f but not vertical Winding, the gold wall is attached to the soldering end and other conductive _ no winding. ', the semiconductor chip packaging structure is a first-level structure or a multi-chip package. According to other aspects of the present invention The method for manufacturing a semiconductor wafer package structure includes (1) providing a metal substrate, a winding, a metal wall, and a solder layer, wherein the metal substrate includes a first plane and an opposite second plane, The first plane of the metal substrate faces the first direction 'the second plane of the metal substrate faces the second direction, and the metal wall extends into the metal substrate from the first plane of the metal substrate toward the metal substrate a plane extending and including a hole extending from a second plane of the metal substrate toward the first plane to the metal substrate and opening in the direction, the solder layer contacting the metal wall in the hole (2) Mechanically connecting the semiconductor wafer to the winding, the semiconductor 12 1292195 wafer system includes a conductive pin, and (3) forming a connection portion for electrically connecting the winding and the conductive pin, (4) Etching the metal substrate by a wet chemical etching method, thereby reducing a contact area between the metal substrate and the winding and the metal substrate and the metal wall, and (5) h· providing a soldering end, the zinc terminal The metal layer in the hole is in contact with and includes the solder layer. The method includes forming a winding system by depositing the winding on the metal substrate. For example, the method may include forming a plating mask. On the metal substrate, the plating mask includes an opening to partially expose the metal substrate, and then the wire passing through the plating mask is plated on the exposed portion of the metal substrate.

該方法係包含形成金屬壁係藉由沈積該金屬壁於 金屬基板上而形成,如··該方法係包括形成一電鑛 遮罩於金屬基板上,該電鍍遮罩係具有一開口使該金 屬基板有部份暴露,然後穿過該電鍍遮罩上之開口將 該金屬壁電鍍於該金屬基板暴露的部份。 該方法係包含形成該金屬壁係藉由蝕刻該金屬基 :形成-導通孔’係從該金屬基板之第二平面朝該金 :基板之第一平面延伸至該金屬基板内,然後使該金 ^壁沈積並進人該導通孔。例如··該導通孔係能為一 二孔’係穿過該金;|基板,並使該繞線暴露,該金屬 土係能穿過該金屬基板’與該繞線接觸,並利用渴式 化學㈣對該金屬基板進行似彳H肖除該金屬基 13 1292195 板與繞線間、該金屬基板與繞線間及該金眉基板與金 屬壁間。或者該導通孔係具有一凹口,該凹口係延伸 至該金屬基板内但不穿透,並與該金屬基板之第一平 面及繞線隔離,該金屬壁係能延伸至該金屬基板内但 不穿透並與該金屬基板之第一平面及繞線隔離,蝕刻 該金屬基板係利用濕式化學蝕刻’並從該金屬基板未 蝕刻之部份形成一金屬柱,該金屬基板未蝕刻之部份 係由金屬壁來定義,該金屬柱係與該繞線及金屬壁接 觸。 该方法係包含形成銲接層係藉由沈積該銲接層於 该金屬壁上而形成。同樣地,形成該銲接層係使該銲 接層只與該金屬壁接觸。 該形成銲接端之方法係藉由形成該銲接層,或者 形成該銲接層然後形成銲接端。例如:形成該銲揍端 係能包括沈積錫膏於金屬壁,然後使該錫膏回流形成 遠銲接層及銲接端,或者沈積該錫膏於金屬壁,然後 使該錫膏回流形成該銲接層,接著沈積一銲錫材料於 鮮接層上,而使該銲錫材料及該銲接層回流形成該銲 接端。 該方法係包含形成金屬壁及銲接層係藉由蝕刻該 金屬基板形成該導通孔,然後沈積該金屬壁於該金屬 基板上並於該導通孔内,接著沈積該銲接層於該金屬 壁上。例如··按順序地形成該金屬壁及銲接層係包括·· 1292195 先#刻該金屬基板形成該導通孔,將該金屬壁鍍於該 金屬基板之暴露部份並於該導通孔内,接著使錫膏沈 積於該金屬壁上,然後使該錫膏回流形成該銲接層。 而且,按順序地形成該導通孔及金屬壁係包含:形成 一具開口之遮罩於該金屬基板上,使該金屬基板有部 份暴露,接著穿過該遮罩之開口蝕刻該金屬基板形成 該導通孔,然後穿過該遮罩之開口將該金屬壁鍍於該 金屬基板暴路的部份並於該導通孔内,且移除該遮 罩,或者形成一具開口之蝕刻遮罩於金屬基板上,係 使該金屬基板有部份暴露,並穿過該蝕刻遮罩之開口 蝕刻該金屬基板形成該導通孔,接著移除該蝕刻遮 罩,然後形成一具開口之電鍍遮罩於該金屬基板上, 係使該金屬基板有部份暴露並使該導通孔暴露,接著 穿過該電鍍遮罩之開口將該金屬壁鍍於該金屬基板的 暴露部份並與該導通孔内,且移除該電鍍遮罩。此外, 按順序地形成該銲接層係包含··穿過該具開口之遮罩 (係對該導通孔提供一蝕刻遮罩及對該金屬壁提供一 電鍍遮罩)使該錫膏沈積於該金屬壁上,使該錫膏回 流,然後移除該遮罩;戒者移除該遮罩,使該錫膏沈 積於泫金屬壁上,並使該錫膏回流。同樣地,按順序 地形成该銲接層係包括··穿過該具開口之電鍍遮罩(係 於金屬壁上之電鍍遮罩及於該導通孔之蝕刻遮罩被移 除後)使該錫膏沈積該金屬壁上,使該錫膏回流,並移 除該電鑛遮罩\或者移除該電鑛遮罩,使該錫膏沈積 15 1292195 於該金屬柱上,並使該錫膏回流。 絕绫二=係包合連接該半導體晶片至該繞線係將- 劑置於該半導體晶片與金屬基板間,然後使 該黏著劑硬化。 /方法係包含形成連接部,係藉由將該連接部電 鑛於該繞線與導電腳位間。例如:該連接部係使用電 鍍或無電電鑛等方式鐘於該繞線與導電腳位之間。或 ❿♦該形成連接部之方法係可使—非固態材料沈積無該 繞線與導電腳位間,然後使該非固態材料硬化。例如: 該錫膏能被沈積於該繞線與導電腳位間,然後藉由回 流並硬化’或該導電黏著劑能被置於該繞線與導電腳 位間,然後被硬化。該形成連接部之方法係藉由打線 接合形成。 该方法係包含蝕刻該金屬基板係利用濕式化學蝕 刻方式,因此使該繞線暴露,並移除於導電腳位及半 導體晶片邊緣内之金屬基板。例如··利用濕式化學蝕 刻方式蝕刻該金屬基板係能移除該金屬基板與繞線間 及該金屬基板與該金屬壁之接觸區域,並能移除該金 屬基板,或者利用濕式化學蝕刻對該金屬基板蝕刻, 並從該金屬基板未蝕刻之部份形成一金屬柱,該金屬 基板未儀刻之部份係藉由該金屬壁定義,該金屬柱係 與該繞線及金屬壁接觸,並使該繞線及金屬壁間具有 電力的連接’且移除大部份之金屬基板。而且利用濕 1292195 式化學蝕刻對該金屬基板蝕刻係能使該繞線與其它與 =屬基板接觸之繞線具電力地隔離,並使該導電腳位 與於半導體晶片之其它導電腳位具電力地隔離。例 如·形成連接部之方法係藉由打線接合,然後利用濕 、匕本名虫刻方式對该金屬基板姓刻,因此使該繞線與 其它繞線具電力地隔離,及使該導電腳位與其它導電 腳位具電力地隔離。或者形成連接部之方法為電鍍並 利用該金屬基板為一電鍍匯流排,然後利用濕式化學 餘刻方式對該金屬基板姓刻,因此使該繞線與其它繞 線具電力地隔離,及使該導電腳位與其它導電腳位具 電力地隔離。或者蝕刻該金屬基板之方法係利用濕式 化學蝕刻,因此使該繞線與其它繞線具電力地隔離, J後藉由無電電鍍形成該連接部,於此該導電腳位仍 能與其它導電腳位具電力地隔離。 該方法係包含形成該金屬壁前形成繞線,或者該 繞線與金屬壁同時地被形成,或者於該金屬壁形成後 形成該繞線。 該方法包含於形成該銲接層前形成該金屬壁。 該方法係包含於該半導體晶片與該金屬基板及繞 線連接前形成金屬壁,或者於該半導體晶片與該金屬 基板及繞線連接後形成金屬壁。 該方法係包含於該半導體晶片與該金屬基板及繞 線連接前形成銲接層,或者於該半導體晶片與該金屬 17 1292195 基板及繞線連接後形成銲接層。 包含於形成該銲接端前形成該銲接層, 或者形成忒鲜接層為該銲接端。 前形利金屬基板㈣ 該金屬基板後形成該連接部濕式化學㈣方式㈣ 及包含於連接該半導體晶片至該金屬基板 η刖形成該銲接端,或者連接該半導體晶片至該 金屬基板及繞線後形成該銲接端。 該方法係包含於形成該連接部前形成該銲接端, 或者於形成該連接部後形成該銲接端。 該方法係包含於利用濕式化學㈣對該金屬基板 _前形成該銲接端’或者於利用濕式化學姓刻對該 金屬基板蝕刻後形成該銲接端。 °亥方法係包含形成該金屬壁,然後形成該銲接 層’然後連接該半導體晶片至該金屬基板、繞線、金 屬壁及録接層’以及然後利用濕式化學㈣對該金 基板触刻。 該方法係包含形成該金屬壁,然後連接該半導體 曰曰片至忒金屬基板、繞線及金屬壁,接著形成該銲接 層’並利用濕式化學蝕刻對該金屬基板钱刻。 1292195 該方法係包含連接該半導體晶片至該金屬基板及 、〜缘’然後形成該金屬壁,接著形成該銲接層,並利 用濕式化學蝕刻對該金屬基板蝕刻。 該方法係包含於連接該半導體晶片至該金屬基板 、·:70線之後,形成密封劑,該密封劑與該半導體晶片 接?,並覆蓋該半導體晶.片於第—方向上。該密封劑 係藉由轉注成形法或被硬化形成。 該方法係包含於形成該密封劑之後,形成絕緣基 板’該絕緣基板與該、繞線、金屬壁及銲接層接觸並 覆蓋該繞線、金屬壁及銲接層於第二方向上然後移 除一部份之絕緣基板,以致該絕緣基板不再覆蓋該銲 接層於第二方向上。 亥方法係包含(1 )提供一具相對的第一平面及第 一平面之金屬基板,其中,該金屬基板之第一平面係 朝向第一方向,該金屬基板之第二平面係朝向第二方 向,(2)然後形成一繞線於該金屬基板之第一平面上, 其中忒繞線係與該金屬基板之第一平面接觸並與該金 屬基板之第一平面隔離,(3)接著利用第一濕式化學蝕 刻對該金屬基板蝕刻形成一導通孔於金屬基板,該導 通孔係從該金屬基板之第二平面往該金屬基板之第一 平面延伸至泫金屬基板内,(句接著形成一金屬壁於該 金屬基板上,其中該金屬壁與該導通孔内之金屬基板 接觸,並從該金屬基板之第二平面往該金屬基板之第 1292195 了平面延伸至該金屬基板内,且包括—孔洞,該孔 係從該金屬基板之第二平面往該金屬基板之第—平面 延伸至該金屬基板内,並被金屬壁覆蓋於第一方向 上,且包括一朝向第三方向之開口,⑺形成—鲜接^ 並與該孔洞内之金屬壁接觸,且與該繞線隔離,(6)i 械地連接一半導體晶片至該金屬基板及繞線,其中, 該半導體晶片係包括一導電腳位,⑺形成一連接部, 並使該繞線及導電腳位間具電力地連接,⑻接著利用 第一濕式化學蝕刻對該金屬基板蝕刻係於連接該半導 體晶片至該金屬壁及繞線及形成該金屬壁及銲接層 後,因此減少該金屬基板與繞線間及該金屬壁與金屬 基板間之接觸區域,以及(9)提供-銲接端,該銲接端 係與該孔洞内之金屬壁接觸,並包括該銲接層。 5亥方法係包括(1)提供一金屬基板,該金屬基板係 包括相對的第一平面及第二平面,其中,該金屬基板 ,第一平面係朝向第一方向及該金屬基板之第二平面 係朝向第二方向相對於第二方向’然後(2)形成一繞線 於違金屬基板之第一平面,其中該繞線與該金屬基板 之第一平面接觸及與該金属基板之第二平面隔離,(3) 牙J用第一濕式化學蝕刻對該金屬基板進行蝕刻,因此 、°亥金屬基板内形成一導通孔,該導通孔係從該金屬 暴板之第二平面往該金屬基板之第一平面延伸至該金 屬基板内’(4)形成—金屬壁於該金屬基板上,其中, 20 1292195 該金屬壁與該導通孔内之金屬基板接觸,並從該金屬 基板之第二平面往該金屬基板之第一平面延伸至該金 屬基板内,且包含一孔洞,該孔洞係從該金屬基板之 第二平面朝該金屬基板之第一平面延伸至該金屬基板 内’並被該金屬壁覆蓋於第一方向上,且包括一朝向 第二方向之,開口,(5)形成一錫接層,該銲接層係與該 孔洞内之金屬壁接觸,與該繞線隔離,(6)連接該半導 體晶片至該金屬基板及繞線,其中該半導體晶片係包 括:導電腳位’(7)形成一連接部,該連接部使該繞線 與該導電腳位間具有電力地連接,(8)形成一密封劑係 於連接該半導體晶片至該金屬基板及繞線之後,其 中,該密封劑係與該半導體晶片接觸,並從該半導體The method includes forming a metal wall by depositing the metal wall on a metal substrate, wherein the method comprises forming an electric ore mask on the metal substrate, the plating mask having an opening to make the metal The substrate is partially exposed and then the metal wall is plated through the opening in the plating mask to the exposed portion of the metal substrate. The method includes forming the metal wall by etching the metal base: forming a via hole, extending from a second plane of the metal substrate toward the first plane of the gold: substrate to the metal substrate, and then making the gold The wall deposits and enters the via. For example, the via hole can be a two-hole 'passing through the gold; the substrate is exposed, and the metal wire can pass through the metal substrate to contact the winding and utilize the thirst Chemistry (4) The metal substrate is subjected to a smattering of H between the metal substrate 13 1292195 and the winding, between the metal substrate and the winding, and between the gold eyebrow substrate and the metal wall. Or the via hole has a recess extending into the metal substrate but not penetrating, and is isolated from the first plane and the winding of the metal substrate, and the metal wall can extend into the metal substrate But not penetrating and isolating from the first plane and the winding of the metal substrate, etching the metal substrate by wet chemical etching and forming a metal pillar from the unetched portion of the metal substrate, the metal substrate is not etched The portion is defined by a metal wall that is in contact with the winding and the metal wall. The method includes forming a solder layer formed by depositing the solder layer on the metal wall. Similarly, the solder layer is formed such that the solder layer is in contact only with the metal wall. The method of forming the soldered end is by forming the solder layer or forming the solder layer and then forming a soldered end. For example, forming the solder joint end can include depositing a solder paste on the metal wall, then reflowing the solder paste to form a far solder layer and a solder end, or depositing the solder paste on the metal wall, and then reflowing the solder paste to form the solder layer. Then, a solder material is deposited on the fresh joint layer, and the solder material and the solder layer are reflowed to form the solder joint. The method includes forming a metal wall and a solder layer by etching the metal substrate to form the via hole, then depositing the metal wall on the metal substrate and in the via hole, and then depositing the solder layer on the metal wall. For example, the metal wall and the solder layer are formed in sequence, including: 1.292195. The metal substrate is formed to form the via hole, and the metal wall is plated on the exposed portion of the metal substrate and in the via hole, and then A solder paste is deposited on the metal wall, and then the solder paste is reflowed to form the solder layer. Moreover, sequentially forming the via hole and the metal wall comprises: forming an opening on the metal substrate, partially exposing the metal substrate, and then etching the metal substrate through the opening of the mask to form The via hole is then plated through the opening of the mask to plate the metal wall in the portion of the metal substrate and in the via hole, and the mask is removed, or an etch mask is formed on the opening On the metal substrate, the metal substrate is partially exposed, and the metal substrate is etched through the opening of the etch mask to form the via hole, and then the etch mask is removed, and then an open plating mask is formed. The metal substrate is partially exposed and exposed to the via hole, and then the metal wall is plated through the opening of the plating mask to the exposed portion of the metal substrate and the via hole. And removing the plating mask. In addition, sequentially forming the solder layer includes: passing the mask having an opening (providing an etch mask to the via hole and providing a plating mask to the metal wall) to deposit the solder paste thereon On the metal wall, the solder paste is reflowed, and then the mask is removed; or the mask is removed, the solder paste is deposited on the base metal wall, and the solder paste is reflowed. Similarly, sequentially forming the solder layer includes: passing the plated mask with the opening (the plated mask attached to the metal wall and the etch mask after the via hole is removed) to make the tin Paste depositing the metal wall, reflowing the solder paste, and removing the electro-mineral mask or removing the electro-mineral mask, depositing the solder paste on the metal pillar, and allowing the solder paste to reflow . The second bonding method is to bond the semiconductor wafer to the winding system to place the semiconductor wafer between the semiconductor wafer and the metal substrate, and then harden the adhesive. The method includes forming a joint by electrowetting the joint between the winding and the conductive foot. For example, the connection portion is wired between the winding and the conductive pin by means of electroplating or electroless ore. Or ❿ ♦ The method of forming the joint is such that a non-solid material is deposited between the winding and the conductive foot and then the non-solid material is hardened. For example: the solder paste can be deposited between the winding and the conductive pad and then reflowed and hardened by the fact that the conductive adhesive can be placed between the winding and the conductive pin and then hardened. The method of forming the joint is formed by wire bonding. The method includes etching the metal substrate by wet chemical etching, thereby exposing the wire and removing the metal substrate in the conductive pin and the edge of the semiconductor wafer. For example, etching the metal substrate by wet chemical etching can remove the contact area between the metal substrate and the winding and the metal substrate and the metal wall, and can remove the metal substrate, or use wet chemical etching. Etching the metal substrate, and forming a metal pillar from the unetched portion of the metal substrate, wherein the un-etched portion of the metal substrate is defined by the metal wall, and the metal pillar is in contact with the winding and the metal wall And to have a power connection between the winding and the metal wall' and remove most of the metal substrate. Moreover, etching the metal substrate by wet 1292195 type chemical etching enables the winding to be electrically isolated from other windings in contact with the substrate, and the conductive pin is electrically connected to other conductive pins of the semiconductor wafer. Ground isolation. For example, the method of forming the connecting portion is performed by wire bonding, and then the metal substrate is engraved by the wet and the nickname, so that the winding is electrically isolated from the other windings, and the conductive pin is Other conductive feet are electrically isolated. Or the method of forming the connection portion is electroplating and using the metal substrate as an electroplating bus bar, and then the metal substrate is surnamed by wet chemical remnant, thereby electrically isolating the winding from other windings, and The conductive pin is electrically isolated from the other conductive pins. Or the method of etching the metal substrate is performed by wet chemical etching, thereby electrically isolating the winding from other windings, and then forming the connecting portion by electroless plating, wherein the conductive pin can still be electrically conductive with other conductive places. The feet are electrically isolated. The method includes forming a winding before forming the metal wall, or the winding is formed simultaneously with the metal wall, or forming the winding after the metal wall is formed. The method includes forming the metal wall prior to forming the solder layer. The method comprises forming a metal wall before the semiconductor wafer is connected to the metal substrate and the winding, or forming a metal wall after the semiconductor wafer is connected to the metal substrate and the winding. The method comprises forming a solder layer before the semiconductor wafer is connected to the metal substrate and the winding, or forming a solder layer after the semiconductor wafer is connected to the metal 17 1292195 substrate and the winding. The soldering layer is formed before the soldering end is formed, or the solder joint is formed as the soldering end. a front-formed metal substrate (4) the metal substrate is formed by the wet chemical (4) method (4), and the semiconductor wafer is connected to the metal substrate to form the soldering end, or the semiconductor wafer is connected to the metal substrate and the winding The soldered end is formed later. The method includes forming the soldering end before forming the connecting portion, or forming the soldering end after forming the connecting portion. The method is carried out by forming the soldered end on the metal substrate by wet chemical (4) or by etching the metal substrate by wet chemical characterization. The method includes forming the metal wall, then forming the solder layer 'and then connecting the semiconductor wafer to the metal substrate, the winding, the metal wall, and the recording layer' and then etching the gold substrate by wet chemistry (4). The method includes forming the metal wall, then joining the semiconductor wafer to the base metal substrate, the winding and the metal wall, and then forming the solder layer' and etching the metal substrate by wet chemical etching. 1292195 The method includes joining the semiconductor wafer to the metal substrate and the rim and then forming the metal wall, then forming the solder layer, and etching the metal substrate by wet chemical etching. The method includes forming a sealant after connecting the semiconductor wafer to the metal substrate, and the sealing agent is connected to the semiconductor wafer. And covering the semiconductor crystal chip in the first direction. The sealant is formed by transfer molding or hardening. The method comprises the steps of: forming an insulating substrate after forming the sealing agent, the insulating substrate contacting the winding, the metal wall and the soldering layer and covering the winding, the metal wall and the soldering layer in the second direction and then removing one Part of the insulating substrate such that the insulating substrate no longer covers the solder layer in the second direction. The method includes: (1) providing a metal substrate having a first surface and a first plane, wherein the first plane of the metal substrate faces the first direction, and the second plane of the metal substrate faces the second direction (2) then forming a winding on the first plane of the metal substrate, wherein the winding wire is in contact with the first plane of the metal substrate and is isolated from the first plane of the metal substrate, (3) then utilizing a wet chemical etching etches the metal substrate to form a via hole in the metal substrate, and the via hole extends from the second plane of the metal substrate to the first plane of the metal substrate to the base metal substrate, and then forms a a metal wall on the metal substrate, wherein the metal wall is in contact with the metal substrate in the via hole, and extends from the second plane of the metal substrate to the first substrate of the metal substrate to the metal substrate, and includes a hole extending from a second plane of the metal substrate to a first plane of the metal substrate into the metal substrate, and covered by the metal wall in a first direction, and including Opening to the opening in the third direction, (7) forming a fresh contact and contacting the metal wall in the hole, and isolating the winding, (6) mechanically connecting a semiconductor wafer to the metal substrate and the winding, wherein The semiconductor wafer includes a conductive pin, (7) forming a connection portion, and electrically connecting the winding and the conductive pin, and (8) etching the metal substrate by first wet chemical etching to connect the semiconductor After the wafer reaches the metal wall and the winding and forming the metal wall and the soldering layer, thereby reducing the contact area between the metal substrate and the winding and the metal wall and the metal substrate, and (9) providing a soldering end, the soldering The end system is in contact with the metal wall in the hole and includes the solder layer. The method includes: (1) providing a metal substrate, wherein the metal substrate comprises an opposite first plane and a second plane, wherein the metal substrate a first plane facing the first direction and a second plane of the metal substrate facing the second direction relative to the second direction 'and then (2) forming a winding on the first plane of the metal-resistant substrate, wherein the winding Contacting the first plane of the metal substrate and isolating the second plane of the metal substrate, (3) the metal J is etched by the first wet chemical etching, thereby forming a via hole in the metal substrate The via hole extends from the second plane of the metal storm plate to the first plane of the metal substrate to the metal substrate ('4) forming a metal wall on the metal substrate, wherein 20 1292195 the metal wall and The metal substrate in the via hole contacts and extends from the second plane of the metal substrate to the first plane of the metal substrate into the metal substrate, and includes a hole from the second plane of the metal substrate a first plane of the metal substrate extends into the metal substrate and is covered by the metal wall in a first direction, and includes an opening facing the second direction, and (5) forming a solder joint layer, the solder layer Contacting the metal wall in the hole, isolating the winding, (6) connecting the semiconductor wafer to the metal substrate and the winding, wherein the semiconductor chip system comprises: a conductive pin '(7) forming a connecting portion, The connecting portion electrically connects the winding and the conductive pin, and (8) forms a sealing agent after connecting the semiconductor wafer to the metal substrate and the winding, wherein the sealing agent is in contact with the semiconductor wafer And from the semiconductor

晶片、金屬基板及繞線往第一方向垂直延伸,該金^ 基板係從該半導體晶片及繞線往第二方向垂直延伸, (9)利用第二濕式化學蝕刻對該金屬基板進行蝕刻仓 於形成該金屬壁、銲接層及密封劑之後,因此減少詞 金屬基板與繞線間及該金屬基板與金屬壁間之接觸區 域,(10)形成一絕緣基板,該絕緣基板係與該繞線、 金屬壁及銲接層接觸,並覆蓋該繞線、金屬壁及鲜接 層於第二方向上,係於利用該第二濕式化學#刻對該 金屬基板進行㈣之後,⑴)移除—部份之絕緣基板 係使該絕緣基板不再覆蓋該銲接層於第二方向上以 及(12)提供—料端,該銲接端與於孔_之金屬壁 接觸並包括該銲接層。 21 1292195 違方法係包括依序形成該金屬壁及銲接層,係藉 由將該金屬壁電鍍於該金屬基板並穿過一電鍍遮罩之 開口使該金屬壁可鍍於該導通孔内,且使該錫膏沈積 於遠金屬壁,接著使該錫膏回流形成該銲接層。 該方法係包括藉由形成該銲接層而形成該銲接 端,或者藉由使一銲錫材料沈積於該銲接層上係於利 用第二濕式化學蝕刻對該金屬基板進行蝕刻後,然後 _ 使该銲錫材料及該銲接層一起回流而形成該銲接端。 該方法係包括連接該半導體晶片至該金屬壁及繞 線(如果該金屬壁及銲接層係已被形成)係藉由將該絕 緣黏著劑置於該半導體晶片與金屬基板間,然後使該 黏著劑硬化。 该方法係包括利用第一濕式化學蝕刻對該金屬基 板進行蝕刻係形成該導通孔,該導通孔係為一穿孔, _ 係延伸穿過該金屬基板,並使該繞線暴露,接著利用 第二濕式化學蝕刻對該金屬基板進行蝕刻,係可去除 金屬基板與繞線間及该金屬基板與金屬壁間之接觸 區域,並移除该金屬基板,或者利用第一濕式化學钱 幻對該金屬基板進行姓刻形成該導通孔,該導通孔係 可為一凹口,並延伸至該金屬基板内,並不穿過該金 屬基板,接著利用第二濕式化學蝕刻對該金屬基板蝕 刻,並從該金屬基板未蝕刻之部份形成一金屬柱,該 金屬柱係使該繞線與金屬壁間具電力的連接,並移除 22 1292195 大部份之金屬基板。 該方法係包括移除該部份之絕緣基板係藉由研 •磨、雷射消熔、電漿蝕刻或光蝕刻等方式。另外該方 法係包括從全部之絕緣基板移除該部份之絕緣基板, 該部份之絕緣基板係指覆蓋該金屬壁及銲接層於第二 ^向上之絕緣基板,並使該金屬壁及銲接層暴露於第 一方向,但不使該繞線暴露 例如:該方法係包括利 _ 用研磨方式研磨該絕緣基板,但不研磨該金屬壁及銲 接層,然後研磨該絕緣基板、金屬壁及銲接層,直到 該絕緣基板與該金屬壁及銲接層橫向地排列於一朝向 第二方向之平面上即停止研磨,並使該金屬壁及銲接 層暴露。而且於停止研磨後,該銲接端係由該銲接層 構成,並能被橫向排列於該平面上,或者該方法係包 括鲜錫材料沈積於該銲接層,然後使該銲錫材料及 銲接層一起回流而形成該銲接端,該銲接端係從該金 _ 屬壁及絕緣基板往第二方向垂直延伸。 该方法係包括利用第一濕式化學蝕刻對該金屬基 板進行蝕刻係形成該導通孔,然後形成該金屬壁,接 著形成該銲接層,後來連接該半導體晶片至該金屬基 板、繞線、金屬壁及銲接層,接著形成該密封劑,然 後利用第二濕式化學蝕刻對金屬基板進行蝕刻,接著 形成絕緣基板,以及最後移除部份之絕緣基板。 23 1292195 該方法係包括利用第一濕式化學蝕刻對該金屬基 板進行蝕刻係形成該導通孔,然後形成該金屬壁,接 著連接該半導體晶片至該金屬基板、繞線及金屬壁, 然後形成該密封劑,接著形成該銲接層,然後利用第 二濕式化學餘刻對金屬基板進行钱刻,接著形成絕緣 基板,最後移除部份之絕緣基板。 該方法係包括連接該半導體晶片至該金屬基板及 繞線金屬壁,然後形成該密封劑,接著利用第一濕式 化學姓刻對該金屬基板進行姓刻形成該導通孔,然後 形成該金屬壁,接著形成該銲接層,然後利用第二濕 式化學蝕刻對金屬基板進行蝕刻,接著形成絕緣基 板,最後移除部份之絕緣基板。The wafer, the metal substrate and the winding extend perpendicularly in a first direction, the gold substrate extends perpendicularly from the semiconductor wafer and the winding to the second direction, and (9) the metal substrate is etched by the second wet chemical etching After forming the metal wall, the solder layer and the sealant, thereby reducing the contact area between the word metal substrate and the winding and the metal substrate and the metal wall, (10) forming an insulating substrate, the insulating substrate and the winding Contacting the metal wall and the soldering layer, and covering the winding, the metal wall and the fresh layer in the second direction, after performing the (4) on the metal substrate by using the second wet chemical etch, (1)) removing - A portion of the insulating substrate is such that the insulating substrate no longer covers the solder layer in the second direction and (12) provides a material end that is in contact with the metal wall of the hole and includes the solder layer. 21 1292195 </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The solder paste is deposited on the far metal wall, and then the solder paste is reflowed to form the solder layer. The method includes forming the soldering end by forming the soldering layer, or by depositing a solder material on the soldering layer, after etching the metal substrate by using a second wet chemical etching, and then The solder material and the solder layer are reflowed together to form the solder end. The method includes connecting the semiconductor wafer to the metal wall and the winding (if the metal wall and the solder layer have been formed) by placing the insulating adhesive between the semiconductor wafer and the metal substrate, and then bonding the metal The agent hardens. The method includes etching the metal substrate by using a first wet chemical etching to form the via hole, the via hole is a through hole, the _ system extends through the metal substrate, and the wire is exposed, and then the first The second wet chemical etching etches the metal substrate by removing the contact area between the metal substrate and the winding and between the metal substrate and the metal wall, and removing the metal substrate, or using the first wet chemical Forming the via hole by the metal substrate, the via hole may be a recess and extending into the metal substrate without passing through the metal substrate, and then etching the metal substrate by using a second wet chemical etching And forming a metal pillar from the unetched portion of the metal substrate, the metal pillar is electrically connected between the winding and the metal wall, and removes most of the metal substrate of 22 1292195. The method includes removing the insulating substrate from the portion by grinding, laser ablation, plasma etching or photolithography. In addition, the method includes removing the insulating substrate from the entire insulating substrate, and the insulating substrate of the portion refers to the insulating substrate covering the metal wall and the soldering layer in the second direction, and the metal wall and the soldering The layer is exposed in the first direction, but the winding is not exposed. For example, the method includes polishing the insulating substrate by grinding, but not grinding the metal wall and the soldering layer, and then grinding the insulating substrate, the metal wall, and soldering The layer is stopped until the insulating substrate and the metal wall and the solder layer are laterally arranged on a plane facing the second direction, and the metal wall and the solder layer are exposed. And after the grinding is stopped, the soldering end is composed of the soldering layer and can be laterally arranged on the plane, or the method includes depositing a fresh tin material on the soldering layer, and then reflowing the soldering material and the soldering layer together. And forming the soldering end, the soldering end extends perpendicularly from the gold-wall and the insulating substrate in the second direction. The method includes etching the metal substrate by using a first wet chemical etching to form the via hole, then forming the metal wall, and then forming the solder layer, and then connecting the semiconductor wafer to the metal substrate, the winding, and the metal wall And soldering the layer, then forming the encapsulant, then etching the metal substrate by the second wet chemical etching, then forming the insulating substrate, and finally removing a portion of the insulating substrate. 23 1292195 The method includes etching the metal substrate by using a first wet chemical etching to form the via hole, then forming the metal wall, and then connecting the semiconductor wafer to the metal substrate, the winding and the metal wall, and then forming the The encapsulant is then formed into the solder layer, and then the metal substrate is etched using the second wet chemical residue, followed by forming an insulating substrate, and finally removing a portion of the insulating substrate. The method includes connecting the semiconductor wafer to the metal substrate and the wound metal wall, and then forming the sealant, and then forming the via hole by using the first wet chemical surname to form the via hole, and then forming the metal wall Then, the solder layer is formed, and then the metal substrate is etched by the second wet chemical etching, then the insulating substrate is formed, and finally the portion of the insulating substrate is removed.

靠度。另一好虚伤左叔 因此可降低鍚料分離及提高可 度H處係在於該連接料能由各種不同之材 本發明之好處係在於該半導體晶片封裝結構係能 方便地被製造及具經濟性。本發明另—好處係能於該 金屬基板被㈣前縮減該金屬基板與金屬壁之接觸區 域’因此加強機械支標及保護該繞線。另-好處係在 於該金屬㈣能藉由_形成比由電鍍或無電電鑛形 成更能提高-致性及降低製造時間及成本。另一㈣ 24 1292195 料與處理製造形成,因此可利用成熟的連接技術有益 於製造及改善製造方法。另一好處係在於該半導體晶 片封裒結構係不包括打線接合或捲帶自動接合導線, 雖然該處理係具彈性的可與其它技術相容。另一好處 係在於該半導體晶片封裝結構係利用低溫處理被製 造,可降低壓力及提升可靠度。除上述之外本發明係 八有更夕好處,如s亥半導體晶片封裝結構係能利用良 好控制的處理過程被製造,係能容易地被建置於電路 板、導線架及捲帶製造。仍有其它好處係為該半導體 晶片封裝結構合’係能利用相容的材料製造如銅的半 .導體晶片及無導線環境的必要品。 本發明的特徵及優點將進一步於實施方式中舉輕 佳實施例來描述,可更具體地了解本發明。 【實施方式】 第1A至27(:圖係為製作半導體晶片封裝 第 1 第-實施例’其中第1A”7A圖為剖面示意圖 1至27B圖為俯視示意圖、第1C至27C圖為仰 不意圖。 ^ 1 ^ 之丰:參閱『第1&quot;,及1。圖』所示,係為本發 :二導體晶片結構剖面示意圖、本發明之半導體晶 ^構俯視示意圖及本發明之半導體晶片結構仰視示 如圖所示:本發明係為—種銲接端具金屬壁之 25 1292195 導體晶片封裝結構,其中該半導體晶片11〇係為一積 體電路,並由多個電晶體、電路、連接部及與其它連 接所組成(圖中未示)。該半導體晶片11〇包含相對應 之第一平面112及第二平面114,該第一平面112與^ ,平面114間之厚度係為ls〇微米,該第一平面'η) 係為主動面(active surface)並包含一導電腳位ιΐ6及一 保護層 118(passivation layer)。 實質上,該導電腳位116與該保護層118成直線 排列,使該第一平面112之表面係為平坦。該導電腳 位U6係能延伸於保護層丨18上,或者被嵌入於該保 護層118内,該導電腳位116提供一接合點與該半導 體晶片11〇之外部的電路連接。因此,該導電腳位ιΐ6 係可為一輸入/輸出腳位或一電源/接地腳位。該導電腳 位Π6之長度及寬度係各為1〇〇微米。 該導電腳位116係具有一鋁基板,該導電腳位116 被清洗係藉由浸泡該半導體晶片11〇於室溫t〇〇5m 4酉文中1勿知,然後利用蒸館水清洗。該導電腳位116 係能將鋁基板視為一表面層,或者該導電腳位丨丨6係 包含一表面層,該表面層覆蓋該鋁基板,並依該連接 部之性質係與該表面層接觸。在第一實施例中,該連 接4係為一金屬金打線(&amp;8〇1(1一^1)〇11(1)。因此該導 電腳位Π6係不能被視為容納該連接部,或者該導電 腳位116係可由至少一以上之金屬層堆疊於該鋁基板 26 1292195 該腳位π 6可為鉻層/鋼層/金層,或為鈦層/ 錄層/金層於触基板上。其中,該鉻層或欽層係提供 基板障(a barrier)及於上層金屬層與該銘基 板門係佈有毒έ著劑。然而該金屬層堆叠係具選擇性 地被沈積係藉由利用一遮罩進行蒸鑛(evap〇rati〇n)、電 鍍(electroplating)或喷鑛(sputtering)等相關地複雜的 處理。或者,該導電腳位116亦可藉由形成一鎳表面 層於該紹基板,如可將該半導體晶片11〇浸泡於一 鋅溶液’沈積-鋅層㈣|s基板上,其方法係為辞化 (zmcation)。更進一步,上述該鋅溶液係包含15〇克/ 公升之氫氧化鈉(NaOH)、25克/公升之氧化鋅(Zn〇)及 1克/公升之亞硝酸鈉(NaN〇3),就像酒石酸可減少該鋁 基板之分解率。之後,該鎳表面層係為無電沈積於該 經鋅化之鋁基板,一種合適之無電鎳電鍍溶液係為於 攝氏 85 度下之 Enthone Enplate NI-424。 该半導體晶片110係包含至少一以上之導電腳位 於第一平面112上,但圖中係只標示單一個導電腳位 Η 6,係為了圖示及說明方便。另外,該半導體晶片 11 〇已跟其它半導體晶片被獨立出來,而該半導體晶 片原本皆附於一晶圓上。 明參閱『第2A、2B及2C圖』所示,係為本發明 之金屬基板結構剖面示意圖、本發明之金屬基板结構 俯視示意圖·及本發明之金屬基板仰視示意圖。如圖所 27 1292195 示:該金屬基板120係包含相對應之第一主要平面122 及第二主要平面124。該金屬基板120(Metal base)係 為一金屬銅板,其厚度為150微米。 請參閱『第3A、3B及3C圖』所示,係為本發明 之光阻層與金屬基板結構剖面示意圖、本發明之光阻 層與金屬基板結構俯視示意圓及本發明之光阻層與金 屬基板結構仰視示意圖。如圖所示··該第一光阻層 126(photoresist layer)及第二光阻層128係被形成於該 金屬基板120上。該第一光阻層126及第二光阻層128 係藉由一種乾式薄膜層壓處理(a dry fihn laminatiQn) 被沈積,並同時將該第一光阻層126及第二光阻層i28 分別地熱滾壓印於該第一主要平面122及第二主要平 面124。光罩(A reticle)(圖申未示)係放置於該第二 光阻層128附近。之後,該第二光阻層128係被印有 圖案係藉由選擇性地使光透過該光罩,並使用一顯鱟 溶劑(a deVeloper)將光阻部份移除,並藉由光使該光= 部份為可溶解的,然後烤乾(hard⑽㈣)。該第二光阻 層128係包合一開口,該開口之直徑為微米,並 k擇性地使忒第二主要平面124暴露,而該第一光阻 層126未印有圖案。該第一光阻層126及第二光阻声 128 ^厚度為25微米,係指分別從該第—主要平面⑵ 及第二主要平面丨24開始算起。 28 1292195 請參閱『第4A、犯及4C圖』所示’係為本發明 之凹口之金屬基板結構刮面示意圖、本發明之具凹 口之金屬基板結構俯視示意圖及本發明之具凹口之金 屬基板結構仰視示意圖。如圖所示:該凹口 m係被 = 金屬基板120上。該凹口 130之形成係藉由Rely on. Another good virtual injury left uncle can therefore reduce the separation of the material and improve the reliability. The H is because the connecting material can be made of various materials. The advantage of the invention is that the semiconductor chip packaging structure can be easily manufactured and economical. Sex. Another advantage of the present invention is that the metal substrate can be reduced in contact area between the metal substrate and the metal wall by (4), thereby reinforcing the mechanical support and protecting the winding. Another benefit is that the metal (4) can be improved by _ formation compared to electroplating or electroless ore and reduces manufacturing time and cost. Another (iv) 24 1292195 material and process manufacturing are formed, so that mature joining techniques can be utilized to facilitate manufacturing and to improve manufacturing methods. Another benefit is that the semiconductor wafer package structure does not include wire bond or tape automated bond wires, although the process is elastic and compatible with other techniques. Another advantage is that the semiconductor chip package structure is fabricated using low temperature processing to reduce stress and improve reliability. In addition to the above, the present invention has an advantage in that, for example, the semiconductor chip package structure can be manufactured by a well-controlled process, and can be easily built into a circuit board, a lead frame, and a tape reel. Still other benefits are that the semiconductor chip package structure is capable of fabricating a semi-conductor wafer such as copper and a wireless environment using compatible materials. The features and advantages of the present invention will be further described in the embodiments of the present invention. [Embodiment] 1A to 27 (Fig. 1A is a first embodiment of the semiconductor wafer package, and the first embodiment is shown in Fig. 1A, FIG. 7A is a schematic plan view, and the first to the second embodiment are shown in FIG. ^ 1 ^之丰: See "1st", and 1. Figure is a schematic view of a two-conductor wafer structure, a schematic view of the semiconductor crystal structure of the present invention, and a semiconductor wafer structure of the present invention. As shown in the figure, the present invention is a 25 1292195 conductor chip package structure for soldering end metal walls, wherein the semiconductor wafer 11 is an integrated circuit and is composed of a plurality of transistors, circuits, connections and The semiconductor wafer 11A includes a corresponding first plane 112 and a second plane 114, and the thickness between the first plane 112 and the plane 114 is ls 〇 micrometer. The first plane 'n' is an active surface and includes a conductive pin ι6 and a passivation layer. In essence, the conductive pin 116 is aligned with the protective layer 118, so that The table of the first plane 112 The conductive pin U6 can extend over the protective layer 18 or be embedded in the protective layer 118. The conductive pin 116 provides a connection between the junction and the external portion of the semiconductor wafer 11 . Therefore, the conductive pin ι6 can be an input/output pin or a power/ground pin. The length and width of the conductive pin Π6 are each 1 μm. The conductive pin 116 has an aluminum. The substrate, the conductive pin 116 is cleaned by immersing the semiconductor wafer 11 at room temperature t〇〇5m 4酉1, and then cleaning with steaming water. The conductive pin 116 can view the aluminum substrate a first surface layer, or the conductive pin layer 6 includes a surface layer covering the aluminum substrate and contacting the surface layer according to the nature of the connecting portion. In the first embodiment, the connection The 4 series is a metal gold wire (&amp;8〇1(1一^1)〇11(1). Therefore, the conductive pin position 6 cannot be regarded as accommodating the connection portion, or the conductive pin position 116 can be at least More than one metal layer is stacked on the aluminum substrate 26 1292195. The pin position π 6 may be chromium / steel layer / gold layer, or titanium layer / recording layer / gold layer on the contact substrate, wherein the chromium layer or the layer provides a substrate barrier (a barrier) and the upper metal layer and the Ming substrate door a toxic smear agent. However, the metal layer stacking system is selectively deposited by utilizing a mask for acetabulum, electroplating, or sputtering. Alternatively, the conductive pin 116 can also be formed on the substrate by forming a nickel surface layer, such as the semiconductor wafer 11 can be immersed in a zinc solution 'deposited-zinc layer (four)|s substrate, the method is For lexification (zmcation). Furthermore, the zinc solution described above comprises 15 g/L of sodium hydroxide (NaOH), 25 g/L of zinc oxide (Zn〇) and 1 g/L of sodium nitrite (NaN〇3), just like Tartaric acid reduces the decomposition rate of the aluminum substrate. Thereafter, the nickel surface layer is electrolessly deposited on the zincated aluminum substrate, and a suitable electroless nickel plating solution is Enthone Enplate NI-424 at 85 degrees Celsius. The semiconductor wafer 110 includes at least one or more conductive pins on the first plane 112, but only a single conductive pin Η 6 is shown in the figure for convenience of illustration and description. In addition, the semiconductor wafer 11 has been separated from other semiconductor wafers, and the semiconductor wafer is originally attached to a wafer. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2A, 2B and 2C are schematic cross-sectional views showing a metal substrate structure of the present invention, a plan view of a metal substrate structure of the present invention, and a bottom view of the metal substrate of the present invention. As shown in FIG. 27 1292195, the metal substrate 120 includes a corresponding first major plane 122 and a second major plane 124. The metal substrate 120 is a metal copper plate having a thickness of 150 μm. Please refer to the drawings of FIGS. 3A, 3B and 3C for a schematic cross-sectional view of the photoresist layer and the metal substrate structure of the present invention, a schematic plan view of the photoresist layer and the metal substrate structure of the present invention, and a photoresist layer of the present invention. The metal substrate structure is a bottom view. As shown in the figure, the first photoresist layer 126 and the second photoresist layer 128 are formed on the metal substrate 120. The first photoresist layer 126 and the second photoresist layer 128 are deposited by a dry film lamination process (a dry fihn laminati Qn), and simultaneously the first photoresist layer 126 and the second photoresist layer i28 are respectively The geothermal roll is printed on the first major plane 122 and the second major plane 124. A reticle (not shown) is placed adjacent to the second photoresist layer 128. Thereafter, the second photoresist layer 128 is printed with a pattern by selectively passing light through the mask, and removing the photoresist portion using a de- ing solvent (a deVeloper), and by light The light = partially soluble and then dried (hard(10)(4)). The second photoresist layer 128 includes an opening having a diameter of micrometers and selectively exposing the second major plane 124, and the first photoresist layer 126 is not patterned. The first photoresist layer 126 and the second photoresist layer 128 have a thickness of 25 μm, which are calculated from the first main plane (2) and the second main plane 丨24, respectively. 28 1292195 Please refer to the schematic diagram of the scraping surface of the metal substrate structure of the notch of the present invention, the top view of the metal substrate structure with the notch of the present invention, and the notched portion of the present invention, as shown in "4A, 4C, and 4C" The metal substrate structure is a bottom view. As shown in the figure: the notch m is = on the metal substrate 120. The formation of the recess 130 is by

一月邊式濕式化學姓刻(a back_side wet chemicaI :)田使:亥第二主要平面124之暴露部份進行蝕刻, 亦’该弟二光阻層128為其餘刻遮罩。由於該第一 ,阻曰126可保護該金屬基板120之一面,例如··一 m嘴(圖中未示)能噴射該濕式化學蝕刻溶液於該 時,上’當一頂部喷嘴(圖中未示)不被使用 光阻L 構浸於濕式化學㈣溶液裡時及該第二 3= 厂端保護。該濕式化侧溶液係具 擇性的銅,並對該金屬基板120钱刻80微来 :要=130係為一盲孔(ablindvia),並從該第二 主資十面弟二主要平面 内,但未穿透該金屬基板。延至該金屬基板120 平面第二主要平面124二1/凹口 13°於該第二 口 130相對於二平 300微米,該凹 8〇微米,與第一平面笛_弟―主要平面124之深度為 微米。 主要平面122之間距為70 水。 29 1292195 基板120暴露於該化學蝕刻溶液之理想的蝕刻時間為 須由反覆試驗來建立。 請參閱『第5A、5B及5C圖』所示,係為本發明 之金屬壁形成於金屬基板結構剖面示意圖、本發明之 金屬壁形成於金屬基板結構俯視示意阖及本發明之金 屬壁形成於金屬基板結構仰視示意圖。如圖所示:該 金屬壁132係被形成於該金屬基板12〇之凹口 1邗 内並與忒凹口 13 0之輪廓相符。該金屬壁^ 係覆 蓋該凹口 130於向下方向,並被沈積於該凹口 13〇内 但非填滿該凹口 130。而該金屬壁132係與該金屬基 板120具有電性的連接,但非與該金屬基板12〇整ς 為一體。 口 該金屬壁132係由一鍍於該金屬基板12〇之鎳層 及一鍍於該鎳層之金層所組成(圖中未示)。該鎳層被 夾於該金屬基板120與金層間並與該金屬基板12〇及 金層葬,而該金層與該鎳層接觸,並與該金屬基板 120隔離。因此該錄層被該金層覆蓋,而該金層被暴 露。該金屬壁丨32之厚度為丨0.1微米。特別地,該鎳 層之厚度為Η)微米,該金層之厚度為G l微米。為了 圖不方便,該鎳層及金層於圖中只繪出單一層。 。亥金屬土 132之形成係利用該第一光阻層及 第二光阻们28為電_罩,錢行電鍍處理。因此, 該金屬壁132係被形成。一開始,一電鐘匯流排&amp; 1292195 plating bus)(圖中未示)係連接至該金屬基板12〇,從外 部電源所產生之電流係用於該電鍍匯流排,並將該金 屬基板120 /冗於一電解錄電鑛溶液(⑽eiectr〇iyfjc nickel plating solution),該溶液如於室溫下之 Technic TechniNickel“S”。最後,該鎳層鍍於該金屬基板12〇 之凹口 130暴露部份。然而持續進行鎳電鍍處理直到 該鎳層到達所需要之厚度。之後將整體結構從該電解 鎳電鍍溶液中移出,再浸於電解金電鍍溶液,該溶液 如於室溫下之Technic Orotemp,同時由外部電源所得 之電流用於該電鍍匯流排,使該金層鍍於鎳層上,而 持續進行金電鍍直到該金層到達所需要之厚度,然而 將整體結構從電解金電鍍溶液移出並湘蒸館水沖 洗’除去汙染物。 4孟屬壁132之形狀呈碗狀,其垂直平面係為一 凹字形,並與向上^向與向下方向 主要平面第二主要平面、、第一 圓形,而與向上方==向平面之形狀係可為 夕古 方6及向下方向正交。該金屬壁132 面度為80微求,愈古玄繁一士 300斜伞—a 弟一主要平面124之直徑為 《金㈣132之厚度為i(M微米。但該全 2具有微小之厚度變化。 可能比於該第二主要芈而… 王蜀土 132係 該第二主要平面丨24 附近之厚度較厚,因為 十面124附近之電解溶 該金屬壁132係由_『。 液u率較向。 、由連、卞的早一鎳層及連續的單一金層 31 1292195 所組成。该金屬壁132係具有一孔洞134,該孔洞134 係…。玄金屬基板丨2〇隔離,並延伸至該凹口 内。 該孔洞134係向該金屬壁132延伸,並經過該金屬壁 132大部份之高度及直徑,該孔洞η#係被該金屬壁 j32覆蓋於向上方向及橫向方向,並包含一開口 136, 4開口係朝向下方向,並形成一凹面,坑洞的形狀。 月多閱第6A、6B及6C圖』所示,係為本發明 ,之杈板覆盍於第二光阻層之結構剖面示意圖、本發明 之权牙反覆盍於第二光阻層之結構俯視示意圖及本發明 之模板设盍於第二光阻層之結構仰視示意圖。如圖所 不·。亥杈板138之厚度為8〇微米,並包含一開口 二pemng) ’其開口之直徑為2〇〇微米,該模板 β亥第一光阻層128之開口、金屬壁I”及孔洞I)*被 垂直排列。 為了圖不及說明方便,該金屬基板12〇繪於該模 &gt; 板138之上,並保持固定方向係可方便與前圖比較, 雖:整體架構方向巔倒,而該重力係將幫助該模板138 覆蓋於該第二光阻層128上。 請參閱『第7Α、7Β及7C圖』所示,係為本發明 ^錫貧沈積於金屬壁之結構剖面示意圖、本發明之錫 用’尤積方;金屬壁之結構俯視示意圖及本發明之錫膏沈 積於金屬壁之結構仰視示意圖。如圖所示:該錫膏 係包含粉末狀鈦一銀一銅之錫料顆粒混合於一黏的有 32 1292195 機樹脂溶劑中,其包含一助熔劑。該錫膏140係利用 模板印刷使其被沈積於該金屬壁132上。於模板印刷 處理中’一擠壓器(squeegee)(圖中未示)擠壓該錫膏 !4〇沿著該模板138相對於該金屬基板12()之表面, 通過該第二光阻層丨28之開口與模板138之開口擠入 於該金屬壁132上及該孔洞134内。該錫膏14〇於室 溫下可形成任何形狀,所以該錫膏140係可填滿該孔 .洞134,於該第二光阻層128之開口及於該模板丨388 之開口。然而該錫膏140係與該金屬基板12〇分離。 然而’該錫膏140與該金屬基板12〇隔離。 為了圖示說明方便,該金屬基板12〇繪製於該錫 丹140之上方,並保持固定方向為了能與前圖比對, 雖然整體結構被顛倒但重力可幫助該錫膏14〇之沈 ^ 請參閱『第8A、8B及8C圖』所示,係為本發明 之移去杈板後之結構剖面示意圖、本發明之移去模板 後之、2構俯視示意圖及本發明之移去模板後之結構仰 現不思圖。如圖所示:係為將該模板138從該第二光 阻層12 8移去後之示意圖。 春為了圖示說明方便,該金屬基板12(M會製於該錫 ' 140之上方,亚保持固定方向為了能與前圖比對, =然整體結構被顛倒’當該模板138被移除時,該錫 用140藉由重力幫助覆蓋於該結構上。 33 1292195 9B及9C圖』所示,係為本發明 t結構剖面示意圖、本發明之錫 請參閱『第9A、9B人 之錫膏形成銲接層後之結A back_side wet chemicaI: The exposed portion of the second major plane 124 is etched, and the second photoresist layer 128 is the remaining mask. Because of the first, the barrier 126 can protect one side of the metal substrate 120, for example, a m nozzle (not shown) can spray the wet chemical etching solution at the time, and is a top nozzle (in the figure) Not shown) is not used when the photoresist L is immersed in the wet chemical (iv) solution and the second 3 = factory end protection. The wetted side solution is made of selective copper, and the metal substrate 120 is engraved with 80 micrometers: to = 130 is a blind hole (ablindvia), and from the second principal capital of the ten faces of the two main planes Inside, but did not penetrate the metal substrate. Extending to the second major plane 124 2 / recess 13 of the plane of the metal substrate 120, the second port 130 is 300 micrometers relative to the second plane, the recess is 8 micrometers, and the depth of the first plane flute - the main plane 124 For micrometers. The main plane 122 is 70 water apart. 29 1292195 The ideal etching time for substrate 120 to be exposed to the chemical etching solution is established by a repeat test. Referring to FIG. 5A, FIG. 5B and FIG. 5C, the metal wall of the present invention is a schematic cross-sectional view of a metal substrate, the metal wall of the present invention is formed on a metal substrate structure, and the metal wall of the present invention is formed. The metal substrate structure is a bottom view. As shown, the metal wall 132 is formed in the recess 1邗 of the metal substrate 12 and conforms to the contour of the pocket 130. The metal wall covers the recess 130 in a downward direction and is deposited in the recess 13 but does not fill the recess 130. The metal wall 132 is electrically connected to the metal substrate 120, but is not integrated with the metal substrate 12. The metal wall 132 is composed of a nickel layer plated on the metal substrate 12 and a gold layer plated on the nickel layer (not shown). The nickel layer is sandwiched between the metal substrate 120 and the gold layer and buried with the metal substrate 12, and the gold layer is in contact with the nickel layer and isolated from the metal substrate 120. Therefore, the recording layer is covered by the gold layer, and the gold layer is exposed. The metal niche 32 has a thickness of 丨 0.1 μm. Specifically, the thickness of the nickel layer is Η) microns, and the thickness of the gold layer is G l microns. For the sake of convenience, the nickel layer and the gold layer are only shown as a single layer in the figure. . The formation of the ruthenium metal 132 is performed by using the first photoresist layer and the second photoresist 28 as an electric hood. Therefore, the metal wall 132 is formed. Initially, an electric clock bus &amp; 1292195 plating bus (not shown) is connected to the metal substrate 12A, and a current generated from an external power source is used for the plating busbar, and the metal substrate 120 is used. / Remaining in an electrolytic recording solution ((10) eiectr〇iyfjc nickel plating solution), such as Technic TechniNickel "S" at room temperature. Finally, the nickel layer is plated on the exposed portion of the recess 130 of the metal substrate 12. However, the nickel plating process is continued until the nickel layer reaches the desired thickness. Thereafter, the overall structure is removed from the electrolytic nickel plating solution, and then immersed in an electrolytic gold plating solution, such as Technic Orotemp at room temperature, while current obtained by an external power source is used for the plating busbar to make the gold layer It is plated on the nickel layer and gold plating is continued until the gold layer reaches the desired thickness. However, the overall structure is removed from the electrolytic gold plating solution and the water is flushed to remove the contaminants. 4 The shape of the wall 132 is a bowl shape, the vertical plane of which is a concave shape, and the second main plane, the first circle, and the upward direction == plane to the upward direction and the downward direction. The shape can be 夕古方6 and orthogonal to the downward direction. The metal wall 132 has a surface of 80 micro-seeking, and the ancient one has a diameter of 300. The diameter of the main plane 124 is "the thickness of the gold (four) 132 is i (M micron. But the whole 2 has a slight thickness variation) It may be better than the second main 芈... The 蜀 蜀 土 132 is thicker near the second main plane 丨 24, because the metal wall 132 near the ten sides 124 is dissolved by _ ”. The first nickel layer of the joint and the tantalum and the continuous single gold layer 31 1292195. The metal wall 132 has a hole 134, the hole 134 is ... the metal substrate is separated and extends to the concave The hole 134 extends toward the metal wall 132 and passes through most of the height and diameter of the metal wall 132. The hole η# is covered by the metal wall j32 in the upward direction and the lateral direction, and includes an opening 136. 4, the opening is oriented downward, and forms a concave surface, the shape of the pothole. As shown in the figure 6A, 6B and 6C, which is the invention, the structure of the raft is covered by the second photoresist layer. The cross-sectional schematic view, the weight of the present invention is repeated on the junction of the second photoresist layer A top view and a schematic view of the template of the present invention disposed on the second photoresist layer are shown in the figure. The thickness of the blank plate 138 is 8 μm and includes an opening of two pemng. 2 μm, the opening of the first photoresist layer 128 of the template β, the metal wall I” and the hole I)* are vertically arranged. For the convenience of illustration, the metal substrate 12 is drawn on the die&gt; Above, and maintaining a fixed orientation can be conveniently compared with the previous figure, although the overall architectural direction is collapsed, and the gravity system will help the template 138 to cover the second photoresist layer 128. Please refer to "7th, 7th, Β" And the 7C diagram is a schematic cross-sectional view of the structure of the present invention, which is deposited on the metal wall, the tin used in the present invention, and the top view of the structure of the metal wall and the solder paste of the present invention deposited on the metal wall. The structure is a bottom view. As shown in the figure, the solder paste contains powdered titanium-silver-copper tin particles mixed in a viscous resin solvent containing 32 1292195 resin, which contains a flux. The solder paste 140 utilizes a template. Printing to be deposited on the gold On the wall 132. In the stencil printing process, a squeegee (not shown) squeezes the solder paste! 4 〇 along the template 138 relative to the surface of the metal substrate 12 (), through the The opening of the second photoresist layer 28 and the opening of the template 138 are extruded into the metal wall 132 and the hole 134. The solder paste 14 can be formed into any shape at room temperature, so the solder paste 140 can be filled. The hole 134 is in the opening of the second photoresist layer 128 and the opening of the template 丨 388. However, the solder paste 140 is separated from the metal substrate 12 然而. However, the solder paste 140 and the metal substrate 12 〇 Isolation. For ease of illustration, the metal substrate 12 is drawn above the tindan 140 and kept in a fixed orientation in order to be compared with the previous figure. Although the overall structure is reversed, gravity can help the solder paste 14 sink. Referring to FIG. 8A, FIG. 8B and FIG. 8C, it is a schematic cross-sectional view of the structure after removing the raft of the present invention, a schematic view of the 2-frame after removing the template of the present invention, and a template after removing the template of the present invention. The structure does not reflect on the picture. As shown in the figure, it is a schematic diagram of the template 138 being removed from the second photoresist layer 128. For the convenience of illustration, the metal substrate 12 (M will be made above the tin '140, the sub-maintaining direction is to be compared with the previous figure, and the overall structure is reversed' when the template 138 is removed. The tin is covered with 140 by gravity to help cover the structure. 33 1292195 9B and 9C are shown in the cross section of the t structure of the present invention, and the tin of the present invention is referred to as "the formation of the solder paste of the 9A, 9B". After the solder layer

膏形成銲接層後之結構俯視示意圖及本發明之錫膏形 成鲜接層後之結構仰視示意圖。如圖所示’:該鲜接層 142(s〇lder layer)係與該金屬壁132接觸並具有電性的 連接,但非與該金屬壁132整合為一體,且與該金屬 基板120隔離。而且’該銲接層142係填滿該孔洞134, 其厚度為30微米’相對於該金屬基板12〇、金屬璧132 ’ w…八从I, ! 及該錫貧140内之 錫料顆粒產生反應,並從該金屬壁132及該錫膏14〇 内之錫料顆粒移除氧化物,使該錫料顆粒被融化,並 ,該錫料顆粒結合,並將於該錫膏14〇内之有機樹脂 # 瘵發’因此该錫膏140比它原有之尺寸更小並產生錫 料迴流。另外該金屬壁丨32之金層係提供一濕潤表面 (a wettable surface)為了使錫料迴流並分解已被融化之 錫料,所以該金屬壁132係本為雙片金屬層係由鎳層 及金層所構成’係被改變由單片金屬之鎳層所構成。 而且,該第二光阻層128係限制該錫料迴流至該金屬 壁132,並防止該錫料接觸到該金屬基板丨2()。之後, 停止加熱並將被融化之錫料顆粒冷卻凝固,當變硬時 34 1292195 即成銲接層142。 該銲接層142之直徑為280微米,並與於該第二 光阻層128之開口、金屬壁132及孔洞丨34垂直地排 列。 為了圖示說明方便,該金屬基板12〇繪製於該銲 接層142之上方,並保持固定方向為了能與前圖比 對,雖然整體結構被顛倒,當該銲接層142形成時, • 該錫料藉由重力迴流。 請參閱『第10A、10B及10C圖』所示,係為本 =明之第一光阻層及第二光阻層剝落後之結構剖面示 意圖、本發明之第一光阻層及第二光阻層剝落後之結 ,俯視示意圖及本發明之第一光阻層及第二光阻層剝 落後之結構仰視示意圖。如圖所示:該第一光阻層126 及第二光阻層128係使用一溶劑使其被移除,該溶劑 # 為酿5的鹼性溶液,其PH值為9,係於當光阻儀劑對 銅、鎳及錫時適用,所以該金屬基板120、金屬壁132 或錫金屬層142沒被移除。 ^凊參閱『第11A、11B及11C圖』所示,係為本 =明之第三光阻層及第四光阻層形成於金屬基板後之 結構剖面示意圖、本發明之第三光阻層及第四光阻層 形成於金屬基板後之結構俯視示意圖及本發明之第三 =阻層及第四光阻層形成於金屬基板後之結構仰視示 〜圖如圖所示··該第三光阻層144及第四光阻層140 35 1292195 =利用乾式薄膜層壓處理將該第三光阻層i44及第四 主阻層146分別熱滾壓印於第一主要平面122及第二 面124。一光罩(A reticle)(圖中未示)係放置於 光阻層144之附近。之後,該第三光阻層 ^ P有圖案藉由選擇性地使光透過該光罩,並使用一 顯影溶劑(adeveloper)將*阻部份移除,並藉由光使該 光阻邛伤為可溶解的,然後烤乾(hard bakin幻。所以該 鲁 第三光阻層144係具有一開口,並選擇性地使該第一 要平面第一主要平面】22暴露,而該第四光阻層146 未P有圖案。该第二光阻層M4及第四光阻層146之 厚度為50微米,並分別從該第一主要平面第一主要平 面122及第二主要平面第二主要平面124開始計算。 請參閱『第12A、12B及12C圖』所示,係為本 發明之繞線附於金屬基板時之結構剖面示意圖、本發 明之繞線附於金屬基板時之結構俯視示意圖及本發明 φ 之繞線附於金屬基板時之結構仰視示意圖。如圖所 示··該繞線150係被形成於該金屬基板12()之第一主 要平面122,並與該第二主要平面124、金屬壁132及 銲接層142隔離。該繞線150由一鍵於該金屬基板12〇 之鎳層及一鍍於鎳金屬層之銅層所組成,該鎳層係與 该金屬基板120接觸並被夾於該金屬基板12〇及銅層 之間,而該銅層係與該鎳層接觸,並與該金屬基板12〇 隔離。因此,該鎳層係被該銅層覆蓋,而該銅層被暴 36 1292195 露。該繞線150之厚度為3〇微米。特別地,該錄層之 厚度為5微米,該銅層之厚度為25微米。為了圖示說 明方便,圖中未緣出該錄層及鋼層,只緣出單一金屬 層。 該繞線150係被使用該第三光阻層144及第四光 阻層146為電鑛遮罩進行電鑛處理而形成。一開始, —電鑛®流排(圖中未示)係連接至該金屬基板! 2〇,從 鲁外部電賴提供之㈣可料該電㈣流排,而該金 屬基板120係浸於-電解錦電鑛溶液,其溶液如於室 溫下之Technic Techni Nicke卜s”。因此該錄層錄(沈積 或長)於該金屬基板12G之暴露部份,接著持續進行錄 電鍍處理直到該鎳層達到所需要之厚度。之後,將敫 個結構從電解銻電鍍溶液移出並浸於一電解銅電鑛二 液,其溶液如於室溫下之Se丨-Rex CUBath μτμ,而 目前電流可用於該電鍍匯流排,使該銅層鍍於鎳層, • 且持續銅電鍍直到該銅層達到所需要之厚度。之後敕 體結構從電解銅電鍍溶液移出,並用㈣水清洗移= 汙染物。 賴線150係為平坦之平面,其包含一長形繞線 部份152(elongated routing p〇ni〇n)以及較大圓形部份 154(enlarged circu丨ar p〇rti〇n)。該長形繞線部份⑸及 較大圓形部份154係相互鄰接並於同一平面上。該長 形繞線部份152之寬度$ 100微米,該較大圓“ 37 1292195 / u彳^ _微米。而且’該長形繞線部份152 之,從該較大之圓形部份154横向延伸,該金屬壁132 及銲接層142係與該較大之圓形部份154垂直地排列。 請參閱『第】3A、13B及13c圖』所示,係為本 :明之第三光阻層及第四光阻層剝落後之結構剖面示 心圖本發明之第三光阻層及第四光·阻層剝落後之結 ,俯視示意圖及本發明之第三光阻層及第四光阻層剝 落後之結構仰視示意圖。如圖所示:該第三光阻層144 及第四光阻層146利用-溶劑使其被移除,該溶劑為 溫合的鹼性溶液,其PH值為9 ,當光阻蝕劑對銅、鎳 及錫料時適用。所以該金屬基板12〇、金屬壁132、銲 接層142或繞線15〇沒被移除。 請參閱『第14A、MB及MC圖』所示,係為本 發明之銲接遮罩於金屬基板及繞線時之結構剖面示意 圖、本發明之銲接遮罩於金屬基板及繞線時之結構俯 視示意圖及本發明之銲接遮罩於金屬基板及繞線時之 結構仰視示意圖。如圖所示:該銲接遮罩l56(S〇lda mask)為一液態樹脂,係被沈積於該金屬基板12〇及繞 線150上。之後該液態樹脂(nquid resin)於相對低溫時 可凝固或硬化,其相對溫度之範圍係介於攝氏1〇〇度 至攝氏250度間’使該液態樹脂形成一固態絕緣環氧 樹脂層(solid insulative epoxy layer),該固態絕緣環氧 樹脂層之厚度為50微米,並於該金屬基板12〇及繞線 38 1292195 150接觸’且從該繞線ι5〇向上延伸微米。 之後,將該銲接遮罩156之上面部份係藉由研磨 被移除。特別地,利用一旋轉鑽石砂輪(a如〜 jamond sand wheel)及蒸餾水用於該銲接遮罩i56之 前側。一開始,該鑽石砂輪係只對該銲接遮罩i56進 行研磨,當持續研磨時,係使該銲接遮罩156變薄於 被研磨之表面向下地遷移時。然後該鑽石砂輪係接觸 _ 到°亥、%線150打’因此開始研磨該繞線150,當持續 研磨時,該繞線150&amp;銲接遮罩156係同時變薄於被 研磨之表面向下遷移時。直到該繞線150及銲接遮罩 156達到所需要之厚度及接觸到該金屬基板前停 =研磨’然後,將整體結制蒸财清洗並除去汗染 ^當研磨完之後,該繞線150及銲接遮罩156係從 /金屬基板丨20向上延伸25微米。因此該研磨處理係 該移去5微米厚之繞線15〇之上方部份及25微米厚 之銲接遮罩156之上方部份。 在這階段巾,該銲钱罩w係連續並與該繞線 150接觸’且覆蓋該繞線150之邊緣側面。然而,該 銲接料156係、不再覆蓋於該繞線150於向上方向Γ 因此該繞線150及銲接遮罩156皆被暴露。而且,該 繞線150與銲接遮罩156係被橫向排列於一朝向上之 平面上。因此’一被暴露水平表面係包括該繞線 150 39 Ϊ292195 與銲接遮罩156,並朝向上方。 請參閱『第15A、15B及15C圖』所示,係為本 發明之第五光阻層及第六光阻層形成後之結構剖面示 意圖、本發明之第五光阻層及第六光阻層形成後之結 構俯視示意圖及本發明之第五光阻層及第六光阻層形 成後之結構仰視示意圖·。如圖所示:該第五光阻層工% 係被形成於該繞線150及銲接遮罩156上,而該第六 _ 光祖層160係被形成於該金屬基板12〇、金屬壁I” 及銲接層142上。該第五光阻層158及第六光阻層16〇 係以液態之形式被沈積,並利用滾壓塗佈分別沈積於 相對應之平面。一光罩(A retide)(圖中未示)係放置於 該第五光阻層158之附近。之後,該第六光阻層16〇 係印有圖案,並選擇性地使光透過該光罩,並使用一 顯影溶劑(a developer)將光阻部份移除,且藉由光使該 光阻部份為可溶解的,然後烤乾(hardbaking)。所以該 魯 第五光阻層丨58係具有一開口,選擇性地使該繞線15〇 暴露,而該第六光阻層160未印有圖案。該第五光阻 層158及第六光阻層160之厚度為5〇微米,並分別從 該繞線150及金屬基板丨2〇開始計算。 請參閱『第16A、16B及16C圖』所示,係為本 兔明之電趙接點形成於繞線後之結構剖面示意圖、本 發明之電鍍接點形成於繞線後之結構俯視示意圖及本 發明之電鍍接點形成於繞線後之結構仰視示意圖。如 1292195 圖所示·该電鍍接點162(Plated contact)係與該繞線 150接觸並具有電性的連接,但非與該繞線15〇整合 為一體’並與該金屬基板120隔離。該電鍍接點162 係由一鍍於該繞線150之鍍鎳層及一鍍於鎳層之金 層,該鎳層係與該繞線15〇及金層接觸,並被夾於該 繞線150與金層.之間,而該金層與該鎳層接觸,並與 該繞線150隔離。因此,該鎳層係被該金層覆蓋,而 該金層係被暴露。該電鍍接點162之厚度為3·5微米, 特別地,该鎳層之厚度為3微米,而該金層之厚度為 〇·5微米。為了圖示說明方便,圖中未繪出該鎳層及金 層,只繪出單一金屬層。 該電鍍接點162該第五光阻層158及第六光阻層 '6〇為電鍍遮罩進行電鍍處理而被形成。一開始,一 ,鑛匯流排(圖中未示)係連接至該金屬基板,從外 ^板係浸於—電解鎳電鍍溶液,其溶液如於室 rJt5rrJCTechniNickeI^ 之f露部份’持續進行錄電鍍直到該錄層達 液移:並=度。然而’將整個結構從電解鎳電鍍溶 之移出,於—電解金電鍵溶液,其溶液如於室溫下 排,使兮無 引电机可用於該電鍍匯流 達到鎳層’且持續金電錢直到該鑛金層 之居度。然後將整難結構從電解銅電錄溶 41 1292195 液移出,並用蒸餾水清洗移除汙染物。 請^閱『第ΠΑ、〗7B及17C圖』所示,係為本 :月之第五光阻層及第六光阻層剝落後之結構剖面示 意圖、本發明之第五光阻層及第六光阻層剝落後之結 ^俯視示意圖及本發明之第五光阻層及第六光阻層亲: 洛後之結構仰視示意圖。如谓所示··該第五光阻層US 、第/、光阻層160係使用一溶劑使其被移除,該溶劑 φ 為’皿口的鹼性浴液,其PH值為9,當光阻餘劑對銅、 鎳、錫料及環氧樹脂時適用。所以該金屬基板12〇、 金屬壁132、銲接層142、繞線15〇、鲜接遮罩156或 電鍍接點162沒被移除。 請參閱『第18A、⑽及18C圖』所示,係為本 毛明之黏著劑形成於銲接遮罩後之結構剖面示意圖、 本發明之黏著劑形成於銲接遮罩後之結構俯視示意圖 及本發明之黏著劑形成於鋅接遮罩後之結構仰視示意 験圖。如圖所示:該黏著劑164(祕_)係可能包含一 有機表面保護劑(an organic surface pr〇tectant),如 hk 2000,該黏著劑164係於該第五光阻層ΐ58及第六光 1¾層160被移除後被使用於整體結構,係可減少自然 乳化物產生於被暴露之鋼層表面。用於半導體晶片封 裝結構構裝過程係使用該有機表面保護劑於絕緣黏著 技術中。 然後/夜悲樹脂如聚醯胺酸(polyamic acid)利用 42 1292195 模板印刷使其沈積於該銲接遮罩156,於模板印刷時, 一模板(圖中未示)係被置於該繞線15〇及銲接遮罩156 上,一椟板開口(a stencii opening)與該金屬基板 排成一列,並與該繞線15〇有偏移,然後,一擠壓器 (squeegee)(圖中未示)擠壓該液態樹脂沿著該模板表面 往相對應之銲接遮罩156方向,穿過該模板開口,於 該銲接遮罩156之上,但不是金屬基板12〇、繞線15〇 或電鍍接點162。該液態樹脂於室溫下可塑型為任何 形狀。所以,該液態樹脂係可流動並覆蓋一部份之銲 接遮罩156 ’但仍與金屬基板120、繞線150及電鍍接 點162隔離。 請參閱『第19A、19B及19C圖』所示,係為本 發明之具半導體晶片之結構剖面示意圖、本發明之具 半導體晶片之結構俯視示意圖及本發明之具半導體晶 片之結構仰視示意圖。·如圖所示··該黏著劑164係與 該半導體晶片110及銲接遮罩156接觸,並於該半導 體晶片110與銲接遮罩156間延伸,但仍與該金屬基 板120、繞線150及電鍍接點162隔離。該半導體晶 片110之第一平面n2係朝向上並遠離該銲接遮罩156 且被暴露;而該半導體晶片H〇之第二平面114係朝 向下’並面向该銲接遮罩I 56,且被該黏著劑16爭覆 蓋^该半導體晶片11〇與金屬基板12〇係不相互接觸, 5亥半導體晶片11 〇與繞線丨50係不相互接觸,及該半 43 1292195 導體晶片110與銲接遮罩156係不相互接觸。 該黏著劑164被夾於該半導體晶片11〇與銲接遮 罩156間係使用相對低壓於吸取頭(pick_up heacj),該 吸取頭係放置在黏著劑丨64上之半導體晶片丨丨〇,需 強壓該半導體晶片110於黏著劑上5秒,然後放鬆該 半導體sa片1 1 〇。該吸取頭係被加熱於相對低溫中, 如相對低溫為150度,而該黏著劑164係從該吸取頭 一接收熱並傳至該半導體晶片11〇。因此該黏著劑164 緊鄰著該半導體晶片係特別地被聚合的,並形成一膠 體但不是完全地被凝固,以及該黏著劑164係特別地 被聚合的,並提供一軟式機械接合(a 1〇〇se mechanical bond)於該半導體晶片11()及銲接遮罩156間。 該半導體晶片110與金屬基板120係被置於相對 位置,以致於該半導體晶片110係被置於該黏著劑164 之邊緣内,及該金屬壁132、銲接層142、繞線150及 電鑛接點162係被置於該半導體晶片n〇之邊緣外。 該半導體晶片110及金屬基板12〇係利用一自動圖案 識別系統(an automated pattern recognition 叮价叫被 排列。 之後’整體結構係被放置於一烘箱,該黏著劑164 於相對低溫中完全被硬化,其相對低溫之範圍係介於 .200度至250度,並形成一硬黏著絕緣熱調整聚醯胺 層(adhesive insulative thermosetting polyimide 44 1292195 layer),其與该半導體晶片110及銲接遮罩156接觸, 並被夾於該半導體晶片11〇與銲接遮罩156間,且可 機械地連接該半導體晶片11〇及鲜接遮罩L該黏 著劑164於該半導體晶片11〇與銲接遮罩156間之厚 度為35微米。 在攻階段中’該金屬基板120覆蓋該半導體晶片. 110、繞線150、銲接遮罩156、電鍍接點162及黏著 d 164 ’並從s亥半導體晶片11〇、繞線、銲接遮罩 156、電鍍接.點162及黏著劑164向下延伸’該金屬壁 132係被配置於該半導體晶片丨1〇之邊緣外,並從該 半導體晶片110、繞線150、銲接遮罩156、電鍍接點 ⑹及黏著齊丨164向下延伸,該銲接層142係被配置 於該半導體晶;j 11G之邊緣外,並從該半導體晶片 U〇、金屬壁132、繞線150、銲接遮罩156、電鑛接 码⑷及黏著劑164向下延伸,該繞線15〇係被置於 該半導體晶片11G之向下方向’並於該半導體晶片ιι〇 之邊緣外,且從該金屬壁丨32及該銲接層142橫向延 =’朝向該半導體晶片m,及該黏著劑164從該半 導體晶片11〇向下延伸。而且’該半導體晶片ιι〇係 仍具有電性的與該金屬基板丨2〇、金屬壁132、銲接層 142、繞線150及電鍍接點〗62隔離。 曰 請參閱『第20八、208及2〇c圖』所示,係為本 發明之連接部附於導電腳位及電鍍接點時之結構剖面 45 1292195A schematic top view of the structure after the paste is formed into a solder layer and a schematic view of the structure of the solder paste of the present invention after forming a fresh joint layer. As shown in the figure, the singer layer 142 is in contact with the metal wall 132 and has an electrical connection, but is not integrated with the metal wall 132 and is isolated from the metal substrate 120. Moreover, 'the soldering layer 142 fills the hole 134 and has a thickness of 30 micrometers' with respect to the metal substrate 12, the metal 璧 132 ' w... eight from I, and the tin particles in the tin lean 140 react. And removing oxides from the metal walls 132 and the tin particles in the solder paste 14 to melt the solder particles, and the tin particles are combined and organic in the solder paste 14 Resin #瘵发' Therefore, the solder paste 140 is smaller than its original size and produces tin reflow. In addition, the gold layer of the metal nib 32 provides a wettable surface. In order to reflow the tin material and decompose the molten tin, the metal wall 132 is a double metal layer composed of a nickel layer and The structure of the gold layer is changed by a nickel layer of a single piece of metal. Moreover, the second photoresist layer 128 restricts the solder from flowing back to the metal wall 132 and prevents the solder from contacting the metal substrate 丨2(). Thereafter, the heating is stopped and the melted tin particles are cooled and solidified, and when hardened, 34 1292195 becomes the solder layer 142. The solder layer 142 has a diameter of 280 μm and is arranged perpendicular to the opening of the second photoresist layer 128, the metal walls 132, and the holes 34. For ease of illustration, the metal substrate 12 is drawn over the solder layer 142 and maintained in a fixed orientation in order to be aligned with the previous figure. Although the overall structure is reversed, when the solder layer 142 is formed, the tin material Reflow by gravity. Please refer to FIG. 10A, FIG. 10B and FIG. 10C for a schematic cross-sectional view of the first photoresist layer and the second photoresist layer after stripping, the first photoresist layer and the second photoresist of the present invention. After the layer is stripped, the schematic view and the structure of the first photoresist layer and the second photoresist layer of the present invention are taken up from the bottom. As shown in the figure: the first photoresist layer 126 and the second photoresist layer 128 are removed by using a solvent, which is an alkaline solution of brewing 5, and has a pH of 9, which is when the light is The resist agent is suitable for copper, nickel, and tin, so the metal substrate 120, the metal wall 132, or the tin metal layer 142 is not removed. ^ 凊 "11A, 11B, and 11C", which is a schematic cross-sectional view of the third photoresist layer and the fourth photoresist layer formed on the metal substrate, the third photoresist layer of the present invention, and The top view of the structure in which the fourth photoresist layer is formed on the metal substrate, and the structure in which the third=resist layer and the fourth photoresist layer of the present invention are formed on the metal substrate are shown in a bottom view as shown in the figure. The resistive layer 144 and the fourth photoresist layer 140 35 1292195 = the third photoresist layer i44 and the fourth main resist layer 146 are respectively hot-rolled on the first main plane 122 and the second surface 124 by a dry film lamination process. . An reticle (not shown) is placed adjacent to the photoresist layer 144. Thereafter, the third photoresist layer has a pattern by selectively passing light through the mask, and removing the *block portion using a developing solvent (adeveloper), and causing the photoresist to be bruised by light. Is soluble, then baked (hard bakin magic. So the Lu third photoresist layer 144 has an opening and selectively exposes the first major planar first major plane 22), and the fourth light The second photoresist layer M4 and the fourth photoresist layer 146 have a thickness of 50 micrometers, and are respectively from the first main plane, the first main plane 122, and the second main plane, the second main plane. Referring to the "12A, 12B, and 12C", it is a schematic cross-sectional view of the structure of the present invention when the winding is attached to the metal substrate, and the structure of the present invention is attached to the metal substrate. A schematic view of the structure of the φ winding of the present invention attached to the metal substrate. As shown in the drawing, the winding 150 is formed on the first main plane 122 of the metal substrate 12 () and the second main plane 124, the metal wall 132 and the solder layer 142 are isolated. The winding 150 is comprised of one a nickel layer of the metal substrate 12 and a copper layer plated with a nickel metal layer, the nickel layer is in contact with the metal substrate 120 and sandwiched between the metal substrate 12 and the copper layer, and the copper The layer is in contact with the nickel layer and is isolated from the metal substrate 12. Therefore, the nickel layer is covered by the copper layer, and the copper layer is exposed by the storm 36 1292195. The thickness of the winding 150 is 3 μm. In particular, the thickness of the recording layer is 5 micrometers, and the thickness of the copper layer is 25 micrometers. For convenience of illustration, the recording layer and the steel layer are not shown in the figure, and only a single metal layer is formed. The third photoresist layer 144 and the fourth photoresist layer 146 are formed by electro-mineral treatment for the electric ore mask. Initially, an electric ore® flow row (not shown) is connected to the metal substrate. 2〇, provided by Lu external power supply (4) can be expected to flow (4), and the metal substrate 120 is immersed in the -electrolytic solution, such as Technic Techni Nicke s" at room temperature. Therefore, the recording layer is deposited (deposited or lengthened) on the exposed portion of the metal substrate 12G, and then the plating is continued. After the nickel layer reaches the required thickness, the structure is removed from the electrolytic bismuth plating solution and immersed in an electrolytic copper electroplating solution, such as Se丨-Rex CUBath μτμ at room temperature. Current can be used for the electroplating busbar, so that the copper layer is plated on the nickel layer, and copper plating is continued until the copper layer reaches the required thickness. After that, the carcass structure is removed from the electrolytic copper plating solution and washed with (4) water = The line 150 is a flat plane that includes an elongated routing portion 152 and an enlarged circular portion 154 (enlarged circu丨ar p〇rti〇n) . The elongated winding portion (5) and the larger circular portion 154 are adjacent to each other and on the same plane. The elongated winding portion 152 has a width of $100 μm, and the larger circle "37 1292195 / u彳^ _ micron." and the elongated winding portion 152 is lateral from the larger circular portion 154. The metal wall 132 and the solder layer 142 are arranged perpendicular to the larger circular portion 154. Please refer to the "3A, 13B, and 13c" diagrams for the third photoresist layer. And a structure of the fourth photoresist layer after peeling off. The third photoresist layer and the fourth light-resist layer peeled off junction, the top view and the third photoresist layer and the fourth photoresist of the present invention. The structure of the layered stripped structure is shown in a bottom view. As shown in the figure, the third photoresist layer 144 and the fourth photoresist layer 146 are removed by using a solvent, which is a warm alkaline solution, and the pH thereof is 9. When the photoresist is applied to copper, nickel and tin, the metal substrate 12, the metal wall 132, the solder layer 142 or the winding 15 are not removed. Please refer to "14A, MB and MC". Figure 2 is a schematic cross-sectional view showing the structure of the welding mask of the present invention on a metal substrate and a winding, and the welding mask of the present invention is applied to a metal base. And a schematic top view of the structure when the winding is wound and a schematic view of the structure of the welding mask of the present invention on the metal substrate and the winding. As shown in the figure: the welding mask l56 (S〇lda mask) is a liquid resin, which is Deposited on the metal substrate 12 and the winding 150. After that, the liquid resin can be solidified or hardened at a relatively low temperature, and the relative temperature ranges from 1 degree Celsius to 250 degrees Celsius. The liquid resin forms a solid insulative epoxy layer having a thickness of 50 micrometers and is in contact with and wound from the metal substrate 12 and the winding 38 1292195 150. The line ι5〇 extends upwards by a micron. Thereafter, the upper portion of the solder mask 156 is removed by grinding. Specifically, a rotating diamond wheel (a such as a jamond sand wheel) and distilled water are used for the soldering cover. The front side of the cover i56. Initially, the diamond grinding wheel only grinds the welding mask i56, and when the grinding is continued, the welding mask 156 is thinned when the surface to be polished migrates downward. The stone grinding wheel contact _ to ° Hai, the % line 150 hits 'so the grinding 150 is started to be ground, and when the grinding is continued, the winding 150 &amp; welding mask 156 is simultaneously thinned when the surface to be ground migrates downward. Until the winding 150 and the soldering mask 156 reach the required thickness and contact with the metal substrate before stopping = grinding ', then the whole body is steamed and cleaned and the sweat is removed. When the grinding is completed, the winding 150 and The solder mask 156 extends 25 microns upward from the /metal substrate 20. Thus, the polishing process removes the upper portion of the 5 micron thick wire 15 turns and the upper portion of the 25 micrometer thick solder mask 156. At this stage, the money cover w is continuous and in contact with the winding 150 and covers the edge side of the winding 150. However, the solder material 156 is no longer covered in the upward direction of the winding 150, so that the winding 150 and the solder mask 156 are exposed. Moreover, the winding 150 and the welding mask 156 are laterally arranged on an upwardly facing plane. Thus, an exposed horizontal surface includes the winding 150 39 Ϊ 292195 and the solder mask 156 and faces upward. Referring to FIG. 15A, FIG. 15B and FIG. 15C, FIG. 15 is a cross-sectional view showing the structure of the fifth photoresist layer and the sixth photoresist layer of the present invention, and the fifth photoresist layer and the sixth photoresist of the present invention. A schematic plan view of the structure after the layer is formed and a schematic view of the structure after the fifth photoresist layer and the sixth photoresist layer of the present invention are formed. As shown in the figure, the fifth photoresist layer is formed on the winding 150 and the solder mask 156, and the sixth photo-progenit layer 160 is formed on the metal substrate 12 and the metal wall I. And the soldering layer 142. The fifth photoresist layer 158 and the sixth photoresist layer 16 are deposited in a liquid form and are respectively deposited on the corresponding plane by roll coating. A retide (not shown) is placed in the vicinity of the fifth photoresist layer 158. Thereafter, the sixth photoresist layer 16 is printed with a pattern, and selectively transmits light through the mask, and uses a developing The developer removes the photoresist portion and makes the photoresist portion soluble by light, and then hardbaking. Therefore, the fifth photoresist layer 58 has an opening. The winding 15〇 is selectively exposed, and the sixth photoresist layer 160 is not printed with a pattern. The fifth photoresist layer 158 and the sixth photoresist layer 160 have a thickness of 5 μm and are respectively wound from the winding. Line 150 and metal substrate 丨2〇 are calculated. Please refer to “Figures 16A, 16B and 16C” for the winding of the rabbit. A schematic cross-sectional view of the structure, a schematic view of the structure in which the electroplated contacts of the present invention are formed after winding, and a schematic view of the structure in which the electroplated contacts of the present invention are formed after winding, as shown in FIG. 1292195. The plated contact is in contact with the winding 150 and has an electrical connection, but is not integrated with the winding 15〇 and is isolated from the metal substrate 120. The plating contact 162 is plated by the winding. a nickel plating layer of 150 and a gold layer plated with a nickel layer, the nickel layer being in contact with the winding 15 and the gold layer, and sandwiched between the winding 150 and the gold layer, and the gold layer The nickel layer is in contact with and is isolated from the winding 150. Therefore, the nickel layer is covered by the gold layer, and the gold layer is exposed. The plating contact 162 has a thickness of 3.5 micrometers, in particular, The thickness of the nickel layer is 3 micrometers, and the thickness of the gold layer is 〇·5 micrometers. For convenience of illustration, the nickel layer and the gold layer are not shown, and only a single metal layer is drawn. The fifth photoresist layer 158 and the sixth photoresist layer '6' are formed by plating a plating mask. First, a mine bus (not shown) is connected to the metal substrate, and is immersed in an electrolytic nickel plating solution from the outer plate, and the solution is continuously electroplated as in the chamber rJt5rrJCTechniNickeI^ Until the recording layer reaches the liquid shift: and = degree. However, 'the whole structure is removed from the electrolytic nickel electroplating solution, and the solution is electrolyzed, and the solution is discharged at room temperature, so that the 兮 no motor can be used for the electroplating. The confluence reaches the nickel layer' and continues to pay for the gold layer until the gold layer is occupied. The whole difficult structure is then removed from the electrolysis copper electrocatalyst 41 1292195 and washed with distilled water to remove contaminants. Please read "Dimensions, 〗 7B and 17C" as shown in the figure: the schematic diagram of the structure of the fifth photoresist layer and the sixth photoresist layer after peeling off, the fifth photoresist layer of the present invention and the The junction of the six photoresist layers is a top view and the fifth photoresist layer and the sixth photoresist layer of the present invention: a schematic view of the structure of Luo. As shown, the fifth photoresist layer US, the /, and the photoresist layer 160 are removed by using a solvent which is an alkaline bath of a dish having a pH of 9, Applicable when the photoresist is applied to copper, nickel, tin and epoxy. Therefore, the metal substrate 12, the metal wall 132, the solder layer 142, the winding 15 〇, the fresh mask 156 or the plating contact 162 are not removed. Please refer to FIG. 18A, (10) and FIG. 18C for a schematic cross-sectional view of the structure in which the adhesive of the present invention is formed after the solder mask, and a schematic plan view of the structure in which the adhesive of the present invention is formed after the solder mask and the present invention. The structure in which the adhesive is formed after the zinc-shield mask is shown in a bottom view. As shown in the figure: the adhesive 164 may contain an organic surface pr〇tectant, such as hk 2000, and the adhesive 164 is attached to the fifth photoresist layer 及58 and sixth. The light layer 160 is removed for use in the overall structure to reduce the generation of natural emulsions on the exposed steel layer surface. The semiconductor wafer package structure assembly process uses the organic surface protectant in the insulating adhesion technique. Then, a latent resin such as polyamic acid is deposited on the solder mask 156 by stencil printing using a 42 1292195 stencil, and a template (not shown) is placed on the winding 15 during stencil printing. On the solder mask 156, a stencii opening is arranged in a row with the metal substrate and offset from the winding 15 and then a squeegee (not shown) Squeezing the liquid resin along the surface of the stencil toward the corresponding solder mask 156, through the stencil opening, over the solder mask 156, but not the metal substrate 12, the winding 15 〇 or the plating Point 162. The liquid resin can be molded into any shape at room temperature. Therefore, the liquid resin can flow and cover a portion of the solder mask 156' but still be isolated from the metal substrate 120, the wire 150, and the plated joint 162. Referring to the drawings of Figs. 19A, 19B and 19C, there are shown a schematic cross-sectional view of a semiconductor wafer of the present invention, a schematic plan view of a semiconductor wafer of the present invention, and a bottom view of the structure of the semiconductor wafer of the present invention. As shown in the figure, the adhesive 164 is in contact with the semiconductor wafer 110 and the solder mask 156, and extends between the semiconductor wafer 110 and the solder mask 156, but still with the metal substrate 120, the winding 150, and The plating contacts 162 are isolated. The first plane n2 of the semiconductor wafer 110 is oriented upward and away from the solder mask 156 and exposed; and the second plane 114 of the semiconductor wafer H is facing down and facing the solder mask I 56 and is The adhesive wafer 16 is covered by the semiconductor wafer 11 and the metal substrate 12, and the semiconductor wafer 11 and the windings 50 are not in contact with each other, and the semiconductor wafer 110 and the solder mask 156 are 436. They are not in contact with each other. The adhesive 164 is sandwiched between the semiconductor wafer 11 and the solder mask 156 by using a relatively low pressure on the pick-up head (pick_up heacj), which is placed on the adhesive wafer 64 and needs to be pressed. The semiconductor wafer 110 is applied to the adhesive for 5 seconds and then the semiconductor sa sheet 1 1 放松 is relaxed. The pick-up head is heated to a relatively low temperature, such as 150 degrees relative to a low temperature, and the adhesive 164 receives heat from the pick-up head and passes it to the semiconductor wafer 11A. Thus, the adhesive 164 is specifically polymerized next to the semiconductor wafer system and forms a colloid but is not completely solidified, and the adhesive 164 is specifically polymerized and provides a soft mechanical joint (a 1〇) 〇se mechanical bond) between the semiconductor wafer 11 () and the solder mask 156. The semiconductor wafer 110 and the metal substrate 120 are placed in opposite positions such that the semiconductor wafer 110 is placed in the edge of the adhesive 164, and the metal wall 132, the solder layer 142, the winding 150, and the electrical joint Point 162 is placed outside the edge of the semiconductor wafer. The semiconductor wafer 110 and the metal substrate 12 are arranged by an automatic pattern recognition system. The whole structure is placed in an oven, and the adhesive 164 is completely hardened at a relatively low temperature. The relatively low temperature range is between .200 degrees and 250 degrees, and forms an adhesive insulative thermosetting polyimide 44 1292195 layer, which is in contact with the semiconductor wafer 110 and the solder mask 156. And being sandwiched between the semiconductor wafer 11 and the solder mask 156, and mechanically connecting the semiconductor wafer 11 and the fresh mask L to the thickness of the adhesive 164 between the semiconductor wafer 11 and the solder mask 156. 35 microns. In the attack phase, the metal substrate 120 covers the semiconductor wafer 110, the winding 150, the solder mask 156, the plating contact 162, and the adhesion d 164 'and the semiconductor wafer 11 is wound, wound, The solder mask 156, the plating contact 162 and the adhesive 164 extend downwardly. The metal wall 132 is disposed outside the edge of the semiconductor wafer and is from the semiconductor. The sheet 110, the winding 150, the solder mask 156, the plating contact (6) and the adhesive 丨 164 extend downward, and the solder layer 142 is disposed outside the edge of the semiconductor crystal; j 11G, and from the semiconductor wafer U 〇 The metal wall 132, the winding 150, the solder mask 156, the electric ore code (4), and the adhesive 164 extend downward, and the winding 15 is placed in the downward direction of the semiconductor wafer 11G and is on the semiconductor wafer. And outside the edge of the metal wall 32 and the solder layer 142, the semiconductor wafer m is extended toward the semiconductor wafer m, and the adhesive 164 extends downward from the semiconductor wafer 11 。 and the semiconductor wafer ιι〇 It is still electrically isolated from the metal substrate 丨2〇, the metal wall 132, the solder layer 142, the winding 150, and the plating contact 62. 曰Please refer to the “Figure 20, 208, and 2〇c diagrams” , is a structural section of the connecting portion of the invention attached to the conductive pin and the plated joint 45 1292195

示意圖、本發明之連接部附於導電腳位及電鍍接點時 之結構俯視示意圖及本發明之連接部附於導電腳位及 電鑛接點時之結構仰視示意圖。如圖所示:該連接部 166係為一金屬金之打線,其球狀接合於該導電腳位 116上,其楔形接合於該電鍍接點162上。其中該金 屬線係連接球狀揍點及楔形接點,該打線之厚度為25 认米。因此泫連接部1 66係與該導電腳位116及電鍍 接點162接觸,並使該導電腳位116及電鍍接點162 八有電11的連接,所以亦可使該導電腳位116可具有 電性的與該金屬基板丨2〇、金屬壁132、銲接層142及 繞線150連接。而該連接部166係於該半導體晶片則 之邊緣内及邊緣外延伸,並自該半導體晶#⑽向上 L伸100 U米,並與該金屬基板12〇、金屬壁⑺ 接層142、繞線150及銲接遮罩丨56隔離。 J ^。…、1mic圖』所示 Γ之具密封層之結構剖面示意圖、本發明之具密 *意圖。如圖所示:該_:68、:==^^ ㈣nsfer mo丨cnng)被沈積,_…彡&amp; ^ ^ 導體晶韻裝謂之構裝方法對用於 來說,該轉注成形法係包括元件於—贫、,吕 ^###(m〇lding c〇mp〇und) , 熱、塑膠狀態之壓力下將該注模材料於=係於可名 、攸1P心儲存相 46 1292195 (central reservoir)亦為料腔(transfer pot)穿過樹狀陣列 之洗道(runners)及澆口(gates)傳送至密封的模穴中。 較好之傳注成形系統係包含一預熱器 (preheater)、一模子、一模壓機(press)及一硬化爐(cure oven)。該模子係包含一上模部份及一下模部份,亦可 稱為(platens)或(halves)用來定義該模大。該模子係也 包含該料腔、澆道洗口及排氣口(vents)。該料腔係容 納該注模材料。該澆道及澆口係提供從該料腔至模穴 之通道。該澆口係被置於該模穴入口附近,並被壓縮 進而控制進入該模穴時該注模材料之流動速度及注入 速度且使該被固化之注模材料容易移動於該轉注形成 進行時。該排氣口係准許受限制之空氣能排出,但該 排氣口很小係只能使極少數之注模材料通過。 該注模材料係於一開始處於平板的形式。該預熱 器使用高頻率能源使該注模材料預熱至一溫度,其溫 度範圍係介於50度至100度之間。該預熱之溫度係低 於轉注之溫度,所以該被預熱之注模材料係不處於一 流體的狀態。此外,整體結構係被置於其中一個模穴 中,該模壓機油壓地運作使該模子密合及藉由上層模 塊及下層模塊定位使該模穴密合。該定位銷(Guide pins)係確保該上模部份及下模部份密合處剛恰好於分 模線。另外,該模子係被加熱至一轉注溫度,其轉注 溫度之範圍係介於150度至250度之間,係藉由插入 47 1292195 電子加熱匣於該上模部份及下模部份。 雄、封该模子之後,該被預熱之注模材料係為平板 形態被置於該料腔内。然後一轉注撞針(transfer plunger)加壓至於該料腔内之注模材料。該壓力範圍係 介於10至100kgf/cm2並可設定越高越好且不會有可 靠度之問題。對該模子加熱及加.壓於該轉注撞針之壓 力等處理係將於料腔内之注模材料轉換至流體狀態。 而且,從該轉注撞針而來的壓力係強制使該流體的轉 注撞針通過料道及洗σ進人該模穴。關力係被維 持於-固定的最佳時間,方可確保該注模材料填滿該 该下層模塊係與該金屬基板120接觸,並可與該 金屬基板120饮合,且與該金屬基板㈣ = 連㈣丨66距離12_。因^ =材=與料㈣晶片UG、繞線i5Q、鲜接遮軍 补接觸^占162、黏著劑164及連接部166之暴露 ”妾觸核穴中。於轉注溫度過了 1至3分鐘後, 該注模材㈣聚合的並部份地被硬化於模子中 彈性Si部:才料被硬化後’係具有足夠之 且永久㈣::擠出之力量’使其無法顯著 模子中取:被鲶Ϊ杈壓機打開模子’該起模桿係從該 該被鱗造之結構上,的注模材料係附於 X剩於的注楔材料係被固化於該 48 1292195 澆道及澆口上係被整理及移除。該被鑄造之結構係被 載入一匣盒(magazine),並被置於該硬化爐内4至16 個小時’且於一比轉注溫度稍微低的溫度中但比室内 溫度高使該注模材料完全地硬化。 該注模材料係為一多組成混和之密封樹脂添加各 種不同之外力σ劑’其主妻之添加劑係包含硬化劑、加 速贫丨Ν性填料、連結劑、難燃劑、消除應力劑、著 色劑及脫模劑。㈣封樹脂純供—屏蔽物(a bmder),該硬化劑(curing agent)係提供直線/十字線之 ,合作用(iinear/cross_polymerizati〇n),該加速劑係提 高气聚合速率,該惰性填料係增加熱傳導性、抗熱撞 擊性及降低熱膨脹系數、樹脂流失、收縮及剩餘的壓 力’該連結劑係增加對整體結構之黏著力,該難燃劑 係降低易燃性’该消除應力劑係減少裂紋擴展,該著 色^'減少光子活動力及裝置可見度,以及該脫模劑 係使容易從模子移出。 該密封層168與該半導體晶片110、繞線150、銲 ㈣罩156'電鍍接點162、黏著劑164及連接部166 ,觸並覆蓋。該密封層168與該半導體晶片ιι〇之第 =面1丨2及其外部邊緣接觸,但與該半導體晶片110 之第一平面1 1 4隔離。該密封層1 68係覆蓋於該金屬 板孟屬1 32及銲接端丨42,但與該金屬基板 120、金屬壁Π2及銲接端142隔離。 49 1292195 該密封層168係為—可 其可提供環境的保護,如耐 11 〇之顆粒保護如對該繞線 一可壓縮之固態黏著保護層, 如耐;^晶44,W β #4* ;若…·The schematic view of the structure of the connecting portion of the present invention attached to the conductive pin and the plated contact is a schematic view of the structure when the connecting portion of the present invention is attached to the conductive pin and the electric ore joint. As shown in the figure, the connecting portion 166 is a metal gold wire which is ball-bonded to the conductive pin 116 and wedge-shapedly bonded to the plating contact 162. The metal wire is connected to a spherical defect and a wedge contact, and the thickness of the wire is 25 meters. Therefore, the connection portion 166 is in contact with the conductive pin 116 and the plated contact 162, and the conductive pin 116 and the plated contact 162 are electrically connected to each other. Therefore, the conductive pin 116 can also have the conductive pin 116. Electrically connected to the metal substrate 〇2〇, the metal wall 132, the solder layer 142, and the winding 150. The connecting portion 166 extends inside and outside the edge of the semiconductor wafer, and extends 100 U meters upward from the semiconductor crystal #10, and is connected to the metal substrate 12, the metal wall (7), and the winding 142. 150 and welded mask 丨 56 isolated. J ^. The structure of the sealing layer of the crucible shown in Fig. 1 and Fig. 1 is a schematic view of the structure of the present invention. As shown in the figure: the _:68,:==^^ (4) nsfer mo丨cnng) is deposited, _...彡&amp; ^ ^ The structure of the conductor crystals is used for the purpose of the transfer molding method Including the components in - poor,, Lu ^ ### (m〇lding c〇mp〇und), under the pressure of heat and plastic state, the injection molding material is in the name, 攸1P heart storage phase 46 1292195 ( The central reservoir is also delivered to the sealed cavity by a transfer pot through the tree array of runners and gates. Preferably, the transfer molding system comprises a preheater, a mold, a press, and a cure oven. The mold system includes an upper mold portion and a lower mold portion, which may also be referred to as (platens) or halves to define the mold size. The mold system also includes the chamber, runner wash, and vents. The cavity accommodates the injection molding material. The runner and gate provide access from the chamber to the cavity. The gate is placed near the entrance of the cavity and is compressed to control the flow rate and injection speed of the injection molding material when entering the cavity and to facilitate the movement of the solidified injection molding material during the formation of the transfer . The vent allows the restricted air to be vented, but the vent is small enough to allow very small amounts of injection molding material to pass. The injection molding material is in the form of a flat sheet at the beginning. The preheater uses a high frequency energy source to preheat the injection molding material to a temperature ranging from 50 degrees to 100 degrees. The preheating temperature is lower than the temperature of the transfer, so the preheated injection molding material is not in a fluid state. In addition, the unitary structure is placed in one of the cavities, and the molding machine operates hydraulically to close the mold and position the mold cavity by positioning the upper mold and the lower module. The leader pins ensure that the upper mold portion and the lower mold portion are just in close contact with the parting line. In addition, the mold is heated to a transfer temperature, and the transfer temperature ranges from 150 degrees to 250 degrees by electronically heating the upper mold portion and the lower mold portion by inserting 47 1292195. After the male mold is sealed, the preheated injection molding material is placed in the cavity in the form of a flat plate. A transfer plunger is then applied to the injection molding material in the chamber. This pressure range is from 10 to 100 kgf/cm2 and can be set as high as possible without reliability. The processing of heating and applying pressure to the mold to the transfer needle causes the injection molding material in the chamber to be switched to a fluid state. Moreover, the pressure from the transfer pin forces the transfer pin of the fluid to enter the cavity through the channel and the wash. The closing force is maintained at the optimum time for fixing to ensure that the injection molding material fills the lower module and is in contact with the metal substrate 120, and can be combined with the metal substrate 120, and the metal substrate (4) = even (four) 丨 66 distance 12_. Because ^ = material = material (four) wafer UG, winding i5Q, fresh contact with the contact compensation ^ 162, adhesive 164 and the connection portion 166 exposure "妾 核 nuclear hole. After the transfer temperature has passed 1 to 3 minutes Thereafter, the injection molding material (4) is polymerized and partially hardened in the elastic Si portion of the mold: after the material is hardened, the system has sufficient and permanent (four): the strength of the extrusion is such that it cannot be taken in a significant mold: The mold is opened by the rolling machine. The mold release rod is attached to the scaled structure, and the injection molding material attached to the X is cured on the runner and the gate of the 48 1292195. The structure is finished and removed. The cast structure is loaded into a magazine and placed in the hardening oven for 4 to 16 hours' and at a temperature slightly lower than the transfer temperature but The high indoor temperature makes the injection molding material completely hardened. The injection molding material is a multi-component sealing resin added with various external force σ agents. The additive of the main wife includes a hardener, an accelerated lean filler, Bonding agent, flame retardant, stress relief agent, colorant and mold release agent. (4) Sealing resin A bmder, the curing agent provides a straight line/crosshair, cooperative (iinear/cross_polymerizati〇n), the accelerator increases the gas polymerization rate, and the inert filler increases thermal conductivity. , thermal shock resistance and reduction of thermal expansion coefficient, resin loss, shrinkage and residual pressure'. The bonding agent increases the adhesion to the overall structure, and the flame retardant reduces flammability. The stress relieving agent reduces crack growth. The coloring reduces the photon activity and device visibility, and the release agent is easily removed from the mold. The sealing layer 168 and the semiconductor wafer 110, the winding 150, the solder (four) cover 156' plating contacts 162, the adhesive The sealing layer 168 is in contact with the first surface 1丨2 of the semiconductor wafer and its outer edge, but is isolated from the first plane 1 14 of the semiconductor wafer 110. The layer 1 68 is overlaid on the metal plate 1 and the soldered end 42 but is isolated from the metal substrate 120, the metal nib 2 and the soldered end 142. 49 1292195 The sealing layer 168 is - it can provide an environment Protection, such as protection of 11 billion resistant particles of a solid adhesive as the wire protective layer of a compressible, such as resistance; ^ crystal 44, W β # 4 *; if ... *

半導體晶片係減人於該密封層168中。休^ 12〇、該Λ封層168從該半導體晶片110、金屬基板 、’屬壁132、銲接層142、繞線15〇、銲接遮罩 156、電鍍接點162、黏著劑164及連接部166向上延 • 伸,其厚度為400微米,並從該連接部166向上 120微米。 請參閱『第22Α、22.Β及22C圖』所示,係為本 發明之金屬柱於金屬基板上形成後之結構剖面示意 圖、本發明之金屬柱於金屬基板上形成後之結構俯視 示意圖及本發明之金屬柱於金屬基板上形成後之結構 仰視示意圖。如圖所示··該金屬柱17〇係為該金屬基 板120之未被蝕刻部份,係與該金屬壁132及繞線15〇 • 接觸,並被夾於該金屬壁132與繞線150間,且使該 金屬壁132與繞線150間具有電性的連接,但不與該 金屬壁132及繞線150整合為一體,而該金屬柱17〇 係由銅組成。 該金屬柱Π0被形成係藉由一種濕式化學餘刻對 該金屬基板120蝕刻,並利用該金屬壁132及銲接層 142為其蝕刻遮罩,且選擇性地保護該金屬基板12〇。 因此,該金屬柱170係依該金屬壁132來定出該金屬 50 1292195 基板12G未被㈣部份而被形成。 種背邊式濕式化學蝕刻係被用於對該金屬基板 120 之 H 一 士 @ τ 乐一主要平面124、金屬壁132及銲接端142。 乂底°卩喷嘴能喷射該濕式化學姓刻溶液於該金屬基 板120上’當頂部喷嘴係不被使用時或整體結構被浸 於該濕式化學蝕刻溶液裡,該密封層168係能提供前 側保濩。當銅對鎳、錫料、環氧樹脂及注模材料時係 • 適用该濕式化學蝕刻,所以,當該金屬基板120對該 金屬壁132、銲接層142、該繞線15〇之鎳層、銲接遮 罩156及密封層168時適用該濕式化學蝕刻。 該濕式化學蝕刻係完全穿過該金屬基板120,因 此影響該金屬壁132之圖案轉移於金屬基板120上。 並使該繞線150及銲接遮罩156暴露,減少但不移除 該金屬基板120與金屬壁132、繞線15〇及銲接遮罩 _ 156之接觸區域。然而該金屬壁132、銲接層μ】、繞 線150之鎳層、銲接遮罩156或密封層168沒被移除^ 而該繞線150之鎳層係於化學蝕刻時保護該繞線15〇 之銅層。所以該繞線150係沒被移除。 該濕式化學蝕刻係也橫向切割該金屬基板12〇相 對於該金屬壁132,並造成該金屬柱17〇向内部傾斜 並增加高度。一合適之傾斜角度係介於45度至小於 90度間’如約75度。 該金屬柱170係與該繞線150於較大圓形部份154 51 1292195 接觸,但與長形繞線部份152隔離,並從該繞線15〇 向下延伸。因此該金屬柱Π〇與該繞線15〇於向下方 向有。卩伤重龙,然而該金屬柱】70係無覆蓋該繞線^ 於向下方向。 ^ 一種合適之濕式化學蝕刻溶液係能被鹼性之氨水 提供。使该金屬基板12〇暴露於該化學蝕刻溶液中之 理心的#刻時間須多次的反覆試驗,A 了钱刻穿透該 金屬基板120 ,以及形成具理想尺寸之金屬柱17〇,但 不使4金屬壁132 f到侵ϋ或避免使m5〇暴露 於化學蝕刻溶液中。 、/亥金屬柱170係包含相對應之第一平面172、第 二平面Π4及錐面1 76(tapered sidewaHs),其中,該金 屬柱170之第一平面丨72係建構於該金屬基板120之 第-主要平面第一主要平面122之未蝕刻部份上該 金屬柱170之第二平面174係、建構於該金屬基板120 内之凹口 130之未蝕刻部份。因此該 ,向)上,言亥第二平面174係朝向下。該第一平面^ 糸與-玄繞、線1 50接觸並面向該繞線」5〇,且與該金屬 ^32隔離’而該第二平面174係與該金屬壁132接 ,面向該金屬壁132,但與該繞線15〇隔離。此外, ^弟平® 172係為平坦的,並與該半導體晶片ιι〇 =一:面η2及第二平面114及繞線15〇平行,而 4二平面174係沿著該金屬壁132之輪廟。該雜面 52 1292195 176係與該第一平面172及第二平面Π4鄰接,並朝 向該第二平面174往内部傾斜。 该金屬柱170係為一圓錐形,其介於第一平面Η〕 與第二平面174間之高度為7〇微米,於該第一平面 172向下延伸時(係從該第一平面172朝向第二平面 174),其直徑逐漸地縮小。該第一平面172係為圓形, 其直徑為250微米,而該第二平面174係亦為圓形, 其直徑為200微米。該第一平面172及第二平面174 係與金屬壁132、銲接層142及較大圓形部份154等 呈垂直地排列。因此該第二平面174係被置於該之該 金屬壁132、銲接層丨钧、較大圓形部份154及第一平 面172之表面區域内。而且該第一平面172之表面區 域係比該第二平面174之表面區域至少大1〇%。 該金屬柱170係被置於該半導體晶片11〇之邊緣 外,並被置於該半導體晶片n〇、繞線15〇、銲接遮罩 156 '黏著劑164、連接部166及密封層ι68於向下方 向,且從該金屬壁132及銲接層142向上延伸。而該 半導體晶片11 0係從該繞線1 5〇、銲接遮罩丨56、黏著 劑164及金屬柱170向上延伸,該繞線係被置於該金 屬壁132、銲接層142及金屬柱17〇於向上方向,並 從該金屬壁132、銲接層142及金屬柱170橫向延伸, 且朝向該半導體晶片110,該密封層168係覆蓋該半 導體晶片110、金屬壁132、銲接層142、繞線150、 53 1292195 鲜接遮罩156、黏著劑164、連接部166及金屬柱17〇, 並從忒半導體晶片110、金屬壁132、銲接層142、繞 線150、銲接遮罩156、黏著劑164、連接部16 屬柱170向上延伸。 該密封層168係對該繞線15〇及金屬柱17〇提供 機械支揮’係可減少於該黏著劑1.64上之機械張力, 於该金屬基板12G被㈣形成該金脉17G之後係特 別地有用。該密封層168係可保護該繞、線150及金屬 柱.化學㈣及蒸财清洗時避免機械損害。例 如.S亥进封们68係吸收於化學餘刻及蒸鑛水清洗時 ,物理力量’因於化學#刻及蒸館水清洗時係可能使 §亥半導體晶片110與該繞線150分離。因此,該密封 層丨68係'可增加結構之完整性,ϋ可於化學蝕刻及蒸 潑水清洗被使収堅固地,進而提高生產率。 ' «玄導電跡線1 8〇係包括金屬壁丨32、銲接層142、 繞線15G、電鑛接點⑹及金屬柱17G。該導電跡線 180係適合提供水平及垂直方向之路於導電腳位⑴ 與下一層次構裝間。 請茶閱『第23Α、23Β及23C圖』所示,係為本 發明之絕緣封_成後之結構剖面示意圖、本發明之 絕緣封膠形成後之結_視示㈣及本發明之絕緣封 膠形成後之結構仰視示意圖。如圖所示:該絕緣封膠 182開始係為—τ狀之環氧樹脂,其包括一環氧樹 54 1292195 脂、一硬化劑、一加速劑及一填充劑,其中該填充劑 為一惰性材料,如矽土(silica)為粉末溶化狀之石英, 係可增進熱傳導性、抗熱衝擊性(thermal shock resistance)及熱膨脹系數之一致性。該環氧樹脂膏 (epoxy paste)係可沈積於該金屬壁丨32、銲接層142、 繞線15 0、銲接遮罩15 6及金屬柱17 〇上,然後該環 氧樹脂膏於相對低溫下硬化形成一固態黏著絕緣體, 其相對低溫之範圍係介於100度至250度,並可提供 鲁 该繞線1及金屬柱1—具保護的密封層(a protective seal) ° 該絕緣封膠182係與該金屬壁丨32、銲接層142、 繞線150、銲接遮罩156及金屬柱170接觸並覆蓋該 金屬壁132、銲接層142、繞線150、銲接遮罩156及 金屬柱170,且從該金屬壁132、銲接層142、繞線15〇、 麵接遮罩156及金屬柱170向下延伸,而覆蓋該半導 • 體晶片U0、電鍍接點162、連接部166及密封層168, 但與該半導體晶片110、電鍍接點162、連接部166及 密封層168隔離。該絕緣封膠182之厚度為2〇〇微米。 因此該絕緣封膠182從金屬壁132、銲接層142、繞線 丨5〇及金屬柱170向下延伸,並使該金屬壁132、銲接 層142、繞線丨50及金屬柱丨7〇未暴露的。 請參閱『第24A、24B及24C圖』所示,係為本 發明之絕緣封膠移除後之結構剖面示意圖、本發明之 55 1292195 絕緣封膠移除後之結構俯視示意圖及本發明之絕緣封 膠移除後之結構仰視示意圖。如圖所示:該絕緣封膠 182之較低部份係藉由研磨方法被移除。特別地,一 旋轉鑽石砂輪及蒸餾水係被用於該絕緣封膠丨82之背 面。一開始,該鑽石砂輪只對該絕緣封膠丨82研磨, §持、·、貝研磨日守,使違絕緣封膠182變薄於該被研磨之 表面向上遷移時。然後該鑽石砂輪係與該銲接層142 接觸,所以開使研磨該銲接層142。當持續研磨時, 擊使該絕緣封膠182及銲接層142同時變薄於其被研磨 之表面向上遷移時。然而該鑽石砂輪接觸該金屬壁 132,因此開使研磨該金屬壁132。當持續研磨時,使 邊金屬壁132、銲接層M2及絕緣封膠182變薄於於 其被研磨之表面向上遷移時。持續研磨直到該該金屬 壁132、銲接層142及絕緣封膠182達到所需要之厚 度及於接觸到泫半導體晶片、繞線15〇、鮮接遮罩 φ 156、電鑛接點1 62、黏著劑164、連接部16ό、密封 層168或孟屬柱1 7〇如即停止研磨,之後,將整體結 構用蒸餾水清洗並除去汙染物。 當研磨處理完之後,該金屬壁132、銲接層142 及絕緣封膠182係從該金屬柱丨7〇向下延伸7〇微米。 因此研磨處理移除10微米厚之金屬壁132較低部份, 移除40微求厚之銲接層142較低部份,以及移除6〇 微米該絕緣封膠1 82較低部份。 56 1292195 經上述過程後,該半導體晶片110仍被嵌入該密 封層16 8内,該金屬柱17 〇被嵌^入該絕緣封膠18 2内, 而該繞線150及金屬柱170係仍未被暴露,以及該金The semiconductor wafer is subtracted from the sealing layer 168. The sealing layer 168 is from the semiconductor wafer 110, the metal substrate, the 'genus wall 132, the solder layer 142, the winding 15 〇, the solder mask 156, the plating contact 162, the adhesive 164, and the connecting portion 166. The extension is extended to a thickness of 400 microns and is 120 microns upward from the joint 166. Please refer to the "22nd, 22nd, 22th and 22th" diagrams, which are schematic cross-sectional views showing the structure of the metal pillar of the present invention formed on the metal substrate, and the structure of the metal pillar of the present invention formed on the metal substrate. A schematic view of the structure of the metal pillar of the present invention formed on a metal substrate. As shown in the figure, the metal post 17 is an unetched portion of the metal substrate 120, which is in contact with the metal wall 132 and the winding 15 and is sandwiched between the metal wall 132 and the winding 150. The metal wall 132 is electrically connected to the winding 150, but is not integrated with the metal wall 132 and the winding 150. The metal pillar 17 is made of copper. The metal pillar Π0 is formed by etching the metal substrate 120 by a wet chemical etch, and etching the mask by the metal wall 132 and the solder layer 142, and selectively protecting the metal substrate 12 〇. Therefore, the metal post 170 is formed by the metal wall 132 to define that the metal 50 1292195 substrate 12G is not (four). A backside wet chemical etch is used for the metal substrate 120, which is a primary plane 124, a metal wall 132, and a soldered end 142. The bottom 卩 nozzle can spray the wet chemical surname solution on the metal substrate 120. When the top nozzle system is not used or the entire structure is immersed in the wet chemical etching solution, the sealing layer 168 can provide Front side protection. When copper is used for nickel, tin, epoxy, and injection molding materials, the wet chemical etching is applied, so when the metal substrate 120 is on the metal wall 132, the solder layer 142, and the nickel layer of the winding 15 The wet chemical etching is applied when soldering the mask 156 and the sealing layer 168. The wet chemical etching completely passes through the metal substrate 120, thereby affecting the transfer of the pattern of the metal wall 132 onto the metal substrate 120. The wire 150 and the solder mask 156 are exposed to reduce, but not remove, the contact area of the metal substrate 120 with the metal wall 132, the wire 15 and the solder mask 156. However, the metal wall 132, the solder layer μ, the nickel layer of the winding 150, the solder mask 156 or the sealing layer 168 are not removed, and the nickel layer of the winding 150 protects the winding 15 during chemical etching. The copper layer. Therefore, the winding 150 is not removed. The wet chemical etching system also laterally cuts the metal substrate 12 to the metal wall 132 and causes the metal post 17 to tilt toward the inside and increase the height. A suitable angle of inclination is between 45 degrees and less than 90 degrees, such as about 75 degrees. The metal post 170 is in contact with the winding 150 at a relatively large circular portion 154 51 1292195, but is isolated from the elongated winding portion 152 and extends downwardly from the winding 15〇. Therefore, the metal post and the winding 15 are turned downward. The heavy dragon, however, the metal column] 70 series does not cover the winding ^ in the downward direction. ^ A suitable wet chemical etching solution can be provided by alkaline ammonia. The metal substrate 12 is exposed to the chemical etching solution. The time of the etching must be repeated several times. A money penetrates the metal substrate 120 and forms a metal pillar 17 of a desired size, but The 4 metal walls 132 f are not allowed to smear or the m5 避免 is prevented from being exposed to the chemical etching solution. The first metal plane 170 includes a corresponding first plane 172, a second plane Π4, and a tapered side 174 (tapered sidewaHs), wherein the first plane 丨 72 of the metal pillar 170 is constructed on the metal substrate 120 The second plane 174 of the metal post 170 on the unetched portion of the first major plane 122 of the first major plane is an unetched portion of the recess 130 formed in the metal substrate 120. Therefore, the second plane 174 is oriented downward. The first plane 接触 is in contact with the imaginary winding, the line 150 and faces the winding "5" and is isolated from the metal 32" and the second plane 174 is connected to the metal wall 132 facing the metal wall 132, but isolated from the winding 15〇. In addition, the Diping® 172 is flat and parallel to the semiconductor wafer ιι〇=一: face η2 and second plane 114 and winding 15〇, and the 4 second plane 174 is along the wheel of the metal wall 132 temple. The surface 52 1292195 176 is adjacent to the first plane 172 and the second plane Π4 and is inclined toward the second plane 174. The metal post 170 is a conical shape, and the height between the first plane Η and the second plane 174 is 7 〇 micrometers. When the first plane 172 extends downward (from the first plane 172) The second plane 174) is gradually reduced in diameter. The first plane 172 is circular and has a diameter of 250 microns, while the second plane 174 is also circular and has a diameter of 200 microns. The first plane 172 and the second plane 174 are arranged perpendicular to the metal wall 132, the solder layer 142, and the larger circular portion 154. Therefore, the second plane 174 is placed in the surface area of the metal wall 132, the solder layer 丨钧, the larger circular portion 154, and the first plane 172. Moreover, the surface area of the first plane 172 is at least 1% larger than the surface area of the second plane 174. The metal post 170 is placed outside the edge of the semiconductor wafer 11 and placed on the semiconductor wafer n, the winding 15 , the solder mask 156 'adhesive 164 , the connecting portion 166 and the sealing layer ι 68 . The lower direction extends upward from the metal wall 132 and the solder layer 142. The semiconductor wafer 110 extends upward from the winding 15 , the solder mask 56 , the adhesive 164 , and the metal post 170 , and the winding is placed on the metal wall 132 , the solder layer 142 , and the metal pillar 17 . The semiconductor layer 110, the metal wall 132, the solder layer 142, and the winding are covered by the metal layer 132, the solder layer 142, and the metal pillars 170 extending laterally toward the semiconductor wafer 110. 150, 53 1292195 fresh mask 156, adhesive 164, connecting portion 166 and metal post 17A, and from semiconductor wafer 110, metal wall 132, solder layer 142, winding 150, solder mask 156, adhesive 164 The connecting portion 16 is extending upward from the column 170. The sealing layer 168 is provided with a mechanical support for the winding 15〇 and the metal post 17〇 to reduce the mechanical tension on the adhesive 1.64. After the metal substrate 12G is formed by the (4) gold vein 17G, it works. The sealing layer 168 protects the winding, the wire 150 and the metal column. Chemical (4) and mechanical damage during steam cleaning. For example, when the .S Hai seals 68 are absorbed in chemical remnants and steamed mineral water, the physical force' may be separated from the winding 150 by the chemical #刻 and steaming water cleaning. Therefore, the sealing layer 68 can increase the structural integrity, and can be solidified by chemical etching and steam washing, thereby improving productivity. 'Xuan Conductive Trace 1 8〇 includes metal niche 32, welded layer 142, winding 15G, electric ore joint (6) and metal column 17G. The conductive trace 180 is adapted to provide a horizontal and vertical path between the conductive pin (1) and the next level. Please read the "23rd, 23rd, and 23C" drawings of the present invention, which is a schematic cross-sectional view of the insulating seal of the present invention, the knot after the formation of the insulating sealant of the present invention, and the insulating seal of the present invention. The structure after the formation of the glue is a bottom view. As shown in the figure: the insulating encapsulant 182 is initially a -τ-like epoxy resin comprising an epoxy tree 54 1292195 grease, a hardener, an accelerator, and a filler, wherein the filler is an inert Materials such as silica are powder-dissolved quartz, which improves the thermal conductivity, thermal shock resistance and thermal expansion coefficient. The epoxy paste can be deposited on the metal nib 32, the solder layer 142, the winding 150, the solder mask 15 6 and the metal post 17 , and then the epoxy paste is at a relatively low temperature. Hardening to form a solid adhesive insulator, the relative low temperature range is from 100 degrees to 250 degrees, and can provide a winding 1 and a metal post 1 - a protective seal ° The insulating seal 182 Contacting the metal niche 32, the solder layer 142, the winding 150, the solder mask 156, and the metal post 170, and covering the metal wall 132, the solder layer 142, the winding 150, the solder mask 156, and the metal post 170, and The metal wall 132, the solder layer 142, the winding 15 〇, the surface mask 156 and the metal post 170 extend downward to cover the semiconductor wafer U0, the plating contact 162, the connecting portion 166 and the sealing layer 168. However, it is isolated from the semiconductor wafer 110, the plating contact 162, the connection portion 166, and the sealing layer 168. The insulating encapsulant 182 has a thickness of 2 μm. Therefore, the insulating encapsulant 182 extends downward from the metal wall 132, the solder layer 142, the winding 丨5〇, and the metal post 170, and the metal wall 132, the solder layer 142, the winding 丨50, and the metal post 〇7 Exposed. Please refer to FIG. 24A, FIG. 24B and FIG. 24C for a schematic cross-sectional view of the insulating encapsulant after the removal of the insulating sealant of the present invention, and a schematic top view of the structure of the present invention after removal of the insulating encapsulant 55 and the insulation of the present invention. The structure after the sealant is removed is shown in a bottom view. As shown, the lower portion of the insulating encapsulant 182 is removed by a grinding process. Specifically, a rotating diamond wheel and a distilled water system are used for the back surface of the insulating sealant 82. Initially, the diamond grinding wheel only grinds the insulating encapsulation crucible 82, and § holds, and the bead is polished, so that the insulating encapsulant 182 is thinned when the surface to be polished migrates upward. The diamond wheel train is then in contact with the weld layer 142 so that the weld layer 142 is ground. When the grinding is continued, the insulating sealant 182 and the solder layer 142 are simultaneously thinned as they migrate upwardly from the surface to be polished. However, the diamond wheel contacts the metal wall 132, thereby opening the metal wall 132. When the grinding is continued, the side metal wall 132, the solder layer M2, and the insulating encapsulant 182 are thinned when the surface to be polished migrates upward. Continuously grinding until the metal wall 132, the solder layer 142 and the insulating encapsulant 182 reach the required thickness and contact with the germanium semiconductor wafer, the winding 15 〇, the fresh mask φ 156, the electric ore joint 1 62, and the adhesion The agent 164, the joint portion 16A, the sealing layer 168, or the genus column 7 7, for example, stops grinding, after which the entire structure is washed with distilled water and the contaminants are removed. After the grinding process is completed, the metal wall 132, the solder layer 142, and the insulating encapsulant 182 extend downward from the metal post 7〇 by 7 μm. Thus, the grinding process removes the lower portion of the 10 micron thick metal wall 132, removes the lower portion of the 40 micron thick solder layer 142, and removes the lower portion of the insulating encapsulant 1 82 from the 6 micron thickness. 56 1292195 After the above process, the semiconductor wafer 110 is still embedded in the sealing layer 16 8 , and the metal pillar 17 is embedded in the insulating sealing material 18 2 , and the winding 150 and the metal pillar 170 are still not Being exposed, and the gold

屬壁132及銲接層係被暴露。該絕緣封膠182係覆蓋 該半導體晶片110、電鍍接點162、黏著劑164及連接 部166未與該半導體晶片110、電鍍接點162、黏著劑 164及連接部166,並從該半導體晶片11〇、電鑛接點 162、黏著劑164及連接部166向下延伸,但與該半導 體日日片110、電鑛接點162、黏著劑164及連接部166 隔離;而與該繞線150、銲接遮罩156及金屬柱17 接觸,並從該繞線150、銲接遮罩156及金屬柱17 向下延伸,與該金屬壁132接觸但與該銲接層! 42 R 離。該絕緣封膠1 82係與該繞線15〇、銲接遮罩i % 密封層168及金屬柱170於向下方向有部份重疊,敎 而該絕緣封膠丨82係不再覆蓋該繞線150、銲ς遮^ 156'密封層ι68或金屬柱丨7〇於向下方向。而且射 =二Μ I銲接層142及絕緣封膠182係被橫向相互 :列於-朝向下之平面上。因此該金屬壁 層⑷及絕緣轉182係為一被暴露 ^ 面係朝向下。 卞向,^千 珣參閱『第25Α zdo 25Γ m ^ 發明之錫球形成後之結構剖面示4』:示’係為本 形成後之結構俯視示意圖及本發明之 57 1292195 構仰視示意圖。如圖所示:該錫球184起初係為一無 鉛球並為一球狀,其直徑為300微米,該無鉛球係被 浸泡於助熔劑中,並提供該錫球184具有流動表面塗 層’其圍繞著該無鉛球。然後將整體結構倒轉,使該 銲接層142係朝向上,而該錫球184係被沈積於該銲 接層142上。該錫球184附著於該銲接層142上並不 系®固’因為该锡球1 8 4之流動表面塗層。 為了圖示及說明方便,該錫球184繪於該銲接層 142下方’保持與前圖同一方向以便進行比對,雖然 整體結構顛倒,但藉由重力使該錫球184黏著於該銲 接層上。 請參閱『第26A、26B及26C圖』所示,係為本 發明之銲接端形成後之結構剖面示意圖、本發明之鋅 接端形成後之結構俯視示意圖及本發明之銲接端形成 後之結構仰視示意圖。如圖所示:該銲接端186(s〇lder terminal)係包括該銲接層142及錫球184並由該鮮接 層142及錫球184而被形成。首先,該錫球184置於 該銲接層142上。然後,整體結構係被加熱至一溫度, 其溫度約為260度。進行加熱係造成於該錫球丨84上 之助熔劑產生反應,並從該銲接層142上移除氧化 物’且使该辉接層14 2及錫球1 8 4被融化。因此使該 銲接層142及錫球1 84 —起迴流成一被融化錫料混合 物及產生錫料迴流。而該絕緣封膠182係不提供一可 58 1292195 使該錫料迴流容易之濕表面。所以該錫料迴流係被該 金屬壁132偈限。之後,停止加熱使該被融化之錫料 冷卻凝固硬化形成銲接端186。在這方法中,將該鲜 接層142及錫球184係被轉換為銲接端186。 因此該銲接層142及銲接端186係依順序被形 成。該金屬壁132係被鍍於金屬基板120,然後該錫 貧140係被沈積於金屬壁132上並於迴流時形成該銲 接層142 ’接著該錫球184係被沈積於該銲接層142 上,然後該銲接層142及錫球184係被一起迴流形成 該銲接端186。 該銲接端186之直徑為400微米,其向下方向相 對於金屬壁132及絕緣封膠182之厚度為5〇微米,並 填滿該孔洞134,且與該金屬壁132、較大圓形部份 15 4及金屬柱17 〇呈垂直地排列。 該銲接端186係與該金屬壁132接觸並與其具有 電性的連接,但非與該金屬壁132整合為一體,且只 與該金屬壁132及該孔洞134内之金屬壁132接觸了 因此該銲接端186係與該半導體晶片11〇、繞線15〇、 鋅接遮罩156、電鍍接點162、黏著劑164、連接部166、 密封層168、金屬柱17〇及絕緣封膠182隔離,並從 該半導體晶片110、繞線15〇、銲接遮罩156、電鑛接 點162、黏著劑164、連接部166、密封層168、金屬 柱170及絕緣封膠〗82向下延伸。而且該銲接端丨86 59 1292195 係往該制U4之内料外料伸,輕蓋該金屬壁 :32及金屬柱17〇於向下方向,但不被該半導體晶片 封裝結構之任何材料覆蓋於向下方向。同樣地該鲜 接端186往該絕緣封膠182峡伸之整體部份係只與 該金屬壁132有接觸’並被該金屬壁覆蓋於向上方 向,且於該孔洞134内。 該鮮接端186係提供—㈣的電力接點可與該金 屬,132連接,及接觸端於外部電路上。有助於該銲 接端186細伸至該金屬壁132於該絕緣封膠182 内且可避免與该開口 136於一橫向平面上之高壓邊 界接觸,該開口 136係於該絕緣封膠182之主要暴露 表面上並朝向下方向,因此可減少錫料分離並增進可 靠度。 經由上述,該導電跡線180係包括金屬壁132、 、、&gt;〇線15〇電鑛接點162、金屬柱170及銲接端186。 為了圖不及說明方便,該銲接端186繪於該半導 -片之下方’並維持與前圖相同方向係為了方便比 $ ’雖然整體結構顛倒,於該銲接端186之形成時, 藉由重力幫助錫料迴流。 &amp;请參閱『第27A、27B及27C圖』所示,係為本 發明之半導體晶片封裝結構剖面示意圖、本發明之半 '曰曰片封衣結構俯視示意圖及本發明之半導體晶片 封液結構仰視示意圖。如圖所示··經上述過程該半導 1292195 體晶片封裝結構198係包括半導體晶片no、金屬壁 132、繞線15〇、銲接遮罩156、電鍍接點i62、黏著 劑164、連接部ι66、密封層168、金屬柱17〇、絕緣 封膠182及銲接端1 86所構成。 s亥半導體晶片係從該導電跡線18〇向上延 伸’並與該絕緣封膠182於向上方向有部份重疊,但 並沒有與該導電跡線18〇於向上方向重疊。因此該導 電跡線180係被置於該半導體晶片11〇之邊緣外。該 孟屬壁132係從該銲接端1 86向上延伸,並具有固定 厚度,且只與金屬柱170、絕緣封膠182及銲接端I% 接觸。該孔洞134係被置於該絕緣封膠182内,並被 該銲接端186填滿。該繞線15〇與該半導體晶片ιι〇 機械地連接係藉由黏著劑164,並與該半導體晶片ιι〇 具有電性的連接係藉由該連接部166,且從該金屬壁 132、金屬柱17〇及鮮接端186橫向延伸而朝向半導 體晶片U0,該繞線150係為平坦且平行於體曰 片U:之第一平面112及第二平面U4。該密封層16; 係覆盍该半導體晶片11G、銲接遮罩156、黏著劑⑹、 連接部166、導電跡線180及絕緣封膠182於向上方 向。該金屬柱170係被繞線15〇覆蓋於向上方 被該金屬壁⑽銲接端186覆蓋於向下方向:雖然 違金屬柱17G係未被暴露,並與該金屬壁1 封膠182及焊接端186於向下方向有部份重疊,^ 1292195 屬柱m係不被該密封層168、絕緣封膠i82或任何 絕緣村質於半導體晶片封裝結構覆蓋於向下方向。$ 絕緣封膠182與該金屬壁132、繞線132及銲接端^ 向上延伸’且k半導體晶片i! Q、繞線】、銲接遮罩 156、連接部166、密封層168及金屬柱17〇向下延伸。 該金屬壁132、.金屬柱17〇及銲接端186係從唁 繞線150向下擴展,但不覆蓋該繞線15〇於向下方向γ 该金屬壁132係橫向繞該鮮接端186延伸至該絕緣封 膠182内之整體部份外圍旋轉綱度,而該絕緣封膠 182係橫向繞該金屬壁132外圍旋轉%&quot;。該密封 層168及絕緣封膠182係對該半導體晶片封裝結構198 提供機械支撐及環境保護。 该連接部166係提供水平繞線及垂直繞線於導電 腳位116與外部電路間,並提供水平輸出繞線The genus wall 132 and the weld layer are exposed. The insulating encapsulant 182 covers the semiconductor wafer 110, the plating contact 162, the adhesive 164, and the connection portion 166, and the semiconductor wafer 110, the plating contact 162, the adhesive 164, and the connection portion 166, and from the semiconductor wafer 11 The crucible, the electric ore joint 162, the adhesive 164 and the connecting portion 166 extend downward, but are isolated from the semiconductor solar wafer 110, the electric ore joint 162, the adhesive 164 and the connecting portion 166; and the winding 150, The solder mask 156 is in contact with the metal post 17 and extends downward from the winding 150, the solder mask 156 and the metal post 17, in contact with the metal wall 132 but with the solder layer! 42 R away. The insulating encapsulant 1 82 is partially overlapped with the winding 15 , the solder mask i % sealing layer 168 and the metal post 170 in a downward direction, and the insulating encapsulant 82 no longer covers the winding. 150, the welding ς ^ 156 ' sealing layer ι68 or metal column 丨 7 〇 in the downward direction. Moreover, the shot = bismuth I solder layer 142 and the insulating encapsulant 182 are laterally mutually oriented: on the plane facing downward. Therefore, the metal wall layer (4) and the insulating turn 182 are exposed to face down.卞向, ^千珣 Refer to "25th Α zdo 25Γ m ^ The structure of the invention after the formation of the solder ball is shown in Figure 4": shows a schematic view of the structure after the formation of the structure and the schematic view of the 57 1292195 structure of the present invention. As shown in the figure: the solder ball 184 is initially a lead-free ball and has a spherical shape with a diameter of 300 μm. The lead-free ball system is immersed in a flux and the solder ball 184 is provided with a flow surface coating. It surrounds the lead-free ball. The overall structure is then inverted such that the solder layer 142 is oriented upward and the solder balls 184 are deposited on the solder layer 142. The solder ball 184 is attached to the solder layer 142 and is not solidified because of the flow surface coating of the solder ball 184. For ease of illustration and description, the solder ball 184 is drawn under the solder layer 142 'maintained in the same direction as the previous figure for comparison. Although the overall structure is reversed, the solder ball 184 is adhered to the solder layer by gravity. . Please refer to the drawings of FIGS. 26A, 26B and 26C, which are schematic cross-sectional views of the structure after the formation of the welded end of the present invention, a schematic plan view of the structure after the formation of the zinc joint of the present invention, and the structure after the formation of the welded end of the present invention. Looking up at the schematic. As shown, the solder joint 186 includes the solder layer 142 and the solder balls 184 and is formed by the solder layer 142 and the solder balls 184. First, the solder ball 184 is placed on the solder layer 142. The overall structure is then heated to a temperature of about 260 degrees. Heating is performed to cause a fluxing reaction on the solder ball 84 to remove oxides from the solder layer 142 and to melt the solder layer 14 2 and the solder balls 128. Therefore, the solder layer 142 and the solder balls 184 are reflowed into a molten tin mixture and a tin reflow is generated. The insulating encapsulant 182 does not provide a wet surface that allows the tin to reflow easily. Therefore, the tin reflow is limited by the metal wall 132. Thereafter, the heating is stopped to cool and solidify the melted tin to form the welded end 186. In this method, the fresh layer 142 and the solder balls 184 are converted into soldered ends 186. Therefore, the solder layer 142 and the soldering end 186 are formed in order. The metal wall 132 is plated on the metal substrate 120, and then the tin-depleted 140 is deposited on the metal wall 132 and forms the solder layer 142 upon reflow. Then the solder ball 184 is deposited on the solder layer 142. The solder layer 142 and the solder balls 184 are then reflowed together to form the solder end 186. The soldering end 186 has a diameter of 400 micrometers, and has a thickness of 5 micrometers in a downward direction with respect to the metal wall 132 and the insulating encapsulant 182, and fills the hole 134, and the metal wall 132 and the larger circular portion. Parts 15 4 and metal columns 17 are arranged vertically. The soldering end 186 is in contact with and electrically connected to the metal wall 132, but is not integrated with the metal wall 132, and is only in contact with the metal wall 132 and the metal wall 132 in the hole 134. The soldering end 186 is isolated from the semiconductor wafer 11 , the winding 15 , the zinc mask 156 , the plating contact 162 , the adhesive 164 , the connecting portion 166 , the sealing layer 168 , the metal post 17 , and the insulating encapsulant 182 . And extending downward from the semiconductor wafer 110, the winding 15 〇, the solder mask 156, the electric ore joint 162, the adhesive 164, the connecting portion 166, the sealing layer 168, the metal post 170, and the insulating seal 82. Moreover, the soldering end 丨86 59 1292195 is extended to the inside of the U4, and the metal wall: 32 and the metal post 17 are folded in the downward direction, but are not covered by any material of the semiconductor chip package structure. Down direction. Similarly, the integral portion of the fresh terminal 186 extending toward the insulating sealant 182 is only in contact with the metal wall 132 and is covered by the metal wall upwardly and within the hole 134. The splicing terminal 186 provides - (iv) a power contact to the metal, 132, and the contact end to an external circuit. The soldering end 186 is extended to the metal wall 132 in the insulating encapsulant 182 and avoids contact with the high-voltage boundary of the opening 136 in a lateral plane. The opening 136 is mainly attached to the insulating encapsulant 182. Exposure to the surface and downwards thus reducing solder separation and increasing reliability. Throughout the above, the conductive traces 180 include metal walls 132, , , &gt; turns 15 , electrical ore junctions 162 , metal posts 170 , and solder ends 186 . For the sake of convenience of illustration, the soldering end 186 is drawn below the semiconductor sheet and maintains the same direction as the previous figure for convenience. Although the overall structure is reversed, when the soldering end 186 is formed, by gravity Help tin reflow. Referring to the "27A, 27B, and 27C", which is a schematic cross-sectional view of a semiconductor wafer package structure of the present invention, a schematic view of a half-battery sealing structure of the present invention, and a semiconductor wafer sealing structure of the present invention. Looking up at the schematic. As shown in the figure, the semiconductor package structure 198 includes a semiconductor wafer no, a metal wall 132, a winding 15 〇, a solder mask 156, a plating contact i62, an adhesive 164, and a connection portion ι66. The sealing layer 168, the metal post 17〇, the insulating sealant 182 and the welded end 186 are formed. The semiconductor wafer extends upward from the conductive trace 18' and partially overlaps the insulating seal 182 in the upward direction, but does not overlap the conductive trace 18 in the upward direction. Thus, the conductive traces 180 are placed outside the edge of the semiconductor wafer 11 turns. The Meng dynasty wall 132 extends upwardly from the weld end 186 and has a fixed thickness and is only in contact with the metal post 170, the insulating sealant 182, and the weld end I%. The hole 134 is placed in the insulating encapsulant 182 and filled by the solder end 186. The winding 15〇 is mechanically coupled to the semiconductor wafer by an adhesive 164 and electrically connected to the semiconductor wafer by the connecting portion 166, and from the metal wall 132 and the metal pillar The 17" and the fresh terminals 186 extend laterally toward the semiconductor wafer U0, which is flat and parallel to the first plane 112 and the second plane U4 of the body sheet U:. The sealing layer 16 is coated with the semiconductor wafer 11G, the solder mask 156, the adhesive (6), the connecting portion 166, the conductive traces 180, and the insulating encapsulant 182. The metal post 170 is covered by the winding 15〇 and covered upward by the welding end 186 of the metal wall (10) in the downward direction: although the metal post 17G is not exposed, and the metal wall 1 is sealed 182 and the welded end The 186 has a partial overlap in the downward direction, and the ^1292195 sub-column m is not covered by the sealing layer 168, the insulating encapsulant i82 or any insulating substrate in the semiconductor chip package structure in the downward direction. The insulating encapsulant 182 and the metal wall 132, the winding 132 and the soldering end are extended upwards, and the k semiconductor wafer i! Q, the winding, the soldering mask 156, the connecting portion 166, the sealing layer 168 and the metal post 17 Extend downwards. The metal wall 132, the metal post 17〇 and the welded end 186 extend downward from the winding wire 150, but do not cover the winding 15 in a downward direction γ. The metal wall 132 extends laterally around the fresh terminal 186. The peripheral portion of the insulating encapsulant 182 is rotated around the periphery, and the insulating encapsulant 182 is rotated laterally around the periphery of the metal wall 132. The sealing layer 168 and the insulating encapsulant 182 provide mechanical support and environmental protection to the semiconductor wafer package structure 198. The connecting portion 166 provides horizontal winding and vertical winding between the conductive pin 116 and an external circuit, and provides horizontal output winding.

(hor丨z〇nta丨fan_out r〇uUng)該繞線15〇係於導電腳位 116與外部電路間’但無提供垂直繞線,該金屬柱⑺ 及録接端186係提供垂直繞線於導電腳位116與外部 電路間,但無提供水平輸出繞線,而該金屬壁U2 i 電鑛接點162係無提供水平繞線51^直繞線於導電腳 位116與外部電路間。同樣地,該金屬壁132係無提 供繞線於銲接端186與任何導電體間。 裝 該半導體晶片封裝結構為一單晶片第一層次 因此該半導體晶# 110係為該半導體晶片封裝結 62 1292195 構之唯曰曰片,係被嵌入該密封層168内。 、&quot;:體晶片封裝結構係包含其它導電跡線,並 匕:ί 罩156、密封層168及絕緣封膠182 内’於圖中只I會製—導雷忧余 ^ 導電跡線I80係使圖示及說明方 便。母一¥電跡線係相互隔離並具有電性的。每 :跡痒係皆包含各自的金屬壁、繞線、電鑛接點、金 屬柱及銲接端’並藉由各自的連接部使該半導體晶片 110之導電腳位與導電跡線間具有電性的連接,且提 供水平輸出繞線及垂直繞線給各自的導電腳位。而且 每-導電跡線係具有一向下凸出之銲接端,係可提供 球格式陣列構裝。 該半導體晶片110係包含導電腳位,但盥苴它零 件隔離二然而一開始該相符的繞線係被鍍ϋ屬基 板,並藉由該金屬基板使該繞線與其它零件間具有電 性的連接。而且該連接部係使該繞線及相符的導電腳 位間具有電性的連接,因此該導電腳位可與其它零件 具有電性的連接。然後,一旦該金屬基板係被蝕刻形 成金屬柱,該繞線係與其它零件隔離,所以該導電腳 位係與其它零件隔離。 所以於該金屬基板120被蝕刻形成金屬柱後,無 電鑛匯流排或相關電路可與導電跡線連接。 該第28Α至54C圖係製造該半導體晶片封裝結構 之過程第二實施例。於該第二實施例中,該銲接層係 63 1292195 被形成於該密封層被形成後才形成。為了簡化的目 的,與第一實施例有相同的描述,係不須要被重覆。 同樣地’該第二實施例之元件與第—實施例相似具有 相符的參考編號,但第二實施例中元件佰位數用“2,, 表示而第1實施例中元件佰位數用“丨,,表示,如半導 體晶片2H)相符於半導體晶片11〇,繞線25〇相符於 繞線150…等。 、 請參閱『第28A、28B及28C圖』所示,係為本 發明之半導體晶片結構剖面示意圖、本發明之半導體 晶片結構俯視示意圖及本發明之半導體晶片結構仰視 示意圖。如圖所示··該半導體晶片21〇係包含第一平 面212及第二平面214。該第一平面212係包含導電 腳位216及鈍化層218。 請參閱『第29A、29B及29C圖』所示,係為本 發明之金屬基板結構剖面示意圖、本發明之金屬基板 結構俯視示意圖及本發明之金屬基板結構仰視示意 圖。如圖所示:該金屬基板220係包含第一平面22~2 及第二平面224。 請參閱『第30A、30B及30C圖』所示,係為本 發明之光阻層與金屬基板之結構剖面示意圖、本發明 之光阻層與金屬基板之結構俯視示意圖及本發明之光 阻層與金屬基板之結構仰視示意圖。如圖所示:該第 一光阻層226及第二光阻層228係形成於該金屬基板 64 1292195 220上。該第二光阻層228係包含一開口及使該第二 平面224局部暴露,該第一光阻層226未具圖案。 請參閱『第31A、31B及31C圖』所示,係為本 發明之具凹口之結構剖面示意圖、本發明之具凹口之 結構俯視示意圖及本發明之具凹口之結構仰視示意 圖。如圖所示:該凹口 230被形成於該金屬基板220 内。 • 請參閱『第32A、MB及32C圖』所示,係為本 發明之具金屬壁之金屬基板結構剖面示意圖、本發明 之具金屬壁之金屬基板結構俯視示意圖及本發明之具 金屬壁232被形成於該金屬基板220上。 請參閱『第33A、33B及33C圖』所示,係為本 發明之第一光阻層及第二光阻層剝落後之結構剖面示 意圖、本發明之第一光阻層及第二光阻層剝落後之結 p 構俯視示意圖及本發明之第一光阻層及第二光阻層剝 落後之結構仰視示意圖。如圖所示:係於第一光阻層 226及第二光阻層228剝落後該金屬基板220及金屬 壁232之結構示意。 請參閱『第34A、34B及34C圖』所示,係為本 發明之第三光阻層及第四光阻層形成於金屬基板後之 結構剖面示意圖、本發明之第三光阻層及第四光阻層 形成於金屬基板後之結構俯視示意圖及本發明之第三 光阻層及第四光阻層形成於金屬基板後之結構仰視示 65 1292195 意圖。如圖所示··該第三光阻層244及第四光阻層246 形成於金屬基板220上。該第三光阻層244係包含一 開口及使該金屬基板220之第一平面222具局部暴露 部份,該第四光阻層246未具有圖案。 請參閱『第35A、35B及35C圖』所示,係為本 發明之繞線附於金屬基板時之結構剖面示意圖、本發 明之繞線附於金屬基板時之結構俯視示意圖及本發明 之繞線附於金屬基板時之結樣仰視示意圖。如圖所 示:該繞線250係藉由電鍍使其被鍍於該金屬基板220 上。 請參閱『第36A、36B及36C圖』所示,係為本 發明之第三光阻層及第四光阻層剝落後之結構剖面示 意圖、本發明之第三光阻層及第四光阻層剝落後之結 構俯視示意圖及本發明之第三光阻層及第四光阻層剝 落後之結構仰視示意圖。如圖所示··係為該第三光阻 層244及第四光阻層246剝落後,該金屬基板220、 金屬壁232及繞線250之結構示意圖。 請參閱『第37A、37B及37C圖』所示,係為本 發明之銲接遮罩於金屬基板及繞線時之結構剖面示意 圖、本發明之銲接遮罩於金屬基板及繞線時之結構俯 視示意圖及本發明之銲接遮罩於金屬基板及繞線時之 結構仰視示意圖。如圖所示:該銲接遮罩256被形成 於該金屬基板220及繞線250上。 66 1292195 請參閱『第38A、38B及38C圖』所示,係為本 發明之第五光阻層及第六光阻層形成後之結構剖面示 意圖、本發明之第五光阻層及第六光阻層形成後之結 構俯視示意圖及本發明之第五光阻層及第六光阻層形 成後之結構仰視示意圖。如圖所示:該第五光阻層258 及第六光阻層260被形成於該結構上。其中該第五光 阻層258被形成於繞線250及銲接遮罩256上,該第 六光阻層260係被形成於該金屬基板220及金屬壁232 上。該第五光阻層258及第六光阻層260係利用一種 乾式薄膜層壓技術分別壓印於相對應之平面上。該第 五光阻層258係包含一開口及使該繞線250具局部暴 露部份,該第六光阻層未具有圖案。 請參閱『第39A、39B及39C圖』所示,係為本 發明之電鍍接點形成於繞線後之結構剖面示意圖、本 發明之電鍍接點形成於繞線後之結構俯視示意圖及本 發明之電鍍接點形成於繞線後之結構仰視示意圖。如 圖所示:該電鍍接點262係藉由電鍍被鍍於該繞線250 上0 請參閱『第40A、40B及40C圖』所示,係為本 發明之第五光阻層及第六光阻層剝落後之結構剖面示 意圖、本發明之第五光阻層及第六光阻層剝落後之結 構俯視示意圖及本發明之第五光阻層及第六光阻層剝 落後之結構仰視示260剝落後,該金屬基板220、金 67 1292195 屬壁232、繞線250及電鍍接點262之結構示意。 請參閱『第41A、41B及41C圖』所示,係為本 發明之黏著劑形成於銲接遮罩後之結構剖面示意圖、 本發明之黏著劑形成於銲接遮罩後之結構俯視示意圖 及本發明之黏著劑形成於銲接遮罩後之結構仰視示意 圖。如圖所示:該黏著劑264形成於該銲接遮罩256 上。 _ 請參閱『第42A、42B及42C圖』所示,係為本 發明之具半導體晶片之結構剖面示意圖、本發明之具 半導體晶片之結構俯視示意圖及本發明之具半導體晶 片之結構仰視示意圖。如圖所示:該半導體晶片210 係藉由該黏著劑264附著於結構上,其結構包含金屬 基板220、金屬壁232、繞線250、銲接遮罩256及電 鐘接點262。 請參閱『第43A、43B及43C圖』所示,係為本 &amp;發明之連接部附於導電腳位及電鍍接點時之結構剖面 示意圖、本發明之連接部附於導電腳位及電鍍接點時 之結構俯視示意圖及本發明之連接部附於導電腳位及 電鍍接點時之結構仰視示意圖。如圖所示:該連接部 266係形成於該導電腳位216及電鍍接點262。 請參閱『第44A、44B及44C圖』所示,係為本 發明之具密封層之結構剖面示意圖、本發明之具密封 層之結構俯視示意圖及本發明之具密封層之結構仰視 68 1292195 210、繞線250、銲接遮罩256電鍍接點262、黏著劑 264及連接部266上。 請參閱『第45A、45B及45C圖』所示,係為本 發明之模板覆蓋於金屬基板之結構剖面示意圖、本發 明之模板覆蓋於金屬基板之結構俯視示意圖及本發明 之模板覆蓋238覆蓋於該金屬基板220上。 請參閱『第46A、46B及46C圖』所示,係為本 發明之錫膏沈積於金屬壁之結構剖面示意圖、本發明 之錫膏沈積於金屬壁之結構俯視示意圖及本發明之錫 膏沈積於金屬壁之結構仰視示意圖。如圖所示:該錫 膏240係沈積於金屬壁232上。 請參閱『第47A、47B及47C圖』所示,係為本 發明之移去模板後之結構剖面示意圖、本發明之移去 模板後之結構俯視示意圖及本發明之移去模板後之結 構仰視示意圖。如圖所示:該模板238係從該金屬基 板220移除。 請參閱『第48A、48B及48C圖』所示,係為本 發明之錫膏形成銲接層後之結構剖面示意圖、本發明 之錫膏形成銲接層後之結構俯視示意圖及本發明之錫 膏形成銲接層後之結構仰視示意圖。如圖所示:該銲 接層242係由該錫膏240形成。該金屬壁232係提供 一濕表面使該錫料容易流動,然而該金屬基板220無 提供。因此該錫料只能於該金屬壁232内流動。 69 1292195 請參閱『第49A、49B及49C圖』所示,係為本 發明之金屬柱於金屬基板上形成後之結構剖面示意 圖、本發明之金屬柱於金屬基板上形成後之結構俯視 示意圖及本發明之金屬柱於金屬基板上形成後之結構 仰視示意圖。如圖所示:該金屬柱270由該金屬基板 220形成。 請參閱『第50A、50B及50C圖』所示,係為本 發明之絕緣封膠形成後之結構剖面示意圖、本發明之 絕緣封膠形成後之結構俯視示意圖及本發明之絕緣封 膠形成後之結構仰視示意圖。如圖所示:該絕緣封膠 282形成於金屬壁232、銲接層242、繞線250、銲接 遮罩256及金屬柱270上。 請參閱『第51A、51B及51C圖』所示,係為本 發明之部份絕緣封膠移除後之結構剖面示意圖、本發 明之部份絕緣封膠移除後之結構俯視示意圖及本發明 之部份絕緣封膠移除後之結構仰視示意圖。如圖所 示:係於部份絕緣封膠282被移除後之結構示意。 請參閱『第52A、52B及52C圖』所示,係為本 發明之錫球形成後之結構剖面示意圖、本發明之錫球 形成後之結構俯視示意圖及本發明之錫球形成後之結 構仰視示意圖。如圖所示:該錫球284形成於銲接層 242 上。 請參閱『第53A、53B及53C圖』所示,係為本 1292195 發:之銲接端形成後之結構剖面示意圖、本發明之鲜 後之結構俯視示意圖及本發明之銲接端心 2 視示意圖。如圖料:該鋅接端挪由銲 接層242與錫球284所形成。 Μ參閱第54A、54B及54C圖』所示,係為 ,明之半導體晶片封裝·結構剖面示意圖、本發明之半 泠體晶片封裝結構俯視示意圖及本發明之半導體晶(hor丨z〇nta丨fan_out r〇uUng) The winding 15 is tied between the conductive pin 116 and the external circuit 'but no vertical winding is provided, and the metal post (7) and the recording end 186 provide vertical winding The conductive pin 116 is connected to the external circuit, but the horizontal output winding is not provided, and the metal wall U2 i the electric ore contact 162 is not provided with the horizontal winding 51 directly between the conductive pin 116 and the external circuit. Similarly, the metal wall 132 is not wound between the solder end 186 and any of the conductors. The semiconductor chip package structure is a first level of a single wafer. Therefore, the semiconductor wafer #110 is a germanium wafer of the semiconductor chip package junction 62 1292195, which is embedded in the sealing layer 168. , &quot;: body chip package structure contains other conductive traces, and 匕: ί cover 156, sealing layer 168 and insulating sealant 182 'in the figure only I will make - guide lightning worry ^ conductive trace I80 Make the illustration and description convenient. The mother-and-electric traces are isolated from each other and electrically. Each of the itch lines comprises a respective metal wall, a winding, an electric ore joint, a metal post and a soldering end' and electrically connected between the conductive pin of the semiconductor wafer 110 and the conductive trace by respective connecting portions. The connections are provided with horizontal output windings and vertical windings to the respective conductive pins. Moreover, each of the conductive traces has a downwardly projecting solder end that provides a ball format array configuration. The semiconductor wafer 110 includes a conductive pin, but the component is isolated. However, the corresponding winding is initially plated with a substrate, and the metal substrate is electrically connected to the other component. connection. Moreover, the connection portion electrically connects the winding and the corresponding conductive pins, so that the conductive pins can be electrically connected to other components. Then, once the metal substrate is etched to form a metal post that is isolated from other parts, the conductive leg is isolated from the other parts. Therefore, after the metal substrate 120 is etched to form a metal pillar, the electroless ore busbar or associated circuitry can be connected to the conductive trace. The 28th to 54Cth drawings are a second embodiment of the process of manufacturing the semiconductor wafer package structure. In the second embodiment, the solder layer 63 1292195 is formed after the sealing layer is formed. For the sake of simplicity, the same description as the first embodiment does not need to be repeated. Similarly, the elements of the second embodiment have similar reference numerals to the first embodiment, but the number of elements in the second embodiment is represented by "2," and the number of elements in the first embodiment is " That is, it means that, as the semiconductor wafer 2H) coincides with the semiconductor wafer 11 〇, the winding 25 〇 corresponds to the winding 150... and the like. Referring to Figures 28A, 28B and 28C, there are shown schematic cross-sectional views of a semiconductor wafer structure of the present invention, a top view of the semiconductor wafer structure of the present invention, and a bottom view of the semiconductor wafer structure of the present invention. As shown, the semiconductor wafer 21 includes a first planar surface 212 and a second planar surface 214. The first plane 212 includes a conductive pin 216 and a passivation layer 218. Referring to the drawings of Figs. 29A, 29B and 29C, which are schematic cross-sectional views of the metal substrate structure of the present invention, a plan view of the metal substrate structure of the present invention, and a bottom view of the metal substrate structure of the present invention. As shown in the figure, the metal substrate 220 includes a first plane 22 to 2 and a second plane 224. Referring to FIG. 30A, FIG. 30B and FIG. 30C, FIG. 30 is a schematic cross-sectional view showing the structure of the photoresist layer and the metal substrate of the present invention, a top view of the structure of the photoresist layer and the metal substrate of the present invention, and a photoresist layer of the present invention. A schematic view of the structure of the metal substrate. As shown, the first photoresist layer 226 and the second photoresist layer 228 are formed on the metal substrate 64 1292195 220. The second photoresist layer 228 includes an opening and partially exposes the second plane 224. The first photoresist layer 226 is unpatterned. Referring to Figures 31A, 31B and 31C, there are shown schematic views of a notched structure of the present invention, a top plan view of a notched structure of the present invention, and a bottom view of the notched structure of the present invention. As shown, the recess 230 is formed in the metal substrate 220. • Please refer to the “32A, MB and 32C diagrams” for a schematic view of the metal substrate structure of the present invention, a schematic view of the metal substrate structure of the present invention, and a metal wall 232 of the present invention. It is formed on the metal substrate 220. Please refer to FIG. 33A, 33B and 33C for a schematic cross-sectional view of the first photoresist layer and the second photoresist layer after stripping, the first photoresist layer and the second photoresist of the present invention. A schematic top view of the structure of the layer after peeling and a schematic view of the structure of the first photoresist layer and the second photoresist layer of the present invention. As shown in the figure, the structure of the metal substrate 220 and the metal wall 232 is stripped after the first photoresist layer 226 and the second photoresist layer 228 are stripped. Please refer to FIG. 34A, FIG. 34B and FIG. 34C for a schematic cross-sectional view of the third photoresist layer and the fourth photoresist layer formed on the metal substrate of the present invention, and the third photoresist layer and the third layer of the present invention. The schematic view of the structure in which the four photoresist layers are formed on the metal substrate and the structure in which the third photoresist layer and the fourth photoresist layer of the present invention are formed on the metal substrate are shown in the bottom view 65 1292195. As shown in the figure, the third photoresist layer 244 and the fourth photoresist layer 246 are formed on the metal substrate 220. The third photoresist layer 244 includes an opening and a partially exposed portion of the first plane 222 of the metal substrate 220. The fourth photoresist layer 246 has no pattern. Please refer to FIG. 35A, FIG. 35B and FIG. 35C for a schematic cross-sectional view of the structure of the present invention when the winding is attached to the metal substrate, and a schematic plan view of the structure of the present invention when the winding is attached to the metal substrate and the winding of the present invention. A schematic view of the connection when the wire is attached to the metal substrate. As shown, the winding 250 is plated on the metal substrate 220 by electroplating. Please refer to the "36A, 36B and 36C" diagrams, which are schematic structural cross-sections of the third photoresist layer and the fourth photoresist layer of the present invention, the third photoresist layer and the fourth photoresist of the present invention. A schematic top view of the structure after stripping and a bottom view of the structure of the third photoresist layer and the fourth photoresist layer of the present invention. As shown in the figure, the structure of the metal substrate 220, the metal wall 232 and the winding 250 is stripped after the third photoresist layer 244 and the fourth photoresist layer 246 are stripped. Please refer to FIG. 37A, FIG. 37B and FIG. 37C for a schematic cross-sectional view of the welding mask of the present invention on a metal substrate and a winding, and a structural plan view of the welding mask of the present invention on a metal substrate and a winding. A schematic view of the structure and the structure of the solder mask of the present invention on a metal substrate and a winding. As shown, the solder mask 256 is formed on the metal substrate 220 and the winding 250. 66 1292195 Please refer to the "38A, 38B and 38C" diagram, which is a schematic cross-sectional view of the fifth photoresist layer and the sixth photoresist layer after the formation of the fifth photoresist layer and the sixth photoresist layer of the present invention. A schematic top view of the structure after the formation of the photoresist layer and a schematic bottom view of the structure after the fifth photoresist layer and the sixth photoresist layer of the present invention are formed. As shown, the fifth photoresist layer 258 and the sixth photoresist layer 260 are formed on the structure. The fifth photoresist layer 258 is formed on the winding 250 and the solder mask 256. The sixth photoresist layer 260 is formed on the metal substrate 220 and the metal wall 232. The fifth photoresist layer 258 and the sixth photoresist layer 260 are respectively embossed on corresponding planes by a dry film lamination technique. The fifth photoresist layer 258 includes an opening and a partially exposed portion of the winding 250. The sixth photoresist layer has no pattern. Please refer to FIG. 39A, 39B and 39C for a schematic cross-sectional view of the structure in which the electroplated contacts of the present invention are formed after winding, and a schematic plan view of the structure in which the electroplated contacts of the present invention are formed after winding and the present invention. The electroplated contacts are formed in a bottom view of the structure after winding. As shown in the figure, the plating contact 262 is plated on the winding 250 by electroplating. Please refer to "Fig. 40A, 40B and 40C" for the fifth photoresist layer and the sixth invention. Schematic diagram of the structure of the photoresist layer after stripping, the top view of the fifth photoresist layer and the sixth photoresist layer after stripping, and the structure of the fifth photoresist layer and the sixth photoresist layer of the present invention After the 260 stripping, the structure of the metal substrate 220, the gold 67 1292195 is the wall 232, the winding 250 and the plating contact 262. Please refer to FIG. 41A, FIG. 41B and FIG. 41C for a schematic cross-sectional view showing the structure of the adhesive of the present invention after the solder mask is formed, and the structure of the present invention after the adhesive is formed on the solder mask. The structure of the adhesive formed on the welded mask is a bottom view. As shown, the adhesive 264 is formed on the solder mask 256. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ As shown, the semiconductor wafer 210 is attached to the structure by the adhesive 264. The structure includes a metal substrate 220, a metal wall 232, a winding 250, a solder mask 256, and a clock contact 262. Please refer to FIG. 43A, FIG. 43B and FIG. 43C for a schematic cross-sectional view of the connection portion of the present invention attached to the conductive pin and the plated contact. The connection portion of the present invention is attached to the conductive pin and electroplating. A schematic top view of the structure at the time of the contact and a schematic view of the structure of the connecting portion of the present invention attached to the conductive pin and the plated contact. As shown, the connecting portion 266 is formed on the conductive pin 216 and the plating contact 262. Please refer to FIG. 44A, FIG. 44B and FIG. 44C for a schematic sectional view of the structure of the sealing layer of the present invention, a schematic top view of the structure of the sealing layer of the present invention, and a structure of the sealing layer of the present invention, looking up 68 1292195 210 The winding 250, the solder mask 256 plating contacts 262, the adhesive 264 and the connecting portion 266. Please refer to FIG. 45A, FIG. 45B and FIG. 45C for a schematic cross-sectional view of a template covering the metal substrate of the present invention, a schematic plan view of the structure of the present invention covering the metal substrate, and a template cover 238 of the present invention. On the metal substrate 220. Please refer to FIG. 46A, 46B and 46C for a schematic cross-sectional view showing the structure of the solder paste deposited on the metal wall of the present invention, a top view of the structure in which the solder paste of the present invention is deposited on the metal wall, and the solder paste deposition of the present invention. A schematic view of the structure of the metal wall. As shown, the solder paste 240 is deposited on the metal wall 232. Please refer to FIG. 47A, FIG. 47B and FIG. 47C for a schematic cross-sectional view of the structure after removing the template of the present invention, a top view of the structure after removing the template of the present invention, and a structure of the present invention after removing the template. schematic diagram. As shown, the template 238 is removed from the metal substrate 220. Please refer to FIG. 48A, FIG. 48B and FIG. 48C for a schematic cross-sectional view of the solder paste of the present invention after forming a solder layer, a schematic top view of the solder paste of the present invention after forming a solder layer, and a solder paste formation of the present invention. A schematic view of the structure behind the solder layer. As shown, the solder layer 242 is formed from the solder paste 240. The metal wall 232 provides a wet surface to allow the solder to flow easily, however the metal substrate 220 is not provided. Therefore, the tin material can only flow in the metal wall 232. 69 1292195 Please refer to FIG. 49A, FIG. 49B and FIG. 49C for a schematic cross-sectional view of a metal post of the present invention formed on a metal substrate, and a schematic plan view of the structure of the metal post of the present invention formed on the metal substrate. A schematic view of the structure of the metal pillar of the present invention formed on a metal substrate. As shown, the metal post 270 is formed from the metal substrate 220. Please refer to FIG. 50A, FIG. 50B and FIG. 50C for a schematic cross-sectional view of the insulating encapsulant of the present invention, a schematic top view of the insulating encapsulant of the present invention, and an insulating encapsulant of the present invention. The structure is viewed from the bottom. As shown, the insulating encapsulant 282 is formed on the metal wall 232, the solder layer 242, the winding 250, the solder mask 256, and the metal post 270. Please refer to FIG. 51A, 51B and 51C for a schematic cross-sectional view of a portion of the insulating encapsulant after removal of the present invention, a top view of the structure after removing the insulating encapsulant of the present invention, and the present invention. A schematic view of the structure after the partial insulation seal is removed. As shown in the figure, the structure is shown after the partial insulating sealant 282 is removed. Please refer to FIG. 52A, 52B and 52C for a schematic cross-sectional view of the structure of the solder ball of the present invention, a schematic top view of the structure after the solder ball of the present invention is formed, and a structure of the structure after the solder ball of the present invention is formed. schematic diagram. As shown, the solder ball 284 is formed on the solder layer 242. Please refer to the "Fig. 53A, 53B and 53C" diagrams, which is a schematic cross-sectional view of the structure after the formation of the welding end, a schematic top view of the structure of the present invention, and a schematic view of the welded end of the present invention. As shown in the figure, the zinc terminal is formed by the solder layer 242 and the solder ball 284. Μ 第 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54

巾視,圖。如圖所示··利用—刀片將;;銲 •,、罩56、捃封層268及絕緣封膠282切 體晶片封裝結構观。該半導體晶片封裝結構29^ 二含+導體晶片2i〇、金屬壁232、繞線25〇、銲接遮 256電鑛接點262、黏著劑264、連接部266、 封層268、金屬柱27〇、絕緣封膠⑽及銲接端撕 ▲從第55A至81C圖係為本發明之第三實施例,係 為該半,體晶&gt;ί封裝結構之製作過程。與之前實施例 比較在第三實施射該金屬壁及銲接層係封 成後才形成,以及少去金屬柱。 請參閱『第55A、55B及55C圖』所示,係為本 X明之半導體晶片結構剖面示意圖、本發明之半導體 晶片結構俯視示意圖及本發明之半導體晶片結構仰= 不意圖。如圖所示:該半導體晶片310係包含第一平 面3U及第二平面314。該第一平面312係包含導電 腳位3 16及保護層3 1 8 〇 1292195 請參閱『第56A、56B及56C圖』所示,係為本 發明之金屬基板結構剖面示意圖、本發明之金屬基板 結構俯視示意圖及本發明之金屬基板結構仰視示意 圖。如圖所示:該金屬基板320係包含第一平面322 及第二平面324。 請參閱『第57A、57B及57C圖』所示,係為本 發明之光阻層與金屬基板之結構剖面示意圖、本發明 之光阻層與金屬基板之結構俯視示意圖及本發明之光 阻層與金屬基板之結構仰視示意圖。如圖所示:該第 三光阻層344及第四光阻層346係形成於該金屬基板 320上。該第四光阻層346係包含一開口及使該第一 平面322局部暴露,該第三光阻層344係未印有圖案。 請參閱『第58A、58B及58C圖』所示,係為本 發明之繞線附於金屬基板時之結構剖面示意圖、本發 明之繞線附於金屬基板時之結構俯視示意圖及本發明 之繞線附於金屬基板時之結構仰視示意圖。如圖所 示:該繞線350係藉由電鍍使其被鍍於該金屬基板320 上。 請參閱『第59A、59B及59C圖』所示,係為本 發明之第三光阻層及第四光阻層剝落後之結構剖面示 意圖、本發明之第三光阻層及第四光阻層剝落後之結 構俯視示意圖及本發明之第三光阻層及第四光阻層剝 落後之結構仰視示意圖。如圖所示··係為該第三光阻 72 1292195 層344及第四光阻層346剝落後,該金屬基板320及 繞線350之結構示意圖。 請參閱『第60A、60B及60C圖』所示,係為本 發明之銲接遮罩於金屬基板及繞線時之結構剖面示意 圖、本發明之銲接遮罩於金屬基板及繞線時之結構俯 視示意圖及本發明之銲接遮罩於金屬基板及繞線時之 結構仰視示意圖。如圖所示:該銲接遮罩356被形成 於該金屬基板320及繞線350上。 請參閱『第61A、61B及61C圖』所示,係為本 發明之第五光阻層及第六光阻層形成後之結構剖面示 意圖、本發明之第五光阻層及第六光阻層形成後之結 構俯視示意圖及本發明之第五光阻層及第六光阻層形 成後之結構仰視示意圖。如圖所示^該第五光阻層358 及第六光阻層360被形成於該結構上。其中該第五光 阻層358被形成於繞線350及銲接遮罩356上,該第 六光阻層360係被形成於該金屬基板320上。該第五 光阻層358係包含一開口及使該繞線350具局部暴露 部份,該第六光阻層係未印有圖案。 請參閱『第62A、62B及62C圖』所示,係為本 發明之電鍍接點形成於繞線後之結構剖面示意圖、本 發明之電鑛接點形成於繞線後之結構俯視示意圖及本 發明之電鍍接點形成於繞線後之結構仰視示意圖。如 圖所示:該電鍍揍點362係藉由電鍍被鍍於該繞線350 73 1292195 上0 請參閱『第63A、63B及63C圖』所示,係為本 發明之第五光阻層及第六光阻層剝落後之結構剖面示 意圖、本發明之第五光阻層及第六光阻層剝落後之結 構俯視示意周及本發明之第五光阻層及第六光阻層剝 落後之結構仰視示意圖。如圖所示:係於第五光阻層 358及第六光阻層360剝落後,該金屬基板320、繞線 350及電鍵接點362之結構示意圖。 請參閱『第64A、64B及64C圖』所示,係為本 發明之黏著劑形成於銲接遮罩後之結構剖面示意圖、 本發明之黏著劑形成於銲接遮罩後之結構俯視示意圖 及本發明之黏著劑形成於銲接遮罩後之結構仰視示意 圖。如圖所示:該黏著劑364形成於該銲接遮罩356 上。 請參閱『第65A、65B及65C圖』所示,係為本 發明之具半導體晶片之結構剖面示意圖、本發明之具 半導體晶片之結構俯視示意圖及本發明之具半導體晶 片之結構仰視示意圖。如圖所示:該半導體晶片310 係藉由該黏著劑364附著於結構上,其結構包含金屬 基板320、繞線350、銲接遮罩356及電鍍接點362。 請參閱『第66A、66B及66C圖』所示,係為本 發明之連接部附於導電腳位及電鍍接點時之結構剖面 示意圖、本發明之連接部附於導電腳位及電鍍接點時 74 1292195 之結構俯視示意圖及本發明之連接部附於導電腳位及 電鍍接點時之結構仰視示意圖。如圖所示··該連接部 366係形成於該導電腳位316及電鍍接點362上。 請參閱『第67A、67B及67C圖』所示,係為本 發明之具密封層之結構剖面示意圖、本發明之具密封 層之結構俯視示意圖及本發明之具密封層之結構仰視 示意圖。如圖所示:該密封層368形成於半導體晶片 310、繞線350、銲接遮罩356、電鑛接點362、黏著 劑364及連接部366上。 請參閱『第68A、68B及68C圖』所示,係為本 發明之第二光阻層形成於金屬基板之結構剖面示意 圖、本發明之第二光阻層形成於金屬基板之結構俯視 示意圖及本發明之第二光阻層形成於金屬基板之結構 仰視示意圖。如圖所示:該第二光阻層328係形成於 該金屬基板320上。該第二光阻層328係包含一開口, . 其開口直徑為200微米及使該第二平面324局部暴露。 請參閱『第69A、69B及69C圖』所示,係為本 發明之具凹口之結構剖面示意圖、本發明之具凹口之 結構俯視示意圖及本發明之具凹口之結構仰視示意 圖。如圖所示:該穿孔330係為穿過該金屬基板320。 該穿孔330係由化學蝕刻溶液對該金屬基板320之第 二主要平面324局部暴露部份進行蝕刻,並利用該第 二光阻層328為其蝕刻遮罩。該底部喷嘴將化學蝕刻 75 1292195 溶液喷射於金屬基板320上,當頂部喷嘴不被使用或 整體架構浸於化學蝕刻溶液時,而該密封層368可保 護前側,該化學蝕刻溶液係為高選擇性之銅,並將該 金屬基板320蝕刻穿透。所以該穿孔330係穿透該金 屬基板320,其介於該金屬基板320之第一平面322 與第二平面324之間,並使該繞線350暴露。該穿孔 330於第一平面3 2 2上之直徑為300微米,其深度 為150微米。因此,該穿孔330與第一實施例之凹口 130形成方法相同,除了該化學蝕刻應用時間較長使 該金屬基板320蝕刻穿透之外。一種適合的化學蝕刻 溶液係為鹼性的氨水。將該金屬基板320浸於化學蝕 刻溶液中之理想之蝕刻時間係須反覆試驗,為了形成 具適當直徑之穿孔330。 請參閱『第70A、70B及70C圖』所示,係為本 發明之具金屬壁之結構剖面示意圖、本發明之具金屬 壁之結構俯視示意圖及本發明之具金屬壁之結構仰視 示意圖。如圖所示:該金屬壁332被形成於該金屬基 板320及繞線350上。該金屬壁332於凹口 330中係 與該金屬基板320及繞線350具有電性的之連接,但 非整體與該金屬基板320及繞線350接合。 請參閱『第71A、71B及71C圖』所示,係為本 發明之模板覆蓋於第二光阻層之結構剖面示意圓、本 發明之模板覆蓋於第二光阻層之結構俯視示意圖及本 76 1292195 發明之模板覆蓋於第二光阻層之結構仰視示意圖。如 圖所示:該模板338覆蓋於該第二光阻層328上。 請參閱『第72A、72B及72C圖』所示,係為本 發明之錫膏沈積於金屬壁之結構剖面示意圖、本發明 之錫膏沈積於金屬壁之結構俯視示意圖及本發明之錫 膏沈積於金屬壁之結構仰視示意圖。如圖所示··該錫 膏340係沈積於金屬壁332上。 請參閱『第73A、73B及73C圖』所示,係為本 發明之移去模板後之結構剖面示意圖、本發明之移去 模板後之結構俯視示意圖及本發明之移去模板後之結 構仰視示意圖。如圖所示:該模板338係從該第二光 阻層3 2 8移除。 請參閱『第74A、74B及74C圖』所示,係為本 發明之錫膏形成銲接層後之結構剖面示意圖、本發明 之錫膏形成銲接層後之結構俯視示意圖及本發明之錫 膏形成銲接層後之結構仰視示意圖。如圖所示:該銲 接層342係由該錫膏340形成。 請參閱『第75A、75B及75C圖』所示,係為本 發明之第二光阻層剝落後之結構剖面示意圖、本發明 之第二光阻層剝落後之結構俯視示意圖及本發明之第 二光阻層剝落後之結構仰視示意圖。如圖所示:係於 第二光阻層328剝落後,該半導體晶片310、金屬基 板320、金屬壁332、銲接層342、繞線350、電鍍接 77 1292195 點362、黏著劑364、連接部366及密封層368之結構 示意圖。 請參閱『第76A、76B及76C圖』所示,係為本 發明之金屬基板移除後之結構剖面示意圖、本發明之 金屬基板移除後之結構俯視示意圖及本發明之金屬基 板移除後之結構仰視示意圖。如圖所示:該金屬基板 320係由一種背邊式濕式化學蝕刻溶液對該第二主要 平面324、金屬壁332及銲接層342進行蝕刻。如該 &gt; 底部喷嘴將化學蝕刻溶液喷射於金屬基板320上,當 頂部喷嘴不被使用或整體架構浸於化學蝕刻溶液時, 而該密封層368可保護前側,當銅對鎳、錫料、環氧 樹脂及注模材料時係適用該濕式化學蝕刻,所以,該 金屬基板320對該金屬壁332、銲接層342、該繞線 350之鎳層、銲接遮罩356及密封層368時係採用該 濕式化學姓刻。 &gt; 該濕式化學蝕刻係將該金屬基板蝕刻並移除。所 以,該濕式化學蝕刻係可移除該金屬壁332、繞線350 及銲接遮罩356與該金屬基板320間所接觸之區域。 因此,該金屬基板320係被移除與第一實施例之 金屬基板120被蝕刻形成金屬柱170之方法相同,除 了該化學蝕刻應用時間較長使該金屬基板320蝕刻移 除之外。一種適合的化學#刻溶液係為鹼性的氨水。 將該金屬基板320浸於化學蝕刻溶液中之理想之蝕刻 78 1292195 時間係須反覆試驗,為了可移除該金屬基板320但不 使該金屬壁332及繞線350暴露於化學蝕刻溶液中。 請參閱『第77A、77B及77C圖』所示,係為本 發明之絕緣封膠形成後之結構剖面示意圖、本發明之 絕緣封膠形成後之結構俯視示意圖及本發明之絕緣封 膠形成後之結構仰視示意圖。如圖所示:該絕緣封膠 382形成於金屬壁332、銲接層342、繞線350及銲接 遮罩356上。 請參閱『第78A、78B及78C圖』所示,係為本 發明之部份絕緣封膠移除後之結構剖面示意圖、本發 明之部份絕緣封膠移除後之結構俯視示意圖及本發明 之部份絕緣封膠移除後之結構仰視示意圖。如圖所 示··係於部份絕緣封膠382被移除後之結構示意。 請參閱『第79A、79B及79C圖』所示,係為本 發明之錫球形成後之結構剖面示意圖、本發明之錫球 形成後之結構俯視示意圖及本發明之錫球形成後之結 構仰視示意圖。如圖所示:該錫球384形成於銲接層 342 上。 請參閱『第80A、80B及80C圖』所示,係為本 發明之銲接端形成後之結構剖面示意圖、本發明之銲 接端形成後之結構俯視示意圖及本發明之銲接端形成 後之結構仰視示意圖。如圖所示:該銲接端386由銲 接層342與錫球384所形成。 79 1292195 ^請參閱『第81A、81B及81C圖』所示,係為本 發明之半導體晶片封裝結構剖面示意圖、本發明之半 導體晶片封裝結構俯視示意圖及本發明之半導體晶片 封裝結構仰視示意圖。如圖所示:該金屬壁332係只 與繞線350 '絕緣封膠382及銲接層386接合,該半 導體晶片封裝結構398沒有金屬柱。該半導體晶片封 裝結構398係包含半導體晶片31〇、金屬壁332、繞線 350、銲接遮罩356、電鍍接點362、黏著劑364、連 接部366、密封層368、絕緣封膠382及銲接端386。 表請參閱『第82A、82B及82C圖』所示,係為本 發明之第四實施例之半導體晶片封裝結構剖面示意 圖二本發明之第四實施例之半導體晶片封装結構俯視 不忍圖及本發明之第四實施例之半導體晶片封裝結構 仰視不意圖。如圖所示··於第四實施例中,該半導體 曰片封裝、、Ό構498為覆晶接合。首先該連接部々a係 為一銲錫凸塊(a s〇lder bump)沈積於該導電腳位416 上,該銲錫凸塊係為一半球體,其直徑為1〇〇微米。 為了簡短的目的,與第一實施例有相同的描述,係不 眉要被重覆。同樣地,該第四實施例之元件與第一實 ,例相似具有相符的參考編號,如半導體晶片41〇相 符於半導體晶片110,繞線450相符於繞線150…等。 該繞線450於該半導體晶片41〇之周圍擴展延 伸。因此該長形繞線部份(相對於第一實施例中元件標 1292195 號152)加長。進一步調敕楚 ^ ^ i第一貫施例中之經電鍍形成 之繞線15 0。特別地,兮笛一 篇第二先阻層(相對於第一實施 例之第三光阻層144)係罝古回 ’、/、有圖案並重新形成一開口於 ^㈣上:目此該繞線450比第一實施例之繞線15〇 交仔更長。该電鑛接點(相對於第—實施例之電鐘接點 162)係被省略。 一、,該半導體晶片41〇之第—平面412面向下,其第 平面414面向上,该繞線45〇向側面延伸經過導電 腳位416 &quot;A連接部466係介於導電腳位川與繞線 450之間並與其接觸'然後進行加熱使該連接部樹 產生流動’停止加熱使該連接部466冷卻凝固形成一 硬’之録接點可附著於該導電腳位416及繞線45〇並 使該導電腳位416及繞線45G間具有電性的連接。該 連接部466係有局部性潤濕但不致於倒塌,而該半導 體晶片410與該繞線450隔離。 、之後,該黏著劑464係填入半導體晶片41〇及銲 遮罩456之間,然後使該黏著劑硬化。所以該 黏著劑464被夾於半導體晶片41〇及輝接遮罩456間 亚與該半導體晶片41G及録接遮罩456接合,亦與該 連,部466接合,未與該導電腳位416接觸。因此該 黏著劑464與第一實施例之黏著劑164較厚。一種合 適的黏著劑為Namics U8443。 该岔封層468、金屬柱470、絕緣封膠482及銲接 1292195 端486係被形成。 該半導體晶片封裝結構498係包含半、首-410、金屬壁432、繞線45〇、銲接遮罩體晶片 464、連接部466、密封層468、金屬柱、黏著劑 膠482及銲接端486。 、絕緣封 請參閱『第83A、83B及83C圖』所千/ 發明之第五實施例之半導體晶片封褒結構剖面’為Ϊ 圖、本發明之第五實施例之半導體晶片封裝結構:: 不意圖及本發明之第五實施例之半導體晶片封裝= 仰視示意圖。如圖所示:於第五實施例中 : 係經電鑛所形成。為了簡短的目的,與第一實施= 相同的描述,係不須要被重覆。同樣地,該第 例之元件與第一實施例相似具有相符的參考編號,: ί=片510相符於半導體晶片no ,繞線二相 符於繞線150…等。 ,該導電腳位516可容納—電鍍銅之連接部,係藉 由形成-錄表面層於該銘基板上。如該半導體晶片51〇 被次/包於-鋅浴液’使一辞層沈積於銘基板上。該方 ^鋅化(zincation)。該鋅溶液係包含15〇克/公升之 氫氧,納、、25克/公升之氧化鋅及】克/公升之亞石肖酸 納就像適石g夂可減少該結基板之分解速率。然後該 錄表面層係無電地沈積於經鋅化之紹基板。-種合適 的無電錄電鐘溶液係為於攝氏以度下之·一 82 1292195Towel, picture. As shown in the figure, the use of a blade, a solder mask, a cover 56, a sealing layer 268, and an insulating encapsulant 282 are shown in the form of a chip package structure. The semiconductor chip package structure 29 2 includes a + conductor wafer 2i 〇, a metal wall 232, a winding 25 〇, a solder 256 electric ore joint 262, an adhesive 264, a connecting portion 266, a sealing layer 268, a metal post 27, The insulating sealant (10) and the solder end tear ▲ are the third embodiment of the present invention from the 55A to 81C, which is the manufacturing process of the half, the body crystal &gt; Compared with the previous embodiment, the third embodiment is formed after the metal wall and the solder layer are sealed, and the metal pillar is removed. Referring to Figures 55A, 55B and 55C, there is shown a schematic cross-sectional view of a semiconductor wafer structure of the present invention, a schematic plan view of the semiconductor wafer structure of the present invention, and a semiconductor wafer structure of the present invention. As shown, the semiconductor wafer 310 includes a first planar surface 3U and a second planar surface 314. The first plane 312 includes a conductive pin 3 16 and a protective layer 3 1 8 〇 1292195. Please refer to FIG. 56A, 56B and 56C for a cross-sectional view of the metal substrate structure of the present invention, and the metal substrate of the present invention. A schematic top view of the structure and a schematic view of the metal substrate structure of the present invention. As shown, the metal substrate 320 includes a first plane 322 and a second plane 324. Please refer to FIG. 57A, 57B and 57C for a schematic cross-sectional view of the photoresist layer and the metal substrate of the present invention, a top view of the structure of the photoresist layer and the metal substrate of the present invention, and a photoresist layer of the present invention. A schematic view of the structure of the metal substrate. As shown in the figure, the third photoresist layer 344 and the fourth photoresist layer 346 are formed on the metal substrate 320. The fourth photoresist layer 346 includes an opening and a partial exposure of the first plane 322. The third photoresist layer 344 is not printed with a pattern. Please refer to FIG. 58A, FIG. 58B and FIG. 58C for a schematic cross-sectional view of the winding of the present invention attached to a metal substrate, a schematic plan view of the structure of the winding of the present invention attached to the metal substrate, and a winding of the present invention. A schematic view of the structure when the wire is attached to the metal substrate. As shown, the winding 350 is plated on the metal substrate 320 by electroplating. Please refer to FIG. 59A, 59B and 59C for a schematic cross-sectional view of the third photoresist layer and the fourth photoresist layer after stripping, the third photoresist layer and the fourth photoresist of the present invention. A schematic top view of the structure after stripping and a bottom view of the structure of the third photoresist layer and the fourth photoresist layer of the present invention. As shown in the figure, the third photoresist 72 1292195 layer 344 and the fourth photoresist layer 346 are stripped, and the metal substrate 320 and the winding 350 are structurally schematic. Please refer to FIG. 60A, FIG. 60B and FIG. 60C for a cross-sectional view showing the structure of the welding mask of the present invention on a metal substrate and a winding, and the structure of the welding mask of the present invention when viewed on a metal substrate and a winding. A schematic view of the structure and the structure of the solder mask of the present invention on a metal substrate and a winding. As shown, the solder mask 356 is formed on the metal substrate 320 and the winding 350. Please refer to FIG. 61A, FIG. 61B and FIG. 61C for a schematic cross-sectional view of the fifth photoresist layer and the sixth photoresist layer of the present invention, the fifth photoresist layer and the sixth photoresist of the present invention. A schematic plan view of the structure after the layer is formed and a schematic view of the structure after the fifth photoresist layer and the sixth photoresist layer of the present invention are formed. As shown in the figure, the fifth photoresist layer 358 and the sixth photoresist layer 360 are formed on the structure. The fifth photoresist layer 358 is formed on the winding 350 and the solder mask 356. The sixth photoresist layer 360 is formed on the metal substrate 320. The fifth photoresist layer 358 includes an opening and a partially exposed portion of the winding 350. The sixth photoresist layer is not printed with a pattern. Please refer to the "62A, 62B and 62C" diagrams, which are schematic cross-sectional views of the structure in which the electroplated contacts of the present invention are formed after winding, and the structure of the present invention is formed after winding. The electroplated joint of the invention is formed in a bottom view of the structure after winding. As shown in the figure: the plating defect 362 is plated on the winding 350 73 1292195 by electroplating. Please refer to "Fig. 63A, 63B and 63C" as the fifth photoresist layer of the present invention. A schematic cross-sectional view of the sixth photoresist layer after stripping, the fifth photoresist layer and the sixth photoresist layer stripped structure of the present invention, and a fifth schematic view of the fifth photoresist layer and the sixth photoresist layer of the present invention The structure is viewed from the bottom. As shown in the figure, after the fifth photoresist layer 358 and the sixth photoresist layer 360 are stripped, the metal substrate 320, the winding 350 and the electrical contact 362 are schematicly constructed. Please refer to FIG. 64A, 64B and 64C for a schematic cross-sectional view showing the structure of the adhesive of the present invention after the solder mask is formed, and the structure of the present invention after the adhesive is formed on the solder mask and the present invention. The structure of the adhesive formed on the welded mask is a bottom view. As shown, the adhesive 364 is formed on the solder mask 356. Referring to the drawings of Figs. 65A, 65B and 65C, which are schematic cross-sectional views of a semiconductor wafer of the present invention, a schematic plan view of a semiconductor wafer of the present invention, and a bottom view of the structure of the semiconductor wafer of the present invention. As shown, the semiconductor wafer 310 is attached to the structure by the adhesive 364. The structure includes a metal substrate 320, a wire 350, a solder mask 356, and a plating contact 362. Please refer to FIG. 66A, 66B and 66C for a schematic cross-sectional view of the connecting portion of the present invention attached to the conductive pin and the plated contact. The connecting portion of the present invention is attached to the conductive pin and the plated contact. FIG. 74 is a top view of the structure of the structure and the structure of the connecting portion of the present invention attached to the conductive pin and the plated joint. As shown in the figure, the connecting portion 366 is formed on the conductive pin 316 and the plating contact 362. Referring to the drawings of Figs. 67A, 67B and 67C, which are schematic cross-sectional views of the structure of the sealing layer of the present invention, a schematic plan view of the structure of the sealing layer of the present invention, and a bottom view of the structure of the sealing layer of the present invention. As shown, the sealing layer 368 is formed on the semiconductor wafer 310, the winding 350, the solder mask 356, the electrical joint 362, the adhesive 364, and the connecting portion 366. Referring to FIG. 68A, FIG. 68B and FIG. 68C, a schematic cross-sectional view showing a structure in which a second photoresist layer of the present invention is formed on a metal substrate, and a top view of a structure in which a second photoresist layer of the present invention is formed on a metal substrate; A schematic diagram of a structure in which a second photoresist layer of the present invention is formed on a metal substrate. As shown, the second photoresist layer 328 is formed on the metal substrate 320. The second photoresist layer 328 includes an opening having an opening diameter of 200 microns and partially exposing the second plane 324. Referring to the drawings of Figs. 69A, 69B and 69C, there are shown schematic views of a notched structure of the present invention, a plan view of a notched structure of the present invention, and a bottom view of the structure of the present invention having a notch. As shown, the perforation 330 is passed through the metal substrate 320. The via 330 is etched from the partially exposed portion of the second major plane 324 of the metal substrate 320 by a chemical etching solution, and the second photoresist layer 328 is used to etch the mask. The bottom nozzle sprays a chemically etched 75 1292195 solution onto the metal substrate 320. When the top nozzle is not used or the entire structure is immersed in the chemical etching solution, the sealing layer 368 can protect the front side, and the chemical etching solution is highly selective. The copper is etched through the metal substrate 320. Therefore, the through hole 330 penetrates the metal substrate 320 between the first plane 322 and the second plane 324 of the metal substrate 320 and exposes the winding 350. The perforations 330 have a diameter of 300 microns on the first plane 3 2 2 and a depth of 150 microns. Therefore, the through hole 330 is formed in the same manner as the notch 130 of the first embodiment except that the chemical etching is applied for a long time to etch the metal substrate 320. One suitable chemical etching solution is alkaline ammonia. The desired etching time for immersing the metal substrate 320 in the chemical etching solution is a repeated test in order to form the perforations 330 of appropriate diameter. Referring to the drawings of Figures 70A, 70B and 70C, there are shown a schematic cross-sectional view of a metal wall structure of the present invention, a top view of the structure of the metal wall of the present invention, and a bottom view of the structure of the metal wall of the present invention. As shown, the metal wall 332 is formed on the metal substrate 320 and the winding 350. The metal wall 332 is electrically connected to the metal substrate 320 and the winding 350 in the recess 330, but is not integrally joined to the metal substrate 320 and the winding 350. Please refer to FIG. 71A, 71B and 71C for a schematic cross-sectional view of the structure of the second photoresist layer covering the second photoresist layer of the present invention, and a schematic plan view of the structure of the present invention covering the second photoresist layer. 76 1292195 A schematic view of the structure of the invention covering the second photoresist layer. As shown in the figure, the template 338 is overlaid on the second photoresist layer 328. Please refer to FIG. 72A, 72B and 72C for a schematic cross-sectional view showing the structure of the solder paste deposited on the metal wall of the present invention, a schematic view of the structure of the solder paste deposited on the metal wall of the present invention, and the solder paste deposition of the present invention. A schematic view of the structure of the metal wall. As shown, the solder paste 340 is deposited on the metal wall 332. Please refer to FIG. 73A, 73B and 73C for a schematic cross-sectional view of the structure after removing the template of the present invention, a schematic top view of the structure after removing the template of the present invention, and a structure of the present invention after removing the template. schematic diagram. As shown, the template 338 is removed from the second photoresist layer 3 28 . Please refer to FIG. 74A, 74B and 74C for a schematic cross-sectional view of the solder paste of the present invention after forming a solder layer, a schematic top view of the solder paste of the present invention after forming a solder layer, and a solder paste formation of the present invention. A schematic view of the structure behind the solder layer. As shown, the solder layer 342 is formed of the solder paste 340. Please refer to FIG. 75A, 75B and 75C for a schematic cross-sectional view of the second photoresist layer after stripping, a top view of the structure of the second photoresist layer of the present invention, and a first embodiment of the present invention. A schematic diagram of the structure of the two photoresist layers after peeling off. As shown in the figure, after the second photoresist layer 328 is peeled off, the semiconductor wafer 310, the metal substrate 320, the metal wall 332, the solder layer 342, the winding 350, the plating interface 77 1292195 point 362, the adhesive 364, the connecting portion 366 and the structure of the sealing layer 368. Please refer to FIG. 76A, 76B and 76C for a schematic cross-sectional view of the metal substrate after the removal of the metal substrate of the present invention, a schematic top view of the metal substrate after removal of the present invention, and a metal substrate of the present invention. The structure is viewed from the bottom. As shown, the metal substrate 320 is etched from the second major plane 324, the metal wall 332, and the solder layer 342 by a backside wet chemical etching solution. If the bottom nozzle sprays a chemical etching solution onto the metal substrate 320, when the top nozzle is not used or the entire structure is immersed in the chemical etching solution, the sealing layer 368 can protect the front side, when copper is opposed to nickel, tin, In the epoxy resin and the injection molding material, the wet chemical etching is applied. Therefore, the metal substrate 320 is used for the metal wall 332, the solder layer 342, the nickel layer of the winding 350, the solder mask 356, and the sealing layer 368. Use this wet chemical name. &gt; The wet chemical etching etches and removes the metal substrate. Therefore, the wet chemical etching system can remove the metal wall 332, the winding 350, and the area where the solder mask 356 contacts the metal substrate 320. Therefore, the metal substrate 320 is removed in the same manner as the metal substrate 120 of the first embodiment is etched to form the metal pillars 170, except that the chemical etching is applied for a long time to etch the metal substrate 320. A suitable chemical solution is alkaline ammonia. The desired etching of the metal substrate 320 in a chemical etching solution 78 1292195 is time tested in order to remove the metal substrate 320 without exposing the metal wall 332 and the winding 350 to the chemical etching solution. Please refer to FIG. 77A, 77B and 77C for a schematic cross-sectional view of the insulating encapsulant of the present invention, a schematic top view of the insulating encapsulant of the present invention, and an insulating encapsulant of the present invention. The structure is viewed from the bottom. As shown, the insulating encapsulant 382 is formed on the metal wall 332, the solder layer 342, the winding 350, and the solder mask 356. Please refer to FIG. 78A, 78B and 78C for a schematic cross-sectional view of a portion of the insulating encapsulant after removal of the present invention, a schematic top view of the structure after removing the insulating encapsulant of the present invention, and the present invention. A schematic view of the structure after the partial insulation seal is removed. As shown in the figure, the structure is shown after the partial insulating sealant 382 is removed. Please refer to FIG. 79A, 79B and 79C for a schematic cross-sectional view of the structure after the formation of the solder ball of the present invention, a schematic plan view of the structure after the solder ball of the present invention is formed, and a structure of the structure after the solder ball of the present invention is formed. schematic diagram. As shown, the solder ball 384 is formed on the solder layer 342. Please refer to FIG. 80A, FIG. 80B and FIG. 80C for a schematic cross-sectional view of the structure after the formation of the welded end of the present invention, a schematic plan view of the structure after the formation of the welded end of the present invention, and a structure of the structure after the formation of the welded end of the present invention. schematic diagram. As shown, the solder end 386 is formed by a solder layer 342 and a solder ball 384. 79 1292195 ^ Please refer to FIG. 81A, 81B and 81C for a schematic cross-sectional view of a semiconductor wafer package structure, a top view of a semiconductor wafer package structure of the present invention, and a bottom view of the semiconductor wafer package structure of the present invention. As shown, the metal wall 332 is bonded only to the winding 350' insulating sealant 382 and the solder layer 386, which has no metal posts. The semiconductor chip package structure 398 includes a semiconductor wafer 31, a metal wall 332, a wire 350, a solder mask 356, a plating contact 362, an adhesive 364, a connecting portion 366, a sealing layer 368, an insulating seal 382, and a soldering end. 386. FIG. 28 is a cross-sectional view showing a semiconductor chip package structure according to a fourth embodiment of the present invention. FIG. 2 is a plan view of a semiconductor chip package structure according to a fourth embodiment of the present invention. The semiconductor chip package structure of the fourth embodiment is not intended to be viewed. As shown in the fourth embodiment, the semiconductor chip package and the germanium structure 498 are flip chip bonded. First, the connection portion 々a is deposited on the conductive pin 416 by a solder bump, and the solder bump is a half sphere having a diameter of 1 μm. For the sake of brevity, the same description as the first embodiment is not repeated. Similarly, the elements of the fourth embodiment have similar reference numerals as the first embodiment, such as the semiconductor wafer 41 〇 conforming to the semiconductor wafer 110, the winding 450 conforming to the winding 150, and the like. The winding 450 extends over the periphery of the semiconductor wafer 41. Therefore, the elongated winding portion (relative to the component number 1292195 No. 152 in the first embodiment) is lengthened. Further tuned to the windings 150 formed by electroplating in the first embodiment. In particular, a second pre-resist layer of the flute (relative to the third photoresist layer 144 of the first embodiment) is patterned back and/or patterned to re-form an opening on ^(4): The winding 450 is longer than the winding 15 of the first embodiment. The electric ore joint (relative to the electric clock contact 162 of the first embodiment) is omitted. 1. The first plane 412 of the semiconductor wafer 41 faces downward, and the first plane 414 faces upward. The winding 45 〇 extends laterally through the conductive pin 416 &quot;A connection portion 466 is connected to the conductive pin The windings 450 are in contact with and in contact with each other 'and then heated to cause the connecting portion to generate a flow. 'Stop heating to cool the connecting portion 466 to form a hard'. The contact points can be attached to the conductive pins 416 and the windings 45〇. The electrical connection between the conductive pin 416 and the winding 45G is electrically connected. The connection portion 466 is partially wetted but not collapsed, and the semiconductor wafer 410 is isolated from the winding 450. Thereafter, the adhesive 464 is filled between the semiconductor wafer 41 and the solder mask 456, and then the adhesive is hardened. Therefore, the adhesive 464 is sandwiched between the semiconductor wafer 41 and the bump mask 456, and is bonded to the semiconductor wafer 41G and the recording mask 456, and is also bonded to the connecting portion 466 and is not in contact with the conductive pin 416. . Therefore, the adhesive 464 is thicker than the adhesive 164 of the first embodiment. A suitable adhesive is the Namics U8443. The sealant layer 468, the metal post 470, the insulating sealant 482, and the welded 1292195 end 486 are formed. The semiconductor chip package structure 498 includes a half, a first-410, a metal wall 432, a wire 45, a solder mask wafer 464, a connection portion 466, a sealing layer 468, a metal post, an adhesive 482, and a solder end 486. For the insulating package, please refer to the "Sections 83A, 83B, and 83C". The semiconductor wafer package structure of the fifth embodiment of the invention is a cross-section of the semiconductor wafer package structure of the fifth embodiment of the present invention: The semiconductor wafer package of the fifth embodiment of the present invention is intended to be a bottom view. As shown in the figure: in the fifth embodiment: formed by an electric mine. For the sake of brevity, the same description as the first implementation = does not need to be repeated. Similarly, the elements of the first example have similar reference numerals as the first embodiment, such as: ί = sheet 510 coincides with semiconductor wafer no, winding two coincides with winding 150, and the like. The conductive pin 516 can accommodate the connection of the electroplated copper by forming a recording surface layer on the substrate. For example, the semiconductor wafer 51 is sub-packaged in a -zinc bath to deposit a layer on the substrate. This side is zincated. The zinc solution contains 15 g/L of hydrogen, sodium, 25 g/L of zinc oxide, and g/L of sulphate is like a stone, which reduces the decomposition rate of the substrate. The recorded surface layer is then electrolessly deposited on the zincated substrate. - A suitable non-electric recording clock solution is in degrees Celsius - 82 1292195

Enplate NI-424。 該繞線550係於於該半導體晶片51〇之邊緣内及 邊緣外延伸。因此該長形繞線部份(相對於第一時施例 中之長形繞線部份152)變得更長,係藉由對於第一實 施例中繞線由電鍍形成之處理過程作輕微地調整。該 第二光阻層(相對於第一時施例中之第三光阻層14句 係印有圖案並重新形成一開口於繞線55〇,使該繞線 φ 550比第一實施例中之繞線150變得更長。 該金屬基板(相對於第一時施例中之金屬基板12〇) 被蝕刻形成一第二背側凹口(圖中未示),該電鍍接點 (相對於第一時施例中之電鍍接點162)被刪除,該黏著 劑564係沈積於該繞線55〇及銲接遮罩556上。 口亥半V體日日片510被倒裝,其中該第一平面512 係朝向下方及該第二平面514係朝向上,該黏著劑564 鲁 係與該導電腳位516及繞線550接觸,並被夾於該導 電腳位510與繞線55〇間,並與該導電腳位516與繞 線550互有接觸,於該導電腳位516與繞線55〇間之 厚度為5微米,該繞線55〇與導電腳位516有部份重 豐。接著,該密封層568係被形成,然後該金屬基板 係再被餘刻轉換該第二背側凹口為一狹槽(sl〇t)(圖中 未不)’該狹槽係延伸並穿透該金屬基板,使該銲接遮 罩556暴露,並與該導電腳位516呈垂直排列。 然後,该穿孔565(through-hole)係被形成於該銲 83 1292195 接遮罩556及黏著劑564 θ,並使該導電腳位516暴 露。當該銲接遮罩556及黏著劑564對該導電腳位516 及繞線550時係可採用合適的姓刻方法形成穿孔 泌。在這實施例中係選用—種&amp;ΤΕΑ(:〇2雷射姓刻 方法。該雷射係指向該導電腳位516,並於該導電腳 位516垂直對齊並集中於該導電腳位516。該雷射係 具有-光點,其大小為70微米,該導電腳位516之長 度及寬度為1〇〇微米。該雷射係擊中該導電腳位516 及部份的繞線550,該銲接遮罩556及黏著劑州係 於該導電腳位516之邊緣内延伸,並融化該銲接遮罩 556及黏㈣564。該雷射係鑽㈣部份之銲接遮罩 556及黏著劑564’並移除部份之銲接遮罩5兄及黏著 劑564。然而部份之鲜接遮罩556及黏著劑⑽係延 伸經過該導電腳位516之邊緣,但於該雷射能接觸之 耗圍外。同樣地,該繞線55〇於雷射钱刻中可保護一 #部份之黏著劑564,該-部份之黏著劑⑽係被夹於 該導電腳位516及繞線55G之間並相互接合。該 钱刻係非等向性,所以有小部份之黏著劑⑽係:夾 於導電腳位516及繞線550之間被移除或切除。該穿 口 565係可能輕微地切除於該導電腳位516與繞線“ο 間之黏著劑564,因該雷射光束之角度、雷射之溫度 及電漿氧之等向性或化學清洗方式,使該穿口奶2 直控稍大於7G微米。為了說明方便,有猶微之切割及 擴張被省略。然後該凹口 565之形成沒有對該半導體 84 1292195 :片510或繞線55〇產生損害,亦沒延伸至該半導體 晶片51 〇内部。 然後利用簡短的清洗步驟使該導電腳位516及繞 線550暴露之部份可移除氧化物及碎片。如一種簡短 的電水氧μ洗方法應用於結構上,或者選擇一種利用 具高錳酸鉀溶液之簡短的化學清洗方法應用於結構 上1上述之清洗方法皆能清洗導電腳位516及繞線550 暴露之部份,並不損害整體結構。 該連接部566係藉由電鍍而被形成,首先該金屬 基板係連接至一電鍍匯流排(圖中未示),該電鍍匯流 排係使用外部電源,整體結構被浸於一電解銅電鍍溶 液其,谷液如於室溫之Sel_Rex CUBATH ΜΤΜ。所以 該連接部566鍍於該金屬基板暴露之部份。另外從該 電鍍匯流排提供電流給金屬基板,所以該金屬基板將 提供電流給繞線550,該連接部566鍍於穿孔565内 繞線550暴露之部份。於這階段一開始,從該黏著劑 564係為一絶緣體,而該導電腳位516並未與電鐘匯 流排連接,該連接部566未鍍於導電腳位516上,並 與該導電腳位516隔離。然而,當持續進行銅電鍍時, 該連接部566持續鍍於繞線550上,並往黏著劑564 延伸穿透,最後與該導電腳位516接觸。該導電腳位 516係被連接至該電鍍匯流排係藉由該金屬基板、繞 線550及連接部566,所以該連接部566開始可鍍於 85 1292195 導電腳位516上。持續進行銅電鍍直到該連接部566 達到所需要之厚度。然後將整體結構從電解銅電鍍溶 液移出’並用蒸餾水清洗去除汙染物。 接著該絕緣塞569(insulative plug)被形成於銲接 遮罩556及連接部566上,並沈積於狹槽中,然後該 金屬壁570,絕緣封膠582及銲接端586被形成。Enplate NI-424. The winding 550 is extended within and outside the edge of the semiconductor wafer 51. Therefore, the elongated winding portion (relative to the elongated winding portion 152 in the first embodiment) becomes longer by slightly treating the winding formed by the plating in the first embodiment. Ground adjustment. The second photoresist layer (printed with respect to the third photoresist layer 14 in the first embodiment) and re-formed an opening to the winding 55〇, so that the winding φ 550 is larger than in the first embodiment. The wire 150 becomes longer. The metal substrate (relative to the metal substrate 12A in the first embodiment) is etched to form a second back side notch (not shown), the plated joint (relatively The plating contact 162) in the first embodiment is deleted, and the adhesive 564 is deposited on the winding 55〇 and the soldering mask 556. The half-V body day 510 is inverted, wherein The first plane 512 is directed downward and the second plane 514 is oriented upward. The adhesive 564 is in contact with the conductive pin 516 and the winding 550, and is sandwiched between the conductive pin 510 and the winding 55. The conductive pin 516 and the wire 550 are in contact with each other. The thickness between the conductive pin 516 and the winding 55 is 5 micrometers. The winding 55 〇 and the conductive pin 516 are partially rich. Then, the sealing layer 568 is formed, and then the metal substrate is further converted into a slot by the residual (sl〇t) (not shown) The slot extends and penetrates the metal substrate to expose the solder mask 556 and is vertically aligned with the conductive pin 516. Then, the through-hole 565 is formed in the solder 83 1292195 The mask 556 and the adhesive 564 θ are exposed, and the conductive pin 516 is exposed. When the solder mask 556 and the adhesive 564 are used for the conductive pin 516 and the winding 550, a suitable method for forming a perforation can be used. In this embodiment, a &amp; ΤΕΑ (: 雷 2 laser surname method is selected. The laser is directed to the conductive pin 516, and is vertically aligned at the conductive pin 516 and concentrated on the conductive pin. 516. The laser system has a light spot having a size of 70 micrometers, and the conductive pin 516 has a length and a width of 1 micron. The laser system hits the conductive pin 516 and a portion of the winding 550. The solder mask 556 and the adhesive state extend in the edge of the conductive pin 516 and melt the solder mask 556 and the adhesive (four) 564. The laser drill (four) portion of the solder mask 556 and the adhesive 564 'And remove some of the solder mask 5 brothers and adhesive 564. However, some of the fresh mask 556 and The primer (10) extends past the edge of the conductive pin 516, but outside the consumption of the laser energy contact. Similarly, the winding 55 is protected from a laser etch to protect a portion of the adhesive 564. The portion of the adhesive (10) is sandwiched between the conductive pin 516 and the winding 55G and joined to each other. The money is anisotropic, so a small portion of the adhesive (10) is: The conductive pin 516 and the winding 550 are removed or cut away. The opening 565 may be slightly cut off between the conductive pin 516 and the winding ο, because of the angle of the laser beam, The temperature of the laser and the isotropic or chemical cleaning of the plasma oxygen make the mouth-feeding milk 2 slightly larger than 7G micron. For the convenience of explanation, the cutting and expansion of the shape are omitted. The formation of the recess 565 then does not damage the semiconductor 84 1292195: sheet 510 or winding 55, nor does it extend into the interior of the semiconductor wafer 51. The conductive pads 516 and portions of the wires 550 are then exposed to remove oxides and debris using a short cleaning step. For example, a short electro-hydraulic oxygen-washing method is applied to the structure, or a short chemical cleaning method using a potassium permanganate solution is applied to the structure. The above-mentioned cleaning method can clean the conductive pin 516 and the winding. The exposed portion of 550 does not damage the overall structure. The connecting portion 566 is formed by electroplating. First, the metal substrate is connected to an electroplating bus bar (not shown). The electroplating bus bar uses an external power source, and the whole structure is immersed in an electrolytic copper plating solution. The solution is as Sel_Rex CUBATH 室温 at room temperature. Therefore, the connecting portion 566 is plated on the exposed portion of the metal substrate. In addition, current is supplied from the plating busbar to the metal substrate, so that the metal substrate will supply current to the winding 550, which is plated in the portion of the perforation 565 where the wire 550 is exposed. At the beginning of this phase, the adhesive 564 is an insulator, and the conductive pin 516 is not connected to the electric clock bus. The connecting portion 566 is not plated on the conductive pin 516 and is electrically connected to the conductive pin. Bit 516 is isolated. However, when copper plating is continued, the connecting portion 566 is continuously plated on the winding 550 and penetrates through the adhesive 564, and finally contacts the conductive pin 516. The conductive pin 516 is connected to the plating bus by the metal substrate, the winding 550 and the connecting portion 566, so the connecting portion 566 can be plated on the 85 1292195 conductive pin 516. Copper plating is continued until the joint 566 reaches the desired thickness. The bulk structure is then removed from the electrolytic copper plating solution and washed with distilled water to remove contaminants. The insulating plug 569 is then formed on the solder mask 556 and the connecting portion 566 and deposited in the slot, and then the metal wall 570, the insulating encapsulant 582 and the solder end 586 are formed.

該半導體晶片封裝結構598係包含半導體晶片 51〇、金屬壁532、繞線550、銲接遮罩556、黏著劑 564、連接部566、密封層568、絕緣塞569、金屬柱 570、絕緣封膠582及銲接端586。 , 請參閱『第84A、84B及84C圖』所示,係為本 發明之第六實施例之半導體晶片封裝結構剖面示意 圖、本發明之第六實施例之半導體晶片封裝結構俯視 示意圖及本發明之第六實施例之半導體晶片封裝結構 仰視示意圖。如圖所示:於第六實施例中該連接部為 無電解電鍍。為了簡短㈣,與第一實施例有相同 的描述,係不須要被重覆。同樣地,該第六實施例之 兀件與第—實施例相似具有相符的參考編號,如 體晶片610相符於半導體晶片no,繞線650相符於 繞線150…等。 付% 鎳層,與第五實施例中 ,該繞線650與第五實 同,該黏著劑664沈積 該導電腳位616係包含一 之導電腳位516形成方法相同 施例中之繞線550形成方法相 86 1292195 於繞線650及銲接遮罩656與第五實施例中之黏著劑 564沈積於繞線550及銲接遮罩556形成方法相同, 該電鍍接點(相對於第一實施例中之電鍍接點162)被 省略。 該半導體晶片610被倒裝,其中該第一平面612 於下方及該第二平面614於上方,該黏著劑664係介 於該導電腳位616與繞線650之間,並與該導電腳位 516與繞線550互有接觸,其間之厚度為5微米,該 繞線650與導電腳位616有部份重疊。接著,該密封 層668被形成,然後該金屬基板被蝕刻形成一金屬柱 670。接著,該穿孔665被形成於該銲接遮罩656及黏 著劑664内,並使該導電腳位616暴露。該穿孔665 與第五實施例中之穿孔565形成方法相同。 接著,該連接部666係籍由電鍍而被形成。整體 結構被浸於一電解鎳電鍍溶液,其溶液如於攝氏85度 之Enthone Enplate NI-424。較好之電解鎳電鑛溶液係 包含硫酸鎳 (nickel-sulfate) 及氣化鎳 (nickel-chloride),其溶液之ph值約介於9·5至10.5 之間。具高濃度之電解鎳電鍍溶液係加快電鍍速率(a faster plating rate),但降低該溶液之穩定性。該溶液 中具一定數量之螫合劑(chelating agents)或配位體 (ligands)係依據鎳的濃度及它們的化學結構,功能性 及當量。大部份之螫合劑被用於無電鎳電錢溶液係為 87 1292195The semiconductor chip package structure 598 includes a semiconductor wafer 51 , a metal wall 532 , a winding 550 , a solder mask 556 , an adhesive 564 , a connecting portion 566 , a sealing layer 568 , an insulating plug 569 , a metal post 570 , and an insulating seal 582 . And welding end 586. FIG. 84 is a schematic cross-sectional view showing a semiconductor chip package structure according to a sixth embodiment of the present invention, and a plan view of a semiconductor chip package structure according to a sixth embodiment of the present invention and the present invention. A schematic view of a semiconductor wafer package structure of a sixth embodiment. As shown in the figure: in the sixth embodiment, the connecting portion is electroless plating. For the sake of brevity (d), the same description as the first embodiment does not need to be repeated. Similarly, the member of the sixth embodiment has a similar reference number as the first embodiment, such as the body wafer 610 conforming to the semiconductor wafer no, the winding 650 conforming to the winding 150, and the like. In the fifth embodiment, the winding 650 is the same as the fifth embodiment. The adhesive 664 is deposited. The conductive pin 616 includes a conductive pin 516. The winding method is the same as the winding 550 in the same embodiment. The forming method phase 86 1292195 is the same as the method in which the winding 650 and the solder mask 656 are deposited on the winding 550 and the solder mask 556 in the fifth embodiment, the plating contact (relative to the first embodiment) The plating contact 162) is omitted. The semiconductor wafer 610 is flipped, wherein the first plane 612 is below and the second plane 614 is above, and the adhesive 664 is interposed between the conductive pin 616 and the winding 650, and the conductive pin The 516 is in contact with the winding 550 with a thickness of 5 microns therebetween, and the winding 650 partially overlaps the conductive pin 616. Next, the sealing layer 668 is formed, and then the metal substrate is etched to form a metal pillar 670. Next, the via 665 is formed in the solder mask 656 and the adhesive 664 and exposes the conductive pin 616. This perforation 665 is formed in the same manner as the perforation 565 in the fifth embodiment. Next, the connecting portion 666 is formed by electroplating. The monolithic structure is immersed in an electrolytic nickel plating solution such as Enthone Enplate NI-424 at 85 degrees Celsius. A preferred electrolytic nickel ore solution comprises nickel-sulfate and nickel-chloride, and the solution has a pH of between about 9.5 and 10.5. A high concentration electrolytic nickel plating solution accelerates the plating rate but reduces the stability of the solution. A certain amount of chelating agents or ligands in the solution are based on the concentration of nickel and their chemical structure, functionality and equivalent weight. Most of the chelating agents are used in electroless nickel electricity money solution system 87 1292195

有機羥基酸(hydroxy organic acids),形成一或多個水 溶性鎳環形複合物。上述之複合物係減少自由基鎳離 子濃度,因此增加該溶液之穩定性,並保有快速的電 鍍速率。一般來說,該複合劑具有高濃度,並降低電 鍍速率。另外當持續進行無電解電鍍時,該溶液之pH 值及電鍍速率持續遞減,歸因於氫氧離子被注入該溶 液中為鎳還原的副產物。於是該溶液被緩衝並補償受 «•亥氫氧離子之影響。合適的緩衝劑係包含單原子(m〇n〇) 的納(sodium)鹽或鉀(potassium)鹽及二元的有機酸 (dibasic organic acids)。最後,由上述之過程可知該無 電鎳電鍍溶液係不會沈積純元素鎳,因還原劑 (reducing agent)如HJO2將自然地分解於無電解電鍍 錄之過程中。所以經上述可得知無電解電鑛鎳之過程 中,該鎳之化合物幾乎為鎳但不是純元素鎳。 該導電腳位616係包含-被暴露的鎳表面層,户 以該導電腳位616係與無f財接觸反應。而且射 接遮罩656、黏著劑664及密封層編係不與該μ 錄有接觸反應’所以不須使用電鍍遮罩。該連接部66 係鐘於導電腳位616上’並與該導電腳位616及&quot; 孔665中繞線650接觸’且使該導電腳位616及於 孔665中繞線㈣間具有電性的連接。當持續進㈣ 電鍍咖直到該連接部666之厚度係約為1〇微来&lt; 然後整體架構係從無電鍍錦溶液中移出,並以基鶴水 1292195 清洗。 接著,該絕緣封膠682及銲接端686被形成。 該半導體晶片封裝結構698係包含半導體晶 61〇、金屬壁632、繞線65〇、銲接遮罩656、黏= 664連接666、密封層668、金屬柱go、絕緣 膠682及銲接端686。 ^ 凊參閱『第85A、85B及85C圖』所示,係為本 發明之第七實施例之半導體晶片封裝結構剖面:意 圖丄本發明之第七實施例之半導體晶片封震結構俯^ 不意圖及本發明之第七實施例之半導體晶片封裝結構 仰視示意圖。如圖所示:於第七實施例中,該鮮接声 提供該銲接端。為了簡短的目的,與第一實施例有^ 同的描述,係不須要被重覆。同樣地,該第七實施例 之兀件與第-實施例相似具有相符的參考編號,如半 春導體晶片71G相符於半導體晶片UG,繞線75〇相符 於繞線150···等。 该錫球(相對於第一實施例中之錫球18句被省 略’所以該銲接層(相對於第一實施例中之銲接層142) 係提供該銲接端786。該銲接端786被置於孔洞734 =,該金屬壁732、絕緣封膠782及銲接端786係被 橫向相互排列於一朝向下之平面上。因&amp;一暴露之水 平面係朝向下,並包含金屬壁732、絕緣封膠782及 鲜接端786。❿且每一導電跡線係包含一橫向排列之 89 1292195 銲接端係可提供一平面柵格陣列構裝。 該半導體晶片封裝結構798係包含半導體晶片 710、金屬壁732、繞線750、銲接遮罩756、電鍍接 點762、黏著劑764、連接部766、密封層768、金屬 柱770、絕緣封膠782及銲接端786。 請參閱『第86A、86B及86C圖』所示,係為本 發明之第八實施例之半導體晶片封裝結構剖面不意 圖、本發明之第八實施例之半導體晶片封裝結構俯視 不意圖及本發明之第八實施例之半導體晶片封裝結構 仰視示意圖。如圖所示:於第八實施例中,係利用雷 射消溶(laser ablation)將該絕緣封膠部份移除。為了簡 短的目的,與第一實施例有相同的描述,係不須要被 重覆。同樣地,該第六實施例之元件與第一實施例相 似具有相符的參考編號,如半導體晶片610相符於半 導體晶片110,繞線650相符於繞線150…等。 該絕緣封膠882於沒有使用填充劑(filler)時被形 成。所以該絕緣封膠882於雷射蝕刻時比第一實施例 中之絕緣封膠182更敏感。而研磨處理係被刪除,以 具選擇性之TEA C02雷射蝕刻取代並利用複合的雷射 直寫頭。該雷射係被指向該銲接層(相對於第一實施例 之銲接層142)。該雷射之光點大小為100微米。而且 該雷射直寫頭(laser direct writes)係相互偏移尚未重 疊,使該雷射掃描銲接層之中心部份,其掃描直徑為 1292195 150微米。在這方法中,該雷射直寫頭(laser direct writes)係呈垂直地排列並集中於金屬壁832、金屬柱 870及銲接層上。所以該雷射光擊中該銲接層,並蝕 刻絕緣封膠882與銲接層重疊之部份,且消熔該絕緣 封膠882。 該雷射鑽穿並移除部份的絕緣封膠882。然後一 部份的絕緣封膠882係延伸並穿過該銲接層之邊緣, φ 但於被雷射擊中之範圍外。因此,該絕緣封膠882仍 與該銲接層有接觸及重疊,但不再覆蓋於該銲接層上。 接著利用簡短的清洗步驟使該銲接層暴露之部份 可移除氧化物及碎片。如一種簡短的電漿氧清洗方法 應用於結構上,或者選擇一種利用具高錳酸鉀溶液之 簡短的化學清洗方法應用於結構上。上述之清洗方法 係皆能清洗銲接層暴露之部份,並不損害整體結構。 • 该開口 883係被形成於該絕緣封膠882上,並垂 直延伸至該絕緣封膠882但並未穿透該絕緣封膠 882,並被置於該半導體晶片81〇之邊緣,且與金屬壁 832、金屬柱87〇及銲接層呈垂直地排列,該開口 μ) 使該銲接層暴露,並與該金屬壁832、繞線85〇、銲接 遮罩856及金屬柱870分離,該開口 883之直徑為15〇 微米。該開口 883之形成係沒對銲接層造成損傷或延 伸至該鲜接層内。 忒開口 883之直徑可能有稍大於15〇微米,歸因 1292195 於5亥雷射光束的角度、雷射溫度及電漿氧之等向性或 ,學清洗方法。為了說明方便,其中有稍微擴張部份 雀略。 ▲接著該鮮接端886被形成。該銲接端886係於該 s亥開口 883之内部及外部延伸,並填滿該開口 883, 且從該絕緣封膠882向下延伸。而且雖㈣銲接端886 延伸至該絕緣封膠882内之整體部份係於該孔洞㈣ ^ 之表面區域内。 該半導體晶片封裝結構898係包含半導體晶片 810、金屬壁832、繞線85〇、銲接遮罩8S6、電鍍接 點862、黏著劑864、連接部866、密封層868、金屬 柱870、絕緣封膠882及銲接端886。 請參閱『第87A、87B及87C圖』所示,係為本 發明之第九實施例之半導體晶片封裝結構剖面示意 _ 圖、本發明之第九實施例之半導體晶片封裝結構俯視 示意圖及本發明之第九實施例之半導體晶片封裝結構 仰視示意圖。如圖所示··於第九實施例中,係利用電 漿触刻將該絕緣封膠部份移除。為了簡短的目的,與 第一實施例有相同的描述,係不須要被重覆。同樣地, 該第九實施例之元件與第一實施例相似具有相符的泉 考編號,如半導體晶片910相符於半導體晶片11〇, 繞線950相符於繞線150…等。 該絕緣封膠982於沒有使用填充劑(fiUer)時被形 92 1292195 成。所以該絕緣封膠982於雷射蝕刻時比第一實施例 中之絕緣封膠182更敏感而研磨過程被省略,進一步 以毯覆式背邊式電漿姓刻取代並應用於結構中。當環 氧樹脂對鎳及錫料時係可採用電漿蝕刻,所以當該絕 緣封膠982對金屬壁932及銲接端986時係可採用電 漿蝕刻。該電漿蝕刻可從絕緣封膠982之較低部份可 移除80微米的厚度。所以該金屬壁932及銲接端986 係從絕緣封膠982向下延伸,並使該絕緣封膠982被 凹入,相對於金屬壁932及銲接端986於向下方向。 而且該絕緣封膠982係從該金屬柱970向下擴展,該 金屬柱9 7 0係為未暴露的。 該半導體晶片封裝結構998係包含半導體晶片 91〇、金屬壁932、繞線950、銲接遮罩956、電^接 點962、黏著劑964、連接部966、密封層968、金屬 柱970、絕緣封勝982及鲜接端986。Organic hydroxy organic acids form one or more water soluble nickel ring complexes. The above complex reduces the concentration of free radical nickel ions, thereby increasing the stability of the solution and maintaining a rapid plating rate. Generally, the composite has a high concentration and reduces the plating rate. In addition, when electroless plating is continued, the pH and plating rate of the solution continue to decrease due to the injection of hydroxide ions into the solution as a by-product of nickel reduction. The solution is then buffered and compensated for by the influence of «Hai hydrogen oxide ions. Suitable buffering agents include monoatomic (sodium) or potassium salts and dibasic organic acids. Finally, from the above process, it is known that the electroless nickel plating solution does not deposit pure elemental nickel, and a reducing agent such as HJO2 will naturally be decomposed into the electroless plating process. Therefore, in the above process, it is known that the nickel compound is almost nickel but not pure elemental nickel. The conductive pin 616 includes an exposed nickel surface layer, and the conductive pin 616 is in contact with the non-following contact. Moreover, the radiation mask 656, the adhesive 664, and the seal layer are not in contact with the μ. Therefore, it is not necessary to use a plating mask. The connecting portion 66 is electrically connected to the conductive pin 616 and is in contact with the conductive pin 616 and the hole 650 in the hole 665 and electrically connected between the conductive pin 616 and the winding (4) in the hole 665. Connection. When the (4) electroplating coffee is continued until the thickness of the connecting portion 666 is about 1 〇, then the overall structure is removed from the electroless plating solution and washed with the base crane water 1292195. Next, the insulating encapsulant 682 and the solder end 686 are formed. The semiconductor wafer package structure 698 includes a semiconductor crystal 61, a metal wall 632, a winding 65, a solder mask 656, a bonding 664 connection 666, a sealing layer 668, a metal pillar go, an insulating adhesive 682, and a soldering end 686. ^ 凊 "85A, 85B, and 85C", which is a sectional view of a semiconductor wafer package structure according to a seventh embodiment of the present invention: the semiconductor wafer sealing structure of the seventh embodiment of the present invention is intended to be And a bottom view of the semiconductor wafer package structure of the seventh embodiment of the present invention. As shown in the figure: in the seventh embodiment, the fresh sound is provided to the welded end. For the sake of brevity, the description of the first embodiment is not necessarily repeated. Similarly, the member of the seventh embodiment has a reference number similar to that of the first embodiment. For example, the semiconductor wafer 71G conforms to the semiconductor wafer UG, and the winding 75 〇 corresponds to the winding 150. The solder ball (the 18th sentence of the solder ball in the first embodiment is omitted) so the solder layer (relative to the solder layer 142 in the first embodiment) provides the solder end 786. The solder end 786 is placed The hole 734 =, the metal wall 732, the insulating sealant 782 and the welded end 786 are laterally arranged on each other in a downwardly facing plane. Since &amp; an exposed horizontal plane is facing downward, and comprises a metal wall 732, an insulating sealant 782 and the splicing end 786. Each of the conductive traces comprises a laterally aligned 89 1292195. The soldered end provides a planar grid array assembly. The semiconductor wafer package structure 798 includes a semiconductor wafer 710 and a metal wall 732. , winding 750, solder mask 756, plating contact 762, adhesive 764, connecting portion 766, sealing layer 768, metal post 770, insulating encapsulant 782 and soldering end 786. Please refer to "86A, 86B and 86C" The semiconductor chip package structure of the eighth embodiment of the present invention is not intended to be a semiconductor chip package structure of the eighth embodiment of the present invention, and the semiconductor chip package of the eighth embodiment of the present invention is not shown. A bottom view is shown. As shown in the figure: in the eighth embodiment, the insulating sealant portion is removed by laser ablation. For the sake of brevity, the same description as the first embodiment is used. Similarly, the elements of the sixth embodiment have similar reference numerals as the first embodiment, such as the semiconductor wafer 610 conforming to the semiconductor wafer 110, the winding 650 conforming to the winding 150, etc. The insulating encapsulant 882 is formed without the use of a filler. Therefore, the insulating encapsulant 882 is more sensitive to laser encapsulation than the insulating encapsulant 182 of the first embodiment, and the polishing process is removed to The selective TEA C02 laser etch replaces and utilizes a composite laser direct write head that is directed at the solder layer (relative to the solder layer 142 of the first embodiment). The spot size of the laser is 100. Micron. And the laser direct writes are offset from each other so that the central portion of the laser scanning solder layer has a scan diameter of 1292195 150 microns. In this method, the laser is straight. Write head (la The ser direct writes are arranged vertically and concentrated on the metal wall 832, the metal post 870 and the solder layer. Therefore, the laser light hits the solder layer and etches the portion of the insulating encapsulant 882 overlapping the solder layer. The insulating encapsulant 882 is melted. The laser drills through and removes part of the insulating encapsulant 882. Then a portion of the insulating encapsulant 882 extends and passes through the edge of the solder layer, φ but is shot by the thunder Therefore, the insulating encapsulant 882 still contacts and overlaps with the solder layer, but no longer covers the solder layer. The exposed portions of the solder layer are then removed using a short cleaning step to remove oxides and debris. For example, a short plasma oxygen cleaning method is applied to the structure, or a short chemical cleaning method using a potassium permanganate solution is applied to the structure. The above cleaning method can clean the exposed portion of the solder layer without damaging the overall structure. • The opening 883 is formed on the insulating encapsulant 882 and extends vertically to the insulating encapsulant 882 but does not penetrate the insulating encapsulant 882 and is placed on the edge of the semiconductor wafer 81 and with metal The wall 832, the metal post 87〇 and the solder layer are vertically arranged, the opening μ) exposing the solder layer and separating from the metal wall 832, the winding 85〇, the solder mask 856 and the metal post 870, the opening 883 The diameter is 15 inches. The opening 883 is formed without causing damage to or extending into the solder layer. The diameter of the opening 883 may be slightly larger than 15 μm, due to the angle of the 1292195 beam at 5 Hz, the temperature of the laser and the isotropic nature of the plasma oxygen. For the convenience of explanation, there is a slightly expanded part of the bird. ▲ Then the fresh joint 886 is formed. The soldering end 886 extends inside and outside the opening 883 and fills the opening 883 and extends downward from the insulating encapsulant 882. Moreover, although (4) the entire portion of the solder joint 886 extending into the insulating encapsulant 882 is within the surface area of the hole (4). The semiconductor chip package structure 898 includes a semiconductor wafer 810, a metal wall 832, a wire 85 〇, a solder mask 8S6, a plating contact 862, an adhesive 864, a connecting portion 866, a sealing layer 868, a metal post 870, and an insulating sealant. 882 and welded end 886. FIG. 87 is a cross-sectional view showing a semiconductor wafer package structure according to a ninth embodiment of the present invention, and a plan view showing a semiconductor chip package structure according to a ninth embodiment of the present invention and the present invention. A schematic view of a semiconductor wafer package structure of a ninth embodiment. As shown in the ninth embodiment, the insulating encapsulant portion is removed by plasma engraving. For the sake of brevity, the same description as the first embodiment is not required to be repeated. Similarly, the elements of the ninth embodiment have a similar spring number as the first embodiment, such as the semiconductor wafer 910 conforming to the semiconductor wafer 11A, the winding 950 conforming to the winding 150, and the like. The insulating encapsulant 982 is shaped as 92 1292195 without the use of a filler (fiUer). Therefore, the insulating encapsulant 982 is more sensitive to laser encapsulation than the insulating encapsulant 182 of the first embodiment, and the grinding process is omitted, and is further replaced by a blanket backside plasma and applied to the structure. When the epoxy resin is used for plasma etching of nickel and tin, plasma etching may be employed when the insulating encapsulant 982 is applied to the metal wall 932 and the soldered end 986. The plasma etch can remove a thickness of 80 microns from the lower portion of the insulating encapsulant 982. Therefore, the metal wall 932 and the soldering end 986 extend downward from the insulating encapsulant 982, and the insulating encapsulant 982 is recessed in a downward direction with respect to the metal wall 932 and the soldering end 986. Moreover, the insulating encapsulant 982 extends downwardly from the metal post 970, which is unexposed. The semiconductor chip package structure 998 includes a semiconductor wafer 91, a metal wall 932, a wire 950, a solder mask 956, an electrical contact 962, an adhesive 964, a connection portion 966, a sealing layer 968, a metal post 970, and an insulating cover. Win 982 and fresh pick up 986.

〇〇八、“《及88C圖』所示 ——w 叫』厂/|小,你马本 發明之第十實施例之半導體晶片封裝結構剖面示音 第十實施例之半導體晶片封⑽俯: π圖;,明之第十實施例之半導體晶片封_ 仰視不如十他财 封膠。為了簡短的目的,盥笫眘^ t士 有,,,巴 ,、第一貧施例有相同的描述, 係重覆。同樣地,該第十實施例 一⑽相似具有相符的參考編號,如半導體晶片 93 1292195 符於半導體晶片110,繞線1G5G相符於繞線 、該絕緣封膠(相對於第一實施例中之絕緣封膠18 被刪除,所以於本實施例不需要研磨。 該半導體晶片封裝結構1098係包含半導體晶片 1010、金屬壁1032、繞線1050、銲接遮罩1〇56、電 鍍接點1062、黏著劑1〇64、連接部1〇66、 •金屬柱聊及銲接端刪。 1068、 請參閱『第89A、89B及89C圖』所示,係為本 發明之第十一實施例之半導體晶片封裝結構剖面示意 圖^發明之第十-實施例之半導體晶片封裝結構俯 視示意圖及本發明之第十一實施例之半導體晶片封裝 結構仰視示意圖。如圖所示:於第十一實施例中,該 金屬壁與繞線同時被形成。為了簡短的目的,與第二 •,施例有相同的描述,係不須要被重覆。同樣地,該 第十一實施例之元件與第一實施例相似具有相符的參 考編號,如半導體晶片111〇相符於半導體晶片 繞線1150相符於繞線15〇…等。 該金屬壁1132及繞線1150同時於電鍍過程中被 形成,係對第一實施例中之形成金屬壁132之電鍍過 程作稍微調整。特別地,該第一光阻層(相對於第一實 施例中之第一光阻層126)係與第三光阻層(相對於第 —實施例中之第三阻層144)一樣印有圖案形成繞線 94 1292195 1150。而且該凹口(相對於第一實施例中之凹口 13〇) 係藉由一種背邊式濕式化學蝕刻形成,並不使用前側 式濕式化學蝕刻(front-side wet chemical etch),因此該 第一光阻層(相對於第一實施例中之第一光阻層126) 係具選擇性地使該金屬基板(相對於第一實施例中之 金屬基板120)之第一平面暴露。例如,該底部喷嘴能 喷射濕式化學蝕刻溶液於金屬基板(相對於第一實施 例中之金屬基板120)上,當該頂部噴嘴不被使用時。 接著該金屬壁1132及繞線1150係同時地分別被鍍於 金屬基板上。所以該金屬壁1132及繞線115〇皆由一 鍍於金屬基板之鎳層及一鍍於鎳層之金層所組成。而 且邊鎳層之厚度為3〇微米。於金屬壁1132及繞線115〇 兩者中,該鎳層係被夾於該金屬基板及金層間,並被 金層覆蓋,且該鎳層之厚度為3〇微米,而該金層與該 鎳層接合,但與該金屬基板隔離,該金層之表面被暴 路其厚度為〇·1微米。此外,該第三光阻層及第四 光阻層(相對於第一實施例中之第三光阻層144及第四 光阻層146)於電鍍過程形成繞線115〇係被刪除。 然後該銲接層(相對於第一實施例中之銲接層 142)、銲接遮罩1156、電鍍接點1162及黏著劑n64 、形成及半導體晶片H10被裝置於該黏著劑1164 上’然後該連接部Π66、密封層1168、金屬柱1170、 絕緣封膠1182及銲接端1186被形成。 95 1292195 該半導體晶片封裝結構1198係包含半導體晶片 1110、金屬壁1132、繞線1150、銲接遮罩1156、電鍍 接點1162、黏著劑1164、連接部1166、密封層1168、 金屬柱1170、絕緣封膠1182及銲接端U86。 請參閱『第90A、90B及90C圖』所示,係為本 •發明之第十二實施例之半導體晶片封裝結構剖面示意 圖、本發明之第十二實施例之半導體晶片封裝結構ς 視示意圖及本發明之第十二實施例之半導體晶片封裝 結構仰視示意圖。如圖所示:於第十二實施例中,該 金屬壁及電鍍接點係同時地被形成。為了簡短的目 的,與第一實施例有相同的描述,係不須要被重覆。 同樣地,該第十二實施例之元件與第一實施例相似具 有相符的參考編號,如半導體晶片1210相符於半導體 晶片110’繞線1250相符於繞線15〇…等。 «亥金屬壁1232及電鑛接點1262於電鑛過程中同 時地被形成,係對第一實施例中形成金屬壁132之電 鍍過程作稍微調整。特別地,於該繞線1250及銲接遮 罩12/6被形成後,該第一光阻層(相對於第一實施例 中之第一光阻層126)係與第五光阻層(相對於第一實 苑例中之第五光阻層158)一樣具有圖案。然後,該凹 口(相對於第-實施例中之凹〇 13〇)係藉由一種背邊 式濕式化學#刻形成’並不使用前側式濕式化學發 刻,因此該第一光阻層(相對於第一實施例中之第一光 96 1292195 阻層126)係具選擇性地使該繞線1250之銅層暴露。例 如,該底部喷嘴能喷射濕式化學蝕刻溶液於金屬基板 (相對於第一實施例中之金屬基板120)上,當該頂部喷 嘴係不被使用時。接著該金屬壁1232及電鍍接點1262 係同時地分別被鍍於金屬基板及繞線1250上。所以該 金屬壁1232及電鍍接點1262皆由一 10微米厚之鎳層 及一 0.1微米厚之金層所組成。此外,該第五光阻層、 第六光阻層(相對於第一實施例中之第五光阻層158及 第六光阻層160)於電鍍過程中形成電鍍接點1162係 被刪除。 接著,該銲接層(相對於第一實施例中之銲接層 142)及黏著劑1264被形成,該半導體晶片1210被裝 置於該黏著劑1264上,然後該連接部1266、密封層 1268、金屬柱1270、絕緣封膠1282及銲接端1286被 形成。 該半導體晶片封裝結構1298係包含半導體晶片 1210、金屬壁1232、繞線1250、銲接遮罩1256、電 鍍接點1262、黏著劑1264、連接部1266、密封層1268、 金屬柱1270、絕緣封膠1282及銲接端1286。 請參閱『第91A、91B及91C圖』所示,係為本 發明之第十三實施例之半導體晶片封裝結構剖面示意 圖、封裝結構組結構俯視示意圖及本發明之第十三實 施例之半導體晶片封裝結構仰視不意圖。如圖所不· 97 1292195 於第十三實施例中,該金屬壁、金屬柱及銲接端係被 配置於該半導體晶片之邊緣内。為了簡短的目的’,與 第—實施例有相同的描述,係不須要被重覆。同樣地, 該第十三實施例之元件與第一實施例相似具有相符的 參考編號,如半導體晶片1310相符於半導體晶片 ,繞線1350相符於繞線150…等。 該繞線1350係於該半導體晶片之邊緣内及邊緣 •夕卜延伸’該金屬壁1332、金屬柱137〇及銲接端1386 係被配置於該半導體晶片131〇之周邊内,係藉由對第 —實施例中之凹口 130及繞線15〇之電鍍過程作稍微 地調整。特別地,該第二光阻層(相對於第一實施例中 之第二光阻層128)係印有圖案,並改變橫向於該凹口 (相對於第一實施例中之凹口 13〇)之開口,所以該凹口 相對於該凹口 130已被改變。接著該第三光阻層(相對 於第-實施例中之第三光阻層144)係印有圖案使形成 擊繞線1350之開口重新形成。所以該金屬壁1332、金 屬柱1370及銲接端1386被配置於該半導體晶片131〇 之周邊内。 該半導體晶片封裝結構1398係包含半導體晶片 131〇、金屬壁1332、繞線1350、銲接遮罩1356、電 鍍接點1362、黏著劑1364、連接部1366、密 : 絕緣封膠⑽及銲接端1386。 9 368' 請參閱『第92A、92B及92C圖』所示,係為本 98 1292195 :明之第十四實施例之半導體晶片封裝結構剖面示咅 明之第十四實施例之半導體晶片封裝結構: 發明之第十四實施例之半導體晶片C 、口鼻p視不忍圖。如圖所示:於第十四實施例中兮 金屬柱係被上下顛倒。為了簡短的目#,盥第二 财相同的描述,係不須要被重覆。同樣地,該第 :貫施例之元件與第一實施例相似具有相符的參考編 Γ45’〇=導體晶片相符於半導體晶片&quot;ο,繞線 1450相付於繞線150…等。 -亥金屬基板(相對於第—實施例中之金屬基板叫 之厚度為5〇〇微米。該凹口(相對於第一實施例中之凹 口 130)及金屬壁1432被形成於金屬基板之第一主要 平面(相對於第-之第—主要平面122),該鲜 接層(相對於第一實施例中之銲制142)係被形成於 金屬壁1432上,該繞線145〇係被形成於金屬基板之 第二平面(相對於第一實施例中之第二主要平面 124) „亥銲接遮罩(相對於第一實施例中之銲接遮罩 15 2)被刪除。 接著,該絕緣封膠1482被置於該繞線1450及金 屬基板上,然後該絕緣封膠之部份為可聚合的並形成 一膠體(gel)。 接著,整體結構被置於一與第一實施例之金屬基 板120相似之支撐物,當該絕緣封膠1482為膠體時, 99 1292195 該絕緣封膠1482與該支撐物接觸並被夾於該金屬基 板與支撐物間及該繞線1450與支撐物,然後該絕緣封 膠1482係變硬。 接著’該金屬柱1470被形成,然後該電鍍接點 1462被形成。 再來,該黏著劑1464係被置於絕緣封膠1482上, 然後該半導體晶片1410被置於黏著劑ι464上,接著 φ 該黏著劑1464係變硬。該金屬柱147〇不被配置於該 半V體ΒΘ片1410之下方,反而向上擴展並超過該半導 體晶片1410之厚度。而且該金屬柱147〇之厚度為42〇 微米。 ·〇〇8, "" and 88C diagram" - w 』 』 factory / | small, the semiconductor chip package structure of the tenth embodiment of the invention is shown in the tenth embodiment of the semiconductor wafer package (10) π 图;, the semiconductor wafer package of the tenth embodiment of the invention _ looking up is not as good as the ten hehe sealant. For the sake of briefness, the 盥笫 ^ ^ , , , , , , , , , , , , , , , , , , , , , , , , , Similarly, the tenth embodiment (10) similarly has a matching reference number, such as the semiconductor wafer 93 1292195 in the semiconductor wafer 110, the winding 1G5G conforms to the winding, the insulating seal (relative to the first implementation) In the example, the insulating encapsulant 18 is removed, so no polishing is required in this embodiment. The semiconductor chip package structure 1098 includes a semiconductor wafer 1010, a metal wall 1032, a winding 1050, a solder mask 1〇56, and a plating contact 1062. , the adhesive 1〇64, the connection part 1〇66, the metal column chatter and the soldering end. 1068, please refer to the “Analysis of the 89th, 89B and 89C”, which is the semiconductor of the eleventh embodiment of the present invention. Schematic diagram of chip package structure ^ A plan view of a semiconductor wafer package structure according to a tenth embodiment of the present invention and a semiconductor chip package structure according to an eleventh embodiment of the present invention are shown in a bottom view. As shown in the eleventh embodiment, the metal wall and the winding are simultaneously It is formed for the sake of brevity, and has the same description as the second embodiment, and need not be repeated. Similarly, the elements of the eleventh embodiment have similar reference numerals as the first embodiment. For example, the semiconductor wafer 111 〇 conforms to the semiconductor wafer winding 1150 conforms to the winding 15 〇, etc. The metal wall 1132 and the winding 1150 are simultaneously formed in the plating process, and the metal wall 132 is formed in the first embodiment. The plating process is slightly adjusted. Specifically, the first photoresist layer (relative to the first photoresist layer 126 in the first embodiment) is connected to the third photoresist layer (relative to the third resistor in the first embodiment). The layer 144) is printed with the pattern forming winding 94 1292195 1150 as well, and the notch (relative to the notch 13 第一 in the first embodiment) is formed by a backside wet chemical etching, without using the front side Wet a front-side wet chemical etch, such that the first photoresist layer (relative to the first photoresist layer 126 in the first embodiment) selectively elects the metal substrate (relative to the first embodiment) The first plane of the metal substrate 120) is exposed. For example, the bottom nozzle can spray a wet chemical etching solution on the metal substrate (relative to the metal substrate 120 in the first embodiment) when the top nozzle is not used. Then, the metal wall 1132 and the winding 1150 are simultaneously plated on the metal substrate. Therefore, the metal wall 1132 and the winding 115 are both made of a nickel layer plated on the metal substrate and a gold layer plated with a nickel layer. Composed of. And the thickness of the nickel layer is 3 〇 micron. In both the metal wall 1132 and the winding 115 ,, the nickel layer is sandwiched between the metal substrate and the gold layer, and covered by a gold layer, and the thickness of the nickel layer is 3 〇 micrometer, and the gold layer The nickel layer is bonded, but is isolated from the metal substrate, and the surface of the gold layer is violently exposed to a thickness of 〇·1 μm. In addition, the third photoresist layer and the fourth photoresist layer (relative to the third photoresist layer 144 and the fourth photoresist layer 146 in the first embodiment) are removed by forming a winding 115 during the electroplating process. The solder layer (relative to the solder layer 142 in the first embodiment), the solder mask 1156, the plating contacts 1162 and the adhesive n64, the formation and the semiconductor wafer H10 are mounted on the adhesive 1164, and then the connection portion A crucible 66, a sealing layer 1168, a metal post 1170, an insulating encapsulant 1182, and a soldered end 1186 are formed. 95 1292195 The semiconductor chip package structure 1198 includes a semiconductor wafer 1110, a metal wall 1132, a winding 1150, a solder mask 1156, a plating contact 1162, an adhesive 1164, a connection portion 1166, a sealing layer 1168, a metal pillar 1170, and an insulating seal. Glue 1182 and welded end U86. FIG. 90 is a schematic cross-sectional view showing a semiconductor chip package structure according to a twelfth embodiment of the present invention, and a schematic view of a semiconductor chip package structure according to a twelfth embodiment of the present invention. A schematic view of a semiconductor wafer package structure of a twelfth embodiment of the present invention. As shown in the figure: In the twelfth embodiment, the metal wall and the plating contact are simultaneously formed. For the sake of brevity, the same description as the first embodiment does not need to be repeated. Similarly, the elements of the twelfth embodiment have similar reference numerals as the first embodiment, such as the semiconductor wafer 1210 conforming to the semiconductor wafer 110' winding 1250 conforming to the winding 15... and the like. The «Metal metal wall 1232 and the electric ore joint 1262 are simultaneously formed during the electric ore process, and the electroplating process for forming the metal wall 132 in the first embodiment is slightly adjusted. In particular, after the winding 1250 and the solder mask 12/6 are formed, the first photoresist layer (relative to the first photoresist layer 126 in the first embodiment) is opposite to the fifth photoresist layer (relative to It has the same pattern as the fifth photoresist layer 158) in the first embodiment. Then, the notch (relative to the recess 13 第 in the first embodiment) is formed by a backside wet chemical chemistry, and does not use the front side wet chemical etch, so the first photoresist The layer (relative to the first light 96 1292195 resist layer 126 in the first embodiment) is configured to selectively expose the copper layer of the winding 1250. For example, the bottom nozzle can eject a wet chemical etching solution onto a metal substrate (relative to the metal substrate 120 in the first embodiment) when the top nozzle is not in use. Then, the metal wall 1232 and the plating contact 1262 are simultaneously plated on the metal substrate and the winding 1250, respectively. Therefore, the metal wall 1232 and the plating contact 1262 are composed of a 10 micron thick nickel layer and a 0.1 micron thick gold layer. In addition, the fifth photoresist layer and the sixth photoresist layer (relative to the fifth photoresist layer 158 and the sixth photoresist layer 160 in the first embodiment) are formed by forming the plating contacts 1162 during the electroplating process. Next, the solder layer (relative to the solder layer 142 in the first embodiment) and the adhesive 1264 are formed, the semiconductor wafer 1210 is mounted on the adhesive 1264, and then the connecting portion 1266, the sealing layer 1268, the metal pillar 1270, an insulating sealant 1282 and a soldered end 1286 are formed. The semiconductor chip package structure 1298 includes a semiconductor wafer 1210, a metal wall 1232, a winding 1250, a solder mask 1256, a plating contact 1262, an adhesive 1264, a connection portion 1266, a sealing layer 1268, a metal pillar 1270, and an insulating sealant 1282. And welding end 1286. And a semiconductor chip package structure according to a thirteenth embodiment of the present invention, a top view of a package structure, and a semiconductor wafer according to a thirteenth embodiment of the present invention. The package structure is not intended to look up. In the thirteenth embodiment, the metal wall, the metal post and the solder end are disposed within the edge of the semiconductor wafer. For the sake of brevity, the same description as the first embodiment does not need to be repeated. Similarly, the elements of the thirteenth embodiment have similar reference numerals as the first embodiment, such as the semiconductor wafer 1310 conforming to the semiconductor wafer, the winding 1350 conforming to the winding 150, and the like. The winding 1350 is disposed in the edge of the semiconductor wafer and the edge/extends the metal wall 1332, the metal pillar 137, and the soldering end 1386 are disposed in the periphery of the semiconductor wafer 131, by - The plating process of the notch 130 and the winding 15 in the embodiment is slightly adjusted. In particular, the second photoresist layer (relative to the second photoresist layer 128 in the first embodiment) is patterned and changed transversely to the recess (relative to the recess 13 in the first embodiment) The opening, so the recess has been altered relative to the recess 130. The third photoresist layer (relative to the third photoresist layer 144 in the first embodiment) is then patterned to reform the opening forming the striking line 1350. Therefore, the metal wall 1332, the metal pillar 1370, and the soldering end 1386 are disposed in the periphery of the semiconductor wafer 131A. The semiconductor wafer package structure 1398 includes a semiconductor wafer 131, a metal wall 1332, a winding 1350, a solder mask 1356, an electroplated contact 1362, an adhesive 1364, a connecting portion 1366, a dense insulating cap (10), and a soldering end 1386. 9 368 ′′, as shown in the “92A, 92B, and 92C diagrams”, is a semiconductor wafer package structure of the fourteenth embodiment of the semiconductor chip package structure of the fourteenth embodiment of the present invention: The semiconductor wafer C and the nose and mouth of the fourteenth embodiment are not tolerated. As shown in the figure: In the fourteenth embodiment, the metal column is turned upside down. For the sake of the short head #, the same description of the second money, there is no need to be repeated. Similarly, the elements of the first embodiment have a reference fiducial pattern 45' similar to that of the first embodiment, = the conductor wafer conforms to the semiconductor wafer &quot;, the winding 1450 corresponds to the winding 150, and the like. - The metal substrate (relative to the metal substrate in the first embodiment has a thickness of 5 μm. The recess (relative to the recess 130 in the first embodiment) and the metal wall 1432 are formed on the metal substrate. The first major plane (relative to the first-first plane 122) is formed on the metal wall 1432 by the solder joint 142 in the first embodiment, and the winding 145 is A second plane (relative to the second major plane 124 in the first embodiment) formed on the metal substrate is removed (relative to the solder mask 15 2 in the first embodiment). Next, the insulation The encapsulant 1482 is placed on the winding 1450 and the metal substrate, and then the portion of the insulating encapsulant is polymerizable and forms a gel. Next, the overall structure is placed in a metal of the first embodiment. The substrate 120 is similar to the support. When the insulating sealant 1482 is a gel, the insulating sealant 1482 is in contact with the support and is sandwiched between the metal substrate and the support and the winding 1450 and the support, and then The insulating sealant 1482 is hardened. Then the metal pillar 1470 Formed, then the plating contact 1462 is formed. Then, the adhesive 1464 is placed on the insulating encapsulant 1482, and then the semiconductor wafer 1410 is placed on the adhesive ι464, and then the adhesive 1464 is hardened. The metal post 147 is not disposed below the half V body fin 1410, but expands upward and exceeds the thickness of the semiconductor wafer 1410. The metal post 147 is 42 μm thick.

接著,该連接部1466被形成,該密封層1468隨 後被形成。該密封層1468係與第一實施例之絕緣封膠 182相似,其厚度為6〇〇微米。於是,該密封層Μ&quot; 係被置於δ亥半導體晶片丨4丨〇、繞線丨45〇、黏著劑 1464、連接部Μ66、金屬柱1470及絕緣封膠1482上, 而該密封層1468係變硬。 後u亥封層1468被研磨,並使該金屬壁1432 及知接層暴露,隨後該銲接端1486係被形成。 該半導體晶片封裝結構1498係包含半導體晶片 L410、金屬壁1432、繞線1450、電鍍接點1462、黏 者4 1464、連接部1466、密封層1468、金屬柱1470、 100 1292195 絕緣封膠1482及銲接端i486。 請參閱『第93A、93B及93C圖』所示,Next, the connecting portion 1466 is formed, and the sealing layer 1468 is subsequently formed. The sealing layer 1468 is similar to the insulating encapsulant 182 of the first embodiment and has a thickness of 6 μm. Therefore, the sealing layer is placed on the δ 半导体 semiconductor wafer 丨 4 丨〇, the winding 丨 45 〇, the adhesive 1464, the connection portion Μ 66, the metal pillar 1470, and the insulating sealant 1482, and the sealing layer 1468 is Harden. The post-u-sea sealing layer 1468 is ground and the metal wall 1432 and the splicing layer are exposed, and then the soldering end 1486 is formed. The semiconductor chip package structure 1498 includes a semiconductor wafer L410, a metal wall 1432, a winding 1450, a plating contact 1462, an adhesive 4 1464, a connection portion 1466, a sealing layer 1468, a metal pillar 1470, a 100 1292195 insulating sealant 1482, and a soldering process. End i486. Please refer to the figure "93A, 93B and 93C".

發明之第十五實施例之半導體晶片封裝結;立 圖、本發明之第十五實施例之半導體晶片封裝社構^ 視不意圖及本發明之第十五實施例之半導體晶片封裝 結構仰視不意圖。如圖所示··於第十五實施例中,^ 半導體晶片封裝結構测係為多晶片構裝。為了簡^ 的目的,與第一實施例有相同的描述,係不須要被重 覆。同樣地,該第十五實施例之元件與第—實施例相 似具有相符的參考編號,如半導體晶片。⑺相符於半 導體晶片110,繞線1550相符於繞線15〇…等。The semiconductor chip package of the fifteenth embodiment of the invention; the vertical view, the semiconductor chip package structure of the fifteenth embodiment of the invention, and the semiconductor chip package structure of the fifteenth embodiment of the invention are not looked up intention. As shown in the fifteenth embodiment, the semiconductor chip package structure is a multi-wafer package. For the purpose of simplicity, the same description as the first embodiment is not required to be repeated. Similarly, the elements of the fifteenth embodiment have similar reference numerals, such as semiconductor wafers, to the first embodiment. (7) Corresponding to the semiconductor wafer 110, the winding 1550 corresponds to the winding 15... and the like.

、該電鍍接點1562係被延長,係對第一實施例中形 成電鑛接點162之電制程㈣微調整。特別地,該 第五光阻層(相對於第—實施例中之第五光阻層158) 係具有圖案,並使形成電鍍接點1562之開口延長,所 以該電鍍接點1562相對於第一實施例之電鍍接點162 係變得更長。 該半導體晶片1510係與該銲接遮罩1556藉由該 第一黏著劑1564係呈機械連接,並與該繞線ι55〇藉 由第一連接部1566具有電性的連接。 接著’該第二黏著劑1565係被配置於第一半導體 曰曰片1510上,其為一區隔第一半導體晶片1510及第 二半導體晶片1511之矽膠,然後該第二半導體晶片 101 1292195 1511(包含導電腳位1517與於第一半導體晶片151〇之 導電腳位1516 —樣)係被置於該第二黏著劑1565上, 該第二黏著劑1565係被夾於第一半導體晶片151〇及 第二半導體晶片1511之間,然後將整體結構放於烘箱 中,使s亥第二黏著劑1565於相對低溫下被硬化形成固 態絕緣黏著層(solid adhesive insulative layer),使該第 一半導體晶片1510與第二半導體晶片1511間具物理 性連接,其相對低溫之範圍係介於15〇度至2〇〇度之 間,而該第二黏著劑1565介於第一半導體晶片151〇 與第二半導體晶片1511 之厚度為1〇〇微米,並使該 第一半導體晶片1510與第二半導體晶片1511被分 隔,且互相成垂直地排列。一種合適的分隔劑(sp acer paste)係為 Hysol QMI 500。 ★然後,該第二半導體晶片1511係與繞線_155Ό藉 由第二連接部1567係具有電性的連接,與該第一半導 體晶片1510係與繞線155〇藉由第二連接部1566係具 有電性的連接一樣的方法。 之後,該密封層1568被形成,其厚度為7〇〇微米, f密封層1568係與該第一半導體晶片151〇、第二半 導體晶片1511、繞線155〇、銲接遮罩1556、電鍍接 點1562、第一黏著劑1564、第二黏著劑1565、第一 連接部1566及第二連接部1567接觸並覆蓋於其上。 该金屬柱1570、絕緣封膠1582及銲接端1586隨後被 102 l292l95 形成。 該半導體晶片封裝結構1598係為多晶片第一層 久構裝(multi-chip first_level package)。該第一半導體 晶片1510及第二半導體晶片j 5 i j係被嵌入該密封層 1568。而且該第一導電腳位1516與銲接端1586間不 僅包含並且需要金屬壁1532、繞線1550、電鑛接點 1567及金屬柱1570構成一導電路徑,另該第二導電 鬌 腳位I517與銲接端1586間不僅包含並且需要金屬壁 1532、繞線1550、電鍍接點1567及金屬柱1570構成 一導電路徑。因此該第一半導體晶片151〇及第二半導 體晶片1511皆被嵌入於該密封層1568,並藉由該金 屬壁1532、繞線1550、電鍍接點1567及金屬柱1570 所構成之導電路徑與該銲接端1568呈有電性的連接。 这半導體晶片封裝結構1598係包含第一半導體 藝晶片1510、第二半導體晶片1511、金屬壁1532、繞 線1550、銲接遮罩1556、電鍍接點1562、第一黏著 劑1564、第二黏著劑1565、第一連接部1566、第二 連接部1567、密封層1568、金屬柱157〇、絕緣封膠 1582及銲接端][586。 請參閱『第94、95、96、97及98圖』所示,係 為本發明之第十六至二十實施例之金屬柱結構剖面示 心圖。如圖所示··當進行濕式化學钱刻時,第十六至 二十實施例中之金屬柱1670、1770、1870、1970及 103 1292195 刘噥窄並切割該金屬壁,例如藉由增加蝕 幻/辰度或钱刻時間。言亥金屬柱觸、1770、職、 二0亦為錐形,當金屬柱向下延伸,其直徑將持: n::)r每一金屬柱係包含一上方平面(相對於 第一貫知例中該金屬柱17G之第一平面172)、一下 平面(相對於第一實施例中該金屬柱170之第二平面 17句’及一錐表面(相對於第一實施例中該金屬柱⑺ 之錐表面Π6),於這些之間,該τ方平面係集中地被 置於上方平面之表面積範圍内,而該下方平面之表面 積係至少比上方平面之表面積大2〇%。 M t述之實施例中之半導體晶片封I结構係只為示 靶之實例。還有很多實施例為可考慮的,例如··將該 銲接遮罩、電鍍接點、金屬柱及絕緣基板刪除。另外二 上述之實施例可互相結合應用,例如··於第二實施例 之密封劑後形成銲接層,以及於第三實施例之密封劑 後形成金屬壁及銲接層能被用於其它實施例上。同樣 地’ 5亥於第四實施例之覆晶接合及於第五及第六實施 例之經電鍍之連接部係能被用於其它實施例中,除了 於第十五實施例之多晶片半導體晶片封裝結構外,因 為該半導體晶片無法被倒裝。同樣地,於第七實施例 係可被用於其它實施例中。於第八及第九實施例之絕 緣基板及於第十實施例中被刪除之絕緣基板係同樣地 可被用於其它實施例中。於第十一實施例中同時被形 104 1292195 成之金屬壁及繞線與第十二實施例中同時被形成之金 屬壁及電鍍接點係同樣地可被用於其它實施例中。於 第十三及第十四實施例之金屬壁、金屬柱及銲接端同 樣地可被用於其它實施例中。於第十五實施例之多晶 片半導體晶片封裝結構係同樣地可用於其它實施例 中,除了第四至第六實施例,因為該半導體晶片係無 法被倒裝。於第六、第七、第八、第九及第十二實施 例之金屬柱係同樣地被用於第一、第二及第四至第十 五實施例中,但不能用於第三實施例,因為該金屬柱 被刪除。上述之實施例係能互相混合搭配成其它實施 例,可隨設計上及可靠性上之考量而定。 該金屬基板於該半導體晶片之邊界内係不須要被 移除,例如··該一部份之金屬基板於半導體晶片之邊 界内延伸並於該金屬壁分隔,係仍能保持完整並提供 一散熱器(heat sink)。The plated contact 1562 is extended to slightly adjust the electrical process (four) of the electric ore junction 162 in the first embodiment. In particular, the fifth photoresist layer (relative to the fifth photoresist layer 158 in the first embodiment) has a pattern and extends the opening forming the plated contact 1562, so the plated contact 1562 is relative to the first The plated contacts 162 of the embodiment become longer. The semiconductor wafer 1510 is mechanically coupled to the solder mask 1556 by the first adhesive 1564, and is electrically connected to the winding ι 55 by the first connecting portion 1566. Then, the second adhesive 1565 is disposed on the first semiconductor die 1510, which is a silicone separated from the first semiconductor wafer 1510 and the second semiconductor wafer 1511, and then the second semiconductor wafer 101 1292195 1511 ( The conductive pin 1517 is disposed on the second adhesive 1565, and the second adhesive 1565 is sandwiched between the first semiconductor wafer 151 and the conductive material 1515. Between the second semiconductor wafers 1511, the overall structure is placed in an oven, so that the second adhesive 1565 is hardened at a relatively low temperature to form a solid adhesive insulative layer, so that the first semiconductor wafer 1510 Physically connected to the second semiconductor wafer 1511, the relative low temperature range is between 15 degrees and 2 degrees, and the second adhesive 1565 is interposed between the first semiconductor wafer 151 and the second semiconductor The thickness of the wafer 1511 is 1 μm, and the first semiconductor wafer 1510 and the second semiconductor wafer 1511 are separated and arranged perpendicular to each other. A suitable sp acer paste is Hysol QMI 500. Then, the second semiconductor wafer 1511 is electrically connected to the winding _155 by the second connecting portion 1567, and the first semiconductor wafer 1510 and the winding 155 are connected by the second connecting portion 1566. The same method with electrical connections. Thereafter, the sealing layer 1568 is formed to have a thickness of 7 μm, and the f sealing layer 1568 is bonded to the first semiconductor wafer 151, the second semiconductor wafer 1511, the winding 155, the solder mask 1556, and the plating contact. 1562, the first adhesive 1564, the second adhesive 1565, the first connecting portion 1566, and the second connecting portion 1567 are in contact with and covered thereon. The metal post 1570, the insulating seal 1582, and the solder end 1586 are then formed by 102 l292l95. The semiconductor chip package structure 1598 is a multi-chip first-level package. The first semiconductor wafer 1510 and the second semiconductor wafer j 5 i j are embedded in the sealing layer 1568. Moreover, the first conductive pin 1516 and the soldering end 1586 not only comprise and require the metal wall 1532, the winding 1550, the electric ore joint 1567 and the metal post 1570 to form a conductive path, and the second conductive pin position I517 and the soldering The end 1586 includes and requires a metal wall 1532, a winding 1550, a plated joint 1567, and a metal post 1570 to form a conductive path. Therefore, the first semiconductor wafer 151 and the second semiconductor wafer 1511 are embedded in the sealing layer 1568, and the conductive path formed by the metal wall 1532, the winding 1550, the plating contact 1567 and the metal pillar 1570 The soldered end 1568 is electrically connected. The semiconductor chip package structure 1598 includes a first semiconductor wafer 1510, a second semiconductor wafer 1511, a metal wall 1532, a winding 1550, a solder mask 1556, a plating contact 1562, a first adhesive 1564, and a second adhesive 1565. The first connecting portion 1566, the second connecting portion 1567, the sealing layer 1568, the metal post 157 〇, the insulating sealant 1582, and the soldering end] [586. Referring to the drawings of Figures 94, 95, 96, 97 and 98, a cross-sectional view of a metal post structure of the sixteenth to twentyth embodiments of the present invention is shown. As shown in the figure, when wet chemical etching is performed, the metal pillars 1670, 1770, 1870, 1970, and 103 1292195 in the sixteenth to twentyth embodiments are narrow and cut the metal wall, for example, by adding Erosion / Chen time or money engraved time. Yanhai metal column touch, 1770, job, and 0 are also tapered. When the metal column extends downward, its diameter will hold: n::)r Each metal column contains an upper plane (relative to the first pass) In the example, the first plane 172) of the metal post 17G, the lower plane (relative to the second plane of the metal post 170 in the first embodiment) and a cone surface (relative to the metal post (7) in the first embodiment) The cone surface Π6), between these, the τ square plane is concentrated in the surface area of the upper plane, and the surface area of the lower plane is at least 2% larger than the surface area of the upper plane. The semiconductor wafer package I structure in the embodiment is only an example of the target. There are many embodiments which are conceivable, for example, the solder mask, the plating contact, the metal pillar and the insulating substrate are deleted. The embodiments can be used in combination with each other, for example, forming a solder layer after the sealant of the second embodiment, and forming a metal wall and a solder layer after the sealant of the third embodiment can be applied to other embodiments. Ground' 5H in the fourth embodiment of the flip chip The plated connections of the fifth and sixth embodiments can be used in other embodiments, except for the multi-wafer semiconductor chip package structure of the fifteenth embodiment, since the semiconductor wafer cannot be flipped. Similarly, the seventh embodiment can be used in other embodiments. The insulating substrate of the eighth and ninth embodiments and the insulating substrate removed in the tenth embodiment can be similarly used for other implementations. In the eleventh embodiment, the metal wall and the winding formed by the shape 104 1292195 can be used in other embodiments as well as the metal wall and the plating contact system simultaneously formed in the twelfth embodiment. The metal walls, the metal posts and the soldered ends of the thirteenth and fourteenth embodiments can be similarly used in other embodiments. The multi-wafer semiconductor chip package structure of the fifteenth embodiment can be similarly used for other In the embodiment, except for the fourth to sixth embodiments, the semiconductor wafer system cannot be flipped. The metal pillars of the sixth, seventh, eighth, ninth and twelfth embodiments are similarly used. First second And the fourth to fifteenth embodiments, but not for the third embodiment, because the metal posts are deleted. The above embodiments can be mixed with each other to form other embodiments, which can be designed and reliability. The metal substrate does not need to be removed within the boundary of the semiconductor wafer, for example, the metal substrate extends within the boundary of the semiconductor wafer and is separated by the metal wall, and the system remains intact. A heat sink is also provided.

该金屬壁係可為各種不同材料,Μ·括銅 =鎳、纪、鈦、銲錫及上述材料之結合,該金屬卷 係可錯由各種方式被形成,其方式係包括電錢、 以流及上述方式之結合,該金屬壁儲 為早層或夕層並具有不同形狀及尺寸,例如:該 土之$成可由單—方式如電鑛或錫膏沈積*反产了 如隨錫膏沈積與反流時進行電鑛:而。 土係匕括-孔洞,其孔洞係為單金屬面,該單金屬面 105 1292195 係能為不同的濕潤金屬(wettable metals),其包括金、 鈦及錫料,特別在於該錫料發生回流或不同的非濕潤 金屬(non-wettable metals)時,特別在於該錫料已經發 生反流或沒有發生。另外,該孔洞係具有一開口,其 開口形狀係可為圓形、長方形或正方形。 ^ 該金屬壁可於該繞線被沈積於金屬基板前、於該 繞線被沈積於金屬基板之間或於該繞線被沈積於金屬 基板後,於遠電鍍接點被沈積於繞線前、於該電鍍接 點被沈積於繞線之間或於該電鍍接點被沈積於^線 後;於該半導體晶片與繞線連接前或於該半導體晶片 與繞線連接後;於該密封層被形成前或於該密封層被 形成後,以及於該連接部被形成前、於該連接部被形 成之間或於该連接部被形成後,被沈積於金屬基板 上。例如,經電鍍之金屬壁能同時與繞線、電鍍接點 或連接部被形成,因此改善製造產率。 該銲接層係藉由錫料(如:非固態包含錫料之材料) 產生迴流被沈積於該金屬壁上,然後應用外力使該錫 料迴流,並形成一被硬化的銲接層。合適的包含錫料 之材料係包括錫膏、液態錫料及錫料顆粒。該錫料係 能為一錫鉛合金(tin-Iead an〇y),雖然無鉛合成物如錫 -鉍及錫-銀-銅將因環境的關係到於電子業過度使用 鉛,使無鉛合成物將變成大受歡迎。合適的沈積過程 係包括網格印刷(sreen ρη·ηη·ηβ)、模板印刷(价 106 1292195 printing) '半圓形塗佈(menisc凹s coating)、液態錫料 喷射(liq凹id solder jetting)及錫料顆粒佈置(solder particle placement)。並可藉由一對流烘箱進行加熱, 雖然有其它技術如紅外線連續帶迴流(infrared contin 凹 〇 凹 s belt reflow)、熱氮氣瓦斯(hot nitrogen gas)、 雷射束(laser beam)及氣相迴流(vapor-phase re flow)能 被使用。 該銲接層係於該繞線被沈積於該金屬壁上之前或 之後、於該電鍍接點被沈積於該繞線上之前或之後、 於該半導體晶片連接至該繞線之前或之後、於該密封 層被形成之前或之後、於該連接部被形成之前或之 後、於該金屬柱被形成之前或之後及該絕緣封膠被形 成之前或之後能被形成。該銲接層係於界定該金屬壁 的光阻層(第二光阻層128)被移除之前或之後能被形 成於金屬壁上。例如:用來界定金屬壁之光阻層於該 錫膏沈積並迴流幫助侷限該銲接層於金屬壁内之間仍 保持完整。 該繞線係能為不同的導電金屬,其包括銅、金、 鎳、銀、鈀、鈦、上述金屬之結合物及上述金屬之合 金。該繞線之較好組合將依該連接部之本質如設計及 可靠度之因素而定。而且,由上述可知於,銅材料係 為典型的銅合金,幾乎大部份成份為銅但非純銅,係 如銅鍅合金(99.9%銅)、銅一銀一磷一鎂 107 1292195 (copper-silver-phosphorus-magnesium)(99.7% 銅)或銅 _ 鈦—鐵—填(copper-tin-iron_phosphorus)(99.7〇/〇 銅)5亥繞線可為輸入(fan-in)如輸出(fan_out) —樣。 該繞線係藉由多種沈積技術使其能形成於金屬基 板上,其技術係包括電鍍及無電電鍍。另外,該繞線 係能被沈積於金屬基板上,該繞線係可為單層或多 層。例如:該繞線係能為一 1 〇微米厚之金層,或可為 _ 一 9·5微米厚之鎳層鍍於一 0.5微米厚之金層並鑛於一 銅基板’係可減少成本;或一 9微米厚之鎳層鍍於一 〇·5微米之金層,再鍍於一 〇·5微米之鈦層並鍍於一銅 基板,係可減少成本及避免於鍍銅層被蝕刻時難移除 之金銅合金。另一例子,該繞線係可由一非銅層 (n〇n-Copper iayer)鍍於一銅基板上及一銅層鍍於非銅 層上所構成。合適的非銅層係包括鎳、金、鈀及銀。 該繞線被形成時,當銅對非銅層時係適用濕式化學蝕 • 刻蝕刻該銅基板並使該繞線暴露,但沒有移除該銅層 及非銅層。該非銅層係提供一蝕刻停止(etch st〇p),係 防止該濕式化學蝕刻將鍍銅層移除。在上述說明中, 該繞線及金屬基板係為不同的金屬(或金屬材料),雖 然具多層之繞線係包含一單層其與金屬基板相似,或 為一具多層金屬基板之單層(single layer 〇f江 multi-layer metal base) 〇 該繞線係能藉由钱刻一附於金屬基板之金屬層而 108 1292195 形成。例如,一光阻層能被形成於金屬層,該金屬層 被蝕刻時係利用該光阻層為其蝕刻遮罩,然後該光阻 層係此被剝落;或為使一光阻層係形成於該金屬層 上,一經電鍍之金屬能具選擇性地被斂於金屬層並利 用光阻層為其電鍍遮罩,然後該光阻層能被剝落,並 使該金屬層係能被蝕刻並使用該·經電鍍之金屬作為蝕 刻遮罩,在這方法中,該繞線係能被形成,其包括該 金屬層之未蝕刻部份及經電鍍之金屬。該繞線係由金 屬層形成,不管該經電鍍之金屬是否為蝕刻遮罩, 經電鍍之金屬係能附著於該繞線上。 人 该繞線可為點電鍍(Sp〇t plated)於導電腳位附近 並使連接部肖其相S。例h,一自之繞線係能為與錄 點電鍍,然後銀使其與一具金屬金球之連接部相容, 避免易碎的銀與銅兩金屬形成混合物。該金屬壁係能 經點電鍍使其能與銲接端相容,例如··一鎳之金屬壁 能與金點電鍍使促進錫料回流。 該金屬柱能具有各種形狀及尺寸。例如··其上方 平面及下方平面(相對於第一實施例之金屬柱之第一 平面172及第二平面174)係可為圓形、長方形或正方 形。另外,該金屬柱之上方平面之直徑係小於、等於 或大於該金屬柱之下方平面之直徑。如該金屬柱之下 方平面及該繞線之較大圓形部份在該金屬桎之上方平 面之上並被覆蓋,其直徑至少比該金屬璧外層邊界小 109 1292195 100微米’並使其容易形成高密度之電路。 關於忒金屬柱之細節係餘刻該金屬基板形成及與 該繞線連接,係美國專利申請號第10/714,794號於 2003年11月17日由Chuen R〇ng Leu等人提出其專 利名稱「具嵌入之金屬柱之半導體晶片封裝結構」、美 國專利申請號第10/994,604號,於2004年u月2、2 曰由Charles W.CLin等人提出,其專利名稱「具塊狀 金屬柱之半導體晶片封裝結構」及美國專 嶋⑽號於雇年„月22日由Chades^= ^人提出,其專利名稱「具雕刻塊狀接觸端之半導體 晶片封裝結構」中被揭露,所以該金屬柱之詳情係由 此參考資料可知。 、The metal wall system can be made of various materials, including copper, nickel, nickel, solder, and a combination of the above materials. The metal coil can be formed in various ways, including electricity, flow, and In combination with the above manner, the metal wall is stored in an early layer or a layer and has different shapes and sizes. For example, the soil can be produced by a single-mode such as electro-mine or solder paste deposition*, such as deposition with solder paste. Conducting electricity during reverse flow: and. The soil system includes a hole, the hole is a single metal surface, and the single metal surface 105 1292195 can be different wettable metals, including gold, titanium and tin, especially in the reflow of the tin or When different non-wettable metals are used, in particular, the tin has been refluxed or not. Further, the hole has an opening, and the shape of the opening may be circular, rectangular or square. ^ The metal wall may be deposited on the metal substrate before the wire is deposited between the metal substrate or after the wire is deposited on the metal substrate, and is deposited on the remote plating contact before the winding After the plating contact is deposited between the windings or after the plating contacts are deposited on the wire; before the semiconductor wafer is connected to the winding or after the semiconductor wafer is connected to the winding; Before being formed or after the sealing layer is formed, and before the connection portion is formed, between the connection portions, or after the connection portion is formed, it is deposited on the metal substrate. For example, the plated metal wall can be formed simultaneously with the winding, the plated joint or the joint, thus improving the manufacturing yield. The solder layer is deposited on the metal wall by a reflow of a tin material (e.g., a non-solid material containing tin material), and then an external force is applied to reflow the solder material to form a hardened solder layer. Suitable materials comprising tin include solder paste, liquid tin and tin particles. The tin material can be a tin-lead alloy (tin-Iead an〇y), although lead-free composites such as tin-bismuth and tin-silver-copper will be environmentally related to excessive use of lead in the electronics industry, making lead-free compounds Will become very popular. Suitable deposition processes include grid printing (sreen ρη·ηη·ηβ), stencil printing (price 106 1292195 printing) 'semicircular coating (menisc concave s coating), liquid tin material spraying (liq concave id solder jetting) And solder particle placement. It can be heated by a two-flow oven, although other techniques such as infrared continuation of the belt (infrared continent s belt reflow), hot nitrogen gas, laser beam and vapor phase reflow (vapor-phase re flow) can be used. The soldering layer is before or after the wire is deposited on the metal wall, before or after the plating contact is deposited on the winding wire, before or after the semiconductor wafer is connected to the winding, before the sealing The layer can be formed before or after the layer is formed, before or after the connection portion is formed, before or after the metal pillar is formed, and before or after the insulating sealant is formed. The solder layer can be formed on the metal wall before or after the photoresist layer (the second photoresist layer 128) defining the metal wall is removed. For example, the photoresist layer used to define the metal walls is deposited and reflowed to help confine the solder layer to remain intact between the metal walls. The winding system can be a different conductive metal comprising copper, gold, nickel, silver, palladium, titanium, a combination of the above metals, and an alloy of the above metals. The preferred combination of the windings will depend on the nature of the connection as a matter of design and reliability. Moreover, as can be seen from the above, the copper material is a typical copper alloy, and most of the components are copper but not pure copper, such as copper beryllium alloy (99.9% copper), copper-silver-phosphorus-magnesium 107 1292195 (copper- Silver-phosphorus-magnesium) (99.7% copper) or copper _ titanium-iron-phosphorus (99.7 〇 / 〇 copper) 5 Hai winding can be input (fan-in) such as output (fan_out) -kind. The winding is formed on a metal substrate by a variety of deposition techniques, including electroplating and electroless plating. Alternatively, the winding can be deposited on a metal substrate, which may be a single layer or multiple layers. For example, the winding system can be a gold layer of 1 μm thick, or a nickel layer of _ 9.5 μm thick can be plated in a 0.5 μm thick gold layer and mined on a copper substrate to reduce the cost. Or a 9-micron-thick nickel layer is plated on a 5 μm gold layer and then plated on a 5 μm titanium layer and plated on a copper substrate to reduce cost and avoid etching of the copper plating layer. Gold and copper alloys that are difficult to remove. In another example, the winding system can be formed by plating a non-copper layer (n〇n-Copper iayer) on a copper substrate and a copper layer on the non-copper layer. Suitable non-copper layers include nickel, gold, palladium, and silver. When the wire is formed, the copper is applied to the non-copper layer for wet chemical etching to etch the copper substrate and expose the wire, but the copper layer and the non-copper layer are not removed. The non-copper layer provides an etch st etch to prevent the wet chemical etch from removing the copper plated layer. In the above description, the winding and the metal substrate are different metals (or metal materials), although the winding system having a plurality of layers includes a single layer which is similar to the metal substrate or a single layer of a multilayer metal substrate ( Single layer 〇f江 multi-layer metal base) 〇 This winding system can be formed by engraving a metal layer attached to a metal substrate 108 1292195. For example, a photoresist layer can be formed on the metal layer, and the photoresist layer is etched by the photoresist layer, and then the photoresist layer is peeled off; or a photoresist layer is formed. On the metal layer, an electroplated metal can be selectively immersed in the metal layer and coated with a photoresist layer, and then the photoresist layer can be peeled off, and the metal layer can be etched and The electroplated metal is used as an etch mask, in which the winding system can be formed comprising an unetched portion of the metal layer and an electroplated metal. The winding is formed by a metal layer to which the plated metal can adhere regardless of whether the plated metal is an etch mask. The wire can be spot plated (Sp〇t plated) near the conductive pin and the connection portion can be phased out. In the case of h, the winding system can be plated with the recording point, and then the silver is made compatible with the joint of a metal gold ball to avoid a mixture of brittle silver and copper. The metal wall can be electroplated to make it compatible with the soldered end. For example, a metal wall of nickel can be plated with gold to promote reflow of tin. The metal column can have a variety of shapes and sizes. For example, the upper plane and the lower plane (relative to the first plane 172 and the second plane 174 of the metal post of the first embodiment) may be circular, rectangular or square. Additionally, the diameter of the plane above the metal post is less than, equal to, or greater than the diameter of the lower plane of the metal post. If the lower plane of the metal post and the larger circular portion of the winding are over the upper plane of the metal crucible and covered, the diameter is at least 109 1292195 100 micrometers smaller than the outer boundary of the metal crucible and makes it easy Form a high density circuit. The details of the bismuth metal column are the formation of the metal substrate and the connection to the winding. U.S. Patent Application Serial No. 10/714,794, issued on December 17, 2003, by Chuen R.ng Leu et al. "Semiconductor chip package structure with embedded metal posts", U.S. Patent Application Serial No. 10/994,604, filed on December 2, 2004 by Charles W. CLin et al., entitled "Blocked Metal Columns" "Semiconductor chip package structure" and the US special (10) were issued by Chades^=^ on the 22nd of the month, and the patent name was "Semiconductor chip package structure with carved block contact end", so the metal column was revealed. The details are known from this reference. ,

该銲接端之下方係不能被該半導體晶片封裝結構 之密封劑、絕緣基板或其它絕緣材料覆蓋。例如··咳 銲接端之下方可被暴露,或者該銲接端之下方能被該/ 半導體晶片封裝結構外之絕緣材料覆蓋,如多個半^ 體晶^組成堆疊地排列。在每個半導體晶片封裝結構 :,该銲接端之下方係不被該半導體晶片封裝結構之 雄、封劑、絕緣基板或其它絕緣材料覆蓋。 源或接地層功能係依據 5亥導電跡線能具信號 '電 、、、° 5半導體晶片腳位的目的。 /該半導體晶片係能與主要平面垂直,該半導體晶 片係包括於朝上方向之導電腳位並遠離該繞線,或^ 110 1292195 朝心二曰&amp;被倒裝’其主要平面係於朝下方向並 2向H例如:該半導體晶片係能與位於朝上方 向之主要平面利用打線接合,或者該半導體晶片能與 立於朝下方向之主要平面利用覆晶接合。而且該半導 體曰曰片係能猎由各種不同的連接部與該繞線間具有電 力之連接不g該半導體晶片係直立的或被倒裝。例 如:該半導體晶片與一錫之連接部或一金之連接部以 覆B曰接。舉例來②,—鮮錫凸塊能被形成於導電腳 位上’該半導體晶片能藉由一擷取頭被倒裝或被配 置》亥榻取頭係為該銲錫凸塊被夾於該導電腳位與繞 線間’並將-對流的烘箱係能加熱使該銲錫凸塊^ 至一錫之連接部’該錫之連接部係與該導電腳位與繞 線接合。其它例子如一金凸塊能被形成於該導電腳位 上,該繞線與一金層被形成,該半導體晶片能藉由一 榻取頭被倒裝或被配置,該摘取頭係為該金凸塊被夾 於該導電腳位與繞線間,能應用熱能量及壓力並被傳 遞穿過該半導體晶片至該金凸塊,而熱度、壓力及超 音波之結合能形成一金對金連接(g〇ld g〇id interconnect, GGI),其介於金凸塊與該繞線之金層之 間,因此一金之連接部係與該導電腳位及繞線接合。 違電腳位係此具有數種形狀,其形狀係包括平 坦矩形凸狀。該導電腳位係能與該連接部相容。 數種黏著劑能連接該半導體晶片至繞線。例如·· 111 1292195 該黏著劑如膏狀、夾層或液狀被應用於網格印刷 (screen-printing)、旋轉(spin_on)或喷射(spray-on)。該 黏著劑係為單層被應用於金屬基板或銲接遮罩,並與 該半導體晶片接觸,或為單層被應用至該半導體晶 片,並與該金屬基板或銲接遮罩接觸。相似地,該黏 著劑係為複合層,係具有第一層使用於金屬基板或銲 接遮罩,第二層係用於該半導體晶片,然後該第一層 及第二層係相互接觸。該熱固性黏著劑形成液態及膏 • 狀如樹脂係適用的。同樣地,熱塑性黏著劑如一具4〇〇 度玻璃轉換溫度之絕緣之熱塑性之聚亞醯胺薄膜係適 用的。矽膠狀之黏著劑係也適用。 該密封劑係利用各種不同技術形成,其技術係包 括印刷及轉注成形。例如:該密封劑如樹脂係能被印 於半導體晶片上,然後硬化形成一固態黏著保護層。 該密封劑係能為上述黏著劑之種類。此外該密封劑係 φ 不疋與δ亥半導體晶片接觸。例如··一封膠塗料係能 置於該半導體晶片於該半導體晶片連接至繞線後,然 後該密封劑能被形成於該封膠塗料上。 该絕緣基板係可能為堅硬的或具彈性的,並能為 由各種不同的絕緣薄膜或玻璃纖維形成數種有機或無 機的絕緣體如捲帶、聚醯胺(p〇[yiimide)、樹脂、矽膠、 玻璃、芳香族聚醯胺(aramid)及陶瓷(ceramic)。有機絕 緣體係具有低成本及高絕緣性,然而該無機絕緣體於 112 1292195 高熱功率消耗及相當的熱膨脹係數時為重要的。例 如:該絕緣基板起初為一環氧樹脂,其包括環氧樹脂、 硬化劑、加速劑及填充劑,可同時地硬化形成一固態 黏著絕緣層。該填充劑係能為一惰性材料如矽土(silica) (粉末狀溶化之石英),其可改善熱傳導性、熱衝擊性 及熱膨脹係數。有機強化纖維係可能被用於如環氧樹 脂、氰酸酯樹脂、聚亞醯胺、鐵弗龍及上述之結合物 等樹脂中。該纖維包括芳香族聚醯胺、多元酯 (polyester)、p〇ly-ether“ether-ketone、聚亞酿胺、熱可 塑型聚醢亞胺(polyetherimide)及聚颯(polysulfone)係 可被使用。該強化纖維係可為織布(woven fabric)、玻 纖布(woven glass)、random microfiber glass、編織石 英(woven quartz)、編織物(woven)、芳香族聚醯胺 (aramid)、不織布(non-woven fabric)、不織芳香族聚醯 胺纖維(non-woven aramid fiber)或紙。商業上可用之絕 緣材料如由 W.L· Gore &amp; Associates of Eau Claire 製 造之SPEEDBOARD C預浸材料係為合適的。 該絕緣基板係能利用數種方式被形成,其方式包 括印刷及轉注形成。而且該絕緣基板係能於該半導體 晶片連接至該繞線之前或該半導體晶片連接至該繞線 之後被形成。 該絕緣基板係利用各種不同之技術將其較低部份 移除’其技術包含研磨(包含機械研磨及化學機械研 113 1292195 磨)、毯覆式雷射消熔及毯覆式電漿蝕刻。同樣地,該 絕緣基板係具可選擇部份於該金屬壁、金屬柱及銲接 層下被移除係利用各種不同技術,其中該技術係包括 選擇性雷射消熔、選擇性電漿蝕刻及光蝕刻。 該絕緣基板係能與金屬壁沿著其朝下方平面橫向 排列’並從該繞線及金屬柱向下延伸,且研磨該絕緣 基板但沒研磨該銲接層、金屬柱或繞線,然後研磨該 鲁 絕緣基板及金屬壁但沒研磨該金屬柱或繞線,接著於 到達該金屬柱及繞線係停止研磨。該絕緣基板係與銲 接層橫向排列於一朝下之平面,該絕緣基板係從該繞 線及金屬柱向下延伸,且研磨該絕緣基板但沒研磨該 銲接層、金屬柱或繞線,然後研磨該絕緣基板及銲接 板但沒研磨該金屬柱或繞線,接著於到達該金屬柱或 繞線前停止研磨。同樣地,該絕緣基板係能與金屬壁 及#接層,著其朝下平面橫向排列,並從該繞線及金 _ 屬柱向下延伸,且研磨該絕緣基板但沒研磨該金屬 壁、銲接層、金屬柱或繞、線,然後研磨該絕緣基板、 金屬壁及銲接層但沒研磨該金屬柱或繞線,接著於到 達该金屬柱或繞線前係停止研磨。 該連接部係能利用各種不同材料形《,其材料係 包括銅、金、鎳、鈀、鈦、其合金及其結合物,並利 用各種不同過程形成,其過程係包括電鍍、無電電鑛、 球銲、打線接合、柱狀接合(studbumping)、錫料回流 114 1292195 銲接、導電黏著劑硬化及焊接,該連接部可具有各種 不同形狀及尺寸。根據設計與可靠度之考量,、該連接 之形狀及組成係依該繞線之組成。而且耳電於之連 接部之細節係於美國專利申請號第09/865,367號於 2〇〇1年5月24日由Charles W.C. Lin提出,其專利名 稱為「具同時電鑛形成之接觸端及連接部之半導體曰 片封裝結構」中已被揭露。』而經無電電鍍之連接部 之細節於美國專利申請號第09/864,555號於2〇〇1年^ 月24日由Charles w.c. Lin提出,其專利名稱為「具 同時無電電鍍形成之接觸端及連接部之半導體晶片封 裝結構」係已被揭露。經球銲形成之連接部於美國專 利申請號第09/864,773號於2001年5月24、曰由The underside of the soldered end cannot be covered by the encapsulant, insulating substrate or other insulating material of the semiconductor chip package structure. For example, the cough can be exposed under the soldering end, or the underside of the soldering end can be covered by the insulating material outside the semiconductor chip package structure, such as a plurality of semiconductor layers. In each semiconductor wafer package structure, the underside of the solder bump is not covered by the male, sealant, insulating substrate or other insulating material of the semiconductor wafer package structure. The source or ground plane function is based on the 5th conductive trace capability of the signal 'electricity, ', and 5 semiconductor wafer pins. / the semiconductor wafer system can be perpendicular to the main plane, the semiconductor wafer system is included in the upward direction of the conductive pin and away from the winding, or ^ 110 1292195 朝心曰 &amp; flipped 'the main plane is tied to the The lower direction and the second direction H are, for example, the semiconductor wafer system can be bonded to the main plane located in the upward direction by wire bonding, or the semiconductor wafer can be bonded to the main plane standing in the downward direction by flip chip bonding. Moreover, the semiconductor wafer can be electrically connected to the winding by a variety of different connections and the semiconductor wafer is upright or flipped. For example, the connection between the semiconductor wafer and a tin or a gold connection is overlapped by B. For example, a fresh tin bump can be formed on the conductive pin. The semiconductor wafer can be flipped or configured by a pick-up head. The head is attached to the conductive bump. The oven between the pin and the winding 'heats the convection oven so that the solder bumps to the tin connection portion' the tin connection portion and the conductive pin are bonded to the winding. Other examples, such as a gold bump, can be formed on the conductive pin, the wire is formed with a gold layer that can be flipped or configured by a couching head, the picking head being the The gold bump is sandwiched between the conductive pin and the winding, and can apply thermal energy and pressure and is transmitted through the semiconductor wafer to the gold bump, and the combination of heat, pressure and ultrasonic can form a gold-to-gold A connection (g〇ld g〇id interconnect, GGI) is interposed between the gold bump and the gold layer of the winding, so that a gold connection portion is bonded to the conductive pin and the wire. The power-off pin has several shapes, and its shape includes a flat rectangular convex shape. The conductive pin is compatible with the connection. Several adhesives can connect the semiconductor wafer to the winding. For example, 111 1292195 The adhesive, such as paste, interlayer or liquid, is applied to screen-printing, spin-on or spray-on. The adhesive is applied as a single layer to a metal substrate or a solder mask, and is in contact with the semiconductor wafer, or a single layer is applied to the semiconductor wafer and is in contact with the metal substrate or the solder mask. Similarly, the adhesive is a composite layer having a first layer for use with a metal substrate or a solder mask, a second layer for the semiconductor wafer, and then the first layer and the second layer are in contact with each other. The thermosetting adhesive forms a liquid and a paste, such as a resin. Similarly, thermoplastic adhesives such as an insulating thermoplastic polyimide film having a 4 degree glass transition temperature are suitable. A gelatinous adhesive system is also suitable. The sealant is formed using a variety of different techniques, including techniques for printing and transfer molding. For example, the encapsulant, such as a resin, can be printed on a semiconductor wafer and then cured to form a solid adhesive protective layer. The sealant can be of the type of the above adhesive. Further, the sealant φ is not in contact with the δ ray semiconductor wafer. For example, a glue coating can be placed on the semiconductor wafer after the semiconductor wafer is attached to the winding, and then the sealant can be formed on the sealant. The insulating substrate may be rigid or elastic, and can form several organic or inorganic insulators such as a tape, a polyamide, a resin, a silicone rubber from various insulating films or glass fibers. , glass, aromatic aramid and ceramic. The organic insulating system has low cost and high insulation, however, the inorganic insulator is important in the high thermal power consumption of 112 1292195 and a considerable coefficient of thermal expansion. For example, the insulating substrate is initially an epoxy resin comprising an epoxy resin, a hardener, an accelerator, and a filler which are simultaneously hardened to form a solid adhesive insulating layer. The filler can be an inert material such as silica (powder-dissolved quartz) which improves thermal conductivity, thermal shock resistance and thermal expansion coefficient. The organic reinforcing fiber system may be used in resins such as epoxy resins, cyanate resins, polyamidones, Teflon, and combinations thereof. The fibers include aromatic polyamines, polyesters, p〇ly-ether "ether-ketone", poly-anisamines, thermoformable polyetherimides, and polysulfones. The reinforcing fiber system may be a woven fabric, a woven glass, a random microfiber glass, a woven quartz, a woven, an aramid, or a non-woven fabric ( Non-woven fabric, non-woven aramid fiber or paper. Commercially available insulating materials such as SPEEDBOARD C prepreg manufactured by WL Gore &amp; Associates of Eau Claire The insulating substrate can be formed in several ways, including printing and transfer forming, and the insulating substrate can be before the semiconductor wafer is connected to the winding or after the semiconductor wafer is connected to the winding. The insulating substrate is removed by a variety of different techniques. The technology includes grinding (including mechanical grinding and chemical mechanical grinding 113 1292195 grinding), blanket-type lightning Ablation and blanket plasma etching. Similarly, the insulating substrate is selectively removed from the metal wall, the metal post and the solder layer using various techniques, wherein the technology includes selective lightning Ejection melting, selective plasma etching, and photo etching. The insulating substrate can be aligned with the metal wall along its downward plane, and extends downward from the winding and the metal pillar, and the insulating substrate is polished but not ground. The soldering layer, the metal post or the winding, and then grinding the Lu insulating substrate and the metal wall without grinding the metal post or winding, and then stopping the grinding after reaching the metal post and the winding system. The insulating substrate is transverse to the soldering layer Arranged in a downward plane, the insulating substrate extends downward from the winding and the metal pillar, and the insulating substrate is polished but the soldering layer, the metal pillar or the winding is not polished, and then the insulating substrate and the soldering plate are polished but The metal post or winding is not ground, and then the grinding is stopped before reaching the metal post or winding. Similarly, the insulating substrate can be aligned with the metal wall and the #层层, facing the lower plane, and The winding and the gold-like pillars extend downward, and the insulating substrate is polished but the metal wall, the soldering layer, the metal pillar or the winding, the wire is not ground, and then the insulating substrate, the metal wall and the soldering layer are polished but the metal is not ground. Column or winding, followed by stopping the grinding before reaching the metal column or winding. The connection can be made of various materials, including copper, gold, nickel, palladium, titanium, alloys and combinations thereof. And formed by various processes, including electroplating, electroless ore, ball bonding, wire bonding, studumping, tin reflow 114 1292195 welding, conductive adhesive hardening and welding, the connection can be Available in a variety of shapes and sizes. Depending on the design and reliability considerations, the shape and composition of the connection is based on the composition of the winding. The details of the connection between the ear and the ear are made by Charles WC Lin on May 24, 2002, and the patent name is "the contact end with the simultaneous formation of electric ore and The semiconductor chip package structure of the connection portion has been disclosed. And the details of the electroless plating connection are proposed by Charles Wc Lin on May 24, 2002. The patent name is "the contact end formed by simultaneous electroless plating and A semiconductor chip package structure of a connection portion has been disclosed. The joint formed by ball bonding is disclosed in U.S. Patent Application Serial No. 09/864,773, on May 24, 2001.

CharlesW.C.Lin提出,其專利名稱為「具球鲜形成之 連接部之半導體晶片」係被揭露。經鲜錫或導電黏著 劑形成之連接部於美國專利申請號第〇9/927,216號於 2⑽1年8月ίο日由Charles wc —提出其專利名 ,為「具硬化之連接部之半導體晶片」係被揭露。經 烊接之連接部於美國專利申請號第號於 2002 年 11 月 23 日由 Cheng-Lien Chiang 等人提出, f專利名稱為厂利用電漿钱刻連接導電跡線至半導體 晶片之方法」係被揭露。 ▲於該連接部被形成後’如果該電鑛匯流排存在時 該連接部係不與該導電跡線連接。該電鑛匯流排係藉 1292195 桩機:ί:刀割、雷射切割、化學蝕刻及合併係不被連 椹二、“該電鍍匯流排係被置於該半導體晶片封裝結 2 =整合至該半導體晶片封裝結構,然後當該 =導::片封裝結構與其它半導體晶片封裝結構分離 棑已匯流排係不被連接。然而如果該電鑛匯流 二已被::至該半導體晶片封裝結構,或被獨立已經 ί ί Ίί ⑽。罐―吻step)係、能選擇性地 :力二=半導體晶片封裝結構之電路切割,而該半 導曰曰片封裝結構係配有電鑛匯 縮短該導電跡線時。而 a 电峪係另 金屬板係不被連接 咖匯流排係藉由關該 一録錫材料或__由㈣ 被置於銲接層上於需谁耔T a W4土师孜街Charles W. C. Lin proposed that the patent name "semiconductor wafer with a joint formed by a ball" was revealed. The connection formed by the bright tin or the conductive adhesive is proposed by Charles Wc in the US Patent Application No. 9/927,216 on 2 (10) 1 August ίο, and is a "semiconductor wafer with a hardened joint" Was revealed. The spliced connection is proposed by Cheng-Lien Chiang et al. on November 23, 2002, and the f patent name is the method of using the plasma money to connect the conductive traces to the semiconductor wafer. Was revealed. ▲ After the connection portion is formed, the connection portion is not connected to the conductive trace if the electrowinning bus bar is present. The electric current manifold is borrowed from the 1292195 pile machine: ί: knife cutting, laser cutting, chemical etching and merging are not connected. 2. The plating bus is placed on the semiconductor chip package 2 = integrated into the a semiconductor chip package structure, and then the busbar package structure is separated from other semiconductor chip package structures, and the bus bar system is not connected. However, if the electrode bank sink 2 has been: to the semiconductor chip package structure, or Is independently ί ί Ίί (10). Can- kiss step system, can selectively: force two = semiconductor chip package structure circuit cutting, and the semi-conductive chip package structure is equipped with an electric mine to shorten the conductive trace When the wire is used, the other metal plate is not connected to the coffee bus. By shutting down the tin material or __ by (4) being placed on the soldering layer, who is required to 耔T a W4

Mm# ^ a 層次構裝。職該下一 曰-人構裝係不*包含錫料之半導體晶片封裝 如:在平面柵格陣列構穿中 接供而m Γ 亥鮮錫材料係藉由面板 &amp;供而不疋於半導體晶片料結構之接觸端。 各種不同之清洗方式如簡短的電聚氧清洗方式, 或利用過㈣鉀溶液之簡短的濕式化學清洗 被應用於各種不同過程之纟士 匕 处w主、,Λ 中’如於形成連接部前 犯立即地清洗该導電跡線及導電腳位。 由本發明之說明書中可&amp; 2 , 於該密封劑内係藉由-且電力的2半導體晶片被嵌 間具有電力地連接,該具=㈡路徑細接端 電力的導電路徑係包括繞線 116 1292195 及金屬壁,其意思在於該繞線及金屬壁係連接被嵌入 於密封劑之銲接端及任何半導體晶片間之具電力之導 電路徑。不管是單晶片被嵌入該密封劑内(該半導體晶 片被嵌於該密封劑内係藉由一具電力的導電路徑與= 銲接端間具有電力之連接,該具電力的導電路徑^包 括繞線及金屬壁)’或為多晶片被嵌入該密封劑内 一半導體晶片被嵌於該密封劑内係藉由一具電力的 電路徑與該銲接端間具有電力之連接,該^電力的 電路徑係是否包括繞線及金屬壁)。亦不管該具電力之 徑係包含或需要—連接部及(或)—電鑛接點於 f、〜線及半導體晶片間。不管該具電力之導電路徑係 是否包含或需要一金屬柱於該繞線與金屬壁間。不管 該具電力之導電路徑係Μ包含或需要—如電容 ,阻盗之無源組成元件。亦不管該多晶片係是否藉由 :數:固連接部與該繞線具電力地連接’該複數個連接 繞線相互成電力地連接。不管該多晶片係是 猎不同的具電力之導電路徑與該録接端具有電力 =連接(如上述多個連接部之例子)只要每一具電力之 ν電路徑係包括該繞線及金屬壁。 化與2發明之說明書中可知’該金屬柱係藉由濕式 mU形成’但不是一次就形成金屬柱。例如:該 二濕式化學姓刻係形成該凹口並能形成該金屬柱 、’面,忒第二次濕式化學蝕刻係能形成該金屬柱 117 1292195 iS::及其錐表面。在這例子令該第二次谭式化 子银刻係能完全使該金屬柱形成。 式 面之Lt:明:說明書中可知,該金屬柱係為具錐表 其錐表面係緊鄰且擴展於該金屬柱之上 • f合改_、’Γ間亚向内部傾斜,即使該内部斜面係可 之:表如該錐表面能向内部傾斜,即使-部份 =:向外部傾斜,只是該金屬柱之Mm# ^ a hierarchical structure. The next step is to install a semiconductor wafer package containing tin material, such as: in a planar grid array, and the material is supplied by the panel &amp; The contact end of the wafer material structure. Various cleaning methods such as a short electric polyoxygen cleaning method, or a short wet chemical cleaning using a (four) potassium solution is applied to a variety of different processes in the gentleman's place, the main part, in the formation of the joint The predecessor immediately cleans the conductive trace and the conductive pin. According to the specification of the present invention, in the encapsulant, the semiconductor wafers of the electric power are connected by electric power, and the conductive path of the electric power of the (2) path connection terminal includes the winding 116. 1292195 and metal wall means that the winding and metal wall connection are embedded in the electrically conductive conductive path between the soldering end of the encapsulant and any semiconductor wafer. Whether a single wafer is embedded in the encapsulant (the semiconductor wafer is embedded in the encapsulant by a power conductive path and a connection between the solder ends, the electrically conductive path includes winding And a metal wall) or a multi-wafer is embedded in the encapsulant. A semiconductor wafer is embedded in the encapsulant. The electric path is electrically connected to the soldering end by an electrical path of the electric power. Whether the system includes winding and metal walls). Regardless of whether the power path includes or requires - the connection and/or the electrical ore junction between the f, ~ line and the semiconductor wafer. Whether or not the electrically conductive path includes or requires a metal post between the winding and the metal wall. Regardless of the conductive path of the power system, it contains or needs to be a passive component such as a capacitor. Also, regardless of whether or not the multi-chip system is electrically connected to the bobbin by a number: the solid connection portion, the plurality of connection windings are electrically connected to each other. Regardless of whether the multi-chip system is a different electrically conductive path and has a power=connection (as in the case of the plurality of connections described above), as long as each power ν electrical path includes the winding and the metal wall . It is known from the description of the invention of the second invention that the metal pillar is formed by the wet mU but does not form the metal pillar once. For example, the second wet chemical system is formed to form the recess and can form the metal post, the surface, and the second wet chemical etching system can form the metal pillar 117 1292195 iS:: and its tapered surface. In this example, the second Tan-type silver engraving system completely formed the metal pillar. Lt of the surface: Ming: It can be seen in the specification that the metal column is a cone-shaped surface, and the surface of the cone is adjacent to and extends over the metal column. • f is changed _, and the inter-sub-direction is inclined internally, even if the internal slope It can be: the surface of the cone can be tilted to the inside, even if - part =: tilted to the outside, only the metal column

=7方平面之直徑及該錐表面幾乎向内傾斜二 金屬柱之上方平面向下方平面傾斜。 接声之說明書令可知’該鲜接端係包括該銲= 7 The diameter of the square plane and the surface of the cone are inclined almost inward. The plane above the metal column is inclined to the lower plane. The instructions for the sound connection indicate that the fresh joint includes the welding

括^=1之金μ接觸°不管該鲜接端係包 吁接2及其它鲜錫材料,或該鋅接端由該鲜接層組 成。不官該銲接端往該孔洞内部延伸及外部擴展,或 被置於該孔洞内。不管該銲接層係是否於孔洞外之金 屬壁接觸。不管該銲接層係是否與該金屬壁接觸。 於本發明之說明書中可明白得知,該銲接端係包 括該銲接層即使料接層可能被改變^例如:該鲜接 層之形狀係可能於進行化學㈣形成金屬柱、^化形 成絕緣基板、研磨該銲接層暴露部份及錫料回流形成 銲接端時被改變。_地,料料⑽㈣銲接端時 係可能改變該銲接層之形狀及組合,並可能與該錫球 及銲接層混合一起,使它們係不再為可明確的分隔。 在每一實施例中該銲接端係包括該銲接層。 118 1292195 該”向上”及”向下”垂直方向不依該半導體晶片封 裝結構之定位而定’將明確的表達於文中。例如,該 密封劑係從該繞線往,,向上”方向垂直地延伸、該金 壁係從該半導體晶片往,,向下”方向垂直地延伸及該絕 緣基板係從該密封劑往,,向下”方向垂直地延伸,不管 該半導體晶片料結構是否被難或覆蓋於—印刷電 路板上。同樣地,該繞線係從該金屬㈣向地延伸, 不管該半導體晶片封裝結構是否被倒裝、旋轉或分 割。因此該,,向上,,及”向下,,方向係為相對的,並盥一 橫向方向正交,該”橫向地排列”表面係只於同一橫向 平面上或與向上及向下方向。該半導體晶片係被繪製 於該繞線、金屬壁、金屬柱、銲接端及絕緣基板之上: 以及該密封劑被繪製於該半導體晶片、繞線、金屬壁、 金屬柱、銲接端及絕緣基板之上係具有一單一定位於 圖上各處為了圖與圖之間進行比對,雖然該半導體曰 片封裝結構及它的組成係可能被倒裝於各種不同的= 造過程中。 、 該半導體晶片封裝結構之工作形式能為單晶片構 裝或多晶片構裝基於製造設計上。例如:該單晶片構 裝係包含能被獨立地製造之單晶片。或者多個^導體 晶片係能同時地被製於一具單一銲接遮罩、密封劑及 矣巴緣基板之金屬基板上,然後相互隔離,如:多曰曰片 構裝中之凹口係能同時地於蝕刻該金屬基板時形成, 119 1292195 然後該金屬壁係能同時地被鍍於金屬基板之凹口上, 接著分離錫膏利用單一模板係能同時地被置於該相符 的金屬壁内,然後該錫膏係能同時地回流形成銲接 層’而該繞線係能同時地被鍍於金屬基板上,接著該The gold μ contact of ^ = 1 regardless of the fresh end of the package 2 and other fresh tin material, or the zinc joint consists of the fresh joint. It is not the case that the welded end extends inside the hole and expands externally or is placed in the hole. Regardless of whether the weld layer is in contact with the metal wall outside the hole. Regardless of whether the solder layer is in contact with the metal wall. It can be understood in the specification of the present invention that the soldering end includes the soldering layer, even if the material layer may be changed. For example, the shape of the solder layer may be chemically formed (4) to form a metal pillar, and to form an insulating substrate. When the exposed portion of the solder layer is polished and the solder reflows to form the soldered end, it is changed. _ ground, material (10) (4) welding end may change the shape and combination of the welding layer, and may be mixed with the solder ball and the welding layer, so that they are no longer clearly definable. In each embodiment the weld end includes the weld layer. 118 1292195 The "upward" and "downward" vertical directions are not determined by the orientation of the semiconductor wafer package structure' and will be expressly expressed herein. For example, the encapsulant extends from the winding, extending vertically in an upward direction, the gold wall extends from the semiconductor wafer, and extends vertically downwardly, and the insulating substrate passes from the encapsulant. The downward direction extends vertically, regardless of whether the semiconductor wafer structure is difficult or covered on the printed circuit board. Similarly, the winding extends from the metal (four) to the ground, regardless of whether the semiconductor package structure is inverted Mounting, rotating, or splitting. Therefore, the up, and, and down, directions are relative and orthogonal in a lateral direction, the "horizontal arrangement" of the surface is only in the same lateral plane or upward And the downward direction. The semiconductor wafer is drawn on the winding, the metal wall, the metal pillar, the soldering end and the insulating substrate: and the sealing agent is drawn on the semiconductor wafer, the winding, the metal wall, the metal pillar, the soldering end and the insulating substrate The top has a single position on the map for comparison between the figure and the figure, although the semiconductor chip package structure and its components may be flipped in various different manufacturing processes. The semiconductor chip package structure can be operated in a single wafer configuration or a multi wafer structure based on the manufacturing design. For example, the single wafer package comprises a single wafer that can be fabricated independently. Or a plurality of conductor wafers can be simultaneously fabricated on a metal substrate having a single solder mask, a sealant, and a slab edge substrate, and then isolated from each other, such as a notch system in a multi-slice assembly. Simultaneously forming the metal substrate, 119 1292195 and then the metal wall can be simultaneously plated on the recess of the metal substrate, and then the separation solder paste can be simultaneously placed in the corresponding metal wall by using a single template system. The solder paste can then be simultaneously reflowed to form a solder layer' and the winding system can be simultaneously plated on the metal substrate, and then the

電鍍接點係能同時地被鍍於相符的繞線上,各別分離 的半導體晶片封裝結構之黏著劑係能同時地被置於銲 接遮罩上’而該半導體晶片係能同時地被置於相符的 黏著劑上’該黏著劑係能同時地被硬化,然後該連接 部係能被形成於相符之電鍍接點及導電腳位上,接著 該密封劑係能被形成,該金屡基板係能被蝕刻並同時 地形成金屬柱,然後該絕緣基板被形成,而該絕緣基 板金屬壁及銲接層係能同時地被研磨,然後錫膏分 離的空間係能同時地被置於相符的銲接層丨,而該銲 接層及錫球係能㈣地被回流形成銲接端,以及該鮮 接遮,、㈣劑及絕緣基板被切割,目此分割為具獨 立的單晶片基板之半導體晶片封裝結構。、 於進:亥片封裝結構係能具有不同的構裝形式 成I田一曰次構裝時’例如··該導電跡線係能被形 成,係因該半導體晶片封梦处 饭〜 球格式陣列、柱格式陣 平幻如 列。 J千面柵袼陣列或針格式陣 該半導體晶片封裝結構 構裝係可為單γ a構裝,其 、戈弟一貫施例至第十四實施 120 1292195 夕夕日曰片構裝(如第十五實施例)。而且該多晶片 層,人構裝能包括半導體晶片被堆疊及間 垂直排列,或半導髀曰 橫向排列。 曰曰片白為同-平面上並相互間成 可靠,半導體晶片封裝結構之製造方法係具 該半;該密封劑及絕緣基板係能保護 -Β曰;處理過程受到損害,並提供該 線一絕源的屏蔽,以月过崎* 电刀 Λ 敝以及保濩該半導體晶片封裝結構不 =乐物及不必要的錫料回流於下-層次構裝。今 ㈣劑能提供該導電料—機械支料 ^ =成,被移除時1金屬壁能偈限;= 曰于妾4於進订錫料回流操作時。另外該銲接端能 延-伸至該絕緣純内之金屬壁,而不 其橫向平面之高壓邊界接觸,其The electroplated contacts can be simultaneously plated on the matching windings, and the adhesives of the separately separated semiconductor chip package structures can be simultaneously placed on the solder masks, and the semiconductor wafers can be simultaneously placed in conformity On the adhesive, the adhesive can be simultaneously hardened, and then the joint can be formed on the corresponding plating contacts and the conductive pins, and then the sealant can be formed, and the gold substrate can be formed. The metal pillar is etched and simultaneously formed, and then the insulating substrate is formed, and the insulating substrate metal wall and the soldering layer can be simultaneously ground, and then the space in which the solder paste is separated can be simultaneously placed in the matching soldering layer. The solder layer and the solder ball layer can be reflowed to form a soldering end, and the solder mask, the (4) agent, and the insulating substrate are cut, and are thus divided into semiconductor wafer package structures having independent single-wafer substrates. , Yu Jin: The lithography package structure can have different configurations. When I Tianyi is installed, for example, the conductive trace system can be formed because of the semiconductor wafer sealing dream ~ ball format The array and column format arrays are as flat as the columns. J 千 袼 袼 array or pin format array The semiconductor chip package structure structure can be a single γ a structure, which is consistently applied to the fourteenth embodiment 120 1292195 夕 曰 构 构 ( ( Five embodiments). Moreover, the multi-wafer layer, the human package can comprise semiconductor wafers stacked and vertically aligned, or semi-conductive, laterally aligned. The white sheets are the same-plane and are reliable with each other. The manufacturing method of the semiconductor chip package structure is provided with the half; the sealant and the insulating substrate can protect the crucible; the process is damaged, and the line is provided. The shield of the source is sealed by the moon-to-shoulder* electric knife and the semiconductor chip package structure is not = the music and the unnecessary tin material are reflowed in the lower-level structure. This (4) agent can provide the conductive material - mechanical support ^ = into, when removed, 1 metal wall can be limited; = 曰 4 in the order of the tin reflow operation. In addition, the soldering end can extend-extension to the metal wall of the insulating pure, without the high-voltage boundary contact of the lateral plane,

=錢善可靠度。該接合方式可由機械式的J #換“金式_合,確保冶金式之接合有足夠強 跡線能為機械式地及冶金式地於該半 導體曰曰片而不使用打線接合、捲帶自動接合 錫或具導電性之黏著劑,雖然過程係為可調整的,可 調整需要的技術。該過程係具多功能的並許可各種不 同完善的接合技術被應用於獨立的及㈣盖之方去 中。而且該金屬柱係特別地適當的位置係可二少因溫 121 1292195 度=對稱造成下-層組合時之·力及料良率並提高 可靠度於下-層組合,#已經超過傳統的球格式構 裝所以本發明之半導體晶片封裝結構與傳統的構裝 技術相比可提高生產量、賴及效能等特性。而且本 發明之半導體晶片封裝結構可與銅金屬相容。 ▲淮以上所述者,僅為本發明之實施例而已,當不 月匕以$限定本發明實施之範圍;⑨,凡依本發明申請 f利祀圍及發明說明書内容所作之簡單的等效變化與 &gt;飾’皆應仍屬本發明專利涵蓋之範圍内。 1292195 【圖式簡單說明】 第1A圖,本發明之半導體晶片結構剖面示意圖。 第1B圖,本發明之半導體晶片結構俯視示意圖。 第1C圖,本發明之半導體晶片結構仰視示意圖。 第2A圖,係本發明之金屬基板結構剖面示意圖。 第2B圖,係本發明之金屬基板結構俯視示意圖。 第2C圖,係本發明之金屬基板結構仰視示意圖。 第3A圖,係本發明之光阻層與金屬基板結構剖面示 # 意圖。 第3B圖,係本發明之光阻層與金屬基板結構俯視示 意圖。 第3C圖,係本發明之光阻層與金屬基板結構仰視示 意圖。 第4A圖,係本發明之具凹口之金屬基板結構剖面示 意圖。 第4B圖,係本發明之具凹口之金屬基板結構俯視示 ¥ 意圖。 第4C圖,係本發明之具凹口之金屬基板結構仰視示 意圖。 第5A圖,係本發明之金屬壁形成於金屬基板結構剖 面示意圖。 第5B圓,係本發明之金屬壁形成於金屬基板結構俯 視示意圖。 123 1292195 第5C圖,係本發明之金屬壁形成於金屬基板結構仰 視示意圖。 第6A圖,係本發明之模板覆蓋於第二光阻層之結構 剖面示意圖。 第6B圖,係本發明之模板覆蓋於第二光阻層之結構 俯視示意圖。 第6C圖,係本發明之模板覆蓋於第二光阻層之結構 仰視示意圖。 第7A圖,係本發明之錫膏沈積於金屬壁之結構剖面 示意圖。 第7B圖,係本發明之錫膏沈積於金屬壁之結構俯視 示意圖。 第7C圖,係本發明之錫膏沈積於金屬壁之結構仰視 示意圖。 第8A圖,係本發明之移去模板後之結構剖面示意圖。 第8B圖,係本發明之移去模板後之結構俯視示意圖。 第8C圖,係本發明之移去模板後之結構仰視示意圖。 第9A圖,係本發明之錫膏形成銲接層後之結構剖面 示意圖。 第9B圖,係本發明之錫膏形成銲接層後之結構俯視 示意圖。 第9C圖,係本發明之錫膏形成銲接層後之結構仰視 示意圖。 第10A圖,係本發明之第一光阻層及第二光阻層剝落 124 1292195 後之結構剖面示意圖。 第10B圖,係本發明之第一光阻層及第二光阻層剝落 後之結構俯視示意圖。 第10C圖,係本發明之第一光阻層及第二光阻層剝落 後之結構仰視示意圖。 第11A圖,係本發明之第三光阻層及第四光阻層形成 於金屬基板後之結構剖面示意圖。 第11B圖,係本發明之第三光阻層及第四光阻層形成 鲁 於金屬基板後之結構俯視示意圖。 第11C圖,係本發明之第三光阻層及第四光阻層形成 於金屬基板後之結構仰視示意圖。 第12A圖,係本發明之繞線附於金屬基板時之結構剖 面示意圖。 第12B圖,係本發明之繞線附於金屬基板時之結構俯 視不意圖。 I 第12C圖,係本發明之繞線附於金屬基板時之結構仰 視示意圖。 第13A圖,係本發明之第三光阻層及第四光阻層剝落 後之結構剖面示意圖。 第13B圖,係本發明之第三光阻層及第四光阻層剝落 後之結構俯視示意圖。 第13C圖,係本發明之第三光阻層及第四光阻層剝落 後之結構仰視示意圖。 第14A圖,係本發明之銲接遮罩於金屬基板及繞線時 125 1292195 之結構剖面示意圖。 第14B圖,係本發明之銲接遮罩於金屬基板及繞線時 之結構俯視示意圖。 第14C圖,係本發明之銲接遮罩於金屬基板及繞線時 之結構仰視示意圖。 第15A圖,係本發明之第五光阻層及第六光阻層形成 後之結構剖面示意圖。 第15B圖,係本發明之第五光阻層及第六光阻層形成 後之結構俯視示意圖。 第15C圖,係本發明之第五光阻層及第六光阻層形成 後之結構仰視示意圖。 第16A圖,係本發明之電鍍接點形成於繞線後之結構 剖面示意圖。 第16B圖,係本發明之電鍍接點形成於繞線後之結構 俯視示意圖。 第16C圖,係本發明之電鍍接點形成於繞線後之結構 仰視示意圖。 第17A圖,係本發明之第五光阻層及第六光阻層剝落 後之結構剖面示意圖。 第17B圖,係本發明之第五光阻層及第六光阻層剝落 後之結構俯視示意圖。 第17C圖,係本發明之第五光阻層及第六光阻層剝落 後之結構仰視示意圖。 第18A圖,係本發明之黏著劑形成於銲接遮罩後之結 126 1292195 構剖面示意圖。 第18B圖,係本發明之黏著劑形成於銲接遮罩後之結 構俯視示意圖。 第18C圖,係本發明之黏著劑形成於銲接遮罩後之結 構仰視示意圖。 第19A圖,係本發明之具半導體晶片之結構剖面示意圖。 第19B圖,係本發明之具半導體晶片之結構俯視示意圖。 第19C圖,係本發明之具半導體晶片之結構仰視示意圖。 第20A圖,係本發明之連接部附於導電腳位及電鍍接 點時之結構剖面示意圖。 第20B圖,係本發明之連接部附於導電腳位及電鍍接 點時之結構俯視示意圖。 第20C圖,係本發明之連接部附於導電腳位及電鍍接 點時之結構仰視示意圖。 第21A圖,係本發明之具密封層之結構剖面示意圖。 第21B圖,係本發明之具密封層之結構俯視示意圖。 第21C圖,係本發明之具密封層之結構仰視示意圖。 第22A圖,係本發明之金屬柱於金屬基板上形成後之 結構剖面示意圖。 第22B圖,係本發明之金屬柱於金屬基板上形成後之 結構俯視示意圖。 第22C圖,係本發明之金屬柱於金屬基板上形成後之 結構仰視示意圖。 第23A圖,係本發明之絕緣封膠形成後之結構剖面示 127 1292195 意圖。 第23B圖,係本發明之絕緣封膠形成後之結構俯視示 意圖。 第23C圖,係本發明之絕緣封膠形成後之結構仰視示 意圖。 第24A圖,係本發明之絕緣封膠移除後之結構剖面示 意圖。 第24B圖,係本發明之絕緣封膠移除後之結構俯視示 意圖。 第24C圖,係本發明之絕緣封膠移除後之結構仰視示 意圖。 第25A圖,係本發明之錫球形成後之結構剖面示意圖。 第25B圖,係本發明之錫球形成後之結構俯視示意圖。 第25C圖,係本發明之錫球形成後之結構仰視示意圖。 第26A圖,係本發明之銲接端形成後之結構剖面示意圖。 第26B圖,係本發明之銲接端形成後之結構俯視示意圖。 第26C圖,係本發明之銲接端形成後之結構仰視示意圖。 第27A圖,係本發明之半導體晶片封裝結構之結構剖 面示意圖。 第27B圖,係本發明之半導體晶片封裝結構之結構俯 視不意圖。 第27C圖,係本發明之半導體晶片封裝結構之結構仰 視不意圖。 第28A圖,本發明之半導體晶片結構剖面示意圖。 1292195 第28B圖,本發明之半導體晶片結構俯視示意圖。 第28C圖,本發明之半導體晶片結構仰視示意圖。 第29A圖,係本發明之金屬基板結構剖面示意圖。 第29B圖,係本發明之金屬基板結構俯視示意圖。 第29C圖,係本發明之金屬基板結構仰視示意圖。 第30A圖,係本發明之光阻層與金屬基板結構剖面示 意圖。 第30B圖,係本發明之光阻層與金屬基板結構俯視示 • 意圖。 第30C圖,係本發明之光阻層與金屬基板結構仰視示 意圖。 第31A圖,係本發明之具凹口之金屬基板結構剖面示 意圖。 第31B圖,係本發明之具凹口之金屬基板結構俯視示 意圖。 $ 第31C圖,係本發明之具凹口之金屬基板結構仰視示 意圖。 第32A圖,係本發明之具金屬壁之金屬基板結構剖面 示意圖。 第32B圖,係本發明之具金屬壁之金屬基板結構俯視 示意圖。 第32C圖,係本發明之具金屬壁之金屬基板結構仰視 示意圖。 第33A圖,係本發明之第一光阻層及第二光阻層剝落 129 1292195 後之結構剖面示意圖。 第33B圖,係本發明之第一光阻層及第二光阻層剝落 後之結構俯視示意圖。 第33C圖,係本發明之第一光阻層及第二光阻層剝落 後之結構仰視示意圖。 第34A圖,係本發明之第三光阻層及第四光阻層形成 於金屬基板後之結構剖面示意圖。 第34B圖,係本發明之第三光阻層及第四光阻層形成 _ 於金屬基板後之結構俯視示意圖。 第34C圖,係本發明之第三光阻層及第四光阻層形成 於金屬基板後之結構仰視示意圖。 第35A圖,係本發明之繞線附於金屬基板時之結構剖 面示意圖。 第35B圖,係本發明之繞線附於金屬基板時之結構俯 視不意圖。 ^ 第35C圖,係本發明之繞線附於金屬基板時之結構仰 視示意圖。 第36A圖,係本發明之第三光阻層及第四光阻層剝落 後之結構剖面示意圖。 第36B圖,係本發明之第三光阻層及第四光阻層剝落 後之結構俯視示意圖。 第36C圖,係本發明之第三光阻層及第四光阻層剝落 後之結構仰視示意圖。 第37A圖,係本發明之銲接遮罩於金屬基板及繞線時 130 1292195 之結構剖面示意圖。 第37B圖,係本發明之銲接遮罩於金屬基板及繞線時 之結構俯視示意圖。 第37C圖,係本發明之銲接遮罩於金屬基板及繞線時 之結構仰視示意圖。 第38A圖,係本發明之第五光阻層及第六光阻層形成 後之結構剖面示意圖。 第38B圖,係本發明之第五光阻層及第六光阻層形成 後之結構俯視示意圖。 第38C圖,係本發明之第五光阻層及第六光阻層形成 後之結構仰視示意圖。 第39A圖,係本發明之電鍍接點形成於繞線後之結構 剖面示意圖。 第39B圖,係本發明之電鍍接點形成於繞線後之結構 俯視示意圖。 第39C圖,係本發明之電鍍接點形成於繞線後之結構 仰視示意圖。 第40A圖,係本發明之第五光阻層及第六光阻層剝落 後之結構剖面示意圖。 第40B圖,係本發明之第五光阻層及第六光阻層剝落 後之結構俯視示意圖。 第40C圖,係本發明之第五光阻層及第六光阻層剝落 後之結構仰視不意圖。 第41A圖 係本發明之黏著劑形成於銲接遮罩後之結 131 1292195 構剖面不意圖。 第41B圖,係本發明之黏著劑形成於銲接遮罩後之結 構俯視示意圖。 第41C圖,係本發明之黏著劑形成於銲接遮罩後之結 構仰視杀意圖。 第42A圖,係本發明之具半導體晶片之結構剖面示意圖。 第42B圖,係本發明之具半導體晶片之結構俯視示意圖。 第42C圖,係本發明之具半導體晶片之結構仰視示意圖。 第43A圖,係本發明之連接部附於導電腳位及電鍍接 點時之結構剖面示意圖。 第43B圖,係本發明之連接部附於導電腳位及電鍍接 點時之結構俯視示意圖。 第43C圖,係本發明之連接部附於導電腳位及電鍍接 點時之結構仰視示意圖。 第44A圖,係本發明之具密封層之結構剖面示意圖。 第44B圖,係本發明之具密封層之結構俯視示意圖。 第44C圖,係本發明之具密封層之結構仰視示意圖。 第45A圖,係本發明之模板覆蓋於金屬基板之結構剖 面示意圖。 第45B圖,係本發明之模板覆蓋於金屬基板之結構俯 視示意圖。 第45C圖,係本發明之模板覆蓋於金屬基板之結構仰 視示意圖。 第46A圖,係本發明之鍚膏沈積於金屬壁之結構剖面 132 1292195 示意圖。 第46B圖,係本發明之錫膏沈積於金屬壁之結構俯視 示意圖。 第46C圖,係本發明之錫膏沈積於金屬壁之結構仰視 不意圖。 第47A圖,係本發明之移去模板後之結構剖面示意圖。 第47B圖,係本發明之移去模板後之結構俯視示意圖。 第47C圖,係本發明之移去模板後之結構仰視示意圖。 第48A圖,係本發明之錫膏形成銲接層後之結構剖面 示意圖。 第48B圖,係本發明之錫膏形成銲接層後之結構俯視 示意圖。 第48C圖,係本發明之錫膏形成銲接層後之結構仰視 示意圖。 第49A圖,係本發明之金屬柱於金屬基板上形成後之 結構剖面示意圖。 第49B圖,係本發明之金屬柱於金屬基板上形成後之 結構俯視不意圖。 第49C圖,係本發明之金屬柱於金屬基板上形成後之 結構仰視示意圖。 第50A圖,係本發明之絕緣封膠形成後之結構剖面示 意圖。 第50B圖,係本發明之絕緣封膠形成後之結構俯視示 意圖。 133 1292195 第50C圖,係本發明之絕緣封膠形成後之結構仰視示 意圖。 第51A圖,係本發明之部份絕緣封膠移除後之結構剖 面示意圖。- 第51B圖,係本發明之部份絕緣封膠移除後之結構俯 視示意圖。 第51C圖,係本發明之部份絕緣封膠移除後之結構仰 視示意圖。 第52A圖,係本發明之錫球形成後之結構剖面示意圖。 第52B圖,係本發明之錫球形成後之結構俯視示意圖。 第52C圖,係本發明之錫球形成後之結構仰視示意圖。 第53A圖,係本發明之銲接端形成後之結構剖面示意圖。 第53B圖,係本發明之銲接端形成後之結構俯視示意圖。 第53C圖,係本發明之銲接端形成後之結構仰視示意圖。 第54A圖,係本發明之半導體晶片封裝結構之結構剖 面不意圖。 第54B圖’係本發明之半導體晶片封裝結構之結構俯 視不意圖。 第54C圖,係本發明之半導體晶片封裝結構之結構仰 視示意圖。 第5 5 A圖’係本發明之半導體晶片結構剖面不意圖。 第55B圖,係本發明之半導體晶片結構俯視示意圖。 第5 5 C圖,係本發明之半導體晶片結構仰視不意圖。 第56A圖,係本發明之金屬基板結構剖面示意圖。 134 1292195 第56B圖,係本發明之金屬基板結構俯視示意圖。 第56C圖,係本發明之金屬基板結構仰視示意圖。 第57A圖,係本發明之光阻層與金屬基板結構剖面示 .意圖。 第57B圖,係本發明之光阻層與金屬基板結構俯視示 意圖。 第57C圖,係本發明之光阻層與金屬基板結構仰視示 意圖。 ,第58A圖,係本發明之繞線附於金屬基板時之結構剖 面示意圖。 第58B圖,係本發明之繞線附於金屬基板時之結構俯 視示意圖。 第58C圖,係本發明之繞線附於金屬基板時之結構仰 視示意圖。 第59A圖,係本發明之第三光阻層及第四光阻層剝落 &gt; 後之結構剖面示意圖。 第59B圖,係本發明之第三光阻層及第四光阻層剝落 後之結構俯視示意圖。 第59C圖,係本發明之第三光阻層及第四光阻層剝落 後之結構仰視示意圖。 第60A圖,係本發明之銲接遮罩於金屬基板及繞線時 之結構剖面示意圖。 第60B圖,係本發明之銲接遮罩於金屬基板及繞線時 之結構俯視示意圖。 135 1292195 第60C圖,係本發明之銲接遮罩於金屬基板及繞線時 之結構仰視示意圖。 第61A圖,係本發明之第五光阻層及第六光阻層形成 後之結構剖面示意圖。 第61B圖,係本發明之第五光阻層及第六光阻層形成 後之結構俯視示意圖。 第61C圖,係本發明之第五光阻層及第六光阻層形成 後之結構仰視示意圖。 第62A圖,係本發明之電鍍接點形成於繞線後之結構 剖面示意圖。 第62B圖,係本發明之電鍍接點形成於繞線後之結構 俯視示意圖。 第62C圖,係本發明之電鍍接點形成於繞線後之結構 仰視示意圖。 第63A圖,係本發明之第五光阻層及第六光阻層剝落 後之結構剖面示意圖。 第63B圖,係本發明之第五光阻層及第六光阻層剝落 後之結構俯視示意圖。 第63C圖,係本發明之第五光阻層及第六光阻層剝落 後之結構仰視示意圖。 第64A圖,係本發明之黏著劑形成於銲接遮罩後之結 構剖面不意圖。 第64B圖,係本發明之黏著劑形成於銲接遮罩後之結 構俯視示意圖。 136 1292195 第64C圖,係及本發明之黏著劑形成於銲接遮罩後之 結構仰視示意圖。 第65A圖,係本發明之具半導體晶片之結構剖面示意圖。 第65B圖,係本發明之具半導體晶片之結構俯視示意圖。 第65C圖,係本發明之具半導體晶片之結構仰視示意圖。 第66A圖,係本發明之連接部附於導電腳位及電鍍接 點時之結構剖面示意圖。 第66B圖,係本發明之連接部附於導電腳位及電鍍接 • 點時之結構俯視示意圖。 第66C圖,係本發明之連接部附於導電腳位及電鍍接 點時之結構仰視示意圖。 第67A圖,係本發明之具密封層之結構剖面示意圖。 第67B圖,係本發明之具密封層之結構俯視示意圖。 第67C圖,係本發明之具密封層之結構仰視示意圖。 第68A圖,係本發明之第二光阻層形成於金屬基板之 $ 結構剖面示意圖。 第68B圖,係本發明之第二光阻層形成於金屬基板之 結構俯視示意圖。 第68C圖,係本發明之第二光阻層形成於金屬基板之 結構仰視示意圖。 第69A圖,係本發明之具凹口之結構剖面示意圖。 第69B圖,係本發明之具凹口之結構俯視示意圖。 第69C圖,係本發明之具凹口之結構仰視示意圖。 第70A圖,係本發明之具金屬壁之結構剖面示意圖。 137 1292195 第70B圖,係本發明之具金屬壁之結構俯視示意圖。 第70C圖,係本發明之具金屬壁之結構仰視示意圖。 第71A圖,係本發明之模板覆蓋於第二光阻層之結構 剖面示意圖。 第71B圖,係本發明之模板覆蓋於第二光阻層之結構 俯視示意圖。 第71C圖,係本發明之模板覆蓋於第二光阻層之結構 仰視示意圖。 _ 第72A圖,係本發明之錫膏沈積於金屬壁之結構剖面 示意圖。 第72B圖,係本發明之錫膏沈積於金屬壁之結構俯視 示意圖。 第72C圖,係本發明之錫膏沈積於金屬壁之結構仰視 示意圖。 第73A圖,係本發明之移去模板後之結構剖面示意圖。 _ 第73B圖,係本發明之移去模板後之結構俯視示意圖。 第73C圖,係本發明之移去模板後之結構仰視示意圖。 第74A圖,係本發明之錫膏形成銲接層後之結構剖面 示意圖。 第74B圖,係本發明之錫膏形成銲接層後之結構俯視 不意圖。 第74C圖,係本發明之錫膏形成銲接層後之結構仰視 示意圖。 第75A圖,係本發明之第二光阻層剝落後之結構剖面 138 1292195 示意圖。 第75B圖,轉本發明之第二光阻層剝落後之結構俯視 示意圖。 第75C圖,係本發明之第二光阻層剝落後之結構仰視 示意圖。 第76A圖,係本發明之金屬基板移除後之結構剖面示 意圖。 第76B圖,係本發明之金屬基板移除後之結構俯視示 意圖。 第76C圖,係本發明之金屬基板移除後之結構仰視示 意圖。 第77A圖,係本發明之絕緣封膠形成後之結構剖面示 意圖。 第77B圖,係本發明之絕緣封膠形成後之結構俯視示 意圖。 第77C圖,係本發明之絕緣封膠形成後之結構仰視示 意圖。 第78A圖,係本發明之部份絕緣封膠移除後之結構剖 面示意圖。 第78B圖,係本發明之部份絕緣封膠移除後之結構俯 視示意圖。 第78C圖,係本發明之部份絕緣封膠移除後之結構仰 視不意圖。 第79A圖,係本發明之錫球形成後之結構剖面示意圖。 139 1292195 第79B圖,係本發明之錫球形成後之結構俯視示意圖。 第79C圖,係本發明之錫球形成後之結構仰視示意圖。 第80A圖,係本發明之銲接端形成後之結構剖面示意圖。 第80B圖,係本發明之銲接端形成後之結構俯視示意圖。 第80C圖,係本發明之銲接端形成後之結構仰視示意圖。 第81A圖,係本發明之半導體晶片封裝結構之結構剖 面示意圖。 第81B圖,係本發明之半導體晶片封裝結構之結構俯 鲁 視不意圖。 第81C圖,係本發明之半導體晶片封裝結構之結構仰 視示意圖。 第82A圖,係本發明之第四實施例之半導體晶片封裝 結構剖面示意圖。 第82B圖,係本發明之第四實施例之半導體晶片封裝 結構俯視示意圖。 第82C圖,係本發明之第四實施例之半導體晶片封裝 結構仰視示意圖。 第83A圖,係本發明之第五實施例之半導體晶片封裝 結構剖面示意圖。 第83B圖,係本發明之第五實施例之半導體晶片封裝 結構俯視示意圖。 第83C圖,係本發明之第五實施例之半導體晶片封裝 結構仰視示意圖。 第84A圖,係本發明之第六實施例之半導體晶片封裝 140 1292195 結構剖面示意圖。 第84B圖,係本發明之第六實施例之半導體晶片封裝 結構俯視示意圖。 第84C圖,係本發明之第六實施例之半導體晶片封裝 結構仰視示意圖。 第85A圖,係本發明之第七實施例之半導體晶片封裝 結構剖面示意圖。 第85B圖,係本發明之第七實施例之半導體晶片封裝 • 結構俯視示意圖。 第85C圖,係本發明之第七實施例之半導體晶片封裝 結構仰視示意圖。 第86A圖,係本發明之第八實施例之半導體晶片封裝 結構剖面示意圖。 第86B圖,係本發明之第八實施例之半導體晶片封裝 結構俯視示意圖。 I 第86C圖,係本發明之第八實施例之半導體晶片封裝 結構仰視示意圖。 第87A圖,係本發明之第九實施例之半導體晶片封裝 結構剖面示意圖。 第87B圖,係本發明之第九實施例之半導體晶片封裝 結構俯視示意圖。 第87C圖,係本發明之第九實施例之半導體晶片封裝 結構仰視示意圖。 第88A圖,係本發明之第十實施例之半導體晶片封裝 141 1292195 結構剖面示意圖。 第88B圖,係本發明之第十實施例之半導體晶片封農 結構俯視示意圖。 第88c圖,係本發明之第十實施例之半導體晶片封裝 結構仰視示意圖。 第89A圖,係本發明之第十一實施例之半導體晶片封 裝結構剖面示意圖。= Money good reliability. The joining method can be changed from mechanical J# to "golden type", ensuring that the metallurgical joint has a sufficiently strong trace to mechanically and metallurgically on the semiconductor sheet without using wire bonding, automatic tape winding. Bonding tin or conductive adhesive, although the process is adjustable, the required technology can be adjusted. The process is versatile and permits a variety of different bonding techniques to be applied to the individual and (four) cover And the metal column is particularly suitable for the position of the lower layer due to the temperature of 121 1292195 degrees = symmetry, the force of the lower layer and the material yield and the reliability of the lower layer combination. The ball format structure of the present invention can improve the throughput, performance and the like compared with the conventional package technology. Moreover, the semiconductor chip package structure of the present invention can be compatible with copper metal. The present invention is only an embodiment of the present invention, and the scope of the present invention is limited by the following: 9. The simpleness of the application according to the present invention is as follows. The effect change and the decoration should still fall within the scope of the present invention. 1292195 [Simplified Schematic] FIG. 1A is a schematic cross-sectional view showing the structure of the semiconductor wafer of the present invention. FIG. 1B is a plan view of the semiconductor wafer structure of the present invention. 1C is a schematic cross-sectional view of a semiconductor wafer structure of the present invention. FIG. 2A is a schematic cross-sectional view showing a metal substrate structure of the present invention. FIG. 2B is a schematic plan view of a metal substrate structure of the present invention. FIG. 2C is a view of the present invention. FIG. 3A is a schematic plan view showing the structure of the photoresist layer and the metal substrate of the present invention. FIG. 3C is a top view of the structure of the photoresist layer and the metal substrate of the present invention. 4A is a schematic cross-sectional view of a metal substrate having a notch according to the present invention. FIG. 4B is a plan view of a metal substrate having a notch according to the present invention. Figure 4C is a bottom view of the metal substrate structure of the present invention having a notch. Figure 5A is a metal wall of the present invention formed on a metal base. Figure 5B is a top view of the metal substrate of the present invention formed on the metal substrate structure. 123 1292195 Figure 5C is a bottom view of the metal wall of the present invention formed on the metal substrate structure. Figure 6A is a view of the present invention FIG. 6B is a top plan view showing a structure in which the template of the present invention covers the second photoresist layer. FIG. 6C is a plan view of the present invention covering the second photoresist layer. FIG. 7A is a schematic cross-sectional view showing a structure in which a solder paste of the present invention is deposited on a metal wall. FIG. 7B is a top plan view showing a structure in which a solder paste of the present invention is deposited on a metal wall. FIG. 7C is a view of the present invention. A schematic view of the structure in which the solder paste is deposited on the metal wall. FIG. 8A is a schematic cross-sectional view of the structure of the present invention after the template is removed. Fig. 8B is a top plan view showing the structure of the present invention after the template is removed. Fig. 8C is a bottom view showing the structure of the present invention after the template is removed. Fig. 9A is a schematic cross-sectional view showing the structure of the solder paste of the present invention after forming a solder layer. Fig. 9B is a plan view showing the structure of the solder paste of the present invention after forming a solder layer. Fig. 9C is a bottom view showing the structure of the solder paste of the present invention after forming a solder layer. Figure 10A is a cross-sectional view showing the structure of the first photoresist layer and the second photoresist layer of the present invention after peeling off 124 1292195. Fig. 10B is a top plan view showing the structure of the first photoresist layer and the second photoresist layer of the present invention after peeling off. Fig. 10C is a bottom view showing the structure of the first photoresist layer and the second photoresist layer of the present invention after peeling off. Figure 11A is a cross-sectional view showing the structure of the third photoresist layer and the fourth photoresist layer of the present invention formed on the metal substrate. Fig. 11B is a top plan view showing the structure in which the third photoresist layer and the fourth photoresist layer of the present invention are formed on the metal substrate. Figure 11C is a bottom plan view showing the structure in which the third photoresist layer and the fourth photoresist layer of the present invention are formed on a metal substrate. Fig. 12A is a schematic cross-sectional view showing the winding of the present invention attached to a metal substrate. Fig. 12B is a view showing a structure in which the winding of the present invention is attached to a metal substrate. I Fig. 12C is a schematic elevational view showing the structure of the winding of the present invention attached to a metal substrate. Figure 13A is a cross-sectional view showing the structure of the third photoresist layer and the fourth photoresist layer of the present invention after peeling off. Fig. 13B is a top plan view showing the structure after the third photoresist layer and the fourth photoresist layer of the present invention are peeled off. Fig. 13C is a bottom view showing the structure of the third photoresist layer and the fourth photoresist layer of the present invention after peeling off. Fig. 14A is a schematic cross-sectional view showing the structure of the welding mask of the present invention on the metal substrate and the winding 125 1292195. Fig. 14B is a top plan view showing the structure of the welding mask of the present invention on a metal substrate and a winding. Fig. 14C is a bottom plan view showing the structure of the welding mask of the present invention on a metal substrate and winding. Fig. 15A is a schematic cross-sectional view showing the structure of the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 15B is a top plan view showing the structure after forming the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 15C is a bottom plan view showing the structure after forming the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 16A is a schematic cross-sectional view showing the structure of the electroplated joint of the present invention formed after winding. Fig. 16B is a top plan view showing the structure in which the plating contact of the present invention is formed after winding. Fig. 16C is a bottom view showing the structure in which the electroplated contacts of the present invention are formed after winding. Figure 17A is a cross-sectional view showing the structure of the fifth photoresist layer and the sixth photoresist layer of the present invention after peeling off. Figure 17B is a top plan view showing the structure after the fifth photoresist layer and the sixth photoresist layer of the present invention are peeled off. Fig. 17C is a bottom view showing the structure after the fifth photoresist layer and the sixth photoresist layer of the present invention are peeled off. Fig. 18A is a schematic cross-sectional view showing the structure of the adhesive of the present invention formed after the solder mask 126 1292195. Fig. 18B is a schematic plan view showing the structure of the adhesive of the present invention formed after the solder mask. Fig. 18C is a bottom plan view showing the structure of the adhesive of the present invention formed after the solder mask. Figure 19A is a schematic cross-sectional view showing the structure of a semiconductor wafer of the present invention. Figure 19B is a top plan view showing the structure of the semiconductor wafer of the present invention. Figure 19C is a bottom plan view showing the structure of a semiconductor wafer of the present invention. Fig. 20A is a schematic cross-sectional view showing the structure of the connecting portion of the present invention attached to the conductive pin and the plated contact. Fig. 20B is a top plan view showing the structure of the connecting portion of the present invention attached to the conductive pin and the plated contact. Fig. 20C is a bottom plan view showing the structure of the connecting portion of the present invention attached to the conductive pin and the plated contact. Figure 21A is a schematic cross-sectional view showing the structure of the sealing layer of the present invention. Figure 21B is a top plan view showing the structure of the sealing layer of the present invention. Figure 21C is a bottom plan view showing the structure of the sealing layer of the present invention. Fig. 22A is a schematic cross-sectional view showing the structure of the metal post of the present invention formed on a metal substrate. Fig. 22B is a top plan view showing the structure of the metal post of the present invention formed on a metal substrate. Fig. 22C is a bottom plan view showing the structure of the metal post of the present invention formed on a metal substrate. Fig. 23A is a structural cross-sectional view showing the formation of the insulating encapsulant of the present invention 127 1292195. Fig. 23B is a plan view showing the structure after the formation of the insulating sealant of the present invention. Fig. 23C is a schematic view showing the structure after the formation of the insulating sealant of the present invention. Figure 24A is a schematic cross-sectional view of the insulating encapsulant of the present invention after removal. Fig. 24B is a plan view showing the structure of the insulating encapsulant of the present invention after removal. Fig. 24C is a schematic view showing the structure after the insulating encapsulant of the present invention is removed. Fig. 25A is a schematic cross-sectional view showing the structure of the solder ball of the present invention. Figure 25B is a top plan view showing the structure of the solder ball of the present invention. Fig. 25C is a bottom view showing the structure of the solder ball of the present invention. Figure 26A is a schematic cross-sectional view showing the structure of the welded end of the present invention. Figure 26B is a top plan view showing the structure of the welded end of the present invention. Figure 26C is a bottom view of the structure after the formation of the welded end of the present invention. Fig. 27A is a schematic cross-sectional view showing the structure of a semiconductor wafer package structure of the present invention. Fig. 27B is a plan view showing the structure of the semiconductor wafer package structure of the present invention. Fig. 27C is a view showing the structure of the semiconductor wafer package structure of the present invention. Figure 28A is a schematic cross-sectional view showing the structure of a semiconductor wafer of the present invention. 1292195 Figure 28B is a top plan view of the semiconductor wafer structure of the present invention. Figure 28C is a bottom plan view of the semiconductor wafer structure of the present invention. Figure 29A is a schematic cross-sectional view showing the structure of the metal substrate of the present invention. Figure 29B is a top plan view showing the structure of the metal substrate of the present invention. Figure 29C is a bottom plan view showing the structure of the metal substrate of the present invention. Fig. 30A is a cross-sectional view showing the structure of the photoresist layer and the metal substrate of the present invention. Fig. 30B is a plan view showing the structure of the photoresist layer and the metal substrate of the present invention. Fig. 30C is a schematic view showing the structure of the photoresist layer and the metal substrate of the present invention. Figure 31A is a cross-sectional view showing the structure of a notched metal substrate of the present invention. Fig. 31B is a plan view showing the structure of the notched metal substrate of the present invention. $31C is a schematic view of a notched metal substrate structure of the present invention. Figure 32A is a schematic cross-sectional view showing the structure of a metal substrate having a metal wall according to the present invention. Figure 32B is a top plan view showing the metal substrate structure of the present invention. Figure 32C is a bottom plan view showing the metal substrate structure of the present invention. Figure 33A is a cross-sectional view showing the structure of the first photoresist layer and the second photoresist layer of the present invention after peeling off 129 1292195. Figure 33B is a top plan view showing the structure of the first photoresist layer and the second photoresist layer of the present invention after peeling off. Figure 33C is a bottom view showing the structure of the first photoresist layer and the second photoresist layer of the present invention after peeling off. Figure 34A is a cross-sectional view showing the structure of the third photoresist layer and the fourth photoresist layer of the present invention formed on the metal substrate. Figure 34B is a top plan view showing the structure in which the third photoresist layer and the fourth photoresist layer of the present invention are formed on the metal substrate. Figure 34C is a bottom plan view showing the structure in which the third photoresist layer and the fourth photoresist layer of the present invention are formed on a metal substrate. Fig. 35A is a schematic cross-sectional view showing the winding of the present invention attached to a metal substrate. Fig. 35B is a view showing a structure in which the winding of the present invention is attached to a metal substrate. ^ Figure 35C is a schematic elevational view showing the structure of the winding of the present invention attached to a metal substrate. Figure 36A is a cross-sectional view showing the structure of the third photoresist layer and the fourth photoresist layer of the present invention after peeling off. Figure 36B is a top plan view showing the structure after the third photoresist layer and the fourth photoresist layer of the present invention are peeled off. Figure 36C is a bottom view showing the structure of the third photoresist layer and the fourth photoresist layer of the present invention after peeling off. Figure 37A is a cross-sectional view showing the structure of the welding mask of the present invention on a metal substrate and winding 130 1292195. Figure 37B is a top plan view showing the structure of the welding mask of the present invention on a metal substrate and winding. Figure 37C is a bottom plan view showing the structure of the welding mask of the present invention on a metal substrate and winding. Fig. 38A is a schematic cross-sectional view showing the structure of the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 38B is a top plan view showing the structure after forming the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 38C is a bottom plan view showing the structure after forming the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 39A is a schematic cross-sectional view showing the structure of the electroplated joint of the present invention formed after winding. Fig. 39B is a top plan view showing the structure in which the electroplated contacts of the present invention are formed after winding. Fig. 39C is a bottom view showing the structure in which the electroplated contacts of the present invention are formed after winding. Fig. 40A is a cross-sectional view showing the structure of the fifth photoresist layer and the sixth photoresist layer of the present invention after peeling off. Fig. 40B is a top plan view showing the structure after the fifth photoresist layer and the sixth photoresist layer of the present invention are peeled off. Fig. 40C is a view showing the structure after peeling off the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 41A is a view showing the formation of the adhesive of the present invention after welding the mask 131 1292195. Fig. 41B is a top plan view showing the structure of the adhesive of the present invention formed after the solder mask. Fig. 41C is a view showing the structure of the adhesive of the present invention formed after the welding mask is viewed. Figure 42A is a schematic cross-sectional view showing the structure of a semiconductor wafer of the present invention. Figure 42B is a top plan view showing the structure of the semiconductor wafer of the present invention. Figure 42C is a bottom plan view showing the structure of a semiconductor wafer of the present invention. Figure 43A is a cross-sectional view showing the structure of the connecting portion of the present invention attached to a conductive pin and a plated joint. Fig. 43B is a top plan view showing the structure of the connecting portion of the present invention attached to the conductive pin and the plated contact. Fig. 43C is a bottom plan view showing the structure of the connecting portion of the present invention attached to the conductive pin and the plated contact. Figure 44A is a schematic cross-sectional view showing the structure of the sealing layer of the present invention. Figure 44B is a top plan view showing the structure of the sealing layer of the present invention. Figure 44C is a bottom plan view showing the structure of the sealing layer of the present invention. Fig. 45A is a schematic cross-sectional view showing the structure of the present invention overlying the metal substrate. Fig. 45B is a schematic plan view showing the structure of the template of the present invention overlying the metal substrate. Fig. 45C is a schematic elevational view showing the structure of the template of the present invention overlying the metal substrate. Figure 46A is a schematic view of a structural section of the present invention deposited on a metal wall 132 1292195. Fig. 46B is a plan view showing the structure in which the solder paste of the present invention is deposited on a metal wall. Fig. 46C is a view showing the structure in which the solder paste of the present invention is deposited on a metal wall. Figure 47A is a schematic cross-sectional view showing the structure of the present invention after removal of the template. Figure 47B is a top plan view showing the structure of the present invention after the template is removed. Fig. 47C is a bottom view showing the structure of the present invention after the template is removed. Fig. 48A is a schematic cross-sectional view showing the structure of the solder paste of the present invention after forming a solder layer. Fig. 48B is a plan view showing the structure of the solder paste of the present invention after forming a solder layer. Fig. 48C is a bottom view showing the structure of the solder paste of the present invention after forming a solder layer. Fig. 49A is a schematic cross-sectional view showing the structure of the metal post of the present invention formed on a metal substrate. Fig. 49B is a plan view showing the structure in which the metal post of the present invention is formed on a metal substrate. Figure 49C is a bottom plan view showing the structure of the metal post of the present invention formed on a metal substrate. Fig. 50A is a schematic cross-sectional view showing the formation of the insulating sealant of the present invention. Fig. 50B is a plan view showing the structure after the formation of the insulating sealant of the present invention. 133 1292195 Fig. 50C is a schematic view showing the structure after the formation of the insulating sealant of the present invention. Figure 51A is a schematic cross-sectional view showing a portion of the insulating encapsulant of the present invention after removal. - Figure 51B is a schematic top view of the structure after removal of a portion of the insulating encapsulant of the present invention. Figure 51C is a schematic elevational view of the structure after removal of a portion of the insulating encapsulant of the present invention. Figure 52A is a schematic cross-sectional view showing the structure of the solder ball of the present invention. Figure 52B is a top plan view showing the structure of the solder ball of the present invention. Fig. 52C is a bottom view showing the structure of the solder ball of the present invention. Figure 53A is a schematic cross-sectional view showing the structure of the welded end of the present invention. Figure 53B is a top plan view showing the structure of the welded end of the present invention. Figure 53C is a bottom plan view showing the structure after the formation of the welded end of the present invention. Fig. 54A is a structural cross-sectional view showing a semiconductor chip package structure of the present invention. Fig. 54B is a plan view showing the structure of the semiconductor wafer package structure of the present invention. Fig. 54C is a schematic elevational view showing the structure of the semiconductor chip package structure of the present invention. Figure 5 5 A is a cross-sectional view of the semiconductor wafer structure of the present invention. Figure 55B is a top plan view showing the structure of the semiconductor wafer of the present invention. The fifth 5 C diagram is a schematic view of the semiconductor wafer structure of the present invention. Figure 56A is a schematic cross-sectional view showing the structure of the metal substrate of the present invention. 134 1292195 Figure 56B is a top plan view showing the structure of the metal substrate of the present invention. Figure 56C is a bottom plan view showing the structure of the metal substrate of the present invention. Figure 57A is a cross-sectional view showing the structure of the photoresist layer and the metal substrate of the present invention. Fig. 57B is a plan view showing the structure of the photoresist layer and the metal substrate of the present invention. Fig. 57C is a schematic view showing the structure of the photoresist layer and the metal substrate of the present invention. Fig. 58A is a schematic cross-sectional view showing the winding of the present invention attached to a metal substrate. Fig. 58B is a schematic plan view showing the structure of the winding of the present invention attached to a metal substrate. Fig. 58C is a schematic elevational view showing the structure of the winding of the present invention attached to a metal substrate. Figure 59A is a cross-sectional view showing the structure of the third photoresist layer and the fourth photoresist layer of the present invention. Fig. 59B is a top plan view showing the structure after the third photoresist layer and the fourth photoresist layer of the present invention are peeled off. Figure 59C is a bottom view showing the structure of the third photoresist layer and the fourth photoresist layer of the present invention after peeling off. Fig. 60A is a schematic cross-sectional view showing the structure of the welding mask of the present invention on a metal substrate and a winding. Fig. 60B is a top plan view showing the structure of the welding mask of the present invention on the metal substrate and the winding. 135 1292195 Figure 60C is a bottom plan view showing the structure of the welding mask of the present invention on a metal substrate and winding. Fig. 61A is a schematic cross-sectional view showing the structure of the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 61B is a top plan view showing the structure after forming the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 61C is a bottom plan view showing the structure after forming the fifth photoresist layer and the sixth photoresist layer of the present invention. Fig. 62A is a schematic cross-sectional view showing the structure of the electroplated joint of the present invention formed after winding. Figure 62B is a top plan view showing the structure in which the electroplated contacts of the present invention are formed after winding. Fig. 62C is a bottom view showing the structure in which the electroplated contacts of the present invention are formed after winding. Figure 63A is a cross-sectional view showing the structure of the fifth photoresist layer and the sixth photoresist layer of the present invention after peeling off. Fig. 63B is a top plan view showing the structure after the fifth photoresist layer and the sixth photoresist layer of the present invention are peeled off. Fig. 63C is a bottom view showing the structure after the fifth photoresist layer and the sixth photoresist layer of the present invention are peeled off. Fig. 64A is a schematic cross-sectional view showing that the adhesive of the present invention is formed after the solder mask. Fig. 64B is a top plan view showing the structure of the adhesive of the present invention formed after the solder mask. 136 1292195 Figure 64C is a schematic bottom view of the structure of the adhesive of the present invention formed after the solder mask. Figure 65A is a schematic cross-sectional view showing the structure of a semiconductor wafer of the present invention. Figure 65B is a top plan view showing the structure of the semiconductor wafer of the present invention. Figure 65C is a bottom plan view showing the structure of the semiconductor wafer of the present invention. Fig. 66A is a schematic cross-sectional view showing the structure of the connecting portion of the present invention attached to the conductive pin and the plated contact. Fig. 66B is a top plan view showing the structure of the connecting portion of the present invention attached to the conductive pin and the plating point. Fig. 66C is a bottom plan view showing the structure of the connecting portion of the present invention attached to the conductive pin and the plated joint. Figure 67A is a schematic cross-sectional view showing the structure of the sealing layer of the present invention. Figure 67B is a top plan view showing the structure of the sealing layer of the present invention. Figure 67C is a bottom plan view showing the structure of the sealing layer of the present invention. Figure 68A is a schematic cross-sectional view showing the structure of the second photoresist layer of the present invention formed on a metal substrate. Fig. 68B is a top plan view showing the structure in which the second photoresist layer of the present invention is formed on a metal substrate. Fig. 68C is a bottom plan view showing the structure in which the second photoresist layer of the present invention is formed on a metal substrate. Figure 69A is a schematic cross-sectional view showing the structure of the notch of the present invention. Figure 69B is a top plan view of the recessed structure of the present invention. Figure 69C is a bottom plan view of the notched structure of the present invention. Figure 70A is a schematic cross-sectional view showing the structure of the metal wall of the present invention. 137 1292195 Figure 70B is a top plan view of the structure of the metal wall of the present invention. Figure 70C is a bottom plan view showing the structure of the metal wall of the present invention. Figure 71A is a schematic cross-sectional view showing the structure of the present invention overlying the second photoresist layer. Figure 71B is a top plan view showing the structure of the template of the present invention overlying the second photoresist layer. Figure 71C is a bottom view showing the structure of the template of the present invention overlying the second photoresist layer. _ Figure 72A is a schematic cross-sectional view showing the structure of the solder paste of the present invention deposited on a metal wall. Figure 72B is a top plan view showing the structure in which the solder paste of the present invention is deposited on a metal wall. Figure 72C is a bottom plan view showing the structure in which the solder paste of the present invention is deposited on a metal wall. Figure 73A is a schematic cross-sectional view showing the structure of the present invention after removal of the template. _ 73B is a top plan view of the structure after removing the template of the present invention. Figure 73C is a bottom view of the structure of the present invention after removal of the template. Fig. 74A is a schematic cross-sectional view showing the structure of the solder paste of the present invention after forming a solder layer. Fig. 74B is a plan view showing the structure in which the solder paste of the present invention is formed into a solder layer. Fig. 74C is a bottom view showing the structure of the solder paste of the present invention after forming a solder layer. Figure 75A is a schematic view of a structural cross section of the second photoresist layer of the present invention 138 1292195. Figure 75B is a top plan view showing the structure of the second photoresist layer stripped after the invention. Fig. 75C is a bottom view showing the structure of the second photoresist layer of the present invention. Figure 76A is a schematic cross-sectional view showing the metal substrate of the present invention after removal. Fig. 76B is a plan view showing the structure of the metal substrate of the present invention after removal. Fig. 76C is a schematic view showing the structure after removal of the metal substrate of the present invention. Fig. 77A is a schematic cross-sectional view showing the formation of the insulating sealant of the present invention. Fig. 77B is a plan view showing the structure after the formation of the insulating sealant of the present invention. Fig. 77C is a schematic view showing the structure after the formation of the insulating sealant of the present invention. Figure 78A is a schematic cross-sectional view showing a portion of the insulating encapsulant of the present invention after removal. Figure 78B is a schematic plan view showing the structure of a portion of the insulating encapsulant of the present invention after removal. In the case of Fig. 78C, the structure after the partial insulation seal of the present invention is removed is not intended. Figure 79A is a schematic cross-sectional view showing the structure of the solder ball of the present invention. 139 1292195 Figure 79B is a top plan view showing the structure of the solder ball of the present invention. Figure 79C is a bottom view showing the structure of the solder ball of the present invention. Figure 80A is a schematic cross-sectional view showing the structure of the welded end of the present invention. Figure 80B is a top plan view showing the structure of the welded end of the present invention. Fig. 80C is a bottom view showing the structure after the formation of the welded end of the present invention. Fig. 81A is a schematic cross-sectional view showing the structure of a semiconductor wafer package structure of the present invention. Fig. 81B is a schematic view showing the structure of the semiconductor wafer package structure of the present invention. Fig. 81C is a schematic elevational view showing the structure of the semiconductor wafer package structure of the present invention. Figure 82A is a cross-sectional view showing the structure of a semiconductor wafer package of a fourth embodiment of the present invention. Figure 82B is a top plan view showing a semiconductor chip package structure of a fourth embodiment of the present invention. Figure 82C is a bottom plan view showing a semiconductor wafer package structure of a fourth embodiment of the present invention. Figure 83A is a cross-sectional view showing the structure of a semiconductor wafer package of a fifth embodiment of the present invention. Figure 83B is a top plan view showing a semiconductor chip package structure of a fifth embodiment of the present invention. Figure 83C is a bottom plan view showing a semiconductor wafer package structure of a fifth embodiment of the present invention. Figure 84A is a cross-sectional view showing the structure of a semiconductor wafer package 140 1292195 according to a sixth embodiment of the present invention. Figure 84B is a top plan view showing a semiconductor chip package structure of a sixth embodiment of the present invention. Figure 84C is a bottom plan view showing a semiconductor wafer package structure of a sixth embodiment of the present invention. Figure 85A is a cross-sectional view showing the structure of a semiconductor wafer package of a seventh embodiment of the present invention. Figure 85B is a semiconductor chip package of a seventh embodiment of the present invention. Fig. 85C is a bottom plan view showing the semiconductor chip package structure of the seventh embodiment of the present invention. Figure 86A is a cross-sectional view showing the structure of a semiconductor wafer package of an eighth embodiment of the present invention. Figure 86B is a top plan view showing a semiconductor chip package structure of an eighth embodiment of the present invention. I. Fig. 86C is a bottom plan view showing a semiconductor wafer package structure of an eighth embodiment of the present invention. Figure 87A is a cross-sectional view showing the structure of a semiconductor wafer package of a ninth embodiment of the present invention. Figure 87B is a top plan view showing a semiconductor chip package structure of a ninth embodiment of the present invention. Figure 87C is a bottom plan view showing a semiconductor chip package structure of a ninth embodiment of the present invention. Figure 88A is a cross-sectional view showing the structure of a semiconductor wafer package 141 1292195 of a tenth embodiment of the present invention. Fig. 88B is a top plan view showing the semiconductor wafer sealing structure of the tenth embodiment of the present invention. Figure 88c is a bottom plan view showing a semiconductor wafer package structure of a tenth embodiment of the present invention. Figure 89A is a cross-sectional view showing the semiconductor wafer package structure of the eleventh embodiment of the present invention.

第89B圖,係本發明之第十一實施例之半導體晶片封 裝結構俯視示意圖。 第89C圖,係本發明之第十一實施例之半導體晶片封 裝結構仰視示意圖。 第9〇A圖’係本發明之第十二實施例之半導體晶片封 裝結構剖面示意圖。 第90B圖’係本發明之第十二實施例之半導體晶片封 破結構俯視示意圖。Figure 89B is a top plan view showing a semiconductor wafer package structure of an eleventh embodiment of the present invention. Figure 89C is a bottom plan view showing the semiconductor wafer package structure of the eleventh embodiment of the present invention. Fig. 9A is a schematic cross-sectional view showing a semiconductor wafer package structure of a twelfth embodiment of the present invention. Fig. 90B is a top plan view showing the semiconductor wafer sealing structure of the twelfth embodiment of the present invention.

第90C圖,係本發明之第十二實施例之半導體晶片封 先 裝結構仰視示意圖。 第91A圖’係本發明之第十三實施例之半導體晶片封 裝結構剖面示意圖。 第91B圖’係本發明之第十三實施例之半導體晶片封 裝結構俯視示意圖。 第91C圖’係本發明之第十三實施例之半導體晶片封 政結構仰視示意圖。 第92A圖,係本發明之第十四實施例之半導體晶片封 142 1292195 裝結構剖面示意圖。 第92B圖,係本發明之第十四實施例之半導體晶片封 裝結構俯視示意圖。 第92C圖,係本發明之第十四實施例之半導體晶片封 裝結構仰視示意圖。 第93A圖,係本發明之第十五實施例之半導體晶片封 裝結構剖面示意圖。 第93B圖,係本發明之第十五實施例之半導體晶片封 裝結構俯視示意圖。 第93C圖,係本發明之第十五實施例之半導體晶片封 裝結構仰視示意圖。 第94圖,係本發明之第十六實施例之金屬柱結構示 意圖。 第95圖,係本發明之第十七實施例之金屬柱結構示 意圖。 第96圖,係本發明之第十八實施例之金屬柱結構示 意圖。 第97圖,係本發明之第十九實施例之金屬柱結構示 意圖。 第98圖,係本發明之第二十實施例之金屬柱結構示 意圖。 143 1292195 【主要元件符號說明】 半導體晶片 110、210、310、410、510、610、710、 810 、 910 、 1010 、 1110 、 1210 、 1310 、 1410 第一平面 112、212、312、412、512、612 第二平面 114、214、314、414、514、614 導電腳位 116、216、316、416、516、616 保護層 118、218、318 ® 金屬基板120、220、320 第一主要平面122、222、322 第二主要平面124、224、324 第一光阻層126、226 第二光阻層128、228、328 凹口 130 、 230 穿孔 330、565、665 • 金屬壁 132、232、332、432、532、632、732、832、 932 、 1032 、 1132 、 1232 、 1332 、 1432 、 1532 孔洞 134、734、834 開口 136 、 883 模板 138、238、338 錫膏 140、240、340 銲接層 142、242、342 第三光阻層144、244、344 第四光阻層146、246、346 144 1292195 繞線 150、250、350、450、550、650、750、850、950、 1050、1150、1250、1350、1450、1550 長形繞線部份152 較大圓形部份154 銲接遮罩 156、256、356、456、556、656、756、856、 • 956 、 1056 、 1156 、 1256 、 1356 、 1556 第五光阻層158、258、358 第六光阻層160、260、360 _ 電鍍接點 162、262、362、762、862、1062、1162、 1262 、 1362 、 1462 、 1562 黏著劑 164、264、364、464、564、664、764、864、 964 、 1064 、 1164 、 1264 、 1364 、 1464 連接部 166、266、366、466、566、666、766、866、 966 、 1066 ' 1166 、 1266 、 1366 、 1466 密封層 168、268、368、468、568、668、768、868、 968 、 1068 、 1168 、 1268 、 1368 、 1468 、 1568Fig. 90C is a bottom plan view showing the semiconductor wafer package package structure of the twelfth embodiment of the present invention. Figure 91A is a cross-sectional view showing the semiconductor wafer package structure of the thirteenth embodiment of the present invention. Figure 91B is a top plan view showing a semiconductor wafer package structure of a thirteenth embodiment of the present invention. Figure 91C is a bottom plan view showing the semiconductor wafer sealing structure of the thirteenth embodiment of the present invention. Figure 92A is a cross-sectional view showing the structure of a semiconductor wafer package 142 1292195 according to a fourteenth embodiment of the present invention. Figure 92B is a top plan view showing the semiconductor wafer package structure of the fourteenth embodiment of the present invention. Figure 92C is a bottom plan view showing the semiconductor wafer package structure of the fourteenth embodiment of the present invention. Figure 93A is a cross-sectional view showing the semiconductor wafer package structure of the fifteenth embodiment of the present invention. Figure 93B is a top plan view showing a semiconductor wafer package structure of a fifteenth embodiment of the present invention. Figure 93C is a bottom plan view showing the semiconductor wafer package structure of the fifteenth embodiment of the present invention. Fig. 94 is a view showing the structure of a metal post of a sixteenth embodiment of the present invention. Fig. 95 is a view showing the structure of a metal post of the seventeenth embodiment of the present invention. Fig. 96 is a view showing the structure of a metal post of the eighteenth embodiment of the present invention. Fig. 97 is a view showing the structure of a metal post of the nineteenth embodiment of the present invention. Fig. 98 is a view showing the structure of a metal post of the twentieth embodiment of the present invention. 143 1292195 [Description of main component symbols] semiconductor wafers 110, 210, 310, 410, 510, 610, 710, 810, 910, 1010, 1110, 1210, 1310, 1410 first planes 112, 212, 312, 412, 512, 612 second plane 114, 214, 314, 414, 514, 614 conductive pins 116, 216, 316, 416, 516, 616 protective layer 118, 218, 318 ® metal substrate 120, 220, 320 first main plane 122, 222, 322 second main plane 124, 224, 324 first photoresist layer 126, 226 second photoresist layer 128, 228, 328 notch 130, 230 perforations 330, 565, 665 • metal walls 132, 232, 332, 432, 532, 632, 732, 832, 932, 1032, 1132, 1232, 1332, 1432, 1532 holes 134, 734, 834 openings 136, 883 templates 138, 238, 338 solder paste 140, 240, 340 solder layer 142, 242, 342 third photoresist layer 144, 244, 344 fourth photoresist layer 146, 246, 346 144 1292195 winding 150, 250, 350, 450, 550, 650, 750, 850, 950, 1050, 1150, 1250 , 1350, 1450, 1550 elongated winding portion 152 larger circular portion 154 welding mask 156, 256 , 356, 456, 556, 656, 756, 856, • 956, 1056, 1156, 1256, 1356, 1556 fifth photoresist layer 158, 258, 358 sixth photoresist layer 160, 260, 360 _ plating contact 162 , 262, 362, 762, 862, 1062, 1162, 1262, 1362, 1462, 1562 Adhesives 164, 264, 364, 464, 564, 664, 764, 864, 964, 1064, 1164, 1264, 1364, 1464 166, 266, 366, 466, 566, 666, 766, 866, 966, 1066 ' 1166 , 1266 , 1366 , 1466 sealing layers 168 , 268 , 368 , 468 , 568 , 668 , 768 , 868 , 968 , 1068 , 1168, 1268, 1368, 1468, 1568

I 金屬柱 170、270、470、570、670、770 ' 870、970、 1070、 1170、 1270、 1370、 1470、 1570、 1670 、 1770 、 1870 、 1970 、 2070 第一平面172 第二平面174 錐面170 導電跡線180 絕緣封膠 182、282、382、482、582、682、782、882、 145 1292195 982 、 1182 、 1282 、 1382 、 1482 、 1582 錫球 184、284、384 銲接端 186、286、386、486、586、686、786、886、 986 、 1086 、 1186 、 1286 、 1386 、 1486 、 1586 半導體晶片封裝結構198、298、398、498、598 v698、 798 、 898 、 998 、 1098 、 1198 、 1298 、 1398 ' 1498 、 1598 絕緣塞569 第一半導體晶片1510 第二半導體晶片1511 導電腳位1510 導電腳位1517 第一黏著劑1564 第二黏著劑1565 第二連接部1560 第二連接部1567 146I metal column 170, 270, 470, 570, 670, 770 ' 870, 970, 1070, 1170, 1270, 1370, 1470, 1570, 1670, 1770, 1870, 1970, 2070 first plane 172 second plane 174 cone 170 conductive traces 180 insulating sealants 182, 282, 382, 482, 582, 682, 782, 882, 145 1292195 982, 1182, 1282, 1382, 1482, 1582 solder balls 184, 284, 384 solder joints 186, 286, 386, 486, 586, 686, 786, 886, 986, 1086, 1186, 1286, 1386, 1486, 1586 semiconductor chip package structures 198, 298, 398, 498, 598 v698, 798, 898, 998, 1098, 1198, 1298 , 1398 ' 1498 , 1598 insulating plug 569 first semiconductor wafer 1510 second semiconductor wafer 1511 conductive pin 1510 conductive pin 1517 first adhesive 1564 second adhesive 1565 second connecting portion 1560 second connecting portion 1567 146

Claims (1)

1292195 十、申請專利範圍: 1. -種銲接端具金屬壁之半導體晶片封裝結 方法,係至少包括: a、提供一金屬基板、一繞線、一金屬壁及一銲 接層,其中該金屬基板係包含相對應之第一平面及 第二平面,該金屬基板之第一平面係朝向第一方向 上,該金屬基板之第二平面係朝向第二方向上,而 該第二方向與第一方向相反’該金屬壁係由該金屬 基板之第二平面往其第一平面延伸至該金屬基板 内’而該金&gt;1壁係包含-孔洞,該孔洞係由該金屬 基板之第二平面往其第一平面延伸至該金屬基板 p並包含朝向第二方向之開口,該鋅接層係與 該孔洞内之金屬壁接觸; …b、機械地連接-半導體晶片至該繞線,其中該 半導體晶片係包括一導電腳位; C、形成一連接部,該連接部係可與該繞線及導 電腳位具電力地連接; 式化學㈣對該金屬基板蚀刻,因此 …/金屬基板與繞線間及該金屬基板與金屬壁間 之接觸區域;以及 e、提供-銲接端,該銲接端係與該孔洞内之金 屬壁接觸,並包含該銲接層。 147 1292195 2.依據申請專利 半導㈣/ 第1項所述之銲接端具金屬壁之 二= 曰片封裝結構之製造方法,其中,該繞線之 方式财將該繞線沈積於該金屬基板上。1292195 X. Patent application scope: 1. A semiconductor wafer package bonding method for soldering a metal wall, comprising at least: a. providing a metal substrate, a winding, a metal wall and a soldering layer, wherein the metal substrate The first plane and the second plane are included, the first plane of the metal substrate is oriented in a first direction, the second plane of the metal substrate is oriented in a second direction, and the second direction is opposite to the first direction Conversely, the metal wall extends from the second plane of the metal substrate to the first plane into the metal substrate, and the gold &gt; 1 wall comprises a hole, the hole being formed by the second plane of the metal substrate a first plane extending to the metal substrate p and including an opening facing the second direction, the zinc bonding layer being in contact with the metal wall in the hole; b, mechanically connecting the semiconductor wafer to the winding, wherein the semiconductor The chip system includes a conductive pin; C, forming a connecting portion, the connecting portion is electrically connectable to the winding and the conductive pin; the chemical (4) etching the metal substrate, / Winding and between the metal substrate and the metal substrate and the metal walls of the contact region; and E, providing - welding end, the end system and the weld metal within the metal wall contact hole, and comprising the solder layer. 147 1292195 2. The method for manufacturing a soldering metal wall of a soldering end according to the application of the patent semi-conductive (4)/the first item, wherein the winding method deposits the winding on the metal substrate. on. 丰ίΐ明專利乾圍第2項所述之銲接端具金屬壁之 2體晶片封襄結構之製造方法,其中,該繞線之 〔方式係可包括形成一電鍍遮罩於該金屬基板 立八-中該電鍍遮罩係包含—開σ,該開口係使一 部份之金屬基板暴露;以及將該繞線電鍍於該金屬 基板之暴露部份並穿過該電鍍遮罩之開口。 4·依據申請專利範圍第i項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 之形成方式係使該金屬壁沈積於該金屬基板上。 5·依據申請專利範圍第4項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 之形成方式係包括形成一電鍍遮罩於該金屬基板 上’其中該電鑛遮罩係包含一開口,該開口係使一 部份之金屬基板暴露,·以及將該金屬壁電鍍於該金 屬基板之暴露部份,並穿過該電鍍遮罩之開口。 6·依據申請專利範圍第1項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 之形成方式係包括银刻該金屬基板形成一導通孔, 該導通孔係由該金屬基板之第二方向往其第一方向 延伸至該金屬基板内;以及使該金屬壁沈積於該導 148 1292195 通孔内。 7·依據申請專利範圍第6項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該導通孔 係為一穿孔,係延伸至該金屬基板内並穿透,使該 繞線暴露;以及該金屬壁延伸至該金屬基板内並穿 透,且與該繞線接觸。 8·依據申請專利範圍第7項所述之銲接端具金屬壁之 鲁 +導體晶片封裝結構之製造方法/其中,該金屬基 板被蝕刻穿透係使該金屬基板與繞線間及該金屬基 板與金屬壁間之接觸區域被去除。 9·依據申請專利範圍第6項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該導通孔 係為一凹口,該凹口係延伸至該金屬基板内但未穿 透’並與该金屬基板之第一平面及繞線隔離;以及 _ 該金屬壁係延伸至該金屬基板内但未穿透,並與該 金屬基板之第一平面及繞線隔離。 10·依據申請專利範圍第9項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板被钱刻係從該金屬基板之未蝕刻部份形成一金屬 柱,該金屬基板之未蝕刻部份係藉由該金屬壁定 義,該金屬柱係與該繞線及該金屬壁接觸。 11·依據申請專利範圍第1項所述之銲接端具金屬壁之 149 1292195 半導體晶片封裝結構之製造方法,其中,該録接層 之形成方式係包括使該銲接層沈積於該金屬壁上。 12·依射請專利範圍第Η項所述之賴端具金屬壁之 半導體Ba片封裝結構之製造方法,其中,該鲜接層 之形成方式係包括該銲接層只與該金屬壁接觸。 13·依據㈣專職圍第u項所述之銲接端具金屬 壁之 半,體晶片封裝結構之製造方法,其中,該鲜接層 之形成方式係包括使一錫膏沈積於該金屬 壁上,以 及使該錫膏回流。 14·依據中請專利範㈣1J;M所述之鲜接端具金屬 壁之 半導體晶片封裝結構之製造方法,其中,該銲接端 係為該銲接層。 15. 依據巾請專利_第丨項所述之銲接端具金屬壁之 半導體晶片封褒結構之製造方法,纟中,該鲜接端 之形成方式係包括使一銲錫材料沈積於該銲接層 上,以及使該銲錫材料與銲接層一起回流。 16. 依據申明專利範圍第丨項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其巾,該焊接端 之形成方法係至少包括下列步驟並依照順序: a、 使該錫膏沈積於該金屬壁上; b、 使該錫膏回流,因此形成該銲接端; c、 使一銲錫材料沈積於該銲接層上;以及 150 1292195 d使。亥銲錫材料及銲接層一起回流,因此形成 該銲接端。 17·依,U利範圍第丨項所述之銲接端具金屬 壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 及銲接層之形成方法係至少包括下列步驟並依照順 序: a餘刻该金屬基板形成一導通孔; b、 使該金屬壁沈積於該金屬基板上,並進入該 導通孔内;以及 c、 使該銲接層沈積於該金屬壁上。 18·依據中請專利範圍第1項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 及銲接層之形成方法係至少包括下列步驟並依昭順 序: …、 a、蝕刻該金屬基板並穿過一蝕刻遮罩之開口, 因此形成一導通孔; 、b、使該金屬壁電鍍於該金屬基板之暴露部份, 並穿過一電鍍遮罩之開口進入該導通孔内; c使一錫膏沈積於該金屬壁上;以及 d使该錫膏回流,因此形成該銲接層。 19.依據申凊專利範圍第1項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 及鲜接層之形成方法係至少包括下列步驟並依照順 151 1292195 序·· a、 钱刻該金屬基板形成一導通孔; b、 使該金屬壁電鍍於該金屬基板之暴露部份, 並穿過一電鍍遮罩之開口進入該導通孔内; c、 使一錫膏沈積於該金屬壁上;以及 d、 使該錫膏回流,因此形成該銲接層。 20·依據申睛專利範圍第1項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 及銲揍層之形成方法係至少包括下列步驟並依照順 序·· a、 形成一遮罩於該金屬基板,其中該遮罩係包 含一開口,使一部份之金屬基板暴露; b、 餘刻該金屬基板並穿過該遮罩之開口,因此 形成一導通孔; c、 使該金屬壁電鍍於該金屬基板之暴露部份, 並穿過該遮罩之開口進入該導通孔内; d、 使一錫膏沈積於該金屬壁上;以及 e、 使該錫膏回流,因此形成該銲接層。 21·依據申請專利範圍第〗項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 及銲接層之形成方法係至少包括下列步驟並依照順 序: 、 &amp;、形成一蝕刻遮罩於該金屬基板,其中該蝕刻 152 1292195 遮罩係包含一開口,使一部份之金屬基板暴露; b、 蝕刻該金屬基板並穿過該蝕刻遮罩之開口, 因此形成一導通孔; c、 形成一電鍍遮罩於該金屬基板上,其中該電 鍍遮罩係包含一開口,使一部份之金屬基板及該導 通孔暴露; d、 使該金屬壁電鍍於該金屬基板之暴露部份 並穿過該電鍍遮罩之開口進入該導通孔内; e、 使一錫膏沈積於該金屬壁上;以及 f、 使該錫膏回流,因此形成該銲接層。 22·依據ΐ請專利範圍第丨項所叙銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該半導體 :曰片與%線連接之方式係可包括將一黏著劑置放於 -亥半導體曰曰片與金屬基板間,然後使該黏著劑硬化。 • 23.依據申請專利範圍第】項所述之銲接端具金屬壁之 2體晶片封|結構之製造方法其中,該連接部 電可包括將料接部魏於該繞線與導 利範圍*1項所述之銲接端具金屬壁3 =二封裝結構之製造方法,其中,該連… 該繞線與;::::利用無電電鍛將該連接伽 A依據中請專利範圍第i項所述之銲接端具金屬㈣ 153 l292l95 半導體晶片封裝結構之製造方法,其中,該連接部 形成之方式係可包括使一非固態材料(n〇n s〇lidified material)沈積於該繞線及導電腳位間,並使該非固態 材料硬化。 6.依據申請專利範圍第!項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該連接部 形成之方式係可包括提供-打線(W bond)於該繞 線與導電腳位間。The manufacturing method of the two-piece wafer sealing structure of the welding end metal wall according to the second aspect of the invention, wherein the winding method comprises forming a plating mask on the metal substrate The plated mask includes - opening σ, the opening exposing a portion of the metal substrate; and plating the wire onto the exposed portion of the metal substrate and through the opening of the plating mask. 4. The method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim i, wherein the metal wall is formed by depositing the metal wall on the metal substrate. 5. The method of fabricating a semiconductor chip package structure for soldering end metal walls according to claim 4, wherein the metal wall is formed by forming a plating mask on the metal substrate. The mineral mask includes an opening that exposes a portion of the metal substrate, and the metal wall is plated to the exposed portion of the metal substrate and through the opening of the plating mask. The method for manufacturing a semiconductor chip package structure according to the first aspect of the invention, wherein the metal wall is formed by silver engraving the metal substrate to form a via hole, the via hole system Extending from the second direction of the metal substrate to the first direction into the metal substrate; and depositing the metal wall in the via 148 1292195. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 6, wherein the via hole is a through hole extending into the metal substrate and penetrating to make the winding The wire is exposed; and the metal wall extends into and penetrates the metal substrate and is in contact with the wire. 8. The method of manufacturing a soldering end metal walled rib+conductor chip package structure according to claim 7, wherein the metal substrate is etched through the metal substrate and the winding and the metal substrate The area of contact with the metal wall is removed. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 6, wherein the via hole is a notch, and the notch extends into the metal substrate but is not worn. And permeable to the first plane and the winding of the metal substrate; and the metal wall extends into the metal substrate but does not penetrate and is isolated from the first plane and the winding of the metal substrate. 10. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 9, wherein the metal substrate is formed by a metal pillar from an unetched portion of the metal substrate. The unetched portion of the metal substrate is defined by the metal wall that is in contact with the winding and the metal wall. 11. The method of fabricating a semiconductor wafer package structure according to the invention of claim 1, wherein the recording layer is formed by depositing the solder layer on the metal wall. 12. The method for manufacturing a semiconductor Ba package structure having a metal wall according to the above-mentioned item, wherein the formation of the fresh layer comprises contacting the solder layer only with the metal wall. 13. The method for manufacturing a body wafer package structure according to the fourth aspect of the present invention, wherein the method of forming the fresh layer is to deposit a solder paste on the metal wall. And returning the solder paste. 14. The method of manufacturing a semiconductor chip package structure having a metal terminal of a fresh terminal according to the patent specification (4) 1J; M, wherein the soldering end is the solder layer. 15. The method of manufacturing a semiconductor wafer package structure for soldering a metal wall according to the invention, wherein the method of forming the solder joint comprises depositing a solder material on the solder layer. And returning the solder material together with the solder layer. 16. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to the above-mentioned claim, wherein the soldering end forming method comprises at least the following steps and in accordance with the order: a. making the solder paste Deposited on the metal wall; b, reflowing the solder paste, thereby forming the soldering end; c, depositing a solder material on the solder layer; and 150 1292195 d. The solder material and the solder layer are reflowed together, thus forming the soldered end. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to the above item, wherein the method for forming the metal wall and the solder layer comprises at least the following steps and in accordance with the order: The metal substrate forms a via hole; b, depositing the metal wall on the metal substrate and entering the via hole; and c, depositing the solder layer on the metal wall. The method for manufacturing a semiconductor chip package structure according to the first aspect of the invention, wherein the method for forming the metal wall and the solder layer comprises at least the following steps and in the following order: ..., a. etching the metal substrate and passing through an opening of the etch mask, thereby forming a via hole; b, plating the metal wall on the exposed portion of the metal substrate, and entering the opening through a plating mask Inside the via hole; c depositing a solder paste on the metal wall; and d reflowing the solder paste, thereby forming the solder layer. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 1, wherein the method for forming the metal wall and the fresh layer comprises at least the following steps and is in accordance with the sequence of 151 1292195. · a, money engraved on the metal substrate to form a via; b, the metal wall is plated on the exposed portion of the metal substrate, and through a plating mask opening into the via hole; c, make a tin A paste is deposited on the metal wall; and d, the solder paste is reflowed, thereby forming the solder layer. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 1, wherein the method for forming the metal wall and the solder layer comprises at least the following steps and in accordance with the sequence. Forming a mask on the metal substrate, wherein the mask includes an opening to expose a portion of the metal substrate; b, leaving the metal substrate and passing through the opening of the mask, thereby forming a via hole; c. plating the metal wall on the exposed portion of the metal substrate, and entering the via hole through the opening of the mask; d, depositing a solder paste on the metal wall; and e, making the solder paste Reflow, thus forming the solder layer. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to the above-mentioned patent application scope, wherein the method for forming the metal wall and the solder layer comprises at least the following steps and in accordance with the sequence: , &amp; Forming an etch mask on the metal substrate, wherein the etch 152 1292195 mask includes an opening to expose a portion of the metal substrate; b, etching the metal substrate and passing through the opening of the etch mask, thereby forming a a via hole; c, forming a plating mask on the metal substrate, wherein the plating mask includes an opening to expose a portion of the metal substrate and the via hole; d, plating the metal wall on the metal substrate The exposed portion enters the via hole through the opening of the plating mask; e. depositing a solder paste on the metal wall; and f, reflowing the solder paste, thereby forming the solder layer. 22. The method of fabricating a semiconductor chip package structure having a solder end metal wall according to the scope of the claims, wherein the semiconductor: the die and the % wire are connected in a manner comprising placing an adhesive on the - Between the semiconductor wafer and the metal substrate, the adhesive is then hardened. • The manufacturing method of the 2-piece wafer sealing structure of the welding end metal wall according to the scope of the patent application scope, wherein the connecting portion can include the feeding portion to the winding and the guiding range* The welding end metal wall 3 = the manufacturing method of the two-package structure, wherein the winding and the::::: using the electric-free forging to connect the connection gamma according to the i-th item of the patent scope The soldering end has a metal (4) 153 l292l95 semiconductor wafer package structure manufacturing method, wherein the connecting portion is formed by depositing a non-solid material (n〇ns〇lidified material) on the winding and the conductive leg Between the bits, and harden the non-solid material. 6. According to the scope of patent application! The method of fabricating a semiconductor chip package structure having a solder end metal wall, wherein the connection portion is formed by providing a W bond between the winding and the conductive pin. 27·依據f請專利範圍第1項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金 板係利用該濕式化學钱刻進行餘刻,使該繞線暴露土。 :::專利範圍第1項所述之銲接端具金屬壁之 ::體S曰片封裝結構之製造方法,其中,該金屬基 用該濕式化學钱刻進行钱刻,移除大部份之 rm圍第1項所述之鮮接端具金屬壁之 =:、结構之製造方法,其中,該金屬基 板係利用該濕式化學姓刻進” 腳位邊緣内之金屬基板。 ㈣於#電 圍第】項所述之銲接端具金屬壁之 結構之製造方法,其,,該金屬基 相式化學_進純刻,移除於該半導 154 1292195 體晶片邊緣内之金屬基板。 31·依據申請專利範圍第1項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用該濕式化學蝕刻進行蝕刻,使該金屬基板 與繞線間及該金屬基板與金屬壁間之接觸區域減少 但未完全去除。 32.依據申請專利範圍第丨項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金脣基 板係利用該濕式化學蝕刻進行蝕刻,從該金屬基板 之未餘,部份形成—金屬柱,該金屬基板之未敍刻 部份係藉由該金屬壁定義,該金屬柱係使該繞線與 金屬壁具電力地連接。 33.依射請專利範圍第丨項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 鲁板係制該濕式化學_進純刻,使該金屬基板 與繞線間及該金屬基板與金屬㈣之接觸區域完全 34.=1Γ圍第1項所述之銲接端具金屬壁之 + ¥體4封裝結構之製造方法,其中,該 =__式化學㈣進純刻,並移除該金屬土 3 5 ·依據申請專利範圍第 1項所述之銲接端具金屬壁之 155 1292195 =;封裝結構之製造方法,其中,該金屬基 ,、 '&quot;濕式化學蝕刻進行蝕刻,並使該繞線盘 其它與金屬基板接觸之繞線具電力地隔I與 範圍第1項所述之銲接端具金屬壁之 =曰曰片封震結構之製造方法,其中,該金屬基 =用該濕式化學钱刻進行姓刻,使該導電腳位 一匕於半導體晶片上之導電腳位具電力地隔離。The manufacturing method of the semiconductor chip package structure of the soldering end metal wall according to the first aspect of the invention, wherein the gold plate system uses the wet chemical money to engrave the residual, so that the winding exposes the soil . :::The welding end of the metal wall according to the first aspect of the patent:: The manufacturing method of the body S-chip package structure, wherein the metal base is engraved with the wet chemical money to remove most of the The manufacturing method of the metal wall of the fresh terminal according to the first item of the rm circumference is: the structure of the structure, wherein the metal substrate is carved into the metal substrate in the edge of the foot by using the wet chemical name. (4)# The method for manufacturing a structure of a metal wall of a soldering end according to the item of the present invention, wherein the metal-based phase chemical is removed from the metal substrate in the edge of the semiconductor wafer of the semiconductor 154 1292195. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 1, wherein the metal substrate is etched by the wet chemical etching to make the metal substrate and the winding and the The method of manufacturing a semiconductor chip package structure for soldering an end metal wall according to the above-mentioned claim, wherein the gold lip substrate is utilized, and the contact area between the metal substrate and the metal wall is reduced. The wet chemical etching is performed to form a metal pillar from a portion of the metal substrate, and an unmarked portion of the metal substrate is defined by the metal wall, the metal pillar is used to make the winding and the metal The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to the above-mentioned patent scope, wherein the metal base plate system is made of the wet chemical a method for manufacturing a +4 body 4 package structure in which the metal substrate and the metal (4) are in contact with each other and the metal substrate and the metal (4) are completely 34.=1. =__式化学(四)Into the pure engraving, and removing the metal soil 3 5 ·The welding end metal wall according to the scope of claim 1 155 1292195 =; manufacturing method of the package structure, wherein the metal base , '&quot; Wet chemical etching to etch, and to electrically connect the other windings of the reel to the metal substrate, and to weld the metal wall of the welding end as described in the first item Method of manufacturing a seismic structure, wherein Metal Base = The wet chemistry is used to engrave the last name so that the conductive pin is electrically isolated from the conductive pins on the semiconductor wafer. 37·依據中請專利範圍第丨項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 係可於該銲接層形成前形成。 .依據申叫專利範圍第37項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 形成前係可形成該繞線。 39.依據申請專利範圍第37項所述之銲接端具金屬壁之 半導體晶片封裴結構之製造方法,其中,該金屬壁 形成後係可形成該繞線。 4〇·依據申請專利範圍第37項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 係可同時地與該繞線形成。 41 ·依據申請專利範圍第37項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 係可於連接該半導體晶片至該金屬基板及繞線前形 156 1292195 成。 42·依據申請專利範圍第37項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 係可於連接該半導體晶片至該金屬基板及繞線後形 成。 43·依據申請專利範圍第37項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接層37. A method of fabricating a semiconductor wafer package structure for soldering end metal walls according to the above-mentioned patent application, wherein the metal wall can be formed prior to formation of the solder layer. The method of manufacturing a semiconductor wafer package structure for soldering end metal walls according to claim 37, wherein the metal wall is formed to form the winding. 39. A method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 37, wherein the metal wall is formed to form the winding. 4. A method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 37, wherein the metal wall is formed simultaneously with the winding. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 37, wherein the metal wall is connectable to the metal substrate and the winding front shape 156 1292195 . 42. The method of fabricating a semiconductor chip package structure for soldering end metal walls according to claim 37, wherein the metal wall is formed after connecting the semiconductor wafer to the metal substrate and winding. 43. A method of manufacturing a semiconductor wafer package structure for soldering end metal walls according to claim 37, wherein the solder layer 係、可於連接該半導體晶片至該金屬基板及繞線前形 成。 44·依據申請專利範圍第37項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接層 係可於連接該半導體晶片至該金屬基板及繞線後形 45·依據申請專利範圍第37項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接層 係可於該銲接端形成前形成。 46·依據申請專利範圍第37項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接層 係可直接形成該銲接端。 依據申請專利範圍第1項所述之銲接端具金屬壁之 半&gt;體晶片封裝結構之製造方法,其中,該連接部 係可於該金屬基板利用濕式化學蝕刻進行蝕刻前形 157 1292195 成。 48.依據申請專利範圍第1項所述之銲接端具金屬 壁之 +導體晶片封裝結構之製造方法,其巾,該連接部 系可於該金屬基板利用濕式化學蝕刻進行蝕刻後形 成。 、 49’據申請專利範圍第1項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接端 •係可於連接該半導體晶片至該金屬基板及 繞線前形 成。 ^據ΐ4專利範圍第!項所述之銲接端具金屬壁之 Y導體晶片封裝結構之製造方法,其中,該銲接端 ,可於連接該半導體晶片至該金屬基板及繞線後形 成。 51·=據申請專利範圍第丨項所述之銲接端具金屬壁之 鲁 導體晶片封裝結構之製造方法,其巾,該鮮接端 糸可於該連接部形成前形成。 ^據申明專利範圍第1項所述之銲接端具金屬壁之 ^導體晶片封裝結構之製造方法,其中,該銲接端 糸可於該連接部形成後形成。 ,申%專利範圍第1項所述之銲接端具金屬壁之 ^ ^體aa片封裝結構之製造方法,其巾,該鲜接端 *可於該金屬基板利用濕式化學㈣進行㈣前形 158 1292195 成0 54·依據申请專利範圍第i項所述之鲜接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接端 係可於該金屬基板利用濕式化學餘刻進行姓刻後形 成。 5.依據m彳範圍第丨項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,進一步包 • 含形成該金屬壁,接著形成該“層,然後連接該 半導體aa&gt;|j_该金屬基板、繞線、金屬壁及録接層, 以及利用濕式化學餘刻對該金屬基板進行餘刻。 56._申請專利範圍第!項所述之銲接端具金屬 壁之 半導體晶片封裝結構之製造方法,其中,進一步包 含形成該金屬壁’接著連接該半導體日日日片至該金屬 基板、繞線及金屬壁,然後形成該銲接層,以及利 _ 用濕式化學蝕刻對該金屬基板進行蝕刻。 57·依據中請專·圍第丨項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,進一步包 3連接6亥半導體晶片至該金屬基板及繞線,接著形 成°亥金屬壁’然後形成該銲接層,以及利用濕式化 學蝕刻對該金屬基板進行蝕刻。 58.依據申請專利範圍第1項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,進一步包 159 1292195 含形成一密封劑,該密封劑係於連接該半導體晶片 至該繞線後覆蓋該半導體晶片於第一方向上。 59.依據申請專利範圍第58項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該密封劑 被形成後係進一步形成一絕緣基板屬 壁及鲜接層於第二方向上,然後移除一部 基板使該絕緣基板無法覆蓋該銲接層於第二 上。 ' ~ 〇 依據申請專利範圍第丨項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該半導體 晶片封裝結構係為第一層次封裝。 61. —種銲接端具金屬壁之半導體晶片封裝結構之製造 方法,係至少包括: a、 提供一包含相對應之第一平面及第二平面之 金屬基板,其中該金屬基板之第一平面係朝向第一 方向,該金屬基板之第二平面係朝向第二方向,而 該第二方向與第一方向相反; b、 形成一繞線於金屬基板之第一平面上,其中 该繞線係與該金屬基板之第一平面接觸,並與該金 屬基板之第二平面隔離; c、 利用第一濕式化學蝕刻對該金屬基板進行餘 刻,因此於該金屬基板内形成一導通孔,該導通孔 係由該金屬基板之第二平面往其第一平面延伸至該 160 1292195 金屬基板内; d、形成一金屬壁於該金屬基板上,其令,該金 屬壁係與該導通孔内 . # 之金屬基板接觸,該金屬壁係 :金屬基板之第二平面往其第一平面延伸至該金 該金屬美…: 洞’該孔洞係由 :金屬基板之第二平面往其第一平面延伸至該金屬 土板並被該金屬壁覆蓋於第-方向上’且包含 一朝向第二方向之開口; 匕3 屬辟成二銲接層’該銲接層係與該孔洞内之金 屬土接觸,並與該繞線隔離; 綠,1、=械$連接一半導體晶片至該金屬基板及繞 、°亥半導體晶片係包括一導電腳位; g形成連接部,該連接部係可與該繞線及導 電腳位具電力地連接; h⑨連接该半導體晶片至該金孱基板及繞線及 屬壁及銲接層後,利用第二濕式化學钱刻 基板則,因此減少該金屬基板與繞線間 i金屬β基板與金屬壁間之接觸區域;以及 丨、提供一銲接端,該銲接端係與該孔洞内之金 屬壁接觸’並包含該銲接層。 62·依據申叫專利範圍第61項所述之鲜接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該繞線之 心成方式係可包括形成一電鑛遮罩於該金屬基板 161 1292195 上,其中該電鍍遮罩係包含一開口,該開口係使一 部份之金屬基板暴露;以及穿過該電鍍遮罩之開口 將該繞線電鍍於該金屬基板之暴露部份。 63·依據申請專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 及銲接層之形成方法係至少包括下列步驟並依照順 序: φ a、穿過一電鍍遮罩之開口將該金屬壁電鍍於該 金屬基板上,並進入該導通孔; b、 使一錫膏沈積於該金屬壁上;以及 c、 使該鍚膏回流,因此形成該銲接層。 64.依據申請專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接端 係為該鲜接層。 • 65·依據申請專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接端 形成之方式係可包括於利用第二濕式化學蝕刻對該 金屬基板進行钱刻後,使一銲錫材料沈積於該銲接 曰上然後使该鲜錫材料及鲜接層一起回流,形成 該銲接端。 6·依據申凊專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該半導體 曰曰片與金屬基板及繞線連接之方式係可包括將一黏 162 1292195 著劑置放於該半導體晶片與金屬基板間,然後使該 黏著劑硬化。 67·依據申請專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該連接部 I成之方式係可包括提供一打線(wire b〇nd)於該繞 線與導電腳位間。 68·依據申請專利範圍第61項所述之銲接端具金屬壁之 | 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用該第二濕式化學蝕刻進行蝕刻,使該繞線 暴露。 69·依據申請專利範圍第68項所述之銲接端具金孱壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用該第一濕式化學蝕刻進行蝕刻形成該導通 孔,該導通孔係為一穿孔並延伸穿透該金屬基板, 丨 使該繞線暴露;以及該金屬基板係利用第二濕式化 學蝕刻進行蝕刻,去除該金屬基板與繞線間及該金 屬基板與金屬壁間之接觸區域。 70·依據申凊專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用該第二濕式化學蝕刻進行蝕刻,移除該金 屬基板。 71·依據申請專利範圍第68項所述之銲接端具金屬壁之 163 1292195 半導體晶片封裝結構之製造方法,其中,該金屬美 板係利用該第一濕式化學蝕刻進行蝕刻形成該導通 孔,該導通孔係為一凹口並延伸該金屬基板但未穿 透;以及該金屬基板係利用第二濕式化學蝕刻進行 蝕刻,從該金屬基板之未蝕刻部份形成一金屬柱, 忒金屬基板之未韻刻部份係藉由該金屬壁定義,該 金屬柱係與該繞線及金屬壁接觸,並使該繞線與金 屬壁間具電力地連接。 、 72·依據申請專利範圍第71項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用該第二濕式化學蝕刻進行蝕刻,移除大部 份之金屬基板。 73·依據申請專利範圍第71項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用该第二濕式化學蚀刻進行颠刻,移除於該 導電腳位邊緣内之金屬基板。 74·依據申請專利範圍第71項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用該第二濕式化學餘刻進行鍅刻,移除於該 半導體晶片邊緣内之金屬基板。 75·依據申請專利範圍第68項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用第二濕式化學蝕刻進行蝕刻,並使該繞線 164 1292195 與其它與金屬基板接觸之繞線具電力地隔離。 76·依據申請專利範圍第68項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用第一濕式化學钱刻進行餘刻,使該導電腳 位與其它於半導體晶片上之導電腳位具電力地隔 離。 77·依據申請專利範圍第61項所述之銲接端具金屬壁之 _ 半導體晶片封裝結構之製造方法,其中,該金屬壁 係可於連接该半導體晶片至該金屬基板及繞線前形 成。 78·依據申锖專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 係可於連接該半導體晶片至該金屬基板及繞線後形 成。 • 79·依據申請專利範圍第61項所述之銲接端真金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接層 可於連接邊半導體晶片至該金屬基板及繞線前形 成。 ,“據申味專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接層 i可於連接该半導體晶片至該金屬基板及繞線後形 165 1292195 81 ·依據申請專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該連接部 係可於該金屬基板利用第二濕式化學蝕刻進行蝕刻 前形成。 82·依據申請專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該連接部 係可於該金屬基板利用第二濕式化學蚀刻進行敍刻 後形成。 83·依據申請專利範圍第61項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,進一步包 含形成一密封劑,該密封劑係可於連接該半導體晶 片至該金屬基板及繞線後覆蓋於該半導體晶片於第 一方向上。 84·依據申請專利範圍第83項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該密封劑 被形成後係進一步形成一絕緣基板,該絕緣基板係 與該繞線、金屬壁及銲接層接觸,並覆蓋該金屬壁 及知接層於第二方向上,然後移除一部份之絕緣基 板使該絕緣基板無法覆蓋該銲接層於第二方向上。 85·依據申請專利範圍第84項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該移除一 部份之絕緣基板係使該金屬壁及銲接層於第二方向 暴露,但不使該繞線暴露。 166 1292195 86·依據申請專利範圍第85項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該移除一 部份之絕緣基板係可利用研磨方式研磨該絕緣基 板。 87·依據申請專利範圍第86項所述之銲接端具金屬壁之 丰導體晶片封裝結構之製造方法,其中,該移除一 部份之絕緣基板係可利用研磨方式研磨該絕緣基 ⑩板,但未研磨該金屬壁及銲接層,接著研磨該絕緣 基板、金屬壁及銲接層,然後直到該絕緣基板、金 屬壁及辉接層橫向地排列於一朝向第二方向之平面 時停止研磨,並使該銲接層暴露。 88·依據申請專利範圍第87項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接層 係直接形成為該銲接端。 φ 89·依據申請專利範圍第88項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接端 t成之方式係可包括於該絕緣基板、金屬壁及銲接 端被研磨後使一銲錫材料沈積於該銲接層,然後使 該銲錫材料與銲接層一起回流形成該銲接端。 依據申μ專利範圍第61項所述之銲接端具金屬壁之 ,導如:日日片封裝結構之製造方法,其中,該半導體 曰曰片封裝結構係為第一層次封裝。 167 1292195 91.-種銲接端具金屬壁之半導體晶片封裝結構 生 方法,係至少包括: k a、 提供一包含相對應之第一平面及第二平面 金屬基板,其中該金屬基板之第一平面係朝向第一 方向,該金屬基板之第二平面係朝向第二方向, 该第 &gt;一方向與第一方向相反; b、 形成一繞線於金屬基板之第一平面上,其 該繞線係與該金屬基板之第一平面接觸,並與該金 屬基板之第二平面隔離; 一 μ C、利用第-濕式化學_對該金屬基板進行餘 刻’因此於金屬基板形成—導通孔,該導通孔係由 該金屬基板之第二平面往其第—平面延伸延伸至該 金屬基板内; d、形成一金屬壁於該金屬基板上,苴中,嗜金 f壁係與該導通孔内之金屬基板接觸,該金屬二 t金屬基板之第二平面往其第—平面延伸至該金 2板内,而該金屬壁係包含一孔洞,該孔洞係由 :金屬基板之第二平面往其第一平面延伸至該金屬 基板内,並被該金屬壁覆蓋於第—方向上,且包含 朝向第二方向之開口; e、形成—賴層’該_層係與該孔洞内之金 屬壁接觸,並與該繞線隔離; 機械地連接一半導體晶片至該金屬基板及繞 、中該半導體晶片係包括一導電腳位,· 168 I292l95 g、形成一連接部,該連接部係可與該繞線及導 電腳位具電力地連接; 於連接該半導體晶片至該金屬基板及繞線後 形成一密封劑,其中,該密封劑係與該半導體晶片 接觸’並從該半導體晶片、金屬基板及繞線往第一 方向垂直地延伸,而該金屬基板係從該半導體晶片 及繞線往第二方向垂直地延伸; % 1、於形成該金屬壁、銲接層及密封劑後,利用 第二濕式化學蝕刻對該金屬基板蝕刻,因此減少該 金屬基板與繞線間及該金屬基板與金屬壁間之接觸 區域; j、於該金屬基板利用第二濕式化學蝕刻進行蝕 刻後,形成一絕緣基板,該絕緣基板係與該繞線、 金屬土及鲜接層接觸,並覆蓋該繞線、金屬壁及銲 接層於第二方向上; —k、移除一部份之絕緣基板,使該絕緣基板無法 覆蓋該銲接層於第二方向上;以及 丨、提供一銲接端,該銲接端係與該孔洞内之金 壁接觸,並包含該銲接層。 …92.T據申請專利範圍第91項所述之銲接端具金屬壁之 =導體晶&gt;1封裝結構之製造方法,其中,該繞線之 I成方式係可包括形成一電鍍遮罩於該金屬基板 其中5亥電鍍遮罩係包含一開口,該開口係便一 169 1292195 部份之金屬基板暴露;以及穿過該電鍍遮罩之開口 將該繞線電鍍於該金屬基板之暴露部份。 93·依據申請專利範圍第91項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬壁 及銲接層之形成方法係至少包括下列步驟並依照順 序: a、 穿過一電鍍遮罩之開口將該金屬壁電鍍於該 _ 金屬基板上,並進入該導通孔; b、 使一錫膏沈積於該金屬壁上;以及 e、使該錫膏回流,因此形成該銲接層。 94·依據申請專利範圍第91項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該銲接端 係為该鲜接層。 95·依據申請專利範圍第91項所述之銲接端具金屬壁之 • 半導體晶片封裝結構之製造方法,其中,該銲接端 形成之方式係可包括於利用第二濕式化學蝕刻對該 金屬基板進行蝕刻後,使一銲錫材料沈積於該銲接 曰上然後使該銲錫材料及輝接層一起回流,形成 該銲接端。 、96·依據申請專利範圍第91項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該半導體 曰曰片與金屬基板及繞線連接之方式係可包括將一黏 著劑置放於該半導體晶片與金屬基板間,然後使該 170 1292195 黏著劑硬化。 97·依據申請專利範圍第91項所述之銲接端真金屬壁之 半導體晶片封裝結構之製造方法,其中,該連接部 形成之方式係可包括提供一打線(wire bond)於該繞 線與導電腳位間。 98·依據申請專利範圍第91項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用該第二濕式化學蝕刻進行蝕刻,使該繞線 暴露。 99.依據申請專利範圍第98項所述之銲接端具金屬壁之 半導體晶片封裝結構之製造方法,其中,該金屬基 板係利用該第-濕式化學㈣進行㈣形成該導通 孔’該導通孔係為—穿孔並延伸穿透該金屬基板, 使該繞線暴露;以及該金屬基板係利用第二濕式化The system can be formed by connecting the semiconductor wafer to the metal substrate and winding. The method of manufacturing a semiconductor chip package structure for soldering a metal wall according to claim 37, wherein the solder layer is formed by connecting the semiconductor wafer to the metal substrate and winding 45. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 37, wherein the solder layer is formed before the solder end is formed. 46. A method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 37, wherein the solder layer directly forms the solder end. The method for manufacturing a semiconductor chip package structure according to the first aspect of the invention, wherein the connection portion is etched by wet chemical etching on the metal substrate to form a front shape 157 1292195. . 48. The method according to claim 1, wherein the bonding portion is formed by etching the metal substrate by wet chemical etching. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 1, wherein the soldering end is formed before the semiconductor wafer is connected to the metal substrate and the winding. ^ According to ΐ 4 patent scope! The method of fabricating a Y-conductor chip package structure having a metal end of a soldering end, wherein the soldering end is formed after connecting the semiconductor wafer to the metal substrate and winding. The method of manufacturing a conductor chip package structure for soldering a metal wall according to the invention of claim 2, wherein the fresh terminal is formed before the connection portion is formed. The method of manufacturing a conductor chip package structure for soldering a metal wall according to claim 1, wherein the soldering end can be formed after the connecting portion is formed. The method for manufacturing a soldering end metal wall according to the first aspect of the invention, wherein the fresh joint* can be subjected to wet chemical (four) on the metal substrate (four) front shape 158 1292195. The manufacturing method of the semiconductor chip package structure with a metal wall according to the invention of claim 1, wherein the soldering end is capable of performing the last name on the metal substrate by using a wet chemical residue. Formed after engraving. 5. The method of fabricating a semiconductor chip package structure for soldering end metal walls according to the above clause, wherein the package further comprises forming the metal wall, and then forming the "layer, and then connecting the semiconductor aa"; J_ the metal substrate, the winding, the metal wall and the recording layer, and the metal substrate is etched by using a wet chemical residue. 56. _ Patent application: a method of manufacturing a chip package structure, further comprising: forming the metal wall ′ and then connecting the semiconductor day and day sheet to the metal substrate, the wire and the metal wall, and then forming the solder layer, and using a wet chemical etching pair The metal substrate is etched. 57. According to the manufacturing method of the semiconductor chip package structure of the soldering end metal wall according to the above-mentioned item, wherein the package 3 is further connected to the metal substrate and the winding a wire, then forming a metal wall' and then forming the solder layer, and etching the metal substrate by wet chemical etching. The manufacturing method of the semiconductor chip package structure of the soldering end metal wall according to Item 1, wherein the further package 159 1292195 includes forming a sealant for covering the semiconductor wafer after connecting the semiconductor wafer to the winding. The method of manufacturing a semiconductor chip package structure for soldering a metal wall according to claim 58 of the invention, wherein the sealant is formed to further form an insulating substrate wall and The splicing layer is in the second direction, and then removing a substrate so that the insulating substrate cannot cover the soldering layer on the second. ~ 半导体 The semiconductor wafer with the metal end of the soldering end according to the scope of the patent application The manufacturing method of the package structure, wherein the semiconductor chip package structure is a first level package. 61. A method for manufacturing a semiconductor chip package structure with a solder end metal wall, at least comprising: a, providing a corresponding a metal substrate of the first plane and the second plane, wherein the first plane of the metal substrate faces the first direction, The second plane of the substrate is oriented toward the second direction, and the second direction is opposite to the first direction; b, forming a winding on the first plane of the metal substrate, wherein the winding is first with the metal substrate Contacting the plane and isolating from the second plane of the metal substrate; c. etching the metal substrate by using the first wet chemical etching, thereby forming a via hole in the metal substrate, the via hole is formed by the metal substrate The second plane extends into the first plane to the 160 1292195 metal substrate; d, forming a metal wall on the metal substrate, so that the metal wall is in contact with the metal substrate in the via hole, Metal wall system: the second plane of the metal substrate extends toward the first plane to the metal. The hole is: the hole extends from the second plane of the metal substrate to the first plane to the metal earth plate and is The metal wall covers the first direction and includes an opening facing the second direction; the 匕3 belongs to the second soldering layer 'the soldering layer is in contact with the metal soil in the hole and is isolated from the winding; Green, 1, = mechanical $ connected to a semiconductor wafer to the metal substrate and winding, the semiconductor chip system includes a conductive pin; g forms a connection portion, the connection portion can be electrically connected to the winding and the conductive pin Connecting; h9 connecting the semiconductor wafer to the metal substrate and the winding and the constitutive wall and the soldering layer, and using the second wet chemical to engrave the substrate, thereby reducing the i-metal β substrate and the metal wall between the metal substrate and the winding a contact area; and a weir, providing a solder end that is in contact with the metal wall in the hole and includes the solder layer. 62. The method according to claim 61, wherein the method of manufacturing the semiconductor chip package structure of the metal strip is as follows: wherein the method of forming the wire can comprise forming an electric ore mask on the metal substrate. 161 1292195, wherein the plating mask includes an opening that exposes a portion of the metal substrate; and the opening is plated through the opening of the plating mask to the exposed portion of the metal substrate. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 61, wherein the method for forming the metal wall and the solder layer comprises at least the following steps and in accordance with the order: φ a, wear Opening a metal wall on the metal substrate and entering the via hole; b, depositing a solder paste on the metal wall; and c, reflowing the paste, thereby forming the solder Floor. 64. A method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 61, wherein the soldering end is the solder joint. The manufacturing method of the semiconductor chip package structure of the soldering end metal wall according to claim 61, wherein the soldering end is formed by using the second wet chemical etching to the metal substrate After the etching, a solder material is deposited on the soldering pad and the fresh tin material and the fresh layer are reflowed together to form the soldering end. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 61, wherein the semiconductor chip and the metal substrate and the winding are connected to each other. 1292195 A reagent is placed between the semiconductor wafer and the metal substrate, and then the adhesive is hardened. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 61, wherein the connecting portion I is formed to provide a wire bunding to the winding Between the line and the conductive pin. 68. A method of fabricating a semiconductor wafer package structure according to claim 61, wherein the metal substrate is etched by the second wet chemical etch to expose the wire. 69. The method of fabricating a semiconductor wafer package structure of a soldering end metal wall according to claim 68, wherein the metal substrate is etched by the first wet chemical etching to form the via hole, the conducting The hole is a perforation and extends through the metal substrate to expose the winding; and the metal substrate is etched by the second wet chemical etching to remove the metal substrate and the winding and the metal substrate and the metal wall Contact area between. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 61, wherein the metal substrate is etched by the second wet chemical etching to remove the metal substrate. 71. The method of manufacturing a 316 1292195 semiconductor wafer package structure according to claim 68, wherein the metal plate is etched by the first wet chemical etching to form the via hole. The via hole is a recess and extends the metal substrate but does not penetrate; and the metal substrate is etched by the second wet chemical etching, and a metal pillar is formed from the unetched portion of the metal substrate, and the metal substrate is formed. The ungraved portion is defined by the metal wall that is in contact with the winding and the metal wall and electrically connects the winding to the metal wall. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 71, wherein the metal substrate is etched by the second wet chemical etching to remove most of the Metal substrate. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 71, wherein the metal substrate is etched by the second wet chemical etch and removed from the conductive leg A metal substrate within the edge of the bit. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 71, wherein the metal substrate is etched by the second wet chemical residue and removed from the semiconductor A metal substrate within the edge of the wafer. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 68, wherein the metal substrate is etched by a second wet chemical etching, and the winding 164 1292195 is Other windings in contact with the metal substrate are electrically isolated. 76. The method of manufacturing a semiconductor chip package structure for soldering a metal wall according to claim 68, wherein the metal substrate is subjected to a first wet chemical chemistry to make the conductive pin and the conductive pin Other conductive pins on the semiconductor wafer are electrically isolated. 77. A method of fabricating a semiconductor wafer package structure according to claim 61, wherein the metal wall is formed prior to connecting the semiconductor wafer to the metal substrate and winding. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 61, wherein the metal wall is formed after connecting the semiconductor wafer to the metal substrate and winding. 79. The method of fabricating a semiconductor wafer package structure according to claim 61, wherein the solder layer is formed before connecting the semiconductor wafer to the metal substrate and winding. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 61, wherein the solder layer i can be connected to the metal wafer to the metal substrate and after winding 165 1292195 The method of manufacturing a semiconductor chip package structure for soldering a metal wall according to claim 61, wherein the connection portion is formed before the metal substrate is etched by the second wet chemical etching. The method of manufacturing a semiconductor chip package structure for soldering a metal wall according to claim 61, wherein the connecting portion is formed after the metal substrate is etched by the second wet chemical etching. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 61, further comprising forming a sealant for connecting the semiconductor wafer to the metal substrate and winding The wire is then overlaid on the semiconductor wafer in a first direction. 84. The soldering end according to claim 83 A manufacturing method of a semiconductor chip package structure having a metal wall, wherein the sealant is formed to further form an insulating substrate, the insulating substrate is in contact with the winding, the metal wall and the solder layer, and covers the metal wall and is known The bonding layer is in the second direction, and then removing a portion of the insulating substrate so that the insulating substrate cannot cover the soldering layer in the second direction. 85. The soldering end metal wall according to claim 84 of the patent application scope A method of fabricating a semiconductor chip package structure, wherein the removing of a portion of the insulating substrate exposes the metal wall and the solder layer in a second direction, but does not expose the winding. 166 1292195 86. The method for manufacturing a semiconductor chip package structure of a metal end wall according to claim 85, wherein the insulating substrate is removed by grinding, and the insulating substrate is ground by grinding. 87. According to claim 86 The method for manufacturing a conductor chip package structure with a metal end of a soldering end, wherein the part of the insulating substrate is removed by grinding Grinding the insulating substrate 10, but not grinding the metal wall and the soldering layer, and then grinding the insulating substrate, the metal wall and the soldering layer, and then arranging the insulating substrate, the metal wall and the fused layer laterally in a direction toward the second direction The method of manufacturing the semiconductor wafer package structure of the soldering end metal wall according to claim 87, wherein the solder layer is directly formed into the soldering. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 88, wherein the soldering end is formed on the insulating substrate, the metal wall, and the soldering method. After the end is ground, a solder material is deposited on the solder layer, and then the solder material is reflowed together with the solder layer to form the solder end. According to the method of claim 61, the soldering end has a metal wall, such as a manufacturing method of a solar package structure, wherein the semiconductor chip package structure is a first level package. 167 1292195 91. The method for producing a semiconductor chip package structure for soldering end metal walls comprises at least: ka, providing a first planar and second planar metal substrate, wherein the first planar system of the metal substrate Oriented to the first direction, the second plane of the metal substrate is oriented toward the second direction, the first direction is opposite to the first direction; b, forming a winding on the first plane of the metal substrate, the winding system Contacting the first plane of the metal substrate and isolating from the second plane of the metal substrate; one μ C, using the first wet chemical _ to re-etch the metal substrate 'so forming a via hole on the metal substrate, the The via hole extends from the second plane of the metal substrate to the first plane thereof to the metal substrate; d. a metal wall is formed on the metal substrate, and the metal layer is formed in the crucible and the via hole Contacted by the metal substrate, the second plane of the metal two-t metal substrate extends into the first plane of the metal to the gold plate, and the metal wall comprises a hole, the hole is: the second flat of the metal substrate The surface extends into the first plane to the metal substrate, and is covered by the metal wall in the first direction, and includes an opening facing the second direction; e, forming a layer of the layer and the hole The metal wall is in contact with and separated from the winding; mechanically connecting a semiconductor wafer to the metal substrate and winding, wherein the semiconductor wafer system comprises a conductive pin, 168 I292l95 g, forming a connecting portion, the connecting portion is Electrically connecting with the winding and the conductive pin; forming a sealant after connecting the semiconductor wafer to the metal substrate and winding, wherein the sealant is in contact with the semiconductor wafer and from the semiconductor wafer, metal The substrate and the winding extend perpendicularly to the first direction, and the metal substrate extends perpendicularly from the semiconductor wafer and the winding to the second direction; %1, after forming the metal wall, the solder layer and the sealing agent, The second wet chemical etching etches the metal substrate, thereby reducing the contact area between the metal substrate and the winding and between the metal substrate and the metal wall; j. utilizing the metal substrate After etching by the wet chemical etching, an insulating substrate is formed, the insulating substrate is in contact with the winding, the metal soil and the fresh layer, and covers the winding, the metal wall and the soldering layer in the second direction; Removing a portion of the insulating substrate such that the insulating substrate cannot cover the solder layer in the second direction; and providing a soldering end, the soldering end is in contact with the gold wall in the hole, and includes the soldering Floor. The method of manufacturing a soldering end metal wall=conductor crystal&gt;1 package structure according to claim 91, wherein the method of forming the winding may include forming a plating mask on The metal substrate has an opening, the opening is exposed to a metal substrate of a portion of 169 1292195; and the winding is plated through the opening of the plating mask to the exposed portion of the metal substrate . The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 91, wherein the method for forming the metal wall and the solder layer comprises at least the following steps and following the order: a. a plating mask opening, the metal wall is plated on the metal substrate, and enters the via hole; b, depositing a solder paste on the metal wall; and e, reflowing the solder paste, thereby forming the solder Floor. 94. The method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 91, wherein the soldering end is the solder joint layer. 95. The method of manufacturing a semiconductor wafer package structure according to claim 91, wherein the soldering end is formed by using the second wet chemical etching to the metal substrate. After etching, a solder material is deposited on the solder bump and the solder material and the bump layer are reflowed together to form the solder joint. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 91, wherein the semiconductor chip is connected to the metal substrate and the winding may comprise an adhesive. The semiconductor wafer is placed between the semiconductor wafer and the metal substrate, and then the 170 1292195 adhesive is hardened. 97. The method of fabricating a semiconductor chip package structure of a soldered end true metal wall according to claim 91, wherein the connecting portion is formed by providing a wire bond to the wire and the conductive wire. Between the feet. 98. The method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 91, wherein the metal substrate is etched by the second wet chemical etching to expose the winding. The method of manufacturing a semiconductor chip package structure for soldering a metal wall according to claim 98, wherein the metal substrate is formed by the first wet chemical (four) (4) forming the via hole By perforating and extending through the metal substrate to expose the winding; and the metal substrate is utilizing the second wetting 干蝕刻進仃蝕刻,去除該金屬基板與繞線間及該金 屬基板與金屬壁間之接觸區域。 100.依據中請專利範㈣99項所述之輝接端具金屬辟 片封裝結構之製造方法,其中,該金屬 該第二濕式化 171 1292195 基板係利用該第—濕式化學_進行㈣㈣該 導通孔’該導通孔係為1 σ並延伸該金屬基板但 未穿透,以及該金屬基板係利用第二濕式化學蝕刻 進行餘刻’從該金屬基板之未餘刻部份形成-金屬 柱’邊金屬基板之未餘刻部份係藉由該金屬壁定 義’該金屬㈣與職線及金屬壁麵,並使該繞 線與金屬壁間具電力地連接。 1〇2.,Π專利軸1〇1項所述之銲接端具金屬 體'片封裝結構之製造方法,其中,該金 土反糸利用口亥第—濕式化學餘刻進行餘刻,移除 大部份之金屬基板。 103·依據申請專利範圍筐】 y 韻述之銲接端具金屬 _日\片封裴結構之製造方法,其中,該金 於二ί:利用该第二濕式化學蝕刻進行蝕刻,移除 於該¥電腳位邊緣内之金屬基板。 104.依據申請專利範圍帛m 片封裝結構之製造方法其中= 屬基板係利用該n -、 於該h 學㈣進行關,移除 牛導體Μ邊緣内之金屬基板。 105·依據申請專利範圍 之半導體晶片㈣項所述之銲接端具金屬壁 其㈣胸ΐ 構之製造方法,其巾’該金屬 線與其它與金;刻進㈣刻’並使該繞 土板接觸之繞線具電力地隔離。 172 1292195 106.依據申料利範圍第%項所述之銲接端具金屬壁 之半導體晶片封裝結構之製造方法,其中,該金屬 土板係利用第—濕式化學餘刻進行餘刻,使該導電 腳位'、其匕於半導體晶片上之導電腳位具電力地 隔雜〇 7·依,中明專利範圍第91•項所述之銲接端具金屬壁 =半導體晶片封裝結構之製造方法,其中,該金屬 ::於連接該半導體晶片至該金屬基板及繞線 前形成。 108t=!:範圍第91項所述之銲接端具金屬壁 壁裝結辑之製造方法,其中,該金屬 後::該半導體晶片至該金屬基板及繞線 之+導體b曰片封裝結構之製造方法 層係可於連接該半導體曰 外八 β 前形成。牛ν體-片至該金屬基板及繞線 11〇.Γ=:Γ圍第91項所述之銲接端具金屬壁 之+導體晶片封裝結構之製造方法,其中,該鮮 層係可於連接該半導體晶全 /、 後形成。 至5亥金屬基板及繞線 壁 111•依射請專利範圍第91項所述之鮮接端具金屬 173 1292195 之半導體晶片封I結構之製造方法,其中,該連接 部係:於該金屬基板利用第二濕式化學㈣進行 韻刻前形成。 依據申#專利_第91項所述之銲接端具金屬壁 之半導體晶片封裝結構之製造方法,其中,該連接 料可於該金屬基板制第二濕式化學⑽進行 蝕刻後形成。 镛 依據申明專利範圍第91項所述之銲接端具金屬壁 之半導體晶片封裝結構之製造方法,其中,該密封 劑係可利用轉注成形法(transfer molding)形成。 114·依據申請專利_第91項所述之銲接端具金屬壁 3導體晶片㈣結構之製造方法,其中,該移除 邛份之絕緣基板係使該金屬壁及銲接層於第二 方向暴露,但不使該繞線暴露。 • 115 =據巾睛專利範圍第114項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除部份之絕緣基板係為移徐覆蓋該金屬壁及銲 接層於第二方向上之絕緣基板。 16'^據申請專利範圍第115項所述之鲜接端具金屬 漉之半導體晶片封裝結構之製造方法,其中,該移 除部份之絕緣基板係可利用研磨方式研磨該絕 緣基板。 174 1292195 U7.依據申請專利範圍第116項所述之銲接端具金屬 壁之半導體晶片封装結構之製造方法,其中,該移 除一部份之絕緣基板係可利用研磨方式研磨該絕 緣基板,但未研磨該金屬壁及銲接層,接著研磨該 絕緣基板、金屬壁及銲接層,然後直到該絕緣基 板、金屬壁及銲接層橫向地排列於一朝向第二方向 之平面時停止研磨’並使該金屬壁及銲接層暴露。 118.依據ΐ請專利㈣第117項料之銲且 壁之半導體晶片封裝結構之製造方法,其中:該二 接層係直接形成為該銲接端。 依料料難_ 118項料 壁之半導體晶片封裝結構之製造方法,其中 接端$成之方式係可包括於該絕緣基及 =端被研磨後使-鲜錫材料沈積於該鲜接層I 鲁 後使該輝錫材料與鮮接層一起回流形成該鲜接端。 第91項所述之鮮接端具金屬壁 體晶片封裝結構係為第—層切裝。巾斜導 121:=二屬括壁之半導㈣封裝結構之製 ‘提板 平面及第二平面 175 1292195 而該第二方向與第一方向相反; b、形成一繞線於金屬基板之第一平面上,其 中該繞線係與該金屬基板之第一平面接觸,並與該 金屬基板之第二平面隔離; C、利用第一濕式化學蝕刻對該金屬基板進行 蝕刻,因此於該金屬基板内形成一導通孔,該導通Dry etching is performed to remove the contact area between the metal substrate and the winding and between the metal substrate and the metal wall. 100. The method for manufacturing a glazing end metal-clad package structure according to the above-mentioned patent specification (4), wherein the second wet 171 1292195 substrate is subjected to the first wet chemical _ (4) (4) The via hole 'the via hole is 1 σ and extends the metal substrate but is not penetrated, and the metal substrate is subjected to a second wet chemical etching to form a 'detailed portion from the metal substrate—the metal pillar The unfinished portion of the metal substrate is defined by the metal wall as the metal (four) and the service line and the metal wall, and the winding is electrically connected to the metal wall. 1〇2. The manufacturing method of the metal body 'package structure of the welded end according to the patent shaft 1〇1, wherein the gold ruthenium is re-etched using the mouth-wet chemical remnant Except for most metal substrates. 103. According to the scope of the patent application scope y rhyme, the welding end of the metal _ _ _ 裴 裴 之 之 , , , , , , , : : : : : : : : : : : : : : : : : : : : : : : ¥ The metal substrate inside the edge of the electric pin. 104. The manufacturing method according to the patent application scope of the package structure wherein the substrate is closed by the n-, and the metal substrate in the edge of the bobbin is removed. 105. A method for manufacturing a (4) chest structure of a welded end metal wall according to the patented semiconductor wafer (4), the towel 'the metal wire and the other with gold; engraved (four) engraved' and the surrounding earth plate The winding of the contact is electrically isolated. 172 1292195 106. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to item 5% of claim 1 , wherein the metal earth plate is subjected to a first wet chemical residue to make a The conductive pin position ', the conductive pin on the semiconductor wafer has a power gap 〇7·, the welding end metal wall according to the ninth patent scope of the patent, the manufacturing method of the semiconductor chip package structure, Wherein, the metal: is formed before connecting the semiconductor wafer to the metal substrate and winding. 108t=!: The manufacturing method of the welding end metal wall wall assembly according to Item 91, wherein the metal:: the semiconductor wafer to the metal substrate and the +conductor b-chip package structure of the winding The fabrication method layer can be formed prior to joining the semiconductor bismuth. The manufacturing method of the + conductor wafer package structure of the metal end wall of the welding end, wherein the fresh layer is connectable The semiconductor crystal is formed entirely/after. The method for manufacturing a semiconductor wafer package I structure of the metal substrate 173 1292195 according to the 91st item of the patent scope, wherein the connection portion is: the metal substrate The formation of the rhyme is performed using the second wet chemistry (4). A method of manufacturing a semiconductor chip package structure for soldering a metal wall according to the invention of claim 91, wherein the solder material is formed by etching the second wet chemical (10) of the metal substrate.制造 A method of manufacturing a semiconductor wafer package structure for soldering end metal walls according to claim 91, wherein the sealant is formed by transfer molding. The method for manufacturing a structure of a metal core 3 conductor wafer (4) according to claim 91, wherein the insulating substrate is removed to expose the metal wall and the solder layer in a second direction. But the winding is not exposed. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; An insulating substrate in the second direction. The manufacturing method of the semiconductor chip package structure of the metal terminal of the present invention according to claim 115, wherein the insulating substrate of the removed portion can be ground by polishing. 174 1292195 U7. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 116, wherein the insulating substrate is removed by grinding, and the insulating substrate is ground by grinding, but The metal wall and the solder layer are not polished, and then the insulating substrate, the metal wall, and the solder layer are polished, and then the polishing is stopped until the insulating substrate, the metal wall, and the solder layer are laterally arranged in a plane facing the second direction. The metal wall and the solder layer are exposed. 118. A method of fabricating a semiconductor wafer package structure for soldering and walling according to claim 1-4 of the patent, wherein the second layer is formed directly as the soldering end. According to the manufacturing method of the semiconductor chip package structure of the 118 item wall, the method of forming the terminal may be performed after the insulating base and the = end are ground, and the fresh tin material is deposited on the fresh layer I After Lu, the tin-tin material is reflowed together with the fresh joint layer to form the fresh joint. The fresh terminal metal wall package structure described in item 91 is a first layer cut. The oblique guide 121:=the second semi-guided wall (4) the package structure of the 'plate plane and the second plane 175 1292195 and the second direction is opposite to the first direction; b, forming a winding on the metal substrate a plane in which the winding is in contact with the first plane of the metal substrate and is isolated from the second plane of the metal substrate; C. etching the metal substrate by the first wet chemical etching, thereby the metal Forming a via hole in the substrate, the conducting 孔係由該金屬基板之第二平面往其第—平面延伸 至該金屬基板内; d、形成一金屬壁於該金屬基板上,其中,續 金屬壁係與該導通孔内之金屬基板接觸,該金屬壁/ 係由該金屬基板之第二平面往其第—平面延伸至 該金屬基板内,而該金屬鶴包含—孔洞,該孔洞 係由該金屬基板之第二平面往其第—平面延伸至 該金屬基板内,並被該金屬壁覆蓋於第—方向上, 且包含一朝向第二方向之開口;The hole extends from the second plane of the metal substrate to the first plane to the metal substrate; d, forming a metal wall on the metal substrate, wherein the continuous metal wall is in contact with the metal substrate in the via hole, The metal wall extends from the second plane of the metal substrate to the first plane thereof into the metal substrate, and the metal crane includes a hole extending from the second plane of the metal substrate to the first plane thereof Into the metal substrate, covered by the metal wall in the first direction, and comprising an opening facing the second direction; 金屬:二:接層係與該孔 洞内之 繞 f、機械地連接一 線、金屬壁及銲接層 導電腳位; 半導體晶片至該金屬基板、 ’其中該半導體晶片係包括 〇 队 疋按邵, 導電腳位具電力地連接; h、於連接該半導體晶片 金屬壁及銲接端後形# _〜金屬基板、繞線、 起成1封剩,其t,該密封齊I 176 1292195 係與該半導體晶片接觸,並從該半導體晶片、金屬 基板、繞線、金屬壁及銲接層往第一方向垂直地延 伸,而該金屬基板係從該半導體晶片及繞線往第二 方向垂直地延伸; i、於形成該密封劑後,利用第二濕式化學蝕 刻對該金屬基板蝕刻,因此減少該金屬基板與繞線 間及該金屬基板與金屬壁間之接觸區域,並使二繞 線暴露; J、於該金屬基板利甩第二濕式化學蝕刻進行 钱刻後’形成一絕緣基板,該絕緣基板係與該繞 線、金屬壁及銲接層接觸,並覆蓋該繞線 ' 金屬壁 及銲接層於第二方向上,· k、移除一部份之絕緣基板,使該絕緣基板無 法覆蓋该銲接層於第二方向上;以及 卜提供一銲接端,該銲接端係與該孔洞内之 # 金屬壁接觸’並包含該銲接層。 122.依射請專利範㈣121項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該繞 、線之形成方式係可包括形成—電鍍遮罩於該金屬 基板上,其中該電鍍遮罩係包含—開口,該開口係 使Π刀之金屬基板暴露;以及穿過該電鑛遮罩之 開口將該繞線電㈣該金屬基板之暴露部份。 Π3.依㈣請專利範㈣121項所述之薛接端具金屬 177 1292195 壁之半導體晶片封裝結構之製造方法,其中,該金 屬壁及銲接層之形成方法係至少包括下列步驟並 依照順序: a、 穿過一電鍍遮罩之開口將該金屬壁電鍍於 該金屬基板上,並進入該導通孔; b、 使一錫膏沈積於該金屬壁上;以及 c、 使該錫膏回流,因此形成該銲接層。 # 124·依據申請專利範圍第121項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該銲 接端係為該鲜接層。 125·依據申請專利範圍第121項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該銲 接端形成之方式係可包括於利用第二濕式化學蝕 刻對該金屬基板進行蝕刻後,使一銲錫材料沈積於 該銲接層上,然後使該銲錫材料及銲接層一起回 ® 流’形成該銲接端。 126·依據申請專利範圍第121項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用該第一濕式化學蝕刻進行蝕刻形成 该導通孔,該導通孔係為一穿孔並延伸穿透該金屬 基板,使该繞線暴露;以及該金屬基板係利用第二 濕式化學姓刻進行姓刻,去除該金屬基板與繞線間 及該金屬基板與金屬壁間之接觸區域。 178 1292195 127·依據申請專利範圍帛126項所述之辉接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用該第二濕式化學蝕刻進行蝕刻,移除 該金屬基板。 128. 依射請專利範圍第121項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用該第一濕式化學餘刻進行姓刻形成 • 該導通孔’該導通孔係為一凹口並延伸該金屬基板 但冬穿透;以及該金屬基板係利用第二濕式化學餘 刻進行餘刻’從該金屬基板之未钱刻部份形成一金 屬柱,該金屬基板之未蚀刻部份係藉由該金屬壁定 義’該金屬柱係與該繞線及金屬壁接觸,並使該繞 線與金屬壁間具電力地連接。 129. 依據申請專職㈣128項所述之銲接端具金屬 • 壁之”體晶4封裝結構之製造枝,其中,該金 屬基板係利用該第二濕式化學_進行#刻,移除 大部份之金屬基板。 130. 依據巾請專利範圍第121項所述之銲接端具金屬 f之半導體晶片封裝結構之製造方法,其中,該金 土板係湘第—濕式化學餘刻進行#刻,並使該 &amp;U匕與金屬基板接觸之繞線具電力地隔離。 131. :據t請專利範圍第121項所述之銲接端具金屬 土之+導體晶片封裝結構之製造方法,其中,該金 179 1292195 :基板係利用第二濕式化學 電腳位與其它於半導 丁則使β亥導 地隔離。 導體曰日片上之導電腳位具電力 132.=C21項所述之_具金屬 =之+導體晶片封裝結構之製造方法 接部係可於該金屬基·板 r 乂連 錢刻前形成。板利用第-濕式化學餘刻進 # 121 + V體晶片封褒結構之製造方法,其中,該連 # 4係可於該金屬基板利用第二濕式化學姓刻進 行蝕刻後形成。 134·依據申請專圍第121項所述之料端具金屬 壁之半導體晶片封|結構之製造方法,其中,該移 除一部份之絕緣基板係使該金屬壁及銲接層於第 • 二方向暴露,但不使該繞線暴露。 135·依據申請專利範圍第134項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除 J知之絕緣基板係為移除覆蓋該金屬壁及銲 接層於第二方向上之絕緣基板。 136·依據申請專利範圍第135項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 哈一部份之絕緣基板係可利用研磨方式研磨該絕 180 1292195 緣基板。Metal: two: the layer is connected with the winding in the hole, mechanically connecting a wire, the metal wall and the conductive layer of the soldering layer; the semiconductor wafer to the metal substrate, wherein the semiconductor chip comprises a 〇 team, Shao, conductive The foot is electrically connected; h, after connecting the metal wall of the semiconductor wafer and the soldering end, the shape of the metal substrate, the winding, and the sealing of the metal substrate, and the sealing of the semiconductor wafer Contacting and extending perpendicularly from the semiconductor wafer, the metal substrate, the winding, the metal wall, and the soldering layer to the first direction, and the metal substrate extends perpendicularly from the semiconductor wafer and the winding to the second direction; After the sealing agent is formed, the metal substrate is etched by the second wet chemical etching, thereby reducing the contact area between the metal substrate and the winding and between the metal substrate and the metal wall, and exposing the two windings; The metal substrate is subjected to a second wet chemical etching to form an insulating substrate, and the insulating substrate is in contact with the winding, the metal wall and the solder layer, and is covered. The winding 'metal wall and the soldering layer are in the second direction, · k, removing a part of the insulating substrate, so that the insulating substrate cannot cover the soldering layer in the second direction; and providing a soldering end, The solder end is in contact with the # metal wall in the hole and contains the solder layer. The manufacturing method of the semiconductor chip package structure of the soldering end metal wall according to the above-mentioned patent, wherein the winding and the wire are formed by forming a plating mask on the metal substrate, wherein The plating mask includes an opening that exposes the metal substrate of the file, and an opening through the electrode mask to electrically wire the exposed portion of the metal substrate. Π3. According to (4) the manufacturing method of the semiconductor chip package structure of the 177 1292195 wall of the splicing end of the invention, wherein the method for forming the metal wall and the solder layer comprises at least the following steps and in accordance with the order: a Passing a metal wall onto the metal substrate through the opening of a plating mask and entering the via hole; b, depositing a solder paste on the metal wall; and c, reflowing the solder paste, thereby forming The solder layer. #124. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 121, wherein the solder joint is the fresh joint layer. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 121, wherein the soldering end is formed by using the second wet chemical etching to perform the metal substrate After etching, a solder material is deposited on the solder layer, and then the solder material and the solder layer are returned together to form the solder end. 126. The method of fabricating a semiconductor chip package structure for soldering end metal walls according to claim 121, wherein the metal substrate is etched by the first wet chemical etching to form the via hole, the via hole Is a perforation and extending through the metal substrate to expose the winding; and the metal substrate is subjected to a second wet chemical surname to remove the metal substrate and the winding and the metal substrate and the metal wall Contact area between. 178 1292195 127. The method of fabricating a semiconductor wafer package structure having a metal wall according to claim 126, wherein the metal substrate is etched by the second wet chemical etching to remove the metal Substrate. 128. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to the invention, wherein the metal substrate is formed by using the first wet chemical residue; 'The via hole is a notch and extends the metal substrate but penetrates in winter; and the metal substrate is subjected to a second wet chemical residue for the remainder' to form a metal pillar from the unetched portion of the metal substrate The unetched portion of the metal substrate is defined by the metal wall as the metal pillar is in contact with the winding and the metal wall, and the winding is electrically connected to the metal wall. 129. According to the application for full-time (4) 128, the welding end of the metal-walled "body" 4 package structure manufacturing branch, wherein the metal substrate uses the second wet chemical _ to carry out the engraving, remove most of the The metal substrate is 130. According to the method of manufacturing the semiconductor chip package structure of the soldering end metal f according to the scope of the invention, wherein the gold earth plate is a C-wet-wet chemical remnant And the method of manufacturing the +-conductor chip package structure of the metal material of the soldering end according to claim 121, wherein The gold 179 1292195: the substrate is separated from the other semiconductors by the second wet chemical electric pin. The conductive pin on the conductor has a power of 132.=C21 The manufacturing method of the metal=+conductor chip package structure can be formed before the metal substrate/plate is etched. The plate is fabricated by using the first-wet chemical residue into the #121+V body wafer sealing structure. Method, wherein the company #4 can The metal substrate is formed by etching after the second wet chemical catalog. 134. According to the method for manufacturing a semiconductor wafer package having a metal wall according to the application of the above-mentioned item 121, wherein the removal method is The insulating substrate is such that the metal wall and the solder layer are exposed in the second direction, but the winding is not exposed. 135. The semiconductor chip package structure of the solder end metal wall according to claim 134 The manufacturing method, wherein the removing the insulating substrate is to remove the insulating substrate covering the metal wall and the soldering layer in the second direction. 136. The soldering end metal wall according to claim 135 A method of fabricating a semiconductor chip package structure, wherein the insulating substrate of the portion is polished to polish the 180 1292195 edge substrate by a polishing method. 137·依據巾請專㈣圍帛以項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除一部份之絕錄基板係可利用研磨方式研磨該絕 緣基板,但未研磨該金屬壁及銲接層,接著研磨該 絕緣基板、金屬壁及銲接層,然後直到該絕緣基 板\金屬壁及銲接層橫向地排列於一朝向第二方向 之平面時停止研磨,並使該金屬壁及銲接層暴露。 138·依據巾請專利範圍帛137項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該鮮 接層係直接形成為該銲接端。 139.依據申#專利㈣帛138項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該銲 ,端形成之方式係可包括於該絕緣基板、金屬壁及 知接端被研磨後使—銲錫材料沈積於該銲接層,缺 後使該輝錫材料與銲接層1回流形成該鲜接端: •、 /專利範圍第121項所述之銲接端具金肩 壁之半導體晶片封裝結構之製造方法,其中,該4 ¥體日日片封裝結構係為第―層次封裝。 141·、種知接端具金屬壁之半導體晶片封裝結構之集 造方法,係至少包括· a提供一包含相對應之第一平面及第二平茂 181 1292195 之金屬基板,其中該金屬基板之第一平面係朝向第 一方向,該金屬基板之第二平面係朝向第二方向, 而該第二方向與第一方向相反; b、 形成一繞線於金屬基板之第一平面上,其 中该繞線係與該金屬基板之第一平面接觸,並與該 金屬基板之第二平面隔離;137. According to the method of manufacturing the semiconductor chip package structure of the soldering end metal wall according to the item, wherein the part of the unrecorded substrate can be ground by grinding. But the metal wall and the solder layer are not polished, and then the insulating substrate, the metal wall, and the solder layer are polished, and then the polishing is stopped until the insulating substrate, the metal wall, and the solder layer are laterally arranged in a plane facing the second direction, and The metal wall and the solder layer are exposed. 138. A method of fabricating a semiconductor wafer package structure having a solder end metal wall according to the scope of the invention, wherein the fresh layer is directly formed as the solder end. 139. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 138, wherein the soldering end formation method is included in the insulating substrate, the metal wall, and the known end. After being ground, the solder material is deposited on the solder layer, and the solder material is reflowed with the solder layer 1 to form the fresh joint: •, / the semiconductor end of the welding end with the gold shoulder wall The manufacturing method of the chip package structure, wherein the 4 ¥ body day package structure is a first-level package. 141. The method for assembling a semiconductor chip package structure having a metal wall is at least included to provide a metal substrate including a corresponding first plane and a second flat lens 181 1292195, wherein the metal substrate The first plane is oriented toward the first direction, the second plane of the metal substrate is oriented toward the second direction, and the second direction is opposite to the first direction; b, forming a winding on the first plane of the metal substrate, wherein the The winding system is in contact with the first plane of the metal substrate and is isolated from the second plane of the metal substrate; c、 利用第一濕式化學蝕刻對該金屬基板進行 蝕刻,因此於該金屬基板内形成一導通孔,該導通 孔係由該金屬基板之第二平面往其第一平面延伸 至該金屬基板内; d、形成一金屬壁於該金屬基板上,其中,該 金屬壁係與該導通孔内之金屬基板接觸,該金屬壁 係由該金屬基板之第二平面往其第一平面延伸至 該金屬基板内,而該金屬壁係包含一孔洞,該孔洞 係由該金屬基板之第二平面往其第—平面延伸至 該金屬基板内,並被該金屬壁覆蓋於第—方向上, 且包含一朝向第二方向之開口; 佩吧連接 丁守經晶片至該金屬基板、 繞線及金屬壁,其中該半導體晶片係包括一導電腳 位; ”―連接部’該連接部係可與該繞線及 導電腳位具電力地連接; 凡綠及 於連接該半導體晶片至該 及金屬壁後形成一密封劑,1 枚、凡線 /、中,該雄、封劑係與該 182 1292195 半導體晶片接觸,並從該半導體晶片、金屬基板、 繞線及金屬壁往第一方向垂直地延伸,而該金屬基 板係從該半導體晶片及繞線往第二方向垂直地延 伸; h、於形成該密封劑後,形成一銲接層,該銲 接層係與該孔洞内之金屬壁接觸,並與該繞線隔 離; 1、於形成該銲接層後,利用第二濕式化學蝕 刻對該金屬基板蝕刻,因此減少該金屬基板與繞線 間及該金屬基板與金屬壁間之接觸區域,並使該繞 線暴露; j、 於該金屬基板利用第二濕式化學蝕刻進行 蝕刻後,形成一絕緣基板,該絕緣基板係與該繞 線、金屬壁及銲接層接觸,並覆蓋該繞線、金屬壁 及銲接層於第二方向上; k、 移除一部份之絕緣基板,使該絕緣基板無 法覆蓋s亥銲接層於第二方向上;以及 l、 提供一銲接端,該銲接端係與該孔洞内之 金屬壁接觸,並包含該銲接層。 i42·㈣,專利範㈣⑷項所述之銲接端具金屬 壁之半導體晶片封裝結構之$造方法,其中,該繞 線之形成方式係可包括形成―電鍍遮罩於該金^ 基板上,其㈣電鍍遮罩係包含—開口,該開口係 】83 1292195 使一部份之金屬基板暴露;以及穿過該電鍍遮罩之 開口將該繞線電鍍於該金屬基板之暴露部份。 143·依據申請專利範圍第141項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬壁及銲接層之形成方法係至少包括下列步驟並 依照順序: ▲ a、穿過一電鍍遮罩之開口將該金屬壁電鍍於 鲁 *亥金屬基板上,並進入該導通孔; b、 使一錫膏沈積於該金屬壁上;以及 c、 使該錫膏回流,因此形成該銲接層。 144.依據申請專·圍第141項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該 接端係為該鲜接層。 ⑷.依據申請專利範㈣141項所述之賴端具金 壁之半導體晶片封裝結構之製造方法,其中,該 接端形成之方式係可包括於利用第二濕式化學 屬基板進㈣刻後,使一銲錫材料沈積 μ知接S上,然後使該銲錫材料及銲接層一起 流,形成該銲接端。 141項所述之銲接端具㈣ 屬基板係^ m _ 該導通孔,該導通孔二予钱刻進行韻刻形成 係為一牙孔並延伸穿透該金屬 184 1292195 基板,使該繞線暴露;以及該金屬基板係利用第二 濕式化學蝕刻進行蝕刻,去除該金屬基板與繞線間 及該金屬基板與金屬壁間之接觸區域。 147·依據申請專利範圍帛146項所述之鲜接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用邊第二濕式化學韻刻進行钱刻,移除 該金屬基板。 148·依據申請專利範圍第141項所述之銲接端具金屬 壁之半導體晶片封裴結構之製造方法,其中,該金 屬基板係利用該第一濕式化學蝕刻進行蝕刻形成 孩導通孔,該導通孔係為一凹口並延伸該金屬基板 但未穿透;以及該金屬基板係利用第二濕式化學蝕 刻進行蝕刻,從該金屬基板之未蝕刻部份形成一金 屬柱,該金屬基板之未蝕刻部份係藉由該金屬壁定 義,該金屬柱係與該繞線及金屬壁接觸,並使該繞 線與金屬壁間具電力地連接。 149.依據申請專利範圍第148項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用該第二濕式化學蝕刻進行蝕刻,移除 大部份之金屬基板。 150·依據申請專利範圍第141項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用第二濕式化學蝕刻進行蝕刻,並使該 185 1292195 繞線與其它與金屬基板接觸之繞線具電力地隔離。 151·依據申請專圍第141項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用第二濕式化學钱刻進行钱刻,使該導 電腳位與其它於半導體晶片上之導電腳位具電力 地隔離。 152. 依據申請專利範圍第141項所述之銲接端具金屬 籲 壁之半導體晶片封裝結構之製造方法,其中,該連 接部係可於該金屬基板利用第二濕式化學蝕刻進 行蝕刻前形成。 153. 依據巾請專利範圍第141項所述之料端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該連 妾係了於4金屬基板利用第二濕式化學钱刻進 行蝕刻後形成。 # Η4,依據申請專利範圍第141項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除^伤之絕緣基板係使該金屬壁及鮮接層於第 二方向暴露,但不使該繞線暴露。 155·依射請專利範圍第154項所述之銲接端具金屬 壁之,導體晶片封裝結構之製造方法,其中,該移 、°卩伤之絕緣基板係為移除覆蓋該金屬壁及銲 接層於第二方向上之絕緣基板。 186 1292195 156·依據申請專利範圍第155項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除一部伤之絕緣基板係可利用研磨方式研磨該絕 緣基板。 157·依據申請專利範圍第156項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除一部份之絕緣基板係可利用研磨方式研磨該絕 馨 緣基板,但未研磨該金屬壁及銲揍層,接著研磨該 絕緣基板、金屬壁及銲接層,然後直到該絕緣基 板、金屬壁及銲接層橫向地排列於一朝向第二方向 之平面時知止研磨,並使該金屬壁及銲接層暴露。 158·依據申#專利|&amp;圍第157項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該銲 接層係直接形成為該銲接端。 259.依據中請專利範圍第158項所述之鮮接端具金^ 壁t半導體晶片封裝結構之製造方法,其中,該卷 接端t成之方式係可包括於該絕緣基板、金屬壁义 銲接端被研磨後使—銲錫材料沈積於該銲接層,艺 後使》玄薛錫材料與銲接層一起回流形成該辉接端 160·依據申請專利範圚筮 壁之半導體曰項所述之銲接端具以 土之牛^日日片封裝結構 法 導體晶片封裝結構係為第一層次封裝。 187 1292195 161. 一種銲接端具金屬壁 造方法,係至少包括 之半導體晶片封裝結構 之製c. etching the metal substrate by using the first wet chemical etching, thereby forming a via hole in the metal substrate, the via hole extending from the second plane of the metal substrate to the first plane to the metal substrate d. forming a metal wall on the metal substrate, wherein the metal wall is in contact with the metal substrate in the via hole, the metal wall extending from the second plane of the metal substrate to the first plane to the metal In the substrate, the metal wall includes a hole extending from the second plane of the metal substrate to the first plane thereof into the metal substrate, and is covered by the metal wall in the first direction, and includes a hole Opening to the second direction; the bar is connected to the D-Shou wafer to the metal substrate, the winding and the metal wall, wherein the semiconductor chip includes a conductive pin; the "connecting portion" is connectable to the wire and the conductive portion The foot is electrically connected; the green and the semiconductor wafer are connected to the metal wall to form a sealant, one, the wire, the middle, the male, the sealant and the 182 1292195 The semiconductor wafer is in contact with and extends perpendicularly from the semiconductor wafer, the metal substrate, the winding, and the metal wall in a first direction, and the metal substrate extends perpendicularly from the semiconductor wafer and the winding to the second direction; After forming the sealant, forming a solder layer that is in contact with and is isolated from the metal wall in the hole; 1. After forming the solder layer, the metal is wetted by the second wet chemical etching The substrate is etched, thereby reducing the contact area between the metal substrate and the winding and the metal substrate and the metal wall, and exposing the winding; j, after the metal substrate is etched by the second wet chemical etching, forming a An insulating substrate contacting the winding, the metal wall and the soldering layer, and covering the winding, the metal wall and the soldering layer in the second direction; k, removing a portion of the insulating substrate to make the insulating The substrate is incapable of covering the s-welding layer in the second direction; and l is provided with a soldering end that is in contact with the metal wall in the hole and includes the soldering layer. The method for manufacturing a semiconductor chip package structure having a metal end of a soldering end according to the invention, wherein the winding is formed by forming a “plating mask” on the gold substrate. (4) the plating mask includes an opening, the opening is 83 1292195 exposing a portion of the metal substrate; and the opening is plated through the opening of the plating mask to the exposed portion of the metal substrate. The method for manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 141, wherein the method for forming the metal wall and the solder layer comprises at least the following steps and in accordance with the sequence: ▲ a, through an electroplating Opening a metal wall on the metal substrate of the mask and entering the via hole; b, depositing a solder paste on the metal wall; and c, reflowing the solder paste, thereby forming the solder layer . 144. The method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 141, wherein the terminal is the fresh joint layer. (4) The method for manufacturing a semiconductor chip package structure according to claim 141, wherein the connection is formed by using the second wet chemical substrate after the (four) engraving, A solder material is deposited on the S, and then the solder material and the solder layer are flowed together to form the soldered end. The welding end piece (4) of item 141 belongs to the substrate system ^ m _ the through hole, and the through hole 2 is formed into a hole and extends through the metal 184 1292195 substrate to expose the winding. And the metal substrate is etched by the second wet chemical etching to remove the contact area between the metal substrate and the winding and between the metal substrate and the metal wall. 147. A method of fabricating a semiconductor wafer package structure having a metal terminal of a spliced end according to claim 146, wherein the metal substrate is etched using a second wet chemical rhyme to remove the metal Substrate. 148. The method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 141, wherein the metal substrate is etched by the first wet chemical etching to form a via hole. The hole is a notch and extends the metal substrate but does not penetrate; and the metal substrate is etched by the second wet chemical etching, and a metal pillar is formed from the unetched portion of the metal substrate, and the metal substrate is not The etched portion is defined by the metal wall that is in contact with the winding and the metal wall and electrically connects the winding to the metal wall. 149. The method of fabricating a semiconductor wafer package structure having a solder end metal wall according to claim 148, wherein the metal substrate is etched by the second wet chemical etching to remove a majority of the metal. Substrate. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 141, wherein the metal substrate is etched by a second wet chemical etching, and the 185 1292195 is wound and Other windings in contact with the metal substrate are electrically isolated. 151. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 141, wherein the metal substrate is engraved with a second wet chemistry, so that the conductive pin is Other conductive pins on the semiconductor wafer are electrically isolated. 152. The method of fabricating a semiconductor wafer package structure of a solder termination metal wall according to claim 141, wherein the connection portion is formed before the metal substrate is etched by the second wet chemical etching. 153. A method of fabricating a semiconductor wafer package structure having a metal wall according to claim 141, wherein the tantalum is formed by etching a metal substrate using a second wet chemical etch. . #Η4, the manufacturing method of the semiconductor chip package structure of the soldering end metal wall according to claim 141, wherein the insulating substrate is removed to make the metal wall and the fresh layer in the second direction Exposed, but does not expose the winding. 155. According to the invention, the method for manufacturing a conductor chip package structure according to the welding end of the invention, wherein the insulating substrate is removed to cover the metal wall and the solder layer. An insulating substrate in the second direction. 186. The method of manufacturing a semiconductor wafer package structure for soldering end metal walls according to claim 155, wherein the insulating substrate on which a portion of the damage is removed is capable of polishing the insulating substrate by grinding. 157. The method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 156, wherein the removing the insulating substrate is performed by grinding the brilliant substrate, but The metal wall and the solder layer are not polished, and then the insulating substrate, the metal wall and the solder layer are polished, and then the insulating substrate, the metal wall and the solder layer are arranged to be laterally arranged in a plane facing the second direction, and the polishing is known. The metal wall and the solder layer are exposed. 158. The method of manufacturing a semiconductor wafer package structure for soldering end metal walls according to the above-mentioned application, wherein the soldering layer is directly formed as the soldering end. 259. The method according to claim 158, wherein the crimping end is formed on the insulating substrate and the metal wall. After the soldering end is ground, the solder material is deposited on the soldering layer, and the "Xuanxue tin material is reflowed together with the soldering layer to form the soldering terminal 160. The soldering according to the semiconductor article of the patent application The conductor chip package structure of the earthen cows and the Japanese package structure is the first level package. 187 1292195 161. A method of manufacturing a metal wall for a soldering end, comprising at least a semiconductor chip package structure 、杈供一包含相對應之第一 之金屬基板,其㈣金屬基板之第 :方向’該金屬基板之第二平面係朝:面第t朝方:弟 而該第二方向與第一方向相反; ° ▲ b、形成一繞線於金屬基板之第一平面上,1 :该繞線係與該金屬基板之第一平面接觸,並與該 金屬基板之第二平面隔離; c、 機械地連接一半導體晶片至該金屬基板及 、、:線其中該半導體晶片係包括一導電腳位; d、 形成一連接部,該連接部係可與該繞線及 導電腳位具電力地連接; e、於連接該·半導體晶片至該金屬基板及繞線 後形成一密封劑,其中,該密封劑係與該半導體晶 片接觸,並從該半導體晶片、金屬基板及繞線往第 一方向垂直地延伸,而該金屬基板係從該半導體晶 片及繞線往第二方向垂直地延伸; f、 於形成密封劑後,利用第一濕式化學蝕刻 對該金屬基板進行触刻,因此於該金屬基板内形成 一導通孔,該導通孔係由該金屬基板之第二平面往 其第一平面延伸至該金屬基板内; g、 形成一金屬壁於該金屬基板上,其中,該 金屬壁係與該導通孔内之金屬基板接觸,該金屬壁 1292195 係由該金屬基板之第二平面往其第一平面延伸至 該金屬基板内,而該金屬壁係包含一孔洞,該孔洞 係由該金屬基板之第二平面往其第一平面延伸至 該金屬基板内,並被該金屬壁覆蓋於第一方向上 且包含一朝向第二方向之開口; -h、形成一銲接層,該銲接層係與該孔洞内之 金屬壁接觸,並與該繞線隔離; 1、於形成該銲接層後,利用第二濕式化學蝕 9 刻對該金屬基板蝕刻,因此減少該金屬基板與繞線 間及該金屬基板與金屬壁間之接觸區域,並使該繞 線暴露; j、於該金屬基板利甩第二濕式化學蝕刻進行 蝕刻後,形成一絕緣基板,該絕緣基板係與該繞 線、金屬壁及銲接層接觸,並覆蓋該繞線、金屬壁 及銲接層於第二方向上; • k、移除一部份之絕緣基板,使該絕緣基板無 法覆蓋該銲接層於第二方向上;以及 1、提供一銲接端,該銲接端係與該孔洞内之 金屬壁接觸,並包含該銲接層。 162·依據申請專利範圍第161項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該繞 線之形成方式係可包括形成一電鍍遮罩於該金屬 基板上’其中該電鍍遮罩係包含一開口,該開口係 189 1292195 使°卩伤之金屬基板暴露;以及穿過該電鍍遮罩之 開口將該繞線電鍍於該金屬基板之暴露部份。 163·依據申睛專利範圍第161項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬壁及銲接層之形成方法係至少包括下列步驟並 依照順序: a、 穿過一電鍍遮罩之開口將該金屬壁電鍍於 φ 該金屬基板上,並進入該導通孔; b、 使一錫膏沈積於該金屬壁上;以及 c、 使該錫膏回流,因此形成該銲接層。 164. 依據巾料職圍第161項所狀銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該銲 接端係為該鮮接層。 165. 依據申請專利範圍第161項所述之銲接端具金屬 • 壁之半導體晶片封裝結構之製造方法,其中,該銲 接端形成之方式係可包括於利用第二濕式化學姓 刻對該金&gt;1基板it行㈣後ϋ騎料沈積於 該銲接層上’然後使該銲錫材料及銲接層-起回 流’形成該銲接端。 166.依據申請專利範圍第161項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用該第一濕式化學㈣進行餘刻形成 »亥導通孔Θ ‘通孔係為—穿孔並延伸穿透該金屬 190 1292195 基板,使該繞線暴露;錢該金屬基板制用第二 濕式化學㈣進行_,去除該金屬基板與繞線間 及該金屬基板與金屬壁間之接觸區域。 7.依據申明專利乾圍第166項所述之鲜接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 f基板係利用該第二濕式化學蝕刻進行蝕刻,移除 •亥金屬基板。 68·依據申明專利祀圍帛161項所述之鲜接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用該第-濕式化學姓刻進行蚀刻形成 該導通孔,該導通孔係為一凹口並延伸該金屬基板 仁未穿透’以及該金屬基板係利用第二濕式化學姓 d進灯钕刻’從豸金屬基板之未餘刻部份形成一金 屬柱,該金屬基板之未_部份係藉由該金屬壁定 義,該金屬㈣與該繞線及金屬壁接觸,並使該繞 線與金屬壁間具電力地連接。 16=據中請專利範圍帛168項所述之銲接端具金屬 土之半導體晶片封裴結構之製造方法,其中,該金 屬基板係湘該第二濕式化學⑽]進㈣刻,移除 大部份之金屬基板。 17〇1據申請專利範圍第161項所述之銲接端具金屬 之半導體晶片封裂結構之製造方法,其中,該金 屬基板係利用第二濕式化學餘刻進行㈣,並使該 191 1292195 繞線與其它與金屬基板制之繞線具電力地隔離。 171 161 ¥體日日片封裝結構之製造方法,其中,該金 f基板係利用第二濕式化學_進行_,使該導 與其它於半導體晶片上之導電腳位具電力 地隔離。Providing a corresponding first metal substrate, wherein: (4) the second direction of the metal substrate: the second plane of the metal substrate is toward: a surface t toward the side: the second direction is opposite to the first direction; ° ▲ b, forming a winding on the first plane of the metal substrate, 1: the winding is in contact with the first plane of the metal substrate, and is isolated from the second plane of the metal substrate; c, mechanically connected a semiconductor wafer to the metal substrate and the wire: wherein the semiconductor chip includes a conductive pin; d, forming a connecting portion, the connecting portion is electrically connectable to the winding and the conductive pin; e, Connecting the semiconductor wafer to the metal substrate and winding to form a sealant, wherein the sealant is in contact with the semiconductor wafer, and extends perpendicularly from the semiconductor wafer, the metal substrate and the winding in a first direction, and The metal substrate extends perpendicularly from the semiconductor wafer and the winding in a second direction; f. after forming the sealant, the metal substrate is touch-etched by the first wet chemical etching, and thus the metal substrate is Forming a via hole in the board, the via hole extending from the second plane of the metal substrate to the first plane into the metal substrate; g, forming a metal wall on the metal substrate, wherein the metal wall is Contacting the metal substrate in the via hole, the metal wall 1292195 extends from the second plane of the metal substrate to the first plane thereof into the metal substrate, and the metal wall includes a hole, and the hole is formed by the metal substrate The second plane extends into the first plane to the metal substrate, and is covered by the metal wall in the first direction and includes an opening facing the second direction; -h, forming a solder layer, the solder layer is The metal wall in the hole contacts and is isolated from the winding; 1. after the solder layer is formed, the metal substrate is etched by the second wet chemical etching, thereby reducing the metal substrate and the winding and the a contact area between the metal substrate and the metal wall, and exposing the winding; j, after the metal substrate is etched by the second wet chemical etching, forming an insulating substrate, and the insulating substrate is The winding, the metal wall and the soldering layer are in contact with each other, and cover the winding, the metal wall and the soldering layer in the second direction; • k, removing a part of the insulating substrate, so that the insulating substrate cannot cover the soldering layer And in the second direction; and 1, providing a soldering end, the soldering end is in contact with the metal wall in the hole, and comprises the soldering layer. 162. The method of fabricating a semiconductor wafer package structure according to claim 161, wherein the winding is formed by forming a plating mask on the metal substrate. The plating mask includes an opening 189 1292195 that exposes the scratched metal substrate; and the wire is plated through the opening of the plating mask to the exposed portion of the metal substrate. 163. The method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 161, wherein the method for forming the metal wall and the solder layer comprises at least the following steps and in accordance with the order: a. Opening a metal wall on the metal substrate and entering the via hole through a opening of the plating mask; b, depositing a solder paste on the metal wall; and c, reflowing the solder paste, thereby forming the Welding layer. 164. A method of fabricating a semiconductor wafer package structure having a solder end metal wall according to item 161 of the article of the invention, wherein the solder joint is the fresh joint layer. 165. The method of fabricating a semiconductor wafer package structure for soldering end metal according to claim 161, wherein the soldering end is formed by using a second wet chemical surname to the gold &gt; 1 Substrate It row (4) After the crucible is deposited on the solder layer 'then the solder material and the solder layer - reflow' to form the solder end. 166. The method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 161, wherein the metal substrate is subjected to the first wet chemistry (4) to form a etched through hole Θ ' The through hole is—perforated and extends through the metal 190 1292195 substrate to expose the winding; the metal substrate is fabricated by the second wet chemical (4), and the metal substrate and the winding are removed and the metal substrate is removed. Contact area between metal walls. 7. The method according to claim 166, wherein the gold f substrate is etched by the second wet chemical etching to remove the Metal substrate. 68. The method of manufacturing a semiconductor chip package structure having a metal terminal of a spliced end according to claim 161, wherein the metal substrate is etched by the first wet chemical to form the via hole. The via hole is a notch and extends the metal substrate without penetration 'and the metal substrate is formed by a second wet chemical name d into the lamp to form a metal pillar from the undefected portion of the base metal substrate The un-part of the metal substrate is defined by the metal wall, the metal (4) is in contact with the winding and the metal wall, and the winding is electrically connected to the metal wall. 16= The manufacturing method of the semiconductor wafer sealing structure of the welding end metal soil according to the patent scope 帛168, wherein the metal substrate is the second wet chemical (10)] Part of the metal substrate. The method for manufacturing a semiconductor wafer chipping structure for soldering end metal according to claim 161, wherein the metal substrate is subjected to a second wet chemical residue (4), and the 191 1292195 is wound. The wires are electrically isolated from other windings made of metal substrates. 171 161 The method of manufacturing a body-wound package structure, wherein the gold f-substrate is electrically isolated from other conductive pins on the semiconductor wafer by using a second wet chemical. =據::月專利範圍第161項所述之銲接端具金屬 土之半導體晶片封裝結構之製造方法,其中,該連 接部係可於該金屬基板利用第二濕式化學姓刻進 行蝕刻前形成。 173=據巾請專圍帛i6i項所述之鋅接端具金屬 ?半導體晶片封裝結構之製造方法,其中,該連 接部係可於該金屬基板利用第二濕式化學餘刻進 行蝕刻後形成。 ,據申%專利|&amp;圍第161項所述之鋅接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除°卩伤之絕緣基板係使該金屬壁及銲接層於第 二方向暴露,但不使該繞線暴露。 175·依據中請專利範圍帛174項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除一部份之絕緣基板係為移除覆蓋該金屬壁及銲 接層於第二方向上之絕緣基板。 192 1292195 176·依據申請專利範圍第175項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除部份之絕緣基板係可利用研磨方式研磨該絕 緣基板。 177.依據申請專利範圍第176項所述之鮮接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除&quot;卩伤之絕緣基板係可利用研磨方式研磨該絕 緣基板,但未研磨該金屬壁及銲接層,接著研磨該 、邑緣基板、金屬壁及銲接層,然後直到該絕緣基 板、金屬i及#接層橫向地排列於一朝肖第二方向 之平面時停止研磨,並使該金屬壁及銲接層暴露。 依據U利帛177項所述之鮮接端具金屬 J之半導體晶片封裝結構之製造方法,其中,該鋅 接層係直接形成為該銲接端。 179 178項所述之銲接端具金屬 ,-sa片封裝結構之製造方法,其中,該銲 接端I成之方式係可包括於該絕緣基板、金屬壁及 銲錫材料沈積於該銲接層,然 ^ ;斗與銲接層一起回流形成該銲接端。 180.依據申請專利範圍 辟之半導Ρ ^ 餐狀_端具金屬 ::體曰曰片封裝結構之製造方法,其中,哕丰 導體晶片封裝結構係為第一層次封裝。、以 193 1292195 181.—種銲接端具金屬壁之半導體晶片封裝結構之製 造方法,係至少包括: a、 提供一包含相對應之第一平面及第二平面 之金屬基板’其中該金屬基板之第一平面係朝向第 一方向,該金屬基板之第二平面係朝向第二方向, 而該第二方向與第一方向相反; b、 形成一繞線於金屬基板之第一平面上,i 中該繞線係與該金屬基板之第一平面接觸,並與該 金屬基板之第二平面隔離; c、 利用第一濕式化學触刻對該金屬基板進行 敍刻’因此於該金屬基板内形成一穿孔,該穿孔係 穿過該金屬基板之第一及第二平面間,使該繞線暴 露; d、 形成一金屬壁於該金屬基板及繞線上,其 中,該金屬壁係與該穿孔内之金屬基板及繞線接 # 觸,該金屬壁係延伸穿透該金屬基板之第一及第二 平面間,而該金屬壁係包含一孔洞,該孔洞係由該 金屬基板之第一平面往其第一平面延伸至該金屬 基板内,並被該金屬壁覆蓋於第一方向上,且包含 一朝向第二方向之開口; e、 形成一銲接層,該銲接層係與該孔洞内之 金屬壁接觸,並與該繞線隔離; f、 機械地連接一半導體晶片至該金屬基板及 繞線,其中該半導體晶片係包括—導電腳位; 194 1292195 g、 形成一連接部,該連接部係可與該繞線及 導電腳位具電力地連接; h、 於連接該半導體晶片至該金屬基板及繞線 後形成一密封劑,其中,該密封劑係與該半導體晶 片接觸,並從該半導體晶片、金屬基板及繞線往第 一方向垂直地延伸,而該金屬基板係從該半導體晶 片及繞線往第二方向垂直地延伸; 1、於形成該金屬壁、銲接層及密封劑後,利 用第二濕式化學蝕刻對該金屬基板蝕刻,因此去除 該金屬基板與繞線間及該金屬基板與金屬壁間之 接觸區域,並使該繞線暴露; j、 於該金屬基板利用第二濕式化學蝕刻進行 姓刻後’形成一絕緣基板,該絕緣基板係與該繞 線、金屬壁及銲接層接觸,並覆蓋該繞線、金屬壁 及銲接層於第二方向上; k、 移除一部份之絕緣基板,使該絕緣基板無 法覆蓋该銲接層於第二方向上;以及 l、 提供一銲接端,該銲接端係與該孔洞内之 金屬壁接觸,並包含該銲接層。 182·依據申請專利範圍第181項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該繞 線、金屬壁及銲接端之形成方式係可包括將該繞線 電鍍於该金屬基板上,再將該金屬壁電鍍於該金屬 195 1292195 基板及繞線上,接著使一錫膏沈積於金屬壁上,最 後使該錫膏回流,因此形成該銲接層。 依據申請專·㈣181項所述之料端具金屬 壁之半導體晶片封裝結構之製造方法,#中,該銲 接端係為該鮮接層。 184.依據申請專利範㈣181項所述之鲜接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該銲 接端形成之方式係可包括於利用第二濕式化蝕 刻=該金屬基板進雜職,使-銲㈣料沈積於 該銲接層上,然後使該銲錫材料及銲接層一起回 流’形成該鋅接端。 185·依據申請專利範圍帛181項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用該第二濕式化學蝕刻進行蝕刻移除 $亥金屬基板。 依據u利^圍帛181項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該金 屬基板係利用第二濕式化學蝕刻進行蝕刻,並使該 繞線與其它與金屬基板接觸之繞線具電力地隔 離,以及使該導電腳位與其它於半導體晶片上之導 電腳位具電力地隔離。 187.依據中請專利範圍第181項所述之録接端具金屬 196 1292195 壁之半導體晶片封裝結構之製造方法,其中,進一 步包含形成該金屬壁,接著形成該銲接層,然後連 接該半導體晶片至該金屬基板、繞線、金屬壁及銲 接層,以及形成該密封劑。 188.依據申請專利範圍第⑻項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,進一 步包含形成該金屬壁,接著連接該半導體 • 金屬基板、繞線及金屬壁,然後形成該密封劑,以 及形成該銲接層。 189·依射請專㈣圍第181項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,進一 f包3連接忒半導體晶片至該金屬基板及繞線,接 著形成該密封劑,•然後形成該金屬壁,以及形成該 銲接層。 #跳依據申請專㈣圍第181項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該移 除β卩伤之絕緣基板係可利用研磨方式研磨該絕 緣基板,但未研磨該金屬壁及銲接層,接著研磨該 絕緣基板、金屬壁及銲接層,然後直到該絕緣基 板、金屬壁及銲接層橫向地排列於一朝向第二方向 之平面時停止研磨,並使該金屬壁及銲接層暴露。 191. 一種銲接端具金屬壁之半導體晶片封裝結構之製 造方法,係至少包括·· 197 1292195 a、 提供一包含相對應之第一平面及第二平面 之金屬基板,其中該金屬基板之第一平面係朝向第 一方向,該金屬基板之第二平面係朝向第二方向, 而該第二方向與第一方向相反; b、 形成一繞線於金屬基板之第一平面上,其 中该繞線係與該金屬基板之第一平面接觸,並與該 金屬基板之第二平面隔離; 鲁 c、利用第一濕式化學姓刻對該金屬基板進行 敍刻,因此於該金屬基板内形成一凹口,該凹口係 由該金屬基板之第二平面往其第一平面延伸至該 金屬基板内但未穿透,並與該金屬基板之第二平面 隔離; d开&gt; 成一金屬壁於該金屬基板及繞線上,其 中,該金屬壁係與該凹口内之金屬基板接觸,該金 屬壁係由該金屬基板之第二平面往其第一平面延 籲 伸至該金屬基㈣但未穿透,而該金屬壁係與該金 屬基板之第-平面關並包含—孔洞,該孔洞係由 該金屬基板之第二平面往其第一平面延伸至該金 屬基板内,並被該金屬壁覆蓋於第一方向上,且包 含一朝向第二方向之開口; y成#接層,該鮮接層係與該孔洞内之 金屬壁接觸,並與該繞線隔離; ㈣二機由械地連接一半導體晶片至該金屬基板及 心5亥半導體晶片係包括一導電腳位; 198 1292195 g、 形成一連接部,該連接部係可與該繞線及 導電腳位具電力地連接; h、 於連接該半導體晶片至該金屬基板及繞線 後形成一密封劑,其中,該密封劑係與該半導體晶 片接觸,並從該半導體晶片、金屬基板及繞線往第 一方向垂直地延伸,而該金屬基板係從該半導體晶 片及繞線往第二方向垂直地延伸; φ 1、於形成該金屬壁、銲接層及密封劑後,利 用第二濕式化學蝕刻對該金屬基板蝕刻,因此減少 該金屬基板與繞線間及該金屬基板與金屬壁間之 接觸區域但未去除,並從該金屬基板之未蝕刻部份 形成一金屬柱,該金屬基板之未蝕刻部份係藉由該 金屬壁疋義,該金屬柱係與該繞線及金屬壁接觸, 並使該繞線與金屬壁間具電力地連接,且與該銲接 層隔離,使該繞線暴露; 嫌 j於δ亥金屬基板利用第二濕式化學餘刻進行 蝕刻後,形成一絕緣基板,該絕緣基板係與該繞 線、金屬壁、金屬柱及銲接層接觸,並覆蓋該繞線、 金屬壁、金屬柱及銲接層於第二方向上; k、移除一部份之絕緣基板,使該絕緣基板無 法覆蓋該銲接層於第二方向上;以及 】、提供一銲接端,該銲接端係與該孔洞内之 金屬壁接觸,並包含該銲接層。 199 1292195 192.ΓΠΓ範圍*191項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該繞 Γ金屬ϋ銲接端之形成方式係可包括將該繞: :鑛於:金屬基板上’再將該金屬壁電鍍於該金屬 基板及繞線上,接菩佳^ 總春ϋ 较耆便錫膏沈積於金屬壁上,最 後使該錫膏回流,因此形成該銲接層。 193·依據申請專利範圍第191馆 _弟191項所述之銲接端具金屬 土之半導體晶片封|結構之製造方法,其中,該銲 接端係為該銲接層。 194.依據中請專利範圍帛191項所述之輝接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,該鲜 接端形成之方式係可包括於利用第二濕 刻對該金屬基板進行蝕刿德你b… 汉進仃蝕刻後,使一銲錫材料沈積於 該銲接層上1後使該銲騎料及銲接層一起回 流’形成該銲接端。 195=據申請專利範圍帛⑼項所述之銲接端具金屬 =+導體晶片封裝結構之製造方法,其中,該金 土板係利用4第二濕式化學射】進行#刻,移除 大部份之金屬基板。 196.^據巾請專·㈣i9i自所述之銲接端具金屬 1之半導體晶片封裝結構之製造方法,其中,該金 ^基板係利用第二濕式化學餘刻進行姓刻,並使該 、&quot;°線與其它肖金屬基板接觸之繞線具電力地隔 200 1292195 離,以及使該導電腳位與其它於半導體晶片上之導 電腳位具電力地隔離。 197 φ 198. 199. 200. .依據申請專利範圍第191項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,進一 步包含形成4金屬壁,接著形成該銲接層,然後連 接該半導體晶片至該金屬基板、繞線、金屬壁及銲 接層,以及形成該密封劑。 依據申请專利範圍第191項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,進一 步包含形成該金屬壁,接著連接該半導體晶片至該 金屬基板、繞線及金屬壁,然後形成該密封劑,以 及形成該鲜接層。 依據申請專利範圍帛191項所述之銲接端具金屬 壁之半導體晶片封裝結構之製造方法,其中,進一 步包含連接該半導體晶片至該金屬基板及繞線,接 著形成該密封劑,然後形成該金屬壁,以及形成該 銲接層。 依據申請專利範圍第191項所述之銲接端具金 壁之半導體晶片封裝結構之製造方法,其中該移 除一部份之絕緣基板係可利用研磨方式研磨該絕 緣基板,但未研磨該金屬壁及銲接層,接著研磨該 絕緣基板、金屬壁及銲接層,然後直到該絕 板、金屬壁及銲接層橫向地排列於一朝向第二方二 201 1292195 之平面時停止研磨,並使該金屬壁及銲接層暴露。According to the invention, the method for manufacturing a semiconductor chip package structure for soldering end metal according to claim 161, wherein the connection portion can be formed before the metal substrate is etched by using a second wet chemical . 173=There is a method for manufacturing a zinc-terminated metal-semiconductor chip package structure as described in item i6i, wherein the connection portion can be formed by etching the metal substrate with a second wet chemical residue. . According to the method of manufacturing a semiconductor chip package structure of a zinc-bonded metal wall according to the above-mentioned patent, wherein the insulating substrate is removed, and the metal wall and the solder layer are The second direction is exposed, but the winding is not exposed. 175. The method of fabricating a semiconductor chip package structure for soldering end metal walls according to claim 174, wherein removing a portion of the insulating substrate is to remove the metal wall and the solder layer An insulating substrate in the second direction. The method of manufacturing a semiconductor chip package structure for soldering a metal wall according to claim 175, wherein the insulating portion of the removed portion is ground by polishing. 177. The method of fabricating a semiconductor chip package structure having a metal terminal of a spliced end according to claim 176, wherein the insulating substrate that is removed and smashed can be ground by grinding, but The metal wall and the solder layer are not polished, and then the germanium substrate, the metal wall and the solder layer are polished, and then the insulating substrate, the metal i and the germanium layer are laterally arranged in a plane in the second direction toward the second direction. And exposing the metal wall and the solder layer. According to the manufacturing method of the semiconductor chip package structure of the metal terminal of the present invention, the zinc bonding layer is directly formed as the soldering end. The method for manufacturing a solder-terminated metal-sa-package structure according to the above-mentioned item 179, 178, wherein the soldering end I is formed in the manner that the insulating substrate, the metal wall and the solder material are deposited on the solder layer, The bucket is reflowed together with the solder layer to form the solder end. 180. According to the scope of the patent application, the semi-conductor ^ meal _ end metal: the manufacturing method of the body 封装 chip package structure, wherein the 哕 conductor chip package structure is the first level package. The method for manufacturing a semiconductor chip package structure for soldering end metal walls includes at least: a. providing a metal substrate including a corresponding first plane and a second plane, wherein the metal substrate The first plane is oriented toward the first direction, the second plane of the metal substrate is oriented toward the second direction, and the second direction is opposite to the first direction; b, forming a winding on the first plane of the metal substrate, i The winding system is in contact with the first plane of the metal substrate and is isolated from the second plane of the metal substrate; c. the metal substrate is etched by the first wet chemical etch, and thus formed in the metal substrate a perforation, the perforation is passed between the first and second planes of the metal substrate to expose the winding; d, forming a metal wall on the metal substrate and the winding, wherein the metal wall and the perforation a metal substrate and a winding contact, the metal wall extending through the first and second planes of the metal substrate, and the metal wall includes a hole, the hole is formed by the metal base The first plane extends into the first plane to the metal substrate, and is covered by the metal wall in the first direction, and includes an opening facing the second direction; e, forming a solder layer, the solder layer is The metal wall in the hole contacts and is isolated from the winding; f. mechanically connects a semiconductor wafer to the metal substrate and the winding, wherein the semiconductor chip includes a conductive pin; 194 1292195 g, forming a connecting portion The connecting portion is electrically connected to the winding and the conductive pin; h, forming a sealing agent after connecting the semiconductor wafer to the metal substrate and the winding, wherein the sealing agent is in contact with the semiconductor wafer And extending perpendicularly from the semiconductor wafer, the metal substrate and the winding to the first direction, wherein the metal substrate extends perpendicularly from the semiconductor wafer and the winding to the second direction; 1. forming the metal wall and the solder layer After the sealant, the metal substrate is etched by the second wet chemical etching, thereby removing the contact area between the metal substrate and the winding and between the metal substrate and the metal wall. And exposing the winding; j, forming an insulating substrate by using the second wet chemical etching to form an insulating substrate, the insulating substrate contacting the winding, the metal wall and the soldering layer, and covering the Wrapping, metal wall and solder layer in a second direction; k, removing a portion of the insulating substrate such that the insulating substrate cannot cover the solder layer in the second direction; and l providing a soldering end, the soldering The end system is in contact with the metal wall in the hole and includes the solder layer. 182. The method of fabricating a semiconductor wafer package structure for soldering end metal walls according to claim 181, wherein the winding, the metal wall, and the soldering end are formed by plating the winding on the wire On the metal substrate, the metal wall is electroplated on the metal 195 1292195 substrate and the winding, and then a solder paste is deposited on the metal wall, and finally the solder paste is reflowed, thereby forming the solder layer. According to the manufacturing method of the semiconductor chip package structure with the metal end of the material described in the application (4), the solder joint is the fresh joint layer. 184. The method of fabricating a semiconductor chip package structure having a metal terminal of a spliced end according to claim s, wherein the soldering end is formed by using a second wet etching = the metal substrate Miscellaneous, a solder-on-four (4) material is deposited on the solder layer, and then the solder material and the solder layer are reflowed together to form the zinc joint. 185. The method of fabricating a semiconductor wafer package structure having a solder end metal wall according to claim 181, wherein the metal substrate is etched to remove the metal substrate by the second wet chemical etching. The method for manufacturing a semiconductor chip package structure of a solder end metal wall according to the above-mentioned item 181, wherein the metal substrate is etched by using a second wet chemical etching, and the winding and the other metal are The substrate contact windings are electrically isolated and electrically isolated from other conductive pins on the semiconductor wafer. 187. A method of fabricating a semiconductor wafer package structure having a metal 196 1292195 wall according to claim 181, further comprising forming the metal wall, then forming the solder layer, and then connecting the semiconductor wafer The metal substrate, the winding, the metal wall, and the solder layer are formed, and the sealant is formed. 188. The method of fabricating a semiconductor chip package structure for soldering end metal walls according to claim 8 wherein the method further comprises forming the metal wall, and then connecting the semiconductor metal substrate, the winding, and the metal wall, and then The encapsulant is formed and the solder layer is formed. 189. According to the method for manufacturing a semiconductor chip package structure of a soldering end metal wall according to Item 181, wherein a semiconductor package is connected to the metal substrate and the winding, and then the sealing is formed. And then forming the metal wall and forming the solder layer. The manufacturing method of the semiconductor chip package structure of the soldering end metal wall described in Item 181 of the application (4), wherein the insulating substrate for removing the β-brain can be ground by grinding, but not Polishing the metal wall and the solder layer, then grinding the insulating substrate, the metal wall and the solder layer, and then stopping the grinding until the insulating substrate, the metal wall and the solder layer are laterally arranged in a plane facing the second direction, and the metal is stopped The walls and solder layers are exposed. 191. A method of fabricating a semiconductor chip package structure having a metal end of a soldering end, comprising at least 197 1292195 a, providing a metal substrate including a corresponding first plane and a second plane, wherein the metal substrate is first The plane of the plane is oriented toward the first direction, the second plane of the metal substrate is oriented toward the second direction, and the second direction is opposite to the first direction; b, forming a winding on the first plane of the metal substrate, wherein the winding Contacting the first plane of the metal substrate and isolating from the second plane of the metal substrate; Lu C, using the first wet chemical name to etch the metal substrate, thereby forming a concave in the metal substrate a recess extending from the second plane of the metal substrate to the first plane into the metal substrate but not penetrating and isolated from the second plane of the metal substrate; d opening &gt; forming a metal wall a metal substrate and a winding, wherein the metal wall is in contact with the metal substrate in the recess, the metal wall extending from the second plane of the metal substrate to the first plane thereof The base (4) but not penetrating, and the metal wall is closed to the first plane of the metal substrate and includes a hole extending from the second plane of the metal substrate to the first plane thereof into the metal substrate, And being covered by the metal wall in a first direction, and comprising an opening facing the second direction; y into a layer, the fresh layer is in contact with the metal wall in the hole and is isolated from the winding; The second machine mechanically connects a semiconductor chip to the metal substrate and the core semiconductor chip comprises a conductive pin; 198 1292195 g, forming a connecting portion, the connecting portion is capable of being electrically connected to the winding and the conductive pin Connecting, forming a sealant after connecting the semiconductor wafer to the metal substrate and winding, wherein the sealant is in contact with the semiconductor wafer, and from the semiconductor wafer, the metal substrate and the winding to the first direction Extending vertically, the metal substrate extends perpendicularly from the semiconductor wafer and the winding to the second direction; φ 1, after forming the metal wall, the solder layer and the sealant, using the second wet chemical etch Etching the metal substrate, thereby reducing the contact area between the metal substrate and the winding and the metal substrate and the metal wall, but not removing the metal substrate from the unetched portion of the metal substrate. The etched portion is defined by the metal wall, the metal pillar is in contact with the winding and the metal wall, and the winding is electrically connected to the metal wall and is isolated from the soldering layer to make the winding After being etched by the second wet chemical residue, the insulating substrate is in contact with the winding, the metal wall, the metal pillar and the soldering layer, and covers the winding. The metal wall, the metal post and the solder layer are in the second direction; k. removing a portion of the insulating substrate such that the insulating substrate cannot cover the solder layer in the second direction; and providing a soldering end, The solder end is in contact with the metal wall in the hole and includes the solder layer. 199 1292195. The method of manufacturing a semiconductor wafer package structure for soldering end metal walls according to item 191, wherein the method of forming the soldering end of the turns of the tantalum metal may include: winding: metal: metal On the substrate, the metal wall is electroplated on the metal substrate and the winding wire, and the solder paste is deposited on the metal wall, and finally the solder paste is reflowed, thereby forming the solder layer. 193. The method of fabricating a semiconductor wafer package of a solder end metal according to claim 191, wherein the soldering end is the solder layer. 194. The method of fabricating a semiconductor chip package structure having a fused end metal wall according to the ninth patent application, wherein the splicing end is formed by using the second wet etch to the metal substrate. After etching, a solder material is deposited on the solder layer 1 to cause the soldering material and the solder layer to reflow together to form the solder end. 195=Manufacturing method of a soldering end metal=+conductor chip package structure according to the scope of application patent 帛(9), wherein the gold plate is subjected to 4 second wet chemical shots to remove most of the Parts of the metal substrate. 196. ^ 据 请 专 ( 四 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i The winding of the &quot;° line in contact with the other slanted metal substrate is electrically separated from each other by 200 1292195, and electrically isolates the conductive pin from other conductive pins on the semiconductor wafer. 197 φ 198. 199. The method of manufacturing a semiconductor chip package structure for soldering end metal walls according to claim 191, further comprising forming a metal wall, then forming the solder layer, and then connecting The semiconductor wafer is bonded to the metal substrate, the wire, the metal wall, and the solder layer, and the sealant is formed. The method for fabricating a semiconductor chip package structure for soldering end metal walls according to claim 191, further comprising forming the metal wall, and then connecting the semiconductor wafer to the metal substrate, the winding and the metal wall, and then The encapsulant is formed and the clathrate layer is formed. A method of fabricating a semiconductor chip package structure for soldering end metal walls according to claim 191, further comprising connecting the semiconductor wafer to the metal substrate and winding, forming the encapsulant, and then forming the metal a wall, and forming the solder layer. The method for manufacturing a semiconductor chip package structure of a soldering end gold wall according to claim 191, wherein the removing the insulating substrate is performed by grinding the insulating substrate, but the metal wall is not ground. And soldering the layer, then grinding the insulating substrate, the metal wall and the solder layer, and then stopping the grinding until the web, the metal wall and the solder layer are laterally arranged on a plane facing the second side 201 1292195, and the metal wall is closed And the solder layer is exposed. 202202
TW095104307A 2005-08-31 2006-02-09 Semiconductor chip assembly with metal containment wall and solder terminal TWI292195B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/216,783 US7419851B2 (en) 2000-10-13 2005-08-31 Method of making a semiconductor chip assembly with a metal containment wall and a solder terminal

Publications (2)

Publication Number Publication Date
TW200709314A TW200709314A (en) 2007-03-01
TWI292195B true TWI292195B (en) 2008-01-01

Family

ID=37817688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095104307A TWI292195B (en) 2005-08-31 2006-02-09 Semiconductor chip assembly with metal containment wall and solder terminal

Country Status (2)

Country Link
CN (1) CN100440469C (en)
TW (1) TWI292195B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732096B (en) * 2017-11-06 2021-07-01 台灣積體電路製造股份有限公司 Micro-connection structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595909B2 (en) * 1994-09-14 1997-04-02 日本電気株式会社 Semiconductor device
US5861666A (en) * 1995-08-30 1999-01-19 Tessera, Inc. Stacked chip assembly
US5736456A (en) * 1996-03-07 1998-04-07 Micron Technology, Inc. Method of forming conductive bumps on die for flip chip applications
US6350386B1 (en) * 2000-09-20 2002-02-26 Charles W. C. Lin Method of making a support circuit with a tapered through-hole for a semiconductor chip assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732096B (en) * 2017-11-06 2021-07-01 台灣積體電路製造股份有限公司 Micro-connection structure

Also Published As

Publication number Publication date
CN100440469C (en) 2008-12-03
CN1925123A (en) 2007-03-07
TW200709314A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
US7833827B1 (en) Method of making a semiconductor chip assembly with a bumped terminal, a filler and an insulative base
US7932165B1 (en) Method of making a semiconductor chip assembly with a laterally aligned filler and insulative base
US7009297B1 (en) Semiconductor chip assembly with embedded metal particle
US7750483B1 (en) Semiconductor chip assembly with welded metal pillar and enlarged plated contact terminal
US7419851B2 (en) Method of making a semiconductor chip assembly with a metal containment wall and a solder terminal
US7446419B1 (en) Semiconductor chip assembly with welded metal pillar of stacked metal balls
US7268421B1 (en) Semiconductor chip assembly with welded metal pillar that includes enlarged ball bond
US6740576B1 (en) Method of making a contact terminal with a plated metal peripheral sidewall portion for a semiconductor chip assembly
US7190080B1 (en) Semiconductor chip assembly with embedded metal pillar
US7232706B1 (en) Method of making a semiconductor chip assembly with a precision-formed metal pillar
US7993983B1 (en) Method of making a semiconductor chip assembly with chip and encapsulant grinding
US7262082B1 (en) Method of making a three-dimensional stacked semiconductor package with a metal pillar and a conductive interconnect in an encapsulant aperture
US7064012B1 (en) Method of making a semiconductor chip assembly with a pillar and a routing line using multiple etch steps
US6522017B2 (en) Wiring board and semiconductor device
US7319265B1 (en) Semiconductor chip assembly with precision-formed metal pillar
US6576493B1 (en) Method of connecting a conductive trace and an insulative base to a semiconductor chip using multiple etch steps
US7232707B1 (en) Method of making a semiconductor chip assembly with an interlocked contact terminal
US7811863B1 (en) Method of making a semiconductor chip assembly with metal pillar and encapsulant grinding and heat sink attachment
US7494843B1 (en) Method of making a semiconductor chip assembly with thermal conductor and encapsulant grinding
TW200406900A (en) Electric circuit device and method for making the same
US7129113B1 (en) Method of making a three-dimensional stacked semiconductor package with a metal pillar in an encapsulant aperture
US7094676B1 (en) Semiconductor chip assembly with embedded metal pillar
US7132741B1 (en) Semiconductor chip assembly with carved bumped terminal
TWI307549B (en)
TWI292195B (en) Semiconductor chip assembly with metal containment wall and solder terminal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees