TWI238600B - Level converting circuit, semiconductor device and display apparatus having such level converting circuit - Google Patents

Level converting circuit, semiconductor device and display apparatus having such level converting circuit Download PDF

Info

Publication number
TWI238600B
TWI238600B TW090103005A TW90103005A TWI238600B TW I238600 B TWI238600 B TW I238600B TW 090103005 A TW090103005 A TW 090103005A TW 90103005 A TW90103005 A TW 90103005A TW I238600 B TWI238600 B TW I238600B
Authority
TW
Taiwan
Prior art keywords
potential
transistor
channel
circuit
conversion circuit
Prior art date
Application number
TW090103005A
Other languages
Chinese (zh)
Inventor
Shoichiro Matsumoto
Original Assignee
Sanyo Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co filed Critical Sanyo Electric Co
Application granted granted Critical
Publication of TWI238600B publication Critical patent/TWI238600B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only

Abstract

A kind of level converting circuit, the semiconductor device and the display apparatus having such level converting circuit are revealed in the present invention. The main technique is featured with the followings. The control circuit of the control part responds to the input signal so as to make the gate voltage of the p-channel MOSFET in the exciter decrease from power source voltage to a level higher than the turning-on voltage value of the p-channel MOSFET. Additionally, the gate voltage of the n-channel MOSFET is made to increase from low level of input signal to a level higher than the turning-on voltage value of the n-channel MOSFET. Thus, when one of the p-channel MOSFET and the n-channel MOSFET shows stronger turning-on status, the other MOSFET shows weaker turning-on status.

Description

1238600 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 A7 B7 五、發明說明(1 ) 【發明所屬技術領域】 本發明係關於一種將輸入信號的電壓振幅變換成更大 的電壓振幅之位準變換電路及具備該位準變換電路之半導 體裝置及顯示裝置。 【技術背景】 按’近年採用整體碎(bulk si lie on)的積體電路,有開 發一種將微處理器或記憶體與邏輯電路搭載在同一晶片 上’通稱「系統整合在晶片上」(SyStern on silicon)的晶片。 隨其開發,促進了以儘可能微細的設計規則(design rule) 將多種電路單晶片化之技術的開發。 惟’由於每一電路種類以不同的設計規則設計,因此 無可避免的必須進行不同設計規則之電路的積體化。結 果’便在單晶片内混載有利用不同電源電壓動作的多數電 路。此情況下,在不同電路間的介面部分,便必須進行電 壓的位準變換。 藉由將不同種類的多數電路混載於同一晶片。所以, 在不同電路間進行電壓位準變換的位準變換電路,便亦必 須講求高速動作特性。 再者’如液晶顯示裝置、有機EL(electrol uminescence(有 機電激發光))裝置等的顯示元件,係採用由多晶石夕所形成 的薄膜電晶體。當將此類顯示元件與位準變換電路共同設 计於同一晶片上時,位準變換電路亦將為由多晶矽所形成 的薄膜電晶體構成。 H日日^的製造程序中,將產生臨限電壓值(threshold 本^尺度翻中關家χ 297公爱 1 312308 illlllllj— ^ · I----丨丨訂 i_ ---- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 1238600 A7 B7 五、發明說明(2 ) voltage)等元件特性散亂(不均勻)的現象。尤其是在由多晶 矽所形成的薄膜電晶體中,臨限電壓值等元件特性的散亂 狀況更加嚴重,故而便期待一種極便薄膜電晶體的臨限電 壓值等元件特性散亂情況下,仍能確實動作的位準變換電 路。 此外,在此類顯示元件中,由低耗電力化及高精細化 的觀點觀之,更需要即便賦予小振幅的輸入信號’亦可動 作且可高速動作的位準變換電路。 第45圖所示係習知位準變換電路第1例的電路圖。 在第45圖所示的位準變換電路800中,含有2個p通 道MOSFET(金屬氧化半導體電場效果電晶體)801,802、及 2 個 η 通道 MOSFET803,804 〇 p通道MOSFET801,802係分別連接於接受電源電壓 VDD的電源端子與輸出節點N11,N12之間,而η通道 MOSFET803,804則分別連接於輸出節點Ν11,Ν12與接地 端子之間。ρ通道MOSFET801,802的閘極,分別與輸出節 點N12,N11交叉連接。η通道MOSFET803,804的閘極,則 賦予互補變化的輸入信號CLK1,CLK2。 當輸入信號CLK1形成高位準,而輸入信號CLK2形 成低位準時,η通道MOSFET803便呈導通(ON)狀態,而η 通道MOSFET804貝U呈不導通(OFF)狀態。藉此便使ρ通道 MOSFET802呈導通(ON)狀態,而使ρ通道MOSFET801呈 不導通(OFF)狀態。結果輸出節點N12的輸出電壓Vout便 將上昇。反之,當輸入信號CLK1形成低位準,而輸入信 (請先閱讀背面之注意事項再填寫本頁) 1_ ^1 ϋ n ϋ ·ϋ^-T*»J met I I ϋ < 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 2 312308 1238600 A7 五、發明說明(3 ) 號CLK2形成高位準時,輸出節點N12的輸出電壓Vout 便將降低。 (請先閱讀背面之注意事項再填寫本頁) 此情況下,為使η通道MOSFET803,804呈導通狀態, 輸入信號CLK1,CLK2的電壓振幅便必須大於n通道 MOSFET803,804的臨限電壓值Vtn。 所以,第45圖中的位準變換電路800便適用於輸入信 號與輪出信號之電壓比屬較小情況者。1238600 Printed by A7 B7, Consumer Cooperative of Intellectual Property Bureau, Ministry of Economic Affairs 5. Description of the Invention (1) [Technical Field of the Invention] The present invention relates to a level conversion circuit for converting the voltage amplitude of an input signal into a larger voltage amplitude, and A semiconductor device and a display device having the level conversion circuit. [Technical background] According to the 'integrated integrated circuit used in recent years, there is a development of a microprocessor or memory and logic circuit mounted on the same chip', commonly known as "system integration on the chip" (SyStern on silicon). With its development, the development of technology for singulating a variety of circuits with design rules as fine as possible has been promoted. However, since each circuit type is designed with different design rules, it is inevitable that the integration of circuits with different design rules must be performed. As a result, most circuits operated by different power supply voltages are mixed in a single chip. In this case, the voltage level must be changed in the interface part between different circuits. By mixing most types of circuits on the same chip. Therefore, a level conversion circuit that performs voltage level conversion between different circuits must also focus on high-speed operation characteristics. Furthermore, display elements such as liquid crystal display devices and organic EL (electrol uminescence) devices are thin film transistors made of polycrystalline silicon. When such a display element and a level conversion circuit are co-designed on the same chip, the level conversion circuit will also be a thin film transistor formed of polycrystalline silicon. During the manufacturing process of H and ^, a threshold voltage value will be generated (threshold this ^ scale to turn around the house χ 297 public love 1 312308 illlllllj — ^ · I ---- 丨 Order i_ ---- (Please first Read the notes on the back and fill in this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1238600 A7 B7 V. Description of the invention (2) Voltage) and other component characteristics are scattered (uneven). Especially in thin-film transistors made of polycrystalline silicon, the scattering of device characteristics such as threshold voltage is more serious. Therefore, it is expected that a kind of ultra-thin thin-film transistor will have scattered device characteristics such as threshold voltage. Level conversion circuit that can operate reliably. In addition, from the viewpoints of lower power consumption and higher definition in such display elements, a level conversion circuit that can operate and can operate at a high speed even when an input signal with a small amplitude is given is more needed. Figure 45 is a circuit diagram of a first example of a known level conversion circuit. The level conversion circuit 800 shown in FIG. 45 includes two p-channel MOSFETs (metal oxide semiconductor field effect transistors) 801 and 802, and two n-channel MOSFETs 803,804 and p-channel MOSFETs 801 and 802 are connected respectively. Between the power supply terminal receiving the power supply voltage VDD and the output nodes N11 and N12, the n-channel MOSFETs 803 and 804 are respectively connected between the output nodes N11, N12 and the ground terminal. The gates of the p-channel MOSFETs 801 and 802 are cross-connected to the output nodes N12 and N11, respectively. The gates of the n-channel MOSFETs 803 and 804 give complementary input signals CLK1 and CLK2. When the input signal CLK1 forms a high level and the input signal CLK2 forms a low level, the n-channel MOSFET 803 is in an ON state, and the n-channel MOSFET 804 is in an OFF state. Thereby, the p-channel MOSFET 802 is turned on, and the p-channel MOSFET 801 is turned off. As a result, the output voltage Vout of the output node N12 will rise. Conversely, when the input signal CLK1 forms a low level, and the input letter (please read the precautions on the back before filling this page) 1_ ^ 1 ϋ n ϋ · ϋ ^ -T * »J met II ϋ < This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) 2 312308 1238600 A7 V. Description of the invention (3) When the CLK2 reaches a high level, the output voltage Vout of the output node N12 will decrease. (Please read the precautions on the back before filling this page) In this case, in order for the n-channel MOSFETs 803,804 to be turned on, the voltage amplitude of the input signals CLK1 and CLK2 must be greater than the threshold voltage value Vtn of the n-channel MOSFETs 803,804. . Therefore, the level conversion circuit 800 in FIG. 45 is suitable for a case where the voltage ratio of the input signal to the output signal is small.

譬如該位準變換電路800,在將3V系信號變換成5V 系信號、將2.5V系信號變換成3V系信號、或者將1.8V 系信號變換成2.5V系信號或3.3V系信號之情況下便有 效。 第46圖表示習知位準變換電路第2例的電路圖。 第46圖中的位準變換電路810係含有偏壓電路811、 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 P 通道 MOSFET812、及 η 通道 MOSFET813。p 通道 MOSFET812係連接於電源電壓VDD的電源端子與輸出節 點13之間,而η通道MOSFET813則連接於輸出節點13 與接收特定變壓VEE的電源端子之間。輸入信號clk係 提供給ρ通道MOSFET812的閘極與偏壓電路811。偏壓電 路8 11係將輸入信號CLK的中心位準進行位移,並賦予打 通道MOSFET813的閘極。 虽輸入#號CLK形成高位準時,ρ通道m〇SFet812 便呈不導通狀態,而η通道M〇SFET813則呈導通狀態。 藉此降低輸出節點N13的輪出電壓v〇ut。當輸入信號clk 形成低位準時,ρ通道M〇SFET812便呈導通狀態,而η 3 本紙張尺度適时_家標準(GNS)A4規格⑵Q 士 312308 1238600 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(4 ) 通道MOSFET813則呈不導通狀態。藉此提昇輸出節點 N13的輸出電壓Vout。 此時,因為係藉由偏壓電路811而進行輸入信號CLK 中心位準的位移,所以位準變換電路810即使在輸入信號 CLK的電壓振幅小於η通道MOSFET813的臨限電壓值Vtn 的情況下,亦可動作。 第47圖表示習知位準變換電路第3例的電路圖。 第47圖中的位準變換電路820係含有定位電路821與 電流反射鏡型放大器(current mirror type amplifier)822。 電流反射鏡型放大器822係包含有 2個p通道 MOSFET831,832、及 2 個 η 通道 MOSFET833,834。p 通道 MOSFET831,832係分別連接於接受電源電壓VDD的電源 端子與輸出節點N14,N15之間,而η通道MOSFET833,834 則分別連接於輸出節點N14,N15與接地端子之間。p通道 MOSFET831,832的閘極,與輸出節點N14連接。定位電路 821係將互補的輸入信號CLK1,CLK2之中心位準進行位 移,並賦予η通道MOSFET833,834的閘極。 當輸入信號CLK1形成高位準,而輸入信號CLK2形 成低位準時,η通道MOSFET833便呈導通狀態,而η通道 MOSFET834 則呈不導通狀態。藉此便使 ρ 通道 MOSFET831,832呈導通狀態。結果輸出節點Ν15的輸出電 壓Vout便將上昇。反之,當輸入信號CLK1形成低位準, 而輸入信號CLK2形成高位準時,輸出節點N15的輸出電 壓Vout便將降低。 零-裝------—丨訂--------- (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 4 312308 1238600 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(5) 此情況下,因為係藉由定位電路821而進行輸入信號 CLK1,CLK2中心位準的位移,所以位準變換電路820即便 在輸入信號 CLK1,CLK2 的電壓振幅小於 η通道 MOSFET83 3,834的臨限電壓值Vtn的情況下,亦可動作。 第48圖表示習知位準變換電路第4例的電路圖。 第48圖中的位準變換電路840係包含有定位電路841 與 PMOS 交叉耦合型放大器(corss couple type amplifier) 842。 PMOS交叉耦合型放大器842係包含有2個p通道 MOSFET851,8 52、及 2 個 η 通道 MOSFET853,854 〇 p 通道 MOSFET8 51,852係分別連接於接受電源電壓VDD的電源 端子與輸出節點N16,N17之間,而η通道MOSFET853,854 則分別連接於輸出節點N16,N17與接地端子之間。p通道 MOSFET851,852的閘極,分別與輸出節點N17,N16交叉連 接。定位電路841係將互補的輸入信號CLK1,CLK2之中 心位準進行位移,並分別賦予η通道MOSFET853,854的 閘極。 當輸入信號CLK1形成高位準,而輸入信號CLK2形 成低位準時,η通道MOSFET853便呈導通狀態,而η通道 MOSFET8 54則呈不導通狀態。藉此使ρ通道MOSFET851 呈導通狀態,而使ρ通道MOSFET852呈不導通狀態。結 果輸出節點Ν17的輸出電壓Vout便將上昇。反之,當輸 入信號CLK1形成低位準,而輸入信號CLK2形成高位準 時,輸出節點N17的輸出電壓Vout便將降低。 此情況下,因為係藉由定位電路841而進行輸入信號 (請先閱讀背面之注意事項再填寫本頁) 裝For example, when the level conversion circuit 800 converts a 3V system signal into a 5V system signal, a 2.5V system signal into a 3V system signal, or a 1.8V system signal into a 2.5V system signal or a 3.3V system signal It works. Fig. 46 is a circuit diagram showing a second example of the known level conversion circuit. The level conversion circuit 810 in FIG. 46 includes a bias circuit 811, printed by the Intellectual Property Office of the Ministry of Economic Affairs and Consumer Affairs Co., Ltd. and a P-channel MOSFET 812 and an n-channel MOSFET 813. The p-channel MOSFET 812 is connected between the power terminal of the power supply voltage VDD and the output node 13, and the n-channel MOSFET 813 is connected between the output node 13 and the power terminal receiving a specific transformer VEE. The input signal clk is provided to the gate and bias circuit 811 of the p-channel MOSFET 812. The bias circuit 8 11 shifts the center level of the input signal CLK and gives the gate of the channel MOSFET813. Although the input #CLK is at a high level, the p-channel mSOSF812 is in a non-conducting state, while the n-channel MOSFET813 is in a conducting state. This reduces the turn-out voltage vout of the output node N13. When the input signal clk is at a low level, the ρ channel MOSFET812 is turned on, and the η 3 paper size is timely_ Home Standard (GNS) A4 Specification ⑵ Q 312308 1238600 Printed by the Consumers ’Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 5. Description of the invention (4) The channel MOSFET 813 is in a non-conducting state. This increases the output voltage Vout of the output node N13. At this time, since the center level of the input signal CLK is shifted by the bias circuit 811, the level conversion circuit 810 is used even when the voltage amplitude of the input signal CLK is smaller than the threshold voltage value Vtn of the n-channel MOSFET 813. , Can also act. Fig. 47 is a circuit diagram showing a third example of the known level conversion circuit. The level conversion circuit 820 in Fig. 47 includes a positioning circuit 821 and a current mirror type amplifier 822. The current mirror amplifier 822 series includes two p-channel MOSFETs 831,832 and two n-channel MOSFETs 833,834. The p-channel MOSFETs 831, 832 are respectively connected between the power supply terminal receiving the power supply voltage VDD and the output nodes N14, N15, and the n-channel MOSFETs 833, 834 are respectively connected between the output nodes N14, N15 and the ground terminal. The gates of the p-channel MOSFETs 831 and 832 are connected to the output node N14. The positioning circuit 821 shifts the center levels of the complementary input signals CLK1, CLK2, and assigns the gates of the n-channel MOSFETs 833,834. When the input signal CLK1 forms a high level and the input signal CLK2 forms a low level, the n-channel MOSFET 833 is turned on and the n-channel MOSFET 834 is turned off. As a result, the p-channel MOSFETs 831, 832 are turned on. As a result, the output voltage Vout of the output node N15 will rise. Conversely, when the input signal CLK1 forms a low level and the input signal CLK2 forms a high level, the output voltage Vout of the output node N15 will decrease. Zero-pack -------- 丨 order --------- (Please read the precautions on the back before filling this page) This paper size is applicable to China National Standard (CNS) A4 (210 X 297) (Mm) 4 312308 1238600 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention (5) In this case, the position of the input signal CLK1, CLK2 is shifted by the positioning circuit 821, so The level conversion circuit 820 can operate even when the voltage amplitudes of the input signals CLK1 and CLK2 are smaller than the threshold voltage value Vtn of the n-channel MOSFET 83 3,834. Fig. 48 is a circuit diagram showing a fourth example of the known level conversion circuit. The level conversion circuit 840 in FIG. 48 includes a positioning circuit 841 and a PMOS cross couple type amplifier 842. The PMOS cross-coupled amplifier 842 series includes 2 p-channel MOSFETs 851, 8 52, and 2 n-channel MOSFETs 853,854 〇p-channel MOSFET 8 51, 852 are connected to the power terminal and output nodes N16, N17 that receive the power supply voltage VDD N, and n-channel MOSFETs 853,854 are connected between the output nodes N16, N17 and the ground terminal, respectively. The gates of the p-channel MOSFETs 851 and 852 are cross-connected to the output nodes N17 and N16, respectively. The positioning circuit 841 shifts the center levels of the complementary input signals CLK1 and CLK2 and assigns the gates of the n-channel MOSFETs 853 and 854, respectively. When the input signal CLK1 forms a high level and the input signal CLK2 forms a low level, the n-channel MOSFET 853 is turned on, and the n-channel MOSFET 8 54 is turned off. As a result, the p-channel MOSFET 851 is turned on, and the p-channel MOSFET 852 is turned off. As a result, the output voltage Vout of the output node N17 will rise. Conversely, when the input signal CLK1 forms a low level and the input signal CLK2 forms a high level, the output voltage Vout of the output node N17 will decrease. In this case, because the input signal is performed by the positioning circuit 841 (please read the precautions on the back before filling this page).

• I I I ί ϋ ami _1 I mlr ϋ ·ϋ n ϋ I I · 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 5 312308 經濟部智慧財產局員工消費合作社印製 1238600 A7 B7 五、發明說明(6 ) CLK1,CLK2中心位準的位移,所以位準變換電路840即便 在輸入信號 CLK1,CLK2 的電壓振幅小於 η通道 MOSFET85 3,854的臨限電壓值Vtn的情況下,亦可動作。 如上述,第45圖所示位準變換電路800中,在輸入信 號CLK1,CLK2的電壓振幅小於η通道MOSFET803,804的 臨限電壓值Vtn情況下,便無法產生動作。 另,在第46圖所示的位準變換電路810中,因為係藉 由偏壓電路811而進行輸入信號CLK中心位準的位移,所 以即便輸入信號CLK的電壓振幅小於η通道MOSFET813 的臨限電壓值Vtn的情況下,亦可動作。 同樣的,在第47圖與第48圖所示的定位電路820,840 中,因為係藉由定位電路 821,841而使輸入信號 CLK1,CLK2中心位準產生位移,所以即便輸入信號 CLK1,CLK2的電壓振幅小於η通道MOSFET833,834, 853,854的臨限電壓值Vtn的情況下,亦可產生動作。 惟,在第46至48圖所示的位準變換電路810,820,840 中,隨製造程序中的散亂情況,若η通道MOSFET的臨限 電壓值Vtn偏移設計值過大的話,便將有無法產生動作的 情況發生。• III ί ami _1 I mlr ϋ · ϋ n ϋ II · This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 5 312308 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1238600 A7 B7 5 6. Description of the invention (6) The displacement of the center level of CLK1 and CLK2, so the level conversion circuit 840 can operate even when the voltage amplitude of the input signals CLK1 and CLK2 is smaller than the threshold voltage value Vtn of the n-channel MOSFET 85 3,854. As described above, in the level conversion circuit 800 shown in FIG. 45, when the voltage amplitudes of the input signals CLK1 and CLK2 are smaller than the threshold voltage values Vtn of the n-channel MOSFETs 803 and 804, operation cannot be performed. In addition, in the level conversion circuit 810 shown in FIG. 46, the center level of the input signal CLK is shifted by the bias circuit 811, so even if the voltage amplitude of the input signal CLK is smaller than that of the n-channel MOSFET 813, It can also operate with the limited voltage value Vtn. Similarly, in the positioning circuits 820 and 840 shown in FIGS. 47 and 48, the center levels of the input signals CLK1 and CLK2 are shifted by the positioning circuits 821 and 841, so even if the voltages of the input signals CLK1 and CLK2 are Operation is also possible when the amplitude is smaller than the threshold voltage value Vtn of the n-channel MOSFETs 833, 834, 853, 854. However, in the level conversion circuits 810, 820, and 840 shown in Figs. 46 to 48, depending on the dispersion in the manufacturing process, if the threshold voltage value Vtn of the n-channel MOSFET deviates from the design value, the operation will fail. Happened.

再者,不論在第45至48圖中所示位準變換電路 800,810,820,840的任一者,在製造程序中,當p通道 MOSFET與η通道MOSFET的臨限電壓值產生不規貝丨j散亂 時,譬如η通道MOSFET的臨限電壓值Vtn較大而p通道 MOSFET的臨限電壓值Vtp較小之情況,或η通道MOSFET ----------Γ--裝--------訂 i (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 6 312308 1238600 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(7 ) 的臨限電壓值Vtn較小而p通道MOSFET的臨限電壓值 Vtp較大之情況下,輸出電壓波形的作用比將偏離特定的 談計值。 尤其是當位準變換電路使用於產生如液晶顯示裝置、 有機EL裝置等顯示元件的時鐘信號時,時鐘信號的作用 比必須設定為50%。在因位準變換電路的η通道MOSFET 臨限電壓值Vtn與p通道MOSFET臨限電壓值Vtp的不規 則變化,而使時鐘信號的作用比偏離50%時,顯示元件間 的像素亮燈及滅燈時間,便將產生散亂現象。 此外,在第45圖的位準變換電路800中,在η通道 MOSFET803,804 的開關反轉時,進行 p 通道 MOSFET801,802的閘極電荷抽取動作。所以,輸出電壓 Vout的位準反轉便需要時間,導致無法達成高速動作化的 要求。 特別是,P通道MOSFET801,802係採用如由多晶矽所 形成之薄膜電晶體等驅動能力較小的電晶體時,輸出電壓 Vout的位準反轉所需時間便將更加增長。 在輸出電壓Vout的位準反轉時,貫穿電流將由電源端 子,通過p通道MOSFET801與η通道MOSFET803通路, 及ρ通道MOSFET802與η通道MOSFET804通路,並流通 至接地端子。尤其是當輸出電壓Vout的位準反轉需要時間 時,貫穿電流的流通時間將增長,導致消耗電力的增加。 在第46圖的位準變換電路810之偏壓電路811中,藉 由電阻元件流通電流,而形成輸入信號CLK與輸出信號間 (請先閱讀背面之注意事項再填寫本頁) J. · n I ϋ ϋ ail 1 11 1· ϋ ϋ ϋ ί I · 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 312308 1238600 經濟部智慧財產局員工消費合作社印制衣 A7 五、發明說明(8 ) ----- 的電位差。此時,因為截至輸入信號CLK與輸出信號 位差的設定完成為止需要時間,而將妨礙高速動作的執 行。此外,為使電流經常流通於電阻元件上,更需軟 的佈置(lay〇Ut)面積。同時,因為電阻元件上經常^ 流,所以將造成電力消耗增加。更因為無法達高速:作化 的要求,所以輸出段的p通道MOSFETW2與η曾 MOSFET813上的貫穿電流,便將變大。 、 同樣的,在第47圖與第48圖所示位準變換電路 82Μ40的定位電路821 841 +,亦如第46圖的位準變換 電路810之偏壓電路811般,將妨礙高速化動作,而需要 較大的佈置面積,同樣將導致消耗電力的增加。 【發明概要】 有鑑於上述之問題,本發明之目的在於提供_種即使 因製造程序十的減現象而導致電晶豸之臨限電壓值偏離 設計值之情況時,亦可確實的動作,同時可達高速動作 低消耗電力、及小面積化功效的位準變換電路。 本發明之另一目的在於提供一種採用即使因製造程序 中的散亂現象而導致電晶體之臨限電壓值偏離設計值之情 況時,亦可確實的動作,同時可達高速動作、低消耗電力^ 及小面積化功效之位準變換電路的半導體装置。 本發明之另一目的在於提供一種採用即使因製造程序 中的散亂現象而導致電晶體之臨限電壓值偏離設計值之情 況時,亦可確實的動作,同時可達高速動作 '低消耗電力^ 及小面積化功效之位準變換電路的顯示裝置。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 312308 ·丨丨丨丨丨丨丨訂·丨丨丨丨丨丨丨 (請先閱讀背面之注意事項再填寫本頁) 8 1238600 經濟部智慧財產局員工消費合作社印製 A7 五、發明說明(9 ) 依照本發明之一形態係提供一種位準變換電路 含有第1電晶體、第2電晶體、與控制部;其,,該第1 電晶體係連接於接收第i電位的第!節點與輪出二點之 間;該第2電晶體係連接於接收不同於該第丨電位之第2 電位的第2節點與輸出節點之間;該控制部係接收該第玉 輸入信號,而分別控制將該第丨電晶體與該第2電晶體二 者均呈導通狀態,同時對應該第〗輸入信號的位準,而控 制該第1電晶體與該第2電晶體的導通狀態程度者。 在該位準變換電路中,藉由該控制部,而分別將該第i 電晶體與第2電晶體同時控制呈導通狀態,同時對應該第 1輸入信號的位準,控制該第i電晶體與第2電晶體的導 通狀態程度。藉此對應該第i輸入信號的位準而提昇或降 低輸出節點的電位。 此情況下,藉由控制經常保持導通狀態的該第1電晶 體與第2電晶體之導通狀態程度,而變化輸出節點的電 位,所以即使該第i輸入信號的電壓振幅小於該第1電晶 體與第2電晶體的臨限電壓值時,亦可產生動作。此外, 即使該第1電晶體與第2電晶體的臨限電壓值發生大幅偏 離設計值的現象,輸出節點之電位變化的作用比,亦可正 確的對應於該第1輸入信號的作用比。如此,即使因製造 程序中的散亂情況而導致電晶體的臨限電壓值偏離設計值 時,亦可正確的產生動作。 再者,因為藉由控制經常保持導通狀態的該第1電晶 體與第2電晶體之導通狀態程度,而變化輸出節點的電 —I--裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 9 312308 1238600 A7 五、發明說明(10 ) 位,所以可達高速化動作的要求。同時,隨可實現高速化 動作的要求,而使輸出節點之電位位準的過度期間變短, (請先閱讀背面之注音項再填寫本頁) 所以將縮短貫穿電流的流通期間。藉此達降低消耗電力的 功效。 此外’即使該第1輸入信號的電壓振幅較小的情況, 亦不需要位移位準的電路,所以可達小面積化的功效。 該第1輸入彳g號亦可依小於該第i電位與第2電位間 之電位差的電壓振幅,進行變化。 此情況下,輸出節點的電位,將依大於第丨輸入信號 之電壓振幅的電壓振幅進行變化。 經濟部智慧財產局員工消費合作社印製 該第1輸入信號係變化第丨位準與第2位準;該第1 電晶體係第1導電通道型電場效應電晶體;該第2電晶體 係第2導電通道型電場效應電晶體;該控制部係以使該第 1電位與該第1導電通道型電晶體閘極電位之差的絕對 值,在該第1導電通道型電晶體之臨限電壓值絕對值以 上,且使該第2電位與該第2導電通道型電晶體閘極電位 之差的絕對值,在該第2導電通道型電晶體之臨限電壓值 絕對值以上的方式’回應該第1輸入信號的第1位準與第 2位準,而設定該第1導電通道型電晶體的閘極電位與該 第2導電通道型電晶體的閘極電位。 此情況下,藉由該第1電位與該第丨導電通道型電晶 體閘極電位之差的絕對值’在該第1導電通道型電晶體之 臨限電壓值的絕對值以上方式,而使該第i導電通道型電 晶體經常保持導通狀態。此外,亦藉由該第2電位與該 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1238600 A7 五、發明說明(11 2導電通道型電晶體閘極電位之差的絕對值,在該第2導 電通道型電晶體之臨限電壓值的絕對值以上方式,而使該 第2導電通道型電晶體經常保持導通狀態。 (請先閲讀背面之注音?事項再填寫本頁) 如此,即便電晶體的臨限電壓值發生偏離設計值的現 象時,亦可確實的產生動作,同時可達高速動作、低消耗 電力化、與小面積化的功效者。 該第1電位係為正電位,而該第2電位係可為低於該 第1電位的正電位,或接地電位、負電位。 此it況下,因為該第丨電晶體與該第2電晶體經常保 持導通狀痣,所以電流便由第丨節點,經第丨電晶體與第 2電晶體,而流向第2節點。 第2電位係可為變化成與該第丨輸入信號互補之第^ 位準與弟2位準的第2輸入信號。 此情況下,該第1輸入信號與該第2輪入信號的第i 位準與第2位準,便將低於第!電位,且當該第i輸入信 號形成第1位準時,該第2輸入信號便形成第2位準,而 經濟部智慧財產局員工消費合作社印製 當該第1輸入信號形成第2位準時,該第2輪入信號便形 成第1位準。 該第1導電通道型電場效應電晶體係具第丨臨限電壓 值的第ιΡ通道型電場效應電晶體;該第2導電通道型電場 效應電晶體具第2臨限電壓值的第ln通道型電場效應電晶 體;該控制係係將該第1?通道型電場效應電晶體間極電 位,由第1電位設定至第1臨限電麼值絕對值以上的低範 圍内,且該第In通道型電場效應電晶體閘極電位,由第2 本紙張尺度適用中關家標準(CNS)A4規格⑵〇 x 297公爱7 312308 1238600 Α7 Β7 五、發明說明(12) 電位設定至第2臨限電壓值絕對值以上的高範圍内者。 此情況下,藉由將該第lp通道型電場效應電晶體閘極 電位,由第1電位設定至第1臨限電壓值絕對值以上的低 範圍内方式,該第lp通道型電場效應電晶體便將經常保持 導通狀態。當該第1P通道型電場效應電晶體的閘極電位屬 在該範圍内的鬲位準時,該第lp通道型電場效應電晶體便 呈較弱的導通狀態,反之,當該第lp通道型電場效應電晶 體的閘極電位屬在該範圍内的低位準時,該第Ip通道型電 場效應電晶體便呈較強的導通狀態。 此外,亦藉由將該第1 η通道型電場效應電晶體閘極電 位,由第2電位設定為第2臨限電壓值絕對值以上高範圍 内的设定方式,該第In通道型電場效應電晶體便將經常保 持導通狀態。當該第In通道型電場效應電晶體的閘極電位 屬在該範圍内的低位準時,該第111通道型電場效應電晶體 便呈較弱的導通狀態,反之,當該第ln通道型電場效應電 晶體的閘極電位屬在該範圍内的高位準時,該第ln通道型 電場效應電晶體便呈較強的導通狀態。 該控制部係包含有第2p通道型電場效應電晶體、第2n 通道型電場效應電晶體、及控制電路;其中,該第2p通道 型電場效應電晶體的源極係接收第i電位,且該第2p通道 型電場效應電晶體的閘極與汲極係連接於該第lp通道型 電場效應電晶體的閘極上;該第2n通道型電場效應電晶體 的源極係接收該第1輸入信號或第2電位,且該第2ll通道 型電場效應電晶體的閘極與汲極係連接於該第ln通道型 (請先閱讀背面之注意事項再填寫本頁) I Jp· ϋ ϋ mmat · n meme 1 a_li ϋ I · 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 χ 297公釐) 12 312308 1238600 A7 五、發明說明(l3 ) 電場效應電晶體的閘極上;該控制電路係對應該第〗輸入 信號的位準,而控制該第2p通道型電場效應電晶體的汲極 電位,與該第2η通道型電場效應電晶體的汲極電位者。 此情況下,利用該第2ρ通道型電場效應電晶體,將第 lp通道型電場效應電晶體的閘極電位,由第丨電位設定在 第1臨限電壓值之絕對值以上的降低範圍内。同時,亦利 用該第2η通道型電場效應電晶體,將第u通道型電場效 應電晶體的閘極電位’由第2電位設定在第2臨限電壓值 之絕對值以上的上昇範圍内。另,亦藉由該控制電路,將 第1P通道型電場效應電晶體的閘極電位控制在上述範圍 内,且將第In通道型電場效應電晶體的閘極電位控制在上 述範圍内。 •該控制電路亦可為包含有第1負荷元件與第2負荷元 件’·其中’該第1負荷元件的一端係接收該第!輸入信號, 且該第1負荷元件的另一媳目丨查 力编則連接於第ip通道型電場效應 電晶體的閉極上;而該第2負荷元件的一端係接收該第! 電位’且該第2負荷元件的另—端則連接於第^通道 場效應電晶體的閘極上。 此情況下’對應該第】輸入信號的位準,藉由該第, 負何元件而控制該帛lp通道型電場效應電晶體的 位,且藉由該第2負荷元件而控制 電晶體的閘極電位。 ㈣第Η通道型電場效應 2此結構t,因為位準變㈣㈣_ ^ ^成,所以可達小面積化的功效^ 傅Furthermore, regardless of any of the level conversion circuits 800, 810, 820, and 840 shown in Figures 45 to 48, during the manufacturing process, when the threshold voltage values of the p-channel MOSFET and the n-channel MOSFET are irregular, j is scattered. For example, the threshold voltage value Vtn of the n-channel MOSFET is large and the threshold voltage value Vtp of the p-channel MOSFET is small, or the n-channel MOSFET ---------- Γ--installation ---- ---- Order i (Please read the notes on the back before filling this page) This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 6 312308 1238600 A7 B7 Employees ’Consumption of Intellectual Property, Ministry of Economic Affairs Cooperative printed 5. Invention description (7) When the threshold voltage value Vtn is small and the threshold voltage value Vtp of the p-channel MOSFET is large, the effect ratio of the output voltage waveform will deviate from a specific value. Especially when the level conversion circuit is used to generate a clock signal for a display element such as a liquid crystal display device or an organic EL device, the duty ratio of the clock signal must be set to 50%. When the duty ratio of the clock signal deviates by 50% due to the irregular change of the threshold voltage value Vtn of the n-channel MOSFET and the threshold voltage value Vtp of the p-channel MOSFET of the level conversion circuit, the pixels between the display elements light up and off When the lamp is turned on, the phenomenon of scatter will occur. In addition, in the level conversion circuit 800 in FIG. 45, when the switches of the n-channel MOSFETs 803 and 804 are reversed, the gate charge extraction operation of the p-channel MOSFETs 801 and 802 is performed. Therefore, it takes time to invert the level of the output voltage Vout, which makes it impossible to achieve the high-speed operation requirement. In particular, when the P-channel MOSFETs 801 and 802 are transistors with a small driving capability, such as thin-film transistors formed of polycrystalline silicon, the time required for the level of the output voltage Vout to increase will increase. When the level of the output voltage Vout is reversed, the through current will flow from the power supply terminal through the p-channel MOSFET 801 and the n-channel MOSFET 803, and the p-channel MOSFET 802 and the n-channel MOSFET 804, and flow to the ground terminal. Especially when it takes time for the level of the output voltage Vout to reverse, the passing time of the through current will increase, resulting in an increase in power consumption. In the bias circuit 811 of the level conversion circuit 810 in FIG. 46, a current flows through the resistance element to form the input signal CLK and the output signal (please read the precautions on the back before filling this page) J. · n I ϋ ϋ ail 1 11 1 ϋ ϋ ϋ ϋ I · This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 312308 1238600 Employees ’Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs printed clothing A7 V. Description of the invention (8) ----- The potential difference. At this time, it takes time until the setting of the difference between the input signal CLK and the output signal is completed, which prevents the execution of high-speed operation. In addition, in order to allow current to flow through the resistive element, a soft layout area is required. At the same time, because current is often flowing across the resistive element, power consumption will increase. In addition, because the high-speed: operation requirements cannot be achieved, the p-channel MOSFETW2 and n-channel MOSFET813 through-current in the output section will increase. Similarly, the positioning circuit 821 841 + of the level conversion circuit 82M40 shown in FIG. 47 and FIG. 48 is the same as the bias circuit 811 of the level conversion circuit 810 in FIG. 46, which hinders the high-speed operation. , And the need for a larger layout area will also lead to an increase in power consumption. [Summary of the Invention] In view of the above-mentioned problems, an object of the present invention is to provide _ a kind of reliable operation even when the threshold voltage value of the transistor is deviated from the design value due to the subtraction phenomenon of the manufacturing process. Level conversion circuit capable of high-speed operation, low power consumption, and small area effect. Another object of the present invention is to provide a reliable operation even when the threshold voltage value of the transistor deviates from the design value due to the disorder phenomenon in the manufacturing process, and can achieve high-speed operation and low power consumption. ^ A semiconductor device with a level conversion circuit with a small area effect. Another object of the present invention is to provide a reliable operation even when the threshold voltage value of the transistor deviates from the design value due to the disorder phenomenon in the manufacturing process, and the high-speed operation can be achieved at the same time. ^ Display device with level conversion circuit with small area effect. This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) 312308 · 丨 丨 丨 丨 丨 丨 Order · 丨 丨 丨 丨 丨 丨 (Please read the precautions on the back before filling this page) 8 1238600 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 V. Description of the Invention (9) According to one aspect of the present invention, a level conversion circuit is provided which includes a first transistor, a second transistor, and a control unit; The first transistor system is connected to the first receiving the i-th potential! Between the node and the two points of rotation; the second transistor system is connected between the second node and the output node receiving a second potential different from the first potential; the control unit receives the first input signal, and Controlling the conduction state of the first transistor and the second transistor separately, and controlling the degree of the conduction state of the first transistor and the second transistor corresponding to the level of the first input signal . In the level conversion circuit, the i-th transistor and the second transistor are controlled to be in a conducting state simultaneously by the control unit, and the i-th transistor is controlled according to the level of the first input signal. Degree of conduction with the second transistor. This increases or decreases the potential of the output node corresponding to the level of the i-th input signal. In this case, the potential of the output node is changed by controlling the degree of the conduction state between the first transistor and the second transistor that are always kept on, so even if the voltage amplitude of the i-th input signal is smaller than the first transistor It can also operate with the threshold voltage value of the second transistor. In addition, even if the threshold voltage of the first transistor and the second transistor greatly deviate from the design value, the action ratio of the potential change of the output node can accurately correspond to the action ratio of the first input signal. In this way, even if the threshold voltage value of the transistor deviates from the design value due to the disorder in the manufacturing process, the operation can be correctly generated. In addition, because the degree of conduction between the first transistor and the second transistor, which constantly maintains the conduction state, is controlled, the electric power of the output node is changed. ------ (Please read the precautions on the back before filling this page) This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 9 312308 1238600 A7 V. Description of invention (10) Therefore, it can meet the requirements of high-speed operation. At the same time, as the high-speed operation is required, the excessive period of the potential level of the output node is shortened. (Please read the note on the back before filling this page.) Therefore, the period of through-current flow will be shortened. This reduces the power consumption. In addition, even if the voltage amplitude of the first input signal is small, a circuit for shifting the level is not required, so that the effect of reducing the area can be achieved. The first input 彳 g may be changed by a voltage amplitude smaller than a potential difference between the i-th potential and the second potential. In this case, the potential of the output node will change according to a voltage amplitude greater than the voltage amplitude of the first input signal. The Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed the first and second levels of the first input signal system change; the first transistor system, the first conductive channel type electric field effect transistor, and the second transistor system. 2 conductive channel-type electric field effect transistor; the control unit sets the absolute value of the difference between the first potential and the gate potential of the first conductive channel-type transistor at the threshold voltage of the first conductive channel-type transistor The absolute value of the absolute value of the second conductive channel transistor and the absolute value of the difference between the gate potential of the second conductive channel transistor and the absolute value of the threshold voltage of the second conductive channel transistor According to the first level and the second level of the first input signal, the gate potential of the first conductive channel transistor and the gate potential of the second conductive channel transistor are set. In this case, the absolute value of the difference between the gate potential of the first conductive channel transistor and the gate potential of the first conductive channel transistor is greater than the absolute value of the threshold voltage value of the first conductive channel transistor. The i-th conductive channel-type transistor often remains on. In addition, the difference between the second potential and the paper size is subject to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1238600 A7 V. Description of the invention (11 2 The difference in the gate potential of the conductive channel transistor The absolute value is in a manner above the absolute value of the threshold voltage value of the second conductive channel type transistor, so that the second conductive channel type transistor always remains on. (Please read the note on the back? Matters before filling in this In this way, even when the threshold voltage value of the transistor deviates from the design value, it can reliably produce operation, and can achieve high-speed operation, low power consumption, and small area. At the same time, the first potential Is a positive potential, and the second potential may be a positive potential lower than the first potential, or a ground potential or a negative potential. In this case, because the first transistor and the second transistor are always kept on Mole-shaped mole, so the current flows from the node 丨 through the transistor 丨 and the second transistor to the node 2. The second potential can be changed to the ^ level and the complement of the 丨 input signal. 2 level 2nd input letter In this case, the i-th and second levels of the first input signal and the second round-in signal will be lower than the! Potential, and when the i-th input signal forms the first level, the The second input signal forms the second level, and printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. When the first input signal forms the second level, the second round of input signals forms the first level. The conductive channel-type electric field effect transistor system has a first threshold voltage value of the ιp channel-type electric field effect transistor; the second conductive channel-type electric field effect transistor has a second threshold voltage value of the ln-channel type electric field effect transistor Crystal; the control system is to set the inter-electrode potential of the first channel-type electric field effect transistor from the first potential to a low range above the absolute value of the first threshold value, and the first channel-type electric field effect The gate potential of the transistor is from the second paper scale to the Zhongguanjia Standard (CNS) A4 specification 〇〇 297 公 爱 7 312308 1238600 Α7 Β7 V. Description of the invention (12) The potential is set to the absolute value of the second threshold voltage Within the high range above the value. In this case, The lp channel type electric field effect transistor gate potential is set in a low range from the first potential to the absolute value of the first threshold voltage value, and the lp channel type electric field effect transistor will always remain on. When When the gate potential of the 1P channel-type electric field effect transistor falls within a range of this range, the lp channel-type electric field effect transistor exhibits a weak conduction state, and conversely, when the lp channel-type electric field effect When the gate potential of the transistor is at a low level within this range, the Ip-channel-type electric-field-effect transistor has a strong conduction state. In addition, the first η-channel-type electric-field-effect transistor gate is also turned on. The potential is set from the second potential to a high range above the absolute value of the second threshold voltage value, and the In-channel field-effect transistor will always maintain the on state. When the gate potential of the In-channel type electric field effect transistor is at a low level within the range, the 111th channel-type electric field effect transistor has a weak conduction state, and conversely, when the ln-channel type electric field effect When the gate potential of the transistor is at a high level within this range, the ln channel-type electric field effect transistor has a strong conduction state. The control unit includes a 2p channel-type electric field effect transistor, a 2n channel-type electric field effect transistor, and a control circuit. The source of the 2p channel-type electric field effect transistor receives an i-th potential, and the The gate and drain of the 2p-channel field-effect transistor are connected to the gate of the lp-channel field-effect transistor; the source of the 2n-channel field-effect transistor receives the first input signal or The second potential, and the gate and the drain of the 2ll channel-type electric field effect transistor are connected to the ln channel type (please read the precautions on the back before filling this page) I Jp · ϋ ϋ mmat · n meme 1 a_li ϋ I · Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, the paper size is applicable to the Chinese National Standard (CNS) A4 (21 × 297 mm) 12 312308 1238600 A7 V. Description of the invention (l3) Electric field effect transistor The control circuit is corresponding to the level of the first input signal and controls the drain potential of the 2p-channel field-effect transistor and the drain potential of the 2n-channel field-effect transistorIn this case, the gate potential of the lp-channel field-effect transistor is set to a lower range than the absolute value of the first threshold voltage value from the first potential by using the second-p-channel field-effect transistor. At the same time, the 2eta channel-type electric field effect transistor is also used to set the gate potential of the u-channel type electric field effect transistor from the second potential to a rising range that is greater than the absolute value of the second threshold voltage value. In addition, the gate potential of the 1P channel type electric field effect transistor is also controlled by the control circuit within the above range, and the gate potential of the In channel type electric field effect transistor is controlled within the above range. • The control circuit may also include the first load element and the second load element '. Among them, one end of the first load element receives the first! Input signal, and the other load of the first load element is connected to the closed pole of the ip-channel type electric field effect transistor; and one end of the second load element receives the first! And the other end of the second load element is connected to the gate of the ^ th channel field effect transistor. In this case, 'corresponding to the level of the first input signal, the level of the 帛 lp channel-type electric field effect transistor is controlled by the first and negative elements, and the gate of the transistor is controlled by the second load element. Pole potential. The first channel-type electric field effect 2 This structure t, because the level changes ㈣㈣_ ^ ^, can achieve the effect of small area ^ Fu

----------110 Μ--------------- (請先閱讀背面之注意事項再填寫本頁) 312308 A7 B7 1238600 五、發明說明(14 ) 各第1負荷元件與第2負荷亓杜 ^ 7疋件’亦可為電場效應電 晶體、或電阻元件。 此情況下,藉由電場效應電晶體或電阻元件,便可控 制該第lp通道型電場效應電晶體的閉極電位,與該第ln 通道型電場效應電晶體的閘極電位。 該控制部亦可更進一步,包含古 ^ ^ 有第3P通道型電場效應 電晶體與第3n通道型電場效應電晶體;其中,該第外通 道型電場效應電晶體的源極、蘭技& n a, _ 閉極與汲極,係分別連接於 該第2p通道型電場效應電晶體 的/原極、輪出節點與該第 2p通道型電場效應電晶體的汲極 上,而該第3n通道型電 %效應電晶體的源極、閘極盘沒* * I兩Η 、極’係为別連接於該第2η 通道型電%效應電晶體的源極、輪 %出即點與該第2η通道型 電場效應電晶體的汲極上。 此情況下,即使在該第丨電 _ π fli兮嗨Λ 黾位與第2電位的差值較小 障况時,該弟lp通道型電場效應 φ ^ ,双應電日日體,與該第In通道 罜電%效應電晶體,亦可正確的 動之功效。 导通,所以可達低電壓驅 該控制部亦可為包含有第 ^ ^ 3頁第2n通道型電場效應電晶 …二 其中,該第h通道型電場效應電晶體的 收該第〗輸入信號或第2電位, 晶體的閘極㈣係連接於該…道型電 %效應電晶體的間極卜·兮 r…“制電路係對應該第1輸入信 滅的位準,而控制該第ln通道型電場效應電晶體的間極電 ,位,與該第」^^電場效應電晶體的汲…者 本纸張尺_財_^^^^^7^717---------- 110 Μ --------------- (Please read the notes on the back before filling this page) 312308 A7 B7 1238600 V. Description of the invention (14 ) Each of the first load element and the second load element may be an electric field effect transistor or a resistance element. In this case, the electric field effect transistor or the resistance element can control the closed electrode potential of the lp channel type electric field effect transistor and the gate potential of the ln channel type electric field effect transistor. The control unit may further go further, and include the ancient ^^ 3P channel type electric field effect transistor and the 3n channel type electric field effect transistor; wherein, the source of the external channel type electric field effect transistor, Lanji & na, _ closed pole and drain are connected to the / primary pole, wheel-out node of the 2p channel-type electric field effect transistor and the drain of the 2p channel-type electric field effect transistor, respectively, and the 3n channel type The source and gate discs of the electric% effect transistor are not * * The two poles and poles are connected to the source and wheel of the 2η channel type electric% effect transistor and the 2η channel. Type electric field effect transistor on the drain. In this case, even when the difference between the first and the second electric potentials π li Λ 电位 and the second potential is small, the lp channel-type electric field effect φ ^, the dual response electric sun body, and the The In channel chirped% effect transistor can also function correctly. It is turned on, so that it can be driven at a low voltage. The control unit can also include the 2n channel type electric field effect transistor on page ^ ^ 3, where the second input signal of the h channel electric field effect transistor is received. Or the second potential, the gate of the crystal is connected to the intermediate electrode of the… channel-type electrical% effect transistor. The “control circuit” corresponds to the level of the first input signal and controls the first ln. The interpolarity, potential of the channel-type electric field effect transistor and the drain of the "^^ electric field effect transistor ... This paper ruler_ 财 _ ^^^^^ 7 ^ 717

II

1T 312308 1238600 A7 B71T 312308 1238600 A7 B7

五、發明說明(1S) 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 此情況下,利用該控制電路,將第1 p通道型電場效應 電晶體的閘極電位,由第i電位設定在第i臨限電壓值之 絕對值以上的降低範圍内。同時,亦利用該第2n通道型電 場效應電晶體,將第In通道型電場效應電晶體的閘極電 位,由第2電位設定在第2臨限電壓值之絕對值以上的上 昇範圍内。另,亦藉由該控制電路,將第lp通道型電場效 應電晶體的閘極電位控制在上述範圍内,且將第ln通道型 電場效應電晶體的閘極電位控制在上述範圍内。 該控制電路亦可為包含有第i負荷元件、第2負荷元 件、與第3負荷元件;其中,該第!負荷元件的一端係接 收該第1電位,而該第i負荷元件的另一端則連接於第0 通道型電場效應電晶體的閘極上;該第2負荷元件的一端 係接收該第1輸入信號或第2電位,且 ★、 σ μ币2員何元件的 另一端則連接於第lp通道型電場效應電晶體的閘極上而 該第3負荷元件的一端係接收該第丨電位且該第3 元件的另一端則連接於第ln通道型 = 極上。 嘴政應電晶體的閘 此情況下,對應該第4入信號的位準,藉由 負荷元件與第2負荷元件而控制該第 " Ρ通道型電場 晶體的閘極電位,且藉由該第3負 电爷欢應電 通道型電場效應電晶體的閘極電位。 別通第In 在此結構中,因為位準變換電路係 一 成,所以可達小面積化的功效。用6個元件所構 各第1負荷元件、第2負荷元件、| ------ —_ 、第3負荷元件 本紙張尺度適用中關家標準(CNS)A4規格(210 X 297公爱3— 312308 I I I I I I J in--— It· — —---I I (請先閱讀背面之注意事項再填寫本頁) 15V. Description of the invention (1S) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. In this case, the control circuit is used to set the gate potential of the first p-channel field-effect transistor to the i-th potential. Within the lower limit of the absolute value of the limit voltage value. At the same time, the gate potential of the In channel-type electric field effect transistor is also set by the second potential within the rising range above the absolute value of the second threshold voltage value using the 2n channel-type electric field effect transistor. In addition, the gate potential of the lp-channel type electric field effect transistor is controlled within the above range by the control circuit, and the gate potential of the ln channel-type electric field effect transistor is controlled within the above range. The control circuit may also include an i-th load element, a second load element, and a third load element; the first! One end of the load element receives the first potential, and the other end of the i-th load element is connected to the gate of the 0-channel type field effect transistor; one end of the second load element receives the first input signal or The second potential, and the other end of the σ μ coin 2 element is connected to the gate of the lp-channel field-effect transistor and one end of the third load element receives the third potential and the third element The other end is connected to the ln channel type = pole. In this case, the gate of the transistor is controlled by the load element and the second load element according to the level of the fourth input signal, and the gate potential of the " P-channel electric field crystal is controlled by the load element and the second load element. The gate potential of the third negative-electron-family electric channel-type electric field effect transistor. In this structure, the level conversion circuit is integrated, so it can achieve the effect of small area. Each of the first load element, the second load element, | ------ --_, and the third load element constructed with 6 elements. This paper size applies the Zhongguanjia Standard (CNS) A4 specification (210 X 297). 3— 312308 IIIIIIJ in --— It · — —--- II (Please read the notes on the back before filling this page) 15

1238600 五、發明說明(16) 亦可為電場效應電晶體、或電阻元件。 此情況下,藉由電場效應電晶體或電阻元 1史可 制該第Ip通道型電場效應電晶體的閘極電位,與該第上 通道型電场政應電晶體的間極電位。 該位準變換電路亦可更進一步,包含有阻斷電路,= 阻斷電路係將在該第1輸入信號於第1位 ’該 丁 /、乐2位準間 的過度期間内,由第1節點經由第J電晶體與第2 电曰日體, 而々α至於第2卽點的電流通路予以阻斷的電路。 此情況下,因為在該第丨輸入信號於於第丨位準與第2 位準間的過度期間内,並無電流流通於第1電晶體與第2 電晶體中,所以可防止隨貫穿電流所引發的消耗電力辦 加,故可達更進一步降低消耗電力之功效。 曰 該第1電晶體、第2電晶體、與控制部,亦可為由絕 緣基板上的單晶、多晶或非晶質半導體所構成者。 此 If 况下,可由 SOI(Silic0n on Insurat0r)裝置(dev㈣ 構成位準變換電路。 依照本發明之另一形態係提供一種半導體裝置,乃具 備有特疋電路、與連接於該特定電路的位準變換電路者; 其中,該位準變換電路係包含有第1電晶體、第2電晶體、 八控制邻,而該第i電晶體係連接於接收第丨電位的第i 節點與輸出節點之間;該第2電晶體係連接於接收不同該 f 1電位之第2電位的第2節點與輸出節點之間;該控制 P係接收該第i輸入信號,而分別控制將該第i電晶體與 該第2電=二者均呈導通狀態,同時對應該第丨輸入信 本紙張尺度剌ψϋϋ^Νί5)Α4規格(2lG x 297公^— -_ 312308 -lr^w --------^--------- (請先閱讀背面之注音?事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 16 1238600 A7 經濟部智慧財產局員工消費合作社印製 ---------—______B7_五、發明說 5虎的位準’而控制該第1電晶體與該第2電晶體的導通狀 態程度者。 該特定電路係指包含有依照不同電源電壓而產生動作 的複數邏輯電路;*該位準變換電路亦可連接於該等複數 邏輯電路之間。 此情況下,在具備有依照不同電源電壓而產生動作之 複數邏輯電路的半導體裝置中,即使在製造程序中,電晶 體的臨限電壓值散亂較大的情形下,亦仍可確實的動作, 而達高速動作、低消耗電力化及小面積化之功效。 該特定電路亦可包含有設置於晶片上的内部電路,與 設置於晶片上的外部電路,而該位準變換電路則連接該内 部電路與外部電路之間。 / 此情況下,在具備有設置於晶片上之内部電路,與設 置於晶片上之外部電路的半導體裝置中,即使在製造程序 中,電晶體的臨限電壓值散亂較大的情形下,亦仍可確實 的動作,而達高速動作、低消耗電力化及小面積化之功效。 該特定電路亦可包含有設置於晶片上的半導體記憶 體,與設置於晶片上的邏輯電路,而該位準變換電路則連 接該半導體記憶體與邏輯電路之間。 此情況下’在晶片上混載有半導體記憶體與邏輯電路 的半導體裝置中,即便在製造程序中,電晶體的臨限電壓 值散亂較大的情形下,亦仍可確實的動作,而達高速動作、 低消耗電力化及小面積化之功效。 特定電路亦可含有複數偵測器、複數選擇用電晶體、 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 312308 (請先閱讀背面之注意事項再填寫本頁) 裝 ----訂---------. 17 1238600 五、發明說明(ι〇 與週邊電路;其中,該選擇用電晶體係供選擇誃 測器中任何者用;該週邊電路係透過複數個琴。等複數偵 而驅動該等複數债測器者;而該位準變換電=擇用電晶體 信號進行位準變換,並提供予週邊電路者。㈣將該特定 此情況下’在具備複數選擇用電晶體及 的半導體裝置中’即便在製造程序中,電變換電路 值散亂較大的情形下,亦仍可確實的動作,=達=臨限電壓 低消耗電力化及小面積化之功效。 网逮動作、 本發明之另一佈局係提供一種顯示裝置乃i 數顯示元件、複數選擇用電晶體、週邊電路、^ 2 電路;其中,該選擇用電晶體係供選擇該等複數顯準= 中任何者用;該週邊電路係透過複數個選擇用電晶 動該等複數偵測器者;該位準變換電路係對特 位準變換,並提供予週邊電路者;且,該位準變 包含有第1電晶體、第2電晶體、與控制部,·其中,該 1電晶體係連接於接收第1電位的第1節點與輸出節點\ 間;該第2電晶體係連接於接收不同該第1電位之第* 位的第2節點與輸出節點之間’·該控制部係接收該第!輸 入信號’而分別控制將該第1電晶體與該第2電晶體二者 均呈導通狀態’同時對應該第1輸入信號的位準,而控制 該第1電晶體與該第2電晶體的導通狀態程度者。二 製 此匱況下,在具備複數選擇用電晶體及位準變換電路 的顯示裝置中,即便在製造程序中,電晶體的臨限電録 丨餘較大的情r ’亦仍可確實的動作,而達高速動作、 t張尺度適用中國國 181238600 V. Description of the invention (16) It can also be an electric field effect transistor or a resistance element. In this case, the gate potential of the Ip channel type electric field effect transistor and the interelectrode potential of the upper channel type electric field response transistor can be made by an electric field effect transistor or a resistor element. The level conversion circuit can also go further and include a blocking circuit. = The blocking circuit will be in the transition period from the first input signal to the first level 'the Ding /, Le 2 level. A circuit in which the node is blocked by the J-th transistor and the second electric solar body, and the current path of 々α to the point 2 卽 is blocked. In this case, since no current flows through the first transistor and the second transistor during the transition period between the first and second levels of the input signal, it is possible to prevent the current from flowing through. The power consumption caused is increased, so it can reduce the power consumption even further. The first transistor, the second transistor, and the control unit may be composed of a single crystal, a polycrystal, or an amorphous semiconductor on an insulating substrate. In this case, a level conversion circuit may be formed by a SOI (Silic0n on Insurat0r) device (dev㈣). According to another aspect of the present invention, a semiconductor device is provided, which includes a special circuit and a level connected to the specific circuit. A conversion circuit; wherein the level conversion circuit includes a first transistor, a second transistor, and an eight control neighbor, and the i-th transistor system is connected between the i-th node and the output node that receive the potential ; The second transistor system is connected between a second node and an output node that receive a second potential that is different from the f 1 potential; the control P system receives the i-th input signal and controls the i-th transistor and the The second electric = both are in a conducting state, and correspond to the paper size of the first input letter 剌 ψϋϋ ^ Νί5) Α4 size (2lG x 297 public ^ — -_ 312308 -lr ^ w ------- -^ --------- (Please read the note on the back? Matters before filling out this page) Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 16 1238600 A7 Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs- --------______ B7_ V. Invent the level of 5 tigers' and control the The degree of conduction between the 1 transistor and the 2 transistor. The specific circuit refers to a complex logic circuit including an operation according to different power supply voltages. * The level conversion circuit can also be connected to the complex logic circuits. In this case, even in a semiconductor device provided with a plurality of logic circuits that operate according to different power supply voltages, even in the case where the threshold voltage values of the transistors are scattered widely during the manufacturing process, it can still be confirmed. The specific circuit can also include internal circuits provided on the chip and external circuits provided on the chip, and the level conversion circuit This internal circuit is connected to an external circuit. / In this case, in a semiconductor device having an internal circuit provided on the wafer and an external circuit provided on the wafer, even in the manufacturing process, the threshold of the transistor In the case of large voltage value dispersion, it can still operate reliably, and achieve high-speed operation, low power consumption and small area. The specific circuit may also include a semiconductor memory provided on the chip and a logic circuit provided on the chip, and the level conversion circuit is connected between the semiconductor memory and the logic circuit. In this case, 'mixed on the chip' In a semiconductor device having a semiconductor memory and a logic circuit, even in the case where the threshold voltage values of the transistor are scattered widely during the manufacturing process, it can still operate reliably, achieving high-speed operation, low power consumption, and The effect of small area. Specific circuits can also contain multiple detectors, multiple selection transistors, this paper size applies Chinese National Standard (CNS) A4 specifications (210 X 297 public love) 312308 (Please read the precautions on the back first (Fill in this page again) Assembling ---- Ordering ------------ 17 1238600 V. Description of the invention (ι〇 and peripheral circuits; among them, the selection uses a transistor system to select any one of the testers Use; the peripheral circuit is through a plurality of pianos. Those who wait for the plural detection to drive the plural debt detectors; and the level converter = select the transistor signal to perform the level conversion and provide it to the peripheral circuit. ㈣ In this specific case, 'in a semiconductor device having a plurality of selection transistors and semiconductor devices', it is possible to perform a reliable operation even if the value of the electrical conversion circuit is scattered during the manufacturing process. The effect of low voltage and low power consumption and small area. Web capture action, another layout of the present invention is to provide a display device that is an i-number display element, a plurality of selection transistors, a peripheral circuit, and a ^ 2 circuit; wherein, the selection transistor system is used to select these complex numbers. Any one of them; the peripheral circuit is used to move the complex detectors through a plurality of selection crystals; the level conversion circuit is to convert the special level and provide it to the peripheral circuit; and the level is changed It includes a first transistor, a second transistor, and a control unit, wherein the one transistor system is connected between the first node and the output node receiving the first potential; the second transistor system is connected to a different receiver Between the 2nd node and the output node of the * potential of the 1st potential 'The control unit receives the 2nd node! The input signal 'controls both the first transistor and the second transistor to be in a conductive state', and controls the first transistor and the second transistor according to the level of the first input signal. Degree of continuity. Under the situation of the second system, even in the display device with a plurality of selection transistors and level conversion circuits, even in the manufacturing process, the threshold value of the transistor is still relatively large. High-speed motion, t-scale is applicable to China 18

I 312308 1238600 A7 五、發明說明(19 ) 低消耗電力化及小面積化之功效。 該等複數個顯不元件亦可為液晶元件;而該複數液晶 元件、該等複數選擇用電晶體、週邊電路、與位準變換電 路亦可形成於絕緣基板上。 此情況下’即使在製造程序中,電晶體的臨限電壓值 散亂較大的情沏下,亦仍可確實的動作,而為可達具高速 動作、低消耗電力化及小面積化功效之液晶顯示裝置。 該等複數個顯示元件亦可為有機電激發光(electr〇1 uminescence)元件;而該複數有機電激發光元件、該等複 數選擇用電晶體、週邊電路、與位準變換電路亦可形成於 絕緣基板上。 此情況下,即便在製造程序中,電晶體的臨限電壓值 散亂較大的情形下’亦仍可確實的動作,而可達具高速動 作、低消耗電力化及小面積化功效之有機電激發光裝置。 該等複數選擇用電晶體、及位準變換電路的第丨電曰曰 體與第2電晶體,係可為由薄膜電晶體所組成者。 此情況下,即便在製造程序中,電晶體的臨限電壓值 散亂較大的情形下,亦仍可確實的動作,而可達具古速動 作、低消耗電力化及小面積化功效之顯示裝置。 、 【圖式簡單說明】 第1圖係本發明第1實施例之位準變換電 %吩得之電 路圖。 第2圖係第1圖所示位準變換電路中,坌3〜 禾i卽點電位 與第2節點電位之取得範圍例的示意圖。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 312308 1238600I 312308 1238600 A7 V. Description of the invention (19) The effect of low power consumption and small area. The plurality of display elements may also be liquid crystal elements; and the plurality of liquid crystal elements, the plurality of selection transistors, peripheral circuits, and level conversion circuits may also be formed on an insulating substrate. In this case, even in the manufacturing process, the threshold voltage value of the transistor is scattered and can still be reliably operated, and it can achieve high-speed operation, low power consumption, and small area. Liquid crystal display device. The plurality of display elements may also be organic electroluminescence elements; and the plurality of organic electroluminescence elements, the plurality of selection transistors, peripheral circuits, and level conversion circuits may also be formed in On an insulated substrate. In this case, even in the case where the threshold voltage of the transistor is scattered in the manufacturing process, it can still operate reliably, and it can achieve high-speed operation, low power consumption, and small area. Electromechanical excitation light device. The plurality of selection transistors and the first and second transistors of the level conversion circuit may be composed of thin film transistors. In this case, even in the case where the threshold voltage of the transistor is scattered widely during the manufacturing process, it can still operate reliably, and it can achieve the functions of ancient speed operation, low power consumption and small area. Display device. [Brief Description of the Drawings] Fig. 1 is a circuit diagram of a level conversion circuit in the first embodiment of the present invention. Fig. 2 is a diagram showing an example of a range of acquisition of the point potentials at the points 3 and 3 and the potential at the second node in the level conversion circuit shown in Fig. 1. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 312308 1238600

第3圖係筮 弟1圖所不位準變換電路中,第1節點電位 與第2節點電位之取得範圍例的示意圖。 口邱弟1圖所示位準變換電路中,第1節點電位 與第2節點電位之取得範圍例的示意圖。 ’ 第5圖係第1圖所示位準變換電路之動作例 歷波 形圖。 第6圖第1圖所示位準變換電路之電路結構第1例的 電路圖。 第7圖第1圖所示位準變換電路之電路結構第2例的 電路圖。 第8圖第1圖所示位準變換電路之電路結構第3例的 電路圖。 第9圖第1圖所示位準變換電路之電路結構第4例的 電路圖。 第10圖第1圖所示位準變換電路之電路結構第5例的 電路圖。 第11圖第1圖所示位準變換電路之電路結構第6例的 電路圖。 第丨2圖係本發明第2實施例之位準變換電路結構之電 路圖 第1 3圖係本發明第3實施例之位準變換電路結構之電 路圖。 第14圖係本發明第4實施例之位準變換電路結構之電 路圖0 本紙張尺度適用中國國家標準(CNS)A4規格⑽χ 29?公餐) 20 312308 (請先閱讀背面之注意事項再填寫本頁) 裝-----— II 訂! 經濟部智慧財產局員工消費合作社印製Fig. 3 is a diagram showing an example of a range of obtaining the potential of the first node and the potential of the second node in the level shift circuit shown in Fig. 1. Example of the acquisition range of the potential of the first node and the potential of the second node in the level conversion circuit shown in Fig. 1 Fig. 5 is an example of the operation of the level conversion circuit shown in Fig. 1 as a graph. The circuit diagram of the first example of the circuit configuration of the level conversion circuit shown in FIG. 6 and FIG. Fig. 7 is a circuit diagram of a second example of the circuit configuration of the level conversion circuit shown in Fig. 1. Fig. 8 is a circuit diagram of a third example of the circuit configuration of the level conversion circuit shown in Fig. 1. Fig. 9 is a circuit diagram of a fourth example of the circuit configuration of the level conversion circuit shown in Fig. 1. Fig. 10 is a circuit diagram of a fifth example of the circuit configuration of the level conversion circuit shown in Fig. 1. Fig. 11 is a circuit diagram of a sixth example of the circuit configuration of the level conversion circuit shown in Fig. 1. Fig. 2 is a circuit diagram of a level conversion circuit structure of the second embodiment of the present invention. Fig. 13 is a circuit diagram of a level conversion circuit structure of the third embodiment of the present invention. Figure 14 is a circuit diagram of the level conversion circuit structure of the fourth embodiment of the present invention. 0 This paper size is applicable to the Chinese National Standard (CNS) A4 specification ⑽χ 29? Meal. Page) Install ------II Order! Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

1238600 A7 B7 五、發明說明(21) 第1 5圖第14圖所示位準變換電路之電路結構第1例 的電路圖。 (請先閱讀背面之注意事項再填寫本頁) 第16圖第14圖所示位準變換電路之電路結構第2例 的電路圖。 第17圖第14圖所示位準變換電路之電路結構第3例 的電路圖。 第1 8圖係本發明第5實施例之位準變換電路結構之電 路圖。 第1 9圖係本發明第6實施例之位準變換電路結構之電 路圖。 第20圖係第19圖之位準變換電路動作例之電壓波形 圖。 第21圖係用於模擬之位準變換電路之電路結構的電 路圖。 第22(A)、(B)圖係採用整體矽電晶體之模擬結果的電 壓波形圖。 第23(A)、(B)圖係採用多晶石夕電晶體之模擬結果的電 經濟部智慧財產局員工消費合作社印製 壓波形圖。1238600 A7 B7 V. Description of the invention (21) The circuit diagram of the first example of the circuit structure of the level conversion circuit shown in Fig. 15 and Fig. 14 (Please read the precautions on the back before filling out this page) The circuit diagram of the second example of the circuit structure of the level conversion circuit shown in Figure 16 and Figure 14 The circuit diagram of the third example of the circuit configuration of the level conversion circuit shown in Fig. 17 and Fig. 14. Fig. 18 is a circuit diagram showing a configuration of a level conversion circuit according to a fifth embodiment of the present invention. Fig. 19 is a circuit diagram showing a configuration of a level conversion circuit according to a sixth embodiment of the present invention. Fig. 20 is a voltage waveform diagram of an example of the level conversion circuit in Fig. 19; Fig. 21 is a circuit diagram of a circuit configuration of an analog level conversion circuit. Figures 22 (A) and (B) are the voltage waveforms of the simulation results using the entire silicon transistor. Figures 23 (A) and (B) are graphs of voltage waveforms printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Electricity, using the simulation results of polycrystalline stone transistors.

第24(A)、(B)圖係當p通道MOSFET與η通道m〇SFET 之臨限電壓值小於設定值時之模擬結果電壓波形圖。Figures 24 (A) and (B) are the voltage waveform diagrams of the simulation results when the threshold voltage values of the p-channel MOSFET and the n-channel MOSFET are less than the set value.

第25(A)、(Β)圖係當ρ通道MOSFET與η通道mqsfeT 之臨限電壓值為設定值時之模擬結果電壓波形圖。 第26(Α)、(Β)圖係當ρ通道MOSFET與η通道M〇SFET 之臨限電壓值大於設定值時之模擬結果電塵波形圖。 〜丨丨丨丨、 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 312308 21 1238600 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(22) 第27圖係本發明第7實施例之位準變換電路結構之電 路圖。 第28圖係第27圖之位準變換電路的具體結構例之電 路圖。 第29圖係本發明第8實施例之位準變換電路結構之電 路圖。 第30圖係本發明第9實施例之位準變換電路結構之電 路圖。 第3 1圖係本發明第10實施例之位準變換電路結構之 電路圖。 第32圖係本發明第11實施例之位準變換電路結構之 電路圖。 第33圖係本發明第12實施例之位準變換電路結構之 電路圖。 第34圖係本發明第1 3實施例之位準變換電路結構之 電路圖。 第35圖係本發明第14實施例之位準變換電路結構之 電路圖。 第36圖係採用本發明位準變換電路之半導體裝置的 第1例的方塊圖。 第37圖係採用本發明位準變換電路之半導體裝置的 第2例的方塊圖。 第38圖係採用本發明位準變換電路之半導體裝置的 第3例的方塊圖。 -----------裝--------訂---------. (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 22 312308 1238600 A7 五、發明說明(23 ) 第39圖係採用本發明位準變換電路之半導體裝置的 第4例的方塊圖。 第40圖係採用本發明位準變換電路之液晶顯示裝置 例的方塊圖。 弟41圖係採用第4〇圖所示液晶顯示裝置之電壓變換 電路結構的方填圖。 第42圖係採用本發明位準變換電路之有機EL裝置例 的方塊圖。 第43圖係利用SOI元件構成本發明位準變換電路例 的剖面示意圖。 第44圖係採用本發明之位準變換電路的偵測器裝置 例之方塊圖。 第45圖係習知位準變換電路第丨例的電路圖。 第46圖係習知位準變換電路第2例的電路圖。 第4 7圖係習知位準變換電路第3例的電路圖。 第48圖係習知位準變換電路第4例的電路圖。 【圖示符號說明】 800 位準變換電路 801,802 p通道m〇sfet 803,804 n通道m〇SFET VDD 電源電壓 N11,N12輪出節點 CLK1,CLK2輪入信號 V〇ut 輸出電壓 Vtn 臨限電壓值 810 位準變換電路 811 偏壓電路Figures 25 (A) and (B) are simulation result voltage waveform diagrams when the threshold voltage values of the ρ-channel MOSFET and η-channel mqsfeT are set. Figures 26 (A) and (B) are the simulation results of the electric dust waveform when the threshold voltage value of the ρ-channel MOSFET and η-channel MOSFET is greater than the set value. ~ 丨 丨 丨 丨 This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) 312308 21 1238600 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (22) Figure 27 It is a circuit diagram of a level conversion circuit structure of a seventh embodiment of the present invention. Fig. 28 is a circuit diagram of a specific configuration example of the level conversion circuit of Fig. 27. Fig. 29 is a circuit diagram showing a configuration of a level conversion circuit according to an eighth embodiment of the present invention. Fig. 30 is a circuit diagram showing a configuration of a level conversion circuit according to a ninth embodiment of the present invention. Fig. 31 is a circuit diagram showing a structure of a level conversion circuit according to a tenth embodiment of the present invention. Fig. 32 is a circuit diagram showing a configuration of a level conversion circuit according to an eleventh embodiment of the present invention. Fig. 33 is a circuit diagram showing a configuration of a level conversion circuit according to a twelfth embodiment of the present invention. Fig. 34 is a circuit diagram showing the structure of a level conversion circuit according to the 13th embodiment of the present invention. Fig. 35 is a circuit diagram showing a configuration of a level conversion circuit according to a fourteenth embodiment of the present invention. Fig. 36 is a block diagram of a first example of a semiconductor device using a level conversion circuit of the present invention. Fig. 37 is a block diagram of a second example of a semiconductor device using a level conversion circuit of the present invention. Fig. 38 is a block diagram of a third example of a semiconductor device using a level conversion circuit of the present invention. ----------- Loading -------- Order ---------. (Please read the notes on the back before filling this page) This paper size is applicable to China Standard (CNS) A4 specification (210 x 297 mm) 22 312308 1238600 A7 V. Description of the invention (23) Figure 39 is a block diagram of a fourth example of a semiconductor device using the level conversion circuit of the present invention. Fig. 40 is a block diagram of an example of a liquid crystal display device using a level conversion circuit of the present invention. Figure 41 is a square-filled diagram of the voltage conversion circuit structure of the liquid crystal display device shown in Figure 40. Fig. 42 is a block diagram of an example of an organic EL device using the level conversion circuit of the present invention. Fig. 43 is a schematic cross-sectional view showing an example of a level conversion circuit according to the present invention using an SOI element. Fig. 44 is a block diagram of an example of a detector device using the level conversion circuit of the present invention. Fig. 45 is a circuit diagram of a first example of a known level conversion circuit. Fig. 46 is a circuit diagram of a second example of a known level conversion circuit. 4 to 7 are circuit diagrams of a third example of a known level conversion circuit. Fig. 48 is a circuit diagram of a fourth example of a known level conversion circuit. [Symbol description] 800 level conversion circuit 801,802 p channel m〇sfet 803,804 n channel m 0 SFET VDD power supply voltage N11, N12 round out node CLK1, CLK2 round in signal Vout output voltage Vtn threshold voltage value 810 bits Quasi conversion circuit 811 bias circuit

812 P 通道 MOSFET 813 11 通道 M〇SFET 13 輸出節點 CLK 輸入信號 本紙張尺度適用中國國^^ (CNS)A4規格(21〇 x 297公爱^ ^ 23 (請先閱讀背面之注音?事項再填寫本頁) · ϋ I ϋ 1 n H ϋ^-rOJ· n mm— I n n 1 1 < 經濟部智慧財產局員工消費合作社印製 312308 1238600 A7 B7 五、發明說明(24 )812 P-channel MOSFET 813 11-channel MOSFET 13 output node CLK input signal This paper size is applicable to China ^^ (CNS) A4 specification (21〇x 297 public love ^ ^ 23 (Please read the note on the back first? Matters before filling in (This page) · ϋ I ϋ 1 n H ϋ ^ -rOJ · n mm — I nn 1 1 < Printed by the Consumer Consumption Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 312308 1238600 A7 B7 V. Description of the Invention (24)

經濟部智慧財產局員工消費合作社印制衣 820 位準變換電路 821 定位電路 822 電流反射鏡型放大器 831,832 p 通道 MOSFET 833,834 η 通道 MOSFET N14.N15 輸出節點 CLK1,CLK2 輸入信號 N15 輸出節點 840 位準變換電路 841 定位電路 842 PMOS交叉耦合型放大器 851,852 p 通道 MOSFET 853,854 η 通道 MOSFET N16,N17輸出節點 N16,N17輸出節點 CLK1,CLK2 輸入信號 1 位準變換電路 10 控制部 20 激發器 3 反相器 100 控制電路 101 p 通道 MOSFET 102 η 通道 MOSFET 201 p 通道 MOSFET 202 η 通道 MOSFET 11,12 輸入節點 NP 第1節點 NN 第2節點 CLK1,CLK2 輸入信號 VDD 電源電位 NO 輸出節點 NP 第1節點 Vtp 臨限電壓值 Vtn 臨限電壓值 VI 第1位準 V2 第2位準 GND 接地電位 V3 第3位準 VOUT 輸出電位 103 η 通道 MOSFET 104 p 通道 MOSFET 105 η 通道 MOSFET 106 p 通道 MOSFET ---------J 1_1·裝--------訂-------- (請先閱讀背面之注音?事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 24 312308 A7 1238600 ____B7 五、發明說明(25 ) 經濟部智慧財產局員工消費合作社印製 201 p 通道 MOSFET 202 η 通道 MOSFET R1 電阻元件 R2 電阻元件 Vee 負電位 100a 控制電路 R3 電阻元件 R4 電阻元件 CON 控制信號 ΤΗ 貫穿電流阻止期間 10Α,10Β 控制部 20A.20B 激發器 30 PMOS交叉耦合型微動放大器 301,302 p 通道 MOSFET 303,304 η 通道 MOSFET Ν01,Ν02輸出節點 ΝΟΑ,ΝΟΒ 輸出節點 la 位準變換電路 VOUTl,VOUT2 輸出電位 VDD 電源電位 12 輸入節點 303,304 η 通道 MOSFET 31 電流反射鏡型放大器 311,312 p 通道 MOSFET 313,314 η 通道 MOSFET N01,N02 輸出節點 Ν03,Ν04 輸出節點 3A,3B 反相器 5Α,5Β 反相器 500 晶片 501 邏輯電路 502 邏輯電路 510 晶片 511 邏輯電路 512 邏輯電路 513,514 邏輯電路 1B,1C,1D 位準變換電路 520 晶片 521 邏輯電路 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 25 312308 (請先閱讀背面之注音?事項再填寫本頁) Ί ti --------^-------- 1238600 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(26) 520 晶片 521 邏輯電路 522 邏輯電路 530 晶片 531 邏輯電路 532 外部電路 540 玻璃基板 Υ1,Υ2,·_ ..,Yn 掃描電極 Χ1,Χ2,·. ..,Xm 數據電極 542 液晶元件 541 薄膜電晶體 543 掃描線驅動電路 544 數據驅動電路 600 電壓變換電路 601 昇壓電源電路 602 負壓電源電路 1G,1H,1I,1J 位準變換電路 550 玻璃基板 551 薄膜電晶體 552 有機EL裝置 700 電壓變換電路 570 Si(矽)基板 571 絕緣膜 572 矽層 573 ρ型區域 574 η型區域 575 閘極 580 玻璃基板 581 薄膜電晶體 582 偵測器裝置 583 掃描線驅動電路 584 數據驅動電路 710 電壓變換電路 585 外部控制電路 【發明實施較佳態樣】 第1圖所示係本發明第1實施例中之位準變換電路結 構的電路圖。 在第1圖中,位準變換電路1係具備有控制部10、激 ---------,1-1·裝--------訂-------- (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 26 312308 經濟部智慧財產局員工消費合作社印製 1238600 A7 B7 五、發明說明(π) 發器(driver)20、反相器(inverter)3。該控制部10係包含有 控制電路1〇〇、P通道MOSFET(金屬氧化物半導體電場效 果電晶體)101、及η通道MOSFET102。此外,該激發器20 係包含Ρ通道MOSFET201及η通道MOSFET202。反相器 3係包含有由Ρ通道MOSFET與η通道MOSFET所組成的 CMOS電路。 控制部10的控制電路100,係連接於輸入節點II,12、 第1節點NP與第2節點NN上。輸入節點11,12中分別賦 予變化成互補的高位準與低位準之輸入信號 CLK1,CLK2。ρ通道MOSFET101之源極係連接於接收電 源電位VDD的電源端子上,而閘極與汲極則連接於第1 輸入節點NP上。η通道MOSFET102的源極係連接於輸入 節點11上,而閘極與汲極則連接於第2輸入節點ΝΝ上。 在激發器20中,ρ通道MOSFET201之源極係連接於 接收電源電位VDD的電源端子上,而汲極係連接於輸出 節點NO上,閘極則連接於第1節點NP上。η通道 MOSFET202的源極係連接於輸入節點12上,而汲極係連 接於輸出節點NO上,閘極則連接於第2節點ΝΝ上。 輸入信號CLK1,CLK2之高位準與低位準間的電位 差,小於電源電位VDD與接地電位間的電位差。在本實 施例中,輸入信號CLK1,CLK2之低位準係為接地電位, 而高位準則為電源電位VDD與接地電位間的電位。 控制電路100係回應輸入信號CLK1,CLK2,而控制第 1節點NP與第2節點NN之電位VNN。第1節點NP的電 ------------------訂---------. (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 27 312308 1238600 A7 B7 五、發明說明(28) 位VNP係由電源電位VDD設定成在p通道MOSFET101 臨電壓值(threshold voltage)Vtp絕對值以上的較低位準。 而第2節點NN的電位VNN則由輸入信號CLK1的降低位 準設定成η通道MOSFET102臨限電壓值Vtn絕對值以上 的上升位準。η通道MOSFET102的源極電位係輸入信號 CLK1的位準。 藉此方式,使ρ通道MOSFET201與η通道MOSFET202 中,一方呈較強的導通狀態,而另一方則呈較弱的導通狀 態,俾使激發器 20的ρ通道MOSFET201與η通道 MOSFET202之任一者不致完全關閉。 譬如,當ρ通道MOSFET201屬較強導通狀態時,η通 道MOSFET202便呈較弱導通狀態。藉此,ρ通道 MOSFET201的導通電阻值將小於η通道MOSFET202的導 通電阻值。結果,輸出節點NO的輸出電位Vout便將變高。 反之,當η通道MOSFET202屬較強導通狀態時,ρ通 道MOSFET201便呈較弱導通狀態。藉此,η通道 MOSFET202的導通電阻值將小於ρ通道MOSFET201的導 通電阻值。結果,輸出節點NO的輸出電位Vout便將變低。 反相器3係將輸出電位Vout變換成供變化電源電位 VDD與接地電位的輸出電位VOUT。 第2,3與4圖中所示係在第1圖之位準變換電路1中, 由第1節點NP之電位VNP與第2節點NN之電位VNN中, 可獲得範圍之例的模式圖。 如第2至4圖中所示,第1節點NP電位可獲得之範 Ρ氏張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 28 312308 (請先閱讀背面之注音?事項再填寫本頁) 裝--------訂---------. 經濟部智慧財產局員工消費合作社印製 1238600 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(29 ) 圍係在由電源電位VDD降低至p通道MOSFET101臨限電 壓值Vtp的第1位準VI,與低於該第1位準VI的第2位 準V2之間。第2節點NN電位VNN可獲得之範圍係在由 接地電位GND上升至η通道MOSFET102臨限電壓值Vtn 的第3位準V3,與高於該第3位準V3的第4位準V4之 間。 第2圖所示係當p通道MOSFET101臨限電壓值Vtp 與η通道MOSFET102臨限電壓值Vtn屬比較小值之情況 示意圖。此時,第1節點NP的電位VNP將高於第2節點 NN的電位 VNN,俾使流向於激發器 20的 p通道 MOSFET201與η通道MOSFET202的電流,變成較小值。 所以,激發器20中的貫穿電流將變的比較小,而使動作速 度變成較低速度。 第3圖所示係當ρ通道MOSFET101臨限電壓值Vtp 與η通道MOSFET 102臨限電壓值Vtn屬略大值之情況示 意圖。此時,第1節點NP的電位VNP與第2節點NN的 電位VNN間的差值將變小,俾使流向於激發器20的ρ通 道MOSFET201與η通道MOSFET202的電流,變成略大 值。所以,激發器20中的貫穿電流,將變成較第2圖所示 情況略大值,而使動作速度,變成相較於第2圖情況略高 的速度。 第4圖所示係當ρ通道MOSFET101臨限電壓值Vtp 與η通道MOSFET 102臨限電壓值Vtn屬比較大值之情況 示意圖。此時,第1節點NP的電位VNP將低於第2節點 ---------裝 -------訂--------- (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 29 312308 1238600 Α7 Β7 經濟部智慧財產局員工消費合作社印制衣 五、發明說明(3〇 ) NN的電位 VNN,俾使流向於激發器 20的 p通道 MOSFET201與η通道MOSFET202的電流,變成較大值。 所以,激發器20中的貫穿電流將變的比較大,而使動作速 度變成比較快的速度。 第5圖所示係第1圖之位準變換電路1動作例的電波 圖型。第5圖的動作例,對應於第4圖之情況下,第1節 點ΝΡ之電位VNP位準,低於第2節點ΝΝ之電位VNN位 準,而第1節點ΝΡ之電位VNP的低位準,高於第2節點 ΝΝ之電位VNN位準的低位準。所以,在第5圖所示動作 例中,激發器20中的貫穿電流將變的比較大,而使動作速 度變成比較快的速度。 如第5圖所示,第1節點ΝΡ之電位VNP與第2節點 ΝΝ之電位VNN係相同的變化。當輸入信號CLK1形成高 位準,而輸入信號CLK2形成低位準時,第1節點ΝΡ之 電位VNP與第2節點ΝΝ之電位VNN,便將變成高位準。 藉此輸出電位VOUT便將變成接地電位GND。 當輸入信號CLK1形成低位準,而輸入信號CLK2形 成高位準時,第1節點ΝΡ之電位VNP與第2節點ΝΝ之 電位VN1S[,便將變成低位準。藉此輸出電位VOUT便將變 成電源電位NDD。 在本實施例的位準變換電路1中,因為控制著經常保 持導通狀態的Ρ通道MOSFET201與η通道MOSFET202 的導通狀態程度,所以,即便輸入信號CLK1,CLK2的電 壓振幅,小於ρ通道MOSFET201與η通道MOSFET202 ----------:—ί裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 30 312308 1238600 A7 B7 五、發明說明(31 ) (請先閱讀背面之注意事項再填寫本頁) 的臨限電壓值之情況下,亦可產生動作。此外,即使在P 通道MOSFET201與η通道MOSFET202的臨限電壓值,大 幅偏離設計值時,亦可獲得對應該輸入信號CLK1,CLK2 位準變化的輸出電位Vout波形。藉此,即使在因製造程序 中的散亂情況,而導致P通道MOSFET201與η通道 MOSFET202的臨限電壓值,大幅偏離設計值得情況下’亦 可確實的產生動作。 第6圖所示係第1圖中位準變換電路1之電路結構的 第1例電路圖。 如第 6圖所示,控制電路 100係包含有η通道 MOSFET103 與 ρ 通道 MOSFET104。Ν 通道 MOSFET103 之源極係連接於輸入節點II,而汲極與閘極則連接於第1 節點ΝΡ上。ρ通道MOSFET104的源極係連接於電源端子 上,汲極則連接於第2節點ΝΝ上,閘極則連接於輸入節 點12上。 藉此,第6圖所示例中位準變換電路1係採用6個 MOSFET所組成,所以可達小面積化之功效。 經濟部智慧財產局員工消費合作社印製 此處,以ρ通道MOSFET101的臨限電壓值為Vtp,而 以η通道MOSFET 102的臨限電壓值為Vtn。 在製造程序中,即便ρ通道MOSFET的臨限電壓值, 與η通道MOSFET的臨限電壓值,在各位準變換電路1中 產生散亂情況時,在同一位準變換電路1内,P通道 MOSFET101,104,201的臨限電壓值係將為相同,且η通道 MOSFET102,103,202的臨限電壓值亦將同值。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 31 312308 1238600 A7 B7 五、發明說明(32) (請先閱讀背面之注意事項再填寫本頁) 在第6圖所示例中,利用P通道MOSFET101’將第1 節點NP的電位VNP設定為由電源電位降低至臨限 電壓值Vtp絕對值以上,藉此使P通道MOSFET201經常 保持導通狀態。另,利用n通道MOSFET102,將第2節點 ΝΝ的電位VNN設定為由接地電位上升至臨限電壓值Vtn 絕對值以上的位準,藉此使n通道M〇SFET202經常保持 導通狀態。 對應輸入信號CLK1的位準,利用η通道MOSFET 103 將第1節點NP的電位VNP控制為高位準或低位準。另, 對應輸入信號CLK2的位準,利用p通道MOSFET 104將 第2節點NN的電位VNN控制為高位準或低位準。藉此使 p通道MOSFET201、與η通道MOSFET202中,當一方呈 較強導通程度時,另一方便呈較弱的導通狀態。 第7圖所示係第1圖位準變換電路1之電路結構第2 例的電路圖。 經濟部智慧財產局員工消費合作社印製 第7圖所示的位準變換電路1,與第6圖中的位準變 換電路1不同點在於,控制電路100之ρ通道MOSFET 104 的閘極,係連接於接地端子上。此情況下,p通道 MOSFET 104便經常保持導通狀態,而具負荷電阻作用,俾 使激發器20的η通道MOSFET202經常呈導通狀態。 對應輸入信號CLK1的位準,控制第2節點ΝΝ的電 位VNN呈高位準或低位準狀態,俾η通道MOSFET202呈 現較強導通或較弱導通狀態。 第7圖的位準變換電路1之其他部分的結構與動作, 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 32 312308 1238600 A7Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives, printed clothing, 820 level conversion circuits, 821 positioning circuits, 822 current mirror amplifiers, 831, 832 p-channel MOSFETs, 833,834 η-channel MOSFETs, N14.N15 output nodes, CLK1, CLK2 input signals, N15 output nodes, 840 bits Quasi-conversion circuit 841 Positioning circuit 842 PMOS cross-coupled amplifier 851,852 p-channel MOSFET 853,854 η-channel MOSFET N16, N17 output node N16, N17 output node CLK1, CLK2 Input signal 1 Level conversion circuit 10 Control unit 20 Exciter 3 Inverter 100 control circuit 101 p-channel MOSFET 102 η-channel MOSFET 201 p-channel MOSFET 202 η-channel MOSFET 11, 12 input node NP first node NN second node CLK1, CLK2 input signal VDD power potential NO output node NP first node Vtp threshold Voltage value Vtn Threshold voltage value VI Level 1 V2 Level 2 GND Ground potential V3 Level 3 VOUT Output potential 103 η Channel MOSFET 104 p Channel MOSFET 105 η Channel MOSFET 106 p Channel MOSFET ------ --- J 1_1 · Outfit -------- Order -------- (Please read the back first Note to note? Please fill in this page again.) This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 24 312308 A7 1238600 ____B7 V. Description of the invention (25) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 201 p-channel MOSFET 202 η-channel MOSFET R1 Resistive element R2 Resistive element Vee Negative potential 100a Control circuit R3 Resistive element R4 Resistive element CON Control signal 贯穿 Through-current blocking period 10A, 10B Control unit 20A.20B Exciter 30 PMOS cross-coupling type inching Amplifiers 301,302 p-channel MOSFETs 303,304 η-channel MOSFETs Ν01, Ν02 Output nodes ΝΟΑ, ΝΟΒ Output nodes la Level conversion circuits VOUTl, VOUT2 Output potential VDD Power potential 12 Input nodes 303,304 η Channel MOSFET 31 Current mirror amplifier 311,312 p-channel MOSFET 313,314 η channel MOSFET N01, N02 output nodes N03, N04 output nodes 3A, 3B inverter 5A, 5B inverter 500 chip 501 logic circuit 502 logic circuit 510 chip 511 logic circuit 512 logic circuit 513,514 logic circuit 1B , 1C, 1D level conversion circuit 520 chip 521 logic circuit This paper size applies to Chinese National Standard (CNS) A4 specification (210 X 297 mm) 25 312308 (Please read the note on the back first? Please fill in this page for more information) Ί ti -------- ^ -------- 1238600 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (26) 520 Chip 521 Logic circuit 522 Logic circuit 530 Chip 531 Logic circuit 532 External circuit 540 Glass substrate Υ1, Υ2, · _ .., Yn Scan electrode χ1, χ2, .. .., Xm Data electrode 542 Liquid crystal element 541 Thin film transistor 543 Scan line drive circuit 544 Data driving circuit 600 Voltage conversion circuit 601 Boost power supply circuit 602 Negative voltage power supply circuit 1G, 1H, 1I, 1J Level conversion circuit 550 Glass substrate 551 Thin film transistor 552 Organic EL device 700 Voltage conversion circuit 570 Si (silicon) substrate 571 Insulating film 572 Silicon layer 573 P-type region 574 n-type region 575 Gate 580 Glass substrate 581 Thin film transistor 582 Detector device 583 Scan line driving circuit 584 Data driving circuit 710 Voltage conversion circuit 585 External control circuit Best Mode] FIG. 1 is a circuit diagram showing the structure of a level conversion circuit in the first embodiment of the present invention. In the first figure, the level conversion circuit 1 is provided with a control unit 10, an excitation ---------, 1-1 · installation -------- order ------- -(Please read the precautions on the back before filling this page) This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 26 312308 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1238600 A7 B7 V. Description of the invention (π) a driver 20, an inverter 3; The control unit 10 includes a control circuit 100, a P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 101, and an n-channel MOSFET 102. The exciter 20 includes a P-channel MOSFET 201 and an n-channel MOSFET 202. The inverter 3 includes a CMOS circuit composed of a P-channel MOSFET and an n-channel MOSFET. The control circuit 100 of the control unit 10 is connected to the input nodes II, 12, the first node NP and the second node NN. The input nodes 11 and 12 are respectively provided with input signals CLK1 and CLK2 which are changed into complementary high and low levels. The source of the p-channel MOSFET 101 is connected to a power terminal receiving a power supply potential VDD, and the gate and the drain are connected to a first input node NP. The source of the n-channel MOSFET 102 is connected to the input node 11, and the gate and the drain are connected to the second input node NN. In the exciter 20, the source of the p-channel MOSFET 201 is connected to the power terminal receiving the power supply potential VDD, the drain is connected to the output node NO, and the gate is connected to the first node NP. The source of the n-channel MOSFET 202 is connected to the input node 12, the drain is connected to the output node NO, and the gate is connected to the second node NN. The potential difference between the high and low levels of the input signals CLK1 and CLK2 is smaller than the potential difference between the power supply potential VDD and the ground potential. In this embodiment, the low level of the input signals CLK1 and CLK2 is the ground potential, and the high level criterion is the potential between the power supply potential VDD and the ground potential. The control circuit 100 responds to the input signals CLK1 and CLK2 and controls the potential VNN of the first node NP and the second node NN. Electricity of Node 1 NP ----------- Order ---------. (Please read the precautions on the back before filling this page) The scale is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 27 312308 1238600 A7 B7 V. Description of the invention (28) Bit VNP is set by the power supply potential VDD to the threshold voltage value Vtp of the p-channel MOSFET101 Lower level above absolute value. The potential VNN of the second node NN is set to a rising level above the absolute value of the threshold voltage value Vtn of the n-channel MOSFET 102 by the lowering level of the input signal CLK1. The source potential of the n-channel MOSFET 102 is the level of the input signal CLK1. In this way, one of the ρ-channel MOSFET 201 and the η-channel MOSFET 202 is in a strong conducting state, and the other is in a weak conducting state, so that one of the ρ-channel MOSFET 201 and the η-channel MOSFET 202 of the exciter 20 is caused. Does not close completely. For example, when the p-channel MOSFET 201 is in a strong on-state, the n-channel MOSFET 202 is in a weak on-state. As a result, the on-resistance value of the p-channel MOSFET 201 will be smaller than the on-resistance value of the n-channel MOSFET 202. As a result, the output potential Vout of the output node NO will become high. Conversely, when the n-channel MOSFET 202 is in a strong on-state, the p-channel MOSFET 201 is in a weak on-state. As a result, the on-resistance value of the n-channel MOSFET 202 will be smaller than the on-resistance value of the p-channel MOSFET 201. As a result, the output potential Vout of the output node NO will become low. The inverter 3 converts the output potential Vout into an output potential VOUT for changing the power supply potential VDD and the ground potential. 2, 3 and 4 are schematic diagrams of examples of ranges that can be obtained from the potential VNP of the first node NP and the potential VNN of the second node NN in the level conversion circuit 1 of FIG. 1. As shown in Figures 2 to 4, the P-scale of the NP potential obtained at the first node is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 28 312308 (Please read the note on the back first? Matters (Fill in this page again) Packing -------- Order ---------. Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1238600 A7 B7 Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Description of the Invention (29) The range is between the first level VI lowered from the power supply potential VDD to the threshold voltage value Vtp of the p-channel MOSFET 101 and the second level V2 lower than the first level VI. The second node NN potential VNN can be obtained between the third level V3 rising from the ground potential GND to the threshold voltage value Vtn of the n-channel MOSFET 102, and the fourth level V4 higher than the third level V3. . Figure 2 is a schematic diagram when the threshold voltage value Vtp of the p-channel MOSFET 101 and the threshold voltage value Vtn of the n-channel MOSFET 102 are relatively small. At this time, the potential VNP of the first node NP will be higher than the potential VNN of the second node NN, so that the current flowing to the p-channel MOSFET 201 and the n-channel MOSFET 202 of the exciter 20 becomes smaller. Therefore, the penetrating current in the exciter 20 will be relatively small, so that the operation speed becomes lower. Figure 3 shows the situation when the threshold voltage value Vtp of the p-channel MOSFET 101 and the threshold voltage value Vtn of the n-channel MOSFET 102 are slightly larger. At this time, the difference between the potential VNP of the first node NP and the potential VNN of the second node NN becomes smaller, so that the current flowing to the p-channel MOSFET 201 and the n-channel MOSFET 202 of the exciter 20 becomes a slightly larger value. Therefore, the penetrating current in the exciter 20 becomes slightly larger than the case shown in Fig. 2, and the operating speed becomes slightly higher than the case shown in Fig. 2. Figure 4 is a schematic diagram when the threshold voltage value Vtp of the p-channel MOSFET 101 and the threshold voltage value Vtn of the n-channel MOSFET 102 are relatively large. At this time, the potential VNP of the first node NP will be lower than that of the second node --------- install ------- order --------- (Please read the note on the back first Please fill in this page again for this matter) This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 29 312308 1238600 Α7 Β7 Printed clothing by the Consumers ’Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of invention (3〇) NN The potential VNN causes the currents flowing to the p-channel MOSFET 201 and the n-channel MOSFET 202 of the exciter 20 to be relatively large. Therefore, the penetrating current in the exciter 20 will be relatively large, and the operating speed will be relatively fast. Fig. 5 is a radio wave pattern of an example of the operation of the level conversion circuit 1 of Fig. 1. The operation example of FIG. 5 corresponds to the case of FIG. 4, the potential VNP level of the first node NP is lower than the potential VNN level of the second node NN, and the low level of the potential VNP of the first node NP Low level higher than the potential VNN level of the second node NN. Therefore, in the operation example shown in Fig. 5, the through current in the exciter 20 will be relatively large, and the operation speed will be relatively fast. As shown in Fig. 5, the potential VNP of the first node NP and the potential VNN of the second node NN have the same change. When the input signal CLK1 forms a high level and the input signal CLK2 forms a low level, the potential VNP of the first node NP and the potential VNN of the second node NN will become high levels. As a result, the output potential VOUT becomes the ground potential GND. When the input signal CLK1 forms a low level and the input signal CLK2 forms a high level, the potential VNP of the first node NP and the potential VN1S [of the second node NN become low levels. As a result, the output potential VOUT becomes the power supply potential NDD. In the level conversion circuit 1 of this embodiment, the degree of the conduction state of the P-channel MOSFET 201 and the n-channel MOSFET 202 that constantly maintain the on-state is controlled. Therefore, even if the voltage amplitudes of the input signals CLK1 and CLK2 are smaller than the ρ-channel MOSFETs 201 and η Channel MOSFET202 ----------: —ί installed -------- order --------- (Please read the precautions on the back before filling this page) This paper size Under the application of the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 30 312308 1238600 A7 B7 V. Description of the invention (31) (Please read the precautions on the back before filling this page). Can also produce action. In addition, even when the threshold voltage values of the P-channel MOSFET 201 and the n-channel MOSFET 202 deviate greatly from the design values, an output potential Vout waveform corresponding to the level change of the input signals CLK1 and CLK2 can be obtained. With this, even if the threshold voltages of the P-channel MOSFET 201 and the n-channel MOSFET 202 are greatly deviated from the design due to the disorder in the manufacturing process, the operation can be surely performed. Fig. 6 is a circuit diagram of the first example of the circuit configuration of the level conversion circuit 1 in Fig. 1. As shown in FIG. 6, the control circuit 100 includes an n-channel MOSFET 103 and a p-channel MOSFET 104. The source of the N-channel MOSFET 103 is connected to the input node II, and the drain and gate are connected to the first node NP. The source of the p-channel MOSFET 104 is connected to the power terminal, the drain is connected to the second node NN, and the gate is connected to the input node 12. Therefore, the level conversion circuit 1 in the example shown in FIG. 6 is composed of 6 MOSFETs, so that the effect of reducing the area can be achieved. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Here, the threshold voltage value of the p-channel MOSFET 101 is Vtp, and the threshold voltage value of the n-channel MOSFET 102 is Vtn. In the manufacturing process, even if the threshold voltage value of the p-channel MOSFET and the threshold voltage value of the n-channel MOSFET are scattered in the quasi-conversion circuit 1, the P-channel MOSFET 101 is in the same level conversion circuit 1 The threshold voltage values of 104,201 will be the same, and the threshold voltage values of n-channel MOSFETs 102,103,202 will also be the same. This paper size is applicable to Chinese National Standard (CNS) A4 (210 X 297 mm) 31 312308 1238600 A7 B7 V. Description of Invention (32) (Please read the precautions on the back before filling this page) The example shown in Figure 6 In the P-channel MOSFET 101 ′, the potential VNP of the first node NP is set to decrease from the power supply potential to an absolute value of the threshold voltage Vtp or higher, thereby keeping the P-channel MOSFET 201 always on. In addition, the n-channel MOSFET 102 is used to set the potential VNN of the second node NN to a level that rises from the ground potential to an absolute value of the threshold voltage Vtn or higher, so that the n-channel MOSFET 202 is always turned on. Corresponding to the level of the input signal CLK1, the n-channel MOSFET 103 is used to control the potential VNP of the first node NP to a high level or a low level. In addition, according to the level of the input signal CLK2, the potential VNN of the second node NN is controlled to a high level or a low level by the p-channel MOSFET 104. As a result, when one of the p-channel MOSFET 201 and the n-channel MOSFET 202 is in a strong conduction state, the other is in a weak on state. Fig. 7 is a circuit diagram of the second example of the circuit configuration of the level conversion circuit 1 of Fig. 1. The level conversion circuit 1 shown in FIG. 7 is printed by the employee cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, which is different from the level conversion circuit 1 in FIG. 6 in that the gate of the ρ channel MOSFET 104 of the control circuit 100 is Connected to the ground terminal. In this case, the p-channel MOSFET 104 often remains on, and has a load resistance function, so that the n-channel MOSFET 202 of the exciter 20 is always on. Corresponding to the level of the input signal CLK1, the potential VNN that controls the second node NN is at a high level or a low level, and the n-channel MOSFET 202 is in a strong or weak conduction state. The structure and operation of the other parts of the level conversion circuit 1 in FIG. 7 are in accordance with the Chinese National Standard (CNS) A4 (210 X 297 mm).

五、發明說明(33 ) 如同第6圖的位準變換電路i。 第8圖所不係第1圖位準變換電路i之電路結構第3 例的電路圖。 (請先閱讀背面之注意事項再填寫本頁) 第8圖所示的位準變換電路1,與第7圖中的位準變 換電路1不同點在於,控制電路1〇〇取代p通道 MOSFET104,而改為包含n通道M〇SFET1〇5之點。n通 道MOSFET105的源極,係連接於第2節點NN上,而汲 極與閘極則連接於電源端子。此情況下,n通道m〇sfet1〇5 便經常保持導通狀態,而具負荷電阻作用,俾使激發器2〇 的η通道MOSFET202經常呈導通狀態。 對應輸入信號CLK1的位準,控制第2節點ΝΝ的電 位VNN呈馬位準或低位準狀態,俾^通道m〇SFET202呈 現較強導通或較弱導通狀態。 第8圖的位準變換電路1之其他部分的結構與動作, 則與第6圖的位準變換電路1相同。 第9圖所示係第1圖位準變換電路1之電路結構第4 例的電路圖。 經濟部智慧財產局員工消費合作社印製 第9圖所示的位準變換電路1,與第6圖中的位準變 換電路1不同點在於,η通道]ViOSFET 102的源極係連接於 接地端子上。此情況下,利用η通道MOSFET102,將第2 節點ΝΝ的電位vnN設定為由接地電位上昇致臨限電壓值 Vtn絕對值以上的位準,俾使激發器2〇的^通道 MOSFET202經常呈導通狀態。 對應輸入信號 CLK2的位準,利用 ρ通道 本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公釐) 33 312308 1238600 A7 B7 五、發明說明(34) MOSFET104,控制第2節點NN的電位VNN呈高位準或 低位準狀態’俾η通道M0SFET202呈現較強導通或較弱 (請先閱讀背面之注意事項再填寫本頁) 導通狀態。 第9圖的位準變換電路1之其他部分的結構與動作, 則與第6圖的位準變換電路1相同。 第10圖所示係第1圖位準變換電路1之電路結構第5 例的電路圖。 弟10圖所示的位準變換電路1,與第6圖中的位準變 換電路1不同點在於,控制電路1〇〇之η通道MOSFET103 的閘極係連接於電源端子上。此情況下,η通道MOSFET103 經常保持導通狀態’而具負荷電阻作用,俾對應輸入信號 CLK1的位準,將第1節點ΝΡ的電位vnp,控制呈高位準 或低位準狀態。所以’激發器20的ρ通道MOSFET201便 呈較強或較弱的導通狀態。 第10圖的位準變換電路1之其他部分的結構與動作, 則與第6圖的位準變換電路i相同。 經濟部智慧財產局員工消費合作社印製 第11圖所示係第1圖位準變換電路1之電路結構第6 例的電路圖。5. Description of the invention (33) The level conversion circuit i is as shown in FIG. The circuit diagram of the third example of the circuit configuration of the level conversion circuit i of the first diagram is not shown in FIG. (Please read the precautions on the back before filling this page) The level conversion circuit 1 shown in Figure 8 is different from the level conversion circuit 1 in Figure 7 in that the control circuit 100 replaces the p-channel MOSFET 104, Instead, it includes the point of the n-channel MOSFET 105. The source of the n-channel MOSFET 105 is connected to the second node NN, and the drain and gate are connected to the power terminal. In this case, the n-channel m0sfet105 always keeps the on-state, and has a load resistance effect, so that the n-channel MOSFET 202 of the exciter 20 is always on-state. Corresponding to the level of the input signal CLK1, the potential VNN controlling the second node NN is at a horse level or a low level, and the channel mSFET202 is in a strong or weak conduction state. The structure and operation of the other parts of the level conversion circuit 1 of FIG. 8 are the same as those of the level conversion circuit 1 of FIG. 6. Fig. 9 is a circuit diagram of a fourth example of the circuit configuration of the level conversion circuit 1 of Fig. 1. The level conversion circuit 1 shown in FIG. 9 is printed by the employee's consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. The difference from the level conversion circuit 1 shown in FIG. 6 is that the channel source of the ViOSFET 102 is connected to the ground terminal. on. In this case, the n-channel MOSFET 102 is used to set the potential vnN of the second node NN to a level higher than the threshold voltage Vtn absolute value caused by the ground potential rise, so that the ^ -channel MOSFET 202 of the exciter 20 is always turned on. . Corresponds to the level of the input signal CLK2, using the ρ channel This paper size applies the Chinese National Standard (CNS) A4 specification (210 x 297 mm) 33 312308 1238600 A7 B7 V. Description of the invention (34) MOSFET104, which controls the second node NN The potential VNN is at a high level or a low level. The 俾 η channel M0SFET202 shows a strong conduction or a weak state (please read the precautions on the back before filling this page). The structure and operation of the other parts of the level conversion circuit 1 of FIG. 9 are the same as those of the level conversion circuit 1 of FIG. 6. Fig. 10 is a circuit diagram of a fifth example of the circuit configuration of the level conversion circuit 1 of Fig. 1. The level conversion circuit 1 shown in FIG. 10 is different from the level conversion circuit 1 in FIG. 6 in that the gate of the n-channel MOSFET 103 of the control circuit 100 is connected to the power supply terminal. In this case, the n-channel MOSFET 103 always maintains the on state and functions as a load resistor, corresponding to the level of the input signal CLK1, and controlling the potential vnp of the first node NP to a high level or a low level. Therefore, the p-channel MOSFET 201 of the exciter 20 is in a stronger or weaker conducting state. The structure and operation of the other parts of the level conversion circuit 1 of FIG. 10 are the same as those of the level conversion circuit i of FIG. 6. Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 11 shows the circuit diagram of the sixth example of the circuit structure of the level conversion circuit 1 of Figure 1.

第11圖所示的位準變換電路i,與第6圖中的位準變 換電路1不同點在於,控制電路1〇〇係採用由電阻元件 R1,R2所構成之點。電阻元件R1的其中一端係連接於第i 節點NP,而另一端則連接於輸入節點n。電阻元件R2的 其中知係連接於電源端子,而另一端則連接於第2節點 NN上。此情況下,對應輸入信號clkI的位準,將第JThe level conversion circuit i shown in Fig. 11 is different from the level conversion circuit 1 in Fig. 6 in that the control circuit 100 uses a point composed of resistance elements R1 and R2. One end of the resistance element R1 is connected to the i-th node NP, and the other end is connected to the input node n. The resistor R2 is connected to the power terminal, and the other end is connected to the second node NN. In this case, corresponding to the level of the input signal clkI, the Jth

34 312308 1238600 B7 五、發明說明(35 ) 位準NP的電位VNP控制呈高位準或 _ 2位準NN的電位VNN控制呈高位準或低位準同時亦將第 第11圖的位準變換電路!之其他部 則與第6圖的位準變換電路!相同。 。構”動作, 弟12圖所示係本發明橥2眚你么丨> 的電路圖。 實施例之位準變換電路結構 第12圖所示的位準變換電路1,盥 4么♦ μ , ,、乐1圖中的位準變 換電路1不同點在於,激發器2〇之 嘴窃π之η通道m〇SFET2〇2 源極係連接於接地端子上。 在本實施例之位準變換電路1中,該第2節點而電 位VNN,將由輸入信號CLK1,CLK2的低位準,設定上昇 至η通道M〇SFET102之臨限電壓值vtn絕對值以上的位 準。 當輸入信號CLK1屬低位準時,第2節點nn的電位 VNN,便將由低位準上昇至臨限電壓值vtn絕對值以上的 位準。此時,η通道M〇SFET的源極便形成接地電位,俾 使η通道MOSFET202呈較弱的導通狀態。而當輸入信號 CLK1屬尚位準時,第2節點ΝΝ的電位νΝΝ,便由高位 準上昇至臨限電壓值Vtn絕對值以上的位準。此情況下,η 通道MOSFET202的源極便形成接地電位,俾使^通道 MOSFET202呈現較強的導通狀態。 第2實施例之位準變換電路1的其他部分結構及動 作,均與第1實施例之位準變換電路1相同。 第13圖所示係本發明第3實施例之位準變換電路結構 35 ♦ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 312308 1238600 A7 s-------—__ 五、發明說明(36) 之電路圖。 (請先閱讀背面之注意事項再填寫本頁) 第13圖所示的位準變換電路1,與第1圖中的位準變 換電路1不同點在於,激發器2〇之!!通道MOSFET202的 源極,乃連接接收負電位Vee的電源端子上。 在本實施例的位準變換電路1中,將第2節點NN之 電位VNN設定為由輸入信號CLK1的低位準,上昇至^ 通道MOSFET102臨限電壓值Vtn絕對值以上的位準。 §輸入j吕號CLK1屬於低位準時,第2節點NN的電 位VNN ’便將由低位準上昇至臨限電壓值Vtn絕對值,此 情況下,η通道MOSFET202的源極便形成負電位Vee,藉 此使η通道MOSFET202呈較弱導通狀態。反之,當當輸 入信號CLK1屬於高位準時,第2節點ΝΝ的電位VNN, 便將由高位準上昇至臨限電壓值Vtn絕對值,此情況下,n 通道MOSFET202的源極便形成負電位Vee,藉此使n通道 MOSFET202呈較強導通狀態。 第3實施例之位準變換電路1的其餘部份結構與動 作,均與第1實施例之位準變換電路1相同。 經濟部智慧財產局員工消費合作社印製 第14圖所示係本發明第4實施例之位準變換電路結構 之電路圖。 在第14圖所示的位準變換電路χ中,控制部係包 含有控制電路l〇〇a與n通道]y[〇SFET102。該控制電路1〇〇a 係連接於輸入節點11,12、第1節點NP與第2節點NN上。 輸入節點11,12則連接於第1節點NP與第2節點NN上。 在輸入節點II,12中,如同第1實施例的位準變換電路i, 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 x 297公餐) 36 31230834 312308 1238600 B7 V. Description of the invention (35) The potential VNP control of the level NP is at a high level or the potential VNN control of the _ 2 level NN is at a high level or a low level. At the same time, the level conversion circuit of Fig. 11 is also changed! The other parts are related to the level conversion circuit in Figure 6! the same. . Figure 12 is a circuit diagram of the present invention 橥 2 眚 你 丨 > The level conversion circuit structure of the embodiment The level conversion circuit 1 shown in FIG. 12 is shown in FIG. 12. The level conversion circuit 1 in the picture of Le 1 is different in that the source of the η channel m0SFET2 02 of the exciter 20 is connected to the ground terminal. The level conversion circuit 1 in this embodiment In the second node and the potential VNN, the level of the input signal CLK1, CLK2 is set to a level that rises above the threshold voltage value vtn of the n-channel MOSFET 102. When the input signal CLK1 is at the low level, The potential VNN of the 2 node nn will rise from a low level to a level above the threshold voltage value vtn absolute value. At this time, the source of the n-channel MOSFET forms a ground potential, making the n-channel MOSFET 202 weaker. On state. When the input signal CLK1 is still high, the potential νNN of the second node NN rises from a high level to a level above the threshold voltage Vtn absolute value. In this case, the source of the n-channel MOSFET 202 is The ground potential is formed, so that the ^ channel MOSFET202 appears Strong on state. The structure and operation of the other parts of the level conversion circuit 1 of the second embodiment are the same as those of the level conversion circuit 1 of the first embodiment. Figure 13 shows the third embodiment of the present invention. Level conversion circuit structure 35 ♦ This paper size is applicable to Chinese National Standard (CNS) A4 specification (210 X 297 public love) 312308 1238600 A7 s -----------__ 5. Circuit diagram of the description of the invention (36). Please read the precautions on the back before filling this page.) The level conversion circuit 1 shown in Figure 13 is different from the level conversion circuit 1 in Figure 1 in that the exciter 20 is the source of the channel MOSFET 202. Is connected to the power terminal that receives the negative potential Vee. In the level conversion circuit 1 of this embodiment, the potential VNN of the second node NN is set to the low level of the input signal CLK1 and rises to the threshold of the channel MOSFET 102 The voltage level Vtn is above the absolute value. § When the input j CLK number CLK1 is at a low level, the potential VNN 'of the second node NN will rise from the low level to the threshold voltage value Vtn absolute value. In this case, the n-channel MOSFET 202's The source develops a negative potential Vee, The channel MOSFET 202 is in a relatively weak conducting state. Conversely, when the input signal CLK1 is at a high level, the potential VNN of the second node NN will rise from the high level to the threshold voltage Vtn absolute value. In this case, the source of the n-channel MOSFET 202 A negative potential Vee is formed, thereby enabling the n-channel MOSFET 202 to be in a stronger conducting state. The rest of the level conversion circuit 1 in the third embodiment has the same structure and operation as the level conversion circuit 1 in the first embodiment. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. FIG. 14 is a circuit diagram showing a level conversion circuit structure of the fourth embodiment of the present invention. In the level conversion circuit χ shown in Fig. 14, the control unit includes a control circuit 100a and n channels] y [0SFET102. The control circuit 100a is connected to the input nodes 11 and 12, the first node NP and the second node NN. The input nodes 11 and 12 are connected to the first node NP and the second node NN. In the input nodes II, 12, like the level conversion circuit i of the first embodiment, this paper size is applicable to the Chinese National Standard (CNS) A4 specification (21 × 297 meals) 36 312308

五、發明說明(37) 1238600 分別賦予輸入信號CLK1,CLK2。 η通道MOSFET102的源極係連接於輸入節點112,而 汲極與閘極則連接於第2節點ΝΝ上。此外,第14圖所示 位準變換電路1的其餘部份結構與動作,均與第丨圖所示 之位準變換電路1結構相同。 控制電路100a係應答輸入信號CLK1,CLK2,而控制 第1節點NP電位VNP,與第2節點NN電位VNN。第工 節點NP的電位VNP則利用控制電路1〇〇a,而設定於電源 電位VDD與輸入信號CLK1位準之間的位準。另第2 節點NN的電位VNN,係由輸入信號CLK1的低位準,上 昇至η通道MOSFET102的臨限電壓值vtn絕對值以上之 位準。 藉此方式,激發器20的p通道MOSFET201與n通道 MOSFET202中之一者呈較強的導通狀態,而另一者呈較弱 的導通狀態。如此,激發器2〇的p通道m〇SFET2〇i與η 通道MOSFET202之任一者均無呈關閉狀態。 第4實施例之位準變換電路丨的其餘部份結構與動 作,均與第i實施例之位準變換電路1相同。 第15圖所示係第14圖位準變換電路1之電路鲈 第1例電路圖。 、 第15圖所示中,控制電路1〇〇a係包含有電阻元件 R3,R4與p通道MOSFET1〇4。電阻元件R3之一端連接於 電源端子,而另一端則連接於第丨節點Np。電阻元件尺4 6^錢#於^ 1節點NP,而另一端則連接於輪入節點n 本紙張尺度適用—中國國家gIT^S)A4規格(210 x 297公爱了 37 312308 ----------,1-丨裝--------訂---------. (請先閱讀背面之注音?事項再填寫本頁) 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 1238600 A7 B7 經濟部智慧財產局員工消費合作社印制衣 五、發明說明(38 ) 上。p通道MOSFET104的源極連接於電源端子,而汲極則 連接第2節點NN上,閘極則連接於輸入節點12上。 在第15圖所示例子中,利用電阻元件R3,R4,將第1 節點NP的電位VNP設定在電源電位VDD與輸入信號 CLK1位準間的位準,俾使p通道MOSFET201經常呈導通 狀態。另,利用η通道MOSFET102,將第2節點NN的電 位VNN,設定成由接地電位上昇至臨限電壓值Vtn絕對值 以上的位準,俾η通道MOSFET202經常保持導通狀態。 第1節點ΝΡ的電位VNP係對應輸入信號CLK1的位 準,而控制呈高位準或低位準狀態。另,第2節點ΝΝ的 電位VNN係對應輸入信號CLK1,CLK2的位準,而控制呈 高位準或低位準狀態。藉此使p通道MOSFET201與η通 道MOSFET202中任一者呈較強導通狀態時,另一者便呈 較弱導通狀態。 當输入信號CLK1屬低位準狀態時,便將第1節點ΝΡ 的電位VNP設定成在電源電位VDD與輸入信號CLK1的 低位準之間的位準,俾使ρ通道MOSFET201呈較強的導 通狀態。此情況下,η通道MOSFET202便呈較強的導通狀 態。 第16圖所示係第14圖位準變換電路1之電路結構的 第2例電路圖。 第16圖所示的位準變換電路1,與第15所示位準變 換電路1不同點在於,控制電路l〇〇a之電阻元件R4的另 一端係連接於接地端子。 -丨丨丨丨丨丨丨丨1,1· •丨丨丨丨丨I —訂·丨丨丨-丨—丨-. (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 38 312308 A7 1238600 _B7 五、發明說明(39 ) 此情況下,第1節點NP的電位VNN係藉由電阻元件 R3,R4而固定於電源電位VDD與接地電位間的特定電位, 俾P通道MOSFET202經常保持導通狀態。 當η通道MOSFET202呈較強導通狀態時,ρ通道 MOSFET201 便呈較弱導通狀態。反之,當 η通道 MOSFET202呈較弱導通狀態時,ρ通道MOSFET201便呈 較強導通狀態。 第17圖所示係第14圖位準變換電路1之電路結構的 第3例電路圖。 第17圖所示的位準變換電路1,與第15所示位準變 換電路1不同點在於,取代控制電路l〇〇a之電阻元件R3, 改設ρ通道MOSFET106。ρ通道MOSFET106的源極連接 於電源端子,汲極連接於第1節點NP,閘極連接於輸入節 點II。 當输入信號CLK1屬高位準狀態時,第1節點NP的電 位VNP便呈高位準,藉此使ρ通道MOSFET201呈較弱的 導通狀態。反之,當輸入信號CLK1屬低位準狀態時,第 1節點NP的電位 VNP便呈低位準,藉此使ρ通道 MOSFET201呈較強的導通狀態 第1至4實施例的位準變換電路1,係應答互補變化 的輸入信號CLK1,CLK2而產生動作,接著所示的第5實 施例之位準變換電路1則應答單一輸入信號而產生動作。 第1 8圖所示係本發明第5實施例中,位準變換電路結 構的電路圖。 ---------1—^^·裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格mo X 297公釐) 39 312308 1238600 經濟部智慧財產局員工消費合作社印製 A7 五、發明說明(* ) 第U圖中’控制電路1〇〇之^通道m〇sfet1〇3的 源極,係連接於接收單一輸入信號clk的輸入節點n上, 而及極與閘極則連接於第1節點ΝΡ上。ρ通道MOSFET104 係連接於第2節點NN上,而閘極則連接於接地 另’激發器20之!!通道MOSFET2〇2的源極,係 連接於接地端子上。 第18圖所示位準變換電路1之其餘部分的結構,均與 第6圖所示位準雙換電路1的結構相同。 第1 9圖所示係本發明第6實施例中,位準變換電路結 構的電路圖。 在第19圖所示位準變換電路1中,控制部的結構, 係如同第6圖所示的位準變換電路j之控制部1〇結構。在 激發器20中,於p通道M〇SFET2〇1的源極與電源端子之 間’連接有p通道MOSFET210。將控制信號c〇N供給於 P通道MOSFET210的閘極。第19圖所示位準變換電路i 之其餘部分的結構,均與第6圖所示位準變換電路1的結 構相同。 第20圖所示係第19圖之位準變換電路1動作例的電 壓波形圖。 如第20圖所示,輸入信號Clk1,CLK2係為互補的高 位準與低位準變化。輸出電位VOUT係以大於輸入信號 CLK1,CLK2電壓振幅的電壓振幅進行變化。 控制係號CONT係在輸入信號CLK1,CLK2於高位準與 低位準間的過度期間中,呈高位準狀態,而在其他期間中 本^^尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)一 312308 I ΙΊ — I I I ! — t — 11! — . (請先閱讀背面之注意事項再填寫本頁) 1238600 經濟部智慧財產局員工消費合作社印制衣 A7 ______ _______ 五、發明說明(41 ) ' 則呈低位準狀態。 控制信號CON在形成高位準狀態期間中,稱之為貫办 電流阻止期間TH。在貫穿電流阻止期間TH時p通^ m〇SFET2()1呈關閉狀態,俾阻止由電_ + _ MOSFET2〇1與n通道MOSFET202,而流通的貫穿電流。 所以’可達降低消耗電力之功效。 此處進行本發明之位準變換電路特性的模擬測試。第 21圖所示係使用於模擬測試之位準變換電路的電路結構 示意圖。第21圖所示位準變換電路i的結構,係如同第6 圖所示位準變換電路1結構。首先,針對第21圖的位準變 換電路1動作之高速性進行調查。 一般在由整體石夕(bulk silicon)所形成的電晶體中,臨 限電壓值Vtp係如(-0·9± 0.1)V,臨限電壓值vtn係如(_〇 7 ± ο·ι)ν。此外,在採用多晶矽的薄膜電晶體中,臨限電壓 值Vtp係如(-2·5± 1至1.5)V,臨限電壓值Vtn係如(i.8+ i丨 至1.5)V。如此,採用多晶矽的薄膜電晶體,相較於由整 體矽所形成的電晶體,在製造程序中之臨限電壓值得散I 情況將更加嚴重。 第22圖所示係當由整體矽所形成的電晶體構成位準 變換電路1時的模擬測試結果示意圖。 將輸入信號CLK1,CLK的頻率設定為1GHz,將輸入電 壓振幅(輸入信號CLK1,CLK2的振盪幅度)設定為〇.5V, 將輸出電壓振幅(輸出電位VOUT的振盪幅度)設定為 3.0V。 ----------1^1* 裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 41 312308 1238600 Α7 Β7 五、發明說明(42 ) (請先閱讀背面之注意事項再填寫本頁) 第22(A)圖所示係輸入信號CLK1,CLK2與輸出電位 VOUT的波形圖。第22(B)圖所示係第1節點NP之電位 VNP、第2節點NN之電位VNN與輸出節點NO之輸出電 位VOUT的波形。 由第22圖之模擬結果中得知,即便在如1GHz的高頻 率下,應答輸入信號CLK1,CLK2,亦可獲得作用比為50% 的輸出電位VOUT。如此,由整體矽所形成的電晶體所構 成的位準變換電路1,便可達高速動作的功效。 第23圖所示係以由多晶矽所形成薄膜電晶體構成位 準變換電路1時的模擬測試結果示意圖。 將輸入信號CLK1,CLK2的頻率數設定為20MHz,將 輸入電壓振幅設定3.0V,將輸出電壓振幅設定12V。 第23(A)圖所示係輸入信號CLK1,CLK2與輸出電位 VOUT的波形圖。第23(B)圖所示係第1節點NP之電位 VNP、第2節點NN之電位VNN與輸出節點NO之輸出電 位VOUT的波形。 經濟部智慧財產局員工消費合作社印製 由第23圖之模擬結果中得知,即便在如20MHz的高 頻率下,應答輸入信號CLK1,CLK2,亦可獲得作用比為 50%的輸出電位VOUT。如此,即便由多晶矽所形成的薄 膜電晶體所構成的位準變換電路1,亦可達高速動作的功 效。 其次,針對位準變換電路1之p通道MOSFET與η通 道MOSFET之臨限電壓值為散亂情況時,進行電壓波形模 擬測試。在此模擬測試中,位準變換電路1之Ρ通道 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 42 312308 1238600 A7 B7 五、發明說明(43) MOSFET與η通遒MOSFET,係採用由多晶矽所形成的薄 膜電晶體。輸入信號CLK1,CLK2的頻率數設定為2MHz。 (請先閱讀背面之注意事項再填寫本頁) 第24圖所示係當ρ通道MOSFET與η通道MOSFET 的臨限電壓值’低於設定值時的模擬結果示意圖。在第24 圖所示模擬結果中,將Ρ通道MOSFET的臨限電壓值參數 (臨限電壓值)設定為-2.0V,而η通道MOSFET的臨限電壓 值參數(臨限電壓值)設定為1.3V。 第25圖所示係當ρ通道MOSFET與η通道MOSFET 的臨限電壓值,為設定值時的模擬結果示意圖。在第25 圖所示模擬結果中,將ρ通道MOSFET的臨限電壓值參數 (臨限電壓值)設定為-3· 5V,而η通道MOSFET的臨限電壓 值參數(臨限電壓值)設定為2.8V。 第26圖所示係當ρ通道MOSFET與η通道MOSFET 的臨限電壓值,高於設定值時的模擬結果示意圖。在第26 圖所示模擬結果中,將ρ通道MOSFET的臨限電壓值參數 (臨限電壓值)設定為-5.0V,而η通道MOSFET的臨限電壓 值參數(臨限電壓值)設定為4 ·3ν。 經濟部智慧財產局員工消費合作社印製 由第24、25、26圖的結果中得知,即便ρ通道MOSFET 與η通道MOSFET的臨限電壓值參數,比較性的大幅偏離 設定值時,應答輸入信號CLK1,CLK2亦可獲得作用比50% 的輸出電位VOUT。 第27圖所示係本發明之第7實施例中,位準變換電路 結構之電路圖。 第27圖之位準變換電路la,係具備有2個控制部 度適用中國國家標準(CNS)A4規格(210 X 297公釐) 43 312308 經濟部智慧財產局員工消費合作社印製 44 1238600 A7 B7 五、發明說明(44) 10A,10B、2個激發器20A,20B、及1個PMOS交叉耦合型 微動放大器30。 控制部10A,10B與激發器20A,20B的結構,係如同第 1至6實施例中之控制部10與激發器20的結構相同。其 中,對控制部10A的輸入節點11,12分別供給輸入信號 CLK1,CLK2,並對控制部10B的輸入節點11,12分別供給 輸入信號CLK2,CLK1 〇 對激發器20A,20B之η通道MOSFET3 03的源極,供 給特定電位VEE。所謂特定電位VEE係指低於電源電位 VDD的正電位、接地電位、負電位、時鐘信號CLK1、或 時鐘信號CLK2。 微動放大器30係含有ρ通道MOSFET301,302,與η 通道 MOSFET3 03,3 04 〇 ρ 通道 MOSFET3 01,302 的源極係 連接於電源端子,汲極係分別連接於輸出節點NO 1,N02, 閘極係交叉連接於輸出節點N01,N02上。對N通道 MOSFET3 03,3 04的源極供給特定電位VEE,而其閘極則分 別連接於激發器20A,20B的輸出節點NOA,NOB上。 在本實施例的位準變換電路la中,由微動放大器30 輸出互補變化的輸出電位VOUTl,VOUT2。而輸出電位 VOUTl,VOUT2則在電源電位VDD與接地電位間進行變 化。 第28圖所示係第27圖之位準變換電路la之具體結構 例的電路圖。 在第28圖中,控制部i〇a,10B的結構,係如同第6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 312308 ----------lr^w Μ--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 1238600 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 45 A7 B7 五、發明說明(45 ) 圖中的控制部10結構。控制部1〇A1〇B之η通道 MOSFET202的源極係連接於輸入節點12。微動放大器30 之η通道MOSFET3 03,304的源極係連接於接地端子。 第29圖所示係本發明第8實施例之位準變換電路結構 的電路圖。 第29圖的位準變換電路iB與第27圖之位準變換電路 la相異處在於,取代連接於PM〇s交叉耦合型微動放大器 30結構,改用連接於電流反射鏡型放大器31的結構。 電流反射鏡型放大器31係包含有p通道 MOSFET311,312,與 n 通道 m〇SFET313,314。p 通道 MOSFET3 11,3 12的源極係連接於電源端子,汲極係分別連 接於輸出節點N03,N04,閘極係連接於輸出節點n〇3上。 對N通道MOSFET3 13,3 14的源極供給特定電位VEE,而 其汲極分別連接於輸出節點N〇3,N〇4,閘極則分別連接於 激發器20A,20B的輸出節點n〇1,N02上。 在本實施例的位準變換電路lb中,由電流反射鏡型放 大器31的輸出節點N〇4,輸出輸出電位ν〇υτ。而輸出電 位VOUT則在電源電位VDD與接地電位間進行變化。 第30圖所示係本發明第9實施例之位準變換電路結構 的電路圖。 在第30圖之位準變換電路u中,在激發器2〇α2〇β 的輸出節點ΝΟΑ,ΝΟΒ之間,連接有複數PM〇s交又耦合 型微動放大器30。第30圖之位準變換電路u之其餘部分 的結構’係與第27圖之位準變換電路u結構相同。 本紙張尺度適用中_冢標準(CNS)A4規格⑽χ 297公髮 312308 Μ--------^-------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 1238600 A7 B7 五、發明說明(46) 在本實施例之位準變換電路lc中,由複數個微動放大 器30的輸出節點N01,N02輸出互補變化的輸出電位 V〇UTl,VOUT2。而輸出電位VOUTl,VOUT2則在電源電 位VDD與接地電位間進行變化。 第3 1圖所示係本發明第1 0實施例之位準變換電路結 構的電路圖。第31圖之位準變換電路Id係屬於對偶型位 準變換電路。 第31圖之位準變換電路Id,係包含有2個控制部 10A,10B、2個激發器20A,20B、及2個反相器3A,3B。 控制部10A,10B的結構,係與第6圖所示的控制部10 結構相同。而激發器20A,20B的結構,係與第6圖所示的 激發器20結構相同。控制部10A之p通道MOSFET104 的閘極、激發器20A之η通道MOSFET202的源極、控制 部10Β之η通道MOSFET102的源極、以及控制部10Β之 η通道MOSFET103的源極,係連接於接收時鐘信號CLK1 的輸入節點ΙΑ上。控制部10Α之η通道MOSFET102的源 極、控制部10Α之η通道MOSFET103的閘極、以及激發 器2 0Β之η通道MOSFET202的源極,係連接於接收時鐘 信號CLK2的輸入節點ΙΒ上。 另,激發器20Α,20Β之輸出節點ΝΟΑ,ΝΟΒ,係分別連 接於反相器3 Α,3Β上。由反相器3 Α,3Β輸出互補變化的輸 出電位VOUTl,VOUT2。輸出電位VOUTl,VOUT2係在電 源電位VDD與接地電位之間進行變化。藉此第3 1圖所示 的位準變換電路Id便進行互補動作。 ^紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 46 312308 -丨丨丨丨丨-丨If—· •丨--丨丨11訂·丨-丨丨--- (請先閱讀背面之注意事項再填寫本頁) 1238600 經濟部智慧財產局員工消費合作社印製 47 A7 B7 五、發明說明(47 第32圖所示係本發明第n實施例之位準變換電路結 構的電路圖。第32圖之位準變換電路u係屬於對偶型^ 相位調整型位準變換電路。 第32圖之位準變換電路&,與第31圖之位準變換電 路ld相異點在於,在激發器20A之輸出節點:NTOA與激發 器20B之輸出節點刪之間,互相反向連接供相;立調整 用之一對反相器5Α,5Β。 在本實施例之位準變換電路le中,利用反相器 5 A,5B,可使輪出節點N〇A,N〇B之輸出電位的位相一致。 藉此,即使在製造程序中,M〇SFET的臨限電壓值散亂狀 況較嚴重的情況下,亦可降低輸出電位ν〇υτι,ν〇υτ2位 相的偏移現象。 第33圖所示係本發明第12實施例中之位準變換電路 結構的電路圖。第33圖之位準變換電路lf係屬於低電壓 驅動型位準變換電路。 第33圖之位準變換電路lf,與第6圖之位準變換電路 1相異處在於,控制部10係更進一步包含有p通道 MOSFET105 與 η 通道 MOSFET106。 Ρ通道MOSFET105之源極係連接於電源端子,而閘極 係連接於輸出節點NO,汲極則連接於第丨節點Νρ上。^ 通道MOSFET106之源極係連接於輸入節點η,而閘極係 連接於輸出節點NO,汲極則連接於第2節點ΝΝ上。 如上述,在第6圖之位準變換電路1中,將激發器2〇 之P通道MOSFET201與n通道MOSFET202之閘極電位 本紙張尺度適用中國國家標準(CNS)A4規格⑵〇χ 297公爱) 312308 I--I--I I I J Κ- --------^« — — — — — — 1— . (請先閱讀背面之注音?事項再填寫本頁) 1238600 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(4〇 分別位移至控制部10之P通道MOSFET101的臨限電壓值 Vtp、與η通道MOSFET102的臨限電壓值Vtn動作區域中。 藉此,使MOSFET的臨限電壓值,即便因製造程序中的散 亂現象而產生偏移情形時,p通道MOSFET201與n通道 MOSFET202亦可確實的動作。惟,在當電源電位VDD降 低,且因製造程序中的散亂情形而導致大幅偏移設計值的 情況時,激發器20的p通道MOSFET201與η通道 MOSFET202,便將產生無法動作的現象。 在本實施例中的位準變換電路If中,為迴避此種現象 的產生,所以便設計p通道MOSFET105與η通道 MOSFET 106。如上述,輸出節點NO之輸出電位Vout的可 取得範圍,係大於第1節點NP之電位VNP可取得範圍與 第2節點NN之電位VNN可取得範圍。換句話說,p通道 MOSFET101之閘極電位與n通道MOSFET102之閘極電位 的可取得範圍,係大於輸出節點NO之輸出電位Vout的可 取得範圍。藉此方式,使p通道MOSFET105的閘極電位, 與η通道MOSFET106的閘極電位,可在大於第1節點NP 的電位VNP與第2節點ΝΝ的電位VNN更大的範圍下, 進行震盪。所以,ρ通道MOSFET 105與η通道MOSFET 106 便呈較強的導通狀態。結果,第1節點NP的電位VNP與 第2節點NN的電位VNN,便不受ρ通道MOSFET101之 臨限電壓值、與η通道MOSFET102之臨限電壓值的影響。 故,第33圖所示的位準變換電路If,即便在電源電位VDD 較低,且製造程序中散亂情況較嚴重的情況下,亦可確實 ---------裝--------訂-------- (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 48 312308 1238600 A7 五、發明說明(49 ) 的產生動作。 第34圖所示係本發明黛眘 令赞月第13實施例中之位準變 結構的電路圖。第34® + #進磁4么兩 、电路 乐34圖之位準變換電路lg係屬於 (請先閱讀背面之注意事項再填寫本頁) 驅動型與對偶型位準變換電路。 、-電壓 第34圖之位準變換電路lg,與第31圖之位準變換 路id相異處在於’控制部1〇A係更進一步包含有p通 MOSFET1G5B與n通道m〇sfet1()6b。換句話說控 10A,10B係具備如同第33圖中的控制部ι〇之結構。 在本實施例的位準變換電路lg中,如同第3ι圖之位 準變換電路id’由反相器3A,3B輸出互補變化的輪出電位 VOUTl,VOUT2。輸出電位v〇UTl v〇UT2係在電源電位 VDD與接地電位之間進行變化。該位準變換電路便可 如同第33圖所示的位準變換電路1£般,即便在電源電位 VDD較低,且製造程序中散亂情況較嚴重的情況下,亦可 確實的產生動作。 經濟部智慧財產局員工消費合作社印制衣 第35圖所示係本發明第14實施例中之位準變換電路 結構的電路圖。第35圖之位準變換電路lh係屬於低電壓 驅動型、對偶型及位相調整型位準變換電路。 第35圖之位準變換電路與第34圖之位準變換電 路lg相異處在於,在激發器20A之輸出節點NOA與激發 器20B之輸出節點NOB之間,互相反向連接供相位調整 用之一對反相器5A,5B。 在本實施例的位準變換電路1 h中,即使在製造程序中 MOSFET之臨限電壓值的散氣情況較嚴重情況下,亦可 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 49 312308 1238600 A7 ----------- B7__—______ 五、發明說明(5〇 ) 低輸出電位VOUT1,V〇UT2的位相偏移現象。同時,即使 在電源電位VDD較低的情況下,亦可確實的產生動作。 第36圖所示係採用本發明之位準變換電路的半導體 裝置第1例的方塊圖。 在第36圖所示的半導體裝置中,在晶片5〇〇上混載有 以電源電壓2.5V動作的邏輯電路501、以電源電壓3 3V 動作的邏輯電路502、及位準變換電路1A。該位準變換電 路1A係將由邏輯電路5〇1所提供的2 5V系信號,進行位 準轉換成3.3V系信號,並供給於邏輯電路5〇2。 位準變換電路1A係採用上述第1至14實施例之位準 變換電路1,la至lh中之任一者。藉此方式,第36圖所示 的半導體裝置,即使在製造程序中,p通道MOSFET與η 通道MOSFET的臨限電壓值產生較嚴重的散亂現象時,亦 可確實的產生動作,同時可達高速動作、低消耗電力、以 及小面積化之功效。 第37圖所示係採用本發明之位準變換電路的半導體 裝置第2例的方塊圖。 在第37圖所示的半導體裝置中,在晶片510上混載有 以電源電壓1.2V動作的邏輯電路511、以電源電壓1.8V 動作的邏輯電路512'以電源電壓2.5V動作的邏輯電路 513,514、及位準變換電路ib,1C,1D。 該位準變換電路1B係將由邏輯電路511所提供的 1.2V系信號,進行位準轉換成1 8V系信號,並供給於邏 輯電路512。該位準變換電路ic係將由邏輯電路512所提 (請先閱讀背面之注意事項再填寫本頁) 裝--------訂---------· 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 50 312308 1238600 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(51 ) 供的1.8V系信號,進行位準轉換成2 5V系信?虎,並供給 於邏輯電路514。該位準變換電路1〇係將由邏輯電路5ΐι 所提供的1.2V系信號,進行位準轉換成2 5V系信號,並 供給於邏輯電路513。 位準變換電路1B,1C,1D係採用上述第1至14實施例 之位準變換電路1,la至中之任一者。藉此方式,第η 圖所示的半導體裝置,即使在製造程序中,p通道MOSFET 與η通道MOSFET的臨限電壓值產生較嚴重的散亂現象 時,亦可確實的產生動作,同時可達高速動作、低消耗電 力、以及小面積化之功效。 第38圖所示係採用本發明之位準變換電路的半導體 裝置第3例的方塊圖。 在第38圖所示的半導體裝置中,在晶片520上混載有 以電源電壓1.8V動作的邏輯電路521、以電源電壓3.3V 動作的邏輯電路522、及位準變換電路ιέ。半導體記憶體 521係如DRAM(動態隨機存取記憶體)、SRam(靜態隨機 存取記憶體)、FLASH(快閃記憶體)、FERAM(強介電質記 憶體)等。該位準變換電路1E係將由邏輯電路521所提供 的1.8V系信號,進行位準轉換成3 3v系信號,並供給於 邏輯電路522。 位準變換電路1E係採用上述第1至14實施例之位準 變換電路1,la至lh中之任一者。藉此方式,第38圖所示 的半導體裝置,即使在製造程序中,p通道MOSFET與η 通道MOSFET的臨限電壓值產生較嚴重的散亂現象時,亦 -1--------·L --------訂·! (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公釐) 51 312308 1238600 A7 --------— 口7___ 五、發明說明(52 ) 可確實的產生動作,同睥可洁古、击 呀了達间逮動作、低消耗電力、以 及小面積化之功效。 第39圖所示係採用本發明之位準變換電路的半導體 裝置第4例的方塊圖。 在第39圖所示的半導體裝置中,在晶片別的内部形 成有以電源電壓2.5V動作的邏輯電路531。内部電路531 係由半導體元件所組成。纟準變換電% 1F㈣由邏輯電 路如所提供的2.5V系信號,進行位準轉換成3 3v系信 號,並供給於以電源電壓3·3ν進行動作的外部電路532。 位準變換電路1F係採用上述第1至14實施例之位準 變換電路1,la至lh中之任一者。藉此方式,第39圖所示 的半導體裝置,即使在製造程序中,p通道M〇SFET與η 通道MOSFET的臨限電壓值產生較嚴重的散亂現象時,亦 可確實的產生動作,同時可達高速動作、低消耗電力、以 及小面積化之功效。 第40圖所示係採用本發明之位準變換電路的液晶顯 示裝置一例的方塊圖。 在第40圖之液晶顯示裝置中,在玻璃基板5 40上設有 複數掃描電極 Υ1,Υ25···,Υη及複數數據電極 Χ1,Χ2,…,Xm,並呈相互交又狀態排列。其中,^及m係分 別才曰任意整數。在該等複數掃描電極Y1至γη及複數數據 電極XI至Xm的交又位置處,分別利用薄膜電晶體541 設有液晶元件542。薄膜電晶體541係譬如採用由如利用 雷射退火法(laser annealing)將非晶矽施行多晶化處理而 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 312308 (請先閱讀背面之注意事項再填寫本頁) 裝 i ------訂--I I I I I 1 - 經濟部智慧財產局員Η消費合作杜印製 52 1238600 經濟部智慧財產局員工消費合作社印製 A7 五、發明說明(53 ) 獲得之多晶矽所形成者。 此外,在玻璃基板540上,設有掃描線驅動電路543、 數據驅動電路544與電壓變換電路6〇〇。掃描電極γι至 Υη係連接於掃描線驅動電路543上,而數據電極 ,2,…,Xm則連接於數據驅動電路544上。電壓變換電 路600係將由外部控制電路545所供給之互補變化的小振 幅基本時鐘信號,位準變換成不同電壓的時鐘信號,並提 供於掃描線驅動電路543與數據驅動電路544。 第41圖所示係第40圖所示液晶顯示裝置所採用之電 壓變換電路結構的方塊圖。 在第41圖的電壓變換電路6〇〇中於玻璃基板54〇 上’形成有昇壓電源電路601、負壓電源電路6〇2與位準 變換電路1G,1H,1I,1J。對位準變換電路1(}供給外接電源 電壓8V與3.3V。此處,内部電路俦篦 — 电崎1舉弟40圖所不的掃描線 驅動電路543與數據驅動電路544。V. Description of the invention (37) 1238600 gives input signals CLK1 and CLK2 respectively. The source of the n-channel MOSFET 102 is connected to the input node 112, and the drain and gate are connected to the second node NN. In addition, the rest of the structure and operation of the level conversion circuit 1 shown in FIG. 14 are the same as the structure of the level conversion circuit 1 shown in FIG. The control circuit 100a controls the first node NP potential VNP and the second node NN potential VNN in response to the input signals CLK1 and CLK2. The potential VNP of the working node NP is set at a level between the power supply potential VDD and the level of the input signal CLK1 by using the control circuit 100a. In addition, the potential VNN of the second node NN rises from the low level of the input signal CLK1 to a level above the threshold voltage value vtn of the n-channel MOSFET 102. In this way, one of the p-channel MOSFET 201 and the n-channel MOSFET 202 of the exciter 20 is in a strong on state, and the other is in a weak on state. In this way, neither the p-channel mSFET20i of the exciter 20 nor the n-channel MOSFET 202 is turned off. The rest of the level conversion circuit of the fourth embodiment has the same structure and operation as those of the level conversion circuit 1 of the i-th embodiment. FIG. 15 is a circuit diagram of the first example of the level conversion circuit 1 of FIG. 14. As shown in FIG. 15, the control circuit 100a includes resistance elements R3, R4, and a p-channel MOSFET 104. One end of the resistance element R3 is connected to the power terminal, and the other end is connected to the node Np. Resistance element rule 4 6 ^ 钱 # 于 ^ 1 node NP, and the other end is connected to the turn-in node n This paper size applies-China National gIT ^ S) A4 size (210 x 297 public love 37 312308 ---- ------, 1- 丨 Installation -------- Order ---------. (Please read the phonetic on the back? Matters before filling out this page) Employees of Intellectual Property Bureau, Ministry of Economic Affairs Printed by the Consumer Cooperative 1238600 A7 B7 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs V. Invention Description (38). The source of the p-channel MOSFET104 is connected to the power terminal, and the drain is connected to the second node NN. The pole is connected to the input node 12. In the example shown in FIG. 15, the potential VNP of the first node NP is set to a level between the power supply potential VDD and the level of the input signal CLK1 by using the resistance elements R3 and R4. The p-channel MOSFET 201 is always turned on. In addition, the n-channel MOSFET 102 is used to set the potential VNN of the second node NN to a level that rises from the ground potential to an absolute value of the threshold voltage Vtn, and the n-channel MOSFET 202 is always maintained. On state. The potential VNP of the first node NP corresponds to the level of the input signal CLK1. The control is at a high level or a low level. In addition, the potential VNN of the second node NN corresponds to the level of the input signals CLK1, CLK2, and the control is at a high or low level. As a result, the p-channel MOSFET 201 and the n-channel MOSFET 202 are controlled. When either one is in a strong conduction state, the other is in a weak conduction state. When the input signal CLK1 is in a low level state, the potential VNP of the first node NP is set to be between the power supply potential VDD and the input signal CLK1 The level between the low levels causes the p-channel MOSFET 201 to be in a strong on-state. In this case, the n-channel MOSFET 202 is in a strong on-state. Figure 16 shows the level conversion circuit 1 in Figure 14 The circuit diagram of the second example of the circuit configuration. The level conversion circuit 1 shown in FIG. 16 is different from the level conversion circuit 1 shown in FIG. 15 in that the other end of the resistance element R4 of the control circuit 100a is connected. To ground terminal.-丨 丨 丨 丨 丨 丨 丨 1,1 · • 丨 丨 丨 丨 丨 I —Order · 丨 丨 丨-丨 — 丨-. (Please read the precautions on the back before filling this page) This Paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 38 312308 A7 1238600 _B7 V. Description of the invention (39) In this case, the potential VNN of the first node NP is fixed to a specific potential between the power supply potential VDD and the ground potential through the resistance elements R3 and R4, 俾The P-channel MOSFET 202 often remains on. When the n-channel MOSFET 202 is in a strong conducting state, the p-channel MOSFET 201 is in a weak conducting state. Conversely, when the n-channel MOSFET 202 is in a relatively weak on-state, the p-channel MOSFET 201 is in a relatively strong on-state. Fig. 17 is a circuit diagram of the third example of the circuit configuration of the level conversion circuit 1 of Fig. 14. The level conversion circuit 1 shown in FIG. 17 is different from the level conversion circuit 1 shown in FIG. 15 in that a p-channel MOSFET 106 is replaced in place of the resistance element R3 of the control circuit 100a. The source of the p-channel MOSFET 106 is connected to the power terminal, the drain is connected to the first node NP, and the gate is connected to the input node II. When the input signal CLK1 is in a high level state, the potential VNP of the first node NP becomes a high level, thereby making the p-channel MOSFET 201 in a weak on state. Conversely, when the input signal CLK1 is in a low level state, the potential VNP of the first node NP is at a low level, thereby making the p-channel MOSFET 201 in a strong on state. The level conversion circuit 1 of the first to fourth embodiments is An operation is generated in response to the input signals CLK1 and CLK2 which are complementary to each other. Then, the level conversion circuit 1 of the fifth embodiment shown is operated in response to a single input signal. Fig. 18 is a circuit diagram showing the structure of a level conversion circuit in the fifth embodiment of the present invention. --------- 1 — ^^ · Equipment -------- Order --------- (Please read the notes on the back before filling this page) Intellectual Property of the Ministry of Economic Affairs The paper size printed by the Bureau ’s Consumer Cooperatives applies the Chinese National Standard (CNS) A4 specification mo X 297 mm 39 39 312308 1238600 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7. 5. Description of the invention (*) Figure U The source of the control circuit 100 channel m0sfet103 is connected to the input node n that receives a single input signal clk, and the sum and gate are connected to the first node NP. The p-channel MOSFET 104 is connected to the second node NN, and the gate is connected to the ground. !! The source of the channel MOSFET 202 is connected to the ground terminal. The structure of the rest of the level conversion circuit 1 shown in Fig. 18 is the same as that of the level double conversion circuit 1 shown in Fig. 6. Fig. 19 is a circuit diagram showing the structure of a level conversion circuit in the sixth embodiment of the present invention. The configuration of the control unit in the level conversion circuit 1 shown in FIG. 19 is the same as that of the control unit 10 of the level conversion circuit j shown in FIG. In the exciter 20, a p-channel MOSFET 210 is connected between the source of the p-channel MOSFET 201 and the power terminal. The control signal cON is supplied to the gate of the P-channel MOSFET 210. The structure of the rest of the level conversion circuit i shown in Fig. 19 is the same as that of the level conversion circuit 1 shown in Fig. 6. Fig. 20 is a voltage waveform diagram showing an example of the operation of the level conversion circuit 1 of Fig. 19. As shown in Figure 20, the input signals Clk1 and CLK2 are complementary high and low levels. The output potential VOUT changes with a voltage amplitude greater than the voltage amplitude of the input signals CLK1, CLK2. The control system number CONT is in the high level state during the transition period between the input signals CLK1 and CLK2 between the high level and the low level. In other periods, the Chinese standard (CNS) A4 specification (210 X 297) applies. (Mm) 312308 I ΙΊ — III! — T — 11! —. (Please read the notes on the back before filling out this page) 1238600 Printed clothing A7 of the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ______ _______ 5. Description of the invention ( 41) 'is at a low level. The period during which the control signal CON is in a high level state is referred to as a continuous current blocking period TH. During the through-current blocking period TH, the p-channel SFET2 () 1 is turned off, and the through-current flowing through the electric MOSFET + 0 and the n-channel MOSFET 202 is blocked. Therefore, the effect of reducing power consumption can be achieved. Here, a simulation test of the characteristics of the level conversion circuit of the present invention is performed. Figure 21 is a schematic diagram of the circuit structure of a level conversion circuit used in analog testing. The structure of the level conversion circuit i shown in FIG. 21 is the same as that of the level conversion circuit 1 shown in FIG. First, the high-speed operation of the level conversion circuit 1 in FIG. 21 will be investigated. Generally, in a transistor formed by bulk silicon, the threshold voltage value Vtp is (-0 · 9 ± 0.1) V, and the threshold voltage value vtn is (_〇7 ± ο · ι). ν. In addition, in a thin film transistor using polycrystalline silicon, the threshold voltage value Vtp is (-2 · 5 ± 1 to 1.5) V, and the threshold voltage value Vtn is (i.8 + i 丨 to 1.5) V. In this way, compared to transistors formed from monolithic silicon, thin film transistors using polycrystalline silicon will experience a more severe threshold voltage during the manufacturing process. FIG. 22 is a schematic diagram of the simulation test result when the level conversion circuit 1 is composed of a transistor formed of monolithic silicon. Set the frequency of the input signals CLK1 and CLK to 1 GHz, set the input voltage amplitude (oscillation amplitude of the input signals CLK1, CLK2) to 0.5 V, and set the output voltage amplitude (oscillation amplitude of the output potential VOUT) to 3.0 V. ---------- 1 ^ 1 * Packing -------- Order --------- (Please read the precautions on the back before filling this page) This paper size applies China National Standard (CNS) A4 specification (210 X 297 mm) 41 312308 1238600 A7 B7 V. Description of the invention (42) (Please read the precautions on the back before filling this page) Input shown in Figure 22 (A) Waveforms of signals CLK1, CLK2 and output potential VOUT. Figure 22 (B) shows waveforms of the potential VNP of the first node NP, the potential VNN of the second node NN, and the output potential VOUT of the output node NO. It is known from the simulation results in FIG. 22 that even at a high frequency such as 1 GHz, the output potential VOUT having an effective ratio of 50% can be obtained in response to the input signals CLK1 and CLK2. In this way, the level conversion circuit 1 composed of a transistor formed of monolithic silicon can achieve the effect of high-speed operation. Fig. 23 is a diagram showing a simulation test result when the level conversion circuit 1 is formed of a thin film transistor formed of polycrystalline silicon. The frequency of the input signals CLK1 and CLK2 is set to 20 MHz, the input voltage amplitude is set to 3.0V, and the output voltage amplitude is set to 12V. Figure 23 (A) shows the waveforms of the input signals CLK1, CLK2 and the output potential VOUT. Figure 23 (B) shows waveforms of the potential VNP of the first node NP, the potential VNN of the second node NN, and the output potential VOUT of the output node NO. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. According to the simulation results shown in Figure 23, even at a high frequency such as 20MHz, the output potential VOUT with a 50% effect ratio can be obtained in response to the input signals CLK1 and CLK2. In this way, even if the level conversion circuit 1 is composed of a thin film transistor formed of polycrystalline silicon, it can achieve the effect of high-speed operation. Secondly, for the case where the threshold voltage values of the p-channel MOSFET and the n-channel MOSFET of the level conversion circuit 1 are scattered, a voltage waveform simulation test is performed. In this simulation test, the paper size of the P channel of the level conversion circuit 1 is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 42 312308 1238600 A7 B7 V. Description of the invention (43) MOSFET communicates with η MOSFET is a thin film transistor made of polycrystalline silicon. The frequency of the input signals CLK1 and CLK2 is set to 2 MHz. (Please read the precautions on the back before filling this page.) Figure 24 shows the simulation results when the threshold voltage value of the ρ-channel MOSFET and η-channel MOSFET is lower than the set value. In the simulation results shown in Figure 24, the threshold voltage parameter (threshold voltage value) of the P-channel MOSFET is set to -2.0V, and the threshold voltage parameter (threshold voltage value) of the n-channel MOSFET is set to 1.3V. Figure 25 shows the simulation results when the threshold voltage values of the ρ-channel MOSFET and the η-channel MOSFET are set values. In the simulation result shown in Figure 25, the threshold voltage value parameter (threshold voltage value) of the p-channel MOSFET is set to -3.5V, and the threshold voltage value parameter (threshold voltage value) of the η-channel MOSFET is set It is 2.8V. Figure 26 is a schematic diagram of the simulation results when the threshold voltage values of the p-channel MOSFET and the n-channel MOSFET are higher than the set value. In the simulation results shown in Figure 26, the threshold voltage value parameter (threshold voltage value) of the p-channel MOSFET is set to -5.0V, and the threshold voltage value parameter (threshold voltage value) of the n-channel MOSFET is set to 4 · 3ν. According to the results of Figures 24, 25, and 26 printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, even if the threshold voltage parameters of the ρ-channel MOSFET and the η-channel MOSFET deviate significantly from the set value, the response input is The signals CLK1 and CLK2 can also obtain an output potential VOUT with an effect ratio of 50%. Fig. 27 is a circuit diagram showing a configuration of a level conversion circuit in a seventh embodiment of the present invention. The level conversion circuit la shown in Figure 27 is equipped with 2 control units that are applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 43 312308 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 44 1238600 A7 B7 V. Description of the invention (44) 10A, 10B, two exciters 20A, 20B, and a PMOS cross-coupling type micro-motion amplifier 30. The structures of the control sections 10A, 10B and the exciters 20A, 20B are the same as those of the control section 10 and the exciter 20 in the first to sixth embodiments. Among them, the input nodes 11 and 12 of the control unit 10A are respectively supplied with input signals CLK1 and CLK2, and the input nodes 11 and 12 of the control unit 10B are respectively supplied with input signals CLK2 and CLK1. 0 are provided to the n-channel MOSFETs 03 of the exciters 20A and 20B. Source, which supplies a specific potential VEE. The specific potential VEE means a positive potential, a ground potential, a negative potential, a clock signal CLK1, or a clock signal CLK2 which is lower than the power supply potential VDD. The micro-amplifier 30 series contains ρ-channel MOSFETs 301, 302, and η-channel MOSFET3 03, 3 04 〇ρ-channel MOSFET3 01, 302 The source is connected to the power terminal, and the drain is connected to the output nodes NO 1, N02, gate The system is cross-connected to the output nodes N01, N02. The sources of the N-channel MOSFETs 3 03 and 04 are supplied with a specific potential VEE, and their gates are connected to the output nodes NOA and NOB of the exciters 20A and 20B, respectively. In the level conversion circuit 1a of this embodiment, the micro-amplifier 30 outputs the output potentials VOUT1, VOUT2 which are complementary to each other. The output potentials VOUT1 and VOUT2 change between the power supply potential VDD and the ground potential. Fig. 28 is a circuit diagram showing a specific configuration example of the level conversion circuit la of Fig. 27. In Fig. 28, the structure of the control sections i0a, 10B is the same as the 6th paper size, which applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 312308 ---------- lr ^ w Μ -------- Order --------- line (please read the precautions on the back before filling this page) 1238600 Printed by Employee Consumer Cooperative of Intellectual Property Bureau of Ministry of Economic Affairs 45 A7 B7 5. Description of the invention (45) The structure of the control section 10 in the figure. The source of the n-channel MOSFET 202 of the control section 10A10B is connected to the input node 12. The source of the n-channel MOSFETs 03,304 of the micro-amplifier 30 is connected to the ground terminal. Fig. 29 is a circuit diagram showing a configuration of a level conversion circuit according to an eighth embodiment of the present invention. The level conversion circuit iB in FIG. 29 differs from the level conversion circuit la in FIG. 27 in that instead of the structure connected to the PM0s cross-coupling type micro-motion amplifier 30, a structure connected to the current mirror type amplifier 31 is used instead. . The current mirror amplifier 31 includes p-channel MOSFETs 311 and 312 and n-channel MOSFETs 313 and 314. The sources of the p-channel MOSFETs 3 1 and 3 12 are connected to the power supply terminals, the drain is connected to the output nodes N03 and N04, and the gate is connected to the output node no 03. A specific potential VEE is supplied to the sources of the N-channel MOSFETs 3, 3, 14 and the drains thereof are respectively connected to the output nodes No. 3 and No. 4, and the gates are respectively connected to the output nodes of the exciters 20A, 20B. On N02. In the level conversion circuit lb of this embodiment, an output potential νουτ is output from the output node No4 of the current mirror type amplifier 31. The output potential VOUT changes between the power supply potential VDD and the ground potential. Fig. 30 is a circuit diagram showing a configuration of a level conversion circuit according to a ninth embodiment of the present invention. In the level conversion circuit u in FIG. 30, a plurality of PMos cross-coupling type micro-motion amplifiers 30 are connected between the output nodes NOA and NOB of the exciter 20α2β. The structure of the rest of the level conversion circuit u in Fig. 30 is the same as that of the level conversion circuit u in Fig. 27. Applicable in this paper standard _ Tsukazumi Standard (CNS) A4 specification ⑽χ 297 Public hair 312308 Μ -------- ^ -------- (Please read the precautions on the back before filling this page) Economy Printed by the Consumer Cooperative of the Ministry of Intellectual Property Bureau 1238600 A7 B7 V. Explanation of the invention (46) In the level conversion circuit lc of this embodiment, the output nodes N01 and N02 of the plurality of micro-motion amplifiers 30 output complementary output potentials V 〇UT1, VOUT2. The output potentials VOUTl and VOUT2 change between the power supply potential VDD and the ground potential. Fig. 31 is a circuit diagram showing the structure of a level conversion circuit according to the tenth embodiment of the present invention. The level conversion circuit Id in Fig. 31 belongs to a dual type level conversion circuit. The level conversion circuit Id in FIG. 31 includes two control sections 10A, 10B, two exciters 20A, 20B, and two inverters 3A, 3B. The structures of the control units 10A and 10B are the same as those of the control unit 10 shown in FIG. The structures of the exciters 20A and 20B are the same as those of the exciter 20 shown in FIG. The gate of the p-channel MOSFET 104 of the control unit 10A, the source of the n-channel MOSFET 202 of the exciter 20A, the source of the n-channel MOSFET 102 of the control unit 10B, and the source of the n-channel MOSFET 103 of the control unit 10B are connected to the receiving clock. Signal CLK1 is at input node IA. The source of the n-channel MOSFET 102 of the control section 10A, the gate of the n-channel MOSFET 103 of the control section 10A, and the source of the n-channel MOSFET 202 of the exciter 20B are connected to the input node IB that receives the clock signal CLK2. In addition, the output nodes NOA, NOB of the exciters 20A, 20B are connected to the inverters 3A, 3B, respectively. The inverters 3 A, 3B output output potentials VOUT1, VOUT2 which are complementary to each other. The output potentials VOUT1 and VOUT2 change between the power supply potential VDD and the ground potential. Thereby, the level conversion circuit Id shown in Fig. 31 performs complementary operations. ^ The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 46 312308-丨 丨 丨 丨 丨-丨 If— · • 丨-丨 丨 11 Orders 丨-丨 丨 --- (Please (Read the precautions on the back before filling this page) 1238600 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 47 A7 B7 V. Description of the invention (47 Figure 32 shows the structure of the level conversion circuit of the nth embodiment of the present invention Circuit diagram. The level conversion circuit u in FIG. 32 belongs to the dual type ^ phase adjustment type level conversion circuit. The level conversion circuit in FIG. 32 is different from the level conversion circuit ld in FIG. 31 in that: The output node of the exciter 20A: NTOA and the output node of the exciter 20B are connected in opposite directions to each other for phase adjustment; a pair of inverters 5A, 5B are used for adjustment. The level conversion circuit le in this embodiment In the use of inverters 5 A and 5B, the output potentials of the nodes NOA and NOB can be made consistent. Thus, even in the manufacturing process, the threshold voltage values of the MOSFETs are scattered. In more severe cases, the phase shifts of the output potentials ν〇υτι and ν〇υτ can also be reduced. Fig. 33 is a circuit diagram showing the structure of a level conversion circuit in the twelfth embodiment of the present invention. The level conversion circuit in Fig. 33 is a low voltage drive type level conversion circuit. The level in Fig. 33 The conversion circuit lf is different from the level conversion circuit 1 in FIG. 6 in that the control unit 10 further includes a p-channel MOSFET 105 and an n-channel MOSFET 106. The source of the p-channel MOSFET 105 is connected to the power terminal, and the gate Is connected to the output node NO, and the drain is connected to the node Nρ. ^ The source of the channel MOSFET 106 is connected to the input node η, and the gate is connected to the output node NO, and the drain is connected to the second node ΝΝ As described above, in the level conversion circuit 1 in FIG. 6, the gate potentials of the P-channel MOSFET 201 and the n-channel MOSFET 202 of the exciter 20 are applied to the Chinese standard (CNS) A4 specification 〇χ297. (Public love) 312308 I--I--IIIJ Κ- -------- ^ «— — — — — — 1 —. (Please read the note on the back? Matters before filling out this page) 1238600 A7 B7 Economy Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau Explanation (40) is shifted to the threshold voltage values Vtp of the P-channel MOSFET 101 and the threshold voltage value Vtn of the n-channel MOSFET 102 in the control unit 10, respectively. With this, the threshold voltage value of the MOSFET is made even by the manufacturing process When the shift phenomenon occurs in the dispersion phenomenon, the p-channel MOSFET 201 and the n-channel MOSFET 202 can also operate reliably. However, when the power supply potential VDD decreases and the design value is largely deviated due to the disorder in the manufacturing process, the p-channel MOSFET 201 and the n-channel MOSFET 202 of the exciter 20 will fail to operate. In the level conversion circuit If in this embodiment, in order to avoid such a phenomenon, a p-channel MOSFET 105 and an n-channel MOSFET 106 are designed. As described above, the obtainable range of the output potential Vout of the output node NO is larger than the obtainable range of the potential VNP of the first node NP and the obtainable range of the potential VNN of the second node NN. In other words, the accessible range of the gate potential of the p-channel MOSFET 101 and the gate potential of the n-channel MOSFET 102 is larger than the obtainable range of the output potential Vout of the output node NO. In this way, the gate potential of the p-channel MOSFET 105 and the gate potential of the n-channel MOSFET 106 can oscillate in a larger range than the potential VNP of the first node NP and the potential VNN of the second node NN. Therefore, the p-channel MOSFET 105 and the n-channel MOSFET 106 are in a strong on state. As a result, the potential VNP of the first node NP and the potential VNN of the second node NN are not affected by the threshold voltage value of the p-channel MOSFET 101 and the threshold voltage value of the n-channel MOSFET 102. Therefore, the level conversion circuit If shown in FIG. 33 can be sure even if the power supply potential VDD is low and the dispersion in the manufacturing process is serious. ------ Order -------- (Please read the notes on the back before filling in this page) This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 48 312308 1238600 A7 Fifth, the action of invention description (49). Fig. 34 is a circuit diagram showing a level shifting structure in the thirteenth embodiment of Daishen Zanyue of the present invention. Section 34® + # 进 磁 4 么 二, Circuits The level conversion circuit lg of Le 34 belongs to (Please read the precautions on the back before filling this page) Drive and dual level conversion circuits. The voltage-level conversion circuit lg of Fig. 34 is different from the level conversion circuit id of Fig. 31 in that the 'control unit 10A series further includes a p-channel MOSFET 1G5B and an n-channel mff1 () 6b. . In other words, the control units 10A and 10B have the same structure as the control unit ι0 in FIG. 33. In the level conversion circuit lg of this embodiment, the inverters 3A, 3B output the wheel output potentials VOUT1, VOUT2 which are complementary to each other, as in the level conversion circuit id 'in FIG. The output potential v〇UT1 v〇UT2 changes between the power supply potential VDD and the ground potential. This level conversion circuit can be operated like the level conversion circuit 1 £ shown in FIG. 33, even when the power supply potential VDD is low and the disorder in the manufacturing process is serious. FIG. 35 is a circuit diagram showing the structure of a level conversion circuit in the fourteenth embodiment of the present invention. The level conversion circuit lh in FIG. 35 is a level conversion circuit of a low voltage driving type, a dual type, and a phase adjustment type. The level conversion circuit of FIG. 35 is different from the level conversion circuit lg of FIG. 34 in that the output node NOA of the exciter 20A and the output node NOB of the exciter 20B are connected in opposite directions to each other for phase adjustment. One pair of inverters 5A, 5B. In the level conversion circuit 1 h of this embodiment, even in the case where the outgassing condition of the threshold voltage value of the MOSFET is severe in the manufacturing process, this paper size can be adapted to the Chinese National Standard (CNS) A4 specification (210 x 297 mm) 49 312308 1238600 A7 ----------- B7_________ V. Description of the invention (50) Phase shift phenomenon of low output potential VOUT1, VOUT2. At the same time, even when the power supply potential VDD is low, the operation can be reliably performed. Fig. 36 is a block diagram showing a first example of a semiconductor device using a level conversion circuit of the present invention. In the semiconductor device shown in FIG. 36, a logic circuit 501 operating at a power supply voltage of 2.5V, a logic circuit 502 operating at a power supply voltage of 33V, and a level conversion circuit 1A are mixed on a wafer 500. The level conversion circuit 1A converts the level of the 25V signal provided by the logic circuit 501 into a 3.3V signal and supplies it to the logic circuit 502. The level conversion circuit 1A uses any one of the level conversion circuits 1, 1 to 1h of the above-mentioned first to fourteenth embodiments. In this way, the semiconductor device shown in FIG. 36 can reliably operate even when the threshold voltage values of the p-channel MOSFET and the η-channel MOSFET are severely scattered during the manufacturing process. High-speed operation, low power consumption, and small area. Fig. 37 is a block diagram showing a second example of a semiconductor device using the level conversion circuit of the present invention. In the semiconductor device shown in FIG. 37, a logic circuit 511 operating at a power supply voltage of 1.2V, a logic circuit operating at a power supply voltage of 1.8V 512 ', and a logic circuit 513,514 operating at a power supply voltage are mixed on the chip 510. And level conversion circuits ib, 1C, 1D. The level conversion circuit 1B converts the 1.2V series signal provided by the logic circuit 511 into a 18V series signal and supplies it to the logic circuit 512. The level conversion circuit IC will be mentioned by logic circuit 512 (please read the precautions on the back before filling this page). -------- Order --------- · Intellectual Property of the Ministry of Economic Affairs The paper size printed by the Bureau ’s Consumer Cooperatives applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 50 312308 1238600 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economy A7 B7 V. Description of the invention (51) 1.8 V series signal, level conversion into 2 5V series signal? It is supplied to the logic circuit 514. This level conversion circuit 10 converts the 1.2V system signal provided by the logic circuit 5m to a level of 25V system signal and supplies it to the logic circuit 513. The level conversion circuits 1B, 1C, and 1D use any one of the level conversion circuits 1, 1 to 1 of the above-mentioned first to fourteenth embodiments. In this way, the semiconductor device shown in FIG. Η can reliably operate even when the threshold voltage values of the p-channel MOSFET and the η-channel MOSFET are severely scattered during the manufacturing process, and can reach the same time. High-speed operation, low power consumption, and small area. Fig. 38 is a block diagram showing a third example of a semiconductor device using the level conversion circuit of the present invention. In the semiconductor device shown in FIG. 38, a logic circuit 521 operating at a power supply voltage of 1.8V, a logic circuit 522 operating at a power supply voltage of 3.3V, and a level conversion circuit are mixed on a chip 520. Semiconductor memory 521 is such as DRAM (dynamic random access memory), SRam (static random access memory), FLASH (flash memory), FERAM (ferroelectric memory) and so on. The level conversion circuit 1E converts the level of the 1.8V system signal provided by the logic circuit 521 into a 3 3v system signal and supplies it to the logic circuit 522. The level conversion circuit 1E uses any one of the level conversion circuits 1, 1 to 1h of the first to 14th embodiments. In this way, even in the semiconductor device shown in FIG. 38, during the manufacturing process, the threshold voltage values of the p-channel MOSFET and the η-channel MOSFET have a severe scatter phenomenon, but also -1 ------- -· L -------- Order ·! (Please read the precautions on the back before filling this page) This paper size is applicable to the Chinese National Standard (CNS) A4 specification (21 × X 297 mm) 51 312308 1238600 A7 --------—— 口 7___ V. Description of the invention (52) The action can be surely generated, the same effect can be used to clean the ancient, hit the Dajian catch action, reduce power consumption, and reduce the area. Fig. 39 is a block diagram showing a fourth example of a semiconductor device using a level conversion circuit of the present invention. In the semiconductor device shown in Fig. 39, a logic circuit 531 operating at a power supply voltage of 2.5 V is formed inside a wafer. The internal circuit 531 is composed of a semiconductor element. The quasi-conversion power% 1F is level-converted by a logic circuit, such as a 2.5V system signal, into a 3 3v system signal, and is supplied to an external circuit 532 that operates with a power supply voltage of 3 · 3ν. The level conversion circuit 1F employs any one of the level conversion circuits 1, 1 to 1h of the above-mentioned first to fourteenth embodiments. In this way, the semiconductor device shown in FIG. 39 can reliably operate even when the threshold voltage values of the p-channel MOSFET and the η-channel MOSFET are severely scattered during the manufacturing process. It can achieve high-speed operation, low power consumption, and small area. Fig. 40 is a block diagram showing an example of a liquid crystal display device using a level conversion circuit of the present invention. In the liquid crystal display device of FIG. 40, a plurality of scanning electrodes Υ1, Υ25 ··, Υη, and a plurality of data electrodes χ1, χ2, ..., Xm are arranged on the glass substrate 5 40, and are arranged in an intersecting state. Among them, ^ and m are arbitrary integers. Liquid crystal elements 542 are respectively provided at the intersections of the plurality of scan electrodes Y1 to γη and the plurality of data electrodes XI to Xm using thin film transistors 541. The thin-film transistor 541 is, for example, a polycrystalline process that is performed on amorphous silicon by using laser annealing, and this paper is in accordance with China National Standard (CNS) A4 (210 X 297 mm) 312308 (please (Please read the notes on the back before filling this page) Install i ------ Order --IIIII 1-Member of Intellectual Property Bureau of the Ministry of Economic Affairs ΗConsumer Cooperation Du Print 52 1238600 Employee Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs Print A7 Five The invention (53) formed by the polycrystalline silicon obtained. In addition, on the glass substrate 540, a scanning line driving circuit 543, a data driving circuit 544, and a voltage conversion circuit 600 are provided. The scan electrodes γm to Υη are connected to the scan line driving circuit 543, and the data electrodes 2,2, ..., Xm are connected to the data driving circuit 544. The voltage conversion circuit 600 converts complementary basic small-amplitude clock signals supplied by the external control circuit 545 into levels of clock signals of different voltages, and provides them to the scanning line driving circuit 543 and the data driving circuit 544. Fig. 41 is a block diagram showing the structure of a voltage conversion circuit used in the liquid crystal display device shown in Fig. 40. In the voltage conversion circuit 600 shown in FIG. 41, a step-up power supply circuit 601, a negative voltage power supply circuit 602, and a level conversion circuit 1G, 1H, 1I, 1J are formed on a glass substrate 54 ′. The level conversion circuit 1 () supplies external power supply voltages of 8V and 3.3V. Here, the internal circuit 俦 篦 — Scanz drive circuit 543 and data drive circuit 544 shown in FIG.

位準變換電路1G係將由第40 A 丁打田弟40圖之外部控制電路 所供給的基本時鐘信號’位準變換成以…乂範圍變化 的信號’並供給於内部電路與位準變換電路⑶叩卜該 位準變換電路1H係將由位準變拖雷 ^ 干雙換電路1G所供給的信號, 根據昇壓電源電路601的電源電壓The level conversion circuit 1G converts the basic clock signal 'level' supplied from the external control circuit of Figure 40A Dingtiandi 40 to a signal which changes in a range of '乂' and supplies it to the internal circuit and level conversion circuit. The level conversion circuit 1H is a signal supplied by the level change circuit. The signal supplied by the dry double conversion circuit 1G is based on the power supply voltage of the boost power supply circuit 601.

电!位準變換成以0至12 V 犯圍變化的信號,而供給於内部雷 寬路與位準變換電路1Jq 該位準變換電路II係將由位康 早變換電路ig所供給的 信號,根據負電源電路602的負雷杭 W貝電源電壓,位準變換成以 -3至8V範圍變化的信號,而供认 __^、、、°於内部電路。該位準變 ‘紙張尺度適用中國國家標準(CNS)A4規格 53 312308 -111 —I — Mi —I — ^« — — — — 1 — 11 (請先閱讀背面之注意事項再填寫本頁) 1238600 A7 五、發明說明(54 ) 換電路1J係將由位準轡 、 +變換電路1H所供給的信號,根據負 電源電路002的負電 席'電壓’位準變換成以-3至12V範圍 變化的信號,而供給於内部電路。 位準變換電路1G m 係可採用如第1至14實施 例之位準變換電路1 u , 至lh中之任一者。藉此方式,即 便在製造程序中,D诵、苦 P通道MOSFET與η通道MOSFET的臨 限電壓值產生較嚴重4 + $的散亂現象時,亦可確實的產生動 作,同時可達高速動作、 mn低沩耗電力、小面積化、及高精 密化之功效。 第42圖所不係採用本發明之位準變換電路的有機EL 裝置一例的方塊圖。 在第42圖的有機£[裝置中,於玻璃基板55〇上,形 成有複數掃描電;)¾ νινο 田电枝Υ1,Υ2,···,Υη及複數數據電極 Χ1,Χ2,…,Xm,並呈相互交叉狀態排列。在該等複數掃描 電極Y1至〜及複數數據電極XI至Xm的交叉位置處, 分別利用薄膜電晶體551設有有機此裝置…。有機机 裝置552係譬如採用由如利用雷射退火法將非晶梦施行多 晶化處理而獲得之多晶矽所形成者。 此外,在玻璃基板550上,設有掃描線驅動電路553、 數據驅動電路554與電壓變換電路7〇〇。掃描電極γ1至 Yn係連接於掃描線驅動電路553上,而數據電極 Xl,X2,...,Xm則連接於數據驅動電路554上。電壓變換電 路7〇〇係將由外部控制電路555所供給之互補變化的小振 幅基本時鐘信號,位準變換成不同電壓的時鐘信號,並提 參紙張尺度適所Τ關家標準(CNS)A4規格⑵G X 297公爱 312308 (請先閱讀背面之注意事項再填寫本頁) Ί Γ ------— It· —------- 經濟部智慧財產局員工消費合作社印製 54 A7 經濟部智慧財產局員工消費合作社印製 1238600 五、發明說明(55 ) 供於掃描線驅動電路553與數櫨驄翻带& 课驅動電路554。電壓變換 電路700的結構,係與第41圖所示雷厭 W不電壓變換電路600的結 構相同。 電壓變換電路700係可採用如箆! s ί 如弟1至14實施例之位準 變換電路l,la至lh中之任一者。蕻士 |稽此方式,第42圖所示 錢EL裝置’即便在製造程序中,p通道M〇sFET與η 通道MOSFET的臨限電壓值產生較嚴重的散亂現象時,亦 可確實的產生動作,同時可達高速動作、低消耗電力、小 面積化、及高精密化之功效。 第43圖所示係利用SOI(Slllc〇n 〇n Insuiat〇r)元件構成 位準變換電路之例的剖面示意圖。 在第43圖所示的S0I元件中,在Si(矽)基板57〇上形 成絕緣膜571,並在該絕緣臈571上形成非晶矽、多晶矽、 或單晶矽之矽層572。在該矽層572内形成有複數對p型 區域573與複數對n型區域574。 在各複數對ρ型區域573與複數對η型區域574上, 形成有閘極575。藉此便可利用SOI元件構成如第6圖所 示的位準變換電路1。 再者,本發明之位準變換電路,並不僅限於利用SOI 元件形成,以可利用各種半導體元件形成。 第44圖所示係採用本發明之位準變換電路的偵測器 裝置一例的方塊圖。 在第44圖的偵測器裝置中,於玻璃基板580上,形成 有複數掃描電極 Υ1,Υ2,…,γη及複數數據電極 (請先閱讀背面之注意事項再填寫本頁) -裝--------訂· 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 χ 297公釐) 55 312308 1238600 A7 B7 五、發明說明(56 ) (請先閱讀背面之注杳?事項再填寫本頁) xl,X2,...,xm,並呈相互交叉狀態排列。此外,亦可取代 玻璃基板580,改用如由塑膠等所形成面板基板。在該等 複數掃描電極Υ1至Υη及複數數據電極又1至又111的交叉 位置處,分別利用薄膜電晶體581設有偵測器裝置582。 薄臈電晶體5 8 1係譬如採用由如利用雷射退火法將非晶矽 施行多晶化處理而獲得之多晶矽所形成者。 摘測器5 8 2係可採用如接光元件。在此情況下,便構 成影像偵測器。另,偵測器582亦可採用利用電阻或靜電 容量,檢測壓力差的壓力偵測器。此情況下,便構成偵測 物體表面粗造度的表面粗造度偵測器、或偵測如指紋等紋 路的紋路檢測偵測器等。 經 濟 部 智 慧 財 產 局 員 工 消 費 合 A 社 印 製 此外,在玻璃基板5 80上,設有掃描線驅動電路5 83、 數據驅動電路584與電壓變換電路71〇。掃描電極γι至 Yn係連接於掃描線驅動電路583上,而數據電極 Χ1,Χ2,···,Χιη則連接於數據驅動電路584上。電壓變換電 路710係將由外部控制電路585所供給之互補變化的小振 幅基本時鐘信號,位準變換成不同電壓的時鐘信號,並提 供於掃描線驅動電路583與數據驅動電路584。電壓變換 電路710的結構,係與第41圖所示電壓變換電路6〇〇的結 構相同。 電壓變換電路710係可採用如第i至14實施例之位準 變換電路1,la至lh中之任一者。藉此方式,第44圖所示 偵測器裝置,即使在製造程序中,p通道M〇SFET與η通 道MOSFET的臨限電壓值產生較嚴重的散亂現象時,亦可 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 56 312308Electricity! The level is converted into a signal with a change of 0 to 12 V, and it is supplied to the internal thunder wide road and level conversion circuit 1Jq. The level conversion circuit II is a signal supplied by Wei Kang early conversion circuit ig. The voltage level of the negative power source of the circuit 602 is converted into a signal that changes in the range of -3 to 8V, and __ ^, ,, and ° are recognized in the internal circuit. This level change 'paper size applies Chinese National Standard (CNS) A4 specification 53 312308 -111 —I — Mi —I — ^ «— — — — 1 — 11 (Please read the precautions on the back before filling this page) 1238600 A7 V. Description of the invention (54) The switching circuit 1J converts the signal supplied by the level 辔 and + conversion circuit 1H according to the negative voltage level of the negative power supply circuit 002 into a signal ranging from -3 to 12V. , And supplied to the internal circuit. The level conversion circuit 1G m can be any of the level conversion circuits 1 u to 1h as in the first to fourteenth embodiments. In this way, even in the manufacturing process, when the threshold voltage values of the D-channel, P-channel MOSFET, and η-channel MOSFET generate a more severe scatter phenomenon, the operation can be reliably generated, and high-speed operation can be achieved at the same time. , Mn low power consumption, small area, and high precision. Fig. 42 is a block diagram showing an example of an organic EL device using the level conversion circuit of the present invention. In the organic device shown in FIG. 42, a plurality of scanning electrodes are formed on a glass substrate 55 °; ¾ νινο field electricity branches Υ1, Υ2, ··, Υη and a plurality of data electrodes X1, X2, ..., Xm And arranged in a cross state. At the intersections of the plurality of scanning electrodes Y1 to Y1 and the plurality of data electrodes XI to Xm, organic thin-film transistors 551 are respectively provided with the organic device ... The organic device 552 is formed by, for example, polycrystalline silicon obtained by subjecting an amorphous dream to a polycrystalline process, such as by laser annealing. In addition, on the glass substrate 550, a scanning line driving circuit 553, a data driving circuit 554, and a voltage conversion circuit 700 are provided. The scan electrodes γ1 to Yn are connected to the scan line driving circuit 553, and the data electrodes X1, X2, ..., Xm are connected to the data driving circuit 554. The voltage conversion circuit 700 is a small-amplitude basic clock signal that is complementary and changed by the external control circuit 555, and converts the level into a clock signal of different voltages, and refers to the paper size standard (CNS) A4 specification. G X 297 Public Love 312308 (Please read the precautions on the back before filling out this page) Ί Γ ------— It · —------- Printed by the Intellectual Property Bureau Staff Consumer Cooperatives 54 A7 Economy Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau 1238600 V. Description of the Invention (55) Provided for the scanning line drive circuit 553 and the data transfer & drive circuit 554. The structure of the voltage conversion circuit 700 is the same as the structure of the thunder line W / voltage conversion circuit 600 shown in FIG. 41. The voltage conversion circuit 700 series can use Rugao! s ί As any one of the level conversion circuits l, la to lh of the embodiments 1 to 14.蕻 士 | According to this method, the money EL device shown in FIG. 42 'can be reliably generated even when the threshold voltage values of the p-channel MosFET and the n-channel MOSFET are severely scattered during the manufacturing process. At the same time, it can achieve high-speed operation, low power consumption, small area, and high precision. Fig. 43 is a schematic cross-sectional view showing an example of a level conversion circuit using an SOI (SlllcON On Inui) device. In the SOI device shown in FIG. 43, an insulating film 571 is formed on a Si (silicon) substrate 57 and a silicon layer 572 of amorphous silicon, polycrystalline silicon, or single crystal silicon is formed on the insulating substrate 571. In the silicon layer 572, a plurality of pairs of p-type regions 573 and a plurality of pairs of n-type regions 574 are formed. Gate electrodes 575 are formed on each of the complex-pair ρ-type region 573 and the complex-pair n-type region 574. Thereby, the level conversion circuit 1 shown in Fig. 6 can be constructed using the SOI element. Furthermore, the level conversion circuit of the present invention is not limited to being formed using an SOI element, and can be formed using various semiconductor elements. Fig. 44 is a block diagram showing an example of a detector device using the level conversion circuit of the present invention. In the detector device of FIG. 44, a plurality of scanning electrodes Υ1, Υ2, ..., γη and a plurality of data electrodes are formed on a glass substrate 580 (please read the precautions on the back before filling this page) -install-- ------ Order · This paper size is applicable to China National Standard (CNS) A4 specification (21 × 297 mm) 55 312308 1238600 A7 B7 V. Description of the invention (56) (Please read the note on the back first? Matters Fill out this page again) xl, X2, ..., xm, and arranged in a cross state. In addition, instead of the glass substrate 580, a panel substrate made of plastic or the like may be used instead. Detector devices 582 are provided at the intersections of the plurality of scan electrodes Υ1 to Υη and the plurality of data electrodes 1 to 111, respectively, using thin film transistors 581. The thin fluorene transistor 5 8 1 is formed by using, for example, polycrystalline silicon obtained by subjecting amorphous silicon to polycrystallization by laser annealing. The picker 5 8 2 series can use, for example, a light receiving element. In this case, an image detector is constructed. Alternatively, the detector 582 may be a pressure detector that detects a pressure difference using a resistor or an electrostatic capacity. In this case, it constitutes a surface roughness detector that detects the roughness of the surface of the object, or a texture detection detector that detects patterns such as fingerprints. Printed by the Consumer Affairs Bureau of the Intellectual Property Office of the Ministry of Economic Affairs In addition, on the glass substrate 5 80, a scanning line driving circuit 5 83, a data driving circuit 584, and a voltage conversion circuit 71 are provided. The scan electrodes γι to Yn are connected to the scan line driving circuit 583, and the data electrodes χ1, χ2, ..., and χη are connected to the data driving circuit 584. The voltage conversion circuit 710 converts the complementary small amplitude basic clock signal supplied from the external control circuit 585 into a clock signal with a different voltage level, and provides it to the scan line drive circuit 583 and the data drive circuit 584. The structure of the voltage conversion circuit 710 is the same as that of the voltage conversion circuit 600 shown in FIG. 41. The voltage conversion circuit 710 can use any one of the level conversion circuits 1, 1 to 1h as in the i-th to 14th embodiments. In this way, the detector device shown in Figure 44 can be applied to this paper even if the threshold voltages of the p-channel MOSFET and n-channel MOSFET are severely scattered during the manufacturing process. National Standard (CNS) A4 Specification (210 X 297 Public Love) 56 312308

五、發明說明(57 ) 1238600 確實的產生動作,同時可達高逮動 積化、及高精密化之功效。 、低消耗電力、小面 此外’在上述實施例中,雖 从冷瞭加上一 f輸入信號CLK1,CLK2 的電壓振幅,小於輸出電位v〇uT掂 ^ ^ UUT振幅之情況時的位準變 換電路結構進行說明,惟本發明 莽不赞明之位準變換電路亦可為接 收如等於輸出電位VOUT振幅(電源電位VDD與特定電位 VEE之電位差)之電壓振幅變化的輸入信號clK1,CLk2、 或者接收如大於於輸出電位VOUT振幅之電壓振幅變化的 輸入信號CLK1,CLK2等方式構成。 (請先閱讀背面之注意事項再填寫本頁) II--------^-------- 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 57 312308V. Description of the invention (57) 1238600 The action can be surely generated, and at the same time, it can achieve high capture and high precision. In addition, in the above-mentioned embodiment, although the voltage amplitude of an input signal CLK1, CLK2 is added from the cold, the level change when the output potential v0uT 掂 ^ ^ UUT amplitude The circuit structure will be described, but the level conversion circuit of the present invention can also receive input signals clK1, CLk2, such as a voltage amplitude change equal to the amplitude of the output potential VOUT (the potential difference between the power supply potential VDD and a specific potential VEE), or receive The input signals CLK1, CLK2, etc., are constructed in a manner such that the amplitude of the voltage is greater than the amplitude of the output potential VOUT. (Please read the notes on the back before filling out this page) II -------- ^ -------- The paper size printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs applies to Chinese national standards (CNS ) A4 size (210 X 297 mm) 57 312308

Claims (1)

1238600 A8 B8 CS D8 經濟部智慧財產局員Η消費合作社印製 夂、申請專利範圍 1 · 一種位準變換電路,係包含有: 第1電晶體,係連接於接收第1電位的第1節點與 輸出節點之間; 第2電晶體,係連接於接收不同該第1電位之第2 電位的第2節點與輸出節點之間,·及 控制部,係接收該第1輸入信號,而分別控制將該 第1電晶體與該第2電晶體二者均呈導通狀態,同時對 應該第1輸入信號的位準,而分別控制該第1電晶體與 該第2電晶體的導通狀態程度者。 2·如申請專利範圍第1項之位準變換電路,其中該第1輸 入信號係以小於該第1電位與第2電位間之電位差的電 壓振幅進行變化者。 3.如申請專利範圍第1項所述位準變換電路,其中, 該第1輸入信號係變化第1位準與第2位準; 該第1電晶體係第1導電通道型電場效應電晶體; 該第2電晶體係第2導電通道型電場效應電晶體; 該控制部係以使該第1電位與該第1導電通道型電晶 體閘極電位之差的絕對值,在該第1導電通道漤電晶體 之臨限電壓值絕對值以上,且使該第2電位與該第2導 電通道型電晶體閘極電位之差的絕對值,在該第2導電 通道型電晶體之臨限電壓值絕對值以上的方式,回應該 第1輸入信號的第1位準與第2位準,而設定該第1導 電通道型電晶體的閘極電位與該第2導電通道漤電晶體 的閘極電位者。 本紙張尺度適用中國國家標準(CNs)A4規格(210 X 297公釐) 58 312308 -------1*"· 裝--------訂-------- (請先閱讀背面之注意事項再填寫本頁) !238600 Α8 Β8 CS D8 經濟部智慧財產局員Η消費合作枉印製 六、申請專利範圍 4, 如申請專利範圍第1項之位準變換電路,其中,該第! 電位係為正電位,而該第2電位係為低於該第丨電位的 正電位,或接地電位、負電位者。 5. 如申請專利範圍第丨項之位準變換電路其中該第2 電位係變化成與該第1輸入信號互補之第丨位準與第2 位準的第2輸入信號者。 6·如申請專利範圍第4項之位準變換電路,其中, «亥第1導電通道型電效應電晶體,係具第1臨限電 廢值的第lp通道型電場效應電晶體; 該第2導電通道型電%效應電晶體,係具第2臨限電 壓值的第In通道型電場效應電晶體; 該控制部係將該第1?通道型電場效應電晶體閘極電 位,由該第1電位設定至該第〖臨限電壓值絕對值以上 的低範圍内,且該第lnii道型電場效應電晶體閉極電 位,由該第2電位設;^至該第2臨限電壓值絕對值以上 的高範圍内者。 7.如申請專利範圍第6項之位準變換電路,其中, 該控制部係包含有第2p通道型電場效應電晶體、第 2n通道型電場效應電晶體、及控制電路; 其中, 該第2P通道型電場效應電晶體的源極係接收第i 電位,且該第2p通道型電場效應電晶趙的閉極與汲極係 連接於該第lp通道型電場效應電晶體的閘極上; 該第2n通道型電場效應電晶體的源梅,係接收該 本ϋ度適时關家標¥(CNS)A4規格(21Q χ 297公髮) ^----- ^ 312308 . » 1 Γ Aw --------^ --------- (請先閱讀背面之注意事項再填寫本頁) 1238600 六 ηδ cs D8 經濟部智慧財產局員工消費合作杜印制衣 申請專利範圍 第1輸入信號或第 電晶體的閘極與、電 且該第211通道型電場效應 電晶體的閘極上汲極係連接於該第111通道型電場效應 該控制電路,你 制該第2P通道型雷:應該第1輸入信號的位準,而控 2n 冤%效應電晶體的汲極電位,與該第 ^通道型電場效 卑 8·如申請專利範圍第7:汲極電位者。 路係包含有第項之位準變換電路’其中該控制電 該第㈠荷與第2負荷元件;其中, 兮笼】p 端係接收該第1輸入信號,且 :雷二疋件的另一端則連接於第lp通道型電場效 慝電晶艘的閘極上;而 該第2負荷70件的—端係接收該S 1電位,且該第 2負荷70件的另一端則連接於第In通道型電場效應電 晶體的閘極上。 9·如申凊專利範圍第8項之位準變換電路其中各該等第 1負荷元件與第2負荷元件,係為電場效應電晶體、或 電阻元件 10.如申請專利範圍第7項之位準變換電路,其中該控制部 係更進一步,包含有第3p通道型電場效應電晶體與第 3n通道型電場效應電晶體;其中, 該第3p通道型電場效應電晶體的源極、閘極與没 極,係分別連接於該第2p通道型電場效應電晶體的源 極、該輸出節點與該第2p通道型電場效應電晶體的汲 極上;而 表紙張尺度ίϊ用中國國家標eCNS)A4規格(210 X 297公Ϊ7 60 312308 (請先閱讀背面之注意事項再填寫本頁) -Γ 裝--------訂-----------線| 1238600 8888 ABCD 六 申請專利範圍 違第3n通道型電場效應電晶體的源極、閘極與汲 =|係分別連接於該第2n通道型電場效應電晶體的源 極輪出節點與該第2ιι通道型電場效應電晶體的汲極 上。 如申請專利範圍第6項之位準變換電路,其中該控制部 係包含有第2η通道型電場效應電晶體、及控制電路· 其中, ’ 經濟部智慧財產局員工消費合作杜印製 X第2η通道型電場效應電晶體的源極,係接收該 第1輸入信號或該第2電位,且該第2η通道型電場2 應電晶體的閘極與汲極,係連接於該第ln通道型電場 效應電晶體的閘極上; 該控制電路,係對應該第丨輸入信號的位準,而控 、第In通道型電場效應電晶體的閘極電位,與該第 2n通道型電場效應電晶體的汲極電位者。 12·如申請專利範圍第u項之位準變換電路,其中該控制 電路係包含有第!負荷元件、第2負荷元件、與第3 負荷元件;其中, 該第1負荷元件的一端係接收該第1電位,而該第 1負荷元件的另一端則連接於該第ip通道型電場效應 電晶體的閘極上; 該第2負荷元件的一端係接收該第1輸入信號或第 2電位,且該第2負荷元件的另一端則連接於第ip通 道型電場效應電晶體的閘極上;而 該第3負荷元件的一端係接收該第1電位,且該第 本紙張尺度通用中國國豕準(CNS)A4規格(21〇 x 297公爱) 61 312308 (請先閱讀背面之注意事項再填寫本頁) 裝 I ----訂--------I1238600 A8 B8 CS D8 Member of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by Consumer Cooperative, patent application scope 1 · A level conversion circuit, which includes: a first transistor, connected to the first node and output that receives the first potential Between nodes; the second transistor is connected between the second node and the output node that receive a second potential different from the first potential, and the control unit receives the first input signal and controls the Both the first transistor and the second transistor are in a conducting state, and the degree of the conducting state of the first transistor and the second transistor are respectively controlled according to the level of the first input signal. 2. The level conversion circuit according to item 1 of the patent application range, wherein the first input signal changes with a voltage amplitude smaller than a potential difference between the first potential and the second potential. 3. The level conversion circuit according to item 1 in the scope of patent application, wherein the first input signal is changed between the first level and the second level; the first transistor system is a first conductive channel type electric field effect transistor The second transistor system second conductive channel type electric field effect transistor; the control unit is configured to make the absolute value of the difference between the first potential and the gate potential of the first conductive channel transistor in the first conductive The threshold value of the threshold voltage of the channel 漤 transistor is greater than the absolute value, and the absolute value of the difference between the second potential and the gate potential of the second conductive channel type transistor is equal to the threshold voltage of the second conductive channel type transistor. When the value is greater than the absolute value, the gate potential of the first conductive channel transistor and the gate of the second conductive channel transistor are set in response to the first level and the second level of the first input signal. Potential person. This paper size applies to Chinese National Standards (CNs) A4 specifications (210 X 297 mm) 58 312308 ------- 1 * " · Packing -------- Order ------- -(Please read the notes on the back before filling this page)! 238600 Α8 Β8 CS D8 Member of the Intellectual Property Office of the Ministry of Economic Affairs ΗConsumer Cooperation 枉 Printing 6. Application for patent scope 4, such as the level conversion circuit of the first scope of patent application Among them, the first! The potential is a positive potential, and the second potential is a positive potential lower than the first potential, or a ground potential or a negative potential. 5. For example, the level conversion circuit in the scope of the patent application, wherein the second potential is changed to a second input signal complementary to the first input signal and the second input signal of the second level. 6. The level conversion circuit according to item 4 of the scope of patent application, wherein, «1st conductive channel-type electric effect transistor is an lp channel-type electric field effect transistor with a first threshold value of electrical waste; the first The 2 conductive channel-type electric% effect transistor is an In-channel type electric-field-effect transistor having a second threshold voltage value; the control unit is configured to change the gate potential of the first channel-type electric-field-effect transistor by the first 1 potential is set to a low range above the absolute value of the threshold voltage, and the closed-electrode potential of the lnii channel-type electric field effect transistor is set by the second potential; ^ to the absolute value of the second threshold voltage Values in the high range. 7. The level conversion circuit according to item 6 of the scope of patent application, wherein the control unit includes a 2p channel type electric field effect transistor, a 2n channel type electric field effect transistor, and a control circuit; wherein the 2P The source of the channel-type electric-field-effect transistor receives the i-th potential, and the closed pole and the drain of the 2p-channel-type electric-field-effect transistor Zhao are connected to the gate of the lp-channel-type electric-field-effect transistor; the first The source plum of the 2n channel-type electric field effect transistor is to receive this book in time to close the house standard ¥ (CNS) A4 specification (21Q χ 297) ^ ----- ^ 312308. »1 Γ Aw ---- ---- ^ --------- (Please read the notes on the back before filling out this page) 1238600 Six ηδ cs D8 Employees ’cooperation in intellectual property bureau of the Ministry of Economic Affairs Du printed clothing application patent scope input 1 The gate of the signal or transistor is connected to the gate of the 211-channel type electric field effect transistor. The drain of the gate of the 211-channel type electric field effect transistor is connected to the 111-channel type electric field effect control circuit. Level of the 1st input signal, while controlling the drain of the 2n% effect transistor The potential is inferior to that of the channel-type electric field 8. As described in the patent application scope 7: Drain potential. The circuit system includes the level conversion circuit of the first term, wherein the control circuit is the first load and the second load element; among them, the Xi terminal] p terminal receives the first input signal, and: the other end of the thunder two component Is connected to the gate of the lp-channel type electric field effect transistor; the -end of the second load of 70 pieces receives the S 1 potential, and the other end of the second load of 70 pieces is connected to the In channel Type electric field effect transistor on the gate. 9. The level conversion circuit in item 8 of the scope of patent application, where each of the first load element and the second load element is an electric field effect transistor, or a resistance element. The quasi-transformation circuit, wherein the control unit further includes a 3p channel type electric field effect transistor and a 3n channel type electric field effect transistor; wherein the source, gate and The pole is connected to the source of the 2p-channel field-effect transistor, the output node, and the drain of the 2p-channel field-effect transistor; the paper size is in Chinese national standard eCNS) A4. (210 X 297 Gong 7 60 312308 (Please read the precautions on the back before filling this page) The scope of the patent application violates the source, gate, and drain of the 3n-channel field-effect transistor, which are respectively connected to the source wheel output node of the 2n-channel field-effect transistor and the 2m-channel field-effect transistor. On the drain of the crystal, such as patent application scope 6 Level conversion circuit, wherein the control unit includes a 2η-channel electric field effect transistor, and a control circuit, among which, 'The consumer cooperation of the Intellectual Property Bureau of the Ministry of Economic Affairs has printed X's 2η-channel electric field effect transistor. The source receives the first input signal or the second potential, and the gate and the drain of the second n-channel type electric field transistor 2 are connected to the gate of the first channel-type electric field effect transistor; The control circuit controls the gate potential of the In channel electric field effect transistor and the drain potential of the 2n channel electric field effect transistor according to the level of the first input signal. 12 · 如The level conversion circuit of item u in the patent application scope, wherein the control circuit includes a first load element, a second load element, and a third load element; wherein one end of the first load element receives the first potential And the other end of the first load element is connected to the gate of the first ip-channel field-effect transistor; one end of the second load element receives the first input signal or the second potential, and the second negative The other end of the element is connected to the gate of the ip-channel field-effect transistor; and one end of the third load element receives the first potential, and the paper size is in accordance with China National Standard (CNS) A4. (21〇x 297 public love) 61 312308 (Please read the precautions on the back before filling this page) Install I ---- order -------- I I238600I238600 六、申請專利範圍 另一端則連接於第“通道型電場效應電 13·如申請專利範圍第12項之位準變換電路 第1負荷元件、第…1 “ 中各該等 了騎$2負何疋件、與第3負荷元件 電%效應電晶艘、或電阻元件。 、一 14, 如申請專利範圍第1項之位準變換電路,更進一步 有^断電路’該阻斷電路係將在該第1輪人信號於第^ :準與第2位準間的過度期間内’由該第1節點經由談 第1電晶體舆該第2電晶體,而流至於該第2 雷 流通路予以阻斷的電路。 15. 如申請專利範圍第1項之位準變換電路,其中該第1 電晶體、該第2電晶體、與該控制部,係為由絕緣基板 上的單晶、多晶或非晶質半導體所構成者。 ’種半導艘裝置,係具備有特定電路、與連接於該特定 電路的位準變換電路者;其中, 該位準變換電路係包含有第i電晶體、第2 體、與控制部;而 9 該第1電晶體係連接於接收第1電位的第丨節點與 輪出節點之間; 該第2電晶體係連接於接收不同該第1電值之第2 電位的第2節點與輸出節點之間; 該控制部係接收該第1輸入信號’而分別控制將該 第1電晶想與該第2電晶艘二者均呈導通狀態,同時= 應遠第1輸入信號的位準,而分別控制該第1電旁難與 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝--------訂--------1- 經濟部智慧財產局員X消費合作社印製 312308 1238600 B8 C8 D86. The other end of the scope of the patent application is connected to the "channel-type electric field effect circuit 13. If the level conversion circuit of the 12th scope of the patent application, the first load element, the first ... 1", each of them is equal to $ 2 And the third load element with a% effect transistor, or a resistance element. No. 14, if the level conversion circuit of item 1 of the scope of patent application, there is a `` break circuit ''. The blocking circuit will be the transition between the first round of the signal and the second level: During this period, the first node passes the first transistor to the second transistor, and flows to the circuit that the second lightning current path is blocked. 15. The level conversion circuit according to item 1 of the scope of patent application, wherein the first transistor, the second transistor, and the control unit are single crystal, polycrystalline, or amorphous semiconductors on an insulating substrate. Constituted by. 'Semiconductor device, which is provided with a specific circuit and a level conversion circuit connected to the specific circuit; wherein the level conversion circuit includes an i-th transistor, a second body, and a control unit; and 9 The first transistor system is connected between the first node receiving the first potential and the output node; the second transistor system is connected between the second node receiving the second potential and the output node with different first electrical values The control unit receives the first input signal ′ and controls the first transistor and the second transistor to be in a conducting state, respectively, and at the same time, the level of the first input signal should be far away, And control the 1st electrical side and the paper size are applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page). Installation ------- -Order -------- 1- Printed by Intellectual Property Bureau of the Ministry of Economic Affairs X Consumer Cooperatives 312308 1238600 B8 C8 D8 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 该第2電晶體的導通狀態程度者。 17.如申請專利範圍第16項之半導體裝置,其中該 路係包含有依照不同電源電壓而產, 電路;而 μ㈣的複數邏輯 該位準變換電路’係連接於該等複數邏輯 者。 J 18·如申請專利範圍第16項之半導體裝置,其中該特定電 路係包含㈣置於晶片上的内部電路,與設置於 上的外部電路者;而 Λ 該位準變換電路則連接該内部電盥 之間。 飞冤路與該外部電路 19.如申請專利範圍第16項之半導體裝置,其中 路係包含;t : 設置於晶片上的半導體記憶體,與 設置於晶片上的邏輯電路者;而 該位準變換電路係連接該半導體記憶體與該 電路之間者。 Λ 20·如申請專利範圍第16項之半導體裝置,其中該特…電 路係含有複數偵測器、複數選擇用電晶體、與週邊電 路;其中, 該選擇用電晶體係供選擇該等複數债測器中任何 者用; 該週邊電路係透過該等複數個選擇用電曰 日日腰而躁 動該等複數偵測器者;而 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 63 312308 (請先閱讀背面之注意事項再填寫本頁) --------訂·-------!·Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 6. Scope of patent application. 17. The semiconductor device according to item 16 of the patent application scope, wherein the circuit includes circuits produced according to different power supply voltages; and the complex logic of μ㈣, the level conversion circuit 'is connected to the complex logic. J 18 · If the semiconductor device of the 16th scope of the patent application, the specific circuit includes an internal circuit placed on the chip and an external circuit provided thereon; and Λ the level conversion circuit is connected to the internal circuit Between toilets. Fei Lu Road and the external circuit 19. For example, the semiconductor device under the scope of application for patent No. 16, wherein the circuit system includes; t: a semiconductor memory provided on the chip and a logic circuit provided on the chip; and the level The conversion circuit is connected between the semiconductor memory and the circuit. Λ 20 · If the semiconductor device of the 16th scope of the application for a patent, the special ... circuit includes a plurality of detectors, a plurality of selection transistors, and peripheral circuits; wherein the selection transistor system is used to select the plurality of debts The peripheral circuit is agitated by the plurality of detectors through the plurality of selected power consumption day and day waists; and this paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 Mm) 63 312308 (Please read the precautions on the back before filling out this page) -------- Order · -------! · 12386001238600 經濟部智慧財產局員工消費合作杜印製 、申請專利範圍 叔供予該週邊電路者。 干燹換,並 21· —種顯示裝置,係具 晶《,電路、舆位準變=:中複數選择用電 何者:遘擇用電晶*,係供選擇該等複數期示元件中任 、週邊電路’係、透過該等複數 動該等複數谓測器者; 選擇用“雜 換電路’係、對㈣信號進行位準變換並 提供予週邊電路者; 該位準變換電路係包含有第1電晶體、第2電晶 體、與控制部;其中, 弟2電晶 \第1電80體’係連接於接收第2電位的第^點 與輪出節點之間; 該第2電晶體,係連接於接收不同該第1電值之第 2電位的第2節點與輪出節點之間; ^該控制部,係接收該第1輸入信號,而分別控制將 該第1電晶體與該第2電晶體二者均呈導通狀態,同時 對應該第1輸入信號的位準,而分別控制該第1電晶艘 與該第2電晶體的導通狀態程度者。 22·如申請專利範圍第21項之顯示裝置,其中該等複數個 顯示元件係為液晶元件;而該複數液晶元件、該等複數 選擇用電晶體、週邊電路、與位準變換電路,係形成於 絕緣基板上者。 而騍 (請先閱讀背面之注意事項再填寫本頁) 裝——The consumer property cooperation of the Intellectual Property Bureau of the Ministry of Economic Affairs has printed and applied for patents to the peripheral circuits. Switching, and 21 · — a kind of display device, with crystal ", circuit, public quasi-change =: medium and plural select electricity to use Who: select to use electric crystal *, for the selection of these plural display elements Any one of the “peripheral circuits” is used to move the complex testers through the plurals; those who choose to use the “miscellaneous circuit” system to perform level conversion on the chirp signal and provide it to the peripheral circuits; the level conversion circuit includes There are a first transistor, a second transistor, and a control unit. Among them, the second transistor \ the first transistor 80 body 'is connected between the point ^ that receives the second potential and the output node; the second transistor The crystal is connected between the second node that receives the second potential of the first electric value and the output node; ^ The control unit receives the first input signal and controls the first transistor and the Both of the second transistors are in a conducting state, and at the same time, the degree of the conducting state of the first transistor and the second transistor is controlled according to the level of the first input signal. The display device of item 21, wherein the plurality of display elements are liquid crystal elements; and the plurality of display elements are liquid crystal elements; The liquid crystal element, a plurality of such electric crystal selection peripheral circuit, and the level converting circuit being formed on the insulating substrate by the Ke (Read Notes on the back and then fill the page) installed - 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 64 312308 1238600 A8 B8 CS D8六、申請專利範圍 23·如申請專利範圍第21項之顯示裝置,其中該等複數個 顯示元件係為有機電激發光元件;而該複數有機電激發 光元件、該等複數選擇用電晶體、週邊電路、與位準變 換電路係形成於絕緣基板上者。 24·如申請專利範圍第21項之顯示裝置,其中該等複數選 擇用電晶體、及位準變換電路的該第1電晶體與第2 電晶體,係由薄膜電晶體所形成者。 (請先閱讀背面之注意事項再填寫本頁) --------訂·-------This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) 64 312308 1238600 A8 B8 CS D8 6. Application for patent scope 23 · If the patent application scope of the 21st display device, these multiple displays The element is an organic electroluminescent element; and the plurality of organic electroluminescent elements, the plurality of selection transistors, peripheral circuits, and level conversion circuits are formed on an insulating substrate. 24. The display device according to item 21 of the patent application, wherein the plurality of selection transistors and the first transistor and the second transistor of the level conversion circuit are formed by a thin film transistor. (Please read the notes on the back before filling this page) -------- Order · ------- 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 65 312308Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs.
TW090103005A 2000-03-01 2001-02-12 Level converting circuit, semiconductor device and display apparatus having such level converting circuit TWI238600B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056526 2000-03-01

Publications (1)

Publication Number Publication Date
TWI238600B true TWI238600B (en) 2005-08-21

Family

ID=37000321

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090103005A TWI238600B (en) 2000-03-01 2001-02-12 Level converting circuit, semiconductor device and display apparatus having such level converting circuit

Country Status (2)

Country Link
KR (1) KR100735771B1 (en)
TW (1) TWI238600B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4099682B2 (en) * 1998-09-18 2008-06-11 ソニー株式会社 Image processing apparatus and method, and recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227932B2 (en) * 1993-09-27 2001-11-12 ソニー株式会社 Level conversion circuit
JPH11272240A (en) * 1998-03-24 1999-10-08 Toshiba Corp Array substrate and liquid crystal display device
JP3954198B2 (en) * 1998-06-01 2007-08-08 富士通株式会社 Output circuit, level converter circuit, logic circuit, and operational amplifier circuit
JP2001111412A (en) * 1999-10-06 2001-04-20 Matsushita Electric Ind Co Ltd Input signal level conversion circuit and liquid crystal display device

Also Published As

Publication number Publication date
KR20010087246A (en) 2001-09-15
KR100735771B1 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
TWI439051B (en) Level converting flip-flop and method of operating the same
TWI285857B (en) Pulse output circuit, shift register and display device
JP3583999B2 (en) Level conversion circuit
US7554379B2 (en) High-speed, low-power level shifter for mixed signal-level environments
US7005912B2 (en) Simple step-up apparatus including level shift circuits capable of low breakdown voltage
JP4870391B2 (en) Level shifter and level shifting method
TW200304276A (en) Drive circuit
JP2004096716A (en) Level shifter and flat display device
TW589797B (en) Level conversion circuit converting logic level of signal
KR100639741B1 (en) Level converter circuit
KR101532271B1 (en) Low power and high speed level shifter
TWI238600B (en) Level converting circuit, semiconductor device and display apparatus having such level converting circuit
TWI223498B (en) Amplitude conversion circuit
CN109874308A (en) Pixel memory circuit and its driving method, array substrate and display device
KR101311358B1 (en) Logic circuit having transistors of the same type and related application circuits
WO2021117416A1 (en) Level shifter circuit
JP6628837B2 (en) Electronics
JP4242226B2 (en) Level conversion circuit and semiconductor device using the same
KR100329862B1 (en) Semiconductor integrated circuit device
TW498617B (en) Fast switching input buffer
KR20060004237A (en) Single input level shifting circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees