TW585836B - Semi-sealed micro-fluid system and the driving method for fluid - Google Patents

Semi-sealed micro-fluid system and the driving method for fluid Download PDF

Info

Publication number
TW585836B
TW585836B TW91109209A TW91109209A TW585836B TW 585836 B TW585836 B TW 585836B TW 91109209 A TW91109209 A TW 91109209A TW 91109209 A TW91109209 A TW 91109209A TW 585836 B TW585836 B TW 585836B
Authority
TW
Taiwan
Prior art keywords
semi
fluid
scope
patent application
item
Prior art date
Application number
TW91109209A
Other languages
Chinese (zh)
Inventor
Yuan-Fong Kuo
Nan-Kuang Yao
Jhy-Wen Wu
Tim Shia
Shaw-Hwa Parng
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW91109209A priority Critical patent/TW585836B/en
Application granted granted Critical
Publication of TW585836B publication Critical patent/TW585836B/en

Links

Landscapes

  • Micromachines (AREA)

Abstract

This invention relates to a semi-sealed micro fluid system and the driving method of fluid. The micro fluid system includes a substrate and a thin film, and is characterized in that: the thin film is elastic and deformable and includes an opening at a location that corresponds to a venting hole of the substrate to thereby construct a semi-sealed micro fluid. The substrate is provided with micro fluid members and deformable cavities, which are connected by micro channels to form a complete circuit. Because the thin film is elastic and deformable, the thin film is able to apply a pressure towards a thin film located above the deformable cavities in the semi-sealed micro fluid system to force flowing of the fluid therein. The fluid is flow backwards upon releasing such a pressure.

Description

585836 _案號 91109209 五、發明說明(1) 【發明之應用領域】 本發明係關於一種晶片上微流體系, I種能提供往復運動方式之半密閉微流I#、条姑寺別是關於一 |法。 媸糸統及流體驅動方 【發明背景】 一般用於流體驅動的方法,不外乎B 、 I現階段用在晶片上驅動用的方法,除^霄浦系統。而 所使用的幫浦外,内建於晶片上的概略;分:接般 幫浦(Mechanic micropumps)與非機械式微幫、、浦 *視為 (non-mechanic micropups)。其中,機械式微 卜有兩 If ;往復式(reciprocating_diaphragm 動585836 _ Case No. 91109209 V. Description of the invention (1) [Application field of the invention] The present invention relates to a microfluidic system on a wafer, and a semi-closed microfluidic I # capable of providing a reciprocating motion. One | law. System and fluid driving method [Background of the invention] The method generally used for fluid driving is nothing more than the method for driving the wafer at the current stage of B and I, except the Xiaopu system. The outline of the pumps used is built on the chip; it is divided into: mechanical micropumps and non-mechanical micropumps, and non-mechanic micropups. Among them, the mechanical type has two If; reciprocating (reciprocating_diaphragm motion

Ifperistaltic)。 、 大多數所發展的微幫浦是屬於往復式。許多這類的料 幫浦構造是幫浦本體,再加上致動器(actuator)與止回& 所構成。常用的致動器有:壓電式(Piez〇electric)、靜 |電式(Electrostatic)、熱氣動式(Thermopneumatic)等。 |而非機械式微幫浦則有氣泡式幫浦(Bubble Pumps)、擴散 式幫浦(Di ffuser Pumps)、液電動力式幫浦 (Electrohydrodynamic Pumps, EHD)、射入型液電動力式 幫浦(Injection Type EHD Pumps)、非射入型液電動力式 幫浦(Non-Injection Type EHD Pumps)、電渗 /電泳式幫 |浦(Electroosmosis/Electrophoretic Pumps)、超音波幫 浦(Ultrasonic Pumps)、熱毛細管幫浦(Thermocapillary Ipumps)、氣動式幫浦(Pnuematic Pumps)與真空幫浦 (Vacuum Pumps)等 。Ifperistaltic). Most of the developed micropumps are reciprocating. Many of these types of pump structures are pump bodies, plus actuators and non-return & Commonly used actuators are: Piezoelectric, Electrostatic, Thermopneumatic and so on. | Non-mechanical micro-pumps include Bubble Pumps, Di ffuser Pumps, Electrohydrodynamic Pumps (EHD), Injection-type Hydroelectric Pumps (Injection Type EHD Pumps), Non-Injection Type EHD Pumps, Electroosmosis / Electrophoretic Pumps, Ultraos Pumps, Ultrasonic Pumps, Thermocapillary Ipumps, Pnuematic Pumps and Vacuum Pumps.

第5頁 五、發明說明(2) 一般來講,機械式幫浦均屬於單向流 無法滿足雙向驅動的需求。而非機械式幫 設計而有不同限制。例如,電滲幫浦的驅 管徑小於50微米(μ m)的毛細管才能被觀赛 些直接製作於晶片上(on-chip)的幫浦,私 糸統(MEMS)製程’所以其成本較高,不適 能的可棄式晶片上。 因此’在現今醫療科技對於晶片檢測 式晶片成為重要的發展方向之一。在現有 足如此需求的情形下,有必要設計其他簡 為因應。 【發明之目的及概述】 鑒於以上習知技術的問題,本發明提 流體系統及流體驅動方法,來達到製造容 具可拋棄性的目的。 為達上述目的,本發明所提供之半密 係由一基材與一具彈性與可變形之薄膜形 填注於基材當中。本發明比較特別的是基 的設計,其具有一個以上之微流體元件、 形腔、一排氣孔與多條微管道,微管道用 件、可變形腔與排氣孔,以形成使流體可 路。薄膜則黏貼於基材上,並於排氣孔形 成半密閉狀態。 透過此種簡單的設計,本發明可以簡 基材當中的流體,亦即,透過於可變形腔 動的,所以常常 浦則因其不同的 動效果,只能在 ^到。此外,這 3須運用微機電 合製作在有限功 的需求下,可棄 幫浦技術無法滿 易的驅動方法以 供一種半密閉微 易、成本低廉而 閉微流體系統, 成’其中,流體 材(Substrate) 一個以上之可變 來連接微流體元 來回流動的通 成開口使通路形 單的方法來驅動 上方之薄膜施加 585836 _案號91109209_年月日_«_ 五、發明說明(3) 壓力的方式。當施加壓力時,可變形腔當中的流體即受到 壓力,而推動流體流動,另一端則由排氣孔洩壓。當釋放 壓力時,即由於薄膜本身的彈性回復而回流。 此外,本發明更提供了一種半密閉微流體系統,透過 於基材上設計多組微流體通路,這些通路共用一個排氣孔 與一個微流體元件。如此,即可於不同的通路中注入不同 的流體,加以來回推動。最後,還可將個別的流體混合於 共用的微流體元件當中。 此外,為了解決推動流體距離的限制,上述的一個以 上可變形腔即可解決。可變形腔可以串接或並接的方式來 連結,以達到增加推動流體流動距離的目的。 有關本發明的特徵與實作,茲配合圖示作最佳實施例 詳細說明如下: 【發明之詳細說明】 本發明之半密閉微流體系統及流體驅動方法,係於微 流體系統中設計一個或多個可變形腔,再透過壓迫可變形 腔來驅動流體流動。也就是,在微流體晶片的基材 (subs t rat e )上,黏貼上一具彈性、可變形的薄膜物質, 形成一半密閉式之微流體系統。所謂的半密閉 (p a r t i a 1 1 y c 1 〇 s e d )微流體晶片,是當晶片開始操作 後,除排氣孔外,無其他與外界相連的孔洞或管道。 晶片上除了必要的微流體元件外,本發明並設計一個 到數個的可變形腔。這些可變形腔以串聯或獨立運作的方 式,利用微管道連接到晶片上的微流體元件上。可變形腔 與微流體元件以為管道接續相連,形成所設計的微流體運Page 5 V. Description of the invention (2) Generally speaking, mechanical pumps belong to unidirectional flow and cannot meet the requirements of bidirectional driving. There are different restrictions than the mechanical gang design. For example, capillary tubes with a diameter of less than 50 micrometers (μm) for electroosmotic pumps can only be viewed as on-chip pumps. The MEMS manufacturing process has a cost High and unsuitable on disposable wafers. Therefore, 'Medical technology is now one of the important development directions for wafer inspection type wafers. Given the existing needs, it is necessary to design other simple responses. [Objective and Summary of the Invention] In view of the problems of the conventional technology, the present invention provides a fluid system and a fluid driving method to achieve the purpose of manufacturing disposable products. To achieve the above object, the semi-dense system provided by the present invention is filled with a substrate and a flexible and deformable film shape. The present invention is more special in the design of the base, which has more than one microfluidic element, shaped cavity, an exhaust hole and a plurality of micro-channels, micro-pipe components, deformable cavity and exhaust holes to form a fluid road. The film is adhered to the substrate and forms a semi-closed state in the exhaust hole. Through such a simple design, the present invention can simplify the fluid in the substrate, that is, the fluid that moves through the deformable cavity, so often because of its different dynamic effects, it can only be reached in ^. In addition, these three must use micro-electro-mechanical fabrication to meet the needs of limited work. The drive method that pump technology cannot meet is required to provide a semi-closed micro-easy, low-cost closed micro-fluidic system. (Substrate) More than one method of connecting microfluidic elements to flow back and forth through an opening to make a path-shaped sheet to drive a thin film above to apply 585836 _ Case No. 91109209_ Month and Day ___ V. Description of the Invention (3) Way of stress. When pressure is applied, the fluid in the deformable cavity is under pressure, which pushes the fluid to flow, and the other end is relieved by the exhaust hole. When the pressure is released, it returns due to the elastic recovery of the film itself. In addition, the present invention further provides a semi-closed microfluidic system. A plurality of sets of microfluidic channels are designed on the substrate, and these channels share a vent hole and a microfluidic element. In this way, different fluids can be injected in different paths and pushed back and forth. Finally, individual fluids can be mixed in a common microfluidic element. In addition, in order to solve the limitation of the distance of the pushing fluid, one or more of the deformable cavities mentioned above can be solved. The deformable cavities can be connected in series or in parallel to achieve the purpose of increasing the distance of pushing fluid flow. With regard to the features and implementation of the present invention, the preferred embodiment is described in detail with reference to the drawings: [Detailed description of the invention] The semi-closed microfluidic system and fluid driving method of the present invention are designed in a microfluidic system or Multiple deformable cavities, and then press the deformable cavities to drive fluid flow. That is, a flexible, deformable thin film substance is pasted on the substrate of the microfluidic wafer to form a semi-closed microfluidic system. The so-called semi-closed (p a r t a a 1 1 y c 1 0 s ed) microfluidic wafer is that when the wafer starts operation, there are no holes or pipes connected to the outside except the exhaust hole. In addition to the necessary microfluidic elements on the wafer, the present invention also designs one to several deformable cavities. These deformable cavities are connected in series or independently using micro-channels to microfluidic elements on the wafer. The deformable cavity is connected to the microfluidic element for the pipeline, forming the designed microfluidic transport

第7頁 585836Page 7 585836

動 器 之動線。在各個可變形腔的位晋μ _ , 變 器 壓 。晶片上的微流體運動,則是g致㈡:;的;動 形腔體積變形,造成腔内正壓力來施裔反減、讓可 放開薄膜後,藉由薄膜的彈性,合】動微流體。當致動 而讓微流體作反向的運動。會使可變形腔内產生負 「第1圖」為本發明微流體晶H ] 一The moving line of the actuator. In the position of each deformable cavity, μ_, the transformer pressure. The microfluidic motion on the wafer is caused by g: ;; the volume of the movable cavity is deformed, causing the positive pressure in the cavity to decrease, allowing the film to be released, and then using the elasticity of the film to move the micro fluid. When actuated, the microfluid moves in the opposite direction. It will cause negative in the deformable cavity. "Figure 1" is the microfluidic crystal of the present invention.

此微流體晶片1 〇上,有兩個不同的科士的不思圖。在 氣孔與-個可變形腔。這三個部八::?反應⑤、-個排 合此圖,"清楚說明本發明道申著。配 是由可變形腔16、排氣孔18與;運作=理。微,體晶片1( m構成。其中,第-'第弟:微9流體;^牛1〗、 種微流體元件,如加熱腔、反應為: 個部分,則分別以第一、第二、m 一 # $ ^ f/^ ^成 連接著。 第二微官道13、15、19所On this microfluidic wafer 10, there are two different maps of Keshi. The stomata and a deformable cavity. The three ministry eight ::? Reaction ⑤, a combination of this figure, " clearly illustrates the present invention. The configuration is composed of the deformable cavity 16, the exhaust hole 18, and operation; Micro, body wafer 1 (m). Among them, the first-'second brother: micro 9 fluid; ^ cattle 1〗, such micro-fluidic elements, such as heating cavity, the reaction is: the first, second, m 一 # $ ^ f / ^ ^ connection is connected. The second Weiguan Road 13, 15, 19

請參考「第2圖」’其為「第頂 了整個微流體晶片1〇是由一晶片基材17與一具彈性且j = 變的薄膜il所構成。基材17為微流體元件之管道所在^ = 分。基材17的材料可以是矽基材,如玻璃、石英、矽晶= (silicon)或多晶矽(p〇lysilic〇n),也可以是聚合物^料 (polymeric material),亦即,塑膠(plastics)材料,例 如,有機玻璃(polymethyl-methacrylate,PMMA)、聚碳 酸酯(polycarbonate)、鐵弗龍 (polytetrafluoroethylene, TEFL0NTM)、聚氯乙婦 (polyvinyl-chloride, PVC)、 (polydimethylsiloxane, PDMS)、聚石風(p〇lysulfone)、SU-8,和其他類似的材Please refer to "Figure 2", which is "the top of the entire microfluidic wafer 10 is composed of a wafer substrate 17 and a flexible and j = variable film il. The substrate 17 is a pipeline for microfluidic components Where ^ = points. The material of the substrate 17 can be a silicon substrate, such as glass, quartz, silicon = (silicon) or polycrystalline silicon (polymer silicon), or a polymer material (polymeric material), also That is, plastics materials, for example, polymethyl-methacrylate (PMMA), polycarbonate, polycarbonate, polytetrafluoroethylene (TEFL0NTM), polyvinyl-chloride (PVC), (polydimethylsiloxane) , PDMS), polysulfone, SU-8, and other similar materials

第8頁 585836Page 8 585836

案號 91109209 五、發明說明(5) 料。 一 而具彈性與可變形的薄膜11,則作為封裝晶片之用。 ,膜11的材料可選自一般日常用的膠帶,到AMC D291聚酯 薄膜(ρ ο 1 y s ΐ e r f i 1 m )等類似的薄膜均可。 微流體元件與微管道的製作即依選用的材料而異,這 些製作的技術有:光微影(photolithography)、微機電系 統MEMS技術、脈衝雷射蒸鍍〇ase]r ablati〇n)、氣磨(air abrasion)、注入製模(injecti〇I1 m〇iding)、凸印或壓印 (embossing or stamping)、於模具中將聚合前導材料加 以 Ικ 合(polymerizing the polymeric precursor material in the mold)等 。 薄膜11與基材丨7的接合,靠的是薄膜丨丨具有黏性的一 面所黏合在一起的。使用具有黏性的薄膜n,可使晶片i 〇 的封裝在常溫下進行。此種方式除了容易操作外,可不需 先行裝填試劑’且試劑本身亦可不暴露在高溫當中。 另外’運用薄膜材料也可讓裝填試劑較為容易,例 如^裝填試劑可利用注射針筒來完成。只要將試劑裝入於 針筒中,在所要裝填的位置上,將針筒在該處注射入試 劑。在裝填完後,再以小片的薄膜把注射孔封住即可。 在可變形腔的部分,推動微流體的動力來源是靠著外 力讓可變形腔的變形’在變形腔内形成正壓以推動微流體 晶片内的微流體運動。壓力的傳遞可以靠空氣來完成,亦 可以在可變形腔内注入液體,如油等,來形成一油壓系 統。使用空氣擔任壓力傳遞的介質,會由於空氣的可壓縮 性’使得這種驅動方式的反應(resp〇nse)較慢,而造成晶Case No. 91109209 V. Description of the invention (5). On the other hand, the elastic and deformable film 11 is used for packaging a chip. The material of the film 11 may be selected from general daily-use tapes, to similar films such as AMC D291 polyester film (ρ ο 1 y s ΐ e r f i 1 m). The fabrication of microfluidic components and microchannels depends on the materials selected. These fabrication technologies include: photolithography, MEMS technology, pulsed laser evaporation (aseaser ablati〇n), gas Grinding (air abrasion), injection molding (injecti0I1 m〇iding), embossing or embossing (embossing or stamping), polymerizing the polymeric precursor material in the mold (Iκ composite (polymerizing the polymeric precursor material in the mold), etc. . The bonding of the film 11 and the substrate 7 is based on the sticky side of the film 丨. The use of the adhesive film n enables the packaging of the wafer i 0 to be performed at normal temperature. In addition to being easy to handle, this method does not require the reagent to be pre-loaded and the reagent itself is not exposed to high temperatures. In addition, the use of thin film materials can also make filling reagents easier. For example, ^ filling reagents can be accomplished with a syringe. Just put the reagent in the syringe, and inject the syringe into the syringe at the position to be filled. After filling, seal the injection hole with a small piece of film. In the part of the deformable cavity, the power source for pushing the microfluid is to deform the deformable cavity by external force 'to form a positive pressure in the deformed cavity to promote the microfluidic motion in the microfluidic wafer. The transmission of pressure can be accomplished by air, or a liquid such as oil can be injected into the deformable cavity to form a hydraulic system. The use of air as a medium for pressure transmission will cause the reaction of this driving method (responsion) to be slow due to the compressibility of air ’, which will cause crystal

第9頁 585836Page 9 585836

_ 案號 9TinQ?f)Q 曰 五、發明說明(6) 片上的微流體運動,無法隨著外力 應反應。如果,整個微流體的流道 這樣的情況會更嚴重。因此,在可 氣部分變少,則推動微流體的效果 反應會越快。 除了空氣的可壓縮性外,空氣 (permeability)也較好。如果所用 者在薄膜封裝時沒有封裝完全, 樣的驅動方法功效大打折 液體,則要靠設計上與使^。 卜七 士' 部丁 X丨 $上 修正 田 然 題或者上述問題不會有足 上的需 作介質,是最為簡易的做^大的影 推動薄膜變形的機構=。 線運動的偏心圓或凸輪、$以是線 (thermodynamic dri:氣壤或熱 「第3A圖」至「第 形腔1 6之變形,讓微流^」則顯 情況。微流體晶片1〇上:片10内 動到第一微流體元件1 2,域流體將 第二微流體元件1 4。所以在反應完 開始的位置在微流體元’在「第 體元件12的位置上。在^ U的位置 元件1 4内的微流體受到^於可變形 是流向第一微流體元件自可變形 時間後,反應完成,,如「第 、變形腔上 的施加而有很快的相對 内,空氣部分多的話, 變形腔注入液體,讓空 會越好,亦即,所得的 較液體的穿透性 的薄膜穿透性良好,或 成容易透氣,則會使這 ,可變形腔是否要灌注 求。只要能避免上述問 響的情形下,以空氣當 性運動的致動器、作曲 動驅動器 示了本 的微流 從第二 成後, 3 A圖」 上,將 腔16上 腔16方 3B圖」 的壓力 發明 體作 微流 再將中, 被送 時, 面的 所示 解除 如何以 來回運 體元件 微流體 反應試 到第一 第二微 正壓力 。經過 。由於 可變 動的 1 4驅 送回 劑一 微流 流體 ,於 一段 薄膜_ Case No. 9TinQ? F) Q said 5. Description of the invention (6) The microfluidics on the chip cannot respond to external forces. If the whole microfluidic flow channel is worse, the situation will be more serious. Therefore, the less the gaseous part, the faster the effect of promoting the microfluidic response. In addition to air compressibility, air (permeability) is also better. If the user does not complete the package when the film is packaged, such a driving method has a great effect on the liquid, it depends on the design and use. Bu Qishi's Ministry X 丨 $ on Correction Tian Ran problem or the above problems will not have sufficient requirements as a medium, it is the easiest mechanism to make a large shadow to promote the deformation of the film =. The eccentric circle or cam of the linear motion, the line is a line (thermodynamic dri: air soil or heat "Figure 3A" to "the deformation of the first cavity 16 to allow micro-flow ^" is the case. Microfluidic chip 10 : The slice 10 moves to the first microfluidic element 12 and the domain fluid will move to the second microfluidic element 14. So the microfluidic element is at the position of the "body element 12" at the beginning of the reaction. At ^ U The position of the microfluid inside the element 14 is subject to deformation. The reaction is completed after the deformable time flows to the first microfluidic element. If there are too many liquids in the deformable cavity, the better the air will be, that is, the obtained liquid-permeable film has good penetrability, or it is easy to breathe, which will make this, whether the deformable cavity should be perfused. As long as the above-mentioned question can be avoided, the actuator and the actuating drive of the air-like movement show the micro-fluid from the second stage, 3A ", and the cavity 16 above the cavity 16 3B The pressure inventor created a microfluid and re-centered it. Shows how to release the microfluidic transport element back and forth to the first and second reaction reagent slight positive pressure through. Due to the variable back drive 14 moving a micro flow agent fluid, in some film

第10頁 585836 曰 畫號9110恥⑽ 五、發明說明(7) 壓力身;使可變形腔16内的壓力低於大氣壓的 1 6的壓差^ ΐ π 0上的微流體便在排氣孔1 8與可變形腔 卜’ k回了第二微流體元件14,杣「黧吖阁,所 不。如此,即完成了料士麻产曰ρ丄4如弟3C圖」所 在使用& ^ I微體在日日片來回驅動的要求。 分的直ΐ】ΐ二驅動可變形腔作動時,致動器施壓部 可變形腔的内#。-方面是如果兩者相 j =,因為薄膜本身的強度,會很難達到驅動的效果。 方面,會讓薄膜產生大的永久變形,而難達到來回流 =的即結,。經過一些以螺旋測微器作為致動器的實驗結 果’在1 0¾米(mm )大的可變形腔的條件下,致動器施壓部 分以6mm直徑效果最好。也就是說,在這樣的尺寸比例 下’标控微流體來回運動的狀況最為容易。這和所使用的 薄膜狀況有關。而此實驗所使用的薄臈是A M C D 2 9 1聚酯 薄膜(polyester film)。 理論上,本發明的驅動方法可透過下列的算式來表現 其可控制性。假設可變形腔為圓形,其半徑為r 2,致動器 施壓部分的半徑為r 1,致動器下壓的深度為h,則下壓的 體積為·· 其中,第一式當中的h2為r2所形成的圓錐體高,hi則 為rl或形成之圓錐體高,又h = h2-hi,且h2與hi存在著一 比例關係,故最後式子可簡化為:Page 10 585836 Illustrated painting number 9110 shame V. Description of the invention (7) Pressure body; make the pressure in the deformable cavity 16 lower than the atmospheric pressure of 16 differential pressure ^ ΐ 的 0 microfluid on the exhaust hole 1 8 and the deformable cavity b'k back to the second microfluidic element 14, 杣 "黧 ac Pavilion, no. In this way, the material Shima production ρ 曰 4 Rudi 3C map" is used & ^ I micro-body requirements for driving back and forth in Japanese and Japanese films. Straight point] When the second deformable cavity is actuated, the inner part of the deformable cavity of the actuator pressure part. -The aspect is that if the two phases are j =, it will be difficult to achieve the driving effect because of the strength of the film itself. On the other hand, it will cause a large permanent deformation of the film, but it is difficult to achieve the reflow = the knot. After some experimental results using a spiral micrometer as an actuator ', under the condition of a deformable cavity with a size of 10 ¾ m (mm), a 6 mm diameter portion of the actuator has the best effect. That is to say, in such a size ratio, it is the easiest to control the microfluid to move back and forth. This depends on the condition of the film used. The thin film used in this experiment was A M C D 2 9 1 polyester film. Theoretically, the driving method of the present invention can express its controllability by the following formula. Assuming that the deformable cavity is circular, its radius is r 2, the radius of the pressing part of the actuator is r 1, and the depth of the actuator's depression is h, then the volume of the depression is ... H2 is the height of the cone formed by r2, hi is the height of rl or the cone formed, and h = h2-hi, and there is a proportional relationship between h2 and hi, so the final expression can be simplified as:

第11頁 585836 案號 91109209 A_ 修正Page 11 585836 Case No. 91109209 A_ Amendment

Const x h (2) 積變化與下壓的深度成正 上的微流體也同樣的會有一 動一段微管道内的液體,若 五、發明說明(8) Δ^ = ^(Γ2 + Γ2η+η)Const x h (2) The microfluid whose product change is positive to the depth of the depression will also have the liquid in a microchannel. If the description of the invention (8) Δ ^ = ^ (Γ2 + Γ2η + η)

從第二式可知,下壓的體 比。在體積守恆條件下,晶片 樣的「體積位移」。如果是移 管道的結面積相同,則可預見 ,AVFrom the second formula, it can be seen that the body ratio is down. Under volume conservation conditions, the "volume shift" of a wafer-like sample. If the junction area of the moving pipe is the same, it is foreseeable that AV

A 第三式為一線性關係,所 易操作的。 有了可計算的體積位移, 法有莫大的助益。首先,先確 有哪些元件,所要處理的試劑 少。等到元件、微管道與佈置 算出所要的可變形腔的尺寸了 不過,本發明的驅動方法 限制可透過以下的實施例來解 的方法。亦即,「第4A圖」與 參考「第4A圖」,其由第一、 件 2 1、2 2、2 3、2 4和第一、第 2 8所形成的通路,其中,第一 接。請參考「第4B圖」,其由 流體元件3 1、3 2、3 3、3 4和第 排氣孔3 8所形成的通路,其中 (3) 以這樣的驅動方式是相當容 對如何應用本發明的驅動方 定所要設計的微流體晶片上 或緩衝的量(buff er〇有多 (1 a y 〇 u t )決定後,就可以計 仍有驅動距離的限制。此種 決,亦即,透過串聯與並聯 「第4B圖」兩者所繪示。請 第二、第三、第四微流體元 二可變形腔2 5、2 6與排氣孔 、第二可變形腔2 5、2 6為串 第一、第二、第三、第四微 一、第二可變形腔3 5、3 6與 ,第一、第二可變形腔35、A The third formula is a linear relationship and easy to operate. With a calculable volume displacement, the method is of great help. First, determine what components are available and use fewer reagents. Wait until the size of the deformable cavity is calculated by the components, micropipes, and layout. However, the driving method of the present invention is limited by the following methods. That is, "Figure 4A" and the reference "Figure 4A", which are formed by the first, second 2, 2 2, 2 3, 2 4 and the first, second 8 . Please refer to "Figure 4B", the passage formed by the fluid element 3 1, 3 2, 3 3, 3 4 and the third exhaust hole 38, of which (3) is quite suitable for how to apply in this way of driving After the driving method of the present invention determines the amount of buffer on the microfluidic wafer to be designed (the amount of buff er0 (1 ay ut)), it can be considered that there is still a limit on the driving distance. This decision, that is, through Figure 4B in series and parallel. The second, third, and fourth microfluidic elements, two deformable cavities 25, 26, and exhaust holes, the second deformable cavity 2 5, 2, 6 Is a string of first, second, third, fourth micro one, second deformable cavity 35, 36, and first and second deformable cavity 35,

第12頁 585836 修正 曰 案號 91109209 五、發明說明(9) ^ ,接。适兩個貫施例均可透過兩個 叮、悉:體4而增加驅動距離。而在設計上, | 口 1形成多個可變形腔來達到更大的驅動距離。 t外,「第5圖」則為兩組獨立的可變形腔之 獨立的微流體通路組成,分別 第: I 斤組成的第一微流體通路。由第二可變形腔4 5/、、第I: 微元件44、第二微流體元件43與排氣孔48所組成 I一谜k體通路。透過此兩組獨立的微流體通路,即可= |組不同的反應試劑,分別加入第一微流體通路與第二料^ 體通路,並分別驅動。最後,兩組不的反應試 丨第二微流體元件43處混合。 d則了在 I ^從「第5圖」的實施例,本發明更可衍生出同時嗖 ft::曰mi;立之微流體通路。每個微流體通路均 可早獨注人一種試劑,最後在於同—個微流體元件中^ 和。因此,本發明可簡單達到試劑混和的另一功效。同 I地’驅動方法與上述者均相同。 7 I 實際上,本發明已獲得驗證,其結果如下所述。以一 個100 mm長X 5 0mm寬的PMMA上,以研磨機(m 士 i i丄叫 Imachine)製作一 10 mm(毫米)直徑,深工_的可變形腔;Page 12 585836 Amendment No. 91109209 V. Description of Invention (9) ^, Continued. Applicable to the two implementation examples, the driving distance can be increased through two Ding and Xi: body 4. In design, | port 1 forms multiple deformable cavities to achieve greater driving distance. In addition, "Figure 5" is composed of two sets of independent deformable cavities and independent microfluidic paths, respectively: the first microfluidic path composed of 1 kg. It consists of the second deformable cavity 45 /, the first: the micro-element 44, the second micro-fluidic element 43 and the exhaust hole 48. Through these two sets of independent microfluidic pathways, it is possible to add different sets of reaction reagents to the first microfluidic pathway and the second material pathway, respectively, and drive them separately. Finally, two groups of non-reactive reactions were mixed at the second microfluidic element 43. d shows the embodiment in Fig. 5 from "Fig. 5", and the present invention can further derive 嗖 ft ::: mi; 立 之 微 fluid path. Each microfluidic channel can be injected with a single reagent early, and finally lies in the same microfluidic element ^. Therefore, the present invention can simply achieve another effect of reagent mixing. The same I 'driving method is the same as the above. 7 I Actually, the present invention has been verified, and the results are as follows. Using a 100 mm long X 50 mm wide PMMA, a 10 mm (millimeter) diameter, deep-working deformable cavity was made with a grinder (m ± i 丄 called Imachine);

|然後,銑一 8 2 · 5 m m長,深、寬1 m m的微管道。以上兩者 以長2 mm、寬0· 5 mm、深1 mm的微管道連接,再以AMC D291聚酯薄膜(polyester film)封裝。封裝後,在可變 形腔内注滿紅色墨水。此時,紅墨水充滿可變形腔、〇 5 I mm之微管道與小部份之lmm寬之微管道。施壓部份是用6mm 第13頁 585836 案號 91109209 Λ:_ 曰 修正 五、發明說明(10) 直徑的螺旋測微儀。當螺旋測微儀頂到薄膜表面時,此時 尚未施壓,螺旋測微儀顯示刻度為 1 8. 7 8 mm, 「第1表」 即為為幾個實驗數據,請參考之。 將「第1表」的實驗數據經整理後,即獲得「第6圖」 的圖形。由「第6圖」可發現,首先,這是一種線性的驅 動方式,意即,此種驅動方式是容易控制的,且是可由計 算來預測的。其次,在經兩個來回的前後驅動,可以顯示 出,此驅動方式的往復雙向運動與穩定性。實驗數值與計 算數值的趨勢吻合,可證明上述之論點。實驗數據與計算 數據之差,可能源自於實驗時加工誤差與實驗誤差。 綜上所述,本發明在這樣的一個半密閉的系統下,可 利用可變形腔之不同程度的變形,達到不同遠近程度的微 流體之移動,且非常容易控制。所以,本發明可滿足作為 短距離,不同位移,和來回運動之需求。 發明之功效】 本發明之可變形腔微流體驅動方法具有以下幾個優 點·· 1. 驅動系統内致動氣的部分與反應試劑是分開的,因 此不會有污染的問題,並可重複使用。除了可避免污染 外,也隔絕了致動器對反應試劑的污染。 2. 易於製作且其成本低,因此具可拋棄性。 3. 晶片與外部系統不需連接管線,因此拆裝容易。 4. 因為薄膜本身具彈性,可利用其彈性達成微流體來 回運動的目的。 5. 由於施加壓力與流體運動具有線性關係,因此,可| Then mill a micropipe 8 2 · 5 mm long, 1 mm deep and 1 mm wide. The above two are connected by micro-pipes with a length of 2 mm, a width of 0.5 mm and a depth of 1 mm, and are then packaged with AMC D291 polyester film. After packaging, fill the variable cavity with red ink. At this time, the red ink filled the deformable cavity, a micropipe of 0.5 mm and a small micropipe of 1 mm wide. The pressure part is 6mm. Page 13 585836 Case No. 91109209 Λ: _ Revision V. Description of the invention (10) Spiral micrometer with diameter. When the spiral micrometer is pushed to the surface of the film, no pressure has been applied at this time. The display of the spiral micrometer is 1 8. 7 8 mm. "Table 1" is a few experimental data, please refer to it. After sorting the experimental data of "Table 1", the graph of "Figure 6" is obtained. From Figure 6 it can be found that, first of all, this is a linear driving method, which means that this driving method is easy to control and can be predicted by calculation. Secondly, after two back-and-forth driving, it can show the reciprocating bidirectional movement and stability of this driving method. The agreement between the experimental values and the calculated values can prove the above argument. The difference between the experimental data and the calculated data may originate from processing errors and experimental errors during the experiment. In summary, under such a semi-closed system, the present invention can use different degrees of deformation of the deformable cavity to achieve the movement of microfluids of different distances and distances, and it is very easy to control. Therefore, the present invention can meet the needs of short distances, different displacements, and back and forth movements. Efficacy of the invention] The deformable cavity microfluidic driving method of the present invention has the following advantages ... 1. The actuating gas part in the driving system is separated from the reaction reagent, so there is no problem of contamination and it can be reused. In addition to avoiding contamination, the contamination of the reaction reagent by the actuator is also isolated. 2. Easy to make and low cost, so it is disposable. 3. The chip and external system do not need to connect pipelines, so it is easy to disassemble. 4. Because the film itself is elastic, the elasticity can be used to achieve the purpose of microfluids to move back and forth. 5. Since the applied pressure has a linear relationship with fluid motion,

第14頁 585836 案號 91109209 曰 修正 五、發明說明(11) 達到對微流體精確定位的功效。 雖然本發明以前述之較佳實施例揭露如上’然其並非 用以限定本發明,任何熟習相關技藝者,在不脫離本發明 之精神和範圍内,當可作些許之更動與潤飾,因此本發明 之專利保護範圍須視本說明書所附之申請專利範圍所界定 者為準。Page 14 585836 Case No. 91109209 Amendment V. Description of the invention (11) The effect of accurate positioning of microfluidics is achieved. Although the present invention is disclosed in the foregoing preferred embodiments as described above, it is not intended to limit the present invention. Any person skilled in the related arts can make some changes and retouch without departing from the spirit and scope of the present invention. The patent protection scope of the invention shall be determined by the scope of the patent application scope attached to this specification.

第15頁 585836 修正 案號 91109209 圖式簡單說明 第1圖為本發明之微流體晶片佈置的示意圖; 第2圖為第1圖之剖面圖; 第3 A〜3C圖為本發明透過可變形腔之變形,讓晶片内 的微流體運動之示意圖; 第4A圖為本發明之可變形腔串聯示意圖; 第4B圖為本發明之可變形腔並聯示意圖; 第 5圖 為本發 明 之 兩 組 獨 第 6圖 為本發 明 之 具 體 實 【圖 示 符號說胡 10 微 流 體 晶 片 11 薄 膜 12 第 微 流 體 元 件 13 第 一 微 管 道 14 第 二 微 流 體 元 件 15 第 二 微 管 道 16 可 變 形 腔 17 基 材 18 排 氣 孔 19 第 二 微 管 道 20 微 流 體 晶 片 21 第 一 微 流 體 元 件 22 第 二 微 流 體 元 件 23 第 二 微 流 體 元 件 24 第 四 微 流 體 元 件 25 第 一 可 變 形 腔 的可變形腔之示意圖;及Page 15 585836 Amendment No. 91109209 Brief Description of Drawings Figure 1 is a schematic diagram of the microfluidic wafer arrangement of the present invention; Figure 2 is a cross-sectional view of Figure 1; Figures 3 A to 3C are through the deformable cavity of the present invention Figure 4A is a schematic diagram of microfluids in a wafer moving; Figure 4A is a schematic diagram of a series of deformable cavities of the present invention; Figure 4B is a schematic diagram of a parallel connection of deformable cavities of the present invention; Figure 6 is the specific implementation of the present invention. [Symbol said Hu 10 Microfluidic wafer 11 Thin film 12 First microfluidic element 13 First microchannel 14 Second microfluidic element 15 Second microchannel 16 Deformable cavity 17 Substrate 18 Row Air hole 19 second micropipe 20 microfluidic wafer 21 first microfluidic element 22 second microfluidic element 23 second microfluidic element 24 fourth microfluidic element 25 schematic view of a deformable cavity of a first deformable cavity; and

第16頁 585836 案號91109209_年月日 修正 圖式簡單說明 26 第 二 可 變 形 腔 28 排 氣 孔 30 微 流 體 晶 片 31 第 一 微 流 體 元 件 32 第 二 微 流 體 元 件 33 第 二 微 流 體 元 件 34 第 四 微 流 體 元 件 35 第 一 可 變 形 腔 36 第 二 可 變 形 腔 38 排 氣 孔 40 微 流 體 晶 片 41 第 一 可 變 形 腔 42 第 一 微 流 體 元 件 43 第 二 微 流 體 元 件 44 第 二 微 流 體 元 件 45 第 二 可 變 形 腔 48 排 氣 孔Page 16 585836 Case No. 91109209_Year Month and Day Revised Schematic Description 26 Second Deformable Cavity 28 Vent Hole 30 Microfluidic Chip 31 First Microfluidic Element 32 Second Microfluidic Element 33 Second Microfluidic Element 34 No. Four microfluidic elements 35 first deformable cavity 36 second deformable cavity 38 exhaust hole 40 microfluidic wafer 41 first deformable cavity 42 first microfluidic element 43 second microfluidic element 44 second microfluidic element 45 Two deformable cavity 48 exhaust holes

Claims (1)

曰 、申請專利範圍 修正 種j密閉微流體系統 —流體通路; 件、基材(Substrat 該複數 個 e 以上之可變形腔 包含: ,具有一個以上之微流體元 排氣孔與複數條微管道 與該排;、微管道係個別連接該微流體元件、該可變 流動;=孔,以形成一通路使該流體可於該通路中^回該排氣ί彈性與可變形之薄膜,黏貼於該基材上,並於 .如申过L形成開口使該通路形成半密閉狀態。 、 透、局$專利範圍第1項所述之半密閉微流體系統,其中 變k,該可變形腔上方之該薄膜施加正壓力以產生、 ^ 可推動該流體流動,並於釋放該正壓力後, 即回流。 • $申,專利範圍第2項所述之半密閉微流體系統 正壓力之提供係運用一致動器。 •請專利範圍第1項所述之半密閉微流體系統 ^, 對該可變形腔上方之該薄膜施加正壓力之設備係選自線 性運動的致動器、作曲線運動的偏心圓或凸輪、氣壓或 $ 熱動驅動器(thermodynamic drive)。 •如申請專利範圍第1或2項所述之半密閉微流體系統,其 中更包含一驅動流體,其填注於該可變形腔中,用以於 該可變形腔產生形變時,帶動該流體與該通路内流體之 流動。 6 ·如申請專利範圍第5項所述之半密閉微流體系統,其中 腔 形 該流體 其中 其中Namely, the scope of the patent application is modified: closed microfluidic system—fluid path; parts and substrates (Substrat, the plurality of deformable cavities above e include:, having more than one microfluidic element exhaust hole and a plurality of micropipes and The row; the micro-channels are individually connected to the micro-fluidic element and the variable flow; = holes to form a passage so that the fluid can return in the passage ^ the exhaust and elastic film, adhere to the A semi-closed microfluidic system as described in item 1 of the patent scope is formed on the substrate and the opening is formed by applying L. The semi-closed microfluidic system described in item 1 of the patent scope, where k is changed above the deformable cavity. The film exerts positive pressure to generate, can promote the fluid flow, and returns after the positive pressure is released. • The application of the positive pressure of the semi-closed microfluidic system described in item 2 of the patent scope is consistent. • The semi-closed microfluidic system described in item 1 of the patent scope ^, the device for applying a positive pressure to the film above the deformable cavity is selected from a linear motion actuator and a curved motion bias Center circle or cam, air pressure or thermodynamic drive. • The semi-closed microfluidic system described in item 1 or 2 of the patent application scope, which further includes a driving fluid, which is filled in the deformable cavity. In order to drive the fluid and the fluid in the passage when the deformable cavity is deformed, the semi-closed microfluidic system according to item 5 of the patent application scope, wherein the cavity is in the shape of the fluid. 第18頁 585836 ____案號91109209_方月 a 修正_ 六、 申請專利範圍 該驅動流體係為油質流體。 7 ·如申請專利範圍第5項所述之半密閉微流體系統,其中 該驅動流體係充滿於該可變形腔中。 8 ·如申請專利範圍第1項所述之半密閉微流體系統,其中 該一個以上之可變形腔係安置在相對於該排氣孔之該通 路尾端。 9 ·如申請專利範圍第1項所述之半密閉微流體系統,其中 該一個以上之可變形腔係安置在相對於該排氣孔之該通 路尾知’且以該複數個微管道之數個形成串接。 1 〇 ·如申請專利範圍第1項所述之半密閉微流體系統,其中 該一個以上之可變形腔係安置在相對於該排氣孔之該 通路尾端,且以該複數個微管道之數個形成並接。 1 1 ·如申請專利範圍第1項所述之半密閉微流體系統,其中 該薄膜之材料可選自膠帶、聚酯薄膜等。 1 2 ·如申請專利範圍第1項所述之半密閉微流體系統,其中 該基材係為矽基材,可選自玻璃、石英、矽晶圓 (silicon)、多晶石夕(polysilicon)、聚合物材料 (polymeric material)與塑膠(plastics)材料,例 如,有機玻璃(polymethyl-methacrylate,PMMA)、聚 石炭酸醋(polycarbonate)、鐵弗龍 (polytetrafluoroethylene, TEFL0NTM)、聚氯乙稀 (polyvinyl-chloride, PVC)、 (polydimethylsiloxane,PDMS)、聚石風 (polysulfone)、 SU-8〇Page 18 585836 ____ Case No. 91109209_ Fangyue a Amendment _ 6. Scope of patent application The driving flow system is oily fluid. 7. The semi-closed microfluidic system as described in item 5 of the patent application scope, wherein the driving flow system is filled in the deformable cavity. 8. The semi-closed microfluidic system according to item 1 of the scope of the patent application, wherein the one or more deformable cavities are disposed at the end of the path opposite to the exhaust hole. 9 · The semi-closed microfluidic system as described in item 1 of the scope of the patent application, wherein the one or more deformable cavities are disposed in the passageway relative to the exhaust hole, and the number of the plurality of microchannels is Form a concatenation. 1 0. The semi-closed microfluidic system described in item 1 of the scope of the patent application, wherein the one or more deformable cavities are disposed at the end of the passageway with respect to the exhaust hole, and are formed by the plurality of microchannels. Several form a join. 1 1 · The semi-closed microfluidic system according to item 1 of the scope of patent application, wherein the material of the film can be selected from tape, polyester film, and the like. 1 2 · The semi-closed microfluidic system according to item 1 of the scope of the patent application, wherein the substrate is a silicon substrate, which can be selected from glass, quartz, silicon, and polysilicon Polymeric materials and plastics materials, such as polymethyl-methacrylate (PMMA), polycarbonate, polytetrafluoroethylene (TEFLONTM), and polyvinyl chloride (polyvinyl- chloride, PVC), (polydimethylsiloxane (PDMS), polysulfone, SU-8〇 第19頁 585836 _案號91109209__车月曰 修正__ 六、申請專利範圍 1 3.如申請專利範圍第1項所述之半密閉微流體系統,其中 該基材上之該一個以上之微流體元件、該排氣孔與該 一個以上之可變形腔之形成方法,係選自該光微影 (photolithography)、微機電系統MEMS技術' 脈衝雷 射蒸鍍(laser ablation)、氣磨(air abrasion)、注 入製模(injection molding)、凸印或壓印(embossing or stamp i ng)、於模具中將聚合前導材料加以聚合 (polymerizing the polymeric precursor material in the mold)0 1 4 · 一種半密閉微流體系統,包含: 二流體通路; 一基材(Substrate),具 3 分別由一個以上之微流體 複數條微管 元件當中之 路所共用, 、該可變形 以分別使至 上之流體可 並於該共用 變形之薄膜 口使該通路 1 4項所述之 流體通路中 形腔、一排氣孔與 孔與該一個微流體 個以上之微流體通 連接該微流體7〇件 形成該微流體通路 通路中之該一種以 通路中來回流動, 一具彈性與可 於該排氣孔形成開 1 5 ·如申請專利範圍第 中透過於每個該微 丨一调Μ上I微流體逋 元件、一個以上之可變 道所形成,其中該排氣 共用微流體元件為該一 該複數條微管道係個別 腔與該排氣孔,以個別 於該一個以上之微流體 各自於個別的該微流體 微流體元件中混和;及 ’黏貼於該基材上,並 形成半密閉狀態。 半密閉微流體系統,其 之該一個以上之可變形 585836 _案號91109209_年月日__ 六、申請專利範圍 腔上方之該薄膜施加正壓力以產生形變,可推動於該 微流體通路中之該流體流動,並於釋放該正壓力後, 該流體即回流。 1 6 .如申請專利範圍第1 5項所述之半密閉微流體系統,其 中該正壓力之提供係運用一致動器。 1 7 .如申請專利範圍第1 4項所述之半密閉微流體系統,其 中對該可變形腔上方之該薄膜施加正壓力之設備係選 自線性運動的致動器、作曲線運動的偏心圓或凸輪、 氣壓或熱動驅動器(thermodynamic drive)。 1 8 .如申請專利範圍第1 4或1 5項所述之半密閉微流體系 統,其中於每個該微流體通路中更包含一驅動流體, 其填注於該可變形腔中,用以於每個該微流體通路中 之該一個以上之可變形腔產生形變時,帶動該流體與 該通路内流體之流動。 1 9 .如申請專利範圍第1 8項所述之半密閉微流體系統,其 中該驅動流體係為油質流體。 2 0 .如申請專利範圍第1 8項所述之半密閉微流體系統,其 中該驅動流體係充滿於每個該可變形腔中。 2 1.如申請專利範圍第1 8項所述之半密閉微流體系統,其 中該二個以上之微流體通路,部分該微流體通路由該 驅動流體加以充滿,且部分該微流體通路由該驅動流 體加以部分填充。 2 2 .如申請專利範圍第1 4項所述之半密閉微流體系統,其 中每個該微流體通路中之該一個以上之可變形腔係安Page 19 585836 _Case No. 91109209__Che Yueyue Amendment __ VI. Patent application scope 1 3. The semi-closed microfluidic system described in item 1 of the patent application scope, wherein the one or more micro-fluidic systems on the substrate The method for forming the fluid element, the exhaust hole, and the one or more deformable cavities is selected from the group consisting of photolithography, MEMS technology, 'pulse laser ablation, and air grinding. abrasion), injection molding, embossing or stamping, polymerizing the polymeric precursor material in the mold 0 1 4 · a semi-hermetic Microfluidic system, including: two fluid pathways; a substrate, with 3 shared by one or more microfluidic multiple microtubule elements, respectively, which can be deformed so that the supreme fluid can be combined in The common deformed film port enables the cavity, an exhaust hole and a hole in the fluid passage described in item 14 of the passage to be connected to the microfluid by one or more microfluids. One of the seventy bodies forming the microfluidic channel flows back and forth in the channel, a flexible and can be opened in the exhaust hole 1 5 · As per the scope of the patent application, each micro The upper microfluidic element and one or more variable channels are formed, wherein the exhaust common microfluidic element is the individual cavity and the exhaust hole of the plurality of micro-channels, so as to be different from the one or more The fluids are each mixed in the individual microfluidic microfluidic element; and 'adhered to the substrate and formed into a semi-hermetic state. Semi-closed microfluidic system, which is more than one deformable 585836 _ case number 91109209_ year month day__ Six, the patent application range above the cavity applies positive pressure to generate deformation, which can be pushed in the microfluidic path The fluid flows, and after the positive pressure is released, the fluid returns. 16. The semi-closed microfluidic system according to item 15 of the scope of patent application, wherein the positive pressure is provided by an actuator. 17. The semi-closed microfluidic system according to item 14 of the scope of the patent application, wherein the device for applying a positive pressure to the film above the deformable cavity is selected from a linear motion actuator and an eccentricity for curved motion Round or cam, pneumatic or thermodynamic drive. 18. The semi-closed microfluidic system according to item 14 or 15 of the scope of the patent application, wherein each of the microfluidic channels further includes a driving fluid filled in the deformable cavity for When the one or more deformable cavities in each of the microfluidic channels are deformed, the fluid and the fluid in the channel are caused to flow. 19. The semi-closed microfluidic system according to item 18 of the scope of patent application, wherein the driving fluid system is an oily fluid. 20. The semi-closed microfluidic system according to item 18 of the scope of patent application, wherein the driving flow system is filled in each of the deformable cavities. 2 1. The semi-closed microfluidic system according to item 18 of the scope of patent application, wherein the two or more microfluidic channels are partially filled with the driving fluid, and part of the microfluidic channels are filled by the The drive fluid is partially filled. 2 2. The semi-closed microfluidic system described in item 14 of the scope of patent application, wherein more than one deformable cavity in each of the microfluidic channels is installed 第21頁 585836 案號 91109209 年 J 六 申請專利範圍 置在相對於該排氣孔之該通路尾端。 2 3 ·如申請專利範圍第1 4項所述之半密閉微流體系統,其 中每個該微流體通路中之該一個以上之可變形腔係安 置在相對於該排氣孔之該通路尾端,且以該複數個微 管道之數個形成串接。 2 4 ·如申請專利範圍第1 4項所述之半密閉微流體系統,其 中每個該微流體通路中之該一個以上之可變形腔係安 置在相對於該排氣孔之該通路尾端,且以該複數個微 管道之數個形成並接。Page 21 585836 Case No. 91109209 J. Six. The scope of patent application is located at the end of the passage opposite to the exhaust hole. 2 3 · The semi-closed microfluidic system according to item 14 of the scope of patent application, wherein the one or more deformable cavities in each of the microfluidic channels are disposed at the end of the channel opposite to the exhaust hole , And form a concatenation with the plurality of micro-channels. 2 4 · The semi-closed microfluidic system according to item 14 of the scope of patent application, wherein the one or more deformable cavities in each of the microfluidic channels are disposed at the end of the channel opposite to the exhaust hole And form a concatenation with the plurality of micro-channels. 2 5 ·如申請專利範圍第1 4項所述之半密閉微流體系統,其 中該薄膜之材料可選自膠帶、聚酯薄膜等。 2 6 ·如申請專利範圍第1 4項所述之半密閉微流體系統,其 中該基材係為碎基材’可選自玻璃、石英、石夕晶圓 (silicon)、多晶石夕(polysilicon)與聚合物材料 (polymeric material)、塑膠(plastics)材料,例 如,有機玻璃(polymethyl-methacrylate, pmma)、聚 碳酸酯(polycarbonate)、鐵弗龍 (polytetrafluoroethylene, TEFL0NTM)、聚氯乙稀 (polyvinyl-chloride, PVC)、 (polydimethylsiloxane,PDMS)、聚石風 (polysulfone)、 SU-8〇25. The semi-closed microfluidic system according to item 14 of the scope of patent application, wherein the material of the film can be selected from tape, polyester film and the like. 2 6 · The semi-closed microfluidic system according to item 14 of the scope of the patent application, wherein the substrate is a broken substrate, and may be selected from glass, quartz, silicon, polycrystalline silicon ( polysilicon) and polymer materials (plastics), such as polymethyl-methacrylate (pmma), polycarbonate, polycarbonate, polytetrafluoroethylene (TEFLONTM), polyvinyl chloride (polyvinyl chloride) polyvinyl-chloride (PVC), (polydimethylsiloxane (PDMS), polysulfone, SU-8〇 2 7 ·如申請專利範圍第14項所述之半密閉微流體系統,其 中該基材上之該一個以上之微流體元件、該排氣孔^ 該一個以上之可變形腔之形成方法’係選自該光微景:2 7 · The semi-closed microfluidic system according to item 14 of the scope of the patent application, wherein the one or more microfluidic elements and the exhaust hole on the substrate ^ the method of forming one or more deformable cavities' are From the light micro-view: 585836 案號 91109209 月 曰 修正 六、申請專利範圍 (photo 1 ithography)、微機電系統MEMS技術、脈衝雷 射蒸鑛(laser ablation)、氣磨(air abrasion)、注 入製模(injection molding)、凸印或壓印(embossing or stamping)、於模具中將聚合前導材料加以聚合 (polymerizing the polymeric precursor material in the mold)。 2 8 · —種半密閉微流體系統之流體驅動方法,包含下列步 驟: 提供一半密閉微流體系統,其由一基材 (Substrate)與一薄膜所形成,並具有形成一通路之一 個以上之可變形腔、一個以上之微流體元件與一個排 氣孔’該薄膜於該排氣孔具有一開口而形成半密閉狀 態,一流體填注於該通路; 依據所要推動該流體流動之距離,施加一定比例 之正壓力於該一個以上之可變形腔上方之該薄膜,以 推動該流體流動;及 釋放該正壓力,該流體即回流。 2 9 .如申請專利範圍第2 8項所述之半密閉微流體系統之流 體驅動方法,其中該正壓力之提供係運用一致動器。 3 0 ·如申請專利範圍第2 8項所述之半密閉微流體系統之流 體驅動方法,其中對該可變形腔施加正壓力之設備係 選自線性運動的致動器、作曲線運動的偏心圓或凸 輪、氣壓或熱動驅動器(thermodynamic drive)。585836 Case No. 91109209 Amendment VI. Patent application scope (photo 1 ithography), MEMS technology, pulse laser ablation, air abrasion, injection molding, convex Embossing or stamping, polymerizing the polymeric precursor material in the mold. 2 8 · —A method for driving a fluid in a semi-closed microfluidic system, including the following steps: Provide a semi-closed microfluidic system, which is formed of a substrate and a thin film, and has more than one path forming a pathway. Deformation cavity, more than one microfluidic element and one exhaust hole. The film has an opening in the exhaust hole to form a semi-closed state, and a fluid is filled in the passage; according to the distance that the fluid is to be pushed, a certain amount is applied. The positive pressure of the proportion is on the film above the one or more deformable cavities to push the fluid to flow; and when the positive pressure is released, the fluid flows back. 29. The method for driving a fluid of a semi-closed microfluidic system as described in item 28 of the scope of patent application, wherein the supply of the positive pressure uses an actuator. 3 0 · The fluid driving method for a semi-closed microfluidic system as described in item 28 of the scope of patent application, wherein the device for applying positive pressure to the deformable cavity is selected from linear motion actuators and eccentricity for curved motion Round or cam, pneumatic or thermodynamic drive. 第23頁Page 23
TW91109209A 2002-05-03 2002-05-03 Semi-sealed micro-fluid system and the driving method for fluid TW585836B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91109209A TW585836B (en) 2002-05-03 2002-05-03 Semi-sealed micro-fluid system and the driving method for fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91109209A TW585836B (en) 2002-05-03 2002-05-03 Semi-sealed micro-fluid system and the driving method for fluid

Publications (1)

Publication Number Publication Date
TW585836B true TW585836B (en) 2004-05-01

Family

ID=34057704

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91109209A TW585836B (en) 2002-05-03 2002-05-03 Semi-sealed micro-fluid system and the driving method for fluid

Country Status (1)

Country Link
TW (1) TW585836B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448413B (en) * 2011-09-07 2014-08-11 Ind Tech Res Inst Pneumatic micropump
TWI593797B (en) * 2012-10-23 2017-08-01 國立清華大學 Nano-electrode based chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448413B (en) * 2011-09-07 2014-08-11 Ind Tech Res Inst Pneumatic micropump
US9732743B2 (en) 2011-09-07 2017-08-15 Industrial Technology Research Institute Pneumatic micropump
TWI593797B (en) * 2012-10-23 2017-08-01 國立清華大學 Nano-electrode based chip

Similar Documents

Publication Publication Date Title
US6843263B2 (en) Partially closed microfluidic system and microfluidic driving method
Ching et al. Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing
Jeong et al. Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)
Au et al. Microvalves and micropumps for BioMEMS
US7412990B2 (en) Microfluidic control device and method for controlling microfluid
US9358539B2 (en) Valves and other flow control in fluidic systems including microfluidic systems
US20110126910A1 (en) Microfluidic devices and methods for binary mixing
Aeinehvand et al. Latex micro-balloon pumping in centrifugal microfluidic platforms
JP4403000B2 (en) Microchip and micropump
US20130139895A1 (en) Microfluidic devices with mechanically-sealed diaphragm valves
US6622746B2 (en) Microfluidic system for controlled fluid mixing and delivery
US20130206250A1 (en) Bubble-based microvalve and its use in microfluidic chip
KR100618320B1 (en) An apparatus for making a fluid flow, and a disposable chip having the same
Cai et al. Membrane-based valves and inward-pumping system for centrifugal microfluidic platforms
KR20110107255A (en) Microfluid control device and method for manufacturing the same
Aeinehvand et al. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms
Alvarez-Braña et al. Modular micropumps fabricated by 3D printed technologies for polymeric microfluidic device applications
JP2005337415A (en) Micro valve, micro pump, and micro chip incorporating them
JP2007322284A (en) Microchip and filling method of reagent in microchip
Pompano et al. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip
KR100978317B1 (en) Photothermally Actuated Microvalve and Lab-on-a-Chip System Thereof
JP2006053064A (en) Micro-fluid chip and its manufacturing method
KR100444751B1 (en) Device of Controlling Fluid using Surface Tension
TW585836B (en) Semi-sealed micro-fluid system and the driving method for fluid
KR100471377B1 (en) Microfluidic Devices Controlled by Surface Tension

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent