TW552485B - An improved electrophoretic display with in-plane switching - Google Patents

An improved electrophoretic display with in-plane switching Download PDF

Info

Publication number
TW552485B
TW552485B TW090123167A TW90123167A TW552485B TW 552485 B TW552485 B TW 552485B TW 090123167 A TW090123167 A TW 090123167A TW 90123167 A TW90123167 A TW 90123167A TW 552485 B TW552485 B TW 552485B
Authority
TW
Taiwan
Prior art keywords
item
patent application
electrophoretic display
color
particles
Prior art date
Application number
TW090123167A
Other languages
Chinese (zh)
Inventor
Rong-Chang Liang
Jerry Chung
David Chen
Original Assignee
Sipix Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sipix Imaging Inc filed Critical Sipix Imaging Inc
Application granted granted Critical
Publication of TW552485B publication Critical patent/TW552485B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode

Abstract

The present invention relates to an improved EPD which comprises the in plane switching mode. More specifically, the EPD of the present invention comprises isolated cells formed from microcups of well defined size, shape and aspect ratio and the movement of the particles in the cells is controlled by the in-plane switching mode. The EPD of the present invention may be produced in a continuous manufacturing process, and the display gives improved color saturation.

Description

552485 A7 ____Β7________ 五、發明說明(丨) 發明背景 (請先閱讀背面之注意事項再填寫本頁) 電泳顯示器(EPD)基於影響懸浮在彩色介電溶劑中 之帶電荷染料粒子之電泳現象而爲一種非發射性的裝置。 此種普遍的顯示器於1969年首次被提出。一個顯示器典型 地包括一對相對、間隔分離且如板狀之電極。至少其中之 一電極典型地由觀察端來看是透明的。就此種被動形式之 電泳顯示器,於頂部(觀察端)及底部上之行與列的電極 均被需要用來驅動先顯示器。相比之下,於底板上之薄膜 電晶體陣列以及於頂部觀察基材上之一普遍且無圖案之透 明導體板則被需要用於主動型式的電泳顯示器。電泳流體 係由彩色介電溶劑與分散之帶電荷染料粒子所組成,其中 係被密封於該二個電極板之間。 當一電壓差被施加於二個電極之間時,該染料粒子藉 由引力遷移至與相反於染料粒子之極性板。因此,顯示在 透明板上的顏色(由選擇性地將極板充電所決定)可爲溶 劑之顏色或是染料粒子之顏色。將板的極性反轉會使得粒 子往反方向遷移,藉此也將顏色反轉。由於透明板上的中 間染料密度(intermediate pigment density),藉由控制電 極板電荷經過一範圍的的電壓,可得到中間顏色密度( intermediate color density)(或灰色的陰暗處)。於此種 類型之反射式電泳顯示器是不需要背光的(backlight) ° 揭示於專利案號US 6,184,856之穿透式電泳顯示器’ 其中係使用了背光、濾色器以及具有兩個透明電極之基材 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 552485 A7 ______B7_—_ 五、發明說明(y) (請先閱讀背面之注意事項再填寫本頁) 。該電泳格子係用來當作一光閥。於此收集式的狀態( colletedstate)下,該粒子係被安置於用來將格子之水平區 域覆蓋範圍加以最小化,以及使其背光通過該格子。而於 分散式的狀態(distributed state)中,該粒子係被安置於 用來將圖素之水平區域加以覆蓋,以及將背光加以分散或 吸收。然而,於此裝置中所使用之背光與濾色器會消耗掉 大量的功率,且對於諸如PDAs (個人數位助理personal digital assistants)之手持型裝置和電子書(e,book)爲不 希冀的。 除了電泳顯示器之正常的上/下電極切換模式以外,反 射式"面內"切換電泳顯示器亦揭示於E. Kishi等人的 "5.1 : development of In-Plane EPD",Canon Research Center,SID 00 Digest,第 29·31 頁,( 2000)。然而,只 有單色面內切換電泳顯示器揭示於這些參考資料中。欲製 備一多色的電泳顯示器,則不是需要濾色器即是需要隔離 的色彩圖素亦或是格子結構來進行色彩分離以及再現。濾 色器典型地係昂貴的且不具功率效能。另一方面,爲了於 面內切換電泳顯示器中進行色彩分離以及再現,而將圖素 或格子隔離係爲先前所無教示的。 不同圖素或格子結構之電泳顯示器均於先前技藝中所 記載,例如,分隔式電泳顯示器(Μ.Α· Hopper和乂· Novotny, IEEE Trans. Electr. Dev., Vol. ED 26, No. 8, pp. 1148-1152 (1979))和微容器化之電泳顯示器(專利案號 US 5,961,804和US 5,930,026),而這些當中之每一項各 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 552485 A7 _—__B7___ 五、發明說明(> ) 自均具有如以下所記之問題。 於分隔式(partition-type)之電泳顯示器中,於兩電 極之間具有數分隔物,以將其空間切割成較小的格子,係 爲了達到預防不希冀之粒子的運動的目的,諸如沈澱。然 而,會在以下情況中遇到問題:於分隔物形成、以流體塡 充該顯示器之製程、於顯示器中密封該流體、以及使不同 的懸浮色料彼此維持分離。 該微容器化之電泳顯示器具有完全二維的微容器排列 ,其中各微容器具有由一介電質流體與一帶電荷染料粒子 懸浮物(在視覺上與介電質溶劑對比)所組成之電泳組成 。該微容器係於一水溶液中典型地被製備,而爲了要達到 一有用之對比比例,其平均粒子尺寸係相對爲大的(50-150微米)。大粒子尺寸會導致較差之抗刮痕性以及對於 一特定的電壓具有較慢之反應時間,其係由於介於兩相反 電極間之大的裂隙係需要大的容器。再者,於水溶液中所 製備之微容器的親水外殻,其會引起高濕度與溫度條件的 靈敏度。若該微容器被嵌埋至一大數量的聚合物基質當中 ,以排除這些缺點,則該基質的使用會導致更慢的反應時 間及/或更低的對比比例。爲改良其切換速率,於此種電泳 顯示器中則常常需要電荷控制劑。然而,該於水溶液中之 微容器化方法,對可使用之電荷控制劑的種類加諸限制。 其他關於微容器系統的缺點則包括不良的解像力和色彩應 用之不良的定址能力。 最近,改良的電泳顯示器技術係揭示於共同繫屬案中 5 木紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) - . --------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 __B7_ 五、發明說明(斗) ,公佈於2001年9月13日之WO1/67170、於2001年1 月11日提申之美國序列案號〇9/759,212、於2000年6月 28日提申之美國序列案號09/606,654以及於2001年2月 15日提申之美國序列案號09/784,972,於此一倂做爲參考 。該改良的電泳顯示器包含有明確定義之形狀、尺寸與縱 橫比的隔離格子,且該格子以分散在溶劑中之帶電荷染料 粒子被塡充。該電泳流體被隔離且密封於每一個微形杯中 〇 事實上,該微形杯結構可以使電泳顯示器之製備進 行一可撓性、有效率之滾輪對滾輪的連續製造過程的製造 過程。該顯示器可於諸如ITO/PET之連續網狀導體膜上來 製備,例如,(1 )將輻射可固化組成物塗佈於ITO/PET 膜上’(2)藉由微壓花或光蝕刻方法製造微形杯結構,( 3)以電泳液體將該杯狀物塡充以即將該微杯體陣列加以密 封’(4)以其他導體膜將經密封之微形杯加以分層,和( 5)將該顯示器切割成一希冀的尺寸或格式以裝配。 此電泳顯示器設計的一項優點,係爲該微形杯壁事 實上是一種將頂部與底部基材保持在一固定距離之嵌入式 間隔物。微形杯顯示器之機械性質與結構性的完整顯著地 優於任何先前技藝之顯示器,包括那些藉由使用間隔物粒 子所製造顯示器。此外,牽涉到微形杯的顯示器,均具有 希冀之機械性質,包括當顯示器被彎曲、滾軋、或受到來 自於諸如觸碰式螢幕之運用的壓縮壓力時,其可靠的顯示 器性能。微形杯技術的使用亦排除了邊緣密封黏著劑的需 6 氏張尺度適用中關家規格⑽X 297公釐) ---- > --------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 ______B7__ 五、發明說明($ ) 要,該邊緣密封黏著劑會限制和預先定義顯示器面版以及 限制了預先定義區域裡之顯示器流體。於傳統顯示器中藉 由邊緣密封黏著劑的方法而製備的顯示器流體,若顯示器 以任何的方式被切割,或是經鑽孔穿經顯示器成洞,該流 體將會完全洩漏。該受損傷的顯示器將不再具有任何的功 能。相反的,於藉由微型杯技術所製備之顯示器中的顯示 器流體則被密封且隔離於每個格子中。該微型杯顯示器幾 乎可被切割成任何尺寸,而無因爲顯示器流體於活性區域 中的流失而損及其顯示器性能的風險。換句話說,該微型 杯結構可進行一種撓性格式(f0rmat flexible)顯示器製造 方法,其中該方法已大的薄板格式生產了顯示器一連續輸 出,該薄板格式可被切割成任何所需之格式。當格子以諸 如染料之不同特定性質和切換速率的流體所塡充時,該隔 離的微型杯或格子結構則顯得特別重要。若無微型杯結構 ,要預防流體在鄰近區域中相混合或受到在操作期間的干 擾串音,會變得非常困難。 因此,多色顯示器可藉由使用以不同顏色的染料(諸 如紅色、綠色或藍色)所塡充之微形杯,其形成的部分鄰 近微小圖素陣列來加以製造。然而,就此種傳統上/下電極 切換模式而言其具有一重大的缺陷。從”關閉”彩色圖素 反射出的白色光會大大的減低“開啓”色彩的色飽和。關 於此項問題的細節將於以下的”細節說明”部分中敘述之 Ο 此缺陷可藉由一種諸如分散聚合物液晶之覆蓋的光閘 7 衣紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 _—B7__ 五、發明說明(b ) 裝置來補救,以將每個圖素切換至黑色,然而該覆蓋的裝 置以及複雜的驅動迴路設計的高成本則係爲此方法的缺點 Ο 因此電泳顯示器仍然需要以有效的方式來具有亦可使 其製備的改良特性。 發明槪要 本發明係有關於一種包括用於影像形成的面內切換模 式之改良電泳顯示器。更特別地’本發明之電泳顯示器包 括明確定義之尺寸、形狀與縱橫比之微形杯所形成的隔離 格子,且於格子中的粒子其係藉由面內切換模式的控制來 運動。本發明之電泳顯示器可以連續的滾輪對滾輪製造方 法來生產,結果的顯示器則提供了改良的色飽和以及對比 比例。 圖示簡單說明 應注意的是所有的圖示皆以圖像而非刻度表來顯示。 圖1顯示只具有上/下切換模式的傳統型電泳顯示器之 普遍的缺陷。 圖2顯示本發明之典型的電泳格子以及面內切換電極 的一般位置。 圖3A與3B係顯示本發明之單色顯不器。 8 木紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公羞) --------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 ______B7___ 五、發明說明(1 ) 圖4A-4D係顯示本發明之不同的多色型態。 圖5A-5B係顯示包含經過一光罩之影像光石印刷曝光 的微形杯的製造。 發明之細節說晛 除非在本專利說明書中另有定義,否則在此所有的技 術術語皆根據熟習本技藝之人士所通常使用並瞭解的慣用 定義而被使用。術語“格子”、“微形杯”、“明確定義 ”、“縱橫比”以及“影像曝光”均如同以上所指出的共 同繫屬案中所定義之。 術語"隔離”意指以密封層個別密封的電泳格子,以 使得於一格子中的電泳流體無法被轉換至其他格子中。 I.县有傳統型上下切換模式的電泳顯示器之缺點 圖1之電泳顯示器具有傳統型上/下電極切換模式。該 格子係以懸浮物塡充,該懸浮物中白色帶電荷粒子則分散 在彩色(紅色、綠色和藍色)介電溶劑中。於圖1之三個 格子全都以上下電極間(未顯示)的電壓差而帶電荷所顯 示,於綠色與藍色格子中,白色粒子會遷移到頂部透明的 觀察電極,因此,粒子的顏色(亦即白色)則會經由該兩 9 參紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐〉 --------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 ____B7_ 五、發明說明(f ) 個格子中的透明導體膜而反射到觀察者。於紅色格子中, 白色格子遷移到格子的底部,而溶劑的顏色(亦即紅色) 則可經由頂部透明導體膜而被看見。於圖1中,白色光附 戲劇性的從綠色與藍色格子中反射出,而降低了紅色的飽 和度與對比比例。 除了上述提及問題之外,非常低極性的介電溶劑中, 染料的低溶解度與較差的不褪色性,諸如全氟與烴溶劑, 對於達到電泳顯示器上下切換模式的高對比比例係爲一大 挑戰。 Π本發明之電泳顯示器 圖2顯示本發明之典型的電泳格子。該格子(20)包括 了一頂部層(21)與一底部層(22)。該底部層具有面內切 換電極(23)和(24)以及背景層(25)。在被溝槽(30) 分開的兩個面內電極間有一普通的電極(29)。可選擇地, 底部層可以只有一個面內切換電極,以及一個具有溝槽於 其間的普通電極。另一個選擇,則爲底部層中的電極頂部 上之背景層處(25)。該面內電極層亦可當作是背景層,而 於此例中該面內電極層則可爲白色或彩色。 典型地,圖2的格子係以淸晰介電溶劑中(32)的彩 色粒子(31)之分散物所塡充。該粒子可爲白色、黑色或 彩色(亦即紅色、綠色或藍色)。該背景層(25)則可爲無 色、白色、黑色或彩色。經塡充之格子隨即以密封層(26) 10 衣紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ------------—I----訂--------- (請先閱讀背面之注意事項再填寫本頁) 552485 A7 ------ B7___ 五、發明說明(1 ) 加以密封。接著具有透明絕緣體層的頂部層,較佳和一黏 著劑層覆蓋在該經密封的格子上。 該微形杯陣列係以顛倒的方式製備。在這方面,微形 杯陣列則藉由微壓花或光石印刷於頂部透明緣體層基材上 製備,如同公佈於2001年9月13日之WO1/67170、於 2〇〇1年1月11日提申之美國序列案號09/759,212、於 2〇〇〇年6月28日提申之美國序列案號〇9/606,654以及於 2〇〇1年2月15日提申之美國序列案號09/784,972,於此 一倂做爲參考。該微形杯係以電泳流體塡充,接著以密封 層密封。包含圖案化電極較佳和一黏著劑層的底部層隨即 覆蓋在該經密封的微形杯上。顏色背景可藉由將顏色層塗 料、印刷、被覆或覆蓋於底部電極基材上而添加。 面內切換模式的優點之一,係於一乾淨的塑膠絕緣體 基材上製造微形杯的可能性。此消除了於微壓花和其他腹 板操作步驟期間,將諸如ITO/PET之易碎的導體電極打破 的風險。圖案化的面內導體膜僅被使用於完成製造顯示器 面板時,覆蓋於經塡充及密封的微形杯上的最末步驟中。 (1)反射式單色顯示器 於圖3A的格子中,白色粒子分散於一淸晰無色的介 電溶劑中。所有的格子背景均爲相同顏色(黑色、胃色i、 青綠色、紅色、洋紅色等等)。當在普通電極(未顯示)與 兩個面內切換電極(未顯示)間具有一電壓差時,白色粒 11 I紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公餐) " (請先閱讀背面之注意事項再填寫本頁) —— — — — — II ·11111111 552485 A7 — _____B7 _ 五、發明說明(β) 子則遷移到格子的側面,而導致背景顏色可經由頂部透明 開口被看見。當在普通電極與兩個面內切換電極間不具有 電壓差時,白色粒子則分布於介電溶劑中,因此,粒子的 顏色(亦即白色)可經由頂部透明絕緣體層被看見。 可選擇地,如圖3Β顯示,相同顏色的粒子分散於所 有格子之淸晰無色的介電溶劑中,且格子的背景係爲白色 的。當在普通電極(未顯示)與兩個面內切換電極(未顯 示)間具有一電壓差時,彩色粒子則遷移到格子的側面, 而導致背景顏色(亦即白色)可經由頂部透明開口被看見 。當在普通電極與兩個面內切換電極間不具有電壓差時, 彩色粒子則分布於介電溶劑中,因此,粒子的顏色(亦及 白色)可經由頂部透明絕緣體層被看見。 (2)反射式多色顯示器 圖4A-4D顯示本發明之多色顯示器。 於圖4Α中,該格子係以具有白色帶電荷粒子分散於 其中的無色介電溶劑所塡充,且具有不同的背景顏色(亦 即紅色、綠色或藍色)。當面內電極間(未顯示)具有一電 壓差時,白色粒子則遷移到格子的任一個側面,而導致背 景顏色(亦即紅色、綠色或藍色)可經由頂部透明開口被 看見。當面內電極間不具有電壓差時,粒子則分布於介電 溶劑中,導致可經由頂部透明開口看見白色(亦即粒子的 顏色)。 12 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂---- 552485 A7 ___ B7 ___ 五、發明說明(〇) (請先閱讀背面之注意事項再填寫本頁) 於圖4B中,該格子係以具有黑色粒子分散於其中的 無色介電溶劑所塡充,且具有不同的背景顏色(亦即紅色 、綠色或藍色)。當面內電極間(未顯示)具有一電壓差時 ,粒子則遷移到格子的任一個側面,而導致背景顏色(亦 即紅色、綠色或藍色)可經由頂部透明開口被看見。當面 內電極間不具有電壓差時,粒子則分布於介電溶劑中,導 致可經由頂部透明開口看見黑色(亦即粒子的顏色)。 於圖4C中,該格子係以具有不同顏色粒子(亦即紅 色、綠色或藍色)分散於其中的無色介電溶劑所塡充。該 格子背景係黑色的。當面內電極間(未顯示)具有一電壓 差時,彩色帶電荷粒子則遷移到格子的任一個側面,而導 致背景顏色(亦即黑色)可經由頂部透明開口被看見。當 面內電極間不具有電壓差時,彩色粒子則分布於介電溶劑 中,導致可經由頂部透明開口看見粒子的顏色(亦即紅色 、綠色或藍色)。此設計中,黑色狀態係爲高品質。 於圖4D中,該格子係以具有不同顏色粒子(亦即紅 色、綠色或藍色)分散於其中的無色介電溶劑所塡充。該 格子背景係白色的。當面內電極間(未顯示)具有一電壓 差時,粒子則遷移到格子的任一個側面,而背景顏色(亦 即白色)可經由頂部透明開口被看見,而導致高品質的白 色狀態。當面內電極間不具有電壓差時,粒子則分布於介 電溶劑中,導致可經由頂部透明開口看見粒子的顏色(亦 即紅色、綠色或藍色)。 如圖4A-4D中顯示,面內切換模式可使粒子以平面的 13 衣紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 552485 ΚΙ ____ Β7____ 五、發明說明(丨>) 方向(左/右)移動,而粒子、背景和流體之不同顏色的組 合(其中每一個係個別爲白色、黑色、紅色、綠色或藍色) ,可用來產生不同的多色電泳顯示器。 此外,介電溶劑中的粒子可爲混合顏色,且該格子具 有同的背景顏色。 於本發明可選擇的反射式顯示器中,顯示器的頂部透 明觀察層可被染色或者添加一濾色器。於此狀況中,該格 子係以電泳組成物所塡充(其電泳組成物包括於淸晰無色 或彩色介電溶劑中的白色電荷粒子),且該格子的背景係爲 黑色的。於單色顯示器中,於每個圖素上之透明觀察層係 爲相同顏色(諸如黑色、紅色、綠色、藍色、黃色、青綠 色、洋紅色等等)。於多色顯示器中,透明觀察層可爲不同 顏色。 瓜本發明之微形杯陸列的膨備 一般來說,微形杯係藉由微壓花或光石印刷所製造, 如同公佈於2001年9月13日之WO1/67170以及於2001 年2月15日提申之美國序列案號〇9/784,972中所述。 皿⑻藉由微壓花製備微形杯隨列 公模的製備 公模可以任何適當的方法製備,諸如鑽石車削方法或 14 $紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --------------------訂---------線 (請先閲讀背面之注意事項再填寫本頁) 552485 A7 __— _B7 五、發明說明(ή ) 光阻方法,接著蝕刻或電鍍。公模的代表性實施例則示於 圖2。公模的主模板則可以任何適當的方法製造,例如像 是電鍍。使用電鍍,一玻璃基座以一種子金屬薄層(通常 爲3000埃)被濺鍍,諸如鉻英高鎳。其接著被塗佈以一光 阻層,並以輻射曝光,諸如紫外光(UV)。一遮罩被安置 於該紫外光與光阻層之間。該光阻的曝光區域變硬。未曝 光區域接著藉由以一適當的溶劑淸洗其而被移除。殘留的 硬化光阻被烘乾,並再次以一種子金屬薄層被濺鍍。該主 模準備就緒進行電鑄。一種用於電鑄的典型材料爲鎳鈷。 此外,該主模可由鎳製作,藉由如“ Continuous manufacturing of thin cover sheet optical media”,SPIE Proc· Vol. 1663, ΡΡ·324 ( 1992)中所說明的電鑄或無電鎳 沈積。該模具的底板厚度典型爲約50至400微米之間。該 主模亦可使用其他的微工程技術被製作,包含電子束寫入 、乾式蝕刻、化學蝕刻、雷射寫入或雷射干涉,如“ Replication techniques for micro-optics”,SPIE Proc. Vol. 3099, pp.76-82 ( 1997)中所說明。此外,該模具可使用塑 膠、陶瓷或金屬的光學車削製作。 如此製備的公模,典型具有大約1至500微米之間的 突起物,較佳是在大約2至100微米之間,更好是大約4 至50微米。公模可以是呈帶狀、滾筒狀或片狀。對於連續 製造而言,偏好帶狀或滾筒狀的模子。在塗佈紫外光可固 化的樹脂組成物以前,模子可以脫模劑加以處理,以幫助 脫模過程。 15 ------------ΦΜ (請先閱讀背面之注意事項再填寫本頁) 訂---- 表紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 552485 A7 ______Β7___ 五、發明說明(A) 如於2001年2月15日提出申請之美國序號 09/784,972中所揭示,微形杯可以在批次的過程中或是在 連續的滾輪對滾輪過程中形成。 於微壓花方法的第一步驟中,首先藉由適當的裝置, 將紫外線可固化樹脂塗佈在基材上(透明絕緣體爲較佳) ,諸如滾輪塗佈法、壓鑄模塗佈、槽孔塗佈、縫隙塗佈、 刮刀塗佈及其相似者。適合的透明絕緣體基材包括聚對苯 二甲酸乙酯、聚萘酸乙酯、聚環醯胺、聚醯亞胺、聚環烯 烴、聚楓、環氧及其組合物。所使用的輻射可固化材料係 爲熱塑性或熱固性前趨物,諸如多官能基的丙烯酸酯或甲 基丙烯酸酯、乙烯基醚、環氧化物及其相似者。最好是多 官能基的丙烯酸酯及其寡聚物。多官能基之環氧化物與多 官能基之丙烯酸酯的組合也是非常有用,可達到所要的物 理機械性質。紫外光可固化的樹脂在配送前可以先除氣, 並且可以選擇性地包含溶劑。溶劑(如果有的話)可輕易 地蒸發。 塗佈於基材上之輻射可固化材料下於壓力之下藉由公 模所壓花。如果公模是金屬的並且不透明,則塑膠基板典 型上對於用來固化樹脂的光化性輻射而言是透明的。相反 地,公模可以是透明的而塑膠基板對於光化性輻射而言是 不透明的。塑膠絕緣體透明的爲較佳,因爲其係爲典型的 觀察端。於此例中,該電極可爲不透明的。可選擇地,微 壓花可於包含電極的基材上進行。 在曝光於輻射後,該輻射可固化材料會硬化。該公模 16 木紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 Γ__ ___Β7___ 五、發明說明() 接著被移除曝光的微形杯即形成。 m(b)藉由光石印刷製備微形杯陣列 用於製備微形杯陣列的光石印刷方法顯示於圖5A和 5B中。 如同圖5A和5B中顯示,微形杯陣列(50)可藉由將 輻射可固化材料(51a)經由一遮罩(56)對紫外光(或可選 擇其他形式的輻射,電子束及其相似者)曝光,以形成與 投射出遮罩的影像相一致的壁面(51b)而製備,其中可固 化材料(51a)係藉由任何方法塗佈於一絕緣體基材上 (53)。 在圖5A的光罩(56)中,黑暗的方塊(54)代表對 所使用的輻射呈現不透明的區域,而該黑暗的方塊之間的 空間(55)則代表透明輻射區域。該紫外光穿經該開口區 域(55)而照射在該輻射可固化材料上(51a)。 如圖5B顯示,經曝光的區域(51b)將變硬,而未曝 光的區域(爲該遮罩(56)的不透明區域(54)所保護) 接著藉由適當的溶劑或顯影劑移除,而形成該微形杯(57 )。該溶劑或顯影劑由選自於通常用於溶解或分散輻射可 固化材料諸如丁酮、甲苯、丙酮、異丙酮或其類似者。 可選擇地,曝光可藉由將一光罩安置於絕緣體基材之 下完成。於此狀況中,該基材必須對於用來曝光之輻射係 爲透明的。 17 木紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -----------裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 552485 A7 __B7_ 五、發明說明(4 ) 根據上述的方法,該製備的微形杯開口可爲圓形、正 方形、長方形、六角形或任何其他形狀。開口之間的間隔 區域維持小一點爲較佳,以便獲得高的色彩飽和度與對比 ,並同時維持希冀的機械性質。總之,蜂巢狀開口較諸如 圓形開口爲較佳。 對於反射式電泳顯示器而言,各個微形杯的尺寸可在 約1〇2至約1X105微米平方範圍中,約1〇3至約1X104微 米平方爲較佳。該微形杯的深度爲約5至約200微米的範 圍中,約20至約1〇〇微米爲較佳。該開口對總面積的比例 爲約0.2至約0.95的範圍中,約0.5至約0.9爲較佳。開 口的距離通常係於約15至450微米範圍之間,較佳爲開口 的邊緣至邊緣約25至300微米範圍之間。 n(c)微形杯的密封 在微形杯以電泳流體塡充後即被密封。微形杯密封的 重要步驟可以多種方法完成。較佳的方法爲將紫外光可固 化組成分散於包含有帶電荷染料粒子散佈於彩色介電溶劑 中的電泳流體內。適合的紫外光可固化材料包括丙烯酸酯 、甲基丙烯酸酯、苯乙烯、α-甲基苯乙烯、丁二烯、異戊 二烯、allyacrylate、多價的丙烯酸酯或甲基丙烯酸酯、氰 基丙烯酸酯、多價的乙烯化物(包括乙烯基苯、乙烯基矽院 、乙烯基醚)、多價的環氧化物、多價的丙烯化物、寡聚物 、包含那些可交聯之官能基的聚合物以及類似者。該紫外 18 木紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 一 --------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 _B7 五、發明說明(、'飞) 光可固化組成與該介電溶劑爲不互溶的,且具有較該電泳 流體爲小的比重,亦即介電溶劑及染料粒子的結合物。此 二組成(紫外光可固化組成與該電泳流體)在線上混合器 中被完全地混合,並以諸如Myrad棒、凹板印刷術、刮刀 片、長縫塗佈或細縫塗佈等精確的塗佈機制而立即被塗佈 於該微形杯上。過量的流體將藉由掃桿刮刀或類似的裝置 而被移除。小量的弱溶劑或者諸如異丙醇或甲醇等溶劑可 被使用於淸洗該微形杯之分隔壁頂端表面上殘留電泳流體 。揮發性的有機溶劑可被使用於控制該電泳流體的黏滯性 與覆蓋性。經塡充的微形杯接著被烘乾,且該紫外光可固 化組成漂浮至該電泳流體的頂端。藉由在該浮至表面的紫 外光可固化層浮至頂端期間或之後,將其進行固化,該微 形杯可被密封。紫外光或諸如可見光、紅外線及電子束等 其他形式的輻射皆可被使用於將密封層固化並將該微形杯 密封。此外,若使用熱或濕氣固化組成的話,則可運用熱 或濕氣來將密封層固化並將該微形杯密封。 具有希冀密度且對於丙烯酸酯單體與寡聚體有溶解度 差別之較佳介電溶劑族群爲鹵化碳氫化物以及其衍生物。 介面活性劑可被使用以改良該電泳流體與該密封材料間之 界面的黏著性與潤濕性。介面活性劑包含有3M公司的fc 介面活性劑、來自DuPont的Zonyl氟化介面活性劑、氟化 丙烯酸酯、氟化甲基丙烯酸酯、氟取代長鏈醇類、全氟取 代的長鏈羧酸及其衍生物。 可選擇地,該電泳流體及該密封前趨物可依序被塗f布 19 木紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公董) --------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 ____B7 五、發明說明(β ) 於該微形杯中以預防其混合,若該密封前趨物至少部分地 與該介電溶劑相容的話。因此,該微形杯的密封可藉由覆 蓋一個密封材料之薄層保護膜(其係於該經塡充之微形杯 的表面上藉由輻射、熱、濕氣或界面反應而硬化)而被完 成。揮發性有機溶劑可被使用於調整該保護層的黏滯性與 厚度。當一揮發性溶劑被使用於該保護層時,偏好與該介 電溶劑不互溶,以降低介於密封層與電泳流體間的互相混 合程度。爲進一步降低互相混合的程度,其極爲希冀該保 護層的比重明顯地低於該電泳流體的比重。於共同繫屬案 於2001年6月4日申請之美國序列案號09/874,391中, 熱塑性彈性體已被揭示爲較佳的密封材料。 有用的熱塑性彈性體的例子包括ΑΒΑ、和(AB)n型的 雙成塊、三成塊和多成塊共聚物,其中A係爲苯乙烯、α-甲基苯乙烯、丙烯或原冰片烯;Β係爲丁二烯、異戊二烯 、乙烯、丙烯、丁烯、二甲基硅氧烷或硫化丙烯;Α與Β 無法在同一化學式中。該數字η,係> 1,較佳爲1_1〇。 特別地有用則係爲苯乙烯或α-甲基苯乙烯的雙成塊、三成 塊和多成塊共聚物,諸如SB(聚(苯乙烯-b-丁二烯))、SBS( 聚(本乙嫌-b-丁_^嫌-b-本乙嫌))、SIS(聚(苯乙嫌-b-異戊二 烯-b-苯乙烯))、SEBS(聚(苯乙烯-b-乙烯/丁烯-b_苯乙烯)) 聚(苯乙烯-b-二甲基硅氧烷-b-苯乙烯)、聚(α_甲基苯乙烯-1>異戊二烯)、聚(α-甲基苯乙烯-b-異戊二烯-b-oc-甲基苯乙 烯)、聚(α-甲基苯乙烯如硫化丙烯如仏甲基苯乙烯)、聚 (α-甲基苯乙烯-b-二甲基硅氧烷_b_a_甲基苯乙烯)。 20 (請先閱讀背面之注意事項再填寫本頁) ----- 訂---------率 木紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 552485 A7 _ B7 __ 五、發明說明(ή ) 可選擇地,介面聚合並接著進行紫外光固化被發現對 於該密封方法係極爲有益的。藉由界面聚合而形成一個薄 的阻障層於該界面,則該電泳層與保護層之間的互相混合 明顯地被抑制。該密封接著藉由一個後固化步驟(偏好藉 由紫外光輻射)完成。當所使用的色素至少部分地溶解於 該熱固性前趨物時,該二步驟的保護膜方法特別地有用。 皿⑻微形杯的覆著 經密封的微形杯接著以一包括圖案化的面內導體膜之 頂部層所覆蓋,其較佳爲黏著層。適合的黏著劑材料包括 丙烯酸和橡膠型的感壓黏著劑,紫外光可固化黏著劑包含 諸如多官能基的丙烯酸酯、環氧化物或乙烯醚,以及諸如 環氧、聚胺酯和氰基丙烯酯。 由ni(a)至m(d)章節中的方法製備而成格子,可以顛倒 的方式被使用,而於頂部具有透明的觀察層以及底部的面 內電極。 m(d)可潠擇的方法 可選擇地,於微壓花的過程當中,將紫外光可固化樹 脂以任何適當的方式(諸如塗佈、浸漬、澆鑄及其相似者) 分散於公模上。分散物可爲動態或靜止的。於塑膠基材上 之圖案化的面內導體膜,諸如聚對苯二甲酸乙酯、聚萘酸 21 未紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) —----------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) A7 552485 五、發明說明(/ ) 乙酯、聚環醯胺、聚醯亞胺、聚環烯烴、聚硼、環氧及其 組合物接著被被覆於紫外光可固化樹脂上。確保樹脂與塑 膠基材間的適當鍵結以及控制微形杯底板的厚度可將壓力 運用於其中。如果公模是金屬的並且不透明,則塑膠基板 典型上對於用來固化樹脂的光化性輻射而言是透明的。相 反地,公模可以是透明的而塑膠基板對於光化性輻射而言 是不透明的。 在曝光於輻射後,該輻射可固化材料會硬化。該公模 接著被移除曝光的微形杯即形成。該形成的微形杯陣列如 上所述被塡充且密封。該密封的微形杯接著以一透明絕緣 體層覆蓋,較佳係使用黏著劑。 雖然較爲不佳,光石印刷曝光亦可於具有面內電極之 基材上執行。紫外光可固化材料被塗佈於圖案化的導體膜 上。微形杯可藉由將輻射可固化材料經由一光罩曝光而形 成,如圖5所示以及如以上之章節m(b)所述。 因此微形杯接著如上所述被塡充介密封,以及以一透 明絕緣體層所覆蓋,較佳爲一黏著層。 於此章節所揭示之任何用於製備微形杯的方法中,包 含薄膜電晶體(TFT)陣列的基材可用來當作底部面內電極 ,而於此例中,TFT層亦提供了有效的驅動機制。 IV懸浮物的製備 塡充於微型杯中的懸浮物包括具有帶電荷染料粒子分 22 表紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ---------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 ___B7 _ 五、發明說明(^) 散於其中的介電溶劑,以及受到電場影響而遷移的粒子。 該懸浮物可選擇性地包含添加的著色劑,其可以在或可以 不在電場中遷移。該分散物可根據本技藝所熟知的方法製 備,諸如美國專利第6,017,584號、第5,914,806號、第 5,573,71 1 號、第 5,403,518 號、第 5,380,362 號、第 4,680,103 號、第 4,285,801 號、第 4,093,534 號、第 4,071,430 號、第 3,668,106 號,以及敘述如 IEEE Trans. Electron Device,ED-24,827 (1977),W&J.Appl.Phys. 49(9),4820 ( 1978) ° 該懸浮流體介質爲較佳具有低黏滯性且介電常數爲約 2至約30 (對於高粒子移動率而言,約2至約15爲較佳) 的介電溶劑。適當的介電溶劑的實例包含有諸如十氫萘 (DECALIN)、5_亞乙基-2-原冰片烯、月旨肪油、石蠟油等碳 氫化合物;諸如甲苯、二甲苯、苯基二甲苯乙烷、十二苯 和烷基萘等之芳香族碳氫化合物;諸如二氯苯並三氟、 3,4,5-三氯苯並三氟、氯五氟基苯、二氯壬烯、五氯基苯等 之鹵化溶劑;諸如來自明尼蘇達州St. Paul之3M公司的 全氟化十氫萘、全氟甲苯、全氟二甲苯、FC-43、FC-70和 FC-5060之全氟溶劑;諸如來自奧勒崗州波特蘭之TCI America的聚全氟環氧丙烷之低分子量之含氟的聚合物; 諸如來自紐澤西州River Edge之Halocarbon Product公司 的Halocarbon Oils之聚氯三氟乙烯;諸如來自Ausimont 的Galden、HT200和Fluorolink或是來自德拉瓦州DuPont 的Krytox Oils和Greases K-Fluid Series之全氟化聚院基醚 23 --------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 衣紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 552485 A7 __B7__ 五、發明說明(/) 。於一較佳的具體實施例中,使用聚氯三氟乙烯做爲介電 溶劑。於另一較佳的具體實施例中,使用聚全氟環氧丙烷 做爲介電溶劑。 非遷移的流體著色劑可由染料或色素所形成。非離子 偶氮與憩醌染料特別地有用。有用的染料包含(但非僅限 於此):Pylam Products 公司(Arizona)的 Oil Red EGN, Sudan Red, Sudan Blue, Oil Blue, Macrolex Blue, Solvent Blue 35,Pylam Spirit Balck 與 Fast Spirit Black,Aldrich 公司的 Sudan Black B,BASF 公司的 Thermoplastic Black X-7〇,以及Aldrich公司的憩醌藍,憩醌黃114,憩醌紅 111,I35,惹醒綠28以及Susan Black 8。2;當使用全氟化 溶劑時,氟化的染料係特別有用。在染料的狀況中,用來 產生非遷移的流體著色劑之染料粒子亦可分散於該介電溶 劑中,而這些彩色粒子放電爲較佳。若該用來產生非遷移 的流體著色劑之染料粒子被充電,則其偏好帶有與該帶電 荷的遷移染料粒子相反的電荷。若兩種染料粒子帶有相同 的電荷,則其應具有不同的電荷密度或不同的電泳移動率 。用來產生非遷移的流體著色劑之染料或色素必須爲化學 穩定,並與懸浮物中的其他組成相容。 該電荷的遷移染料粒子最好爲白色的,且該第一色彩 染料粒子可爲有機或無機染料,諸如二氧化鈦。 若使用彩色遷移顏料粒子,則可形成以來自Sim Chemical的狀花青藍、狀花青綠、二芳香醯苯胺黃、二芳 香醯苯AAOT黃、以及奎吖啶(quinacridone)、偶氮、若丹 24 ―1 — - ______ - - - -一 - 1 ' ' —^― I —— 表紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 552485 A7 -----B7___ 五、發明說明(—) 明(rhodamine)、二蔡嵌苯(peryiene)染料系歹丨J、Kanto Chemical 之 Hansa yellow G particles 以及 Fisher 之 Carbon Lamblack。次微米的微粒尺寸爲較佳。這些粒子應具有可 接受的光學特性,應不爲該介電溶劑所膨脹或軟化,以及 應爲化學穩定。在正常的作業條件下,所產生的懸浮物亦 必須穩定且能抗沈澱、乳化或凝結。 該遷移染料粒子可具有母電荷,或可使用電荷控制劑 直接產生帶電,或可在懸浮於介電溶劑中時獲得電荷。適 當的電荷控制劑爲本技藝所熟知;其可爲聚合或非聚合性 質,且亦可爲離子化或非離子化,包含離子介面活化劑, 諸如氣溶膠OT、十二苯磺酸鈉、金屬肥皂、聚丁烯琥珀醯 亞胺、順丁烯二酸酐共聚物、乙烯吡咯烷酮共聚物(諸如來 自 International Special Products 之 Ganex)、(甲基)丙稀酸 共聚物、N,N-二甲基胺基乙基(甲基)丙烯酸乙酯共聚物。 氟化介面活性劑在全氟化碳中作爲溶劑電荷控制劑特別有 用。這些包括了 FC氟化介面活性劑,諸如來自3M公司的 FC-170C、FC_171、FC-176、FC430、FC431 和 FC-740 以 及Zonyl氟代表面活性劑諸如來自Dupont的FSA、FSE、 FSN、FSN-100、FSO、FSO-lOO、FSD 和 UR。 適當的帶電染料分散可藉由任何熟知的方法製造,包 含硏磨、粉碎、磨粉、微流體化(microfluidizing)以及超音 波技術。例如,細微粉末形式的染料粒子被添加至該懸浮 溶劑,而所產生的混合物被球磨或磨粉數小時,而將高度 凝結的乾燥染料粉末粉碎成最初的粒子。雖然較不佳,但 25 --------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 表紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 552485 A7 ____B7__ 五、發明說明(A) 是在該球磨製程期間,用於生產非遷移流體著色劑的色素 或染料可被添加至該懸浮物。 該染料粒子的沈澱或乳化可藉由以適當的聚合物將該 粒子微容器化而被消除,使得其比重與該介電溶劑的比重 一致。該染料粒子的微容器化可以化學或物理的方式完成 。典型的微容器方法包含介面聚合、原位聚合、相分離、 凝聚、靜電塗佈、噴霧乾燥、流化床塗佈以及溶劑蒸發。 就染料懸浮物而言,有多種的可能性。對於減色系統 而言,帶電荷的二氧化鈦微粒可懸浮於藍綠色、黃色或紫 紅色的介電溶劑中。該藍綠色、黃色或紫紅色可使用色素 或染料而產生。對於加色系統而言,帶電荷的二氧化鈦微 粒可懸浮於紅色、綠色或藍色的介電溶劑中,其中該紅色 、綠色或藍色亦可使用色素或染料而產生。該紅色、綠色 或藍色的系統爲大多數的應用所偏好。 雖然本發明已經參考其特定的具體實施例而加以描述 ,但是熟於此技藝者應該了解:在不偏離本發明的真實精 神和範圍之下,可以做多種的改變,以及多種的等效物可 以取代。此外,可以做許多修改來適合特殊的情況、材料 、組成、過程、過程的一或多個步驟,以達到本發明的目 的、精神和範圍。所有此種修改乃欲落於所附的申請專利 範圍當中。 因此,我們希望能就說明書以及所附帶的申請專利範 圍的範疇而定義本發明有如先前技藝之允許般的廣泛。 26 -------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)552485 A7 ____ Β7 ________ 5. Description of the invention (丨) Background of the invention (please read the precautions on the back before filling out this page) The electrophoretic display (EPD) is based on the phenomenon of electrophoresis of charged dye particles suspended in a color dielectric solvent. Non-emissive device. This universal display was first introduced in 1969. A display typically includes a pair of opposing, spaced apart, plate-like electrodes. At least one of the electrodes is typically transparent from the viewing end. For this type of passive electrophoretic display, the electrodes on the top (viewing end) and the rows and columns on the bottom are required to drive the first display. In contrast, thin-film transistor arrays on the bottom plate and one common and unpatterned transparent conductor plate on the top viewing substrate are required for active-type electrophoretic displays. The electrophoretic fluid is composed of a colored dielectric solvent and dispersed charged dye particles, wherein the electrophoretic fluid is sealed between the two electrode plates. When a voltage difference is applied between the two electrodes, the dye particles migrate by gravity to a polar plate opposite to the dye particles. Therefore, the color displayed on the transparent plate (determined by selectively charging the plate) can be the color of the solvent or the color of the dye particles. Reversing the polarity of the plate causes the particles to migrate in the opposite direction, thereby also inverting the color. Due to the intermediate pigment density of the transparent plate, by controlling the charge of the electrode plate to pass a range of voltage, the intermediate color density (or gray shade) can be obtained. In this type of reflective electrophoretic display, no backlight is required. ° Transmissive electrophoretic display disclosed in US Pat. No. 6,184,856, which uses a backlight, a color filter, and a transparent electrophoretic display. Substrate 3 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 552485 A7 ______ B7 _—_ 5. Description of the invention (y) (Please read the precautions on the back before filling this page). The electrophoretic grid system is used as a light valve. In this colleted state, the particle system is placed to minimize the horizontal area coverage of the grid and to allow its backlight to pass through the grid. In a distributed state, the particles are arranged to cover horizontal areas of pixels, and to disperse or absorb the backlight. However, the backlight and color filters used in this device consume a lot of power, and are undesired for handheld devices such as PDAs (personal digital assistants) and e-books. In addition to the normal upper / lower electrode switching mode of the electrophoretic display, a reflective " in-plane " switching electrophoretic display is also disclosed in E.  Kishi et al. &Quot; 5. 1: development of In-Plane EPD ", Canon Research Center, SID 00 Digest, page 29 · 31, (2000). However, only monochromatic in-plane switching electrophoretic displays are disclosed in these references. To prepare a multi-color electrophoretic display, it is not necessary to use a color filter, or to isolate the color pixels, or the grid structure for color separation and reproduction. Color filters are typically expensive and not power efficient. On the other hand, in order to switch color separation and reproduction in the in-plane electrophoretic display, the pixel or grid isolation is not taught before. Electrophoretic displays with different pixel or grid structures have been described in prior art, for example, separated electrophoretic displays (M. Hopper and 乂 Novotny, IEEE Trans.  Electr.  Dev. , Vol.  ED 26, No.  8, pp.  1148-1152 (1979)) and micro-containerized electrophoretic displays (patent case numbers US 5,961,804 and US 5,930,026), and each of these 4 paper standards applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 552485 A7 _—__ B7___ 5. Explanation of the invention (>) Each has the following problems. In a partition-type electrophoretic display, there are several partitions between the two electrodes to cut its space into smaller grids, in order to prevent the movement of undesired particles, such as precipitation. However, problems are encountered in the formation of partitions, the process of filling the display with a fluid, sealing the fluid in the display, and maintaining different suspended colorants apart from each other. The micro-containerized electrophoretic display has a completely two-dimensional arrangement of micro-containers, wherein each micro-container has an electrophoretic composition composed of a dielectric fluid and a charged dye particle suspension (visually contrasted with a dielectric solvent) . The microcontainer is typically prepared in an aqueous solution, and its average particle size is relatively large (50-150 microns) in order to achieve a useful contrast ratio. Large particle sizes result in poorer scratch resistance and slower response times to a particular voltage, due to the large gap between two opposing electrodes that requires a large container. Furthermore, the hydrophilic shell of a microcontainer prepared in an aqueous solution causes sensitivity to high humidity and temperature conditions. If the microcontainer is embedded in a large number of polymer matrices to eliminate these disadvantages, the use of the matrix can result in slower reaction times and / or lower contrast ratios. To improve its switching rate, charge control agents are often required in such electrophoretic displays. However, this microcontainerization method in an aqueous solution places restrictions on the types of charge control agents that can be used. Other disadvantages related to micro-container systems include poor resolution and poor addressability of color applications. Recently, the improved electrophoretic display technology was disclosed in the common family case. The paper size of the paper is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm)-.  -------- Order --------- line (please read the precautions on the back before filling this page) 552485 A7 __B7_ V. Description of the invention (bucket), published on September 13, 2001 WO1 / 67170 dated, U.S. Serial No. 09 / 759,212 filed on January 11, 2001, U.S. Serial No. 09 / 606,654 filed on June 28, 2000, and February 15, 2001 U.S. Serial No. 09 / 784,972, which is filed, is hereby incorporated by reference. The improved electrophoretic display includes a well-defined grid of isolated shape, size and aspect ratio, and the grid is filled with charged dye particles dispersed in a solvent. The electrophoretic fluid is isolated and sealed in each microcup. In fact, the microcup structure can make the electrophoretic display manufacturing a flexible and efficient continuous roller-to-roller manufacturing process. The display can be prepared on a continuous mesh conductor film such as ITO / PET, for example, (1) coating a radiation curable composition on an ITO / PET film '(2) manufactured by micro-embossing or photo-etching methods Micro-shaped cup structure, (3) filling the cup with electrophoretic liquid to seal the micro-cup array '(4) layering the sealed micro-cup with another conductive film, and (5) The display is cut to a desired size or format for assembly. One advantage of this electrophoretic display design is that the microcup wall is actually an embedded spacer that keeps the top and bottom substrates at a fixed distance. The mechanical and structural integrity of the microcup display is significantly superior to any display of the prior art, including those made by using spacer particles. In addition, displays that involve micro-cups have desirable mechanical properties, including reliable display performance when the display is bent, rolled, or subjected to compressive pressure from applications such as touch screens. The use of the micro-shaped cup technology also eliminates the need for edge sealing adhesives. The 6's scale is applicable for Zhongguanjia specifications (X 297 mm) ---- > --------------- ----- Order --------- line (please read the precautions on the back before filling out this page) 552485 A7 ______B7__ 5. Description of the invention ($) Yes, the edge sealing adhesive will limit and advance Define display panels and limit display fluids in predefined areas. If the display fluid prepared in the conventional display by the edge sealing adhesive method is cut in any way or drilled through the display to form a hole, the fluid will completely leak. The damaged display will no longer have any functionality. In contrast, the display fluid in the display prepared by the microcup technology is sealed and isolated in each grid. The microcup display can be cut to almost any size without the risk of loss of display fluid in the active area and damage to its display performance. In other words, the microcup structure can perform a f0rmat flexible display manufacturing method, in which the method produces a continuous output of the display from a large sheet format, which can be cut into any desired format. The isolated microcup or lattice structure is particularly important when the lattice is filled with fluids with different specific properties and switching rates, such as dyes. Without the microcup structure, it would be very difficult to prevent fluids from mixing in adjacent areas or being disturbed by crosstalk during operation. Therefore, a multi-color display can be manufactured by using a micro-shaped cup filled with dyes of different colors, such as red, green, or blue, and forming a portion adjacent to the micro pixel array. However, it has a major drawback with this traditional upper / lower electrode switching mode. The white light reflected from the "off" color pixels will greatly reduce the color saturation of the "on" colors. Details on this issue will be described in the "Details" section below. This defect can be covered by a light shutter such as a dispersed polymer liquid crystal. The paper size is applicable to Chinese National Standard (CNS) A4 specifications (210 X 297 mm) -------- Order --------- line (please read the precautions on the back before filling this page) 552485 A7 _—B7__ V. Description of the invention (b) Device Remedy to switch each pixel to black, however, the high cost of the covered device and the complicated driving circuit design are the disadvantages of this method. Therefore, the electrophoretic display still needs to be provided in an effective manner. Improved properties of the preparation. SUMMARY OF THE INVENTION The present invention relates to an improved electrophoretic display including an in-plane switching mode for image formation. More particularly, the electrophoretic display of the present invention includes an isolated grid formed by a micro-shaped cup of clearly defined size, shape and aspect ratio, and the particles in the grid are moved by the control of the in-plane switching mode. The electrophoretic display of the present invention can be produced by a continuous roller-to-roller manufacturing method, and the resulting display provides improved color saturation and contrast ratio. A brief description of the icons It should be noted that all icons are shown as images, not scales. Fig. 1 shows a general defect of a conventional electrophoretic display having only an up / down switching mode. Fig. 2 shows a typical electrophoretic grid of the present invention and the general positions of in-plane switching electrodes. Figures 3A and 3B show a monochrome monitor of the present invention. 8 Wood paper scale is applicable to China National Standard (CNS) A4 specification (210 X 297 male shame) -------- Order --------- line (Please read the precautions on the back before filling in this (Page) 552485 A7 ______B7___ V. Description of the invention (1) Figures 4A-4D show different multi-color forms of the present invention. Figures 5A-5B show the manufacture of a microcup containing a photolithographic printing exposure through a reticle. DETAILED DESCRIPTION OF THE INVENTION Unless otherwise defined in this patent specification, all technical terms used herein are based on customary definitions commonly used and understood by those skilled in the art. The terms "lattice", "micro-shaped cup", "clearly defined", "aspect ratio" and "image exposure" are as defined in the common genus case indicated above. The term " isolation " means an electrophoretic grid that is individually sealed with a sealing layer so that the electrophoretic fluid in one grid cannot be transferred to other grids. I. Disadvantages of an electrophoretic display with a traditional up-down switching mode The electrophoretic display of FIG. 1 has a traditional up / down electrode switching mode. The grid is filled with suspended matter, and the white charged particles in the suspension are dispersed in colored (red, green, and blue) dielectric solvents. The three grids in Figure 1 are all charged with the voltage difference between the upper and lower electrodes (not shown). In the green and blue grids, white particles migrate to the transparent observation electrode on the top. Therefore, the color of the particles ( (Ie white) will apply the Chinese National Standard (CNS) A4 specification (210 X 297 mm) through the two 9-paper sizes --------- Line (Please read the precautions on the back before filling out this page) 552485 A7 ____B7_ V. Description of the invention (f) The transparent conductor film in the grid reflects to the observer. In the red grid The white grid migrates to the bottom of the grid, and the color of the solvent (that is, red) can be seen through the top transparent conductive film. In Figure 1, the white light is dramatically reflected from the green and blue grids, and Reduces the saturation and contrast ratio of red. In addition to the problems mentioned above, in very low-polarity dielectric solvents, the low solubility and poor colorfastness of dyes, such as perfluoro and hydrocarbon solvents, The high contrast ratio of the switching mode is one Challenges. Π The electrophoretic display of the present invention Figure 2 shows a typical electrophoretic grid of the present invention. The grid (20) includes a top layer (21) and a bottom layer (22). The bottom layer has an in-plane switching electrode (23) ) And (24) and the background layer (25). There is a common electrode (29) between the two in-plane electrodes separated by the groove (30). Alternatively, the bottom layer may have only one in-plane switching electrode, and An ordinary electrode with grooves in between. Another option is the background layer (25) on top of the electrode in the bottom layer. The in-plane electrode layer can also be used as a background layer, and in this example the The in-plane electrode layer can be white or colored. Typically, the grid of Figure 2 is filled with a dispersion of colored particles (31) in a clear dielectric solvent (32). The particles can be white, black or Color (that is, red, green, or blue). The background layer (25) can be colorless, white, black, or color. The filled grid is immediately sealed with a sealing layer (26). CNS) A4 specification (210 X 297 mm) -------------- I --- -Order --------- (Please read the precautions on the back before filling this page) 552485 A7 ------ B7___ V. Description of the invention (1) Sealed. Then there is a top with a transparent insulator layer Layer, preferably and an adhesive layer covering the sealed grid. The micro-cup array is prepared in an upside-down manner. In this regard, the micro-cup array is transparent on the top by micro-embossing or light stone printing. Marginal body layer substrate, as disclosed in WO1 / 67170 published on September 13, 2001, US Serial No. 09 / 759,212 filed on January 11, 2001, and June 2000 U.S. Serial No. 09 / 606,654 filed on 28th and U.S. Serial No. 09 / 784,972 filed on February 15, 2001 are incorporated herein by reference. The micro-cup is filled with an electrophoretic fluid and then sealed with a sealing layer. A bottom layer comprising a patterned electrode and an adhesive layer is then overlaid on the sealed microcup. The color background can be added by coating, printing, covering or covering the bottom electrode substrate with a color layer. One of the advantages of the in-plane switching mode is the possibility of manufacturing micro-shaped cups on a clean plastic insulator substrate. This eliminates the risk of breaking fragile conductor electrodes such as ITO / PET during micro-embossing and other web manipulation steps. The patterned in-plane conductor film is only used in the final step of filling and sealing the micro-shaped cup when the display panel is completed. (1) Reflective monochrome display In the grid of Fig. 3A, white particles are dispersed in a clear, colorless dielectric solvent. All the grid backgrounds are the same color (black, stomach i, cyan, red, magenta, etc.). When there is a voltage difference between the ordinary electrode (not shown) and the two in-plane switching electrodes (not shown), the white grain 11 I paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 meals) " (Please read the precautions on the back before filling out this page) —— — — — — II · 11111111 552485 A7 — _____B7 _ V. Description of the invention (β) The child migrates to the side of the grid, which causes the background color to be transparent through the top The opening was seen. When there is no voltage difference between the ordinary electrode and the two in-plane switching electrodes, the white particles are distributed in the dielectric solvent, so the color of the particles (that is, white) can be seen through the top transparent insulator layer. Alternatively, as shown in FIG. 3B, particles of the same color are dispersed in the clear and colorless dielectric solvent of all the lattices, and the background of the lattices is white. When there is a voltage difference between the ordinary electrode (not shown) and the two in-plane switching electrodes (not shown), the colored particles migrate to the side of the grid, causing the background color (that is, white) to be passed through the top transparent opening see. When there is no voltage difference between the normal electrode and the two in-plane switching electrodes, the colored particles are distributed in the dielectric solvent, so the color (and white) of the particles can be seen through the top transparent insulator layer. (2) Reflective multicolor display Figures 4A-4D show a multicolor display of the present invention. In FIG. 4A, the grid is filled with a colorless dielectric solvent having white charged particles dispersed therein, and has a different background color (that is, red, green, or blue). When there is a voltage difference between the in-plane electrodes (not shown), the white particles migrate to any side of the grid, causing the background color (that is, red, green, or blue) to be seen through the top transparent opening. When there is no voltage difference between the in-plane electrodes, the particles are distributed in the dielectric solvent, resulting in white (ie, the color of the particles) visible through the transparent opening on the top. 12 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) Order ---- 552485 A7 ___ B7 ___ 5. Description of the invention (〇) (Please read the notes on the back before filling this page) In Figure 4B, the grid is filled with a colorless dielectric solvent with black particles dispersed in it, and has a different background color (that is, red, green, or blue). When there is a voltage difference between the in-plane electrodes (not shown), the particles migrate to any side of the grid, causing the background color (that is, red, green, or blue) to be seen through the top transparent opening. When there is no voltage difference between the in-plane electrodes, the particles are distributed in the dielectric solvent, so that the black (that is, the color of the particles) can be seen through the transparent opening on the top. In FIG. 4C, the grid is filled with a colorless dielectric solvent in which particles having different colors (i.e., red, green, or blue) are dispersed. The plaid background is black. When there is a voltage difference between the electrodes in the plane (not shown), the colored charged particles migrate to any side of the grid, and the background color (ie, black) can be seen through the transparent opening on the top. When there is no voltage difference between the in-plane electrodes, the colored particles are distributed in the dielectric solvent, resulting in the color of the particles being visible through the transparent opening on the top (that is, red, green, or blue). In this design, the black state is high quality. In FIG. 4D, the grid is filled with a colorless dielectric solvent in which particles of different colors (that is, red, green, or blue) are dispersed. The plaid background is white. When there is a voltage difference between the in-plane electrodes (not shown), the particles migrate to any side of the grid, and the background color (that is, white) can be seen through the transparent opening on the top, resulting in a high-quality white state. When there is no voltage difference between the in-plane electrodes, the particles are distributed in the dielectric solvent, resulting in the color of the particles (that is, red, green, or blue) visible through the transparent opening on the top. As shown in Figures 4A-4D, the in-plane switching mode enables particles to apply the Chinese National Standard (CNS) A4 specification (210 X 297 mm) at a flat 13-paper scale. 552485 KI ____ Β7 ____ 5. Description of the invention (丨 > ) Direction (left / right), and different color combinations of particles, background, and fluid (each of which is white, black, red, green, or blue) can be used to produce different multicolor electrophoretic displays. In addition, the particles in the dielectric solvent may be mixed colors, and the cells may have the same background color. In the optional reflective display of the present invention, the transparent viewing layer on the top of the display may be colored or a color filter may be added. In this case, the grid is filled with an electrophoretic composition (the electrophoretic composition includes white charged particles in a clear, colorless or colored dielectric solvent), and the background of the grid is black. In a monochrome display, the transparent viewing layer on each pixel is the same color (such as black, red, green, blue, yellow, cyan, magenta, etc.). In a multi-color display, the transparent viewing layers can be different colors. Expansion of the micro-shaped cups of the present invention. Generally speaking, micro-shaped cups are manufactured by micro-embossing or light stone printing, as disclosed in WO1 / 67170 published on September 13, 2001 and February 15, 2001. Japanese Serial No. 09 / 784,972. The dish is prepared by micro-embossing. The preparation of the male cup follow-up mold can be prepared by any suitable method, such as diamond turning method or 14 $ paper size. Applicable to China National Standard (CNS) A4 size (210 X 297 mm). ) -------------------- Order --------- Line (Please read the notes on the back before filling this page) 552485 A7 __— _B7 5. Description of the invention (price) Photoresist method, followed by etching or plating. A representative embodiment of the male model is shown in FIG. 2. The master master template can be made by any suitable method, such as electroplating. Using electroplating, a glass base is sputtered with a thin layer of a sub-metal (typically 3000 Angstroms), such as chrome-Inconel. It is then coated with a photoresist layer and exposed to radiation, such as ultraviolet (UV) light. A mask is placed between the ultraviolet light and the photoresist layer. The exposed area of the photoresist becomes hard. Unexposed areas are then removed by rinsing them with a suitable solvent. The remaining hardened photoresist is dried and sputtered again with a thin layer of sub-metal. The master is ready for electroforming. A typical material for electroforming is nickel-cobalt. In addition, the master mold can be made of nickel. For example, "Continuous manufacturing of thin cover sheet optical media", SPIE Proc. Vol.  Electroformed or electroless nickel deposition as described in 1663, PP.324 (1992). The bottom plate thickness of the mold is typically between about 50 and 400 microns. The master mold can also be made using other micro-engineering techniques, including electron beam writing, dry etching, chemical etching, laser writing, or laser interference, such as "Replication techniques for micro-optics", SPIE Proc.  Vol.  3099, pp. 76-82 (1997). In addition, the mold can be made using optical turning of plastic, ceramic or metal. The male molds thus prepared typically have protrusions between about 1 and 500 microns, preferably between about 2 and 100 microns, and more preferably between about 4 and 50 microns. The male mold can be in the shape of a belt, a roller or a sheet. For continuous manufacturing, belt or roll molds are preferred. Before coating the ultraviolet curable resin composition, the mold may be treated with a release agent to assist the demolding process. 15 ------------ ΦΜ (Please read the notes on the back before filling in this page) Order ---- The paper size of the table applies to China National Standard (CNS) A4 (210 X 297 mm) ) 552485 A7 ______ Β7 ___ 5. Description of the Invention (A) As disclosed in US Serial No. 09 / 784,972, which was filed on February 15, 2001, micro-cups can be used in batch processes or in continuous roller-to-roller processes. Middle formation. In the first step of the micro-embossing method, first, a UV curable resin is coated on a substrate (transparent insulator is preferred) by a suitable device, such as a roller coating method, a die casting mold coating, and a slot. Coating, gap coating, doctor blade coating and the like. Suitable transparent insulator substrates include polyethylene terephthalate, polyethylene naphthalate, polycyclopentamine, polyimide, polycycloolefin, polymaple, epoxy, and combinations thereof. The radiation curable materials used are thermoplastic or thermosetting precursors, such as polyfunctional acrylates or methacrylates, vinyl ethers, epoxides and the like. Polyfunctional acrylates and their oligomers are preferred. Combinations of polyfunctional epoxides and polyfunctional acrylates are also very useful to achieve the desired physical and mechanical properties. UV-curable resins can be degassed prior to distribution and can optionally contain solvents. Solvents, if any, can easily evaporate. The radiation-curable material coated on the substrate is embossed under pressure by a male mold under pressure. If the male mold is metallic and opaque, the plastic substrate is typically transparent to actinic radiation used to cure the resin. Conversely, the male mold can be transparent and the plastic substrate is opaque to actinic radiation. Plastic insulators are preferred because they are typical viewing ends. In this example, the electrode may be opaque. Alternatively, micro-embossing may be performed on a substrate including an electrode. After exposure to radiation, the radiation-curable material will harden. The size of this male model 16 wood paper is applicable to China National Standard (CNS) A4 (210 X 297 mm) -------------------- Order ------ --- Line (please read the precautions on the back before filling this page) 552485 A7 Γ__ ___ Β7 ___ 5. Description of the invention () Then the exposed micro-shaped cup is formed. m (b) Preparation of micro-shaped cup array by light stone printing The light stone printing method for preparing the micro-shaped cup array is shown in Figs. 5A and 5B. As shown in FIGS. 5A and 5B, the micro-cup array (50) can be used to pass ultraviolet radiation curable material (51a) through a mask (56) to ultraviolet light (or can choose other forms of radiation, electron beam and similar). Or) is prepared by exposing to form a wall surface (51b) consistent with the image projected by the mask, wherein the curable material (51a) is coated on an insulator substrate (53) by any method. In the mask (56) of Fig. 5A, dark squares (54) represent areas that are opaque to the radiation used, and spaces (55) between the dark squares represent transparent radiation areas. The ultraviolet light passes through the open area (55) and is irradiated on the radiation curable material (51a). As shown in FIG. 5B, the exposed area (51b) will harden, and the unexposed area (protected by the opaque area (54) of the mask (56)) is then removed by a suitable solvent or developer. The micro-shaped cup (57) is formed. The solvent or developer is selected from the group usually used for dissolving or dispersing radiation curable materials such as methyl ethyl ketone, toluene, acetone, isoacetone or the like. Alternatively, exposure can be accomplished by placing a photomask under the insulator substrate. In this case, the substrate must be transparent to the radiation used for exposure. 17 Wood paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ----------- installation -------- order --------- (Please read the precautions on the back before filling this page) 552485 A7 __B7_ V. Description of the invention (4) According to the above method, the opening of the prepared micro-shaped cup can be round, square, rectangular, hexagonal or any other shape . It is better to keep the space between the openings smaller in order to obtain high color saturation and contrast while maintaining the desired mechanical properties. In short, a honeycomb-like opening is better than a circular opening, for example. For reflective electrophoretic displays, the size of each micro-shaped cup may be in the range of about 102 to about 1 × 105 micrometers square, and preferably about 103 to about 1 × 104 micrometers square. The depth of the micro-shaped cup is in the range of about 5 to about 200 microns, preferably about 20 to about 100 microns. The ratio of the opening to the total area is about 0. 2 to about 0. In the range of 95, about 0. 5 to about 0. 9 is better. The distance between the openings is usually in the range of about 15 to 450 microns, and preferably in the range of about 25 to 300 microns from the edge of the opening. n (c) Sealing of the micro cup The micro cup is sealed after it is filled with electrophoretic fluid. The important steps of sealing a microcup can be accomplished in a number of ways. A preferred method is to disperse the ultraviolet curable composition in an electrophoretic fluid containing charged dye particles dispersed in a color dielectric solvent. Suitable UV-curable materials include acrylates, methacrylates, styrene, α-methylstyrene, butadiene, isoprene, allyacrylate, polyvalent acrylates or methacrylates, cyano Acrylates, polyvalent vinyl compounds (including vinyl benzene, vinyl silicon, vinyl ether), polyvalent epoxides, polyvalent acrylates, oligomers, those containing functional groups that can be crosslinked Polymers and the like. The UV 18 wood paper standard is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love). --- line (please read the precautions on the back before filling this page) 552485 A7 _B7 V. Description of the invention (, 'Fly') The photo-curable composition is incompatible with the dielectric solvent, and has a higher solubility than the electrophoretic fluid. Small specific gravity, that is, a combination of a dielectric solvent and dye particles. The two components (the ultraviolet curable component and the electrophoretic fluid) are completely mixed in an on-line mixer, and are precisely mixed with an accurate The coating mechanism was immediately applied to the microcup. Excess fluid will be removed by a wiper blade or similar device. A small amount of a weak solvent or a solvent such as isopropyl alcohol or methanol can be used to rinse the electrophoretic fluid on the top surface of the partition wall of the micro cup. Volatile organic solvents can be used to control the viscosity and coverage of the electrophoretic fluid. The filled micro-shaped cup is then dried, and the UV-curable composition floats to the top of the electrophoretic fluid. The microcup can be sealed by curing the ultraviolet light curable layer that floats to the surface during or after it floats to the top. Ultraviolet light or other forms of radiation such as visible light, infrared and electron beams can be used to cure the sealing layer and seal the microcup. In addition, if a heat or moisture curing composition is used, heat or moisture can be used to cure the sealing layer and seal the micro-cup. The preferred dielectric solvent group having a desired density and having a difference in solubility between the acrylate monomer and the oligomer are halogenated hydrocarbons and derivatives thereof. A surfactant can be used to improve the adhesion and wettability of the interface between the electrophoretic fluid and the sealing material. The surface active agent includes 3M's fc surface active agent, Zonyl fluorinated surface active agent from DuPont, fluorinated acrylate, fluorinated methacrylate, fluorine-substituted long-chain alcohols, and perfluoro-substituted long-chain carboxylic acid. And its derivatives. Alternatively, the electrophoretic fluid and the sealed precursor can be sequentially coated with f cloth 19 wood paper standard applicable to China National Standard (CNS) A4 specifications (210 X 297 public directors) ---------- ---------- Order --------- line (please read the precautions on the back before filling this page) 552485 A7 ____B7 V. Description of the invention (β) in the micro-shaped cup To prevent mixing, the sealing precursor is at least partially compatible with the dielectric solvent. Therefore, the seal of the micro-cup can be covered by a thin layer of protective film (which is hardened by radiation, heat, moisture or interfacial reaction on the surface of the filled micro-cup). Was completed. Volatile organic solvents can be used to adjust the viscosity and thickness of the protective layer. When a volatile solvent is used in the protective layer, it is preferred not to be miscible with the dielectric solvent to reduce the degree of intermixing between the sealing layer and the electrophoretic fluid. In order to further reduce the degree of mixing with each other, it is extremely hoped that the specific gravity of the protective layer is significantly lower than that of the electrophoretic fluid. In Common System Case No. 09 / 874,391, filed on June 4, 2001, thermoplastic elastomers have been disclosed as preferred sealing materials. Examples of useful thermoplastic elastomers include ABA, and (AB) n-type biblock, triblock, and multiblock copolymers, where the A series is styrene, α-methylstyrene, propylene, or orbornene; B is butadiene, isoprene, ethylene, propylene, butene, dimethylsiloxane, or sulfide propylene; A and B cannot be in the same chemical formula. The number η is > 1, preferably 1-10. Particularly useful are double-block, triple-block and multi-block copolymers of styrene or α-methylstyrene, such as SB (poly (styrene-b-butadiene)), SBS (poly (benzyl Ethyl-b-butyl_ ^ x-b-benzyl)), SIS (poly (styrene-x-b-isoprene-b-styrene)), SEBS (poly (styrene-b-ethylene) / Butene-b_styrene)) poly (styrene-b-dimethylsiloxane-b-styrene), poly (α_methylstyrene-1 > isoprene), poly (α -Methylstyrene-b-isoprene-b-oc-methylstyrene), poly (α-methylstyrene such as sulfurized propylene such as fluorene methylstyrene), poly (α-methylstyrene -b-dimethylsiloxane_b_a_methylstyrene). 20 (Please read the precautions on the back before filling out this page) ----- Order --------- Shumu paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 552485 A7 _ B7 __ 5. Description of the invention (price) Alternatively, the interface polymerization and then UV curing were found to be extremely beneficial to the sealing method. By forming a thin barrier layer at the interface by interfacial polymerization, the mutual mixing between the electrophoretic layer and the protective layer is significantly suppressed. The sealing is then completed by a post-curing step (preferably by UV radiation). This two-step protective film method is particularly useful when the pigments used are at least partially dissolved in the thermosetting precursor. Covering the dish-shaped microcup The sealed microcup is then covered with a top layer comprising a patterned in-plane conductor film, which is preferably an adhesive layer. Suitable adhesive materials include acrylic and rubber-type pressure-sensitive adhesives. UV-curable adhesives include, for example, polyfunctional acrylates, epoxides, or vinyl ethers, and such as epoxy, polyurethane, and cyanoacrylate. The grid prepared by the methods in chapters ni (a) to m (d) can be used upside down, with a transparent observation layer on the top and an in-plane electrode on the bottom. m (d) Alternative method: During the micro-embossing process, the ultraviolet curable resin is dispersed on the male mold in any suitable manner (such as coating, dipping, casting and the like). . The dispersion can be dynamic or stationary. Patterned in-plane conductor films on plastic substrates, such as polyethylene terephthalate, polynaphthoic acid 21 Non-paper size Applicable to China National Standard (CNS) A4 (210 X 297 mm) ----- ------------- Order --------- line (please read the notes on the back before filling this page) A7 552485 V. Description of the invention (/) Ethyl ester, poly Cyclopentamine, polyimide, polycycloolefin, polyboron, epoxy, and combinations thereof are then coated on an ultraviolet curable resin. Ensuring proper bonding between the resin and the plastic substrate, and controlling the thickness of the microcup bottom plate, can apply pressure to it. If the male mold is metallic and opaque, the plastic substrate is typically transparent to actinic radiation used to cure the resin. Conversely, the male mold can be transparent and the plastic substrate is opaque to actinic radiation. After exposure to radiation, the radiation-curable material will harden. The male mold is then formed by removing the exposed micro-cup. The formed microcup array is filled and sealed as described above. The sealed micro-cup is then covered with a transparent insulator layer, preferably using an adhesive. Although less favorable, light stone printing exposure can also be performed on substrates with in-plane electrodes. A UV-curable material is coated on the patterned conductor film. Micro-shaped cups can be formed by exposing the radiation curable material through a photomask, as shown in Figure 5 and as described in section m (b) above. Therefore, the micro-shaped cup is then hermetically sealed as described above and covered with a transparent insulator layer, preferably an adhesive layer. In any of the methods for preparing micro-shaped cups disclosed in this section, a substrate including a thin film transistor (TFT) array can be used as the bottom in-plane electrode. In this example, the TFT layer also provides an effective Driving mechanism. Preparation of IV Suspensions: Suspensions filled in micro-cups include charged dye particles 22 sheets paper size applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) --------- ------------ Order --------- line (please read the notes on the back before filling in this page) 552485 A7 ___B7 _ 5. The description of the invention (^) is scattered among them Dielectric solvents, and particles that migrate under the influence of an electric field. The suspension may optionally contain added colorants, which may or may not migrate in an electric field. The dispersion can be prepared according to methods well known in the art, such as U.S. Patent Nos. 6,017,584, 5,914,806, 5,573,71 1, 5,403,518, 5,380,362, 4,680,103, 4,285,801, No. Nos. 4,093,534, 4,071,430, 3,668,106, and narrations such as IEEE Trans.  Electron Device, ED-24, 827 (1977), W & J. Appl. Phys.  49 (9), 4820 (1978) ° The suspended fluid medium is preferably low-viscosity and has a dielectric constant of about 2 to about 30 (for high particle mobility, about 2 to about 15 is preferred) Dielectric solvents. Examples of suitable dielectric solvents include hydrocarbons such as decalin (DECALIN), 5-ethylidene-2-orbornene, moon fat oil, paraffin oil; Aromatic hydrocarbons such as toluene, dodecylbenzene, and alkylnaphthalenes; such as dichlorobenzotrifluoro, 3,4,5-trichlorobenzotrifluoro, chloropentafluorobenzene, dichlorononene , Pentachlorobenzene, etc .; such as St. Minnesota  Perfluorinated decalin, perfluorotoluene, perfluoroxylene, FC-43, FC-70 and FC-5060 from 3M Corporation of Paul; such as TCI America from Portland, Oregon Low molecular weight fluoropolymers of polyperfluoropropylene oxide; such as polychlorotrifluoroethylene from Halocarbon Oils of Halocarbon Product of River Edge, New Jersey; such as Galden, HT200 and Fluorolink from Ausimont or from Krytox Oils and Greases K-Fluid Series of DuPont, Delaware --- Line (Please read the precautions on the back before filling this page) The size of the paper is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) 552485 A7 __B7__ 5. Description of the invention (/). In a preferred embodiment, polychlorotrifluoroethylene is used as the dielectric solvent. In another preferred embodiment, polyperfluoropropylene oxide is used as the dielectric solvent. Non-migrating fluid colorants can be formed from dyes or pigments. Non-ionic azo and quinone dyes are particularly useful. Useful dyes include (but are not limited to): Oil Red EGN, Pylam Products (Arizona), Sudan Red, Sudan Blue, Oil Blue, Macrolex Blue, Solvent Blue 35, Pylam Spirit Balck and Fast Spirit Black, Aldrich Sudan Black B, Thermoplastic Black X-7〇 from BASF, and quinone blue, quinone yellow 114, quinone red 111, I35, arousal green 28 and Susan Black 8.2 from Aldrich; when using perfluorinated In the case of solvents, fluorinated dyes are particularly useful. In the case of dyes, dye particles used to produce a non-migrating fluid colorant can also be dispersed in the dielectric solvent, and these colored particles are preferably discharged. If the dye particles used to generate a non-migrating fluid colorant are charged, they will preferably have an opposite charge to the charged migrating dye particles. If two dye particles have the same charge, they should have different charge densities or different electrophoretic mobility. Dyes or pigments used to produce non-migrating fluid colorants must be chemically stable and compatible with other components in the suspension. The charge-transferring dye particles are preferably white, and the first color dye particles may be organic or inorganic dyes, such as titanium dioxide. When colored migration pigment particles are used, cyanine blue, cyanine green, diaromatic aniline yellow, diaromatic acetophenone AAOT yellow, and quinacridone, azo, and rhodan from Sim Chemical can be formed. 24 ―1 —-______----一-1 '' — ^ ― I —— The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) ---------- ---------- Order --------- line (Please read the precautions on the back before filling this page) 552485 A7 ----- B7___ V. Description of the invention (—) Description (Rhodamine), diphenylene (peryiene) dye series, J, Kansa Chemical's Hansa yellow G particles, and Fisher's Carbon Lamblack. Submicron particle sizes are preferred. These particles should have acceptable optical properties, should not be swelled or softened by the dielectric solvent, and should be chemically stable. Under normal operating conditions, the resulting suspension must also be stable and resistant to precipitation, emulsification or coagulation. The migration dye particles may have a mother charge, or may be directly charged using a charge control agent, or may obtain a charge when suspended in a dielectric solvent. Appropriate charge control agents are well known in the art; they can be polymeric or non-polymeric, and can also be ionized or non-ionized, and include ionic interface activators such as aerosol OT, sodium dodecylsulfonate, metals Soap, polybutene succinimide, maleic anhydride copolymer, vinylpyrrolidone copolymer (such as Ganex from International Special Products), (meth) acrylic acid copolymer, N, N-dimethylamine Ethyl (meth) acrylate copolymer. Fluorinated surfactants are particularly useful as solvent charge control agents in perfluorocarbons. These include FC fluorinated surfactants, such as FC-170C, FC_171, FC-176, FC430, FC431, and FC-740 from 3M, and Zonyl fluorine surfactants such as FSA, FSE, FSN, FSN from Dupont -100, FSO, FSO-100, FSD, and UR. Appropriate charged dye dispersions can be made by any well-known method, including honing, pulverizing, milling, microfluidizing, and ultrasonic techniques. For example, dye particles in the form of fine powder are added to the suspension solvent, and the resulting mixture is ball-milled or pulverized for several hours while the highly coagulated dry dye powder is pulverized into the original particles. Although it is not good, but 25 -------------------- Order --------- line (Please read the precautions on the back before filling this page ) The paper size of the table applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 552485 A7 ____B7__ V. Description of the invention (A) is the pigment or dye used to produce non-migrating fluid colorant during the ball milling process. Was added to the suspension. The precipitation or emulsification of the dye particles can be eliminated by microcontaining the particles with an appropriate polymer, so that their specific gravity is consistent with the specific gravity of the dielectric solvent. The microcontainerization of the dye particles can be done chemically or physically. Typical microcontainer methods include interface polymerization, in situ polymerization, phase separation, agglomeration, electrostatic coating, spray drying, fluidized bed coating, and solvent evaporation. In the case of dye suspensions, there are several possibilities. For color reduction systems, charged titanium dioxide particles can be suspended in a cyan, yellow, or magenta dielectric solvent. The blue-green, yellow, or magenta colors can be produced using pigments or dyes. For coloring systems, charged titanium dioxide particles can be suspended in a red, green or blue dielectric solvent, where the red, green or blue can also be produced using pigments or dyes. This red, green or blue system is preferred by most applications. Although the present invention has been described with reference to specific embodiments thereof, those skilled in the art should understand that without departing from the true spirit and scope of the invention, various changes can be made, and various equivalents can be made. To replace. In addition, many modifications may be made to adapt to a particular situation, material, composition, process, or one or more steps of a process to achieve the purpose, spirit, and scope of the present invention. All such modifications are intended to fall within the scope of the attached patent application. Therefore, we hope that the present invention can be defined as broadly as the prior art allows in terms of the scope of the specification and the scope of the accompanying patent applications. 26 ------------------- Order --------- Line (Please read the notes on the back before filling this page) This paper size is applicable to China Standard (CNS) A4 specification (210 X 297 mm)

Claims (1)

552485 A8 B8 C8 D8 六、申請專利範圍 步包括一個分開的背景層。 11. 根據申請專利範圍第9項之電泳顯示器’其中該 透明觀察層係爲無色的。 12. 根據申請專利範圍第11項之電泳顯示器’其中該 分開的背景層係於具有面內電極之該層的頂部。 13. 根據申請專利範圍第11項之電泳顯示器’其中該 分開的背景層係於具有面內電極之該層的底部。 14. 根據申請專利範圍第11項之電泳顯不益’其中具 有面內電極之該層係用來當作背景層,且該面內電極可爲 白色或彩色的。 15. 根據申請專利範圍第9項之電泳顯示器’其中該 顯示器係爲單色顯示器。 16. 根據申請專利範圍第15項之電泳顯示器’其中該 介電溶劑係爲淸晰且無色的。 17. 根據申請專利範圍第16項之電泳顯示器’其中所 有的該格子均具有白色的粒子以及相同的背景顏色° 18. 根據申請專利範圍第17項之電泳顯示器’其該背 景顏色係爲黑色、紅色、綠色、藍色、黃色、青綠色或洋 紅色。 19. 根據申請專利範圍第16項之電泳顯示器’其中所 有的該格子均具有白色的粒子以及相同的背景顏色。 2〇_根據申請專利範圍第19項之電泳顯示器,其該粒 子係爲黑色、紅色、綠色、藍色、黃色、青綠色或洋紅色 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再塡寫本頁) 訂:552485 A8 B8 C8 D8 6. Scope of patent application Steps include a separate background layer. 11. The electrophoretic display according to item 9 of the scope of patent application, wherein the transparent observation layer is colorless. 12. An electrophoretic display according to item 11 of the application, wherein the separated background layer is on top of the layer having in-plane electrodes. 13. An electrophoretic display according to item 11 of the application, wherein the separated background layer is on the bottom of the layer having in-plane electrodes. 14. The electrophoresis according to item 11 of the scope of the patent application is not beneficial, wherein the layer with the in-plane electrode is used as a background layer, and the in-plane electrode may be white or colored. 15. The electrophoretic display according to item 9 of the patent application, wherein the display is a monochrome display. 16. The electrophoretic display according to item 15 of the application, wherein the dielectric solvent is clear and colorless. 17. The electrophoretic display according to item 16 of the patent application, wherein all the cells have white particles and the same background color. 18. The electrophoretic display according to item 17 of the patent application, whose background color is black, Red, green, blue, yellow, cyan or magenta. 19. The electrophoretic display according to item 16 of the patent application, wherein all of the cells have white particles and the same background color. 2〇_ The electrophoretic display according to item 19 of the scope of application for patent, the particles of which are black, red, green, blue, yellow, cyan or magenta 297 mm) (Please read the notes on the back before copying this page) Order: 552485 A8 B8 C8 D8 六、申請專利範圍 (請先閲讀背面之注意事項再塡寫本頁) 21·根據申請專利範圍第16項之電泳顯示器,其中該 個別的格子具有混合顏色的粒子以及相同的背景顏色。 22. 根據申請專利範圍第21項之電泳顯示器,其中該 混合顏色係爲選自黑色、白色、紅色、綠色、藍色、黃色 、青綠色以及洋紅色所組成的群體中之兩種或是更多的顏 色。 23. 根據申請專利範圍第22項之電泳顯示器,其中該 背景顏色係爲選自黑色、白色、紅色、綠色、藍色、黃色 、青綠色以及洋紅色所組成的群體中之顏色。 24. 根據申請專利範圍第9項之電泳顯示器,其中該 顯示器係爲一多色顯示器。 25. 根據申請專利範圍第24項之電泳顯示器,其中該 格子具有白色的粒子以及不同的背景顏色。 26. 根據申請專利範圍第24項之電泳顯示器,其中該 格子具有黑色的粒子以及不同的背景顏色。 27. 根據申請專利範圍第24項之電泳顯示器,其中該 格子具有不同顏色的粒子以及白色的背景。 28. 根據申請專利範圍第24項之電泳顯示器,其中該 格子具有不同顏色的粒子以及黑色的背景。 29. 根據申請專利範圍第9項之電泳顯示器’其中該 透明觀察層被染色或者添加一濾色器。 30. 根據申請專利範圍第29項之電泳顯示器’其中該 分開的背景層係於具有面內電極之該層的頂部。 _______________ 本紙張尺中國國家標準(CNS)A4規格(210 x 297公爱) 552485 as C8 D8 K、申請專利範圍 31·根據申請專利範圍第29項之電泳顯示器,其中該 分開的背景層係於具有面內電極之該層的底部。 32·根據申請專利範圍第29項之電泳顯示器,其中具 有面內電極之該層係用來當作背景層,且該面內電極可爲 白色或彩色的。 33·根據申請專利範圍第29項之電泳顯示器,其中所 有的該格子均具有白色的粒子以及黑色的背景。 34·根據申請專利範圍第33項之電泳顯示器,其中所 有的該格子均具有相同顏色的透明觀察層。 35. 根據申請專利範圍第33項之電泳顯示器,其中該 格子均具有相同顏色的透明觀察層。 36. —種用於製造具有以微形杯(其具有明確定義之 尺寸、形狀與縱橫比)所形成之隔離的格子的電泳顯示器 之方法,該方法包括: a) 輻射可固化材料塗佈於透明絕緣體基材上以形成一 層; b) 壓花或影像曝光於輻射,以於輻射可固化材料上形 成微形杯; c) 泳組成物塡充微形杯; d) 形杯密封; e) 種包含面內電極的基材覆蓋已密封之微形杯。 37. 根據申請專利範圍第36項之製造電泳顯示器的方 法,其具有包含面內電極和黏著劑之基材。 38. —種用於製造具有以微形杯(其具有明確定義之 - --4------- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再塡寫本頁) 、IT, ·1 A8B8C8D8 552485 六、申請專利範圍 尺寸、形狀與縱橫比)所形成之隔離的格子的電泳顯示器 之方法,該方法包括: a) 可固化材料塗佈於一包含面內電極的基材上以形成 一層; b) 花或影像曝光於輻射,以於輻射可固化材料上形成 微形杯; 0組成物塡充微形杯; d) 杯密封; e) 包含透明絕緣體基材的基材覆蓋已密封之微形杯。 3,9·根據申請專利範圍第38項之製造電泳顯示器的方 法’其具有包含透明絕緣體基材和黏著劑之基材。 40·根據申請專利範圍第36項之方法,其中該微形杯 具有1〇2至1χ106μηι2範圍之間的頂部開口。 41.根據申請專利範圍第38項之方法,其中該微形杯 具有1〇2至1χ1〇6μιη2範圍之間的頂部開口。 42·根據申請專利範圍第36項之方法,其中該透明絕 緣體基材係爲無色的。 43. 根據申請專利範圍第42項之方法,其中所有的該 格子均具有相同的背景顏色以及均係以包括分散於淸晰無 色介電溶劑中之相同顏色的帶電荷粒子的電泳組成物所塡 充。 44. 根據申請專利範圍第42項之方法,其中該格子具 有不同的背景顏色以及均係以包括分散於淸晰無色介電溶 劑中之相同顏色的帶電荷粒子的電泳組成物所塡充。 _ 5 __ 本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公管) (請先閱讀背面之注意事項再塡寫本頁) 訂: 098822 ABCD 552485 六、申請專利範圍 (請先閲讀背面之注意事項再塡寫本頁) 45. 根據申請專利範圍第42項之方法,其中該格子具 有相同的背景顏色以及均係以包括分散於淸晰無色介電溶 劑中之不同顏色的帶電荷粒子的電泳組成物所塡充。 46. 根據申請專利範圍第38項之方法,其中該透明絕 緣體基材係爲無色的。 47. 根據申請專利範圍第46項之方法,其中所有的該 格子均具有相同的背景顏色以及均係以包括分散於淸晰無 色介電溶劑中之相同顏色的帶電荷粒子的電泳組成物所塡 充。 48. 根據申請專利範圍第46項之方法,其中該格子具 有不同的背景顏色以及均係以包括分散於淸晰無色介電溶 劑中之相同顏色的帶電荷粒子的電泳組成物所塡充。 49. 根據申請專利範圍第46項之方法,其中該格子具 有相同的背景顏色以及均係以包括分散於淸晰無色介電溶 劑中之不同顏色的帶電荷粒子的電泳組成物所塡充。 50. 根據申請專利範圍第36項之方法,其中該透明絕 緣體基材係爲彩色的。 51. 根據申請專利範圍第50項之方法,其中所有的該 格子均具有黑色背景以及均係以包括分散於淸晰無色介電 溶劑中之帶電荷的白色粒子的電泳組成物所塡充。 52. 根據申請專利範圍第51項之方法,其中所有的格 子均具有相同顏色的透明絕緣體基材。 53. 根據申請專利範圍第51項之方法,其中該格子均 具有不同顏色的透明絕緣體基材。 ________ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 552485 098822 ABCD 六、申請專利範圍 54. 根據申請專利範圍第38項之方法,其中該透明絕 緣體基材係爲彩色的。 55. 根據申請專利範圍第54項之方法,其中該格子均 具有黑色背景以及均係以包括分散於淸晰無色介電溶劑中 之帶電荷的白色粒子的電泳組成物所塡充。 56. 根據申請專利範圍第55項之方法,其中所有的格 子均具有相同顏色的透明絕緣體基材。 57. 根據申請專利範圍第55項之方法,其中該格子均 具有不同顏色的透明絕緣體基材。 58. 根據申請專利範圍第9項之電泳顯示器,其中包 含薄膜電晶體陣列的基材係用來當作面內電極層。 (請先閲讀背面之注意事項再塡寫本頁) 訂 適用中國國家標準(CNS)A4規格(210 X 297公釐)552485 A8 B8 C8 D8 6. Scope of patent application (please read the precautions on the back before writing this page) 21. According to the electrophoretic display of item 16 of the scope of patent application, the individual grid has particles of mixed colors and the same background color. 22. The electrophoretic display according to item 21 of the application, wherein the mixed color is two or more selected from the group consisting of black, white, red, green, blue, yellow, cyan, and magenta. Many colors. 23. The electrophoretic display according to item 22 of the application, wherein the background color is a color selected from the group consisting of black, white, red, green, blue, yellow, cyan, and magenta. 24. The electrophoretic display according to item 9 of the application, wherein the display is a multi-color display. 25. The electrophoretic display according to item 24 of the application, wherein the grid has white particles and different background colors. 26. The electrophoretic display according to item 24 of the application, wherein the grid has black particles and different background colors. 27. The electrophoretic display according to item 24 of the patent application, wherein the grid has particles of different colors and a white background. 28. The electrophoretic display according to item 24 of the application, wherein the grid has particles of different colors and a black background. 29. The electrophoretic display according to item 9 of the application, wherein the transparent viewing layer is dyed or a color filter is added. 30. An electrophoretic display according to item 29 of the application, wherein the separate background layer is on top of the layer with in-plane electrodes. _______________ This paper rule Chinese National Standard (CNS) A4 specification (210 x 297 public love) 552485 as C8 D8 K, patent application scope 31. According to the electrophoretic display of item 29 of the patent application scope, wherein the separated background layer is provided with The bottom of this layer of in-plane electrodes. 32. The electrophoretic display according to item 29 of the scope of patent application, wherein the layer having the in-plane electrode is used as a background layer, and the in-plane electrode may be white or colored. 33. The electrophoretic display according to item 29 of the patent application, wherein all of the cells have white particles and a black background. 34. The electrophoretic display according to item 33 of the scope of patent application, wherein all of the cells have transparent observation layers of the same color. 35. The electrophoretic display according to item 33 of the patent application, wherein the cells have transparent observation layers of the same color. 36. A method for manufacturing an electrophoretic display having an isolated grid formed with a micro-shaped cup having a clearly defined size, shape and aspect ratio, the method comprising: a) coating a radiation curable material on A transparent insulator substrate to form a layer; b) embossing or image exposure to radiation to form a micro-shaped cup on a radiation curable material; c) filling a micro-shaped cup with a swimming composition; d) sealing of a shaped cup; e) A substrate containing an in-plane electrode covers the sealed micro-cup. 37. A method of manufacturing an electrophoretic display according to item 36 of the scope of patent application, which has a substrate including an in-plane electrode and an adhesive. 38. — A kind of micro-shaped cup (which has a clear definition---4-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------. Read the precautions on the back before writing this page), IT, · 1 A8B8C8D8 552485 VI. Patent application scope size, shape and aspect ratio) method of isolated grid electrophoretic display, the method includes: a) can The curing material is coated on a substrate containing an in-plane electrode to form a layer; b) the flower or image is exposed to radiation to form a micro-shaped cup on the radiation-curable material; 0 composition fills the micro-shaped cup; d) Cup sealing; e) a substrate containing a transparent insulator substrate covers the sealed micro-cup. 3,9. A method of manufacturing an electrophoretic display according to item 38 of the scope of patent application ', which has a substrate including a transparent insulator substrate and an adhesive. 40. The method according to item 36 of the scope of patent application, wherein the micro-shaped cup has a top opening in the range of 102 to 1x106 μm2. 41. The method according to item 38 of the scope of patent application, wherein the micro-shaped cup has a top opening in the range of 102 to 1x106 μm2. 42. The method according to item 36 of the application, wherein the transparent insulator substrate is colorless. 43. The method according to item 42 of the scope of patent application, wherein all the cells have the same background color and are composed of an electrophoretic composition including charged particles of the same color dispersed in a clear colorless dielectric solvent. Charge. 44. The method according to item 42 of the patent application, wherein the cells have different background colors and are filled with an electrophoretic composition including charged particles of the same color dispersed in a clear colorless dielectric solvent. _ 5 __ This paper size applies to China National Standard (CNS) A4 specifications (210 x 297 public management) (Please read the precautions on the back before writing this page) Order: 098822 ABCD 552485 VI. Patent Application Scope (Please read first (Notes on the back are reproduced on this page.) 45. The method according to item 42 of the scope of patent application, wherein the grids have the same background color and are charged with different colors that include different colors dispersed in a clear colorless dielectric solvent The particles are filled with an electrophoretic composition. 46. The method according to item 38 of the application, wherein the transparent insulator substrate is colorless. 47. The method according to item 46 of the patent application, wherein all of the cells have the same background color and are composed of an electrophoretic composition including charged particles of the same color dispersed in a clear, colorless dielectric solvent. Charge. 48. The method according to item 46 of the application, wherein the grids have different background colors and are filled with an electrophoretic composition including charged particles of the same color dispersed in a clear colorless dielectric solvent. 49. The method according to item 46 of the patent application, wherein the cells have the same background color and are filled with an electrophoretic composition including charged particles of different colors dispersed in a clear colorless dielectric solvent. 50. The method according to claim 36, wherein the transparent insulator substrate is colored. 51. The method according to claim 50, wherein all the cells have a black background and are filled with an electrophoretic composition including charged white particles dispersed in a clear, colorless dielectric solvent. 52. The method according to item 51 of the patent application, in which all cells have transparent insulator substrates of the same color. 53. The method according to item 51 of the patent application, wherein the cells each have a transparent insulator substrate of a different color. ________ This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 552485 098822 ABCD VI. Application for patent scope 54. The method according to item 38 of the scope of patent application, where the transparent insulator substrate is colored . 55. The method according to item 54 of the application, wherein the cells each have a black background and are filled with an electrophoretic composition including charged white particles dispersed in a clear, colorless dielectric solvent. 56. The method according to item 55 of the patent application, in which all cells have transparent insulator substrates of the same color. 57. The method according to item 55 of the patent application, wherein the cells each have a transparent insulator substrate of a different color. 58. The electrophoretic display according to item 9 of the application, wherein the substrate containing the thin film transistor array is used as an in-plane electrode layer. (Please read the precautions on the back before writing this page) Order Applicable to China National Standard (CNS) A4 (210 X 297 mm)
TW090123167A 2001-07-17 2001-09-20 An improved electrophoretic display with in-plane switching TW552485B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US30631201P 2001-07-17 2001-07-17

Publications (1)

Publication Number Publication Date
TW552485B true TW552485B (en) 2003-09-11

Family

ID=23184739

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090123167A TW552485B (en) 2001-07-17 2001-09-20 An improved electrophoretic display with in-plane switching

Country Status (6)

Country Link
EP (1) EP1407321A1 (en)
JP (1) JP4093958B2 (en)
KR (1) KR100859306B1 (en)
CN (1) CN1196020C (en)
TW (1) TW552485B (en)
WO (1) WO2003009059A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW550529B (en) * 2001-08-17 2003-09-01 Sipix Imaging Inc An improved electrophoretic display with dual-mode switching
US7038670B2 (en) 2002-08-16 2006-05-02 Sipix Imaging, Inc. Electrophoretic display with dual mode switching
US7271947B2 (en) 2002-08-16 2007-09-18 Sipix Imaging, Inc. Electrophoretic display with dual-mode switching
US7038656B2 (en) 2002-08-16 2006-05-02 Sipix Imaging, Inc. Electrophoretic display with dual-mode switching
CN100432818C (en) * 2003-06-24 2008-11-12 精工爱普生株式会社 Electrophoresis dispersion, electrophoresis display device, manufacturing method thereof and electronic machine
US20060033676A1 (en) * 2004-08-10 2006-02-16 Kenneth Faase Display device
KR101143002B1 (en) 2005-04-11 2012-05-08 삼성전자주식회사 Electrophoretic display
JP2006293150A (en) * 2005-04-13 2006-10-26 Bridgestone Corp Panel for information display
KR20080052022A (en) 2006-12-07 2008-06-11 한국전자통신연구원 Display device of electrophoresis type and the manufacturing method thereof
DE102006059865B4 (en) * 2006-12-15 2021-01-07 Bundesdruckerei Gmbh Document with a security feature
DE102007002385A1 (en) 2007-01-10 2008-07-24 Bundesdruckerei Gmbh Document with an optical transmitter
DE102007015934B4 (en) 2007-04-02 2021-04-01 Bundesdruckerei Gmbh Document with a security feature, reader and method for reading a security feature
JP5240499B2 (en) 2008-03-11 2013-07-17 株式会社リコー Electrochromic material
JP5453725B2 (en) 2008-03-11 2014-03-26 株式会社リコー Electrochromic compound and electrochromic display element using the same
JP2009230060A (en) * 2008-03-25 2009-10-08 Seiko Epson Corp Electrophoresis device and electronic device
JP2009230061A (en) * 2008-03-25 2009-10-08 Seiko Epson Corp Electrophoresis device and electronic device
JP5481839B2 (en) * 2008-11-13 2014-04-23 株式会社リコー Electrochromic compound, electrochromic composition carrying the same, and display device having these
CN102666778B (en) 2009-10-16 2015-09-02 株式会社理光 Electrochromic compounds, electrochromic compositions and display element
KR101106666B1 (en) * 2010-05-17 2012-01-20 주식회사 타이스일렉 Probe pin for testing semiconductor
KR101430696B1 (en) * 2010-09-30 2014-08-18 코오롱인더스트리 주식회사 Electrophoresis display device and preparation method of the same
US9146439B2 (en) * 2011-01-31 2015-09-29 E Ink California, Llc Color electrophoretic display
CN102692703B (en) * 2011-06-02 2014-06-18 京东方科技集团股份有限公司 Electro-wetting display
JP6085914B2 (en) 2011-11-28 2017-03-01 株式会社リコー Electrochromic compound, electrochromic composition, and display element
KR101949254B1 (en) * 2011-12-05 2019-02-19 엘지디스플레이 주식회사 Electrophoretic fluid and electronic paper panel having the same
JP6255711B2 (en) 2012-11-01 2018-01-10 株式会社リコー Electrochromic compound, electrochromic composition, and display element
CN105807531B (en) * 2014-12-31 2020-03-17 广州奥翼电子科技股份有限公司 Microcapsule electrophoresis electronic paper color display screen and color display layer thereof
JP6728628B2 (en) 2015-03-13 2020-07-22 株式会社リコー Electrochromic compound, electrochromic composition, and electrochromic device and electrochromic dimming device
NL2015119B1 (en) 2015-07-08 2017-02-01 Hj Patents B V In-line electrophoretic switching device.
NL2016789B1 (en) 2016-05-17 2017-11-21 Hj Forever Patents B V Improved electrophoretic device
CN107092150B (en) * 2017-04-28 2019-12-13 上海天马微电子有限公司 Color electronic paper, display method thereof and display device
CN107991825A (en) * 2017-12-22 2018-05-04 联想(北京)有限公司 Display unit and display
CN111965914A (en) * 2020-08-13 2020-11-20 电子科技大学中山学院 Color electronic ink screen and display method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171930A (en) 1983-03-18 1984-09-28 Matsushita Electric Ind Co Ltd Electrophoresis display element

Also Published As

Publication number Publication date
EP1407321A1 (en) 2004-04-14
KR20040030815A (en) 2004-04-09
CN1397831A (en) 2003-02-19
JP2004536344A (en) 2004-12-02
CN1196020C (en) 2005-04-06
JP4093958B2 (en) 2008-06-04
KR100859306B1 (en) 2008-09-19
WO2003009059A1 (en) 2003-01-30

Similar Documents

Publication Publication Date Title
TW552485B (en) An improved electrophoretic display with in-plane switching
TW539928B (en) An improved transflective electrophoretic display
TW527529B (en) An improved electrophoretic display with color filters
TW550529B (en) An improved electrophoretic display with dual-mode switching
US6885495B2 (en) Electrophoretic display with in-plane switching
TW567349B (en) Manufacturing process for electrophoretic display
US6795229B2 (en) Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance
US6947202B2 (en) Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance
JP4322663B2 (en) Compositions and methods for sealing microcups in roll-to-roll display manufacturing
JP2004536344A5 (en)
JP4731467B2 (en) Electrophoretic display with dual mode switching
TW556044B (en) Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web
TWI247961B (en) An improved electrophoretic display and novel process for its manufacture
JP2004537756A5 (en)
JP2005509690A5 (en)
JP2006520012A5 (en)
TW200415431A (en) An improved electrophoretic display with dual-mode switching
JP2006518051A (en) Electrophoretic display with dual mode switching

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees