TW312029B - Manufacturing method of thin film transistor - Google Patents
Manufacturing method of thin film transistor Download PDFInfo
- Publication number
- TW312029B TW312029B TW86102809A TW86102809A TW312029B TW 312029 B TW312029 B TW 312029B TW 86102809 A TW86102809 A TW 86102809A TW 86102809 A TW86102809 A TW 86102809A TW 312029 B TW312029 B TW 312029B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- item
- patent application
- forming
- laser
- Prior art date
Links
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
經濟部中夬楯準局貝工消費合作社印聚 312029 A7 B7 五、發明説明(I ) 5·1發明領域: 本發明係有關於一種反向堆疊式多晶砍薄膜電晶體 (inverted staggered ploy-Si thin-film transistor)的低溫 (low temperature)製程。特别是有關於一種以雷射回火 (annealing)的反向堆疊式多晶矽薄膜電晶體的低溫製 程。 5_2發明背景: 當半導體工業技術日益精進時,主動矩陣式液晶顯示 器(Active Matrix Liquid Crystal Display : AMLCD)中每 個像素(pixel)的密度和品質也隨之增進,所以非晶矽氫 (hydrogenatedamorphoussilicon:a-Si:H)會因爲其低移 動率(mobility)使其在薄膜電晶體(Thin Film Transistor: TFT)的應用中倍受限制,所以高移動率的多晶矽 (poly crystalline silicon: poly-Si)在製造液晶顯示器中的 薄膜電晶體時將更有吸引力,並且也更容易以積體電路的 方式製造其週邊的驅動電路。前述之技術可參考:“Cell Design Consideration for High-Aperture-Ratio Direct-View and Projection Polysilicon TFT-LCDs”, 1995 Society For Imformation Display, Orlando, Florida, SID 1995,pp. 19-22,(199 5)卜W. Wu,。一個以低溫製程製 造的反向堆疊式薄膜電晶體的剖面圖於第—圖中表示 之。 2 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) 83. 3.10,000 (請先閱讀背面之注意事項再填寫本頁) 裝- 訂 經濟部中央標準局員工消費合作社印製 312029 A7 _B7____ 五、發明説明(1 ) 在第1圖中,基底100是以玻璃製成的,而且閘極、 源極和汲極分别是由1 03、1 〇 1和1 02所代表,而多晶矽 層104是薄膜電晶體的通道層。介電層1〇5是一種絶緣物 質一氧化非晶矽氫(a-SiO:H>,而保護層106是一層由電 槳加強式化學氣相沈積(Plasma Enhanced Chemical Vapor Deposition: LPCVD)所沈積的非晶矽氮化氫(a-The Ministry of Economic Affairs of the People's Republic of China Zhongzhang Bureau of Industry and Commerce Cooperative Printing and Printing Co., Ltd. 312029 A7 B7 V. Description of the invention (I) 5.1 Field of the invention: The present invention relates to an inverted stacked polycrystalline thin-film transistor (inverted staggered ploy- Si thin-film transistor) low temperature (low temperature) process. In particular, it relates to a low-temperature process of reverse stacking polycrystalline silicon thin film transistors that uses laser annealing. 5_2 Background of the invention: As the technology of the semiconductor industry becomes more sophisticated, the density and quality of each pixel in an active matrix liquid crystal display (Active Matrix Liquid Crystal Display: AMLCD) also increase, so amorphous silicon hydrogen (hydrogenatedamorphoussilicon: a-Si: H), because of its low mobility, it is restricted in the application of thin film transistor (Thin Film Transistor: TFT), so the high mobility of poly crystalline silicon (poly crystalline silicon: poly-Si) It will be more attractive when manufacturing thin-film transistors in liquid crystal displays, and it is also easier to manufacture the peripheral driving circuits in the form of integrated circuits. The aforementioned technology can be referred to: "Cell Design Consideration for High-Aperture-Ratio Direct-View and Projection Polysilicon TFT-LCDs", 1995 Society For Imformation Display, Orlando, Florida, SID 1995, pp. 19-22, (199 5) Bu W. Wu ,. A cross-sectional view of a reverse stacked thin film transistor fabricated in a low temperature process is shown in the first figure. 2 The size of this paper is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 83. 3.10,000 (please read the precautions on the back before filling out this page) Binding-Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 312029 A7 _B7____ 5. Description of the invention (1) In the first picture, the substrate 100 is made of glass, and the gate, source and drain are represented by 103, 101 and 102 respectively. The polysilicon layer 104 is the channel layer of the thin film transistor. The dielectric layer 105 is an insulating substance, amorphous silicon hydride (a-SiO: H>), and the protective layer 106 is a layer deposited by Plasma Enhanced Chemical Vapor Deposition (LPCVD) Of amorphous silicon hydrogen nitride (a-
SiN:H)合金。 在一些半導體製程中經常使用非晶矽氫合金 (hydrogenated amorphous silicon: a-Si:H),然而因爲非 晶石夕氫的電性(electrical characteristics)較多晶石夕差, 所以可用多晶矽來取代非晶矽,特别是使用在主動矩陣式 液晶顯示器中的薄膜電晶體。非晶矽氫可以用加熱的方式 轉變成多晶矽,而半導體製程中有很多方法可以用來加 熱。因爲在反向堆綦式薄膜電晶體的閘極金屬層最先形 成’再加上薄膜電晶體的基底大都爲玻璃,所以薄膜電晶 體的製程最好保持在低溫。爲了要實現薄膜電晶體的低溫 製程,所以常常用雷射回火(|aSerarmea|jng)來把非晶石户 轉變成多晶矽。用來作爲多晶矽結晶的回火雷射敘述於: “New Excimer-Laser-Crystallization Method for Producung Large-grained and Grain Boundary-SiN: H) alloy. Amorphous silicon hydrogen alloy (hydrogenated amorphous silicon: a-Si: H) is often used in some semiconductor manufacturing processes. However, since the electrical characteristics of amorphous hydrogen are more than that of crystal, it can be replaced by polycrystalline silicon Amorphous silicon, especially the thin film transistors used in active matrix liquid crystal displays. Amorphous silicon hydrogen can be converted into polysilicon by heating, and there are many methods in the semiconductor process that can be used for heating. Because the gate metal layer of the reverse stacked thin film transistor is first formed, and the base of the thin film transistor is mostly glass, the process of the thin film transistor is preferably kept at a low temperature. In order to realize the low temperature process of thin film transistors, laser tempering (| aSerarmea | jng) is often used to convert amorphous stone into polysilicon. The tempering laser used as a polycrystalline silicon crystal is described in: "New Excimer-Laser-Crystallization Method for Producung Large-grained and Grain Boundary-
Location-Controlled Si Films for Thin Film Transistors”,Location-Controlled Si Films for Thin Film Transistors ",
Appl. Phys. Lett., 68, pp.1513-1515 (1996), H.J. Kim and James S. 1m,. 3 (請先閱讀背面之注意事項再填寫本頁) 裝· 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000 312029 A7 A7 B7 五、發明説明(B ) 在液晶顯示器所用的薄膜電晶體之製程中,非晶矽經 常被用來轉換成爲多晶矽,藉以使電晶體有更佳的電性P 其轉換的理論描述於:“ A Thermal Description of the Melting of c- and a-SiIicon under Pulsed ExcimerAppl. Phys. Lett., 68, pp. 1513-1515 (1996), HJ Kim and James S. 1m ,. 3 (Please read the precautions on the back before filling out this page) Binding · The size of the printed paper is for China Standard (CNS) A4 specification (210X297mm) 83. 3.10,000 312029 A7 A7 B7 5. Description of invention (B) In the process of thin film transistors used in liquid crystal displays, amorphous silicon is often used to convert into polycrystalline silicon, In order to make the transistor have better electrical properties, the theory of its conversion is described in: "A Thermal Description of the Melting of c- and a-SiIicon under Pulsed Excimer
Lasers”,Applied Surface Science, 36,pp, 1-1 1, (1989), by De Unamuon and E Fogarassy.特别是在反向堆疊式 多晶石夕薄膜電晶體(inverted staggered .ploy-Si thin-film transistor)的製程中,是用雷射自火(|aser annealing)將 原本在閘極上絶緣層上面的非晶矽轉換成爲多晶矽,藉以 形成薄膜電晶體的多晶矽通道層 爲了形成閘極上絶緣層上面的多晶矽層,回火所用的 雷射之能量必須小心的控制<因爲電晶體的電性主要是由 閘極上絶緣層上面的多晶矽通道層所決定的,所以回火步 驟是影響薄膜電晶體電性的決定性製程。如果回火雷射的 能量太小,則閘極上絶緣層上面的非晶矽無法完全被轉換 成爲多晶矽,這也就是很多薄膜電晶體電性不佳的主要原 因。 經濟部中央標準局員工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 爲了要避免上述情形發生,必須加強回火雷射的能 量,以將非晶矽轉換爲多晶矽。當回火雷射的能量太大的 時候,閘極上絶緣層上面的一部份的非晶矽,或是甚至薄 膜電晶體本身都會被蒸發掉,導致其表面粗糙和無法預期 的電性曲線θ其影響在下面的著述中有描述:“Surface 4 本紙張尺度適用中國國家標準(CNS ) M規格(21〇><297公釐) 經濟部中央標準局員工消費合作社印製 312029 A7 ________B7 五、發明説明(+ )Lasers ”, Applied Surface Science, 36, pp, 1-1 1, (1989), by De Unamuon and E Fogarassy. Especially in inverted stacked polycrystalline stone evening thin film transistors (inverted staggered .ploy-Si thin- In the process of film transistor, the laser annealing (| aser annealing) is used to convert the amorphous silicon on the upper insulating layer of the gate to polysilicon, and the polysilicon channel layer of the thin film transistor is formed to form the upper insulating layer on the gate For the polysilicon layer, the laser energy used for tempering must be carefully controlled. ≪ Because the electrical properties of the transistor are mainly determined by the polysilicon channel layer above the insulating layer on the gate, the tempering step affects the thin film transistor. If the energy of the tempering laser is too small, the amorphous silicon above the insulating layer on the gate cannot be completely converted into polysilicon, which is the main reason for the poor electrical properties of many thin film transistors. Central Ministry of Economic Affairs Printed by the Bureau of Standards and Staff Consumer Cooperative (please read the precautions on the back before filling in this page) In order to avoid the above situation, the ability to temper the laser must be strengthened In order to convert amorphous silicon to polysilicon. When the energy of the tempering laser is too large, part of the amorphous silicon above the insulating layer on the gate, or even the thin film transistor itself will be evaporated, resulting in Its surface roughness and unpredictable electrical curve θ and its impact are described in the following writing: “Surface 4 This paper scale is applicable to the Chinese National Standard (CNS) M specifications (21〇 < 297mm) Central Ministry of Economic Affairs Printed by the Bureau of Standards and Staff Consumer Cooperative 312029 A7 ________B7 V. Description of invention (+)
Roughness Effects in Laser Crystallized Polycrystalline Silcon", Appl, Phys. Lett., 66, pp. 2060-2062, (1995), by D.J. Mcculloch and S. D.Roughness Effects in Laser Crystallized Polycrystalline Silcon ", Appl, Phys. Lett., 66, pp. 2060-2062, (1995), by D.J. Mcculloch and S. D.
Brotherton.除了上述的缺點之外,若雷射能量太大,也 有可能將熱由多晶矽或非晶矽傳導到絶緣層上,導致絶緣 層受損,並導致閘極的漏電流增加。多餘的熱量也有可能 導致閘極金屬擴散到絶緣層中,甚至使得源極和汲極短 路。如上所述,回火雷射的能量太大或太小都會導致薄膜 電晶體的電性不佳’所以在薄膜電晶體的製程中,回火製 程是一個關鍵步骤p .薄膜電晶體製程的另一個問題是當所沈積的非晶石夕 厚度太厚時,位於深處的非晶矽無法用雷射回火製程將其 轉變成多晶矽。而且沈積非晶矽時一般而言,其厚度並不 是到處都是一樣的,對同一個雷射回火的能量而言,可能 無法適用於所有位置的非晶矽’故要使雷射的能量恰能將 所有位置的非晶矽轉換成多晶矽是極爲困難的e 因爲在反向堆疊式多晶矽薄膜電晶體的製程中大都 使用低溫製程,所以在反向堆疊式多晶矽薄膜電晶趙的製 程中’最經常被使用的製程是雷射回火9根據前面幾段所 提及的因素,要將回火雷射的能量控制到恰到好處極爲困 難。 以低能量的回火雷射所形成的多晶矽,其位於閘極絶 5 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝· 、-·β 經濟部中央標準局員工消費合作社印裝 A7 五、發明説明(5) 緣屠接面附近的結構表示於第2圖中9很明顯的,仍然有 一部份的非晶矽203殘存在通道層2〇2和閘極绝緣層201 的接面上。當載子通過的時候,載子很容易被遑些非晶矽 203所散射。當這些非晶矽被微晶矽(mjsr〇crysta丨丨丨ne silicon: pC-Si)或多晶矽所取代時,散射的情形將被降 低’所以可以改善薄膜電晶體的電性。 5_3發明目的及概述: 蓉於上述之發明背景中,傳統的反向堆疊式薄膜電晶 體製程中的低溫製程’回火雷射的能量不易調整到恰到好 處,而且要形成通道層的多晶矽薄膜之製程也很繁雜0所 以本發明提供有關於一種反向堆疊式薄膜電晶體的低溫 製程0特别是有關於一種以雷射回火的反向堆疊式薄膜電 晶體的低溫製程。 首先是形成一個導電層於基底層上(該導電層可以是 金屬),然後是形成一個介電層於該導電層以及該基底層 上,以完成反向堆疊式薄膜電晶體最下層的結構。接著是 形成一微晶矽層於前述之介電層上,然後形成一非晶矽氫 層於該微晶矽層上,然後再上一層光阻層於非晶矽氫層上 並曝光之以形成圖樣化光阻層(patterned photoresist) p 接著是定義複數個重摻雜(heavily doped)區域於微 私紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝* 訂 經濟部中央標準局員工消費合作社印裝 A7 _B7 五、發明説明(6) 晶矽層以及非晶矽氫層上β以雷射加熱微晶矽層以及非晶 矽氫層以執行回火(annealing)步驟,因此微晶矽層以及 非晶石夕氫層形成一多晶矽層,並蝕刻部份的多晶矽層以形 成一通道區(channel region)。再接著是定義汲極及源極 區域於多晶矽層上,然後再形成反向堆疊式薄膜電晶體的 汲極電極及源極電極,再形成一保護層(passivation)於没 極電極、源極電極、通道區以及介電層上,如此則完成了 一個電性較傳統式技術爲佳的薄膜電晶體之製造。薄膜電 晶體的表現説明於:“A High Performance Polysilicon Thin-Film transistor Using XeCI Excimer Laser Crystallization of Pre-Patterned Amorphuous S>i Films", IEEE Trans, on E.D.,vol 4 3, no. 4, pp. 561-567, (1996), by Min Cao, et.al. 本發明的主要目的在改善控制回火雷射的能量之不 便,以減少囡能量控制不當而對電晶體結構所造成的損 傷。本發明除了減少了控制回火雷射的能量之不便,並且 對非晶矽轉變成多晶矽之品質並木會降低,所以是一個較 佳之薄膜電晶體的薄膜製程^其過程敘述於:“Α Fabrication of Homogenious Poly-Si TFT s Using Excimer Laser Annealing", Extented Abstracts of the 1992 International Conference on Solid State Devices and Materials, Tsukuba, pp. 55-57, (1992), by Asia, N.Kato, et. al. 本紙張尺度適用中國國家標準(CNS ) A4規格(210>< 297公釐) I----:--------f 裝------訂------1. I (請先閲讀背面之注意事項再填寫本頁) 312029 A7 B7___ 五、發明説明(f ) (請先閱讀背面之注意事項再填寫本頁) 本發明之製程要形成多晶矽薄膜時,都是在同一個機 台内形成微晶矽層以及非晶矽氫層的,經過一次回火後可 形成一個多晶矽層所以不用換機台,減少了產生缺陷機 會,所以不會增加製程的複雜度,又不會降低薄膜電晶體 的電性。其結構敎述於:“Inverse Staggered Poly-Si and Amorphuous Si Double Structure TFTs for LCD panels with Peripheral Driver Circuit Integration”,IEEE Trans on ED. Vol. 43,no. 5, pp 701-705, (1996), by Takashi Aoyama, et. al. 本發明的再一目的,係用傳統的製程再加上電漿加強 式化學蒸氣沈積法(Plasma Enhanced Chemical Vapor Deposition: PECVD)所沈積的微晶矽層作爲閘極絶緣層 和非晶矽氫之間的緩衝層,以加大所能容許的回火雷射之 能量範圍,並降低在多晶矽與閘極絶緣層邊緣上,小區域 的非晶發之缺陷,所導致的載子散射(scattering)和載子 陷阱(trapping)效應及其產生的嚴重後果,因此反向堆疊 式薄膜電晶體的特性被改進。 經濟部中央標準局員工消費合作社印製 根據以上所述之目的,反向堆疊式薄膜電晶體的低溫 製程中,本發明提供了 一種雷射回火製程技術並不較傳統 技術複雜’而且可以使得所製的電晶體具有較傳統技術爲 佳的電性’而且全部的製程溫度都可以控制在400 eC之 下。前述的製程敘述於下面著述中:“Fabrication of Low-Temperature Bottom Gate Poly-Si TFTs on 8 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X:297公釐) 經濟部中央標準局員工消費合作社印製 A7 B7五、發明説明(8 ) Large-Area Substrate by linear-Beam Exc.imer Laser Crystallization and Ion Doping Method”, 1995 International Electron Devices meeting, Washington, DC, IEDM 95, pp. 829-832, (1995), by H.Hayashi. 5-4圖式簡單説明: 上面所述本發明的所有特徵,將會由下面的敘述以及 參照圖示,使得本發明的概念有更加清楚的表達。 第1圖爲反向堆要式多晶石夕薄膜電晶體(inverted staggered pl〇y-Si thin-film transistor)的結構之剖面 圖。 --------^ ,裝-- (請先閲讀背面之注意事項再填寫本頁) 第2圖爲反向堆疊式多晶矽薄膜電晶體的通道 (c h a η n e丨)層中,位於絶緣層和多晶矽層間的部份仍然殘 留有非晶矽(a m 〇 r p h 〇 u s s M i c 〇 m S i)的剖面圖,其大小 是以晶體的尺寸來表示的。 第3A圖〜第3F圖爲製作反向堆疊式多晶矽薄膜電晶 體在第一個較佳實施例中的一連串製程之示意圖p 第3A圖爲根據本發明所提出的方法,用來製作反向 堆昼式多晶矽薄膜電晶體之第一個較佳實施例的剖面 圖。圖式中包含在一基底層上製作閘極電極、介電層、微 本紙張从適用中關家標準(⑽)Α4· ( 21()χ297公釐) 83. 3.10,000 訂 312029 經濟部中央標準局員工消費合作社印製 A7 B7___五、發明説明(?) 晶石夕(microcrystalline silicon: μο-Si)層以及非晶 5夕氫 (hydrogenated amorphous silicon: a-Si:H)層 ° 第3B圖爲反向堆疊式多晶矽薄膜電晶體的製程中用 來説明製作圖樣化光阻(patterned photo resist)時,所用 的背面曝光製程。 第3C圖爲反向堆疊式多晶矽薄膜電晶體的製程中用 來説明以磷離子植入,來形成微晶矽層以及非晶矽氫層中 的重掺雜(heavily doped)區之剖面圖。 第3D圖爲反向堆疊式多晶矽薄膜電晶體的製程中用 來説明去除光阻後,並對微晶矽層以及非晶矽氫層做完雷 射回火(laser annealing)的製程步骤後之剖面圖。 第3E圖爲反向堆疊式多晶矽薄膜電晶體的製程中用 來説明以雷射回火所製成的多晶矽層中,用來形成電晶體 通道層的圖樣化光阻之剖面圖。 第3F圖爲反向堆疊式多晶矽薄膜電晶體的製程中用 來説明形成薄膜電晶體中的閘極電極、源/汲極區、源/ 汲極電極以及保護層後的薄膜電晶體之剖面圖。 第4圖爲源汲電流(|DS)對閘源電壓(VGS)的轉換曲線 (transfer cu rive)圖,其中的薄膜電晶體是用本發明的第 (請先閲讀背面之注意事項再填寫本頁) 裝_Brotherton. In addition to the above shortcomings, if the laser energy is too large, it is possible to conduct heat from polysilicon or amorphous silicon to the insulating layer, resulting in damage to the insulating layer and increased leakage current of the gate. Excess heat may also cause the gate metal to diffuse into the insulating layer and even short-circuit the source and drain. As mentioned above, if the energy of the tempering laser is too large or too small, the electrical properties of the thin film transistor will be poor. Therefore, in the process of the thin film transistor, the tempering process is a key step. One problem is that when the thickness of the deposited amorphous stone is too thick, the amorphous silicon located deep cannot be converted into polycrystalline silicon by the laser tempering process. And in general, the thickness of amorphous silicon is not the same everywhere. For the same laser tempering energy, it may not be applicable to all positions of amorphous silicon. Therefore, the laser energy It is extremely difficult to convert amorphous silicon into polysilicon at all locations. E Because of the low temperature process used in the process of reverse stacked polycrystalline silicon thin film transistors, so in the process of reverse stacked polycrystalline silicon thin film transistors' The most frequently used process is laser tempering.9 According to the factors mentioned in the previous paragraphs, it is extremely difficult to control the energy of the tempering laser to the right. The polysilicon formed by the low-energy tempering laser is located at the gate. The 5 paper standards are applicable to the Chinese National Standard (CNS) Α4 specification (210Χ297 mm) (please read the precautions on the back before filling this page). ·,-· Β A7 printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (5) The structure near the edge of the butt joint is shown in Figure 2 as 9 is obvious, there is still a part of amorphous silicon 203 It remains on the junction between the channel layer 202 and the gate insulating layer 201. When the carrier passes, the carrier is easily scattered by some amorphous silicon 203. When these amorphous silicons are replaced by microcrystalline silicon (mJr. Crystal silicon: pC-Si) or polycrystalline silicon, the scattering will be reduced ’so the electrical properties of thin film transistors can be improved. 5_3Objective and summary of the invention: Rong In the background of the above invention, the low-temperature process in the traditional reverse stacked thin film transistor process' tempering laser energy is not easy to adjust to the right, and the process of forming the channel layer of the polysilicon film It is also very complicated. Therefore, the present invention provides a low-temperature process for a reverse stacked thin film transistor. In particular, it relates to a low-temperature process for a reverse stacked thin film transistor with laser tempering. First, a conductive layer is formed on the base layer (the conductive layer may be metal), and then a dielectric layer is formed on the conductive layer and the base layer to complete the structure of the bottom layer of the reverse stacked thin film transistor. Next, a microcrystalline silicon layer is formed on the aforementioned dielectric layer, and then an amorphous silicon hydrogen layer is formed on the microcrystalline silicon layer, and then a photoresist layer is formed on the amorphous silicon hydrogen layer and exposed to Form a patterned photoresist layer (p) and then define a plurality of heavily doped (heavily doped) areas on the micro-private paper scale to apply the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the notes on the back Please fill in this page for details) Binding * Order A7 _B7 printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (6) The crystalline silicon layer and the amorphous silicon hydrogen layer are heated by the laser to the microcrystalline silicon layer and amorphous The silicon-hydrogen layer performs an annealing step. Therefore, the microcrystalline silicon layer and the amorphous hydrogen layer form a polycrystalline silicon layer, and etch a portion of the polycrystalline silicon layer to form a channel region. Then, the drain and source regions are defined on the polysilicon layer, and then the drain electrode and the source electrode of the reverse stacked thin film transistor are formed, and then a passivation is formed on the stepless electrode and the source electrode , The channel area and the dielectric layer, this completes the manufacture of a thin film transistor with better electrical properties than traditional techniques. The performance of thin film transistors is explained in: "A High Performance Polysilicon Thin-Film transistor Using XeCI Excimer Laser Crystallization of Pre-Patterned Amorphuous S > i Films ", IEEE Trans, on ED, vol 4 3, no. 4, pp. 561 -567, (1996), by Min Cao, et.al. The main purpose of the present invention is to improve the inconvenience of controlling the energy of the tempering laser, so as to reduce the damage to the transistor structure caused by improper energy control. The present invention In addition to reducing the inconvenience of controlling the energy of the tempering laser, and the quality of the amorphous silicon into polycrystalline silicon and wood will be reduced, so it is a better thin film transistor thin film manufacturing process ^ The process is described in: "Α Fabrication of Homogenious Poly -Si TFT s Using Excimer Laser Annealing ", Extented Abstracts of the 1992 International Conference on Solid State Devices and Materials, Tsukuba, pp. 55-57, (1992), by Asia, N. Kato, et. Al. Applicable to the Chinese National Standard (CNS) A4 specification (210 > < 297mm) I ----: -------- f installed ------ order ------ 1. I (Please read the notes on the back first (Fill in this page) 312029 A7 B7___ 5. Description of the invention (f) (Please read the notes on the back before filling in this page) When the polysilicon film is formed in the process of the present invention, the microcrystalline silicon layer is formed in the same machine As for the amorphous silicon hydrogen layer, a polycrystalline silicon layer can be formed after one tempering, so there is no need to change the machine, which reduces the chance of defects, so it will not increase the complexity of the process and will not reduce the electrical properties of the thin film transistor. Its structure is described in: "Inverse Staggered Poly-Si and Amorphuous Si Double Structure TFTs for LCD panels with Peripheral Driver Circuit Integration", IEEE Trans on ED. Vol. 43, no. 5, pp 701-705, (1996), by Takashi Aoyama, et. al. Another object of the present invention is to use a traditional process plus a plasma-enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition: PECVD) deposited microcrystalline silicon layer as a gate The buffer layer between the insulating layer and amorphous silicon hydrogen can increase the energy range of the tempering laser that can be tolerated and reduce the defects of amorphous hair in small areas on the edge of the polysilicon and gate insulating layer. The resulting carrier scattering (trapping) and carrier trapping (trapping) effects and the resulting serious consequences, therefore, the characteristics of the reverse stacked thin film transistor are improved. Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. According to the above-mentioned purpose, in the low-temperature process of reverse stacked thin film transistors, the present invention provides a laser tempering process technology is not more complicated than the traditional technology ' The transistors produced have better electrical properties than traditional technologies' and all process temperatures can be controlled below 400 eC. The foregoing manufacturing process is described in the following article: "Fabrication of Low-Temperature Bottom Gate Poly-Si TFTs on 8 This paper standard is applicable to the Chinese National Standard (CNS) A4 specification (21〇X: 297 mm) Employees of the Central Bureau of Standards of the Ministry of Economic Affairs Printed by the consumer cooperative A7 B7 V. Description of invention (8) Large-Area Substrate by linear-Beam Exc.imer Laser Crystallization and Ion Doping Method ", 1995 International Electron Devices meeting, Washington, DC, IEDM 95, pp. 829-832 , (1995), by H. Hayashi. A brief description of the 5-4 diagram: All the features of the present invention described above will be described more clearly by the following description and reference drawings. Figure 1 is a cross-sectional view of the structure of an inverted staggered poly-Si thin-film transistor. -------- ^, installed-(please read the precautions on the back before filling in this page) Figure 2 is the channel (cha η ne 丨) layer of the reverse stacked polysilicon thin film transistor, located in Amorphous silicon (am 〇rph 〇uss M ic 〇m S i) is still a section between the insulating layer and the polysilicon layer, and its size is expressed by the size of the crystal. Figures 3A to 3F are schematic diagrams of a series of manufacturing processes in the first preferred embodiment for manufacturing a reverse stacked polysilicon thin film transistor. Figure 3A is a method according to the present invention for manufacturing a reverse stack A cross-sectional view of the first preferred embodiment of a diurnal polycrystalline silicon thin film transistor. The drawing includes the production of gate electrodes, dielectric layers, and micro-paper on a base layer from the applicable Zhongguanjia Standard (⑽) A4 (21 () × 297mm) 83. 3.10,000 Order 312029 Central Ministry of Economic Affairs A7 B7___ printed by the Staff Cooperative of the Bureau of Standards V. Description of the invention (?) A layer of microcrystalline silicon (μο-Si) and a layer of hydrogenated amorphous silicon (a-Si: H) ° 3B The picture shows the back exposure process used in the production of patterned photo resist in the process of reverse stacking polysilicon thin film transistors. Figure 3C is a cross-sectional view of the process of reverse stacking polysilicon thin film transistors to illustrate the use of phosphorus ion implantation to form a microcrystalline silicon layer and a heavily doped region in an amorphous silicon hydrogen layer. Figure 3D shows the process of laser annealing of the microcrystalline silicon layer and amorphous silicon hydrogen layer after removing the photoresist in the process of reverse stacking polysilicon thin film transistors Profile view. Figure 3E is a cross-sectional view of the patterned photoresist used to form the transistor channel layer in the polysilicon layer made by laser tempering in the process of reverse stacking polysilicon thin film transistors. Figure 3F is a cross-sectional view of the thin-film transistor after forming the gate electrode, source / drain region, source / drain electrode and protective layer in the thin-film transistor during the process of reverse stacking polysilicon thin film transistor . Figure 4 is the transfer curve of source-drain current (| DS) to gate-source voltage (VGS) (transfer cu rive), where the thin-film transistor is used in the invention (please read the notes on the back before filling in Page)
、1T 10 本紙張尺度適财關家標準(CNS ) A4規格(21〇Χ297公楚) 312029、 1T 10 The paper size is suitable for financial standards (CNS) A4 specification (21〇Χ297 公 楚) 312029
五、發明説明((0 一個實施例所完成的。而且其中的多晶矽層有各種不同的 厚度’而其中用來形成多晶石夕層的回火雷射的能量是 254mJ/cm2 〇 ---------「‘裝— (請先聞讀背面之注意事項再填寫本頁) 第5圖爲在不同的多晶矽薄膜厚度下,移動率對丨 雷射的折線圖。其中的多晶矽薄膜,是以本發明的第一個 實施例所製成的薄膜電晶體中的通道層。 第6圖是以低溫製程所形成的反向堆疊式多晶矽薄 膜電晶體中的通道之剖面圖,其中絶緣層和多晶砍層中間 的接面上,原來的非晶發已經被取代成爲多晶砍,其剖面 圖的尺寸亦以晶體的大小來表示。 5·5發明詳細説明: 經濟部中央標準局員工消費合作社印製 隨著越來越多的低溫多晶石夕薄膜電晶體所製成的液 Β3顯示器之發表’在製造低溫多晶石夕薄膜電晶體以作爲每 個圖素(pixel)的開關和週邊的驅動電路時,用來形成多晶 石夕薄膜電晶體的多晶石夕薄膜之溫度正在日益降低,而且這 種低溫製程的趨勢已經是目前的一種主流。因此將以電漿 加強式化學蒸氣沈積法(Piasma Enhanced Chemical Vapor Deposition: PECVD)沈積各種不同厚度的薄膜, 其製程溫度都被控制在4 0 0 °C以下,以測試各種不同厚度 的薄膜之電性。基本上’反向堆疊式多晶矽薄膜電晶體的 製程中,要調整適當的雷射能量,使非晶矽轉變爲多晶 本紙張尺度適财國國家標準(CNS ) M規格(21GX297公董) 經濟部中央標準局員工消費合作社印製 A7 ...___B7 _ »——— _ *"1- . 五、發明説明(") 一 矽’並且使位於絶緣層上的多晶矽層具有良好的電子轉移 性質,這是非常困難的》 反向堆疊式多晶矽薄膜電晶體的製程中,本發明提供 了一個方法,可以用雷射回火(laserannea丨丨ng)在低溫的 條件下只以一個步驟,便可以形成薄膜電晶體的通道 (channel)層,並且不會有非晶矽殘留在薄膜半導體的通 道(多晶矽層)内,也不會對反向堆疊式薄膜電晶體本身造 成損害。因爲本發明用來形成多晶矽薄膜的回火製程只用 了 一次雷射回火,只在同一個機台内便可以形成多晶矽薄 膜,所以其電性比分成兩次來沈積和回火的製程要好。 參考第3A圖,濺鍍上一層金屬鉻(Cr)於玻璃基底310 上,以形成鉻層311,其中鉻層311是用作爲薄膜電晶體 的閘極電極之用。鉻層311的厚度是200nm,而玻璃基 底310的大小是300x300mm2。接下來的步裸是以電漿加 強式化學蒸氣沈積法,沈積一層氧化非晶矽氫 (hydrogenated amorphous silicon oxide: a-SiO:H)於玻 璃基底310上,以形成 度爲300nm的a-SiO:H層312, 以作爲介電層之用。然後以電漿加強式化學蒸氣沈積法, 沈積一層微晶矽(microcrystalline silicon: μ〇-$Γι)層於氧 化非晶矽氫層31 2上,以形成一層 度爲3 n m的微晶矽 層313,在經過雷射回火(laserannealing)之後即形成通 道的下層。參照於薄膜電晶體中,介電層是用來作爲閘極 本紙張尺度適用中國國家標準(CNS ) A4規格(2l〇X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝_ 訂 經 濟 部 中 央 標 準 --_ A7 ~~~----- B7 五、發明説明(Try ———-— 電極和通道之間的絶緣層。 而用來形成微晶矽的P E c V D沈積法所用的混合氣體 是由氫(H〇和矽甲烷(SiH4)所組成,其中氫氣流量的比例 要大於9 0 %才能形成微晶妙。在本發明形成微晶發的製 程中’氫軋流量是設定在1 95sccm,而矽甲烷的流量則 是設定在5sccm。然後在同一機台内以PECVD沈積法, 在微ag發層31 3上沈積一層厚度约爲6 0 n m的非晶夕氫, 以做爲非晶矽氫層314。在這個製造非晶矽氫製程中所用 的混合氣體,與前一個製造微晶矽的PECVD沈積法所用 的混合氣體種類相同,但是氫氣的流量是195sccm ,而 石夕甲燒的流量則是40sccm,所以在此的氫氣體流量比混 合氣體流量低於90 %,而這兩個PECVD的製程溫度都大 約是26 0 eC。 參考第3B圖,下一個步驟是在非晶矽層314上鋪上 一層光阻,緊接著以背面曝光(backside exposure)的方 式,用鉻層311爲光罩,對光阻進行曝光,以獲得圖樣化 光阻(patterned photo re si st> 層 315。囡爲閘極(鉻層 311) 本身就可用來作爲光罩,所以在背面曝光的製程中可以節 省一個光軍的製程步驟。第3B圖是用來説明背面曝光的 製程中晶圓的剖面圖,而光源則是以31 7表示。 參考第3C圖,在獲得圖樣化光阻層315後,通道層 I- n I n -- I I I H it n ϋ I I I T (請先閱讀背面之注意事項再填寫本頁) 消 費 合 作 社 印 製 13 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 312029 A7Fifth, the description of the invention ((0 completed by an embodiment. And the polysilicon layer has a variety of different thicknesses, and the energy of the tempering laser used to form the polycrystalline stone evening layer is 254mJ / cm2. --- ------ "'installation- (please read the precautions on the back before filling in this page) Figure 5 is a line graph of the mobility versus laser at different polysilicon film thickness. The polysilicon film Is the channel layer in the thin film transistor made in the first embodiment of the present invention. Figure 6 is a cross-sectional view of the channel in the reverse stacked polysilicon thin film transistor formed by the low temperature process, in which the insulation At the junction between the layer and the polycrystalline cut layer, the original amorphous hair has been replaced by a polycrystalline cut, and the size of its cross-sectional view is also expressed in terms of the size of the crystal. 5 · 5 Detailed description of the invention: Central Bureau of Standards, Ministry of Economic Affairs Employee's consumer cooperatives printed liquid B3 displays made with more and more low-temperature polycrystalline Shixi thin-film transistors. In the manufacture of low-temperature polycrystalline Shixi thin-film transistors as each pixel (pixel) Switch and peripheral drive circuit The temperature of the polycrystalline silicon thin film used to form polycrystalline silicon thin film transistors is decreasing, and the trend of this low temperature process is already a mainstream. Therefore, the plasma enhanced chemical vapor deposition method (Piasma Enhanced Chemical Vapor Deposition: PECVD) deposits thin films of various thicknesses, the process temperature of which is controlled below 400 ° C to test the electrical properties of thin films of various thicknesses. Basically, reverse stacked polycrystalline silicon thin film transistors In the manufacturing process, it is necessary to adjust the appropriate laser energy to transform amorphous silicon into polycrystalline paper. The standard is suitable for the national standard (CNS) M specifications (21GX297). The A7 is printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. ..___ B7 _ »——— _ * " 1-. V. Description of the invention (") A silicon 'and the polysilicon layer on the insulating layer have good electron transfer properties, which is very difficult. In the manufacturing process of stacked polysilicon thin film transistors, the present invention provides a method that can use laser annealing (laserannea 丨 ng) under low temperature conditions with only one In this way, the channel layer of the thin film transistor can be formed, and no amorphous silicon remains in the channel (polysilicon layer) of the thin film semiconductor, nor does it cause damage to the reverse stacked thin film transistor itself. The tempering process used to form the polysilicon film in the present invention uses only one laser tempering, and the polysilicon film can be formed only in the same machine, so its electrical properties are better than the process of deposition and tempering divided into two. Referring to FIG. 3A, a layer of metallic chromium (Cr) is sputtered on the glass substrate 310 to form a chromium layer 311, wherein the chromium layer 311 is used as a gate electrode of the thin film transistor. The thickness of the chromium layer 311 is 200 nm, and the size of the glass substrate 310 is 300x300 mm2. The next step is to deposit a layer of hydrogenated amorphous silicon oxide (a-SiO: H) on the glass substrate 310 by plasma enhanced chemical vapor deposition method to form a-SiO with a degree of 300nm : H layer 312, used as a dielectric layer. Then, a plasma-enhanced chemical vapor deposition method is used to deposit a layer of microcrystalline silicon (μ〇- $ Γι) on the oxidized amorphous silicon hydrogen layer 312 to form a layer of microcrystalline silicon with a degree of 3 nm 313, the lower layer of the channel is formed after laser annealing. With reference to the thin film transistor, the dielectric layer is used as the gate book. The paper standard is applicable to the Chinese National Standard (CNS) A4 (2lX297mm) (please read the precautions on the back and fill in this page). Set the Central Standard of the Ministry of Economic Affairs --_ A7 ~~~ ----- B7 5. Description of the invention (Try ———-— The insulating layer between the electrode and the channel. The PE c VD deposition used to form microcrystalline silicon The mixed gas used in the method is composed of hydrogen (H〇 and silicon methane (SiH4), wherein the proportion of hydrogen flow rate must be greater than 90% to form microcrystals. In the process of forming microcrystals in the present invention, the hydrogen rolling flow It is set at 195 sccm, and the flow rate of silane is set at 5 sccm. Then, in the same machine, a layer of amorphous hydrogen with a thickness of about 60 nm is deposited on the micro-ag layer 31 3 by PECVD deposition method. It is used as the amorphous silicon hydrogen layer 314. The mixed gas used in this amorphous silicon hydrogen manufacturing process is the same as the mixed gas used in the previous PECVD deposition method for manufacturing microcrystalline silicon, but the flow rate of hydrogen is 195 sccm, and The flow rate of Shi Xijia burning is 40sccm, so in The hydrogen gas flow rate is less than 90% of the mixed gas flow rate, and the process temperature of both PECVD processes is about 260 eC. Referring to Figure 3B, the next step is to lay a layer of photoresist on the amorphous silicon layer 314, Immediately following backside exposure, the chrome layer 311 is used as a photomask to expose the photoresist to obtain a patterned photoresist (patterned photo re si st> layer 315. The gate is the gate (chromium layer 311 ) It can be used as a photomask itself, so it can save a light army process step in the back exposure process. Figure 3B is a cross-sectional view of the wafer used in the back exposure process, and the light source is 31 7 Refer to Figure 3C, after obtaining the patterned photoresist layer 315, the channel layer I- n I n-IIIH it n ϋ IIIT (please read the precautions on the back before filling this page) 13 copies printed by the consumer cooperative The paper size is applicable to China National Standard (CNS) A4 specification (210X297mm) 312029 A7
五、發明説明((3 ) 經濟部中央標準局員工消費合作社印製 中用來接觸没極和源極電極的重摻雜區,可以用電漿處理 而獲得,例如以磷離子植入,而在第3C圖中是以3彳8表 示磷離子植入。而磷離子的植入是以ph3和&的混合氣 體所產生的電漿所執行,而PHs的在混合氣體中所占的比 例是1 %,溫度是在室溫下(約爲26。〇 )。經過離子植入 後,非晶矽氫層314露在光阻外面的部份,以及其下面的 微晶矽層313被轉變成重摻雜的非晶矽氫層319和321 以及重摻雜的微晶矽層320和322。 參考第3D圖,在去除光阻之後,即可對晶圓施以雷 射回火’將完成上面製程步驟的基底置於氮氣的環境中, 以兩小時的時間,在400 t;的環境下做回火,用以去除嵌 於非晶發氫層中的氫原子9然而前述的製程步驟並不是必 須的’因爲對非晶矽氫層用低能量的雷射做照射也可以獲 致類似的結果。對晶圓做雷射回火,使得非晶矽氫層3,3 轉變成多晶發層316,而重捧雜區域319、32 0和321、 322 ’則分别被轉變爲重摻雜的多晶矽區域:323和 324。若有其他傳统的加溫回火製程步驟,可以用在这種 非BH發風加上微晶發的結構上,而使其轉變爲多晶碎,這 些加溫回火製程也是可以被本發明所採用,而具有相同效 果的。 參考第3E圖,在上完光阻後對其曝光使其形成圖樣 化光阻層325,然後再對重摻雜多晶矽層做蝕刻,使多晶 本紙張尺度適用中咖家標準(CNS ) A4規格(21GX297公釐) (請先閲讀背面之注意事項再填寫本頁) -裝· 訂 經濟部中央標準局員工消費合作社印製 A7 --_B7 五、發明説明(丨+ ) 矽層形成如第3F圖中323a、324a以及316所示的結 構。下一個步驟是濺鍍上源極和汲極接觸金屬。其形成的 方法是先濺鍍上50nm的鉻,再鍍上—層6〇〇nm的鋁,使 其分别形成第3E圖中的鉻層325和鋁層326。然後整個 晶圓以氫電漿處理一小時,再以PECVD的方法在260 ¾ 下,沈積一層厚度爲4 00nm的氮化非晶矽氫(a_siNx:H) 以形成保護層327 p 微晶珍層31 3的度之所以選定爲3nm,是因爲對 各種不同厚度的多晶矽薄膜電晶體做過實驗,而其源汲電 流(Ids)對閘源電壓(VGS)的電性轉換特性曲線圖表示於第 4圖中。其中的虛線部份是代表源汲電壓(Vds)等於〇.彳伏 特(V),而實線部份是代表源汲電壓(VDS)等於5伏特。在 本實驗中’多晶石夕層是用能量密度254mJ/cm2的雷射回 火所製成。 參考第4圖,其中的線401和410代表未加上微晶矽 層的多晶矽薄膜電晶體之轉換特性曲線,而線4 0 3和4 3 0 代表微晶矽層之度爲3 n m的多晶矽薄膜電晶體之轉換 特性曲線,線406和460代表微晶矽層之度爲6nm的 多晶發薄膜電晶體之轉換特性曲線,線4 0 9和4 9 0代表微 晶矽層之度爲9 n m的多晶矽薄膜電晶體之轉換特性曲 線,線412和421代表微晶珍層之度爲12nm的多晶石夕 薄膜電晶體之轉換特性曲線。由第4圖中所顯示的,線 本紙張尺度適用中國國家標準(CNS ) Α4規格(21 〇 X 297公釐) ----^----一装------訂------為- (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 A7 ________B7 五、發明説明((ί) 403和430是最好的轉換特性曲線,然而線4〇1和410是 最差的轉換特性曲線。除此之外,第4圖的橫軸是代表源 極和汲極間的電流,縱軸是代表閘極和源極間的電壓,而 橫軸的單位是安培(A),縱軸的單位是伏特。 回火雷射的能量大小是可以調整的,所以用不同能暈 密度的XeCI雷射’對不同微晶矽厚度的薄膜電晶體飯回 火以形成多晶矽薄膜電晶體。所用的雷射能量密度有四 種,分别是217、229、238和264mJ/cm2。而且每一 個特定資料之移動率(mobility),是由9個相同的元件做 實驗所得移動率値之平均値。第5圖就是由移動率對不同 的回火雷射之能量密度,於各種不同微晶矽層度的薄膜 電晶體中所作出的曲線圖,其中微晶矽層度分爲四種 3nm、6nm、9nm 以及 I2nm。在第 5 圖中,線 5〇1 、 502、503和504分别代表微晶矽層度爲3nm、6nm、 9nm以及12nm的曲線,很明顯的,不論回火雷射的能量 設定爲多少’所有薄膜電晶體的移動率都是以3nm的微 晶石夕層的電晶體具有最大的移動率。而第5圖的橫轴之單 位爲mJ/cm2,縱軸之單位爲cm2/v.s。 經過前面第一個實施例所述之製程步驟處理後,電晶 體的通道層之剖面圖表示於第6圖中。在此囷中,多晶石夕 是602和絶緣層601幾乎與第2圖中的完全相同只^第 2圖中的非晶矽在第6圖中是由微晶矽603所取代,而且 本紙張尺度適用中國國家標準(CNS ) Α4規格(210\297公着) (請先閱讀背面之注意事項再填寫本頁) -裝_V. Description of the invention ((3) The heavily doped area used for contacting the electrode and the source electrode in the printing of the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs can be obtained by plasma treatment, for example, with phosphorus ion implantation, and In Fig. 3C, the phosphorus ion implantation is represented by 3 to 8. Phosphorus ion implantation is performed by the plasma generated by the mixed gas of ph3 and & PHs, and the proportion of the mixed gas It is 1%, and the temperature is at room temperature (about 26.0). After ion implantation, the portion of the amorphous silicon hydrogen layer 314 exposed outside the photoresist, and the microcrystalline silicon layer 313 below it are transformed The heavily doped amorphous silicon hydrogen layers 319 and 321 and the heavily doped microcrystalline silicon layers 320 and 322. Referring to Figure 3D, after removing the photoresist, the wafer can be laser tempered. The substrate after completing the above process steps is placed in a nitrogen atmosphere, and is tempered in an environment of 400 t for two hours to remove hydrogen atoms embedded in the amorphous hydrogen-generating layer 9 However, the aforementioned process steps Not necessary 'because the amorphous silicon hydrogen layer is irradiated with a low-energy laser, it can also be obtained As a result of laser tempering the wafer, the amorphous silicon hydrogen layers 3 and 3 were transformed into polycrystalline hair layers 316, while the re-doped impurity regions 319, 320 and 321, 322 'were converted to heavy doping, respectively. Miscellaneous polysilicon regions: 323 and 324. If there are other traditional heating and tempering process steps, it can be used on the structure of this non-BH wind and microcrystalline hair, which can be converted into polycrystalline fragments. The warm tempering process can also be adopted by the present invention and has the same effect. Referring to FIG. 3E, after the photoresist is applied, it is exposed to form a patterned photoresist layer 325, and then the heavily doped polysilicon layer Do the etching to make the polycrystalline paper standard suitable for the Chinese coffee house standard (CNS) A4 specification (21GX297mm) (please read the precautions on the back before filling in this page) System A7 --_ B7 5. Description of the invention (丨 +) The silicon layer is formed as shown in 323a, 324a, and 316 in Figure 3F. The next step is to sputter the source and drain contact metals. The method of formation It is first sputtered with 50nm chromium, and then plated with a layer of 600nm aluminum, so that It forms chromium layer 325 and aluminum layer 326 in Figure 3E respectively. Then the entire wafer is treated with hydrogen plasma for one hour, and then a layer of amorphous silicon nitride with a thickness of 400 nm is deposited under PECVD at 260 ¾ Hydrogen (a_siNx: H) was chosen to be 3nm in order to form the protective layer 327p microcrystalline precious layer 31 3 because polycrystalline silicon thin film transistors of various thicknesses have been tested and their source-drain current (Ids) The graph of the electrical conversion characteristic of the gate-source voltage (VGS) is shown in Figure 4. The dotted line represents the source drain voltage (Vds) equal to 0. Volt (V), and the solid line represents the source The drain voltage (VDS) is equal to 5 volts. In this experiment, the polycrystalline evening layer was made by laser tempering with an energy density of 254mJ / cm2. Referring to FIG. 4, the lines 401 and 410 represent the conversion characteristic curve of the polycrystalline silicon thin film transistor without the microcrystalline silicon layer, and the lines 4 0 3 and 4 3 0 represent the polycrystalline silicon with a degree of 3 nm in the microcrystalline silicon layer The conversion characteristic curve of the thin film transistor. Lines 406 and 460 represent the conversion characteristic curve of the polycrystalline silicon thin film transistor with a degree of 6nm. The lines 4 0 9 and 4 9 0 represent the degree of the microcrystalline silicon layer is 9. The conversion characteristic curve of the polycrystalline silicon thin film transistor of nm. Lines 412 and 421 represent the conversion characteristic curve of the polycrystalline stone thin film transistor with the degree of the microcrystalline treasure layer of 12 nm. As shown in Figure 4, the size of the line paper is applicable to the Chinese National Standard (CNS) Α4 specification (21 〇X 297 mm) ---- ^ ---- 一 装 ------ 定- ---- We- (please read the notes on the back before filling this page) A7 ________B7 printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs V. Invention description ((ί) 403 and 430 are the best conversion characteristic curves, However, lines 41 and 410 are the worst conversion characteristic curves. In addition, the horizontal axis of Figure 4 represents the current between the source and the drain, and the vertical axis represents the voltage between the gate and the source. The unit of the horizontal axis is ampere (A), and the unit of the vertical axis is volts. The energy of the tempering laser can be adjusted, so XeCI lasers with different energy density can be used for thin films with different thicknesses of microcrystalline silicon. The crystal rice is tempered to form polycrystalline silicon thin film transistors. There are four kinds of laser energy density, which are 217, 229, 238 and 264mJ / cm2. And the mobility of each specific data is made up of 9 identical The average value of the movement rate of the components of the experiment is shown in Figure 5. Figure 5 shows the different tempering mines by the movement rate. The energy density is a graph of thin-film transistors with different microcrystalline silicon layer degrees, in which the microcrystalline silicon layer degrees are divided into four types of 3nm, 6nm, 9nm and I2nm. In the fifth figure, line 5 1, 502, 503, and 504 represent the curves of the microcrystalline silicon layers with 3nm, 6nm, 9nm, and 12nm respectively. Obviously, no matter how much the energy of the tempering laser is set, the mobility of all thin-film transistors is based on The transistor of the 3nm microcrystalline stone evening layer has the maximum mobility. The unit of the horizontal axis in Figure 5 is mJ / cm2, and the unit of the vertical axis is cm2 / vs. After the process described in the first embodiment above After the step process, the cross-sectional view of the channel layer of the transistor is shown in Figure 6. In this case, the polycrystalline stone is 602 and the insulating layer 601 is almost the same as in Figure 2 only ^ in Figure 2 Amorphous silicon is replaced by microcrystalline silicon 603 in figure 6, and the paper size is applicable to China National Standard (CNS) Α4 specification (210 \ 297 public) (please read the precautions on the back before filling this page) -Install_
、1T A7 B7 五、發明説明(丨6 ) 多晶矽的範圍比第2圖中的更大,這也就是本發明所製成 的薄膜電晶體會有較佳的電性的原因。 之 明園 發範 本利 爲專 僅請 述申 所之 上明 以發 本 定 已 而 例 施 實 隹 飾 修 或 變 改 效 等 之 成 。 完内 所圍 下範 神利 精專 脱應 未均 它 其 凡 本 離 限之 以示 用揭 非所 並明 發 請 »^1 之 述 下 在 含 包 (請先閲讀背面之注意事項再填寫本頁) 裝-1T A7 B7 5. Description of the invention (丨 6) The range of polysilicon is larger than that in Figure 2, which is why the thin-film transistors made by the present invention have better electrical properties. The development of the Ming Garden is only for the purpose of reciting the Shang Ming of the SFO, and the implementation of the decoration of the clam or the modification of the effect, etc., by the issuing of the copy. After the end of the circumstance, the Fanshenli Mastery should not be equal to its other limitations. It is used for demonstrating the purpose of revealing the non-exchange and expressly requesting the package »^ 1 (please read the precautions on the back before filling in This page) Pack-
、1T 經濟部中央標準局員工消費合作社印掣 17 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐)、 1T Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 17 This paper standard is applicable to China National Standard (CNS) Α4 specification (210X297mm)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW86102809A TW312029B (en) | 1997-03-07 | 1997-03-07 | Manufacturing method of thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW86102809A TW312029B (en) | 1997-03-07 | 1997-03-07 | Manufacturing method of thin film transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
TW312029B true TW312029B (en) | 1997-08-01 |
Family
ID=51566477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW86102809A TW312029B (en) | 1997-03-07 | 1997-03-07 | Manufacturing method of thin film transistor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW312029B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI497327B (en) * | 2009-01-30 | 2015-08-21 | Synopsys Inc | Method and apparatus for performing rlc modeling and extraction for three-dimensional integrated circuit (3d-ic) designs |
-
1997
- 1997-03-07 TW TW86102809A patent/TW312029B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI497327B (en) * | 2009-01-30 | 2015-08-21 | Synopsys Inc | Method and apparatus for performing rlc modeling and extraction for three-dimensional integrated circuit (3d-ic) designs |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5834071A (en) | Method for forming a thin film transistor | |
US7563659B2 (en) | Method of fabricating poly-crystalline silicon thin film and method of fabricating transistor using the same | |
TWI227565B (en) | Low temperature poly-Si thin film transistor and method of manufacturing the same | |
TW522439B (en) | Semiconductor device and method of manufacturing the same | |
TW303526B (en) | ||
US5275851A (en) | Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates | |
JP4802364B2 (en) | Semiconductor layer doping method, thin film semiconductor device manufacturing method, and semiconductor layer resistance control method | |
TW546846B (en) | Thin film transistor and method for manufacturing the same | |
US20070290210A1 (en) | Semiconductor device and method of fabricating a ltps film | |
US20040195568A1 (en) | Thin film transistor substrate and method for manufacturing the same | |
TW200924067A (en) | Methods of fabricating crystalline silicon, thin film transistors, and solar cells | |
Shimizu et al. | High-mobility bottom-gate thin-film transistors with laser-crystallized and hydrogen-radical-annealed polysilicon films | |
TWI222752B (en) | Method for manufacturing a thin film transistor | |
TW463378B (en) | Method of manufacturing semiconductor device | |
Han et al. | Poly-Si TFT fabricated at 150 deg C using ICP-CVD and excimer laser annealing | |
JPH0422120A (en) | Thin film semiconductor device | |
TW312029B (en) | Manufacturing method of thin film transistor | |
US8034671B2 (en) | Polysilicon film, thin film transistor using the same, and method for forming the same | |
JP2007335780A (en) | Tft substrate, its manufacturing method, display device using it and evaluation method of interlayer insulation film | |
JPH09321305A (en) | Thin film transistor and liq. crystal display using the same | |
TW200412673A (en) | Buffer layer capable of increasing electron mobility and thin film transistor having the buffer layer | |
Jang et al. | Low temperature polycrystalline silicon thin film transistors | |
CN105742370A (en) | Low-temperature poly-crystal thin film transistor and preparation method thereof | |
JP2003051600A (en) | Thin-film transistor and manufacturing method therefor | |
KR20050113294A (en) | Poly crystalline si thin film structure and fabrication method thereof and tft using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |