TW306934B - - Google Patents

Download PDF

Info

Publication number
TW306934B
TW306934B TW84109949A TW84109949A TW306934B TW 306934 B TW306934 B TW 306934B TW 84109949 A TW84109949 A TW 84109949A TW 84109949 A TW84109949 A TW 84109949A TW 306934 B TW306934 B TW 306934B
Authority
TW
Taiwan
Prior art keywords
ore
iron ore
sintered
iron
raw material
Prior art date
Application number
TW84109949A
Other languages
Chinese (zh)
Inventor
Minoru Watanabe
Original Assignee
Kawasaki Steel Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Co filed Critical Kawasaki Steel Co
Application granted granted Critical
Publication of TW306934B publication Critical patent/TW306934B/zh

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(1 ) 技術領域 本發明係關於使用結晶水含有率爲3 %以上之髙結晶 水鐵破做爲原料之一部分,製造高鱸用燒結碛的方法。 背景技術 於安定且高效率操作髙爐上,乃要求髙品質的燒結礦 ,且嚴格管理冷間强度,被還原性,耐還原粉化性等之品 質。又,爲降低燒結礦之製造费用,燒結確成分之產率及 生產性亦成爲重要的管理項目。 此類燒結礦一般以下列之方法製造。首先,於10 mm程度以下之粉鐵破中混合石灰石等之含C a 0副原料 ,矽石,蛇紋岩等之含S i 〇2副原料及焦炭等之固體燃 料,於其中加入適當的水分並造粒。將此造粒物於Dwigh-t-LUyd式燒結機之移動鋼板上裝入適當厚度並將表層部 的固體燃料點火。點火後,一邊吸引朝下方的空氣一邊令 固體燃料燃燒,經由此燃燒熱令配合原料燒結,做成燒結 塊。將此燒結塊弄碎並整粒,可得一定粒徑以上之燒結礦 。未滿一定粒徑(通常爲一 5mm)之燒結礦稱爲返礦, 爲恢復成燒結礦的原料。 以往,燒結礦的鐵原料主要爲使用赤鐵礦(F e2〇3 :Hematite)和磁鐵磺(F e3〇4:Magnetite)等。 然而,近年來隨著此些良質鐵礦的產置減少,含有多 :針鐵礦(F e2〇3· n H2〇 : Goethite)之鐡礦的使 用置有逐渐增加的傾向。針鐵破其具有含多量結晶水,於 本紙張尺度適用中國國家標準(CNS)A4規格(2丨0X297公釐)_ 4 _ ^^1 m IK m nn in 1^1 *. an· m (請先閱讀背面之注意事項再填寫本頁) ^GG934 A7 B7 五、發明説明(2 ) 常溫及加熱後之氣孔率髙的特徵,若多董使用做爲燒結原 料,則不僅成品强度降低,且有產率和生產性降低之問題 點。 產生此類問題之理由被認爲如下。即,於燒結過程中 ,C a 0與F e2〇3反應生成鐵酸鈣系之融液時,由於含 有多量Goethite之鐵礦加熱後的氣孔率非常高於其他之織 磧,故反應性髙,使融液中之F e2〇 3澳度變髙。因此, 液相溫度變高,氣孔再排列所需要之時間變短。其結果, 阻礙氣孔的再排列,使1〜5 mm程度之粗大氣孔比例增 加,並使燒結礦之强度、產率降低。 若使用如上述具有高結晶水之鐵礦,例如以含有多量 Goethite之鐵確做爲燒結原料,則產生許多問題。因此, 爲多置使用此等鐵磧乃提案出各種技術。 經濟部中央標準局員工消費合作社印製 1^1 1^1 mf ^ I nn ml ^^^1 一OJ (請先閲讀背面之注意事項再填寫本頁) 例如,於特開平3 — 4 7 9 2 7號中掲示藉由在此等 鐵礦之周邊配合以含有特定比例之MgO- S ί 〇2副原 料,可防止鐵酸鈣系之融液中多量溶融F e 2〇3之方法。 於此方法中,於多量使用含有許多Goethite之鐵磷做爲燒 結原料之情形,必須配合以含有M g 0 — S i 〇 2之副原 料,使製造费用變高。更且於此方法中,爲了使含有 Mg 0 — S i 〇2之副原料的覆被能完全進行’乃;必須、添 加固體燃料,隨著消费熱置的增大而有製造费用18得* 之問題。又,由於含有MgO — S i 〇2副原料和含有高 結晶水之鐵磷的比例爲被指定,故若含有高結晶AS## 的配合率超過3 0 %,則必須配合大纛的Mg 〇 — 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐)_ 5 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(3 ) s i 〇2,則產生所謂的高爐中之爐渣比上升的問題。 又,另一方面,於特開平3 — 1 0 0 2 7號公報中揭 示藉由含有許多Goethite之鐵礦於1 2 0 0 °C以上之溫度 下加熱一定時間,並令鐵礦緻密化,可使氣孔率降低,並 可防止鐵酸鈣系之融液中多置溶融F e 2〇3之方法。於此 方法中,由於必須將原料預先以高溫加熱處理,故有鼸著 消费熱置的增大而使製造费用變高之問題。 本發明爲著眼於上述之現象,其目的爲於多置使用含 有高結晶水之鐵礦,例如Goethite做爲燒結原料之情形中 ,提供不會產生所謂的消费熱置增大和生產性降低、副原 料大幅增加之問題,而生產出產率佳之燒結破的方法爲其 目的。 發明之揭示 本發明爲解決上述之課題,乃於以高結晶水之鐵礦做 爲原料之一部分製造燒結礦,將高結晶水鐵礦與返礦混合 ,造粒後,配合其他原料並燒結爲其特徽之以高結晶水之 鐵礦做爲原料之燒結碛的製造方法。 更具髏而言,其爲將結晶水含有率爲3 %以上之髙結 晶水鐵破與5 mm以下之返礦以返礦/高結晶水鐵碛之比 爲1 / 5以上之比例混合,造粒後,混合其他原料並燒結 爲其特徽之以高結晶水之鐵礦做爲原料之燒結礦的製造方 法。於此情形中,做爲前述之返礦以使用CaO含有率爲 8〜15重置%之返礦爲較佳,又,前述返磧爲粒度較小 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公渣)_ 6 _ 1^1 —^^1 —^^1 —^1— ^^^1 —^^1 . ml —^ϋ ^^^1、一-5J (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印裝 A7 B7 五、發明説明(4 ) 者爲較佳,例如以1 mm以下者爲合逋。 圓面之簡單說明 圓1爲燒結原料製造工程之概略說明圖。 圓2爲示出以Goethite做爲主成分之鐵礦A的配合率 與產率之關係圖。 圖3爲示出變化鐵礦A之配合率時之燒結塊的氣孔徑 分布圚。 圖4爲示出嫌礦A之配合率與融液之移動距離之關係 圖0 圚5爲示出融液之移動距離與氣孔徑分布指數之關係 圖。 圖6爲C a 0 — F e2〇3系之狀態圊。 圓7爲溶融深度之實驗方法的說明圚。 圖8爲示出鐵礦之氣孔率與溶融深度之關係圖。 圖9爲溶融深度之實驗方法的說明圖。 _1 0爲示出胼中之C a 0澳度與溶融深度之關係圖 〇 圚1 1爲溶融深度之實驗方法的說明圖。 圖1 2爲示出返礦的被覆對鐵礦溶融深度之影響圖。 圖1 3爲實施例2中返礦被覆實驗方法之流程圖。 圖14爲示出實施例2之實驗結果。 實施發明之最佳形態 本紙浪尺度適用中國國家標準(CNS ) A4規格(210X297公釐) n- HH ml m· —f^^i nn ^ ^^^1 ^^^1 ^^^1 ml nn、一OJ (請先閱讀背面之注意事項再填寫本頁) A7 B7 .506934 五、發明説明(5 ) 以下,再以實驗之經過說明本發明之構成及作用。 首先,本發明者等調査令以Goethite爲主髏之髙結晶 水鐵礦(以下略稱爲鐵礦A )之配合率增加時之燒結確產 率的變化。其結果示於圔2。由於可知,若大置使用鐵確 A則燒結磺之產率大爲降低。 圖3爲示出鐵礦A配合車0%與4 0 %時之燒結塊的 氣孔徑分布之調査結果。圖3爲,縱軸爲氣孔徑D (mm ),横軸爲測定之氣孔徑以上的度數比例R ( % ),以兩 對數所點繪者。由圖3可知隨著鐵礦A之配合率的增加, 則1 mm〜5mni程度之粗大氣孔的比例增加。 此處,燒結礦的產率爲與燒結塊的强度具有很髙的相 關性,燒結礦的產率爲依(1)〜(4)式,可由燒結塊 的强度推定。 Y = K . 3n -.(1) <T 3 — (Τ 0 m exp (- C • P ) '** ( i ί ) σ 〇 = S · r n T · e X P ( —U · Q ) …(ί 5 ) c = h 1 · /? + h 2 --(4) Y :燒結礦之產率(%) <r 3 :燒結塊的引張强度(MPa) (T 〇 :燒結塊的基質强度(MPa) P:燒結塊的氣孔率(一) m :燒結塊中鐵酸鈣含有率 Q:燒結塊中矽酸鈣含有率 冷:氣孔徑分布指數(圖3之圖的傾斜度) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)A7 B7 printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (1) Technical field The present invention relates to the use of high-quality crystal water iron with a crystal water content of 3% or more as a part of raw materials for the production of high sea bass Method of sintering moraine. 2. Description of the Related Art High-quality sintered ore is required for stable and high-efficiency operation of high-temperature furnaces, and the quality of cold room strength, reducibility, and resistance to reduction and pulverization are strictly controlled. In addition, in order to reduce the production cost of sintered ore, the yield and productivity of sintered components have also become important management items. Such sintered ore is generally manufactured by the following method. First, mix the Ca 0 secondary raw materials such as limestone and the solid fuel containing Si 0 2 secondary raw materials such as silica and serpentine with coke and other solid fuels in the powder iron broken below 10 mm, and add appropriate moisture And granulate. The granulated material is loaded on the moving steel plate of the Dwigh-t-LUyd sintering machine to an appropriate thickness and the solid fuel in the surface layer is ignited. After ignition, the solid fuel is burned while sucking the air downward, and the raw materials are sintered through this heat of combustion to make a sintered block. By crushing and sizing the sintered block, sintered ore with a particle size above a certain size can be obtained. The sintered ore that is less than a certain particle size (usually a 5 mm) is called re-mineralization, and it is the raw material for recovery into sintered ore. Conventionally, the iron raw materials of sintered ore mainly use hematite (Fe203: Hematite) and magnet sulfonate (Fe304: Magnetite). However, in recent years, as the production of these good-quality iron ores has decreased, the use of ores containing more than: goethite (Fe203 · n H2〇: Goethite) has a tendency to gradually increase. Needle iron has a large amount of crystal water, which is applicable to the Chinese National Standard (CNS) A4 specifications (2 丨 0X297mm) _ 4 _ ^^ 1 m IK m nn in 1 ^ 1 *. An · m ( Please read the precautions on the back before filling in this page) ^ GG934 A7 B7 V. Description of the invention (2) The characteristics of porosity at normal temperature and after heating, if Duo Dong is used as a sintered raw material, not only the strength of the finished product is reduced, but also There is a problem that productivity and productivity decrease. The reasons for such problems are considered as follows. That is, during the sintering process, when Ca 0 and Fe 2〇3 react to form a calcium ferrite melt, the porosity of the iron ore containing a large amount of Goethite after heating is very higher than that of the other moraine, so the reactive high , So that the F e203 in the melt becomes high. Therefore, the temperature of the liquid phase becomes higher, and the time required for the rearrangement of the pores becomes shorter. As a result, the rearrangement of pores is hindered, the ratio of coarse pores of about 1 to 5 mm is increased, and the strength and yield of sintered ore are reduced. If iron ore with high crystallization water as described above is used, for example, iron containing a large amount of Goethite is indeed used as a sintering raw material, many problems arise. Therefore, various technologies have been proposed for the multiple use of these moraine. 1 ^ 1 1 ^ 1 mf ^ I nn ml ^^^ 1 1 OJ printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs (please read the precautions on the back before filling out this page) For example, in Tekaiping 3 — 4 7 9 2 No. 7 shows a method to prevent excessive melting of Fe 2〇3 in the molten liquid of calcium ferrite system by blending the periphery of these iron ores with a certain proportion of MgO-S 〇2 secondary raw materials. In this method, when a large amount of iron-phosphorus containing Goethite is used as a sintering raw material, a secondary raw material containing M g 0-S i 〇 2 must be added to increase the manufacturing cost. Furthermore, in this method, in order to make the coating of the auxiliary raw materials containing Mg 0-S i 〇2 can be completely carried out, it is necessary to add solid fuel, and as the consumption heat increases, there is a manufacturing cost of 18 * Question. In addition, since the ratio of MgO-S i 〇2 secondary raw materials and iron-phosphorus containing high crystal water is specified, if the blending rate of high crystal AS ## exceeds 30%, MgO must be blended. — This paper scale applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) _ 5 A7 B7 printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs V. Description of the invention (3) si 〇2, the so-called blast furnace is produced The problem of rising slag ratio. On the other hand, Japanese Unexamined Patent Publication No. 3-10 0 2 7 discloses that iron ore containing a lot of Goethite is heated at a temperature above 1 200 ° C for a certain period of time to densify the iron ore, The method can reduce the porosity and prevent the method of dissolving F e 2〇3 in the molten solution of calcium ferrite. In this method, since the raw material must be heat-treated at a high temperature in advance, there is a problem that the consumption cost increases due to the increase in consumption heat. The present invention focuses on the above-mentioned phenomenon, and its purpose is to provide the use of iron ore containing high crystallization water, such as Goethite as a sintering raw material, to provide no so-called increase in consumption heat and decrease in productivity, vice The problem of a substantial increase in raw materials, and the method of producing sintered cracks with good yields for its purpose. DISCLOSURE OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to manufacture sintered ore by using iron ore with high crystalline water as a part of raw materials, mix the high-crystal iron ore with re-mining, granulate it, mix with other raw materials and sinter Its special emblem is the manufacturing method of sintered moraine with iron ore with high crystal water as raw material. More specifically, it is a mixture of high-quality crystalline water and iron with a crystal water content of 3% or more and a return of less than 5 mm at a ratio of return ore / high crystalline water and iron moraine of 1/5 or more. After granulation, other raw materials are mixed and sintered as its special emblem to produce sintered ore with iron ore with high crystallization water as raw material. In this case, it is better to use a CaO content rate of 8 ~ 15 reset% as the aforesaid reflow, and the aforementioned remoor is smaller in size. The paper size is applicable to the Chinese National Standard (CNS) A4 Specification (210X297 slag) _ 6 _ 1 ^ 1 — ^^ 1 — ^^ 1 — ^ 1— ^^^ 1 — ^^ 1. Ml — ^ ϋ ^^^ 1, 1-5J (please read the back first Please pay attention to this page and fill out this page) A7 B7 printed and printed by the Employees ’Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Invention description (4) is preferred, for example, those with a size of 1 mm or less are combined. Brief description of the round surface Circle 1 is a schematic illustration of the sintering raw material manufacturing process. Circle 2 is a graph showing the relationship between the compounding ratio of iron ore A having Goethite as the main component and the yield. Fig. 3 is a graph showing the pore size distribution of the sintered block when the blending ratio of iron ore A is changed. Fig. 4 is a graph showing the relationship between the blending rate of the suspected mineral A and the moving distance of the melt. Fig. 5 is a graph showing the relationship between the moving distance of the melt and the pore size distribution index. Fig. 6 is the state of Ca 0-F e2〇3 system. Circle 7 is an illustration of the experimental method of the melting depth. 8 is a graph showing the relationship between the porosity of iron ore and the melting depth. 9 is an explanatory diagram of the experimental method of the melting depth. _1 0 is a graph showing the relationship between Ca 0 degrees in scorpion and the melting depth. 圚 1 1 is an explanatory diagram of the experimental method of the melting depth. Fig. 12 is a graph showing the effect of re-covering on the melting depth of iron ore. Fig. 13 is a flow chart of the experimental method of re-covering coating in Example 2. 14 is a graph showing the experimental results of Example 2. FIG. The best form for carrying out the invention The paper wave scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) n- HH ml m · —f ^^ i nn ^ ^^^ 1 ^^^ 1 ^^^ 1 ml nn 1. An OJ (please read the precautions on the back before filling in this page) A7 B7 .506934 5. Description of the invention (5) Below, the structure and function of the present invention will be explained by experiment. First, the present inventors investigated the change in the sintering yield when the compound ratio of Goethite-based high-quality crystallized ferrihydrite (hereinafter abbreviated as iron ore A) was increased. The result is shown in 圔 2. It can be seen that the yield of sintered sulfonate is greatly reduced if the iron is used in a large amount. Fig. 3 shows the investigation results of the pore size distribution of the sintered block when the iron ore A is mixed with 0% and 40%. Figure 3 shows that the vertical axis is the pore diameter D (mm), and the horizontal axis is the ratio R (%) of the degree above the measured pore diameter, plotted in two logarithms. It can be seen from FIG. 3 that as the mix ratio of iron ore A increases, the proportion of coarse pores of about 1 mm to 5 mni increases. Here, the yield of the sintered ore is highly correlated with the strength of the sintered block. The yield of the sintered ore is based on the formulas (1) to (4) and can be estimated from the strength of the sintered block. Y = K. 3n-. (1) < T 3 — (Τ 0 m exp (-C • P) '** (i ί) σ 〇 = S · rn T · e XP (—U · Q)… (Ί 5) c = h 1 · /? + H 2-(4) Y: yield of sintered ore (%) < r 3: tensile strength of sintered block (MPa) (T 〇: matrix of sintered block Strength (MPa) P: Porosity of the sintered block (1) m: Calcium ferrite content in the sintered block Q: Calcium silicate content in the sintered block Cold: Pore size distribution index (inclination of the graph in Figure 3) The paper size is in accordance with Chinese National Standard (CNS) A4 (210X297mm)

In mM ^^^1 mi n J ^^^1 ml If 1^11 ^^^1 ,yeJ (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印裝 經濟部中央標準局員工消費合作社印袋 A7 B7 五、發明説明(6 ) Κ» η,S,T,U,hi,I12:定數 氣孔徑分布指數(/?)爲圈3之圓的傾斜度,爲各燒 結塊之固有値。使用其可由上述(4)式求出上述(2) 式中之C。 鐵礦A之配合率由0 %至4 0 %增加時之礦物組成, 氣孔率,氣孔徑分布指數之測定値和使用上述(1 )〜( 4 )式爲主要因素計算產率變化之結果,可推定產率降低 約8 0 %係起因於氣孔徑分布指數的降低。由上述,可得 知由鐵礦A之產率降低係起因於氣孔徑分布所代表之氣孔 構造的變化。因此,隨著鐵礦A增加的氣孔構造變化被認 爲與支配氣髖合爲一髏的融液流動性有密切的關係,因此 測定做爲表示融液性狀指數之融液的移動距離,並調査融 液流動性對鐵礦A的影響。 圖4爲使用S r 0做爲追蹤劑,於投入熱量一定之條 件下測定融液移動距離的結果。由圖4,可知隨著鐵礦A 的增加,融液之移動距離減少。 圖5中示出融液移動距離與氣孔徑分布指數之關係。 融液移動距離的減少同時使氣孔徑分布指數降低。其被認 爲起因於經由融液流動性的降低,而使氣髏之合爲一體被 阻礙。 又,表1爲示出鐵碛A之.配合率由0%至4 0%增加 時之鐵酸鈣系融液的組成。由此,可知隨著鐵礦A的配合 率增加,可使鐵酸鈣系融液中的F e 2〇3澳度變髙。 由此,所謂的鼸著鐵礦A之配合率的增加而使融液之 本紙張尺度適用中國國家標準(CNS > A4規格(210X297公釐) -—-I - tm nn ml t^n M flu— n n^— 一OJ (請先閱讀背面之注意事項再填寫本頁) A7 B7 經濟部中央標準局員工消費合作社印裝 五、 發明説明( 7 ) 1 移 動 距 離 減 少 > 乃 由 圖 6 所 示 之 C a 0 — F e 2 0 3 系 狀 態 1 1 園 > 可 知 由 於 不 鼸 著 F e 2 0 3 澳度 之 增 加 而使 液 相 溫 度 變 1 I 高 9 故 融 液 之 移 動 時 間 減 少 0 1 I 根 據 到 此 爲 止 的 結 果 9 可 知 鐵 礦 A 之 增 加 所 伴 隨 的 產 請 先 閱 1 | 率 的 降 低係 起 因 於 融 液 中 之 F e 2 0 3 濃 度 的 上 升 0 由 此 9 讀 背 I 1 1 可 知 融 液 組 成 爲 與 鐵 破 和 生 石 灰 之 反 應 性 有 密 切 的 關 係 9 之 注 1 1 意 I 並 進 行 圓 7 所 示 之 實 驗 0 事 項 1 再 A 如 圚 7 ( a ) 所 示 9 於 1 6 m m X 1 6 m m X 高 度 填 寫 本 1 0 m m 之 鐵 礦 1 1 上 附 著 8 m ΠΊ 中 X 8 m m X 髙 度 8 頁 1 | m m 石 灰 石 1 2 的 樣 品 > 於 1 3 0 0 °c 溫 度 下 各 保 持 2 、 1 I 4 > 6 分 鐘 後 9 以 水 冷 卻 Ο 冷 卻 後 9 於 切 wT 樣 品 之 中 心 部 1 1 I 位 9 如 圖 7 ( b ) 所 示 9 於 鐵 確 1 1 中 已 貫 入 石 灰 石 1 2 1 訂 〇 將 此 切 斷 面 硏 磨 > 並 將 斷 面 以 1 0 倍 投 影 機 攝 影 9 求 出 1 圖 7 ( b ) 所 示 之 溶 融 深 度 1 4 0 1 1 圚 8 示 出 鐵 破 1 1 之 氣 孔 率 乃 影 響 上 述 溶 融 深 度 1 4 1 〇 由 線 2 1 > 2 2 2 3 爲 分 別 示 出 鐵 礦 之 氣 孔 率 爲 I 1 1 0 % 2 2 8 % Λ 3 2 4 % 者 〇 如 由 圖 8 所 闥 1 [ I 明 , 隨 著 鐵 磧 氣 孔 率 變 高 > 則 溶 融 深 度 增 加 對 於 嫌 礦 之 1 1 I 反 應 速 度 可 知 鐵 礦 之 氣 孔 率 的 影 響 很 大 0 1 1 其 次 9 如 圖 9 所 示 > 於 附 著 以 生 石 灰 1 2 處 9 如 表 2 1 1 所 示 > 附 著 以 C a 0 濃 度 以 1 0 0 • 0 % 6 2 0 % > 1 1 4 2 0 % N 2 2 0 % 變 化 之 餅 1 5 > 並 進 行 與 圚 7 同 1 I 樣 之 實 驗 Ο 1 1 I 圓 1 0 示 出 餅 1 5 中 之 C a 0 澳 度 對 上 述 溶 融 深 度 1 1 1 本紙張又度適用中國國家標準(CNS ) A4規格(210X297公釐) A7 B7 經濟部中央標準局員工消費合作社印製 五、 發明説明( 8 ) 1 I 1 4 的 影響 0 於 圖 1 0 中 9 鐵 破 1 1 之 氣 孔 率 ( 1 1 0 1 1 % ) 9 保持 時 間 ( 4 分 鐘 ) & JF^S 一 定 0 如 由 圇 1 0 所 闡 明 > 1 可 知 随 著餅 1 5 中 之 C a 0 澳 度 的 降 低 使 溶 融 深 度 降 低 f 1 請 1 I 0 先 閱 1 更 且, 由 於 在 鐵 礦 和 生 石 灰 的 反 atg m 界 面 中 具 有 C a 0 讀 背 面 1 1 的 澳 度 梯度 9 故 可 認 爲 鐵 礦 和 生 石 灰 的 反 應 爲 擴 敝 速 度 決 之 注 1 1 意 I 定 者 9 但若 由 F i C k 法 則 逆 算 擴 散 係 數 則 由 本 實 驗 所 事 項 1 I 再 1 « 算 出 之 擴散 係 數 若 與 以 位 所 報 告 相 比 較 9 則 大 1 0 3^ 填 寫 本 I 1 0 >其仍由於生成的融液爲於鐵礦中的氣孔和龜裂中 頁 1 1 浸 透 9 且非 爲 一 般 的 體 積 擴 敝 且 表 面 擴 散 變 成 可 支 配 的 0 1 I 由 此, 隨 著 增 加 鐵 確 A 的 配 合 率 > 可 使 鐵 酸 鈣 融 液 中 1 I 的 F e 2 0 3 澳 度 變 高 0 1 訂 | 其 乃因 爲 於 實 概 燒 結 層 內 C a 0 相 對 於 F e 2 0 3 爲 不 1 足 > 而 於燒 結 過 程 中 9 C a 0 與 F e 2 0 3 反 應 生 成 鐵 酸 鈣 1 1 系 融 液 時, 由 於 鐵 確 A 之 加 熱 後 的 氣 孔 率 非 常 高 於 其 他 的 1 鐵 礦 ( 2〜 3 倍 ) 9 而 助 長 表 面 擴 散 使 溶 融 深 度 增 加 並 I 使 F e 2 0 3 之 反 應 Μ 增 加 0 因 此 , 於 大 配 合 鐵 礦 A 時 > 1 I 抑 制 融 液過 剩 生 成 之 反 應 乃 爲 重 要 0 1 1 | 由 此, 相 對 於 以 圖 7 所 示 方 法 測 定 溶 融 深 度 如 圖 1 1 1 1 所 示, 於 生 石 灰 1 2 與 鐵 磧 1 1 之 間 夾 層 以 表 3 所 示 1 1 組 成 之 返確 1 3 並 進 行 實 驗 0 於 圖 1 2 中 曲 線 2 4 爲 示 出 1 I 圖 7 ( a ) 所 示 實 驗 之 結 果 > 曲 線 2 5 爲 示 出 夾 層 以 返 礦 1 I 1 3 之 圓1 1 中 所 示 之 * 驗 結 果 〇 由 圚 1 2 9 於 生 石 灰 1 I 1 2 與 鐵礦 1 1 之 間 經 由 夾 以 返 碛 1 3 可 抑 制 溶 融 深 度 1 1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 11 A7 3 0 C 9 3 4 B7 五、發明説明(9 ) (請先閲讀背面之注意事項再填寫本頁) 。其乃起因於鐵礦與石灰石之溶融反應爲以反應層內之 C a 0的濃度梯度爲驅動力。即,其經由預先以比石灰石 之C a 0澳度還低的返礦被覆於鐵礦上,可抑制鐵礦之溶 融反應。 本發明爲由此些實驗結果進行硏究之結果。藉由 C a 0澳度低且以已與F e2〇3反應之返鑛被覆於鐵確A 之周邊,並抑制鐵確A與生石灰之急速反應,並令鐵酸鈣 系融液中之F e2〇3澳度減少,而可增加氣孔再排列所需 之時間,且不使固髗燃料之配合量增大,成功地提高燒結 礦的產率。 被覆鐵礦A之返礦的粒度需爲細者,爲5 mm以下者 。由於其以細粒者較易附著於鐵礦A之周邊,而所欲者爲 1 mm以下。與鐵礦A混合之返磧置爲相對於鐵磧A 1重 置份,以0 . 2重置份以下1重置份以下。於未滿〇 . 2 重置份,則返礦被覆於鐵礦A之表面不足,即使以超過1 重置份混合,其效果飽和且由置的平衡觀點亦爲不適當。 經濟部中央標準局員工消費合作社印製 又,前述返磷以使用C a 0含有率爲8〜1 5重置% 之返破爲較佳,於C a 0含有率爲未滿8重置%時,則因 C a 0含有量過少,阻礙溶融反應,而爲不佳,若起過 1 5重置%,則由於抑制溶融反應之效果不大,喪失添加 返礦的僙値。 以下,列舉實施例具體說明本發明。以下,以含有嫌 分原料做爲之體者稱爲主原料,於其中加入石灰石,矽石 者稱爲新原料,再添加返磧,焦炭者稱爲配合原料。 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X 297公釐)_ 12 - "~一 經濟部中央橾準局員工消費合作社印掣 A7 B7 五、發明説明(10 ) (實施例1 ) 實驗中所使用之鐵破A的化學組成示於表4。此鐵礦 A爲豪州產的鐵磧,算術平均徑爲3 lmm,結晶水含 有率爲8. 9%。此鐵鑛a依圖丨所示之流程配製。於園 1中,1爲鐵礦A,2爲返礦,3爲其他剩餘之燒結原料 ,4爲皿型造粒機,5爲鼓式混合器。 相對於主原料,配合以60%之鐵礦A(鐵礦1), 返礦2只加入鐵礦A之1/4 ,並使用皿型造粒機4與鐵 確A混合並似(quas i )粒化。將此似粒子與鼓式混合器 5中殘餘的配合原料3 (含有低結晶水之鐵礦、石灰石、 矽石、焦炭)混合做成燒結原料。 將其裝入直徑3 0 0mm,高度4 0 0mm之燒結試 驗鍋中,並一邊以1. 2Nm 3/mi η吸引入空氣一邊 進行燒成,所得之燒結塊由2m之高度1次落下,並算出 此時具有1 0mm以上之重置比例,做爲產率。其結果示 於圚2。但是,於圚2之燒結原料中的CaO含有置( 9. 5 w t % ) ,Si〇2含有置(5. 0 w t % ),焦 配合a: (3· 5wt%)必須爲定値。如圖2所示,於配 合60%嫌礦A時,以習知法之產率爲66. 3%,而於 實施例者爲6 9 . 5 %。 如由圓2所闥明,藉由在鐵礦A之周邊添加返確,則 不會產生所謂的製造费用增加之問題,且可製造產率佳且 高品質的燒結磧。 本紙張尺度適用中國國家標準(CNS〉A4規格(21〇:<297公嫠)_ _ (請先閱讀背面之注意事項再填寫本頁) 訂 A7 B7 五、發明説明(11 ) (實施例2 ) 實驗中所使用之鐵碛A與返礦之化學組成示於表5。 此鐵礦A爲豪州產的鐵破,算術平均徑爲3. Omm,結 晶水之含有率爲8. 4%。此鐵確A依圖之流程配製。於 圖中,1爲鐵礦A,2爲返礦,3爲其他剩餘之燒結原料 ,5爲鼓式混合器,6爲鐵礦A與返礦之預備造粒品。 相對於主原料,配合以50%之鐵礦A(鐵礦1), 返確只加入鐵礦A之1/4 ,並使用鼓式混合器5與鐵確 A混合並造粒。此鐵礦A與返礦之預備造粒品6 —旦輸送 至原料製造場後,置入燒結工場內,並與剩餘之燒結原料 3混合,造粒做成燒結原料。 實驗爲使用實機燒結機進行,與習知法比較生產率, 產率,R I並示於圖1 〇中。鐵礦A經由以返礦預備造粒 ,可提高生產率爲0. 06 (t/h.m2),產率爲 1 . 7%,Jis — RI 爲 2. 2 % 〇 (請先聞讀背面之注意Ϋ項再填寫本頁) 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) Μ规格(210X297公釐)_ 14 - A7 B7 五、發明説明(12 ) 表1 鐵礦A之配合率 融液之組成 C a 0 F e 2 0 3 0 % 16.1 8 3.9 4 0 % 14.9 8 5.1 表2 (請先閱讀背面之注意事項再填寫本買) 經濟部中央標隼局員工消費合作社印製 樣本 融液之組成 C a 0 F 6 2 0 3 S i 0 2 A 1 2 0 3 1 100.0 0 . 0 0 . 0 0.0 2 62 . 0 31.7 4.4 1.9 3 42.0 48.3 6.7 3.0 4 22.0 65 . 0 9.0 4 . 0 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X Μ7公釐) 15 - Μ 306934 Β7 五、發明説明(13 ) 表3 T . Fe FeO A 1 2 0 3 S i 〇2 CaO 鐵礦 53 . 4 3 . 2 1.9 5 . 6 11.4 表4 T . Fe C . W . A 1 2 0 3 S i 0 鐵碛A 58.6 8.9 1 . 2 5.01 返磺 55.4 0 . 0 1.2 5.54 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標隼局員工消費合作社印製 表5 T . Fe C . W . A I 2 0 3 S i 0 嫌礦A 57.4 8.4 2.51 5.03 返礦 55 . 4 0 . 0 1.55 5.54 產業上之可利用性 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐)_ fg· A7 B7 五、發明説明(14 ) 若依據本發明,於原料之一部分中使用高結晶水鐵礦 製造燒結確,則可防止燒結塊之强度降低,並防止產率, 生產性的降低。因此可產生有助於鐵確資源之有效利用的 效果。 (請先閱讀背面之注意事項再填寫本頁) 、1Τ 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS〉Α4規格(210 X 297公釐) η -In mM ^^^ 1 mi n J ^^^ 1 ml If 1 ^ 11 ^^^ 1, yeJ (please read the precautions on the back before filling this page) Employee Consumer Cooperative of the Ministry of Economic Affairs Central Bureau of Standardization Printed by the Ministry of Economic Affairs Central Standards Bureau Staff Consumer Cooperative Printed Bag A7 B7 V. Description of the invention (6) Κ »η, S, T, U, hi, I12: The fixed pore diameter distribution index (/?) Is the inclination of the circle of circle 3, is The inherent value of each sintered block. Using this, C in the above formula (2) can be obtained from the above formula (4). The mix ratio of iron ore A is composed of minerals with an increase of 0% to 40%. The porosity and porosity distribution index are measured and the above factors (1) to (4) are used to calculate the change in yield. It can be presumed that the decrease in yield of about 80% is due to the decrease in the pore size distribution index. From the above, it can be seen that the decrease in the yield of iron ore A is due to the change in the pore structure represented by the pore size distribution. Therefore, the change in the stomatal structure with the increase of iron ore A is considered to be closely related to the fluidity of the melt that governs the gas hip to form a skull. Therefore, the movement distance of the melt as the index of the melt behavior is measured, Investigate the effect of melt fluidity on iron ore A. Fig. 4 shows the result of measuring the moving distance of the melt under the condition of inputting heat with S r 0 as the tracking agent. From Figure 4, it can be seen that as the iron ore A increases, the travel distance of the melt decreases. Fig. 5 shows the relationship between the moving distance of the melt and the pore size distribution index. The decrease of the molten liquid moving distance also decreases the pore size distribution index. It is believed to be caused by the decrease in the fluidity of the melt, which prevents the union of the air and the skull. In addition, Table 1 shows the composition of the calcium ferrite melt when the proportion of iron moraine A is increased from 0% to 40%. From this, it can be seen that as the blending ratio of the iron ore A increases, the Fe 2 203 in the calcium ferrite-based melt can become higher. As a result, the increase in the blending ratio of the so-called iron-coated iron ore A makes the original paper standard of the melt solution applicable to the Chinese National Standard (CNS> A4 specification (210X297 mm)---I-tm nn ml t ^ n M flu— nn ^ — One OJ (please read the precautions on the back before filling in this page) A7 B7 Printed and printed by the Employees ’Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (7) 1 Reduced moving distance > The shown C a 0 — F e 2 0 3 is the state of 1 1 garden> It can be seen that the temperature of the liquid phase becomes 1 I 9 because of the increase of the degree of F e 2 0 3 and the movement time of the melt decreases 0 1 I According to the result 9 so far, it can be seen that the production associated with the increase of iron ore A, please read first 1 | The decrease of the rate is caused by the increase of the concentration of F e 2 0 3 in the melt 0 thus 9 Read I 1 1 It can be seen that the composition of the melt is closely related to the reactivity of iron breaking and quicklime 9 Note 1 1 Meaning I and conduct the experiment shown in circle 7 0 Matter 1 Re-A as shown in 圚 7 (a) 9 Fill in this book at a height of 1 6 mm X 1 6 mm X 1 0 mm iron ore 1 1 Attach 8 m ΠΊ Medium X 8 mm X high degree 8 Page 1 | mm Sample of limestone 1 2> Maintain 2, 1 I 4 at a temperature of 1 3 0 0 ° c> After 6 minutes 9 Cool with water Ο After cooling 9 Cut the center of the wT sample 1 1 I Bit 9 as Fig. 7 (b) shows 9 The limestone has been penetrated into Tieqi 1 1 1 2 1 Order 〇 Grind this cut section > and take the section with a 10 times projector photography 9 Find 1 1 Fig. 7 (b ) The melting depth shown 1 4 0 1 1 圚 8 shows that the porosity of the iron broken 1 1 affects the above melting depth 1 4 1 〇 from the line 2 1 > 2 2 2 3 shows the porosity of the iron ore respectively It is I 1 1 0% 2 2 8% Λ 3 2 4%. As shown in Figure 8 1 [I shows that as the porosity of the iron moraine becomes higher > then the melting depth increases. According to the speed, it can be seen that the effect of the iron ore's porosity is very large. 0 1 1 Second 9 As shown in Fig. 9 > At the place where quick lime is attached 1 2 9 As shown in Table 2 1 1 > Attached with Ca 0 concentration 1 0 0 • 0% 6 2 0% > 1 1 4 2 0% N 2 2 0% changing cake 1 5 > and conduct the same experiment as the same as I 7 Ο 1 1 I circle 1 0 shows cake 1 5 C a 0 Ao degrees of the above melting depth 1 1 1 This paper is again applicable to the Chinese National Standard (CNS) A4 specifications (210X297 mm) A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of invention ( 8) 1 The impact of I 1 4 0 in Figure 1 0 9 iron breaking 1 1 porosity (1 1 0 1 1%) 9 holding time (4 minutes) & JF ^ S must be 0 as indicated by 囵 1 0 Clarification > 1 It can be seen that with the decrease of Ca a 0 degree in cake 1 5, the melting depth decreases f 1 please 1 I 0 first read 1 more, because of the iron The anti-atg m interface of ore and quicklime has a Ca 0 reading of the gradient of 1 degree on the back side 1 1. Therefore, the reaction of iron ore and quicklime can be regarded as the expansion speed. Note 1 1 I decide 9 but if F i C k law inversely calculates the diffusion coefficient by the matter of this laboratory 1 I then 1 «If the calculated diffusion coefficient is 9 compared with the reported one, it is 1 0 3 ^ Fill in this I 1 0 > it is still due to the generated melt For the pores and cracks in the iron ore, page 1 1 is saturated with 9 and is not a general volume expansion and the surface diffusion becomes a disposable 0 1 I. Thus, with the increase of the ratio of iron to A > The F e 2 0 3 degree of 1 I in the calcium ferrite melt becomes higher 0 1 order | This is because the Ca a 0 in the actual sintered layer is not more than 1 foot relative to F e 2 0 3 > During the process 9 C a 0 reacts with F e 2 0 3 to produce calcium ferrite 1 1 system melt, due to iron The porosity of A after heating is very higher than that of other iron ores (2 ~ 3 times) 9 and the surface diffusion promotes the increase of the melting depth and I increases the reaction of Fe 2 0 3 Μ increases by 0. A time > 1 I reaction to suppress excessive melt generation is important 0 1 1 | Therefore, relative to the measurement of the melting depth by the method shown in FIG. 7 as shown in FIG. 1 1 1 1, in quicklime 1 2 and iron moraine 1 The interlayer between 1 and 1 is shown in Table 3. The composition of 1 1 is confirmed 1 3 and the experiment is carried out. 0 The curve 2 4 in FIG. 1 2 is shown as 1 I. The result of the experiment shown in FIG. 7 (a) > Curve 2 5 In order to show the test results shown in the circle 1 1 of the interlayer to return to ore 1 I 1 3, from 圚 1 2 9 between quick lime 1 I 1 2 and iron ore 1 1 can be suppressed Depth of melting 1 1 This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 11 A7 3 0 C 9 3 4 B7 5. Description of invention (9) (please Read the back of the precautions to fill out this page). The reason is that the melting reaction between iron ore and limestone is driven by the concentration gradient of Ca 0 in the reaction layer. That is, it is coated on the iron ore by a return ore that is lower than the Ca 0 o degree of limestone in advance, which can suppress the melting reaction of the iron ore. The present invention is the result of researching these experimental results. With the low Ca 0 0 degree and the return of ore that has reacted with Fe 2〇3, it covers the periphery of Teque A, and inhibits the rapid reaction of Teque A with quick lime, and makes the calcium ferrite F in the melt e203 is reduced, and the time required for the rearrangement of the pores can be increased without increasing the amount of solid fuel, and the yield of sintered ore is successfully improved. The grain size of the returned iron ore of the coated iron ore A needs to be fine, which is less than 5 mm. Because it is finer, it is easier to attach to the periphery of iron ore A, and the desired one is less than 1 mm. The return moraine mixed with the iron ore A is reset relative to the iron moraine A, with 0.2 reset parts or less and 1 reset parts or less. When the replacement part is less than 0.2, the surface of the iron ore A covered by the ore is insufficient. Even if it is mixed with more than one replacement part, the effect is saturated and the balance point of the placement is not appropriate. Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. The reversion of phosphorus is preferably based on the use of a Ca 0 content rate of 8 ~ 15 reset%, and the Ca 0 content rate is less than 8 reset% In this case, the content of Ca 0 is too small, which hinders the melting reaction, but it is not good. If the reset percentage is over 15%, the effect of suppressing the melting reaction is not large, and the value of adding remineralization is lost. Hereinafter, the present invention will be specifically described with examples. In the following, the body containing the suspected raw materials is called the main raw material, limestone is added to it, silica is called the new raw material, and moraine is added, and coke is called the compound raw material. This paper scale is applicable to the Chinese National Standard (CNS) A4 (210X 297mm) _ 12-" ~ A Ministry of Economic Affairs Central Bureau of Standards and Staff Employee Consumer Cooperative Printed A7 B7 V. Description of the invention (10) (Example 1 ) The chemical composition of Tieba A used in the experiment is shown in Table 4. 9%。 This iron ore A is an iron moraine produced in Haozhou, with an arithmetic average diameter of 3 lmm and a crystal water content rate of 8.9%. This iron ore a is prepared according to the flow shown in Figure 丨. In Yuan 1, 1 is iron ore A, 2 is return ore, 3 is other remaining sintered raw materials, 4 is dish type granulator, and 5 is drum mixer. Relative to the main raw material, with 60% of iron ore A (iron ore 1), only 1/4 of iron ore A is added to the return ore 2, and it is mixed with iron and iron A by using the pan granulator 4 (quas i ) Granulation. This quasi-particle is mixed with the residual raw materials 3 (iron ore, limestone, silica, coke containing low crystal water) in the drum mixer 5 to make sintered raw materials. It was placed in a sintering test pot with a diameter of 300 mm and a height of 400 mm, and was fired while sucking in air at 1.2 Nm 3 / mi η, and the resulting sintered block was dropped once from a height of 2 m, and Calculate the reset ratio with 10 mm or more at this time as the yield. The result is shown in Qi 2. However, the CaO contained in the sintered raw material of Qi 2 (9.5 wt%), the Si〇2 contained (5.0wt%), the coke a: (3.5wt%) must be fixed. As shown in FIG. 2, when 60% of suspected ore A is blended, the yield of the conventional method is 66.3%, while in the embodiment, it is 69.5%. As shown by Yuan 2, by adding around the iron ore A, there is no problem of so-called increase in manufacturing cost, and a high-quality sintered moraine can be manufactured with good yield. This paper scale is applicable to the Chinese National Standard (CNS> A4 specification (21〇: < 297 gong)) _ _ (please read the precautions on the back before filling out this page) Order A7 B7 5. Description of the invention (11) (Example 2) The chemical composition of the iron moraine A and the ore used in the experiment are shown in Table 5. The iron ore A is an iron broken from Haozhou, with an arithmetic average diameter of 3. Omm, and the content rate of crystal water is 8.4% This iron is prepared according to the process shown in the figure. In the figure, 1 is iron ore A, 2 is ore return, 3 is other remaining sintered raw materials, 5 is drum mixer, and 6 is iron ore A and return ore. Preparation of granulated products. With respect to the main raw material, 50% of iron ore A (iron ore 1) is added, and only 1/4 of iron ore A is added, and it is mixed with iron and iron A using drum mixer 5 and made The iron ore A and the pre-refined granulated product 6 are transported to the raw material manufacturing plant once they are transported to the sintering plant, and mixed with the remaining sintered raw material 3 to make the granulated sintered raw material. The machine sintering machine is compared with the conventional method, and the productivity, yield, and RI are shown in Fig. 10. Iron ore A can be increased to 0.06 (t / h.m2), the yield is 1.7%, Jis — RI is 2. 2% 〇 (please read the note Ϋ on the back side and then fill out this page) The paper is printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Applicable to Chinese National Standard (CNS) Μ specifications (210X297mm) _ 14-A7 B7 V. Description of invention (12) Table 1 Composition ratio of iron ore A Composition of melt solution Ca 0 F e 2 0 3 0% 16.1 8 3.9 4 0% 14.9 8 5.1 Table 2 (please read the precautions on the back before filling in the purchase) The composition of the sample melt printed by the Central Standard Falcon Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs C a 0 F 6 2 0 3 S i 0 2 A 1 2 0 3 1 100.0 0. 0 0. 0 0.0 2 62. 0 31.7 4.4 1.9 3 42.0 48.3 6.7 3.0 4 22.0 65. 0 9.0 4. 0 The paper size of this edition is applicable to the Chinese National Standard (CNS) A4 specification (210 X Μ7 mm) 15-Μ 306934 B7 5. Description of the invention (13) Table 3 T. Fe FeO A 1 2 0 3 S i 〇2 CaO iron ore 53.4.3.2 1.9 5.6 6 11.4 Table 4 T. Fe C. W. A 1 2 0 3 S i 0 Tie Mo A 58.6 8.9 1. 2 5.01 Return to Sulphur 55.4 0. 0 1.2 5.54 (Please read the notes on the back before filling this page) Employees of the Central Standard Falcon Bureau of the Ministry of Economic Affairs Dispel Fei Cooperative Printed Table 5 T. Fe C. W. AI 2 0 3 S i 0 Suspicious A 57.4 8.4 2.51 5.03 Return to Mine 55. 4 0. 0 1.55 5.54 Industrial Availability This paper standard is applicable to Chinese national standards (CNS) A4 specification (210 X 297 mm) _ fg · A7 B7 V. Description of the invention (14) If according to the present invention, high crystalline ferrihydrite is used for sintering in a part of the raw materials, it can prevent the sintering block The strength is reduced, and the productivity and productivity are prevented from being reduced. Therefore, an effect that contributes to the effective use of iron resources can be produced. (Please read the precautions on the back before filling out this page). Printed by the Employees Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. This paper scale is applicable to the Chinese National Standard (CNS> Α4 specification (210 X 297 mm) η-

Claims (1)

306934 本 1E克一修β 年 ABCD 六、申請專利範圍 $件2^ 8 4 1 0 9 9 4 9號專利申請案 中文申請專利範圍修正本 民國8 6年3月修正 1 .—種以高結晶水之鐵礦爲原料製造燒結礦的方法 ,係以高結晶水之鐵礦做爲原料之一部分製造燒結礦時, 其特徴爲將該含3 %以上結晶水含有率之高結晶水鐵礦與 返礦混合、造粒後,與其他原料配合並燒結。 2 .—種以高結晶水之鐵礦爲原料製造燒結礦的方法 ,其特徵爲以返礦/髙結晶水鐵礦之比爲1 / 5以上之比 例混合3 %以上結晶水含有率之高結晶水鐵礦與5 m m以 下之返礦,經造粒後,與其他原料混合並燒結。 3 .如申請專利範圍第2項之以高結晶水之鐵礦爲原 料製造燒結礦的方法,其中該返礦之C a 0含有率爲8〜 1 5重量%。 4 .如申請專利範圍第2項之以高結晶水之鐵礦爲原 料製造燒結礦的方法,其中該返確爲粒度1 mm以下。 ----------------訂------ (請先閱讀背面之注意事項再填寫本頁) 經濟部中央橾準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS > Α4規格(210X297公釐)306934 This 1E gram of one-year repair ABCD VI. Patent application scope $ 2 2 8 4 1 0 9 9 4 9 Patent application Chinese application Patent scope amendment The Republic of China 8 March 1986 Amendment 1.-Kind of high crystal The method of manufacturing sintered ore with iron ore of water as raw material is when iron ore with high crystalline water is used as part of the raw material to manufacture sintered ore. After returning to ore, mixing and granulating, it is mixed with other raw materials and sintered. 2. A method for producing sintered ore using iron ore with high crystal water as the raw material, characterized in that the ratio of return ore / crystal iron ore is 1/5 or more and the content of crystal water is 3% or more. The crystallized ferrihydrite and the ore below 5 mm are granulated, mixed with other raw materials and sintered. 3. A method for manufacturing sintered ore using iron ore with high crystalline water as the raw material according to item 2 of the scope of the patent application, wherein the content of Ca 0 of the returned ore is 8 to 15% by weight. 4. For the method of manufacturing sintered ore using iron ore with high crystal water as the raw material in item 2 of the scope of the patent application, the particle size is less than 1 mm. ---------------- Order ------ (Please read the precautions on the back before filling out this page) Printed paper size printed by the Staff Consumer Cooperative of the Central Bureau of Economic Affairs of the Ministry of Economic Affairs Applicable to Chinese national standards (CNS & Α4 specifications (210X297mm)
TW84109949A 1994-09-21 1995-09-23 TW306934B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22667394 1994-09-21
JP18724995 1995-07-24
JP22380695A JP3160501B2 (en) 1994-09-21 1995-08-31 Method for producing sinter from high-crystalline hydroiron ore

Publications (1)

Publication Number Publication Date
TW306934B true TW306934B (en) 1997-06-01

Family

ID=27325853

Family Applications (1)

Application Number Title Priority Date Filing Date
TW84109949A TW306934B (en) 1994-09-21 1995-09-23

Country Status (2)

Country Link
JP (1) JP3160501B2 (en)
TW (1) TW306934B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004421B2 (en) * 2004-09-17 2012-08-22 Jfeスチール株式会社 Method for producing sintered ore
FI4093889T3 (en) 2020-01-20 2023-11-20 Smidth As F L Thermal treatment of mineral raw materials using a mechanical fluidised bed reactor
LU101613B1 (en) * 2020-01-20 2021-08-06 Thyssenkrupp Ag Thermal treatment of mineral raw materials with a mechanical fluidized bed reactor

Also Published As

Publication number Publication date
JP3160501B2 (en) 2001-04-25
JPH0995742A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
TW574374B (en) Pseudo particles sintering and manufacturing method thereof
TW306934B (en)
KR20000077339A (en) Process for producing sintered ore and the sintered ore
JP2007169774A (en) Method for producing sintered ore
JP4786022B2 (en) Method for producing sintered ore
KR0173842B1 (en) Manufacturing method of sintered ore using high crystal iron iron ore as raw material
CN109454361A (en) A kind of low-hygroscopicity submerged-arc welding sintered flux and preparation method thereof
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP2000178660A (en) PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE
JP7135770B2 (en) Method for producing sintered ore
JP2012046828A (en) Method for producing sintered ore
JPH08239720A (en) Method for producing sintered ore of high crystal water ore
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP4661154B2 (en) Method for producing sintered ore
WO2024090581A1 (en) Method for producing hydraulic cement composition using electric furnace slag
JP2020105625A (en) Method for manufacturing sintered ore
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JP3952906B2 (en) Ultra-low SiO2, ultra-low Al2O3 high-strength sintered ore and method for producing the same
JPH0583620B2 (en)
WO2024090580A1 (en) Method for producing hydraulic cement composition using blast furnace slag and converter furnace slag
JP2003003206A (en) Dephosphorizer, dephosphorization method and method of using slag produced by dephosphorization
JP4412313B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JPH09272925A (en) Method for producing sinter having excellent high temperature properties and cold strength
JP4661077B2 (en) Method for producing sintered ore