TW215129B - - Google Patents

Download PDF

Info

Publication number
TW215129B
TW215129B TW080100769A TW80100769A TW215129B TW 215129 B TW215129 B TW 215129B TW 080100769 A TW080100769 A TW 080100769A TW 80100769 A TW80100769 A TW 80100769A TW 215129 B TW215129 B TW 215129B
Authority
TW
Taiwan
Prior art keywords
display panel
display device
lens
group
microlens
Prior art date
Application number
TW080100769A
Other languages
Chinese (zh)
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Application granted granted Critical
Publication of TW215129B publication Critical patent/TW215129B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

2151 A6 B6 五、發明説明f J i 詳细說明: · 1.發明背景: (1) .發明範困: 本發明通_常係有醞一種透過埋式之顯示裝置(下文稱之 為*透遇式顥示装置〃),而更特別有闞一種黏矩陣式顯 示裝置,該装置具有一塊顯示板,諸如一 , 及多個排列在一矩陣內之像素,其中該顯示板設‘一命列 之微透鏡姐。這類型之顯示装置特別可應用於_一種大i幕 之投射式電恩*資訊,鬮示m。 (2) .先前技ϋ之描述: 在透遇式顯示板中,對應各像素設有諸如變阻器或ΜΙΜ (即金靥-絕緣體-金靥)之非線性裝置,以防止在相鄰像素 間可能產生之串援(cross talk)。為各儸像素谓配置之開 鼷元件*諸如TFTs (即薄膜晶體管)*驅動其像素電極。這 些元件及連接此等元件之布線在此顯示装置中佔有一空間 ,因而減少用以形成像素之有效面積。這亦減少該顯示装 置之數值孔徑。jtit值有有软面積 釋_ —· -···.- 一··-·^ 丄哮_LJLSLIii屋1).所表黾。 由這公式可明顯看出,當未貢獻於顯示作用之面積增加 時•該數值孔徑比減小。所減少之數值孔徑比導致暗色圖 像之再現,及不良之影像品質。 · 經濟部中央榡準局印製 (請先《讀背面之注意事項.再填寫本頁 為了改菩_示裝置上之圖像,其另一項要求係將顯示板 上之各像素減至最小。若所有像素各成分之尺寸按比例減 小,該數值孔徑比將不會改變。然而,照相平版印刷及蝕 甲 4(210X297 公沒) 3 2151^ A6 B6 刻術對非線性元件及開《元士之^小化有一限度,而且連 接各元件之布線於其寬度之變窄上’不能低於一可容許之 範圍。當這些空間由此等元件所佔據時’該頭示装置之數 值孔徑比即減少。 - 該數值孔徑比係指入料Μ該.顯系板之m與 m。不可回收之光係由該頸示板之不能透過部分所遮 蔽,而該部分不幫助該顯示作用。因此’當利用相同&源 時,顯示装置上之園像品質有賴於該等顯示装置之数值孔 徑比,亦即,蓋^二暗m之 為了解決上面所指出之間題,一項建議是在該顯示板 這建議係揭露於日本已 發明之専利發表號碼第60-262131號及61 -1 1788號中。這 些已知之頭示装置之一項利益是:對顯示板未成顯示作 用之各部份•其入射線係聚焦在顯示板之各像素上,藉此 實質地增加該數值孔徑。 然而這些已知之頭示装置具有下列之缺點: 在一顯示板只有在光入射面,亦即光進入顯示板之那一 面具有一·陣列微透鏡姐之頭示裝置中,於該等入射線聚焦 在該等像素上後*入射線會發散。為能在一種投射式顯示 裝置中使用這顯示板*需要審慎地放大在光输出側面上各 投射透鏡之數值孔徑(HA)。 . 在一顯示赛置中,若其顯示板兩側皆有微透鏡之陣列姐 ,則會有下列各項問題: 參考圖3,吾人將詳细描述一種典型之傳統式顯示板: {請先閲讀背面之注意事項再填寫本頁) •装· •打· •線. 中 4(21〇X 297公沒) 4 2151^9 A6 B6 五、發明説明(32151 A6 B6 5. Description of the invention f J i Detailed description: 1. 1. Background of the invention: (1). The scope of the invention: The present invention is usually a kind of display device through the buried type (hereinafter referred to as * transparent) Encounter type display device 〃), and more particularly, there is a sticky matrix display device, which has a display panel, such as one, and a plurality of pixels arranged in a matrix, wherein the display panel is provided with a command line The sister of micro lens. This type of display device is particularly applicable to _a large-screen projected electrical information *, showing m. (2). Description of the prior art: In the transmissive display panel, a non-linear device such as a varistor or ΜΙΜ (ie gold-insulator-insulator-gold) is provided for each pixel to prevent possible generation between adjacent pixels Cross talk. The open element * such as TFTs (that is, thin film transistors) * configured for each pixel is driving its pixel electrode. These elements and the wiring connecting these elements occupy a space in the display device, thus reducing the effective area for forming pixels. This also reduces the numerical aperture of the display device. The jtit value has a soft area. Interpretation _ — ·-··· .- I ··-· ^ 丄 歄 _LJLSLIii House 1). Represented strider. From this formula, it is obvious that when the area that does not contribute to the display increases, the numerical aperture ratio decreases. The reduced numerical aperture ratio results in the reproduction of dark images and poor image quality. Printed by the Central Bureau of Economic Affairs of the Ministry of Economic Affairs (please first read the notes on the back. Then fill out this page to change the image on the display device. Another requirement is to minimize the pixels on the display board. The numerical aperture ratio will not change if the size of all components of each pixel is reduced proportionally. However, photolithography and etched nails 4 (210X297) 3 2151 ^ A6 B6 engraving for non-linear components and Yuanshi's miniaturization has a limit, and the wiring connecting each element must not be less than an allowable range in the narrowing of its width. When these spaces are occupied by these elements, the value of the head device The aperture ratio is reduced.-The numerical aperture ratio refers to the material m and m of the display panel. The non-recoverable light is shielded by the impenetrable part of the neck panel, which does not help the display. Therefore, when using the same & source, the image quality on the display device depends on the numerical aperture ratio of the display device, that is, the cover ^ two dark m in order to solve the above-mentioned problems, a suggestion is to The suggestion of the display board is disclosed in The invention has been published in Nos. 60-262131 and 61 -1 1788. One of the benefits of these known head-display devices is that they do not affect the display panel. The incident rays are focused on the display. Each pixel on the panel thereby substantially increases the numerical aperture. However, these known head-display devices have the following disadvantages: On a display panel, only the light incident surface, that is, the mask where the light enters the display panel has an array In the head-display device of the microlens, after the incident rays are focused on the pixels, the incident rays will diverge. In order to be able to use the display panel in a projection display device, it needs to be carefully magnified on the light output side The numerical aperture (HA) of each projection lens.. In a display game center, if there are arrays of microlenses on both sides of the display panel, there will be the following problems: Referring to FIG. 3, I will describe a detailed Typical traditional display panel: {Please read the precautions on the back before filling out this page) • Installed • • Played • • Line. Medium 4 (21〇X 297 public) 4 2151 ^ 9 A6 B6 V. Description of invention ( 3

顯示板 等微透鏡 板3之光 側面上微 1與2之 姐1至顯 點上,而 ,它們改 圖3所 極為里辑 微透鏡2 口射線K ,而由於它們之像差乃穿 各種角度發散,該等角度 joclh,如圖3點嫌所示。這種發 。在一種投射式顯示装置之例子中 3在其兩側面·上有威透癀 姐1與2,使它們有相同 入射側面上,微透鏡姐1 透鏡姐2之各焦點彼Jfc對 各焦點係置於該顯示板3 示板3光入射側之各平行 且怎—HJlL 〇 然 變成平行射線。 示狀態是一定之情@ 下才可達成。但事實上一 姐1與2。吾人排列該 之焦矩。此外,在顯示 之各焦點係與在光输出 應。结果這些微透鏡姐 之横截面中央。撖透縯 入射線係聚等焦 而藉著穿過微透~鏡紐2 ,而只有在該等微透鏡 些入射線並未穿遇各個 過其它微透鏑。结果出 係由各射—線穿過之透鏡 散作用導致洸線之損失 *該投射透鏡將需要一 {請先聞讀背面之注意事項再瑱寫本頁) 經濟部中央揉準局印裂 里赏j:之_数值 2.發明槪論: 本發明之透 多種其它之缺 板*在該顯示 個微透鑌係相 上配置著第二 素配置著,萁 微透鏡陣列之 每一個微透鏡 孔徑,以防止光線之損失。 過式顧示裝置•克眼先前技蕤上面所討論及 點及不足•而包括一塊具有多個像素之顯示 板入射側面上配置著第一姐微透鏡陣列,每 對於各個像素配置著•在該顯示板出口側面 姐微透鏡陣列,每個微透鏡亦相對於各個像 中第一姐微透鏡陣列之各焦點位置與第二姐 各焦點位置完全相同,而且其中第一陣列内 之焦距大於第二陣列内每一個微透鏡之焦距 甲 4(210X297 公发) 5 五、發明説明(4 在一較佳具體實例中 中央。 在一較佳.具體賞例中 陣列之各焦點處。 在一較佳具®實例中 A6 B6 該等像素係設在顳示板之横截面 該等4»素係配置在第一姐微透縯 經濟部中央捃準局印父* 第一及第二姐微透鏡之每一透鏡 皆有一梯度折射率(gradient refractive index )。 在一較佳具體實例中.,該顯示板為一種液晶顧示板。 因此,此處所描述之發明使得提供一種透遇式顧示装置 之標的成為可能,該裝置能複製一清晰鼴像,而不管其相 當小之數值孔徑。 - 3.圓面簡述: 藉著參考所附各匾面*對嫻热此技藝之人士-,可能更徹 底了解本發明,而且其多項標的及利益將變得明顯,各圖 面如下: 圖1為一槪略横截面,指出根據本發明之一顯示裝置; 圖2為一放大比例下之片斷横截面,指出該等微透鏡及 該顯示板間之Μ係; 圖3為一概略横截面,指出一傳统式顯示装置; 圖4為一槪略横截面,指出根據本發明之一種顯示裝置 之另一個例子; · 圖5為一放大比例下之片斷横截面,指出在圃4顯示装 置中,該等微透鏡及該顯示板間之關係;及 圖6與7為概略横截面’指出頭示裝置之另外例子。 (請先聞讀背面之注意事項再填寫本頁) •裝· •打· •線· 甲 4 (210X297-a'沒) 6 2151^9 A 6 B6 五、發明説明(β ) 經濟部中央櫺準局印¾. 4.較佳具體a?例之描述·: 參考圖1與2,吾人將參考一種投射式顯示裝置描述本 發明,而該顯示装置使用一種I晶顯示板4,在該顯示板 中,各像素係以一比例形成·澈項比例為每10奄米有數個 像素。該顯示板之數值孔徑比為百分之五_+虿百.分;t八十 。頭示板4朝向光源之入射面有第一姐微透鏡1陣列,而 其出口側有第二狙微透鏡2陴列。該顯示板4有多個_;^_素 5排列在一矩陣内。該等微透鏑1與2分別對懕於毎個像 素5配置著 > 藉此確保該等微透鏡1與2彼此面對面地排 列,而有一個像素置於它們之間。在所例示之具體實例中 ,該等微透鏡1與2係用平面排列之多個透鏡製成*每個 透鏡皆有一梯度折射率。 構成該液晶顯示板4之基片4a與4b,其厚度為1.1毫米 。該等像^素5 _之厚度可忽略不計。液晶顯示板4有一厚度 (d)為2.2考1。每一片微透鏡1之焦距匕為1200微籴.而 每一片微透鏡2之焦距f2為10 00微米。因此,液晶顯示板 4之厚度d為焦距^與“之和,且變成2200微米。因而第 一姐微透鏡1陣列之各焦點及第二姐微透鏡2之各焦點* 皆變成完全相同地朝向該液晶顯示板。 在所例示之顯示装置中·靠近諸微透鏡1與2之光袖穿 過之平行射線係聚亀於一焦點F,其位置係離該液晶顯示 板4之平面一段h距離,如圖2茛線所示。其後,該等射 線,雖然正在發散,卻抵達第二姐微透鏡2陣列,藉此該 等發散_射緯霞.愛成平行射繳。當該等平行射線穿透每一個 甲 4(210Χ 297 公发) {請先聞讀背面之注意事項再填寫本頁) { *裝. •打· .線·On the light side of the micro lens plate 3 such as a display board, the sisters 1 and 2 of the micro lens 1 and 2 are on the display point, and they are changed to the micro lens 2 port K of FIG. 3, and because of their aberrations, they wear various angles Divergence, such angle joclh, as shown in Figure 3. This hair. In an example of a projection-type display device, 3 has Vitohuang sisters 1 and 2 on its two sides, so that they have the same incident side, each focal point of the micro lens 1 and the lens 2 sets the Jfc on each focal point On the display panel 3, the light incident sides of the display panel 3 are parallel and how-HJlL becomes parallel rays. Show the state is a certain emotion @ next to achieve. But in fact a sister 1 and 2. I arrange the focal moment. In addition, each focus on the display corresponds to the light output. As a result, the center of the cross section of these microlenses is. The penetration rays enter the ray system to converge and focus by passing through the micro-transmission ~ lens button 2, and only in these micro-lenses some of the rays have not penetrated other micro-dysprosium. The result is the loss of the light line caused by the dispersion of the lens passing through each line-the projection lens will require a (please read the precautions on the back side and then write this page). Reward j: 之 _ 值 2. The invention of the invention: a variety of other shortcomings of the present invention * a second element is arranged on the phase of the micro-transmissible display system, each microlens aperture of the microlens array To prevent the loss of light. Pass-through display device • Keyan ’s previous technology discusses the above-mentioned points and deficiencies • Including a display panel with multiple pixels, the first sister microlens array is arranged on the incident side of each display pixel The microlens array on the side of the exit of the display panel, each microlens is also the same as the focal position of the first microlens array and the focal position of the second microlens in each image, and the focal length in the first array is greater than the second The focal length of each microlens in the array is 4 (210X297). 5. Description of the invention (4. In the center of a preferred specific example. In a preferred example, the focal points of the array. In a preferred example In the example of A6 B6, the pixels are located on the cross-section of the temporal display panel. The 4 pixels are arranged in the first sister ’s micro-transparency center. Each lens has a gradient refractive index. In a preferred embodiment, the display panel is a liquid crystal display panel. Therefore, the invention described herein provides a see-through display device The subject becomes possible, the device can reproduce a clear image of the mole, regardless of its relatively small numerical aperture.-3. Brief description of the round surface: by reference to the attached plaque surface * for those who are skilled in this skill-, possible A more thorough understanding of the present invention, and its multiple objectives and benefits will become apparent, the drawings are as follows: Figure 1 is a schematic cross-section, indicating a display device according to the present invention; Figure 2 is a fragment of a magnified scale Cross section, indicating the M system between the microlenses and the display panel; FIG. 3 is a schematic cross section, indicating a conventional display device; FIG. 4 is a rough cross section, indicating another display device according to the present invention An example; FIG. 5 is a fragmented cross-section at an enlarged scale, indicating the relationship between the microlenses and the display panel in the display device of the garden 4; and FIGS. 6 and 7 are schematic cross-sections indicating the head-display device Another example. (Please read the precautions on the back before filling in this page) • Installed • • Played • • Line • A 4 (210X297-a ’no) 6 2151 ^ 9 A 6 B6 V. Description of invention (β) Printed by the Central Bureau of Economic Development of the Ministry of Economic Affairs. Description: With reference to FIGS. 1 and 2, we will describe the invention with reference to a projection display device, which uses an I-crystal display panel 4 in which each pixel is formed in a proportion There are several pixels per 10 m. The numerical aperture ratio of the display panel is 5% + + 100%; t 80. The incident surface of the head panel 4 facing the light source has an array of first microlenses 1 and On the exit side, there are 2 rows of second microlenses. The display panel 4 has a plurality of LEDs 5 arranged in a matrix. The micro-transparent dysprosiums 1 and 2 are arranged on each pixel 5 respectively > This ensures that the microlenses 1 and 2 are arranged face-to-face with each other with a pixel between them. In the specific example illustrated, the microlenses 1 and 2 are made of a plurality of lenses arranged in a plane * each lens has a gradient refractive index. The substrates 4a and 4b constituting the liquid crystal display panel 4 have a thickness of 1.1 mm. The thickness of these pixels is negligible. The liquid crystal display panel 4 has a thickness (d) of 2.2 × 1. The focal length of each microlens 1 is 1200 micron. The focal length f2 of each microlens 2 is 100,000 microns. Therefore, the thickness d of the liquid crystal display panel 4 is the sum of the focal length ^ and ", and becomes 2200 microns. Therefore, the focal points of the array of the first microlens 1 and the focal points of the second microlens 2 * become the same orientation The liquid crystal display panel. In the illustrated display device, the parallel rays passing through the optical sleeves of the microlenses 1 and 2 converge at a focal point F, and the position is a distance h away from the plane of the liquid crystal display panel 4. , As shown by the buttercup line in Figure 2. Afterwards, although the rays are diverging, they reach the second sister microlens 2 array, whereby the divergence _ 射 纬 霞. Aicheng parallel shot. When the parallel The ray penetrates every armor 4 (210Χ 297 public hair) {Please read the precautions on the back before filling out this page} {* install.

215139 A6 _______. _B6 五、發明説明(6 i 微透鑲1之巧園部分時·,由於微透鏡1 S啤差,它們乃穿 過一點Q而非穿過其焦點F,該Q點係朝向第一姐微透鏡 1陣列,如圖2點線所示。因為點Q係配置朝向該液晶顯 示板4之光出口側,UL辑屋像素5之剖麗心點,所K 該等射線可進入第二個微透縝2。因為黏Q與微透鏡2間 —---I πιι- — 1 ----------— ...... 一-.im· ......215139 A6 _______. _B6 V. Description of the invention (6 i When the micro-transparency 1 is in the Qiaoyuan part, because the microlens 1 S is poor, they pass through a point Q rather than through its focal point F, which points towards The array of the first microlens 1 is shown by the dotted line in Fig. 2. Since the point Q is arranged toward the light exit side of the liquid crystal display panel 4, the cut-out point of the pixel 5 of the UL series, so the rays can enter The second micro-transparent 2. Because sticky Q and micro-lens 2 ----- I πιι--1 ------------ ...... 一 -.im · ... ...

之距雄大於微透鏡2之焦_距i?.該等窣過微透鏡2之射jS 不能_變苎平f射J ° 屬肩^黑 °因此’該液晶顯示裝置不需使用一 俚大投射着鏡,而且藉著使用一種具有相當小直徑之投射 透鏡,即可使重現一清晰影像。 參考圔4與5,其中相同數字代表與圄1及2相似之構 件與元件,由一種雛子交換发所產生之微透鏡1與2具有 一梯度式折射_皇_。第一個微透鏡1之焦拒fi為1100微米’ 而焦距f2為700微米。姐成液晶顯示板4之一雙基片4a與 4b分別為1. 1毫米厚及〇 . 7毫米厚。基片4a與4b之ji:度等 於微透鏡1與2之焦距fi與fz。第一個微透鏡1之焦點及 第二個微透鏡2之各焦點變成完全相同地彼此朝向該液晶 顯示板。·在這方式下,基片“與杓間所形成^每ϋ累及 偽ϋ在mi.辦胤篇—液晶邐里板'4之焦點處,這意指 每涸像素5係配置在微透鏡2朝向該液晶顯示板4之焦點 處。 經濟部中央秌準局印兑- (請先聞讀背面之注意事項再填寫本頁> 靠近微透鏡1與2穿過之平行射線係聚焦在一焦點1?處 ,該焦點F在液晶顯示板4之像素5上’如圖5中各黃線 所示。其後,該等射線,雖然正在發散,卻抵達第二個微 f 4(21〇X 297-a^) 五、發明説明(7 A 6 B6 {請先閱讀背面之注意事邛再填寫本頁} •装. .打· .線· 經濟部中央揉準局印处* 透縝2 透微透 透鏡1 簧埭所 顬示板 為點Q 射線不 促成顯 在這 ,而與 部分所 如上 製成, 式方法 即在已 部分膨 形之花 終之融 法中, 可用 丙烯類 之物。 該等 中*該 •藉此它們 -__- 鏡1之周圃 之像差,該 示。.造點Q 之光出口側 與微透鏡2 會變成平行 示作用,藉 範例中,微 画3所示傳 遮蔽之射線 面所指出者 但它們亦可 製成。在膨 曝光部分及 脹成多個透 樣後,將該 溶樹脂即在 一種未精煉 於製造該等 樹脂、聚碳 轉變成 部分時 點Q比 比圔3 *藉此 間之距 射線。 此減少 透鏡1 铳装置 ,微透 用一種 脹法中 未曝光 鏡。在 樹脂加 表面張 之材料 微透鏡 酸酯樹 平行射 *它們 焦距F 所示-之 允許該 離大於 有利的 光線之 與2之 相比較 此可顯 鏡1與 膨脹法 •用紫 部分之 加熱法 熱至高 力下形 係楗械 之材料 脂、聚 線。當該 乃是穿過 更靠近微 傳统式顯 等射線進 焦距f2 · 是•這些 損失。 各焦點係 時*可藉-示一個清 2係由一 ,一種加 外線聚合 間,用滲 中,於一 於其融點 成多個透 式地切成 可以是透 苯乙烯樹 等平行 —點Q 透鏡1 示裝置 入微透 穿過微 射線會 坐落在 此減少 晰影像 種離子 熱法或 光敏單 透懕將 光敏樹 之溫度 鏡。在 多個透 明之樹 脂、玻_ 射線係穿 ,由於微 ,如圈5 更靠近該 鏡2。因 透鏡2之 收箱、,且 像素5上 由其它各 〇 交換法所 一種機械 體,而随 一已曝光 脂形成圓 ,而其最 機械式方 鏡。 脂,諸如 璃或相似 微透鏡可Μ是平凸形或雙凸形。在所示之具體實例 等微透鏡之平坦表面係面對著液晶顯示板4·但其 甲 4(210X 297公沒) 9 A6 B6 五、發明説明(丨) 凸形表面亦可面對該顯示板。如ΙΪ 一種替代性之方法,吾 人可能將基片4a與4b及該等微透鏑1與製造在一單件内 ,而不論它們是否可能在該顯示板內(如圈6所示)或在該 顯示板上(印圖7所示)。 _ 當然對孀热本技S之人士而言,各種其它之修改將是明 白可見的,而且可輕易加K完成*卻又未偏雕本發明之精 神及範圍。據此,在此所附之申請專利範園並未受限命此 處所呈獻之敘述*而是這些申請專利可解釋成涵蓋所有存 於本發明特許專利之新奇特黏*包括可能由嫻热本技蓊之 人士處理成其相等之物•而附羼於本發明之所有特點。 {請先聞讀背面之注意事項,再填寫本页} •装. •打· •綠· 經濟部中央揉準局印$1 甲 4(210X297 公发) 10The distance between the lens is greater than the focal length of the microlens 2_distance i ?. These shots that pass through the microlens 2 cannot be changed to be flat and flat. J ° belongs to shoulder ^ black °, so the LCD device does not need to use a large The mirror is projected, and by using a projection lens with a relatively small diameter, a clear image can be reproduced. Refer to 圔 4 and 5, where the same numbers represent components and elements similar to 圄 1 and 2, the microlenses 1 and 2 produced by a kind of child exchange have a gradient refraction _ 皇 _. The first microlens 1 has a focal rejection fi of 1100 microns and a focal length f2 of 700 microns. One of the twin substrates 4a and 4b of the LCD panel 4 is 1.1 mm thick and 0.7 mm thick, respectively. The ji of the substrates 4a and 4b: the degree is equal to the focal lengths fi and fz of the microlenses 1 and 2. The focal points of the first microlens 1 and the focal points of the second microlens 2 become identical to each other toward the liquid crystal display panel. In this way, the substrate "formed with the dipper ^ every ϋ involving pseudo ϋ in the mi. Do the article-the focal point of the liquid crystal panel" 4, which means that every 5 pixels are arranged in the micro lens 2 Towards the focal point of the LCD panel 4. The Central Bureau of Economic Affairs of the Ministry of Economic Affairs Printing-(please read the precautions on the back before filling out this page)> The parallel rays passing near the microlenses 1 and 2 are focused at a focal point At 1 °, the focal point F is on the pixel 5 of the liquid crystal display panel 4 as shown by the yellow lines in Fig. 5. Thereafter, although the rays are diverging, they reach the second micro f 4 (21〇X 297-a ^) V. Description of the invention (7 A 6 B6 {Please read the precautions on the back side before filling out this page} • Installed.... · Line · Ministry of Economic Affairs Central Kneading and Precinct Bureau Printing Office * Thoroughly 2 transparent Micro-transparent lens 1 The display panel of the spring station is made of point Q rays and does not cause it to appear here, but it is made as above, and the type method is that in the melting method of the end of the partially expanded flower, propylene can be used. Waiting for the * Due to this -__- the aberration of Zhou Pu of the mirror 1, the display ... The light exit side of the manufacturing point Q and the microlens 2 will become parallel, In the example, the shielded ray surface shown in the micro-painting 3 is pointed out but they can also be made. After expanding the exposed part and expanding into multiple penetration samples, the resin is dissolved in a kind of unrefined resin for manufacturing these resins , Polycarbon is converted into a partial time point Q ratio than 圔 3 * The distance between the rays. This reduces the lens 1 device, micro-transmission using an expansion method of unexposed mirror. In the resin plus the surface of the material micro lens ester tree parallel shot * Their focal length F is shown-the allowable distance is greater than the favorable light compared with 2. This can show the lens 1 and the expansion method. The heating method of the purple part is heated to high force to form the material of the machine. . When it is through the focal distance f2 closer to the micro-traditional equi-ray, it is these losses. For each focal point system * can be borrowed-it shows that a clear 2 series consists of one, one plus outside polymerization room, and the penetration is used. At its melting point, it is cut into multiple transparent cuts, which can be parallel to the styrene tree, etc.-the point Q lens 1 indicates that the device enters the micro-transmission through the micro-rays and will be located here to reduce the image clarity. Ionothermal or photosensitive single-transmission Sorrowful The temperature mirror of the photosensitive tree. It passes through a number of transparent resins and glass rays, due to the microscopic, such as the circle 5 is closer to the mirror 2. Because the lens 2 is in the box, and the pixel 5 is exchanged by each other. A mechanical body that forms a circle with an exposed grease, and its most mechanical square mirror. Grease, such as glass or similar microlenses may be flat convex or biconvex. In the specific examples shown, such as microlenses The flat surface faces the liquid crystal display panel 4. But its armor 4 (210X 297 male) 9 A6 B6 V. Description of the invention (丨) The convex surface can also face the display panel. As an alternative method, we may manufacture the substrates 4a and 4b and the micro-dysprosium 1 in a single piece, regardless of whether they may be in the display panel (as indicated by circle 6) or in The display board (shown in Figure 7). _ Of course, for those who love this skill S, various other modifications will be clearly visible, and can be easily added K to complete * without sculpting the spirit and scope of the present invention. Accordingly, the attached patent application gardens are not limited to the descriptions presented here * but these patent applications can be interpreted to cover all the novelty sticky patents stored in the patents of the present invention * The skilled person treats it as its equivalent and attaches to all the features of the invention. {Please read the precautions on the back, and then fill out this page} • Install. • Hit • • Green • Printed by the Central Bureau of Economic Development of the Ministry of Economic Affairs $ 1 A 4 (210X297 public) 10

Claims (1)

A7 B7 C7 D7 六、申請專利範面 I ·-種透過式顳示裝置,飪括一塊具有多個像素之顯示 尨,在該頴示板之入射侧面上配置鲁第一组微透鏡陣 列,每値撤透鏡僳相對於各値像素配置,而在該顯示 板之出,口刨面上配置箸第三組微透鏡陣列,每値撤透 鏡亦相對於各值像素配置,其中第一组撖透鏡陣列之 各焦點位置與第二組微透鏡陣列之各焦點位置完全相 同,而且其中第一陣列内每一個微透鏡之焦距'大於第 二陣列内毎一傾撤透鏡之焦距。 2· 根據申請專利範圍第1項之透過式顯示裝置,其中該 等像素係設在顯示板樓截面之中心點。 3. 根據申謫專利範園第1項之透過式顯示装置,其中該 等像素傜配置在第一组微透鏡陣列之各焦黏處。 4. 根據申請專利範团第1項,2項或3項之透過式顯示 裝置,其中第一及第二組微透鏡之毎一値透鏡皆有一 梯度式折射率。 5. 根據申請專利範圍第1項之透過式顯示裝置,其中該 顯示板為一種液晶顯示板。 {請先閱讀背面之注意Ϋ項再填寫本页) .訂. -:0-, 經濟部中央標準局印装 甲 4(210X297 公廣)A7 B7 C7 D7 VI. Patent application area I · A transmissive temporal display device, including a display pixel with multiple pixels, and the first group of microlens arrays are arranged on the incident side of the display panel, each value The withdrawal lens is arranged with respect to each pixel, and a third group of microlens arrays are arranged on the planing surface of the display panel, and each withdrawal lens is also arranged with respect to each value pixel, of which the first group contains the lens array The focal position of each focal point is exactly the same as that of the second group of microlens arrays, and the focal length of each microlens in the first array is greater than the focal length of each tilt lens in the second array. 2. The transmissive display device according to item 1 of the patent application scope, in which the pixels are located at the center of the cross section of the display panel. 3. The transmissive display device according to Item 1 of the Shenfan Patent Fan Garden, in which the pixels are arranged at each focal point of the first group of microlens arrays. 4. According to the transmissive display device of the first, second or third items of the patent application group, each of the first and second groups of microlenses has a gradient refractive index. 5. The transmissive display device according to item 1 of the patent application scope, wherein the display panel is a liquid crystal display panel. (Please read the note Ϋ on the back before filling in this page). Order.-: 0-, printed by the Central Bureau of Standards of the Ministry of Economic Affairs Armor 4 (210X297 Public Broadcasting)
TW080100769A 1990-02-01 1991-01-31 TW215129B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2282490 1990-02-01
JP2271898A JP2552389B2 (en) 1990-02-01 1990-10-09 Transmissive display

Publications (1)

Publication Number Publication Date
TW215129B true TW215129B (en) 1993-10-21

Family

ID=12093442

Family Applications (1)

Application Number Title Priority Date Filing Date
TW080100769A TW215129B (en) 1990-02-01 1991-01-31

Country Status (3)

Country Link
JP (1) JP2552389B2 (en)
KR (1) KR0130058B1 (en)
TW (1) TW215129B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900982A (en) * 1987-12-31 1999-05-04 Projectavision, Inc. High efficiency light valve projection system
US5499138A (en) * 1992-05-26 1996-03-12 Olympus Optical Co., Ltd. Image display apparatus
JP3071947B2 (en) * 1992-06-12 2000-07-31 シャープ株式会社 Projection type color image display device
JPH06202096A (en) * 1992-12-28 1994-07-22 Sony Corp Video projector device
US5555476A (en) * 1993-08-30 1996-09-10 Toray Industries, Inc. Microlens array sheet for a liquid crystal display, method for attaching the same and liquid crystal display equipped with the same
US5398125A (en) * 1993-11-10 1995-03-14 Minnesota Mining And Manufacturing Company Liquid crystal projection panel having microlens arrays, on each side of the liquid crystal, with a focus beyond the liquid crystal
CN1133893C (en) * 1995-11-02 2004-01-07 皇家菲利浦电子有限公司 Picture display device
KR20030004852A (en) * 2001-07-06 2003-01-15 김용술 Hardening and processing techniques such as rosin and pine cone and mixed mixer and inlaid technique
JP2006284831A (en) * 2005-03-31 2006-10-19 Sanyo Epson Imaging Devices Corp Electrooptical apparatus and electronic device
JP5417696B2 (en) * 2007-09-07 2014-02-19 ソニー株式会社 Liquid crystal display
JP2012141343A (en) 2010-12-28 2012-07-26 Seiko Epson Corp Electro-optic device and electronic equipment
JP5765000B2 (en) 2011-03-25 2015-08-19 セイコーエプソン株式会社 Liquid crystal device and projector
JP6175761B2 (en) * 2012-12-03 2017-08-09 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
KR101974001B1 (en) * 2018-05-10 2019-04-30 국방과학연구소 Method for detection of optical signal by using beam shaping of microlenslet and Optical detection system

Also Published As

Publication number Publication date
JPH03267918A (en) 1991-11-28
JP2552389B2 (en) 1996-11-13
KR0130058B1 (en) 1998-04-11
KR920000045A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
TW215129B (en)
CN100565250C (en) Diffraction optical element
AU629170B2 (en) Display system utilising light transmitting screen and method of manufacturing same
JPS63263520A (en) Input/output unified display device
US20060077307A1 (en) System for and method of optically enhancing video and light elements
WO2019062480A1 (en) Near-eye optical imaging system, near-eye display device and head-mounted display device
WO2002099530A1 (en) Micro-lens sheet and projection screen
US11508945B2 (en) 3-D display panel including heat dissipation structure between light emitting units, and manufacturing method thereof
CN1463389A (en) Double-sided lens sheet and projection screen
TW200304550A (en) Lens array sheet, transparent screen, and rear-projection
JP2003504683A (en) Display system using flat matrix display panel
CN106019605A (en) Near-to-eye display device and method
TW200848911A (en) Micro-structure based screen system for use in rear projection array display systems
TWI230272B (en) Lens array of an erecting mode with unity magnification
TW200410042A (en) Transmissive type screen and rear type projector
TW202246853A (en) Stereoscopic image display device
JPH10123623A (en) Transmission type projection screen
CN111599835B (en) Display panel and preparation method thereof
JPH09506183A (en) Improvements for microlens screens and the like
JP2007212887A (en) Anisotropic light absorbing sheet, manufacturing method of anisotropic light absorbing sheet, manufacturing method of die for anisotropic light absorbing sheet, and screen for image projection apparatus
JP2000035616A (en) Screen sheet
JP2006184542A (en) Space image forming apparatus and display device
JPH05346578A (en) Liquid crystal display panel
WO2021036427A1 (en) Optical imaging film
JP2008281910A (en) Transmission type screen and rear projection type display device