TW202424104A - Recycling methods for mixed polyester materials in plastic products - Google Patents

Recycling methods for mixed polyester materials in plastic products Download PDF

Info

Publication number
TW202424104A
TW202424104A TW111147278A TW111147278A TW202424104A TW 202424104 A TW202424104 A TW 202424104A TW 111147278 A TW111147278 A TW 111147278A TW 111147278 A TW111147278 A TW 111147278A TW 202424104 A TW202424104 A TW 202424104A
Authority
TW
Taiwan
Prior art keywords
fragments
mixed polyester
plastic products
plastic
materials
Prior art date
Application number
TW111147278A
Other languages
Chinese (zh)
Inventor
陳松柏
賴明德
Original Assignee
陳松柏
賴明德
Filing date
Publication date
Application filed by 陳松柏, 賴明德 filed Critical 陳松柏
Publication of TW202424104A publication Critical patent/TW202424104A/en

Links

Abstract

本發明提供一種塑膠製品中的混合聚酯材料回收處理方法,包括:粉碎步驟,將回收塑膠製品進行粉碎,得到回收塑膠碎片;分選步驟,從該回收塑膠碎片中分離出混合聚酯材料碎片;以及化學解聚合步驟,將該混合聚酯材料碎片與至少含有兩個羥基的多官能基醇,在酯化反應觸媒或酯交換反應觸媒的存在下進行化學解聚合反應,得到聚酯多元醇;其中,該回收處理方法進一步包括清洗步驟,在該分選步驟和該化學解聚合步驟之間進行,以去除該混合聚酯材料碎片的表面髒污及印刷。The present invention provides a method for recycling mixed polyester materials in plastic products, comprising: a crushing step, crushing the recycled plastic products to obtain recycled plastic fragments; a sorting step, separating mixed polyester material fragments from the recycled plastic fragments; and a chemical depolymerization step, subjecting the mixed polyester material fragments to a chemical depolymerization reaction with a multifunctional alcohol containing at least two hydroxyl groups in the presence of an esterification reaction catalyst or an ester exchange reaction catalyst to obtain polyester polyols; wherein the recycling method further comprises a cleaning step, which is performed between the sorting step and the chemical depolymerization step, to remove surface dirt and printing on the mixed polyester material fragments.

Description

塑膠製品中的混合聚酯材料回收處理方法Recycling methods for mixed polyester materials in plastic products

本發明提供一種塑膠製品中的混合聚酯材料回收處理方法,可使用化學處理方式將回收塑膠製品中的混合聚酯材料如PET、PETG、PLA、PBS及PBSA等進行回收。The present invention provides a method for recycling mixed polyester materials in plastic products, which can use chemical treatment methods to recycle mixed polyester materials such as PET, PETG, PLA, PBS and PBSA in recycled plastic products.

塑膠包裝製品使用的材料一般包含PET、PETG、PP、PE、PVC、PS、PLA和PBS、PBSA等材料。近來,由於環保意識的提升,為了減少環境的負擔,如何將經使用而丟棄的塑膠製品進行回收再利用成為了一個重要課題。The materials used in plastic packaging products generally include PET, PETG, PP, PE, PVC, PS, PLA, PBS, PBSA, etc. Recently, due to the improvement of environmental awareness, in order to reduce the burden on the environment, how to recycle and reuse plastic products that have been used and discarded has become an important issue.

在平板塑膠製品的生產流程中,一般是先將原料的塑膠粒通過螺桿加熱設備變成熔融態,接著從模具的開口擠出並冷卻定型,得到各種寬度及厚度的塑膠板材,最後將塑膠板材經由熱壓成型的方式,得到各種形狀的塑膠製品。透過此方法可快速大量生產且製造成本低廉,故所製成的塑膠製品廣泛使用在一次性的包裝需求市場,包括各種飲料杯(蓋)、塑膠便當盒(蓋)、塑膠餅乾盒、塑膠製品泡殼、工廠小零件產品的包裝等。In the production process of flat plastic products, the raw plastic pellets are generally first molten through a screw heating device, then extruded from the opening of the mold and cooled to form plastic sheets of various widths and thicknesses. Finally, the plastic sheets are hot-pressed to form plastic products of various shapes. This method can be used for rapid mass production with low manufacturing costs, so the plastic products produced are widely used in the disposable packaging demand market, including various beverage cups (lids), plastic lunch boxes (lids), plastic cookie boxes, plastic product blister shells, and packaging of small factory parts products.

而在瓶罐類塑膠製品的生產流程中,則是將熔融塑膠直接透過擠出吹瓶或是射出吹瓶的加工方式,得到各種形狀的塑膠瓶罐,作為食品或非食品容器使用。In the production process of plastic bottles and cans, molten plastic is directly processed by extrusion blow molding or injection blow molding to obtain plastic bottles and cans of various shapes for use as food or non-food containers.

根據需求,不同的塑膠製品需要具備不同的特性,例如透明性、印刷性、耐熱性、環保性、耐摔性、荷重變形能力等。舉例來說,便當盒或飲料杯等塑膠製品若有耐熱需求會使用PP材料,若有透明性需求會使用PET或PS材料,若有環保性需求會使用PLA或PBS等生物可分解材料,若有軟質可彎曲的性質需求會使用PE材料,而若考慮成本及加工性會使用PVC材料。Different plastic products need to have different characteristics according to the needs, such as transparency, printability, heat resistance, environmental protection, drop resistance, load deformation ability, etc. For example, if plastic products such as lunch boxes or drink cups need to be heat-resistant, PP materials will be used; if transparency is required, PET or PS materials will be used; if environmental protection is required, biodegradable materials such as PLA or PBS will be used; if soft and bendable properties are required, PE materials will be used; and if cost and processability are considered, PVC materials will be used.

由於以上因素,導致目前市場上平板塑膠製品、瓶罐類塑膠製品所使用的材料種類多樣,其衍生的問題就是當這些一次性塑膠製品經使用後丟棄,在進行回收處理的時候無法有效率地將所有塑膠材料依種類分離,在後續加工時會造成以下問題。Due to the above factors, there are many types of materials used in flat plastic products and bottle and can plastic products on the market. The resulting problem is that when these disposable plastic products are discarded after use, all plastic materials cannot be efficiently separated by type during recycling, which will cause the following problems during subsequent processing.

在傳統的物理回收方式中,一般是將回收的塑膠製品經過粉碎及清洗後得到乾淨的塑膠碎片,接著將塑膠碎片進行加熱熔融再製成塑膠粒,提供給塑膠製品業者利用射出、擠出等加工設備進行再利用製作出各種塑膠製品。然而,不同的塑膠材料會有不同的熔化溫度、裂解溫度以及極性,因此,若來自回收塑膠製品的所有材質在回收處理後無法完全分離,其經過熔融造粒再製成的塑膠粒的各種機械強度,包括耐衝擊強度、抗拉強度、延伸率等都可能會有顯著的下降,或者,由此種塑膠粒再製的塑膠製品表面可能會有異物產生,以上問題都會影響最終塑膠粒的可再利用市場。In traditional physical recycling methods, recycled plastic products are generally crushed and cleaned to obtain clean plastic fragments, which are then heated and melted to make plastic pellets, which are then provided to plastic product manufacturers to use injection, extrusion and other processing equipment for recycling to make various plastic products. However, different plastic materials have different melting temperatures, cracking temperatures and polarities. Therefore, if all materials from recycled plastic products cannot be completely separated after recycling, the various mechanical strengths of the plastic pellets made from melt granulation, including impact strength, tensile strength, elongation, etc., may be significantly reduced, or foreign matter may be produced on the surface of plastic products made from such plastic pellets. The above problems will affect the final recyclable market of plastic pellets.

目前,在成本因素的考量下,市場上聚酯類塑膠製品中PET、PETG材料使用的數量遠大於PLA、PBS及PBSA。其中,瓶罐類塑膠製品由於通常僅由單一材質製成,可以僅透過人工分選搭配靜電或光學分選機將不同材質分離出來。但平板塑膠製品包含的材質眾多,尤其近幾年因為環保的訴求,作為生物可分解材料的PLA、PBS、PBSA開始使用在平板塑膠以及塑膠瓶罐的生產及應用。At present, due to cost considerations, the amount of PET and PETG materials used in polyester plastic products on the market is far greater than that of PLA, PBS and PBSA. Among them, since bottle and can plastic products are usually made of only a single material, different materials can be separated only through manual sorting with electrostatic or optical sorting machines. However, flat plastic products contain many materials. In particular, in recent years, due to environmental protection demands, PLA, PBS, and PBSA, as biodegradable materials, have begun to be used in the production and application of flat plastics and plastic bottles and cans.

在傳統的物理回收方式中,在螺桿加熱設備中需加熱到250℃以上的溫度才能讓PET、PETG熔融進行加工,然而,前述生物可分解材料並不耐高溫。因此,若回收的塑膠製品中的PET或PETG材質混合了PLA、PBS或PBSA材質, PLA、PBS或PBSA材料會在熔融過程的高溫下發生熱裂解,導致再製塑膠的分子量下降而無法再利用。In the traditional physical recycling method, the temperature in the screw heating equipment must be heated to above 250°C to melt PET and PETG for processing. However, the aforementioned biodegradable materials are not resistant to high temperatures. Therefore, if the PET or PETG materials in the recycled plastic products are mixed with PLA, PBS or PBSA materials, the PLA, PBS or PBSA materials will be thermally cracked at the high temperature of the melting process, resulting in a decrease in the molecular weight of the recycled plastic and cannot be reused.

鑑於現有技術遭遇的問題,本發明旨在提供一種塑膠製品中的混合聚酯材料回收處理方法,其中,開發了一種使用化學處理方式對混合任何聚酯材料,如PET、PETG、PLA、PBS及/或PBSA等,當混合兩種或三種以上的聚酯材質時,可以直接進行化學回收再利用的技術,而不需完全分選出單一材質後才能再利用,以擺脫傳統的物理回收方式中混合多種塑膠材質時無法再利用的缺點。In view of the problems encountered in the prior art, the present invention aims to provide a method for recycling mixed polyester materials in plastic products, wherein a technology for using chemical treatment to mix any polyester materials, such as PET, PETG, PLA, PBS and/or PBSA, etc., when two or more polyester materials are mixed, can be directly chemically recycled and reused without completely sorting out a single material before reuse, so as to get rid of the disadvantage of the traditional physical recycling method that mixed multiple plastic materials cannot be reused.

根據本發明提供的一種塑膠製品中的混合聚酯材料回收處理方法,包括:粉碎步驟,將回收塑膠製品進行粉碎,得到回收塑膠碎片;分選步驟,從該回收塑膠碎片中分離出混合聚酯材料碎片;以及化學解聚合步驟,將該混合聚酯材料碎片與至少含有兩個羥基的多官能基醇,在酯化反應觸媒或酯交換反應觸媒的存在下進行化學解聚合反應,得到聚酯多元醇。The present invention provides a method for recycling mixed polyester materials in plastic products, comprising: a crushing step of crushing the recycled plastic products to obtain recycled plastic fragments; a sorting step of separating mixed polyester material fragments from the recycled plastic fragments; and a chemical depolymerization step of subjecting the mixed polyester material fragments to a chemical depolymerization reaction with a multifunctional alcohol containing at least two hydroxyl groups in the presence of an esterification reaction catalyst or an ester exchange reaction catalyst to obtain polyester polyols.

本發明的回收處理方法進一步包括清洗步驟,其中,該清洗步驟在該粉碎步驟之前進行,以去除該回收塑膠製品的表面髒污及印刷;或者,該清洗步驟在該粉碎步驟和該分選步驟之間進行,以去除該回收塑膠碎片的表面髒污及印刷;或者,該清洗步驟在該分選步驟和該化學解聚合步驟之間進行,以去除該混合聚酯材料碎片的表面髒污及印刷。The recycling method of the present invention further comprises a cleaning step, wherein the cleaning step is performed before the crushing step to remove surface dirt and printing of the recycled plastic product; or, the cleaning step is performed between the crushing step and the sorting step to remove surface dirt and printing of the recycled plastic fragments; or, the cleaning step is performed between the sorting step and the chemical depolymerization step to remove surface dirt and printing of the mixed polyester material fragments.

在本發明的一實施例中,該化學解聚合反應在高於190℃且低於250℃的溫度進行。In one embodiment of the present invention, the chemical depolymerization reaction is carried out at a temperature higher than 190°C and lower than 250°C.

在本發明的一實施例中,該混合聚酯材料碎片包括PET、PETG、PLA、PBS和PBSA中的至少一種。In one embodiment of the present invention, the mixed polyester material chips include at least one of PET, PETG, PLA, PBS and PBSA.

在本發明的一實施例中,該混合聚酯材料碎片/該多官能基醇的重量比範圍為0.8~2.5。In one embodiment of the present invention, the weight ratio of the mixed polyester material fragments to the multifunctional alcohol is in the range of 0.8 to 2.5.

在本發明的一實施例中,該多官能基醇包含2-甲基-1,3-丙二醇、二乙二醇、2,2-二甲基-1,3-丙二醇、乙二醇、1,2-丙二醇、1,3-丙二醇、丁二醇、戊二醇、己二醇、丙三醇及三羥甲基丙烷中的至少一種。In one embodiment of the present invention, the multifunctional alcohol comprises at least one of 2-methyl-1,3-propanediol, diethylene glycol, 2,2-dimethyl-1,3-propanediol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, butanediol, pentanediol, hexanediol, glycerol and trihydroxymethylpropane.

在本發明的一實施例中,該混合聚酯材料碎片/該多官能基醇的重量比範圍為0.8~2.5,並且其中,在該多官能基醇至少包含乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、丁二醇或其組合的情況下,該乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、丁二醇或其組合的總添加量不超過20 phr。In one embodiment of the present invention, the weight ratio of the mixed polyester material fragments/the multifunctional alcohol is in the range of 0.8 to 2.5, and wherein, when the multifunctional alcohol comprises at least ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, butanediol or a combination thereof, the total addition amount of the ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, butanediol or a combination thereof does not exceed 20 phr.

在本發明的一實施例中,該酯化反應觸媒或該酯交換反應觸媒包含醋酸金屬鹽類、金屬氧化物、鈦酸酯中的至少一種。In one embodiment of the present invention, the esterification reaction catalyst or the transesterification reaction catalyst comprises at least one of acetic acid metal salts, metal oxides, and titanium esters.

在本發明的一實施例中,該分選步驟進一步包括:密度浮選步驟,將該回收塑膠碎片放入比重大於1.05且小於1.15的液體中,以從該回收塑膠碎片中分離出包含PVC和聚酯材料的沉底塑膠碎片;以及靜電或光學分選步驟,透過靜電分選裝置或光學分選裝置將該沉底塑膠碎片中的PVC分離,以得到該混合聚酯材料碎片。In one embodiment of the present invention, the sorting step further includes: a density flotation step, placing the recycled plastic fragments into a liquid with a specific gravity greater than 1.05 and less than 1.15 to separate the bottom-sinking plastic fragments containing PVC and polyester materials from the recycled plastic fragments; and an electrostatic or optical sorting step, separating the PVC in the bottom-sinking plastic fragments by an electrostatic sorting device or an optical sorting device to obtain the mixed polyester material fragments.

在本發明的一實施例中,在該清洗步驟中,在25℃~100℃的溫度下使用強鹼性化合物和有機溶劑的至少其中一種去除該回收塑膠製品、該回收塑膠碎片或該混合聚酯材料碎片的表面髒污及印刷。In one embodiment of the present invention, in the cleaning step, at least one of a strong alkaline compound and an organic solvent is used at a temperature of 25° C. to 100° C. to remove surface dirt and printing from the recycled plastic product, the recycled plastic fragments or the mixed polyester material fragments.

在本發明的一實施例中,該回收處理方法進一步包括聚氨酯合成步驟,使用該化學解聚合步驟中得到的聚酯多元醇來合成聚氨酯樹脂(polyurethanes, PU)或聚氨酯發泡材料。In one embodiment of the present invention, the recycling method further comprises a polyurethane synthesis step, using the polyester polyol obtained in the chemical depolymerization step to synthesize polyurethane resins (PU) or polyurethane foam materials.

綜上所述,本發明首先透過上述塑膠材質分選步驟,得到混合的聚酯塑膠材料,包括PET、PETG、PLA、PBS及/或PBSA等,此混合材料不需再經過任何的材質分選步驟,將其經過表面清洗去汙處理後,可直接進行化學解聚合步驟,在高溫、觸媒以及多官能基醇的存在下,將回收的混合聚酯材料碎片轉化成中分子量的聚酯多元醇。解聚合反應得到的聚酯多元醇可以再利用於各種應用,例如可作為合成PU樹脂(polyurethane resin)或是PU發泡材料(polyurethane foam)的原料。In summary, the present invention first obtains a mixed polyester plastic material, including PET, PETG, PLA, PBS and/or PBSA, through the above-mentioned plastic material sorting step. This mixed material does not need to undergo any material sorting step. After surface cleaning and decontamination treatment, it can be directly subjected to a chemical depolymerization step. Under high temperature, a catalyst and the presence of a multifunctional alcohol, the recycled mixed polyester material fragments are converted into a polyester polyol with a medium molecular weight. The polyester polyol obtained by the depolymerization reaction can be reused in various applications, for example, as a raw material for synthesizing PU resin (polyurethane resin) or PU foam material (polyurethane foam).

本發明的效果不限於上述效果,所屬技術領域中具有通常知識者能從申請專利範圍的描述中清楚地理解未提及的其他效果。The effects of the present invention are not limited to the above-mentioned effects, and a person having ordinary knowledge in the relevant technical field can clearly understand other effects not mentioned from the description of the patent application scope.

根據下文參照附圖的所述實施例,將更清楚地理解本發明的優點和特徵及其實現方法。然而,本發明不限於以下實施例,而是可以以各種不同的形式實施。According to the described embodiment with reference to the accompanying drawings below, the advantages and features of the present invention and its implementation method will be more clearly understood. However, the present invention is not limited to the following embodiments, but can be implemented in various different forms.

為了解決現有技術遭遇的問題,本發明提供了一種塑膠製品中的混合聚酯材料回收處理方法,其中,首先從回收塑膠製品中將包括PET(聚對苯二甲酸乙二醇酯)、PETG(Poly(ethylene terephthalateco-1,4-cylclohexylenedimethylene terephthalate),聚對苯二甲酸乙二醇酯-1,4-環己烷二甲醇酯)、PLA(聚乳酸)、PBS(聚丁二酸丁二醇酯)及PBSA(Poly(butylene succinate-co-butylene adipate),聚(丁二酸丁二醇酯-共-己二酸丁二醇酯))等的聚酯材料分離出來,接著將分離出來的混合聚酯材料透過化學解聚合的方式,得到回收再製的聚酯多元醇,從而可對聚酯多元醇進行再利用,例如可作為合成PU樹酯或PU發泡材料的原料。In order to solve the problems encountered in the prior art, the present invention provides a method for recycling mixed polyester materials in plastic products, wherein first, PET (polyethylene terephthalate), PETG (Poly (ethylene terephthalateco-1,4-cylclohexylenedimethylene terephthalate), PLA (polylactic acid), PBS (polybutylene succinate-co-butylene ester) and PBSA (Poly (butylene succinate-co-butylene ester)) are recycled from the plastic products. The polyester materials such as poly(butylene succinate-co-butylene adipate) are separated, and then the separated mixed polyester materials are chemically depolymerized to obtain recycled polyester polyols, so that the polyester polyols can be reused, for example, as raw materials for synthesizing PU resins or PU foam materials.

表1、各種聚酯材料的結構及熔點 名稱 結構 熔點 PET >250℃ PETG >250℃ PLA 180℃ PBS 115℃ Table 1. Structure and melting point of various polyester materials Name Structure Melting point PET >250℃ PETG >250℃ PLA 180℃ PBS 115℃

如上表1中的結構所示,通常,聚酯材料依結構可分為:由多元酸(如二元酸)與多元醇(如二元醇)縮聚獲得的聚合物,如PET、PETG、PBS、PBSA;以及由含有羥基的羧酸縮聚獲得的聚合物,如PLA。例如,PET是由對苯二甲酸(TPA)與乙二醇(EG)縮聚獲得的聚合物;以及一般而言,PETG是由TPA、EG及1,4-環己烷二甲醇(CHDM)所組成的共聚酯。As shown in the structure in Table 1 above, polyester materials can generally be divided into: polymers obtained by polycondensation of polyacids (such as dibasic acids) and polyols (such as diols), such as PET, PETG, PBS, PBSA; and polymers obtained by polycondensation of carboxylic acids containing hydroxyl groups, such as PLA. For example, PET is a polymer obtained by polycondensation of terephthalic acid (TPA) and ethylene glycol (EG); and generally speaking, PETG is a copolyester composed of TPA, EG and 1,4-cyclohexanedimethanol (CHDM).

由上表1可知,PET、PETG的熔點均高於250℃,而PLA和PBS的熔點遠低於250℃,PBSA的熔點甚至比PBS更低。因此傳統的物理回收方式無法同時滿足這些材料的熔融條件。為解決此問題,本發明開發出一種使用化學解聚合技術代替傳統的物理熔融方式,從而可同時處理混合聚酯回收材料的回收處理方法。As shown in Table 1 above, the melting points of PET and PETG are both higher than 250°C, while the melting points of PLA and PBS are much lower than 250°C, and the melting point of PBSA is even lower than PBS. Therefore, the traditional physical recycling method cannot meet the melting conditions of these materials at the same time. To solve this problem, the present invention develops a recycling method that uses chemical depolymerization technology instead of the traditional physical melting method, thereby being able to simultaneously process mixed polyester recycled materials.

如下反應式1所示,解聚合反應的原理是聚酯材料的酯官能基(ester bond),會與多官能基醇(例如二官能基醇)的OH官能基進行解聚合反應(即醇解反應),從而得到聚酯多元醇,其為一種寡聚物。其中,在觸媒存在及/或高溫下可以加快解聚合反應的進行。 [式1] As shown in the following reaction formula 1, the principle of the depolymerization reaction is that the ester bond of the polyester material undergoes a depolymerization reaction (i.e., alcoholysis reaction) with the OH bond of a multifunctional alcohol (e.g., a difunctional alcohol) to obtain a polyester polyol, which is a type of oligomer. The depolymerization reaction can be accelerated in the presence of a catalyst and/or at a high temperature. [Formula 1]

因此,參照圖1~3,本發明提供一種塑膠製品中的混合聚酯材料回收處理方法,包括粉碎步驟S10、分選步驟S20和化學解聚合步驟S30;其中,該回收處理方法在粉碎步驟S10之前、粉碎步驟S10和分選步驟S20之間、或分選步驟S20和化學解聚合步驟S30之間進一步包括清洗步驟C。Therefore, referring to Figures 1 to 3, the present invention provides a method for recycling mixed polyester materials in plastic products, comprising a crushing step S10, a sorting step S20 and a chemical depolymerization step S30; wherein the recycling method further comprises a cleaning step C before the crushing step S10, between the crushing step S10 and the sorting step S20, or between the sorting step S20 and the chemical depolymerization step S30.

首先,在粉碎步驟S10中,可透過諸如粉碎機、切碎機或碎料機等本發明所屬技術領域中已知的粉碎設備,將回收的塑膠製品,如塑膠杯(蓋)、塑膠盒(蓋)、塑膠瓶罐等進行粉碎以產生回收塑膠碎片。First, in the crushing step S10, the recycled plastic products, such as plastic cups (lids), plastic boxes (lids), plastic bottles and cans, etc., can be crushed by crushing equipment known in the technical field of the present invention, such as a crusher, a shredder or a crusher, to produce recycled plastic fragments.

具體地,回收塑膠製品的材料可包括例如:PET、PETG、PP、PE、PVC、PS、PLA、PBS、PBSA等材料,但不限於此。Specifically, the materials of recycled plastic products may include, for example, PET, PETG, PP, PE, PVC, PS, PLA, PBS, PBSA and the like, but are not limited thereto.

接著,在分選步驟S20中,從該回收塑膠碎片中分離出包括PET、PETG、PLA、PBS和PBSA中的至少一種的混合聚酯材料碎片。Next, in the sorting step S20, mixed polyester material fragments including at least one of PET, PETG, PLA, PBS and PBSA are separated from the recycled plastic fragments.

具體地,分選步驟S20可以進一步包括:密度浮選步驟S21;以及靜電或光學分選步驟S22。Specifically, the sorting step S20 may further include: a density flotation step S21; and an electrostatic or optical sorting step S22.

在密度浮選步驟S21中,將透過粉碎步驟S10產生的回收塑膠碎片放入比重大於1.05且小於1.15的液體中,此時,回收塑膠碎片中比重小於1.05~1.15的材質,例如PP、PE和PS等會浮在液體上面,而比重大於1.15的材質,例如PVC材質及/或PET、PETG、PLA、PBS、PBSA等聚酯材質會沉入液體中,因此可以從回收塑膠碎片中分離出沉入液體底部的包含PVC和聚酯材料的沉底塑膠碎片。In the density flotation step S21, the recycled plastic fragments produced by the crushing step S10 are placed in a liquid with a specific gravity greater than 1.05 and less than 1.15. At this time, materials with a specific gravity less than 1.05-1.15 in the recycled plastic fragments, such as PP, PE and PS, will float on the liquid, while materials with a specific gravity greater than 1.15, such as PVC materials and/or polyester materials such as PET, PETG, PLA, PBS, PBSA, etc., will sink into the liquid. Therefore, the plastic fragments containing PVC and polyester materials that sink to the bottom of the liquid can be separated from the recycled plastic fragments.

接著,在靜電或光學分選步驟S22中,透過靜電分選裝置或光學分選裝置,將PVC材料從該沉底塑膠碎片中分離出來,以得到上述包括PET、PETG、PLA、PBS和PBSA中的至少一種的混合聚酯材料碎片。Next, in the electrostatic or optical sorting step S22, the PVC material is separated from the bottom plastic fragments by an electrostatic sorting device or an optical sorting device to obtain the mixed polyester material fragments including at least one of PET, PETG, PLA, PBS and PBSA.

具體地,靜電分選裝置可以是例如塑膠靜電分選機,其利用各種塑膠間不同的靜電吸力來進行材質分選;而光學分選裝置可以是例如近紅外線(NIR)光學分選機,其利用近紅外光對塑膠中的化學鍵會有明顯不同的吸收與震盪效應來進行材質分選。此外,上述靜電或光學分選裝置也可以是本發明所屬技術領域中已知的靜電或光學分選裝置。Specifically, the electrostatic sorting device may be, for example, a plastic electrostatic sorting machine, which utilizes the different electrostatic attraction between various plastics to sort materials; and the optical sorting device may be, for example, a near infrared (NIR) optical sorting machine, which utilizes the significantly different absorption and vibration effects of near infrared light on chemical bonds in plastics to sort materials. In addition, the above-mentioned electrostatic or optical sorting device may also be an electrostatic or optical sorting device known in the art to which the present invention belongs.

此外,本發明的混合聚酯材料回收處理方法可以進一步包括清洗步驟C,以去除上述回收塑膠製品、回收塑膠碎片或混合聚酯材料碎片的表面髒污及印刷。清洗步驟C可以在進行化學解聚合步驟S30之前的任何時間點進行,只要在化學解聚合步驟S30之前可以得到乾淨不含雜質的混合聚酯材料碎片即可。In addition, the mixed polyester material recycling method of the present invention may further include a cleaning step C to remove surface dirt and printing from the recycled plastic products, recycled plastic fragments or mixed polyester material fragments. The cleaning step C may be performed at any time before the chemical depolymerization step S30, as long as clean mixed polyester material fragments free of impurities can be obtained before the chemical depolymerization step S30.

例如,參照圖1,根據本發明的一個態樣,清洗步驟C可以在粉碎步驟S10之前進行。或者,參照圖2,根據本發明的另一態樣,清洗步驟C可以在粉碎步驟S10和分選步驟S20之間進行。或者,參照圖3,根據本發明的又一態樣,清洗步驟C可以在分選步驟S20和化學解聚合步驟S30之間進行。For example, referring to FIG1 , according to one aspect of the present invention, the cleaning step C may be performed before the crushing step S10. Alternatively, referring to FIG2 , according to another aspect of the present invention, the cleaning step C may be performed between the crushing step S10 and the sorting step S20. Alternatively, referring to FIG3 , according to yet another aspect of the present invention, the cleaning step C may be performed between the sorting step S20 and the chemical depolymerization step S30.

具體地,在清洗步驟C中,在25℃~100℃的溫度下將回收塑膠製品、回收塑膠碎片或混合聚酯材料碎片放入含有強鹼性化合物和有機溶劑的至少其中一種的液體中進行攪拌清洗,以去除表面髒污及印刷,得到乾淨的回收塑膠製品、回收塑膠碎片或混合聚酯材料碎片。Specifically, in the cleaning step C, the recycled plastic product, recycled plastic fragments or mixed polyester material fragments are placed in a liquid containing at least one of a strong alkaline compound and an organic solvent at a temperature of 25°C to 100°C for stirring and cleaning to remove surface dirt and printing to obtain clean recycled plastic products, recycled plastic fragments or mixed polyester material fragments.

其中,該強鹼性化合物可以包含氫氧化鈉和氫氧化鉀的至少其中一種,並且其中,該有機溶劑可以包含碳數較低的酮類、醇類、酯類等小分子有機溶劑或苯類等有機溶劑,例如:丙酮、丁酮、乙醇、異丙醇、乙酸乙酯或甲苯,但不限於此。The strong alkaline compound may include at least one of sodium hydroxide and potassium hydroxide, and the organic solvent may include small molecule organic solvents such as ketones, alcohols, esters, etc. with a lower carbon number, or organic solvents such as benzene, for example: acetone, butanone, ethanol, isopropanol, ethyl acetate or toluene, but not limited thereto.

此外,在清洗步驟C中,還可以進一步使用界面活性劑作為輔助的洗滌液,藉由界面活性劑同時具有親水性和疏水性的特性,可以有效地分散表面髒污及印刷,促進清洗效果。In addition, in the cleaning step C, a surfactant can be further used as an auxiliary cleaning liquid. Due to the hydrophilic and hydrophobic properties of the surfactant, surface dirt and printing can be effectively dispersed to promote the cleaning effect.

然而,清洗步驟C中使用的清洗技術不限於以上所述者,也可以使用本發明所屬技術領域中已知的任何清洗技術。However, the cleaning technology used in the cleaning step C is not limited to the above-mentioned ones, and any cleaning technology known in the technical field to which the present invention belongs may also be used.

接著,在化學解聚合步驟S30中,將乾淨的混合聚酯材料碎片與至少含有兩個羥基的多官能基醇在酯化反應觸媒或酯交換反應觸媒的存在下進行化學解聚合反應,得到聚酯多元醇。Next, in the chemical depolymerization step S30, the clean mixed polyester material fragments and a multifunctional alcohol containing at least two hydroxyl groups are subjected to a chemical depolymerization reaction in the presence of an esterification reaction catalyst or an ester exchange reaction catalyst to obtain a polyester polyol.

具體地,化學解聚合反應在高於190℃,例如195℃以上,較佳地高於210℃,且低於250℃,較佳地低於230℃的溫度進行。當解聚合溫度低於190℃時,解聚合效果不佳。而當解聚合溫度越高時,產品的顏色越黃,且酸價也越高,將影響產品的外觀及性質。因此,解聚合溫度應低於250℃。Specifically, the chemical depolymerization reaction is carried out at a temperature higher than 190°C, such as 195°C or higher, preferably higher than 210°C, and lower than 250°C, preferably lower than 230°C. When the depolymerization temperature is lower than 190°C, the depolymerization effect is poor. When the depolymerization temperature is higher, the color of the product becomes yellower, and the acid value becomes higher, which will affect the appearance and properties of the product. Therefore, the depolymerization temperature should be lower than 250°C.

此外,由於本發明採用的是化學解聚合方法進行聚酯材料的回收處理,因此相較於傳統的物理熔融方法可容許聚酯材料發生部分的熱裂解反應,只要解聚合溫度溫度低於250℃,較佳地低於230℃即可。In addition, since the present invention adopts a chemical depolymerization method to recycle the polyester material, it can allow the polyester material to undergo partial thermal cracking reaction compared to the traditional physical melting method, as long as the depolymerization temperature is lower than 250°C, preferably lower than 230°C.

具體地,混合聚酯材料碎片/多官能基醇的重量比範圍為0.8~2.5,較佳的範圍為1~2。當多官能基醇的添加量太少時,解聚合反應得到的產品黏度太高,難以流動,不易進行發泡反應;而當多官能基醇的添加量太多時,解聚合反應得到的產品分子量太低,雖然易於流動,但是發泡得到的產品強度不足,容易脆裂。Specifically, the weight ratio of the mixed polyester material fragments to the multifunctional alcohol is in the range of 0.8 to 2.5, and the preferred range is 1 to 2. When the amount of the multifunctional alcohol added is too little, the viscosity of the product obtained by the depolymerization reaction is too high, and it is difficult to flow and the foaming reaction is not easy; when the amount of the multifunctional alcohol added is too much, the molecular weight of the product obtained by the depolymerization reaction is too low, and although it is easy to flow, the strength of the foamed product is insufficient and it is easy to crack.

具體地,多官能基醇可以是二官能基醇,例如2-甲基-1,3-丙二醇、二乙二醇、2,2-二甲基-1,3-丙二醇、乙二醇、1,2-丙二醇 、1,3-丙二醇、丁二醇、戊二醇及己二醇中的至少一種;也可以是三官能基醇,例如丙三醇和三羥甲基丙烷中的至少一種。其中,丁二醇、戊二醇及己二醇通常分別是指1,4-丁二醇、1,5-戊二醇及1,6-己二醇。Specifically, the multifunctional alcohol may be a difunctional alcohol, such as at least one of 2-methyl-1,3-propanediol, diethylene glycol, 2,2-dimethyl-1,3-propanediol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, butanediol, pentanediol and hexanediol; or a trifunctional alcohol, such as at least one of glycerol and trihydroxymethylpropane. Among them, butanediol, pentanediol and hexanediol generally refer to 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol, respectively.

較佳地,在解聚合反應中,作為多官能基醇,透過主要使用支鏈醇(例如2-甲基-1,3-丙二醇、2,2-二甲基-1,3-丙二醇、丙三醇及三羥甲基丙烷),並可選地搭配使用直鏈醇(例如乙二醇、1,3-丙二醇、丁二醇、戊二醇及己二醇),可以得到在室溫下為易流動液體的聚酯多元醇,有利於後續的再利用。Preferably, in the depolymerization reaction, by mainly using branched alcohols (such as 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, glycerol and trihydroxymethylpropane) as the polyfunctional alcohol, and optionally using straight-chain alcohols (such as ethylene glycol, 1,3-propanediol, butanediol, pentanediol and hexanediol) in combination, a polyester polyol that is a free-flowing liquid at room temperature can be obtained, which is beneficial for subsequent recycling.

較佳地,2-甲基-1,3-丙二醇或2,2-二甲基-1,3-丙二醇的添加濃度可以為50~70 phr。較佳地,二乙二醇的添加濃度可以為20~70 phr。Preferably, the concentration of 2-methyl-1,3-propanediol or 2,2-dimethyl-1,3-propanediol added may be 50-70 phr. Preferably, the concentration of diethylene glycol added may be 20-70 phr.

較佳地,在多官能基醇至少包含乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、丁二醇或其組合的情況下,該乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、丁二醇或其組合的總添加量不超過20 phr。Preferably, when the multifunctional alcohol comprises at least ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, butanediol or a combination thereof, the total amount of ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, butanediol or a combination thereof added is not more than 20 phr.

其中,phr的定義為每百份樹脂的份數(Parts per hundred parts of resin),即每100 g的(混合)聚酯材料碎片中添加的重量(g)。Among them, phr is defined as parts per hundred parts of resin, that is, the weight (g) added to every 100 g of (mixed) polyester material chips.

具體地,酯化反應觸媒或該酯交換反應觸媒可包含醋酸金屬鹽類、金屬氧化物、鈦酸酯中的至少一種。醋酸金屬鹽可以是例如醋酸鋅、醋酸鉀、醋酸鋰,金屬氧化物可以是例如二丁基氧化錫、三氧化二銻,鈦酸酯可以是例如鈦酸四丁酯。Specifically, the esterification reaction catalyst or the transesterification reaction catalyst may include at least one of metal acetate salts, metal oxides, and titanium esters. The metal acetate salts may be, for example, zinc acetate, potassium acetate, and lithium acetate, the metal oxides may be, for example, dibutyltin oxide and antimony trioxide, and the titanium ester may be, for example, tetrabutyl titanium.

經由本發明的化學解聚合步驟S30得到的聚酯多元醇可以再利用於各種應用,例如可作為合成PU樹脂或是PU發泡材料的原料。The polyester polyol obtained by the chemical depolymerization step S30 of the present invention can be reused in various applications, for example, as a raw material for synthesizing PU resin or PU foaming material.

因此,本發明的混合聚酯材料回收處理方法可以進一步包括聚氨酯合成步驟S40,其中,使用化學解聚合步驟S30得到的聚酯多元醇與異氰酸酯(isocyanate)進行反應來合成聚氨酯樹脂。其反應式如下式2所示: [式2] Therefore, the mixed polyester material recycling method of the present invention may further include a polyurethane synthesis step S40, wherein the polyester polyol obtained in the chemical depolymerization step S30 is reacted with isocyanate to synthesize a polyurethane resin. The reaction formula is shown in Formula 2 below: [Formula 2]

其中,聚氨酯(3)是主鏈中含有胺基甲酸酯結構(4)的聚合物,本發明的化學解聚合步驟S30得到的聚酯多元醇可用作多元醇(1),從而與異氰酸酯(2)進行加成聚合反應得到聚氨酯(3)樹酯。The polyurethane (3) is a polymer containing a urethane structure (4) in the main chain. The polyester polyol obtained in the chemical depolymerization step S30 of the present invention can be used as the polyol (1), thereby reacting with the isocyanate (2) to obtain the polyurethane (3) resin.

此外,在聚氨酯合成步驟S40中,還可進一步添加適量的發泡劑到上述多元醇、異氰酸酯等原料中並混合均勻,接著將混合物注入到模具中進行聚合(polymerization)反應和發泡(foaming)反應,來合成聚氨酯發泡材料。In addition, in the polyurethane synthesis step S40, a proper amount of foaming agent may be further added to the above-mentioned raw materials such as polyol and isocyanate and mixed evenly, and then the mixture is injected into a mold to perform polymerization reaction and foaming reaction to synthesize a polyurethane foam material.

聚氨酯樹酯和聚氨酯發泡材料的合成方式沒有限制,可以使用本發明所屬技術領域中已知的任何合成方式。There is no limitation on the synthesis method of the polyurethane resin and the polyurethane foam material, and any synthesis method known in the art to which the present invention belongs can be used.

為了驗證本發明的混合聚酯材料回收處理方法的功效,對各種材質的聚酯材料碎片在不同的條件下進行化學解聚合實驗,並觀察所得的聚酯多元醇的外觀及/或流動性。本發明的各個示例的實驗條件及結果如表2~6所示。In order to verify the efficacy of the mixed polyester material recycling method of the present invention, chemical depolymerization experiments were conducted on polyester material fragments of various materials under different conditions, and the appearance and/or fluidity of the obtained polyester polyols were observed. The experimental conditions and results of various examples of the present invention are shown in Tables 2 to 6.

表2示出使用PET作為聚酯材料的解聚合實驗條件(含各成分添加量)及結果,其中,示例1~5為多官能基醇的添加量較多(聚酯材料碎片/多官能基醇的重量比為1.43)的情況;示例6~7為多官能基醇的添加量較少(聚酯材料碎片/多官能基醇的重量比為2.0)的情況。Table 2 shows the depolymerization experimental conditions (including the amount of each component added) and results using PET as the polyester material, wherein Examples 1 to 5 are cases where a larger amount of polyfunctional alcohol is added (the weight ratio of polyester material fragments/polyfunctional alcohol is 1.43); Examples 6 to 7 are cases where a smaller amount of polyfunctional alcohol is added (the weight ratio of polyester material fragments/polyfunctional alcohol is 2.0).

表2、PET聚酯材料的解聚合實驗 示例 PET 乙二醇 2-甲基-1,3-丙二醇 二乙二醇 觸媒 解聚合條件 高溫下外觀 室溫下外觀 1 100g 70g       A 200℃*4hr 透明液體 白色固體 2 100g    70g    A 220℃*2hr 透明液體 易流動液體 3 100g       70g A 220℃*2hr 透明液體 難流動液體 4 100g    70g    B 220℃*2hr 透明液體 易流動液體 5 100g 70g       C 200℃*4hr 透明液體 易流動液體 6 100g 50g       A 200℃*4hr 透明液體 白色固體 7 100g    50g    A 220℃*3hr 透明液體 難流動液體 Table 2. Depolymerization experiment of PET polyester material Example PET Ethylene glycol 2-Methyl-1,3-propanediol Diethylene glycol Catalyst Depolymerization conditions Appearance at high temperature Appearance at room temperature 1 100g 70g A 200℃*4hr Transparent liquid White solid 2 100g 70g A 220℃*2hr Transparent liquid Free flowing liquid 3 100g 70g A 220℃*2hr Transparent liquid Difficult-flowing liquids 4 100g 70g B 220℃*2hr Transparent liquid Free flowing liquid 5 100g 70g C 200℃*4hr Transparent liquid Free flowing liquid 6 100g 50g A 200℃*4hr Transparent liquid White solid 7 100g 50g A 220℃*3hr Transparent liquid Difficult-flowing liquids

其中,觸媒A為醋酸鋅,觸媒B為鈦酸四丁酯(TBT),觸媒C為二丁基氧化錫(dibutyltinoxide)。Among them, catalyst A is zinc acetate, catalyst B is tetrabutyl titanium (TBT), and catalyst C is dibutyltinoxide.

其中,參照示例1~5的實驗結果可知,使用2-甲基-1,3-丙二醇作為多官能基醇對PET進行解聚合反應,得到的聚酯多元醇在室溫下為易流動液體,有利於後續的聚酯多元醇再利用,例如PU樹酯或PU發泡材料的合成。Among them, referring to the experimental results of Examples 1 to 5, it can be seen that the polyester polyol obtained by using 2-methyl-1,3-propanediol as a multifunctional alcohol to depolymerize PET is an easy-flowing liquid at room temperature, which is conducive to the subsequent recycling of the polyester polyol, such as the synthesis of PU resin or PU foam material.

此外,在示例3中,使用二乙二醇作為多官能基醇進行解聚合反應得到的聚酯多元醇在室溫下為難流動液體,不易進行發泡反應,因此不利於後續的聚酯多元醇再利用。In addition, in Example 3, the polyester polyol obtained by depolymerization reaction using diethylene glycol as the multifunctional alcohol is a difficult-to-flow liquid at room temperature and is not easy to undergo a foaming reaction, which is not conducive to the subsequent recycling of the polyester polyol.

並且,透過示例1、6的實驗結果可知,使用乙二醇作為多官能基醇對PET進行解聚合反應,得到的聚酯多元醇在室溫下可能為固體,不利於後續的聚酯多元醇再利用。Furthermore, the experimental results of Examples 1 and 6 show that when ethylene glycol is used as a multifunctional alcohol to depolymerize PET, the resulting polyester polyol may be solid at room temperature, which is not conducive to the subsequent recycling of the polyester polyol.

此外,參照示例6~7的實驗結果可知,在多官能基醇的添加量較少的情況下,解聚合反應得到的聚酯多元醇在室溫下分別為固體和難流動液體,不利於後續的聚酯多元醇再利用。此外,在多官能基醇的添加量較少的情況下,解聚合反應速度也會較慢。In addition, referring to the experimental results of Examples 6 and 7, it can be seen that when the amount of polyfunctional alcohol added is small, the polyester polyol obtained by the depolymerization reaction is a solid and a difficult-to-flow liquid at room temperature, which is not conducive to the subsequent recycling of the polyester polyol. In addition, when the amount of polyfunctional alcohol added is small, the depolymerization reaction rate will also be slow.

如下所示,表3示出使用PLA、PBS作為聚酯材料的解聚合實驗條件(含各成分添加量)及結果,其中,示例8~9為使用PLA作為聚酯材料並添加不同的多官能基醇的情況;示例10~11為使用PBS作為聚酯材料並添加不同的多官能基醇的情況。As shown below, Table 3 shows the depolymerization experimental conditions (including the amount of each component added) and results using PLA and PBS as polyester materials, among which Examples 8~9 are the cases where PLA is used as the polyester material and different multifunctional alcohols are added; Examples 10~11 are the cases where PBS is used as the polyester material and different multifunctional alcohols are added.

表3、PLA、PBS聚酯材料的解聚合實驗 示例 PLA PBS 乙二醇 2-甲基-1,3-丙二醇 觸媒 解聚合條件 高溫下外觀 室溫下外觀 8 100g    70g    A 200℃*4hr 透明液體 易流動液體 9 100g       70g A 210℃*2hr 透明液體 易流動液體 10    100g 50g    A 200℃*4hr 透明液體 易流動液體 11    100g    50g A 210℃*2hr 透明液體 易流動液體 Table 3. Depolymerization experiments of PLA and PBS polyester materials Example PLA PBS Ethylene glycol 2-Methyl-1,3-propanediol Catalyst Depolymerization conditions Appearance at high temperature Appearance at room temperature 8 100g 70g A 200℃*4hr Transparent liquid Free flowing liquid 9 100g 70g A 210℃*2hr Transparent liquid Free flowing liquid 10 100g 50g A 200℃*4hr Transparent liquid Free flowing liquid 11 100g 50g A 210℃*2hr Transparent liquid Free flowing liquid

其中,參照示例8~11的實驗結果可知,使用PLA、PBS作為聚酯材料進行解聚合反應,得到的聚酯多元醇在室溫下皆為易流動液體,有利於後續的聚酯多元醇再利用。Among them, referring to the experimental results of Examples 8 to 11, it can be seen that when PLA and PBS are used as polyester materials for depolymerization reaction, the obtained polyester polyols are all easy-to-flow liquids at room temperature, which is conducive to the subsequent recycling of polyester polyols.

如下所示,表4示出使用丙三醇、三羥甲基丙烷作為一部分多官能基醇的解聚合實驗條件(含各成分添加量)及結果,其中,示例12為使用丙三醇作為一部分多官能基醇的情況;示例13為使用三羥甲基丙烷作為一部分多官能基醇的情況。As shown below, Table 4 shows the depolymerization experimental conditions (including the amount of each component added) and results using glycerol and trihydroxymethylpropane as part of the multifunctional alcohol, among which Example 12 is the case of using glycerol as part of the multifunctional alcohol; Example 13 is the case of using trihydroxymethylpropane as part of the multifunctional alcohol.

表4、PET、PLA聚酯材料的解聚合實驗 示例 PET PLA 2-甲基-1,3-丙二醇 丙三醇 三羥甲基丙烷 觸媒 解聚合條件 高溫下外觀 室溫下外觀 12 90g 10g 50g 20    A 220℃*2hr 透明液體 易流動液體 13 90g 10g 50g    20 A 220℃*2hr 透明液體 易流動液體 Table 4. Depolymerization experiments of PET and PLA polyester materials Example PET PLA 2-Methyl-1,3-propanediol Glycerol Trihydroxymethylpropane Catalyst Depolymerization conditions Appearance at high temperature Appearance at room temperature 12 90g 10g 50g 20 A 220℃*2hr Transparent liquid Free flowing liquid 13 90g 10g 50g 20 A 220℃*2hr Transparent liquid Free flowing liquid

其中,參照示例12和13的實驗結果可知,使用丙三醇、三羥甲基丙烷作為多官能基醇進行解聚合反應,得到的聚酯多元醇在室溫下皆為易流動液體,有利於後續的聚酯多元醇再利用。Among them, referring to the experimental results of Examples 12 and 13, it can be seen that when propylene glycol and trihydroxymethylpropane are used as multifunctional alcohols for depolymerization reaction, the obtained polyester polyols are all easy-flowing liquids at room temperature, which is conducive to the subsequent recycling of polyester polyols.

從以上表2~4的實驗結果可知,在酯化反應觸媒或酯交換反應觸媒的存在下,將聚酯材料PET、PLA及/或PBS與具有至少兩個羥基的多官能基醇加熱到高於190℃(例如200℃以上)的溫度進行解聚合反應,經過一段時間後(例如2~4hr)可得到高溫下液態且透明的聚酯多元醇。From the experimental results in Tables 2 to 4 above, it can be seen that in the presence of an esterification reaction catalyst or an ester exchange reaction catalyst, the polyester material PET, PLA and/or PBS and a multifunctional alcohol having at least two hydroxyl groups are heated to a temperature higher than 190° C. (e.g., higher than 200° C.) to carry out a depolymerization reaction, and after a period of time (e.g., 2 to 4 hours), a liquid and transparent polyester polyol at a high temperature can be obtained.

然而,PET與乙二醇進行解聚合反應後得到的聚酯多元醇在冷卻至室溫後為固體,不利於後續的聚酯多元醇再利用。這是因為PET材料和乙二醇進行解聚合反應後得到的是BHET(對苯二甲酸雙羥乙酯)及BHET寡聚物,其是線性無支鏈的結構,容易堆疊排列,因此結晶性高,在室溫下為固體。However, the polyester polyol obtained by depolymerization of PET and ethylene glycol is solid after cooling to room temperature, which is not conducive to the subsequent reuse of polyester polyol. This is because BHET (bis(hydroxyethyl) terephthalate) and BHET oligomers are obtained after depolymerization of PET materials and ethylene glycol, which are linear unbranched structures that are easily stacked and arranged, so they are highly crystalline and solid at room temperature.

與之相比,具有支鏈結構的2-甲基-1,3-丙二醇或2,2-二甲基1,3丙二醇,因為支鏈上有甲基的存在,與PET進行解聚合反應後,在冷卻過程中會阻礙解聚合產物的分子排列,因此產品不容易發生結晶現象,故具有流動性,因此可應用在例如PU發泡的生產製程。In comparison, 2-methyl-1,3-propanediol or 2,2-dimethyl-1,3-propanediol with a branched chain structure, because of the presence of methyl groups on the side chains, will hinder the molecular arrangement of the depolymerization product during the cooling process after the depolymerization reaction with PET. Therefore, the product is not easy to crystallize and has fluidity. Therefore, it can be used in the production process of PU foaming, for example.

在如前所述的多官能基醇中,2-甲基-1,3-丙二醇與上述的2,2-二甲基-1,3-丙二醇、丙三醇、三羥甲基丙烷具有類似的結構,因此使用這些醇類作為多官能基醇來進行反應將得到與2-甲基-1,3-丙二醇相似的解聚合效果。Among the polyfunctional alcohols mentioned above, 2-methyl-1,3-propanediol has a similar structure to the above-mentioned 2,2-dimethyl-1,3-propanediol, glycerol, and trihydroxymethylpropane. Therefore, using these alcohols as the polyfunctional alcohol for the reaction will obtain a depolymerization effect similar to that of 2-methyl-1,3-propanediol.

此外,乙二醇與上述的1,3-丙二醇及丁二醇具有類似的結構,因此使用這些醇類作為多官能基醇來進行反應將得到與乙二醇相似的解聚合效果。In addition, ethylene glycol has a similar structure to the above-mentioned 1,3-propylene glycol and butanediol, so using these alcohols as the polyfunctional alcohol for the reaction will obtain a depolymerization effect similar to that of ethylene glycol.

另外,上述的1,2-丙二醇雖然具有支鏈結構,但由於其沸點太低(~188℃),會在化學解聚合反應中汽化,因此不適合單獨用於解聚合反應。In addition, although the above-mentioned 1,2-propylene glycol has a branched structure, it will vaporize in the chemical depolymerization reaction due to its too low boiling point (~188°C), and is therefore not suitable for use alone in the depolymerization reaction.

特別地,使用戊二醇或己二醇作為多官能基醇來進行反應也可得到與2-甲基-1,3-丙二醇相似的解聚合效果。In particular, the use of pentanediol or hexanediol as the polyfunctional alcohol for the reaction can also produce a depolymerization effect similar to that of 2-methyl-1,3-propanediol.

因此,為了加快實驗速度,以下會使用2-甲基-1,3-丙二醇為主,進行混合聚酯塑膠材料的解聚合實驗。Therefore, in order to speed up the experiment, 2-methyl-1,3-propanediol will be used as the main material to carry out the depolymerization experiment of mixed polyester plastic materials.

表5示出使用PET與PLA及/或PBS的混合聚酯材料的解聚合實驗條件(含各成分添加量)及結果,其中,主要使用2-甲基-1,3-丙二醇並選擇性地添加二乙二醇及/或乙二醇作為多官能基醇。Table 5 shows the depolymerization experimental conditions (including the amount of each component added) and results of a mixed polyester material using PET and PLA and/or PBS, wherein 2-methyl-1,3-propanediol was mainly used and diethylene glycol and/or ethylene glycol was selectively added as a polyfunctional alcohol.

表5、混合聚酯材料解聚合實驗 示例 PET PLA PBS 2-甲基-1,3-丙二醇 二乙二醇 乙二醇 解聚合條件 室溫下外觀 14 50g 50g    70g       220℃*2hr 易流動液體 15 90g 10g    70g       220℃*2hr 易流動液體 16 50g    50g 70g       220℃*2hr 易流動液體 17 90g    10g 70g       220℃*2hr 易流動液體 18 50g 50g    50g       220℃*3hr 易流動液體 19 90g 10g    50g       220℃*3hr 易流動液體 20 90g    10g 50g       220℃*3hr 易流動液體 21 90g 10g    50g 20g    220℃*3hr 易流動液體 22 90g 10g    50g    20g 220℃*3hr 易流動液體 23 80g 10g 10g 50g       220℃*3hr 易流動液體 24 50g 25g 25g 50g       220℃*3hr 易流動液體 以上實驗觸媒皆使用醋酸鋅。 Table 5. Depolymerization experiment of mixed polyester materials Example PET PLA PBS 2-Methyl-1,3-propanediol Diethylene glycol Ethylene glycol Depolymerization conditions Appearance at room temperature 14 50g 50g 70g 220℃*2hr Free flowing liquid 15 90g 10g 70g 220℃*2hr Free flowing liquid 16 50g 50g 70g 220℃*2hr Free flowing liquid 17 90g 10g 70g 220℃*2hr Free flowing liquid 18 50g 50g 50g 220℃*3hr Free flowing liquid 19 90g 10g 50g 220℃*3hr Free flowing liquid 20 90g 10g 50g 220℃*3hr Free flowing liquid twenty one 90g 10g 50g 20g 220℃*3hr Free flowing liquid twenty two 90g 10g 50g 20g 220℃*3hr Free flowing liquid twenty three 80g 10g 10g 50g 220℃*3hr Free flowing liquid twenty four 50g 25g 25g 50g 220℃*3hr Free flowing liquid Zinc acetate was used as the catalyst in all the above experiments.

其中,參照示例14~24的實驗結果可知,在混合聚酯材料碎片中的PET含量為50~100wt%、PLA含量為0~50 wt %、PBS含量為0~50 wt %的混合比例下,使用2-甲基-1,3-丙二醇作為主要的多官能基醇進行解聚合反應,可得到室溫下易流動的聚酯多元醇,有利於後續的聚酯多元醇再利用。Among them, referring to the experimental results of Examples 14 to 24, it can be seen that when the PET content in the mixed polyester material fragments is 50 to 100 wt%, the PLA content is 0 to 50 wt%, and the PBS content is 0 to 50 wt%, 2-methyl-1,3-propanediol is used as the main multifunctional alcohol for depolymerization reaction, a polyester polyol that is easy to flow at room temperature can be obtained, which is beneficial to the subsequent recycling of the polyester polyol.

表6示出從混合回收塑膠製品中分離出聚酯材料進行解聚合實驗的實驗條件(含各成分添加量)及結果,其中,取混合回收塑膠製品1 kg進行粉碎,塑膠製品包括瓶罐類以及平板類塑膠製品;接著將粉碎的回收塑膠碎片倒入密度為1.1的溶液中緩慢攪拌並靜置,取出沉在液體下方的塑膠碎片瀝乾,並利用靜電分選或光學分選裝置將PVC去除,得到只包含混合聚酯材質的塑膠碎片,該塑膠碎片材質以PET材料為主,含少部分PLA以及PBS材料;然後將此碎片放入高溫洗滌設備(例如金屬槽,含有攪拌設備以及加熱設備)中,使用如前所述的清洗步驟(清洗步驟C)將碎片表面的髒污及印刷油墨洗淨,得到乾淨的混合聚酯材料碎片;最後以表5所列的實驗條件對乾淨的混合聚酯材料碎片進行化學解聚合反應得到聚酯多元醇,並觀察所得的聚酯多元醇的流動性。Table 6 shows the experimental conditions (including the amount of each component added) and results of the depolymerization experiment for separating polyester materials from mixed recycled plastic products, wherein 1 kg of mixed recycled plastic products were crushed, and the plastic products included bottles, cans and flat plastic products; then the crushed recycled plastic fragments were poured into a solution with a density of 1.1, slowly stirred and allowed to stand, the plastic fragments sunk below the liquid were taken out and drained, and PVC was removed by electrostatic sorting or optical sorting equipment to obtain plastic fragments containing only mixed polyester materials, and the plastic fragments were mainly PET materials, with a small amount of PLA and PBS materials. ; then the fragments are placed in a high temperature washing device (e.g., a metal tank containing a stirring device and a heating device), and the dirt and printing ink on the surface of the fragments are washed away using the aforementioned washing step (washing step C) to obtain clean mixed polyester material fragments; finally, the clean mixed polyester material fragments are subjected to a chemical decomposition polymerization reaction under the experimental conditions listed in Table 5 to obtain polyester polyols, and the fluidity of the obtained polyester polyols is observed.

表6、混合回收塑膠製品解聚合實驗 示例 混合聚酯材料碎片 2-甲基-1,3-丙二醇 二乙二醇 解聚合條件 室溫下外觀 25 1kg 700g    220℃*2hr 易流動液體 26 1kg 500g    230℃*3hr 易流動液體 27 1kg 500g 200g 220℃*2hr 易流動液體 28 1kg 300g 200g 220℃*2hr 易流動液體 29 1kg 700g    195℃*5hr 易流動液體 以上觸媒皆使用醋酸鋅。 Table 6. Depolymerization experiment of mixed recycled plastic products Example Mixed polyester material scraps 2-Methyl-1,3-propanediol Diethylene glycol Depolymerization conditions Appearance at room temperature 25 1kg 700g 220℃*2hr Free flowing liquid 26 1kg 500g 230℃*3hr Free flowing liquid 27 1kg 500g 200g 220℃*2hr Free flowing liquid 28 1kg 300g 200g 220℃*2hr Free flowing liquid 29 1kg 700g 195℃*5hr Free flowing liquid All of the above catalysts use zinc acetate.

其中,參照示例25~29的實驗結果可知,對於實際的混合回收塑膠製品,以添加2-甲基-1,3-丙二醇作為主要的多官能基醇進行解聚合反應,得到的聚酯多元醇在室溫下皆為易流動液體,有利於後續的聚酯多元醇再利用。Among them, referring to the experimental results of Examples 25 to 29, it can be seen that for actual mixed recycled plastic products, by adding 2-methyl-1,3-propanediol as the main multifunctional alcohol for depolymerization reaction, the obtained polyester polyols are all easy-to-flow liquids at room temperature, which is conducive to the subsequent recycling of polyester polyols.

表7示出使用PET、PETG作為聚酯材料在不同的條件下進行解聚合實驗的各成分添加量、實驗條件及結果,其中,示例30使用PET作為聚酯材料,示例31和32使用PETG作為聚酯材料。Table 7 shows the addition amount of each component, experimental conditions and results of depolymerization experiments under different conditions using PET and PETG as polyester materials, among which Example 30 uses PET as the polyester material, and Examples 31 and 32 use PETG as the polyester material.

表7、PET及PETG聚酯材料的解聚合實驗 示例 PET PETG 2,2-二甲基-1,3-丙二醇 2-甲基-1,3-丙二醇 解聚合條件 室溫下外觀 30 100g    50g    220℃*2hr 易流動液體 31    100g 50g    220℃*2hr 易流動液體 32    100g    50g 220℃*2hr 易流動液體 以上觸媒皆使用醋酸鋅。 Table 7. Depolymerization experiments of PET and PETG polyester materials Example PET PETG 2,2-Dimethyl-1,3-propanediol 2-Methyl-1,3-propanediol Depolymerization conditions Appearance at room temperature 30 100g 50g 220℃*2hr Free flowing liquid 31 100g 50g 220℃*2hr Free flowing liquid 32 100g 50g 220℃*2hr Free flowing liquid All of the above catalysts use zinc acetate.

參照示例30的實驗結果可知,使用同樣具有支鏈結構的2,2-二甲基-1,3-丙二醇代替2-甲基-1,3-丙二醇與PET進行解聚合反應,得到的聚酯多元醇在室溫下亦為易流動液體,同樣有利於後續的聚酯多元醇再利用。Referring to the experimental results of Example 30, it can be seen that when 2,2-dimethyl-1,3-propanediol, which also has a branched structure, is used instead of 2-methyl-1,3-propanediol to carry out a depolymerization reaction with PET, the obtained polyester polyol is also an easy-flowing liquid at room temperature, which is also conducive to the subsequent recycling of the polyester polyol.

此外,參照示例31和32的實驗結果可知,使用PETG代替PET作為聚酯材料進行解聚合反應,得到的聚酯多元醇在室溫下亦為易流動液體。表示在聚酯材料中若包含PETG,其解聚合結果應與包含PET的聚酯材料的解聚合結果相同。這是因為,相較於PET的高分子結構,PETG的結構中僅以1,4-環己烷二甲醇單元取代了部分的乙二醇單元,兩者的結構相似,因此PET與PETG應具有相似的解聚合結果。In addition, referring to the experimental results of Examples 31 and 32, it can be seen that when PETG is used instead of PET as the polyester material for depolymerization reaction, the obtained polyester polyol is also a free-flowing liquid at room temperature. This means that if PETG is included in the polyester material, its depolymerization result should be the same as the depolymerization result of the polyester material containing PET. This is because, compared with the polymer structure of PET, the structure of PETG only replaces part of the ethylene glycol unit with 1,4-cyclohexanedimethanol unit, and the structures of the two are similar, so PET and PETG should have similar depolymerization results.

同理,由上結果可推論出,在聚酯材料中若包含PBSA,其解聚合結果應與包含PBS的聚酯材料的解聚合結果相似。這是因為,相較於PBS 的高分子結構,PBSA的結構中僅以己二酸單元取代部分的丁二酸單元,兩者的結構相似,因此PBS與PBSA應具有相似的解聚合結果。Similarly, it can be inferred from the above results that if PBSA is included in a polyester material, its depolymerization result should be similar to the depolymerization result of a polyester material containing PBS. This is because, compared with the polymer structure of PBS, the structure of PBSA only replaces part of the succinic acid units with adipic acid units. The structures of the two are similar, so PBS and PBSA should have similar depolymerization results.

綜上所述,透過本發明的混合聚酯材料回收處理方法,可從塑膠製品中將包括PET、PETG、PLA、PBS及/或PBSA的聚酯材料與非聚酯材料分離,接著將混合的聚酯材料透過化學降解的方式,得到回收再製的聚酯多元醇,從而可將所得的聚酯多元醇進行再利用,尤其是可作為合成PU樹酯或PU發泡材料的原料。In summary, through the mixed polyester material recycling method of the present invention, polyester materials including PET, PETG, PLA, PBS and/or PBSA can be separated from non-polyester materials in plastic products, and then the mixed polyester materials are chemically degraded to obtain recycled polyester polyols, so that the obtained polyester polyols can be reused, especially as raw materials for synthesizing PU resins or PU foam materials.

在本發明內容所涉及的技術領域具有通常知識者將理解,在不背離本發明內容的基本特徵的情況下,可以對形式進行各種修改和改變,例如組合、分離、替換和改變配置等。Those having ordinary knowledge in the technical field to which the contents of the present invention relate will understand that various modifications and changes in form may be made without departing from the basic characteristics of the contents of the present invention, such as combination, separation, replacement and change of configuration.

因此,本發明的實施例旨在說明本發明的技術思想的範圍,而本發明的範圍不受實施例的限制,是以,凡有在相同之發明精神下所作有關本發明之任何修飾或變更,皆仍應包含在本發明意圖保護之範疇。Therefore, the embodiments of the present invention are intended to illustrate the scope of the technical concept of the present invention, and the scope of the present invention is not limited by the embodiments. Therefore, any modifications or changes made to the present invention under the same spirit of the invention should still be included in the scope of protection intended by the present invention.

S10:粉碎步驟 S20:分選步驟 S21:密度浮選步驟 S22:靜電或光學分選步驟 S30:化學解聚合步驟 S40:聚氨酯合成步驟 C:清洗步驟 S10: Crushing step S20: Sorting step S21: Density flotation step S22: Electrostatic or optical sorting step S30: Chemical depolymerization step S40: Polyurethane synthesis step C: Cleaning step

圖1為說明本發明的一個態樣的混合聚酯材料回收處理方法的步驟的流程圖; 圖2為說明本發明的另一態樣的的混合聚酯材料回收處理方法的步驟的流程圖; 圖3為說明本發明的又一態樣的的混合聚酯材料回收處理方法的步驟的流程圖。 Figure 1 is a flow chart illustrating the steps of a mixed polyester material recycling method according to one embodiment of the present invention; Figure 2 is a flow chart illustrating the steps of a mixed polyester material recycling method according to another embodiment of the present invention; Figure 3 is a flow chart illustrating the steps of a mixed polyester material recycling method according to yet another embodiment of the present invention.

S10:粉碎步驟 S10: Crushing step

S20:分選步驟 S20: Sorting step

S21:密度浮選步驟 S21: Density flotation step

S22:靜電或光學分選步驟 S22: Electrostatic or optical sorting step

S30:化學解聚合步驟 S30: Chemical depolymerization step

S40:聚氨酯合成步驟 S40: Polyurethane synthesis step

C:清洗步驟 C: Cleaning steps

Claims (10)

一種塑膠製品中的混合聚酯材料回收處理方法,包括: 一粉碎步驟,將回收塑膠製品進行粉碎,得到回收塑膠碎片; 一分選步驟,從該回收塑膠碎片中分離出混合聚酯材料碎片;以及 一化學解聚合步驟,將該混合聚酯材料碎片與至少含有兩個羥基的多官能基醇,在酯化反應觸媒或酯交換反應觸媒的存在下進行化學解聚合反應,得到聚酯多元醇; 其中,該回收處理方法進一步包括一清洗步驟,並且其中, 該清洗步驟在該粉碎步驟之前進行,以去除該回收塑膠製品的表面髒污及印刷;或者 該清洗步驟在該粉碎步驟和該分選步驟之間進行,以去除該回收塑膠碎片的表面髒污及印刷;或者 該清洗步驟在該分選步驟和該化學解聚合步驟之間進行,以去除該混合聚酯材料碎片的表面髒污及印刷。 A method for recycling mixed polyester materials in plastic products, comprising: a crushing step, crushing the recycled plastic products to obtain recycled plastic fragments; a sorting step, separating mixed polyester material fragments from the recycled plastic fragments; and a chemical depolymerization step, subjecting the mixed polyester material fragments to a chemical depolymerization reaction with a multifunctional alcohol containing at least two hydroxyl groups in the presence of an esterification catalyst or an ester exchange catalyst to obtain polyester polyols; wherein the recycling method further comprises a cleaning step, and wherein, the cleaning step is performed before the crushing step to remove surface dirt and printing on the recycled plastic product; or The cleaning step is performed between the crushing step and the sorting step to remove surface dirt and printing from the recycled plastic fragments; or The cleaning step is performed between the sorting step and the chemical depolymerization step to remove surface dirt and printing from the mixed polyester material fragments. 如請求項1之塑膠製品中的混合聚酯材料回收處理方法,其中,該化學解聚合反應在高於190℃且低於250℃的溫度進行。A method for recycling mixed polyester materials in plastic products as claimed in claim 1, wherein the chemical depolymerization reaction is carried out at a temperature higher than 190°C and lower than 250°C. 如請求項1之塑膠製品中的混合聚酯材料回收處理方法,其中,該混合聚酯材料碎片包括PET、PETG、PLA、PBS和PBSA中的至少一種。A method for recycling mixed polyester materials in plastic products as claimed in claim 1, wherein the mixed polyester material fragments include at least one of PET, PETG, PLA, PBS and PBSA. 如請求項1之塑膠製品中的混合聚酯材料回收處理方法,其中,該混合聚酯材料碎片/該多官能基醇的重量比範圍為0.8~2.5。A method for recycling mixed polyester materials in plastic products as claimed in claim 1, wherein the weight ratio of the mixed polyester material fragments to the multifunctional alcohol ranges from 0.8 to 2.5. 如請求項1之塑膠製品中的混合聚酯材料回收處理方法,其中,該多官能基醇包含2-甲基-1,3-丙二醇、二乙二醇、2,2-二甲基-1,3-丙二醇、乙二醇、1,2-丙二醇、1,3-丙二醇、丁二醇、戊二醇、己二醇、丙三醇及三羥甲基丙烷中的至少一種。A method for recycling mixed polyester materials in plastic products as claimed in claim 1, wherein the multifunctional alcohol comprises at least one of 2-methyl-1,3-propanediol, diethylene glycol, 2,2-dimethyl-1,3-propanediol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, butanediol, pentanediol, hexanediol, glycerol and trihydroxymethylpropane. 如請求項5之塑膠製品中的混合聚酯材料回收處理方法,其中,該混合聚酯材料碎片/該多官能基醇的重量比範圍為0.8~2.5,並且其中, 在該多官能基醇至少包含乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、丁二醇或其組合的情況下,該乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、丁二醇或其組合的總添加量不超過20 phr。 A method for recycling mixed polyester materials in plastic products as claimed in claim 5, wherein the weight ratio of the mixed polyester material fragments to the multifunctional alcohol is in the range of 0.8 to 2.5, and wherein, when the multifunctional alcohol comprises at least ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, butanediol or a combination thereof, the total amount of ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, butanediol or a combination thereof added does not exceed 20 phr. 如請求項1之塑膠製品中的混合聚酯材料回收處理方法,其中,該酯化反應觸媒或該酯交換反應觸媒包含醋酸金屬鹽類、金屬氧化物、鈦酸酯中的至少一種。A method for recycling mixed polyester materials in plastic products as claimed in claim 1, wherein the esterification reaction catalyst or the ester exchange reaction catalyst comprises at least one of metal acetate salts, metal oxides, and titanium esters. 如請求項1之塑膠製品中的混合聚酯材料回收處理方法,其中,該分選步驟包括: 密度浮選步驟,將該回收塑膠碎片放入比重大於1.05且小於1.15的液體中,以從該回收塑膠碎片中分離出包含PVC和聚酯材料的沉底塑膠碎片;以及 靜電或光學分選步驟,透過靜電分選裝置或光學分選裝置將該沉底塑膠碎片中的PVC分離,以得到該混合聚酯材料碎片。 The method for recycling mixed polyester materials in plastic products as claimed in claim 1, wherein the sorting step comprises: A density flotation step, placing the recycled plastic fragments in a liquid with a specific gravity greater than 1.05 and less than 1.15 to separate the bottom-sinking plastic fragments containing PVC and polyester materials from the recycled plastic fragments; and An electrostatic or optical sorting step, separating PVC from the bottom-sinking plastic fragments by an electrostatic sorting device or an optical sorting device to obtain the mixed polyester material fragments. 如請求項1之塑膠製品中的混合聚酯材料回收處理方法,其中,在該清洗步驟中,在25℃~100℃的溫度下使用強鹼性化合物和有機溶劑的至少其中一種去除該回收塑膠製品、該回收塑膠碎片或該混合聚酯材料碎片的表面髒污及印刷。A method for recycling mixed polyester materials in plastic products as claimed in claim 1, wherein, in the cleaning step, at least one of a strong alkaline compound and an organic solvent is used at a temperature of 25°C to 100°C to remove surface dirt and printing on the recycled plastic product, the recycled plastic fragments or the mixed polyester material fragments. 如請求項1之塑膠製品中的混合聚酯材料回收處理方法,進一步包括: 聚氨酯合成步驟,使用該化學解聚合步驟中得到的聚酯多元醇來合成聚氨酯樹脂或聚氨酯發泡材料。 The method for recycling mixed polyester materials in plastic products as in claim 1 further comprises: A polyurethane synthesis step, using the polyester polyol obtained in the chemical depolymerization step to synthesize polyurethane resin or polyurethane foam material.
TW111147278A 2022-12-08 Recycling methods for mixed polyester materials in plastic products TW202424104A (en)

Publications (1)

Publication Number Publication Date
TW202424104A true TW202424104A (en) 2024-06-16

Family

ID=

Similar Documents

Publication Publication Date Title
CN101448633B (en) Co-polyester packaging resins prepared without solid-state polymerization, a method for processing the co-polyester resins with reduced viscosity change, and containers and other articles prepared by
CN112789155B (en) Crystallizable shrink film and thermoformable sheet made from reactor grade resin
CN114787233B (en) Catalyst system for crystallizable reactor grade resin with regrind content
US20220363822A1 (en) Crystallizable shrinkable films and thermoformable films and sheets made from reactor grade resins with recycled content
CN117986819A (en) Crystallizable shrinkable film and thermoformable sheet made from resin blends
WO2012109741A1 (en) Methods for recycling post-consumer mixed rigid plastics
CN115698127A (en) Crystallizable shrinkable films and thermoformable sheets made from resin blends
KR20220166822A (en) Hot fillable articles made from multilayer thermoformable films and sheets
TW202424104A (en) Recycling methods for mixed polyester materials in plastic products
US20220227922A1 (en) Polyester resin blend
CN114729113A (en) Catalyst system for crystallizable reactor grade resins
KR20210039085A (en) Polyester resin blend
WO2023091542A1 (en) Process for making recyclable copolyesters articles with living hinges
WO2023091544A1 (en) Process for making recyclable copolyesters articles with living hinges
WO2023091540A1 (en) Recyclable copolyesters articles with living hinges
WO2023091539A1 (en) Recyclable copolyesters articles with living hinges
EP4380994A1 (en) Process for the production of polyester copolymers
JP2023175445A (en) Molding, method for producing the same and recycling method using the same
CA3189347A1 (en) Reuse of bioplastics in polymerisation
JP2024528178A (en) Method for producing polyester copolymers
CN118076665A (en) Shrinkable polyester film with reduced shrinkage
JP2023175425A (en) Molded body, manufacturing method thereof, crushed product thereof, and recycling method using the same
RU2397867C2 (en) Sectioned granule for improved decontamination