TW202315674A - Plasma fine bubble liquid generating device - Google Patents

Plasma fine bubble liquid generating device Download PDF

Info

Publication number
TW202315674A
TW202315674A TW110137624A TW110137624A TW202315674A TW 202315674 A TW202315674 A TW 202315674A TW 110137624 A TW110137624 A TW 110137624A TW 110137624 A TW110137624 A TW 110137624A TW 202315674 A TW202315674 A TW 202315674A
Authority
TW
Taiwan
Prior art keywords
plasma
generator
micro
gas
bubble
Prior art date
Application number
TW110137624A
Other languages
Chinese (zh)
Inventor
吳宗信
劉志東
蕭駿平
張君豪
Original Assignee
國立陽明交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明交通大學 filed Critical 國立陽明交通大學
Priority to TW110137624A priority Critical patent/TW202315674A/en
Publication of TW202315674A publication Critical patent/TW202315674A/en

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

A plasma fine bubble liquid generating device includes a fine bubble producer, a gas supplying source, a first plasma producer, a second plasma producer, a power supply and a control module. The fine bubble producer is configured to produce fine bubbles in a liquid. The gas supply is configured to supply a working gas. The first plasma producer is configured to produce a first plasma gas from the working gas. The second plasma producer is configured to produce a second plasma gas from the working gas. The power supply is configured to supply electricity to the first and the second plasma producers. The control module is configured to adjust power-supplying conditions of the power supply to the first and the second plasma producers. The first and the second plasma gases are guided to the liquid.

Description

電漿微細氣泡液產生設備Plasma micro-bubble liquid generation equipment

本發明是關於一種電漿微細氣泡液產生設備。The invention relates to a device for generating plasma micro-bubble liquid.

隨著現今科技的進步,微/奈米氣泡液(微細氣泡液)的用途也變得非常廣泛。實際上,微/奈米氣泡液可用於醫療、美容、殺菌和工業等領域。舉例而言,微/奈米氣泡至少具有以下特性:(1)微/奈米氣泡內的氣體與水溶液本體具有較大的壓力差與較大的接觸面積,使氣泡內的氣體更容易溶入水中;(2)微/奈米氣泡有較長的水中停留時間;(3)微/奈米氣泡可以克服表面張力問題,從而可深入細小的孔隙以達到較佳的清潔效果;以及(4)當微/奈米氣泡破裂時,會產生氫氧自由基,這對於醫療殺菌、醫美產業具有極大幫助。With the advancement of today's technology, the use of micro/nano-bubble liquid (micro-bubble liquid) has become very extensive. In fact, micro/nano-bubble liquid can be used in fields such as medical treatment, cosmetology, sterilization and industry. For example, micro/nanobubbles have at least the following characteristics: (1) The gas in the micro/nanobubbles and the aqueous solution have a larger pressure difference and a larger contact area, making it easier for the gas in the bubbles to dissolve into in water; (2) micro/nano-bubbles have a longer residence time in water; (3) micro/nano-bubbles can overcome the problem of surface tension, so that they can penetrate into tiny pores to achieve better cleaning effect; and (4) When the micro/nano bubbles burst, hydrogen and oxygen free radicals will be generated, which is of great help to the medical sterilization and medical aesthetics industries.

因此,如何能夠更靈活地產生微/奈米氣泡液中,無疑是業界一個重要的發展方向。Therefore, how to more flexibly generate micro/nano-bubble liquid is undoubtedly an important development direction in the industry.

本發明之目的之一在於提供一種電漿微細氣泡液產生設備,能簡單地分別調整一氧化氮及臭氧的電漿氣體產量。One of the objects of the present invention is to provide a plasma micro-bubble liquid generating device, which can easily adjust the plasma gas production of nitric oxide and ozone respectively.

根據本發明的一實施例,一種電漿微細氣泡液產生設備包含微細氣泡產生器、氣體供應源、第一電漿產生器、第二電漿產生器、電源以及控制模組。微細氣泡產生器配置以產生微細氣泡於液體中。氣體供應源配置以供應工作氣體。第一電漿產生器配置以從工作氣體產生第一電漿氣體。第二電漿產生器配置以從工作氣體產生第二電漿氣體。電源配置以對第一電漿產生器和第二電漿產生器供電。控制模組配置以調整電源對第一電漿產生器和第二電漿產生器之供電條件。第一電漿氣體和第二電漿氣體被導入液體中。According to an embodiment of the present invention, a plasma micro-bubble liquid generating device includes a micro-bubble generator, a gas supply source, a first plasma generator, a second plasma generator, a power supply, and a control module. The micro-bubble generator is configured to generate micro-bubbles in the liquid. A gas supply source is configured to supply working gas. The first plasma generator is configured to generate a first plasma gas from the working gas. The second plasma generator is configured to generate a second plasma gas from the working gas. The power source is configured to power the first plasma generator and the second plasma generator. The control module is configured to adjust the power supply conditions of the power supply to the first plasma generator and the second plasma generator. The first plasma gas and the second plasma gas are introduced into the liquid.

在本發明一或多個實施例中,上述之電漿微細氣泡液產生設備更包含進水管、出水管以及進氣管。進水管配置以將液體導入微細氣泡產生器。出水管配置以自微細氣泡產生器排出液體。進氣管配置以將第一電漿氣體及/或第二電漿氣體導入進水管。In one or more embodiments of the present invention, the above-mentioned plasma microbubble liquid generating device further includes a water inlet pipe, a water outlet pipe and an air inlet pipe. The water inlet pipe is configured to lead the liquid into the fine bubble generator. The water outlet pipe is configured to discharge liquid from the fine bubble generator. The inlet pipe is configured to lead the first plasma gas and/or the second plasma gas into the water inlet pipe.

在本發明一或多個實施例中,上述之電源包含第一接點以及第二接點。第一電漿產生器包含第一電極以及第二電極。第一電極電性連接第一接點。第二電極電性連接第二接點,第二電極與第一電極之間相隔若干距離。當第一接點連接火線時,第二接點連接地線或接地,或者當第二接點連接火線時,第一接點連接地線或接地。第二電極與第一電極之間的距離之範圍為0.3公釐到30公釐之間。In one or more embodiments of the present invention, the aforementioned power supply includes a first contact and a second contact. The first plasma generator includes a first electrode and a second electrode. The first electrode is electrically connected to the first contact. The second electrode is electrically connected to the second contact, and there is a certain distance between the second electrode and the first electrode. When the first contact is connected to the live wire, the second contact is connected to the ground wire or the ground, or when the second contact is connected to the live wire, the first contact is connected to the ground wire or the ground. The distance between the second electrode and the first electrode ranges from 0.3 mm to 30 mm.

在本發明一或多個實施例中,上述之電漿微細氣泡液產生設備包含進氣管。進氣管配置以將第一電漿氣體及/或第二電漿氣體導入微細氣泡產生器,其中微細氣泡產生器至少部分與液體接觸。In one or more embodiments of the present invention, the above-mentioned plasma microbubble liquid generating device includes an air inlet pipe. The inlet pipe is configured to lead the first plasma gas and/or the second plasma gas into the micro-bubble generator, wherein the micro-bubble generator is at least partly in contact with the liquid.

在本發明一或多個實施例中,上述之電源包含第一接點以及第二接點。第二電漿產生器包含介電管、外部電極以及內部電極。介電管為絕緣材料。外部電極電性連接第一接點,並套設於介電管之外壁。內部電極電性連接第二接點,內部電極沿介電管之內壁延伸。當第一接點連接火線時,第二接點連接地線或接地,或者當第二接點連接火線時,第一接點連接地線或接地。In one or more embodiments of the present invention, the aforementioned power supply includes a first contact and a second contact. The second plasma generator includes a dielectric tube, an external electrode and an internal electrode. The dielectric tube is an insulating material. The external electrode is electrically connected to the first contact and sheathed on the outer wall of the dielectric tube. The internal electrode is electrically connected to the second contact, and the internal electrode extends along the inner wall of the dielectric tube. When the first contact is connected to the live wire, the second contact is connected to the ground wire or the ground, or when the second contact is connected to the live wire, the first contact is connected to the ground wire or the ground.

在本發明一或多個實施例中,上述之電漿微細氣泡液產生設備更包含腔體和切換器。第一電漿產生器和第二電漿產生器位於腔體內,切換器配置以切換對第一電漿產生器與第二電漿產生器之供電。In one or more embodiments of the present invention, the above-mentioned plasma microbubble liquid generating device further includes a cavity and a switch. The first plasma generator and the second plasma generator are located in the cavity, and the switcher is configured to switch the power supply to the first plasma generator and the second plasma generator.

在本發明一或多個實施例中,上述之第一電漿產生器與第二電漿產生器並聯排列,工作氣體部分流經第一電漿產生器,部分流經第二電漿產生器。In one or more embodiments of the present invention, the above-mentioned first plasma generator and the second plasma generator are arranged in parallel, the working gas partly flows through the first plasma generator, and partly flows through the second plasma generator .

在本發明一或多個實施例中,上述之第一電漿產生器與第二電漿產生器串聯排列,工作氣體先流經第一電漿產生器後再流經第二電漿產生器,或先流經第二電漿產生器後再流經第一電漿產生器。In one or more embodiments of the present invention, the above-mentioned first plasma generator and the second plasma generator are arranged in series, and the working gas first flows through the first plasma generator and then flows through the second plasma generator , or first flow through the second plasma generator and then flow through the first plasma generator.

在本發明一或多個實施例中,上述之電漿微細氣泡液產生設備更包含進水管、出水管以及進氣管。進水管配置以將液體導入微細氣泡產生器。出水管配置以自微細氣泡產生器排出液體。進氣管配置以將第一電漿氣體及/或第二電漿氣體導入微細氣泡產生器。In one or more embodiments of the present invention, the above-mentioned plasma microbubble liquid generating device further includes a water inlet pipe, a water outlet pipe and an air inlet pipe. The water inlet pipe is configured to lead the liquid into the fine bubble generator. The water outlet pipe is configured to discharge liquid from the fine bubble generator. The inlet pipe is configured to lead the first plasma gas and/or the second plasma gas into the fine bubble generator.

在本發明一或多個實施例中,上述之微細氣泡產生器至少部分與液體接觸。In one or more embodiments of the present invention, at least part of the micro-bubble generator is in contact with the liquid.

本發明上述實施例至少具有以下優點:The foregoing embodiments of the present invention have at least the following advantages:

(1)由於電漿產生模組包含至少一第一電漿產生器以及至少一第二電漿產生器,因此電漿微細氣泡液產生設備能產生至少兩種不同的電漿,從而能夠提升電漿微細氣泡液產生設備在操作上的靈活性。(1) Since the plasma generating module includes at least one first plasma generator and at least one second plasma generator, the plasma micro-bubble liquid generating equipment can generate at least two different plasmas, thereby improving the The flexibility of the equipment for generating slurry fine bubble liquid.

(2)由於第二子電源獨立於第一子電源,因此,根據實際狀況,使用者可選擇只啟動第一子電源而不啟動第二子電源、只啟動第二子電源而不啟動第一子電源或同時啟動第一子電源與第二子電源。當同時啟動第一子電源與第二子電源時,電漿產生模組可提供包含第一電漿氣體與第二電漿氣體的混合電漿氣體。如此一來,電漿微細氣泡液產生設備在操作上的靈活性得以有效提升。(2) Since the second sub-power supply is independent of the first sub-power supply, according to the actual situation, the user can choose to only start the first sub-power supply without starting the second sub-power supply, only start the second sub-power supply without starting the first sub-power supply sub-power supply or start the first sub-power supply and the second sub-power supply at the same time. When the first sub-power supply and the second sub-power supply are activated simultaneously, the plasma generating module can provide a mixed plasma gas including the first plasma gas and the second plasma gas. In this way, the operational flexibility of the plasma fine-bubble liquid generating equipment can be effectively improved.

(3)藉由控制模組分別啟動第一子電源與第二子電源,並調整第一子電源與第二子電源分別對第一電漿產生器和第二電漿產生器的供電條件,包括間歇放電週期、供電頻率及/或供電電壓等,使用者能夠簡單容易地分別調整第一電漿氣體與第二電漿氣體的電漿氣體產量,以及第一電漿氣體與第二電漿氣體兩者電漿氣體量比例,故能為電漿微細氣泡液產生設備的操作帶來相當的便利性。(3) Start the first sub-power supply and the second sub-power supply respectively by the control module, and adjust the power supply conditions of the first sub-power supply and the second sub-power supply to the first plasma generator and the second plasma generator respectively, Including intermittent discharge cycle, power supply frequency and/or power supply voltage, etc., the user can easily and easily adjust the plasma gas output of the first plasma gas and the second plasma gas, and the plasma gas output of the first plasma gas and the second plasma gas The ratio of the plasma gas volume between the gas and the gas can bring considerable convenience to the operation of the plasma micro-bubble liquid generating equipment.

(4)藉由第一電漿產生器的操作,電漿產生模組能夠產生富含一氧化氮的電漿氣體。(4) With the operation of the first plasma generator, the plasma generating module can generate plasma gas rich in nitric oxide.

(5)藉由第二電漿產生器的操作,電漿產生模組能夠產生富含臭氧的電漿氣體。(5) Through the operation of the second plasma generator, the plasma generating module can generate ozone-rich plasma gas.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之,而在所有圖式中,相同的標號將用於表示相同或相似的元件。且若實施上為可能,不同實施例的特徵係可以交互應用。Several embodiments of the present invention will be disclosed in the following figures. For the sake of clarity, many practical details will be described together in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some commonly used structures and elements will be shown in a simple schematic way in the drawings, and in all the drawings, the same reference numerals will be used to represent the same or similar elements . And if possible in practice, the features of different embodiments can be used interchangeably.

除非另有定義,本文所使用的所有詞彙(包括技術和科學術語)具有其通常的意涵,其意涵係能夠被熟悉此領域者所理解。更進一步的說,上述之詞彙在普遍常用之字典中之定義,在本說明書的內容中應被解讀為與本發明相關領域一致的意涵。除非有特別明確定義,這些詞彙將不被解釋為理想化的或過於正式的意涵。Unless otherwise defined, all terms (including technical and scientific terms) used herein have their ordinary meanings that can be understood by those skilled in the art. Furthermore, the definitions of the above-mentioned words in the commonly used dictionaries should be interpreted in the content of this specification as meanings consistent with the relevant fields of the present invention. Unless specifically defined, these terms are not to be interpreted in an idealized or overly formal sense.

第1圖為繪示依照本發明一實施例之電漿微細氣泡液產生設備100的示意圖。一種電漿微細氣泡液產生設備100包含微細氣泡產生器120、電漿產生模組130以及控制模組140。控制模組140電性連接微細氣泡產生器120,並利用電線P供電給微細氣泡產生器120,且以訊號線S控制微細氣泡產生器120。微細氣泡產生器120藉由進水管F in和出水管F out流體連接存液器110,使液體F在微細氣泡產生器120和存液器110兩者中做循環。為使圖式簡潔清楚,在第1圖中,進水管F in與出水管F out分別僅以單一線條繪示,實際上,進水管F in與出水管F out分別呈水管狀。具體而言,進水管F in配置以將液體F導入微細氣泡產生器120,而出水管F out則配置以自微細氣泡產生器120排出液體F。存液器110配置以容置液體F,液體F實際上可為水,但本發明並不以此為限。具體而言,微細氣泡產生器120配置以產生微細氣泡於液體F中,並驅動液體F於微細氣泡產生器120與存液器110之間流動以形成流體循環。也就是說,液體F被微細氣泡產生器120驅動而從存液器110經由進水管F in朝向微細氣泡產生器120流動,然後在產生微細氣泡後再從微細氣泡產生器120經由出水管F out回流至存液器110。具體而言,微細氣泡產生器120可包含泵浦、漸縮漸擴管或文氏管等,利用壓力和流速變化以產生微細氣泡,但本發明並不以此為限。 FIG. 1 is a schematic diagram illustrating a plasma micro-bubble liquid generating device 100 according to an embodiment of the present invention. A plasma micro-bubble liquid generating device 100 includes a micro-bubble generator 120 , a plasma generating module 130 and a control module 140 . The control module 140 is electrically connected to the micro-bubble generator 120 , supplies power to the micro-bubble generator 120 through the wire P, and controls the micro-bubble generator 120 through the signal line S. The micro-bubble generator 120 is fluidly connected to the liquid storage 110 through the water inlet pipe F in and the water outlet pipe F out , so that the liquid F circulates in both the micro-bubble generator 120 and the liquid storage 110 . In order to make the drawing simple and clear, in the first figure, the water inlet pipe F in and the water outlet pipe F out are only drawn with a single line, but in fact, the water inlet pipe F in and the water outlet pipe F out are respectively in the shape of water pipes. Specifically, the water inlet pipe F in is configured to introduce the liquid F into the micro-bubble generator 120 , and the water outlet pipe F out is configured to discharge the liquid F from the micro-bubble generator 120 . The liquid reservoir 110 is configured to accommodate the liquid F, which may actually be water, but the invention is not limited thereto. Specifically, the micro-bubble generator 120 is configured to generate micro-bubbles in the liquid F, and drive the liquid F to flow between the micro-bubble generator 120 and the liquid storage 110 to form a fluid circulation. That is to say, the liquid F is driven by the micro-bubble generator 120 to flow from the liquid reservoir 110 through the water inlet pipe F in toward the micro-bubble generator 120, and then flows from the micro-bubble generator 120 through the water outlet pipe F out after generating micro-bubbles. Return to reservoir 110. Specifically, the micro-bubble generator 120 may include a pump, a tapered expander, or a venturi tube, etc., and utilizes changes in pressure and flow rate to generate micro-bubbles, but the invention is not limited thereto.

再者,電漿微細氣泡液產生設備100更包含進氣管A。電漿產生模組130通過進氣管A而流體連通於上述的流體循環,亦即電漿產生模組130流體連通液體F流通於微細氣泡產生器120與存液器110之間的路徑。具體而言,電漿產生模組130的進氣管A連通流體循環的交點可位於微細氣泡產生器120的上游(即位於進水管F in)或下游(即位於出水管F out),但本發明並不以此為限。舉例而言,如第1圖所示,電漿產生模組130的進氣管A連通流體循環的交點位於進水管F inFurthermore, the plasma microbubble liquid generating device 100 further includes an air inlet pipe A. The plasma generating module 130 is in fluid communication with the above-mentioned fluid circulation through the inlet pipe A, that is, the plasma generating module 130 is in fluid communication with the path where the liquid F flows between the fine bubble generator 120 and the liquid storage 110 . Specifically, the intersection point where the air inlet pipe A of the plasma generation module 130 communicates with the fluid circulation can be located upstream of the fine bubble generator 120 (that is, located in the water inlet pipe F in ) or downstream (that is, located in the water outlet pipe F out ), but this The invention is not limited thereto. For example, as shown in FIG. 1 , the intersection point where the air inlet pipe A of the plasma generating module 130 communicates with the fluid circulation is located at the water inlet pipe F in .

進一步而言,電漿微細氣泡液產生設備100更包含氣體供應源150。如第1圖所示,氣體供應源150流體連接電漿產生模組130,並配置以向電漿產生模組130供應工作氣體WG。電漿微細氣泡液產生設備100更包含電源160,而電源160更包含第一子電源161以及第二子電源162。電漿產生模組130包含腔體132、至少一第一電漿產生器131以及至少一第二電漿產生器133,第一電漿產生器131和第二電漿產生器133位於腔體132內。第一子電源161對第一電漿產生器131供電並在第一電漿產生器131中產生高電場,工作氣體WG通入第一電漿產生器131後被高電場解離而產生第一電漿氣體PM1。另外,第二子電源162對第二電漿產生器133供電並在第二電漿產生器133中產生高電場,工作氣體WG通入第二電漿產生器133後被高電場解離而產生不同於第一電漿氣體PM1的第二電漿氣體PM2。值得注意的是,第二子電源162獨立於第一子電源161,而第一子電源161與第二子電源162兩者實際上皆為高電壓交流電源或高壓直流脈衝電源。在本實施例中,所產生的第一電漿氣體PM1為一氧化氮(NO),而所產生的第二電漿氣體PM2則為臭氧(O3)。如上所述,由於第二電漿氣體PM2不同於第一電漿氣體PM1,因而能夠提升電漿微細氣泡液產生設備100在操作上的靈活性。Furthermore, the plasma micro-bubble liquid generating device 100 further includes a gas supply source 150 . As shown in FIG. 1 , the gas supply source 150 is fluidly connected to the plasma generation module 130 and configured to supply the working gas WG to the plasma generation module 130 . The plasma fine bubble liquid generating device 100 further includes a power source 160 , and the power source 160 further includes a first sub-power source 161 and a second sub-power source 162 . The plasma generating module 130 includes a cavity 132, at least one first plasma generator 131 and at least one second plasma generator 133, the first plasma generator 131 and the second plasma generator 133 are located in the cavity 132 Inside. The first sub-power supply 161 supplies power to the first plasma generator 131 and generates a high electric field in the first plasma generator 131, and the working gas WG passes through the first plasma generator 131 and is dissociated by the high electric field to generate the first electric field. Slurry gas PM1. In addition, the second sub-power supply 162 supplies power to the second plasma generator 133 and generates a high electric field in the second plasma generator 133. The second plasma gas PM2 in the first plasma gas PM1. It should be noted that the second sub-power source 162 is independent from the first sub-power source 161 , and both the first sub-power source 161 and the second sub-power source 162 are actually high-voltage AC power sources or high-voltage DC pulse power sources. In this embodiment, the generated first plasma gas PM1 is nitric oxide (NO), and the generated second plasma gas PM2 is ozone (O3). As described above, since the second plasma gas PM2 is different from the first plasma gas PM1, the operational flexibility of the plasma fine-bubble liquid generating device 100 can be improved.

值得注意的是,由於電漿產生模組130包含至少一第一電漿產生器131以及至少一第二電漿產生器133,因此電漿微細氣泡液產生設備100能產生至少兩種不同的電漿,從而能夠提升電漿微細氣泡液產生設備100在操作上的靈活性。It is worth noting that since the plasma generating module 130 includes at least one first plasma generator 131 and at least one second plasma generator 133, the plasma micro-bubble liquid generating device 100 can generate at least two different plasma generators. Therefore, the operational flexibility of the plasma fine-bubble liquid generating device 100 can be improved.

在實務的應用中,工作氣體WG可以主動供氣方式流入電漿產生模組130,例如使用高壓鋼瓶或加壓設備;亦可由被動吸入方式流入電漿產生模組130,例如藉由液體F流動形成之低壓將工作氣體WG吸入電漿產生模組130中,而工作氣體WG的種類可以是空氣、氮氣、氧氣、氬氣、氦氣、二氧化碳或其組合之混合氣體。In practical applications, the working gas WG can flow into the plasma generation module 130 by active gas supply, such as using high-pressure steel cylinders or pressurized equipment; it can also flow into the plasma generation module 130 by passive suction, such as by the flow of liquid F The formed low pressure draws the working gas WG into the plasma generating module 130 , and the type of the working gas WG can be air, nitrogen, oxygen, argon, helium, carbon dioxide or a mixture thereof.

具體而言,如第1圖所示,控制模組140更電性連接第一子電源161與第二子電源162。再者,控制模組140配置以分別啟動第一子電源161與第二子電源162。詳細而言,由於第二子電源162如上所述係獨立於第一子電源161,因此,根據實際狀況,使用者可選擇只啟動第一子電源161而不啟動第二子電源162、只啟動第二子電源162而不啟動第一子電源161或同時啟動第一子電源161與第二子電源162。當同時啟動第一子電源161與第二子電源162時,電漿產生模組130可提供包含第一電漿氣體PM1與第二電漿氣體PM2的混合電漿氣體。如此一來,電漿微細氣泡液產生設備100在操作上的靈活性得以有效提升。Specifically, as shown in FIG. 1 , the control module 140 is further electrically connected to the first sub-power source 161 and the second sub-power source 162 . Furthermore, the control module 140 is configured to activate the first sub-power source 161 and the second sub-power source 162 respectively. In detail, since the second sub-power supply 162 is independent of the first sub-power supply 161 as described above, the user can choose to only activate the first sub-power supply 161 and not the second sub-power supply 162, or only activate the The second sub-power source 162 does not activate the first sub-power source 161 or activates the first sub-power source 161 and the second sub-power source 162 simultaneously. When the first sub-power source 161 and the second sub-power source 162 are activated at the same time, the plasma generating module 130 can provide a mixed plasma gas including the first plasma gas PM1 and the second plasma gas PM2. In this way, the operational flexibility of the plasma fine-bubble liquid generating device 100 is effectively improved.

進一步而言,控制模組140更配置以調整第一子電源161與第二子電源162分別對第一電漿產生器131和第二電漿產生器133的供電條件,包括間歇放電週期(Intermittent Duty Cycle)、供電頻率(Frequency)及/或供電電壓(Voltage)等,以調整第一電漿氣體PM1與第二電漿氣體PM2的電漿氣體產量。詳細而言,根據實際狀況,在只啟動第一子電源161而不啟動第二子電源162的情況下,控制模組140可調整第一子電源161的間歇放電週期、供電頻率及/或供電電壓,以調整第一電漿氣體PM1的電漿氣體產量。相似地,在只啟動第二子電源162而不啟動第一子電源161的情況下,控制模組140可調整第二子電源162的間歇放電週期、供電頻率及/或供電電壓,以調整第二電漿氣體PM2的電漿氣體產量。再者,在同時啟動第一子電源161與第二子電源162的情況下,控制模組140可分別調整第一子電源161與第二子電源162的間歇放電週期、供電頻率及/或供電電壓,以分別調整第一電漿氣體PM1與第二電漿氣體PM2的產量,以及第一電漿氣體PM1與第二電漿氣體PM2兩者的電漿氣體量比例。在實務的應用中,藉由控制模組140分別啟動第一子電源161與第二子電源162,並分別調整第一子電源161與第二子電源162的間歇放電週期、供電頻率及/或供電電壓,使用者能夠簡單容易地分別調整第一電漿氣體PM1與第二電漿氣體PM2的產量,以及第一電漿氣體PM1與第二電漿氣體PM2兩者的電漿氣體量比例,故能為電漿微細氣泡液產生設備100的操作帶來相當的便利性。Further, the control module 140 is further configured to adjust the power supply conditions of the first sub-power supply 161 and the second sub-power supply 162 to the first plasma generator 131 and the second plasma generator 133 respectively, including intermittent discharge cycles (Intermittent Duty Cycle), power supply frequency (Frequency) and/or power supply voltage (Voltage), etc., to adjust the plasma gas output of the first plasma gas PM1 and the second plasma gas PM2. In detail, according to the actual situation, the control module 140 can adjust the intermittent discharge period, power supply frequency and/or power supply voltage to adjust the plasma gas output of the first plasma gas PM1. Similarly, when only the second sub-power supply 162 is activated but not the first sub-power supply 161, the control module 140 can adjust the intermittent discharge period, power supply frequency and/or supply voltage of the second sub-power supply 162 to adjust the second sub-power supply 162. The plasma gas output of the second plasma gas PM2. Moreover, when the first sub-power source 161 and the second sub-power source 162 are activated at the same time, the control module 140 can adjust the intermittent discharge cycle, power supply frequency and/or power supply of the first sub-power source 161 and the second sub-power source 162 respectively. The voltage is used to adjust the output of the first plasma gas PM1 and the second plasma gas PM2 respectively, and the ratio of the amount of plasma gas between the first plasma gas PM1 and the second plasma gas PM2. In practical applications, the first sub-power supply 161 and the second sub-power supply 162 are respectively activated by the control module 140, and the intermittent discharge cycle, power supply frequency and/or The power supply voltage, the user can easily and easily adjust the output of the first plasma gas PM1 and the second plasma gas PM2, and the ratio of the plasma gas volume between the first plasma gas PM1 and the second plasma gas PM2, Therefore, considerable convenience can be brought to the operation of the plasma microbubble liquid generating device 100 .

第2A圖至第2F圖繪示第1圖之第一電漿產生器131之多種可能實施例。在這些實施例中,第一電漿產生器131為火花(Spark)或電弧(Arc)型電漿產生器。具體而言,第一電漿產生器131包含第一腔體1311、第一電極1314以及第二電極1315。第一腔體1311具有相對之入口1312以及出口1313。第一子電源161包含第一接點161a以及第二接點161b,第一電極1314電性連接第一子電源161的第一接點161a,第二電極1315則電性連接第一子電源161的第二接點161b,其中當第一接點161a連接火線(圖未示)時,第二接點161b連接地線(圖未示)或接地,或者當第二接點161b連接火線時,第一接點161a接地線或接地。值得注意的是,第二電極1315遠離第二接點161b的一端與第一電極1314遠離第一接點161a的一端之間相隔若干距離GP1,而第一電極1314與第二電極1315於末端之間適於形成放電(火花或電弧)。2A to 2F illustrate various possible embodiments of the first plasma generator 131 of FIG. 1 . In these embodiments, the first plasma generator 131 is a spark (Spark) or arc (Arc) type plasma generator. Specifically, the first plasma generator 131 includes a first cavity 1311 , a first electrode 1314 and a second electrode 1315 . The first cavity 1311 has an inlet 1312 and an outlet 1313 opposite to each other. The first sub-power supply 161 includes a first contact 161a and a second contact 161b, the first electrode 1314 is electrically connected to the first contact 161a of the first sub-power supply 161 , and the second electrode 1315 is electrically connected to the first sub-power supply 161 The second contact 161b, wherein when the first contact 161a is connected to the live wire (not shown), the second contact 161b is connected to the ground wire (not shown) or ground, or when the second contact 161b is connected to the live wire, The first contact 161a is grounded or grounded. It should be noted that there is a certain distance GP1 between the end of the second electrode 1315 away from the second contact 161b and the end of the first electrode 1314 away from the first contact 161a, and the distance between the first electrode 1314 and the second electrode 1315 is between the ends. suitable for the formation of electrical discharges (sparks or arcs).

舉例而言,在第一電漿產生器131操作時,第一子電源161分別對第一電極1314與第二電極1315供電,而工作氣體WG從入口1312進入第一腔體1311,並於第一腔體1311內被第一電極1314與第二電極1315之間的高電場解離而至少部分形成第一電漿氣體PM1,然後第一電漿氣體PM1通過出口1313而離開第一腔體1311,繼而通過進氣管A而被導入進水管F in中,亦即使第一電漿氣體PM1流向而導入流動於流體循環的液體F中。隨著微細氣泡產生器120的帶動,在液體F中的第一電漿氣體PM1亦被帶到存液器110中並形成微/奈米大小的電漿微細氣泡B(請見第1圖),以利後續的使用。藉由火花型電漿產生器(即第一電漿產生器131)的操作,如上所述,所產生的第一電漿氣體PM1為一氧化氮。 For example, when the first plasma generator 131 is in operation, the first sub-power supply 161 supplies power to the first electrode 1314 and the second electrode 1315 respectively, and the working gas WG enters the first cavity 1311 from the inlet 1312, and is discharged at the second A cavity 1311 is dissociated by a high electric field between the first electrode 1314 and the second electrode 1315 to at least partially form a first plasma gas PM1, and then the first plasma gas PM1 leaves the first cavity 1311 through an outlet 1313, Then, it is introduced into the water inlet pipe F in through the inlet pipe A, that is, the first plasma gas PM1 flows into the liquid F flowing in the fluid circulation. Driven by the micro-bubble generator 120, the first plasma gas PM1 in the liquid F is also brought into the liquid reservoir 110 and forms micro/nano-sized plasma micro-bubbles B (see Figure 1) , for subsequent use. Through the operation of the spark-type plasma generator (ie, the first plasma generator 131 ), as described above, the generated first plasma gas PM1 is nitric oxide.

進一步而言,以上所述之第一電漿產生器131,其電極(即第一電極1314與第二電極1315)的形狀可為條狀(請見第2A圖)、刀狀(請見第2B圖)、弧狀(請見第2C圖)、同心圓狀(中心為圓柱而外圍為圓管)(請見第2D圖)、平板狀(請見第2E圖)或其混合搭配之形狀(例如刀狀配搭平板狀,請見第2F圖)等,但本發明並不以此為限。如上所述,第一電漿氣體PM1形成於第二電極1315與第一電極1314之間,而第二電極1315與第一電極1314之間的最短距離GP1之範圍為0.3公釐到30公釐之間,但本發明並不以此為限。Furthermore, for the above-mentioned first plasma generator 131, the electrodes (namely the first electrode 1314 and the second electrode 1315) can be strip-shaped (see FIG. 2A ), knife-shaped (please refer to FIG. 2A ). 2B), arc (see Figure 2C), concentric circle (the center is a cylinder and the periphery is a tube) (see Figure 2D), flat (see Figure 2E) or a mixture thereof (For example, a knife shape is matched with a flat plate shape, please refer to FIG. 2F), etc., but the present invention is not limited thereto. As mentioned above, the first plasma gas PM1 is formed between the second electrode 1315 and the first electrode 1314, and the shortest distance GP1 between the second electrode 1315 and the first electrode 1314 ranges from 0.3 mm to 30 mm. between, but the present invention is not limited thereto.

第3A圖至第3C圖繪示第1圖之第二電漿產生器133之多種可能實施例。在這些實施例中,第二電漿產生器133為介質阻擋放電(Dielectric Barrier Discharge, DBD)型電漿產生器。具體而言,第二電漿產生器133包含第二腔體1331、介電管1336、外部電極1334以及內部電極1335。介電管1336位於第二腔體1331內。第二腔體1331具有相對之入口1332以及出口1333。第二子電源162包含第一接點162a以及第二接點162b,外部電極1334電性連接第二子電源162的第一接點162a,內部電極1335則電性連接第二子電源162的第二接點162b,其中當第一接點162a接火線(圖未示)時,第二接點162b連接地線(圖未示)或接地,或者當第二接點162b連接火線時,第一接點162a連接地線或接地。外部電極1334套設於介電管1336之外壁,內部電極1335沿介電管1336之內壁延伸,內部電極1335可以是螺旋形或柱狀體,但本發明並不以此為限。在實務的應用中,第二電漿產生器133之電極形狀可為螺旋狀內部電極1335/管狀外部電極1334(請見第3A圖)、柱狀內部電極1335/螺旋狀外部電極1334(請見第3B圖)或柱狀內部電極1335/管狀外部電極1334(請見第3C圖)等,但本發明並不以此為限。其中,電極(即內部電極1335或外部電極1334)與介電管1336之最小距離GP2為0.3公釐到5公釐之間,但本發明並不以此為限。此外,若電極為螺旋狀,則電極與介電管1336之最小距離GP2可為0公釐,代表緊配之意。3A to 3C illustrate various possible embodiments of the second plasma generator 133 of FIG. 1 . In these embodiments, the second plasma generator 133 is a dielectric barrier discharge (Dielectric Barrier Discharge, DBD) type plasma generator. Specifically, the second plasma generator 133 includes a second cavity 1331 , a dielectric tube 1336 , an external electrode 1334 and an internal electrode 1335 . The dielectric tube 1336 is located in the second cavity 1331 . The second cavity 1331 has an inlet 1332 and an outlet 1333 opposite to each other. The second sub-power supply 162 includes a first contact 162a and a second contact 162b, the external electrode 1334 is electrically connected to the first contact 162a of the second sub-power supply 162, and the internal electrode 1335 is electrically connected to the first contact 162a of the second sub-power supply 162. Two contacts 162b, wherein when the first contact 162a is connected to the live wire (not shown), the second contact 162b is connected to the ground wire (not shown) or ground, or when the second contact 162b is connected to the live wire, the first The contact 162a is connected to ground or ground. The outer electrode 1334 is sheathed on the outer wall of the dielectric tube 1336 , and the inner electrode 1335 extends along the inner wall of the dielectric tube 1336 . The inner electrode 1335 can be a spiral or a column, but the invention is not limited thereto. In practical applications, the electrode shape of the second plasma generator 133 can be a helical inner electrode 1335/tubular outer electrode 1334 (see FIG. 3A), a columnar inner electrode 1335/helical outer electrode 1334 (see 3B) or columnar internal electrode 1335/tubular external electrode 1334 (see FIG. 3C), etc., but the present invention is not limited thereto. Wherein, the minimum distance GP2 between the electrodes (ie, the internal electrodes 1335 or the external electrodes 1334 ) and the dielectric tube 1336 is between 0.3 mm and 5 mm, but the present invention is not limited thereto. In addition, if the electrode is in a spiral shape, the minimum distance GP2 between the electrode and the dielectric tube 1336 can be 0 mm, which means tight fit.

舉例而言,在第二電漿產生器133操作時,第二子電源162分別對外部電極1334與內部電極1335供電,而工作氣體WG從入口1332進入第二腔體1331,電漿形成於內部電極1335/介電管1336之間,或外部電極1334/介電管1336之間,或同時形成於內部電極1335/介電管1336之間與外部電極1334/介電管1336之間,但不直接形成於內部電極1335/外部電極1334之間。其後,形成的第二電漿氣體PM2通過出口1333離開第二腔體1331,並流向而導入流動於流體循環的液體F中。隨著微細氣泡產生器120的帶動,在液體F中的第二電漿氣體PM2亦被帶到存液器110中並形成微/奈米大小的電漿微細氣泡B(請見第1圖),以利後續的使用。藉由介質阻擋放電型電漿產生器(即第二電漿產生器133)的操作,如上所述,所產生的第二電漿氣體PM2為臭氧電漿。在本實施例中,介電管1336可為絕緣材料,例如石英、陶瓷或玻璃等。For example, when the second plasma generator 133 is in operation, the second sub-power supply 162 supplies power to the external electrode 1334 and the internal electrode 1335 respectively, and the working gas WG enters the second cavity 1331 from the inlet 1332, and the plasma is formed inside Between the electrode 1335/dielectric tube 1336, or between the external electrode 1334/dielectric tube 1336, or between the internal electrode 1335/dielectric tube 1336 and between the external electrode 1334/dielectric tube 1336, but not It is directly formed between the internal electrode 1335 / the external electrode 1334 . Afterwards, the formed second plasma gas PM2 leaves the second cavity 1331 through the outlet 1333 and flows into the liquid F flowing in the fluid circulation. Driven by the micro-bubble generator 120, the second plasma gas PM2 in the liquid F is also brought into the liquid reservoir 110 to form micro/nano-sized plasma micro-bubbles B (see Figure 1) , for subsequent use. Through the operation of the dielectric barrier discharge type plasma generator (ie, the second plasma generator 133 ), as described above, the generated second plasma gas PM2 is ozone plasma. In this embodiment, the dielectric tube 1336 can be an insulating material, such as quartz, ceramic or glass.

選擇性地,第一電漿氣體PM1和第二電漿氣體PM2可流入進氣管A。舉例而言,進氣管A連接進水管F in,使得第一電漿氣體PM1和第二電漿氣體PM2可經由進水管F in進入微細氣泡產生器120,在微細氣泡產生器120中產生微細氣泡後再經由出水管F out排放至存液器110。 Alternatively, the first plasma gas PM1 and the second plasma gas PM2 may flow into the intake pipe A. Referring to FIG. For example, the air inlet pipe A is connected to the water inlet pipe F in , so that the first plasma gas PM1 and the second plasma gas PM2 can enter the microbubble generator 120 through the water inlet pipe F in , and the microbubble generator 120 generates micro The air bubbles are then discharged to the liquid reservoir 110 through the water outlet pipe F out .

另一方面,參照第1圖,如上所述,微細氣泡產生器120通過訊號線S訊號連接控制模組140。在實務的應用中,當電漿微細氣泡液產生設備100啟動時,控制模組140啟動微細氣泡產生器120,使得液體F於微細氣泡產生器120與存液器110之間流動以形成流體循環,而當液體F充滿於微細氣泡產生器120內時,控制模組140會通過訊號線S從微細氣泡產生器120獲得對應的訊號。在接收到從微細氣泡產生器120而來的訊號後,控制模組140才啟動第一子電源161及/或第二子電源162,以防止微細氣泡產生器120在未被液體F充滿之前,從第一電漿產生器131及/或第二電漿產生器133而來的第一電漿氣體PM1及/或第二電漿氣體PM2便流進流體循環還没有形成的液體F中,因而能有效避免對微細氣泡產生器120造成損壞。On the other hand, referring to FIG. 1 , as mentioned above, the micro-bubble generator 120 is connected to the control module 140 through the signal line S. In practical applications, when the plasma micro-bubble liquid generating device 100 is activated, the control module 140 activates the micro-bubble generator 120, so that the liquid F flows between the micro-bubble generator 120 and the liquid storage 110 to form a fluid circulation , and when the liquid F is filled in the micro-bubble generator 120, the control module 140 will obtain a corresponding signal from the micro-bubble generator 120 through the signal line S. After receiving the signal from the micro-bubble generator 120, the control module 140 activates the first sub-power supply 161 and/or the second sub-power supply 162, so as to prevent the micro-bubble generator 120 from being filled with the liquid F. The first plasma gas PM1 and/or the second plasma gas PM2 from the first plasma generator 131 and/or the second plasma generator 133 flows into the liquid F where the fluid circulation has not yet been formed, thus Damage to the micro-bubble generator 120 can be effectively avoided.

進一步而言,在本實施例中,如第1圖所示,電漿產生模組130的第一電漿產生器131與第二電漿產生器133並聯排列。也就是說,在氣體供應源150向電漿產生模組130供應工作氣體WG後,工作氣體WG部分流經第一電漿產生器131,而部分則流經第二電漿產生器133。Further, in this embodiment, as shown in FIG. 1 , the first plasma generator 131 and the second plasma generator 133 of the plasma generating module 130 are arranged in parallel. That is to say, after the gas supply source 150 supplies the working gas WG to the plasma generating module 130 , part of the working gas WG flows through the first plasma generator 131 , and part of the working gas WG flows through the second plasma generator 133 .

第4圖為繪示依照本發明另一實施例之電漿微細氣泡液產生設備100的示意圖。在本實施例中,第一電漿產生器131與第二電漿產生器133串聯排列。也就是說,工作氣體WG會先流經第一電漿產生器131,然後連同在第一電漿產生器131所產生的第一電漿氣體PM1再流經第二電漿產生器133。或者,在其他實施例中,根據實際狀況,工作氣體WG會先流經第二電漿產生器133,然後連同在第二電漿產生器133所產生的第二電漿氣體PM2再流經第一電漿產生器131。FIG. 4 is a schematic diagram illustrating a plasma micro-bubble liquid generating device 100 according to another embodiment of the present invention. In this embodiment, the first plasma generator 131 and the second plasma generator 133 are arranged in series. That is to say, the working gas WG first flows through the first plasma generator 131 , and then flows through the second plasma generator 133 together with the first plasma gas PM1 generated in the first plasma generator 131 . Or, in other embodiments, according to the actual situation, the working gas WG will first flow through the second plasma generator 133, and then flow through the second plasma gas PM2 together with the second plasma gas generated by the second plasma generator 133. A plasma generator 131 .

第5圖為繪示依照本發明一實施例之產生電漿微細氣泡液之方法500的流程圖。除了上述的電漿微細氣泡液產生設備100之外,本發明之另一態樣在於提供一種產生電漿微細氣泡液之方法500,如第5圖所示,方法500包含下列步驟(應了解到,在一些實施例中所提及的步驟,除特別敘明其順序者外,均可依實際需要調整其前後順序,甚至可同時或部分同時執行):FIG. 5 is a flow chart illustrating a method 500 for generating plasma fine-bubble liquid according to an embodiment of the present invention. In addition to the above-mentioned plasma fine-bubble liquid generating equipment 100, another aspect of the present invention is to provide a method 500 for generating plasma fine-bubble liquid. As shown in FIG. 5, the method 500 includes the following steps (it should be understood , the steps mentioned in some embodiments, unless the order is specifically stated, can be adjusted according to actual needs, and can even be executed simultaneously or partially simultaneously):

(1)使液體F於微細氣泡產生器120與存液器110之間流動以形成流體循環(步驟510),亦即驅動液體F從存液器110朝向微細氣泡產生器120流動,然後再從微細氣泡產生器120回流至存液器110。(1) Make the liquid F flow between the micro-bubble generator 120 and the liquid reservoir 110 to form a fluid circulation (step 510), that is, drive the liquid F to flow from the liquid reservoir 110 toward the micro-bubble generator 120, and then from The microbubble generator 120 returns to the liquid reservoir 110 .

(2)確認液體F是否充滿於微細氣泡產生器120內(步驟520)。(2) It is confirmed whether the liquid F is filled in the micro-bubble generator 120 (step 520 ).

(3)在確認液體F充滿於微細氣泡產生器120內之後,以工作氣體WG主動或被動流經第一電漿產生器131及第二電漿產生器133,並啟動第一子電源161與第二子電源162之任一者或兩者(步驟530),亦即啟動第一子電源161及/或第二子電源162,以使第一電漿產生器131及/或第二電漿產生器133產生第一電漿氣體PM1及/或第二電漿氣體PM2。根據實際狀況,如上所述,第一電漿產生器131及第二電漿產生器133係可並聯排列或串聯排列。第一電漿氣體PM1及/或第二電漿氣體PM2流向並導入流動於流體循環的液體F中,而在液體F中的第一電漿氣體PM1及/或第二電漿氣體PM2隨後被帶到存液器110中並形成微/奈米大小的電漿微細氣泡B,以利後續的使用。(3) After confirming that the liquid F is filled in the fine bubble generator 120, actively or passively flow the working gas WG through the first plasma generator 131 and the second plasma generator 133, and start the first sub-power supply 161 and Either or both of the second sub-power sources 162 (step 530), that is, start the first sub-power source 161 and/or the second sub-power source 162, so that the first plasma generator 131 and/or the second plasma generator 131 The generator 133 generates the first plasma gas PM1 and/or the second plasma gas PM2. According to the actual situation, as mentioned above, the first plasma generator 131 and the second plasma generator 133 can be arranged in parallel or in series. The first plasma gas PM1 and/or the second plasma gas PM2 flows to and is introduced into the liquid F flowing in the fluid circulation, and the first plasma gas PM1 and/or the second plasma gas PM2 in the liquid F are subsequently brought into the liquid reservoir 110 to form micro/nano-sized plasma fine bubbles B for subsequent use.

(4)當液體F没有充滿於微細氣泡產生器120內時,關閉第一子電源161及第二子電源162(步驟540),以避免從第一電漿產生器131及/或第二電漿產生器133而來的第一電漿氣體PM1及/或第二電漿氣體PM2流進流體循環還没有形成的液體F中,從而有效避免對微細氣泡產生器120造成損壞。(4) When the liquid F is not filled in the micro-bubble generator 120, turn off the first sub-power supply 161 and the second sub-power supply 162 (step 540), so as to avoid The first plasma gas PM1 and/or the second plasma gas PM2 from the plasma generator 133 flows into the liquid F where the fluid circulation has not been formed, so as to effectively avoid damage to the fine bubble generator 120 .

(5)選擇啟動第一電漿產生器131及/或第二電漿產生器133(步驟550)。(5) Select to activate the first plasma generator 131 and/or the second plasma generator 133 (step 550 ).

(6)若選擇啟動第一電漿產生器131,在啟動第一子電源161後,調整第一子電源161對第一電漿產生器131的供電條件,包括間歇放電週期、供電頻率及/或供電電壓等,以調整第一電漿氣體PM1的電漿氣體產量(步驟560)。(6) If you choose to start the first plasma generator 131, after starting the first sub-power supply 161, adjust the power supply conditions of the first sub-power supply 161 to the first plasma generator 131, including intermittent discharge cycle, power supply frequency and/or or power supply voltage etc. to adjust the plasma gas output of the first plasma gas PM1 (step 560 ).

(7)若選擇啟動第二電漿產生器133,在啟動第二子電源162後,調整第二子電源162對第二電漿產生器133的供電條件,包括間歇放電週期、供電頻率及/或供電電壓等,以調整第二電漿氣體PM2的電漿氣體產量(步驟570)。(7) If you choose to start the second plasma generator 133, after starting the second sub-power supply 162, adjust the power supply conditions of the second sub-power supply 162 to the second plasma generator 133, including intermittent discharge cycle, power supply frequency and/or or power supply voltage, etc., to adjust the plasma gas output of the second plasma gas PM2 (step 570 ).

值得注意的是,步驟560及步驟570係可根據實際狀況而選擇同時或部分同時執行,以提高生電漿微細氣泡液之方法500的操作靈活性。It is worth noting that step 560 and step 570 can be selected to be executed simultaneously or partly simultaneously according to actual conditions, so as to improve the operational flexibility of the method 500 for generating plasma microbubble liquid.

第6圖為繪示依照本發明另一實施例之電漿微細氣泡液產生設備100的示意圖。在本實施例中,電漿產生模組130包含多種電漿產生器135,而多種電漿產生器135由電源160提供電力。工作氣體WG可流經多種電漿產生器135而產生第一電漿氣體PM1及/或第二電漿氣體PM2。FIG. 6 is a schematic diagram illustrating a plasma micro-bubble liquid generating device 100 according to another embodiment of the present invention. In this embodiment, the plasma generating module 130 includes various plasma generators 135 , and the various plasma generators 135 are powered by the power supply 160 . The working gas WG can flow through various plasma generators 135 to generate the first plasma gas PM1 and/or the second plasma gas PM2.

第7A圖為繪示第6圖之多種電漿產生器135的一種實施例。多種電漿產生器135包含第一電漿產生器131與第二電漿產生器133,其中第一電漿產生器131與第二電漿產生器133共用共同腔體1351。第一電漿產生器131包含第一電極1314以及第二電極1315。第二電漿產生器133包含外部電極1334以及內部電極1335。在產生電漿的操作上,第一電漿產生器131及第二電漿產生器133可以切換。FIG. 7A shows an embodiment of various plasma generators 135 of FIG. 6 . The various plasma generators 135 include a first plasma generator 131 and a second plasma generator 133 , wherein the first plasma generator 131 and the second plasma generator 133 share a common cavity 1351 . The first plasma generator 131 includes a first electrode 1314 and a second electrode 1315 . The second plasma generator 133 includes an external electrode 1334 and an internal electrode 1335 . In the operation of generating plasma, the first plasma generator 131 and the second plasma generator 133 can be switched.

第7B圖為繪示第6圖之電漿產生模組130的另一實施例。電漿產生模組130的多種電漿產生器135包含第一電漿產生器131與第二電漿產生器133,其中第一電漿產生器131與第二電漿產生器133共用共同腔體1351。在本實施例中,電漿產生模組130更包含切換器SW。切換器SW配置以切換電源160對第一電漿產生器131與第二電漿產生器133的供電。換句話說,藉由切換器SW切換供電,可控制第一電漿產生器131及第二電漿產生器133之何者產生電漿,以提升電漿微細氣泡液產生設備100在操作上的靈活性。FIG. 7B shows another embodiment of the plasma generating module 130 in FIG. 6 . Various plasma generators 135 of the plasma generation module 130 include a first plasma generator 131 and a second plasma generator 133, wherein the first plasma generator 131 and the second plasma generator 133 share a common cavity 1351. In this embodiment, the plasma generating module 130 further includes a switch SW. The switch SW is configured to switch the power supply of the power supply 160 to the first plasma generator 131 and the second plasma generator 133 . In other words, by switching the power supply of the switch SW, it is possible to control which of the first plasma generator 131 and the second plasma generator 133 generates plasma, so as to improve the flexibility of the plasma fine-bubble liquid generating device 100 in operation. sex.

第8圖與第9圖分別顯示第1圖之實施例中第一電漿氣體PM1(一氧化氮)與第二電漿氣體PM2(臭氧)在不同消耗功率下的產量,其中消耗功率是藉由調整供電電壓而調整。由第8圖可以看出第1圖之第一電漿氣體PM1所生成之一氧化氮隨著消耗功率增加而增加,然而臭氧卻幾乎沒有增加;由第9圖可以看出第1圖之第二電漿氣體PM2所生成之臭氧隨著消耗功率增加而增加,然而一氧化氮卻幾乎無法測得。因此可以得知,藉由使用此兩種電漿源設計,可以選擇性地產生一氧化氮和臭氧,故能為電漿微細氣泡液產生設備100的操作帶來相當的便利性。Fig. 8 and Fig. 9 respectively show the output of the first plasma gas PM1 (nitrogen monoxide) and the second plasma gas PM2 (ozone) under different consumption power in the embodiment of Fig. 1, wherein the power consumption is borrowed Adjusted by adjusting the supply voltage. It can be seen from Figure 8 that the nitric oxide generated by the first plasma gas PM1 in Figure 1 increases with the increase of power consumption, but ozone hardly increases; it can be seen from Figure 9 that the first plasma gas in Figure 1 The ozone generated by the second plasma gas PM2 increases with the increase of power consumption, but nitric oxide is almost undetectable. Therefore, it can be known that nitric oxide and ozone can be selectively generated by using these two plasma source designs, which brings considerable convenience to the operation of the plasma microbubble liquid generating device 100 .

第10圖顯示第1圖之實施例中第一電漿氣體PM1與第二電漿氣體PM2在7.6瓦消耗功率下之電漿光譜。圖中可以看出第一電漿氣體PM1與第二電漿氣體PM2均富含N 2第二正系統(second positive system, SPS)的訊號,是為典型空氣電漿光譜之特徵。然而,相較第二電漿氣體PM2來說,第一電漿氣體PM1多出了大量的NO-gamma訊號與N 2第一正系統(first negative system, FNS),顯示出第一電漿氣體PM1與第二電漿氣體PM2雖然都是空氣電漿,產物卻因不同電極設計而不同。 FIG. 10 shows the plasma spectra of the first plasma gas PM1 and the second plasma gas PM2 in the embodiment of FIG. 1 under the power consumption of 7.6 watts. It can be seen from the figure that both the first plasma gas PM1 and the second plasma gas PM2 are rich in N 2 signals of the second positive system (SPS), which is a characteristic of typical air plasma spectra. However, compared with the second plasma gas PM2, the first plasma gas PM1 has a large number of NO-gamma signals and N 2 first positive system (first negative system, FNS), showing that the first plasma gas Although both PM1 and the second plasma gas PM2 are air plasmas, the products are different due to different electrode designs.

第11A圖繪示依照本發明又一實施例之電漿微細氣泡液產生設備100。其中,微細氣泡產生器120可以設置在存液器110中,使得微細氣泡產生器120可至少部分浸泡於液體F中,而微細氣泡產生器120可藉由控制模組140供電和控制。進氣管A連接至微細氣泡產生器120,以向微細氣泡產生器120供應第一電漿氣體PM1和/或第二電漿氣體PM2。在微細氣泡產生器120吸入液體F後,以第一電漿氣體PM1和/或第二電漿氣體PM2在液體F產生電漿微細氣泡B,然後將液體F排放至存液器110。如此不斷循環。FIG. 11A shows a plasma micro-bubble liquid generating device 100 according to another embodiment of the present invention. Wherein, the micro-bubble generator 120 can be disposed in the liquid reservoir 110 so that the micro-bubble generator 120 can be at least partially immersed in the liquid F, and the micro-bubble generator 120 can be powered and controlled by the control module 140 . The gas inlet pipe A is connected to the fine bubble generator 120 to supply the first plasma gas PM1 and/or the second plasma gas PM2 to the fine bubble generator 120 . After the micro-bubble generator 120 sucks the liquid F, the plasma micro-bubbles B are generated in the liquid F by the first plasma gas PM1 and/or the second plasma gas PM2, and then the liquid F is discharged to the liquid storage 110 . And so on and on.

第11B圖繪示依照本發明又一實施例之電漿微細氣泡液產生設備100。其中,微細氣泡產生器120可以藉由進水管F in自水源WS取水。進氣管A連接至微細氣泡產生器120,第一電漿氣體PM1及/或第二電漿氣體PM2主動或被動進入微細氣泡產生器120,最後經由出水管F out排出含有電漿微細氣泡B的流體F。 FIG. 11B shows a plasma micro-bubble liquid generating device 100 according to another embodiment of the present invention. Wherein, the micro-bubble generator 120 can take water from the water source WS through the water inlet pipe F in . The inlet pipe A is connected to the micro-bubble generator 120, the first plasma gas PM1 and/or the second plasma gas PM2 actively or passively enter the micro-bubble generator 120, and finally discharge the plasma micro-bubble B through the outlet pipe F out The fluid F.

第11C圖繪示依照本發明又一實施例之電漿微細氣泡液產生設備100。其中,微細氣泡產生器120可以配置在存液器110中,使得微細氣泡產生器120可至少部分浸泡於液體F中。進氣管A連接至微細氣泡產生器120,以向微細氣泡產生器120供應第一電漿氣體PM1和/或第二電漿氣體PM2。微細氣泡產生器120可以是一氣泡石。第一電漿氣體PM1和/或第二電漿氣體PM2通過微細氣泡產生器120,即可在液體F產生電漿微細氣泡B,然後排放至存液器110。FIG. 11C shows a plasma micro-bubble liquid generating device 100 according to another embodiment of the present invention. Wherein, the micro-bubble generator 120 can be arranged in the liquid reservoir 110, so that the micro-bubble generator 120 can be at least partially immersed in the liquid F. The gas inlet pipe A is connected to the fine bubble generator 120 to supply the first plasma gas PM1 and/or the second plasma gas PM2 to the fine bubble generator 120 . The fine air bubble generator 120 may be an air stone. The first plasma gas PM1 and/or the second plasma gas PM2 pass through the micro-bubble generator 120 to generate plasma micro-bubbles B in the liquid F, and then discharge to the liquid storage 110 .

綜上所述,本發明上述實施例所揭露的技術方案至少具有以下優點:In summary, the technical solutions disclosed in the above embodiments of the present invention have at least the following advantages:

(1)由於電漿產生模組包含至少一第一電漿產生器以及至少一第二電漿產生器,因此電漿微細氣泡液產生設備能產生至少兩種不同的電漿,從而能夠提升電漿微細氣泡液產生設備在操作上的靈活性。(1) Since the plasma generating module includes at least one first plasma generator and at least one second plasma generator, the plasma micro-bubble liquid generating equipment can generate at least two different plasmas, thereby improving the The flexibility of the equipment for generating slurry fine bubble liquid.

(2)由於第二子電源獨立於第一子電源,因此,根據實際狀況,使用者可選擇只啟動第一子電源而不啟動第二子電源、只啟動第二子電源而不啟動第一子電源或同時啟動第一子電源與第二子電源。當同時啟動第一子電源與第二子電源時,電漿產生模組可提供包含第一電漿氣體與第二電漿氣體的混合電漿氣體。如此一來,電漿微細氣泡液產生設備在操作上的靈活性得以有效提升。(2) Since the second sub-power supply is independent of the first sub-power supply, according to the actual situation, the user can choose to only start the first sub-power supply without starting the second sub-power supply, only start the second sub-power supply without starting the first sub-power supply sub-power supply or start the first sub-power supply and the second sub-power supply at the same time. When the first sub-power supply and the second sub-power supply are activated simultaneously, the plasma generating module can provide a mixed plasma gas including the first plasma gas and the second plasma gas. In this way, the operational flexibility of the plasma fine-bubble liquid generating equipment can be effectively improved.

(3)藉由控制模組分別啟動第一子電源與第二子電源,並調整第一子電源與第二子電源分別對第一電漿產生器和第二電漿產生器的供電條件,包括間歇放電週期、供電頻率及/或供電電壓等,使用者能夠簡單容易地分別調整第一電漿氣體與第二電漿氣體的電漿氣體產量,以及第一電漿氣體與第二電漿氣體兩者電漿氣體量比例,故能為電漿微細氣泡液產生設備的操作帶來相當的便利性。(3) Start the first sub-power supply and the second sub-power supply respectively by the control module, and adjust the power supply conditions of the first sub-power supply and the second sub-power supply to the first plasma generator and the second plasma generator respectively, Including intermittent discharge cycle, power supply frequency and/or power supply voltage, etc., the user can easily and easily adjust the plasma gas output of the first plasma gas and the second plasma gas, and the plasma gas output of the first plasma gas and the second plasma gas The ratio of the plasma gas volume between the gas and the gas can bring considerable convenience to the operation of the plasma micro-bubble liquid generating equipment.

(4)藉由第一電漿產生器的操作,電漿產生模組能夠產生富含一氧化氮的電漿氣體。(4) With the operation of the first plasma generator, the plasma generating module can generate plasma gas rich in nitric oxide.

(5)藉由第二電漿產生器的操作,電漿產生模組能夠產生富含臭氧的電漿氣體。(5) Through the operation of the second plasma generator, the plasma generating module can generate ozone-rich plasma gas.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Anyone skilled in this art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be defined by the appended patent application scope.

100:電漿微細氣泡液產生設備 110:存液器 120:微細氣泡產生器 130:電漿產生模組 131:第一電漿產生器 1311:第一腔體 1312:入口 1313:出口 1314:第一電極 1315:第二電極 132:腔體 133:第二電漿產生器 1331:第二腔體 1332:入口 1333:出口 1334:外部電極 1335:內部電極 1336:介電管 135:多種電漿產生器 1351:共同腔體 140:控制模組 150:氣體供應源 160:電源 161:第一子電源 161a:第一接點 161b:第二接點 162:第二子電源 162a:第一接點 162b:第二接點 500:方法 510~570:步驟 A:進氣管 B:電漿微細氣泡 F:液體 F in:進水管 F out:出水管 GP1,GP2:距離 P:電線 PM1:第一電漿氣體 PM2:第二電漿氣體 S:訊號線 SW:切換器 WG:工作氣體 WS:水源 100: plasma fine bubble liquid generating equipment 110: liquid storage device 120: fine bubble generator 130: plasma generating module 131: first plasma generator 1311: first cavity 1312: inlet 1313: outlet 1314: second One electrode 1315: second electrode 132: cavity 133: second plasma generator 1331: second cavity 1332: entrance 1333: exit 1334: external electrode 1335: internal electrode 1336: dielectric tube 135: various plasma generation Device 1351: common cavity 140: control module 150: gas supply source 160: power supply 161: first sub-power supply 161a: first contact 161b: second contact 162: second sub-power supply 162a: first contact 162b : Second contact point 500: Method 510~570: Step A: Intake pipe B: Plasma fine bubbles F: Liquid F in : Water inlet pipe F out : Water outlet pipe GP1, GP2: Distance P: Electric wire PM1: First electricity Plasma gas PM2: second plasma gas S: signal line SW: switch WG: working gas WS: water source

第1圖為繪示依照本發明一實施例之電漿微細氣泡液產生設備的示意圖。 第2A圖至第2F圖繪示第1圖之第一電漿產生器之多種可能實施例。 第3A圖至第3C圖繪示第1圖之第二電漿產生器之多種可能實施例。 第4圖為繪示依照本發明另一實施例之電漿微細氣泡液產生設備的示意圖。 第5圖為繪示依照本發明一實施例之產生電漿微細氣泡液之方法的流程圖。 第6圖為繪示依照本發明另一實施例之電漿微細氣泡液產生設備的示意圖。 第7A圖為繪示第6圖之多種電漿產生器的一種實施例。 第7B圖為繪示第6圖之電漿產生模組的另一實施例。 第8圖與第9圖分別顯示第1圖之實施例中第一電漿氣體(一氧化氮)與第二電漿氣體(臭氧)在不同消耗功率下的產量,其中消耗功率是藉由調整供電電壓而調整。 第10圖顯示第1圖之實施例中第一電漿氣體與第二電漿氣體在7.6瓦消耗功率下之電漿光譜。 第11A圖至第11C圖繪示電漿微細氣泡液產生設備之多種可能實施例。 Fig. 1 is a schematic diagram showing a plasma micro-bubble liquid generating device according to an embodiment of the present invention. 2A to 2F illustrate various possible embodiments of the first plasma generator of FIG. 1 . 3A to 3C illustrate various possible embodiments of the second plasma generator of FIG. 1 . Fig. 4 is a schematic diagram showing a plasma micro-bubble liquid generating device according to another embodiment of the present invention. FIG. 5 is a flow chart illustrating a method for generating plasma fine-bubble liquid according to an embodiment of the present invention. Fig. 6 is a schematic diagram showing a plasma micro-bubble liquid generating device according to another embodiment of the present invention. FIG. 7A shows an embodiment of various plasma generators of FIG. 6 . FIG. 7B shows another embodiment of the plasma generation module in FIG. 6 . Figure 8 and Figure 9 respectively show the output of the first plasma gas (nitrogen monoxide) and the second plasma gas (ozone) under different power consumption in the embodiment of Figure 1, where the power consumption is adjusted by adjusted for supply voltage. FIG. 10 shows the plasma spectra of the first plasma gas and the second plasma gas in the embodiment of FIG. 1 at a power consumption of 7.6 watts. Figures 11A to 11C show various possible embodiments of the plasma micro-bubble liquid generating device.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

100:電漿微細氣泡液產生設備 100: Plasma micro-bubble liquid generation equipment

110:存液器 110: liquid storage

120:微細氣泡產生器 120: Fine bubble generator

130:電漿產生模組 130: Plasma Generation Module

131:第一電漿產生器 131: The first plasma generator

132:腔體 132: Cavity

133:第二電漿產生器 133: Second plasma generator

140:控制模組 140: Control module

150:氣體供應源 150: Gas supply source

160:電源 160: power supply

161:第一子電源 161: The first sub-power supply

162:第二子電源 162: Second sub-power supply

A:進氣管 A: intake pipe

B:電漿微細氣泡 B: Plasma fine bubbles

F:液體 F: liquid

Fin:進水管 F in : water inlet pipe

Fout:出水管 F out : Outlet pipe

P:電線 P: wire

PM1:第一電漿氣體 PM1: the first plasma gas

PM2:第二電漿氣體 PM2: second plasma gas

S:訊號線 S: signal line

WG:工作氣體 WG: working gas

Claims (10)

一種電漿微細氣泡液產生設備,包含: 一微細氣泡產生器,配置以產生微細氣泡於一液體中; 一氣體供應源,配置以供應一工作氣體; 一第一電漿產生器,配置以從該工作氣體產生一第一電漿氣體; 一第二電漿產生器,配置以從該工作氣體產生一第二電漿氣體; 一電源,配置以對該第一電漿產生器和該第二電漿產生器供電;以及 一控制模組,配置以調整該電源對該第一電漿產生器和該第二電漿產生器之供電條件, 其中該第一電漿氣體和該第二電漿氣體被導入該液體中。 A device for generating plasma micro-bubble liquid, comprising: A micro-bubble generator configured to generate micro-bubbles in a liquid; a gas supply source configured to supply a working gas; a first plasma generator configured to generate a first plasma gas from the working gas; a second plasma generator configured to generate a second plasma gas from the working gas; a power supply configured to power the first plasma generator and the second plasma generator; and a control module configured to adjust the power supply conditions of the power supply to the first plasma generator and the second plasma generator, Wherein the first plasma gas and the second plasma gas are introduced into the liquid. 如請求項1所述之電漿微細氣泡液產生設備,更包含: 一進水管,配置以將該液體導入該微細氣泡產生器; 一出水管,配置以自該微細氣泡產生器排出該液體;以及 一進氣管,配置以將該第一電漿氣體及/或該第二電漿氣體導入該進水管或/及出水管。 The plasma micro-bubble liquid generating equipment as described in Claim 1 further includes: a water inlet pipe configured to lead the liquid into the micro-bubble generator; a water outlet pipe configured to discharge the liquid from the micro-bubble generator; and An air inlet pipe configured to lead the first plasma gas and/or the second plasma gas into the water inlet pipe or/and water outlet pipe. 如請求項1所述之電漿微細氣泡液產生設備,其中該電源包含一第一接點以及一第二接點,該第一電漿產生器包含: 一第一電極,電性連接該第一接點;以及 一第二電極,電性連接該第二接點,該第二電極與該第一電極之間相隔一距離, 其中當該第一接點連接一火線時,該第二接點連接一地線或接地,或者當該第二接點連接該火線時,該第一接點連接該地線或接地;以及 其中該距離之範圍為0.3公釐到30公釐之間。 The plasma micro-bubble liquid generating device as described in Claim 1, wherein the power supply includes a first contact and a second contact, and the first plasma generator includes: a first electrode electrically connected to the first contact; and a second electrode, electrically connected to the second contact, with a distance between the second electrode and the first electrode, wherein when the first contact is connected to a live wire, the second contact is connected to a ground or ground, or when the second contact is connected to the live wire, the first contact is connected to the ground or ground; and Wherein the distance ranges from 0.3 mm to 30 mm. 如請求項1所述之電漿微細氣泡液產生設備,更包含一進氣管,配置以將該第一電漿氣體及/或該第二電漿氣體導入該微細氣泡產生器,其中該微細氣泡產生器至少部分浸泡於該液體中。The plasma micro-bubble liquid generating device as described in claim 1, further comprising an air inlet pipe configured to introduce the first plasma gas and/or the second plasma gas into the micro-bubble generator, wherein the micro-bubble The bubble generator is at least partially immersed in the liquid. 如請求項1所述之電漿微細氣泡液產生設備,其中該電源包含一第一接點以及一第二接點,該第二電漿產生器包含: 一介電管,其為絕緣材料; 一外部電極,電性連接該第一接點,並套設於該介電管之一外壁;以及 一內部電極,電性連接該第二接點,該內部電極沿該介電管之內壁延伸, 其中當該第一接點連接一火線時,該第二接點連接一地線或接地,或者當該第二接點連接該火線時,該第一接點連接該地線或接地。 The plasma micro-bubble liquid generating device as described in Claim 1, wherein the power supply includes a first contact and a second contact, and the second plasma generator includes: a dielectric tube, which is an insulating material; an external electrode electrically connected to the first contact and sheathed on an outer wall of the dielectric tube; and an internal electrode electrically connected to the second contact, the internal electrode extending along the inner wall of the dielectric tube, Wherein when the first contact is connected to a live wire, the second contact is connected to a ground or ground, or when the second contact is connected to the live wire, the first contact is connected to the ground or ground. 如請求項1所述之電漿微細氣泡液產生設備,更包含一腔體和一切換器,該第一電漿產生器和該第二電漿產生器位於該腔體內,該切換器配置以切換對該第一電漿產生器和該第二電漿產生器之供電。The plasma micro-bubble liquid generating device as described in Claim 1 further includes a cavity and a switcher, the first plasma generator and the second plasma generator are located in the cavity, and the switcher is configured to Switching the power supply to the first plasma generator and the second plasma generator. 如請求項1所述之電漿微細氣泡液產生設備,其中該第一電漿產生器與該第二電漿產生器並聯排列,該工作氣體部分流經該第一電漿產生器,部分流經該第二電漿產生器。The plasma fine bubble liquid generating equipment as described in Claim 1, wherein the first plasma generator and the second plasma generator are arranged in parallel, the working gas partly flows through the first plasma generator, and partly flows through the via the second plasma generator. 如請求項1所述之電漿微細氣泡液產生設備,其中該第一電漿產生器與該第二電漿產生器串聯排列,該工作氣體先流經該第一電漿產生器後再流經該第二電漿產生器,或該工作氣體先流經該第二電漿產生器後再流經該第一電漿產生器。The plasma micro-bubble liquid generating equipment as described in Claim 1, wherein the first plasma generator and the second plasma generator are arranged in series, and the working gas first flows through the first plasma generator and then flows through the second plasma generator, or the working gas first flows through the second plasma generator and then flows through the first plasma generator. 如請求項1所述之電漿微細氣泡液產生設備,更包含: 一進水管,配置以將該液體導入該微細氣泡產生器; 一出水管,配置以自該微細氣泡產生器排出該液體;以及 一進氣管,配置以將該第一電漿氣體及/或該第二電漿氣體導入該微細氣泡產生器。 The plasma micro-bubble liquid generating equipment as described in Claim 1 further includes: a water inlet pipe configured to lead the liquid into the micro-bubble generator; a water outlet pipe configured to discharge the liquid from the micro-bubble generator; and An air inlet pipe is configured to lead the first plasma gas and/or the second plasma gas into the fine bubble generator. 如請求項9所述之電漿微細氣泡液產生設備,其中該微細氣泡產生器至少部分浸泡於該液體中。The plasma micro-bubble liquid generating device according to claim 9, wherein the micro-bubble generator is at least partially immersed in the liquid.
TW110137624A 2021-10-08 2021-10-08 Plasma fine bubble liquid generating device TW202315674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110137624A TW202315674A (en) 2021-10-08 2021-10-08 Plasma fine bubble liquid generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110137624A TW202315674A (en) 2021-10-08 2021-10-08 Plasma fine bubble liquid generating device

Publications (1)

Publication Number Publication Date
TW202315674A true TW202315674A (en) 2023-04-16

Family

ID=86943089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110137624A TW202315674A (en) 2021-10-08 2021-10-08 Plasma fine bubble liquid generating device

Country Status (1)

Country Link
TW (1) TW202315674A (en)

Similar Documents

Publication Publication Date Title
TWI601693B (en) Plasma liquid generating device
US9288886B2 (en) Plasma-based chemical source device and method of use thereof
CN105174360A (en) Method for adopting discharge plasma to activate persulfate
CN102642913B (en) Atmospheric pressure liquid membrane type bubble discharge plasma reaction device
CN104609509B (en) A kind of plasma body cleaning device
CA2749020A1 (en) Plasma microreactor apparatus, sterilisation unit and analyser
WO2023151324A1 (en) Plasma-activated water preparation device
CN103327722B (en) Dielectric impedance enhancement mode multi-electrode glow discharge low-temp plasma brush array generating means
NO20041816L (en) Process for the preparation of ultrafine dispersion water of ultrafine metal particles
CN114890499A (en) Plasma activated water preparation device
CN103979668B (en) A kind of liquid-gas interface plasma discharging reaction unit of eddy flow gas column
TW202315674A (en) Plasma fine bubble liquid generating device
US11877378B2 (en) Plasma fine bubble liquid generating apparatus
KR20120111253A (en) Apparatus for generating oh-radical
CN203866083U (en) Swirling flow gas column gas-liquid interface discharge plasma reaction device
JP2014117683A (en) Mixing device and installation structure of mixing device
CN115367840A (en) Plasma activated water preparation device and method
JP2002126769A (en) Ozone water treatment apparatus
CN110418484B (en) Air jet discharge generating device
WO2012134350A1 (en) Device for removing organic and chemical microbic pollutants from water
CN221409196U (en) Integrated needle tube mixed discharge low-temperature plasma atomization device
Tang et al. Degradation of acetic acid in water using gas-liquid plasma with SPG membrane
TW201742827A (en) Plasma liquid generating device
Liu et al. Role of water and discharge mode on modulating properties in an atmospheric air MHCD jet
KR100551130B1 (en) Ozone formation system using electric discharge of ozonized water all in one mixing apparatus