TW202235627A - 改變流動池訊號 - Google Patents

改變流動池訊號 Download PDF

Info

Publication number
TW202235627A
TW202235627A TW110142199A TW110142199A TW202235627A TW 202235627 A TW202235627 A TW 202235627A TW 110142199 A TW110142199 A TW 110142199A TW 110142199 A TW110142199 A TW 110142199A TW 202235627 A TW202235627 A TW 202235627A
Authority
TW
Taiwan
Prior art keywords
nanostructures
hydrogel
nanostructure
plasmonic
flow cell
Prior art date
Application number
TW110142199A
Other languages
English (en)
Inventor
詹盧卡 安德里亞 阿爾蒂奧利
哈頓 澤維爾 韋恩
Original Assignee
英商伊路米納劍橋有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商伊路米納劍橋有限公司 filed Critical 英商伊路米納劍橋有限公司
Publication of TW202235627A publication Critical patent/TW202235627A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N15/1436Optical arrangements the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Optical Measuring Cells (AREA)
  • Control Of Eletrric Generators (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Vehicle Body Suspensions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

在一實例方法中,將水凝膠施加至一基板之一表面,並且將引子接枝至該所施加水凝膠。在將該等引子接枝之前或之後,將電漿子奈米結構引入至該所施加水凝膠中。此基板可構成一流動池之一個表面。在將該流動池用於定序操作中時,該等電漿子奈米結構可增強所產生之螢光訊號。

Description

改變流動池訊號
相關申請案之交叉參考
本申請案主張2020年11月16日申請之美國臨時申請案第63/114,305號之權益,其內容以全文引用之方式併入本文中。
生物或化學研究中之各種方案涉及在局部支撐表面上或預界定反應腔室內執行大量受控反應。接著可觀察或偵測指定反應,並且後續分析可幫助識別或揭露反應中所涉及之化學物質的特性。在一些實例中,受控反應改變電荷、電導率或某些其他電學特性,且因此電子系統可用於偵測。在其他實例中,受控反應產生螢光,並且因此光學系統可用於偵測。
電漿子奈米結構被併入至流動池基板中。在一些例子中,該等電漿子奈米結構被引入至該流動池之水凝膠中,並且因此係位於光學標記之訊號增強臨近(signal enhancing proximity)內。呈現螢光之該光學標記為已在該流動池基板上的定序的期間併入至初生核酸股中的經標記核苷酸之組分。因此,該電漿子奈米結構能夠增強該光學標記之螢光,其被讀取為光學訊號。
在其他例子中,該電漿子奈米結構係位於由基板樹脂基質材料產生之螢光訊號的訊號淬滅臨近(signal quenching proximity)內。在此等例子中,該電漿子奈米結構能夠淬滅該樹脂基質材料之自體螢光。在此等例子中,該電漿子奈米結構起淬滅奈米結構的作用,並且因此減少來自該樹脂基質材料之背景雜訊。
在另外其他例子中,該電漿子/淬滅奈米結構能夠增強該光學標記之光學訊號以及亦淬滅來自該樹脂基質材料之光學訊號。 引言
本文中所揭示之第一態樣為一種方法,其包含:將水凝膠施加至一基板之一表面;將引子接枝至該所施加水凝膠;以及在接枝該等引子之前或之後,將電漿子奈米結構引入至該所施加水凝膠。
在第一態樣之一實例中,該等電漿子奈米結構用炔烴官能化,該炔烴共價附接至該水凝膠之自由疊氮基。
在第一態樣之一實例中,該等電漿子奈米結構用疊氮官能化,該疊氮共價附接至該水凝膠之炔烴。
在第一態樣之一實例中,該等電漿子奈米結構用一結合對之第一成員官能化,該第一成員與附接至該水凝膠之該結合對之第二成員交互作用。在實例中,該第一成員及該第二成員包括NiNTA配位體及組胺酸標籤、或鏈黴抗生物素蛋白及生物素、或諜標籤(spytag)及捕諜子(spycatcher)、或順丁烯二醯亞胺及半胱胺酸、或N-羥基丁二醯亞胺酯及胺、或醛及肼、或胺及活化羧酸酯(activated carboxylate)、或胺及N-羥基丁二醯亞胺酯、或硫醇及烷基化試劑、或胺基亞磷酸酯(phosphoramidite)及硫醚。
在第一態樣之一實例中,該基板之該表面包括由間隙區分隔開之凹陷,並且其中該方法進一步包含在接枝該等引子之前且在引入該等電漿子奈米結構之前自該等間隙區移除該水凝膠。
在第一態樣之一實例中,該基板之該表面包括由間隙區包圍之一通路,並且其中該方法進一步包含在接枝該等引子之前且在引入該等電漿子奈米結構之前自該等間隙區移除該水凝膠。
在第一態樣之一實例中,該等電漿子奈米結構係選自由以下者組成之群組:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻雜矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構、及其等之組合。
在第一態樣之一實例中,該等電漿子奈米結構各自具有實心結構、空心結構、或核-殼結構。
應理解,第一態樣之任何特徵可以任何所欲方式組合在一起及/或可與本文中所揭示之實例中之任一者組合以實現如本文之揭示內容中所描述之益處,包括例如增強螢光,且因此在定序方案之成像期間增強訊號。
本文中所揭示之第二態樣為一種流動池,其包含:一基底支撐件;圖案化材料,其在該基底支撐件之上,該圖案化材料包括樹脂基質材料及分散遍及該樹脂基質材料之一表面或係位於該表面各處的淬滅奈米結構,該圖案化材料界定一活性區域之一區,該區由間隙區包圍;水凝膠,其在該區中;以及引子,其附接至該水凝膠。
在第二態樣之一實例中,該淬滅奈米結構係選自由以下者組成之群組:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻雜矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構、及其等之組合。
在第二態樣之一實例中,該淬滅奈米結構具有實心結構、空心結構或核-殼結構。
在第二態樣之一實例中,該區包括一通路且該等間隙區包圍該通路。
在第二態樣之一實例中,該區為凹陷;該圖案化材料界定複數個該凹陷;並且該複數個凹陷中之每一者由該等間隙區分隔開。
應理解,第二態樣之任何特徵可以任何所欲方式組合在一起。此外,應理解,第一態樣及/或第二態樣之特徵之任何組合可一起使用,及/或可與本文中所揭示之實例中之任一者組合以實現如本文之揭示內容中所描述之益處,包括例如在定序方案之成像期間淬滅背景訊號。
本文中所揭示之第三態樣為一種用於在一流動池中的定序的期間增加訊號雜訊比之方法,其包含:奈米壓印樹脂基質材料以形成圖案化材料,該圖案化材料包括由間隙區分隔開之凹陷;將淬滅奈米結構之膜沈積至該圖案化材料之一表面上,該膜具有於約1 nm至約20 nm範圍之厚度;將水凝膠引入至該等凹陷中;以及將引子接枝至該水凝膠。
在第三態樣之一實例中,該等淬滅奈米結構係選自由以下者組成之群組:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻雜矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構、及其等之組合。
應理解,第三態樣之任何特徵可以任何所欲方式組合在一起。此外,應理解,第一態樣及/或第二態樣及/或第三態樣之特徵之任何組合可一起使用,及/或可與本文中所揭示之實例中之任一者組合以實現如本文之揭示內容中所描述之益處,包括例如在定序方案之成像期間淬滅背景訊號。
本文中所揭示之第四態樣為一種用於在一流動池中的定序的期間增加訊號雜訊比之方法,其包含:將淬滅奈米結構併入至樹脂基質材料中;圖案化該樹脂基質材料以界定由間隙區包圍之一活性區域之一區;將水凝膠引入至該區中;以及將引子接枝至該水凝膠。
在第四態樣之一實例中,該等淬滅奈米結構按於該等淬滅奈米結構與該樹脂基質材料之混合物之總重量的約0.1 wt%至約10 wt%範圍之量併入至該樹脂基質材料中。
在第四態樣之一實例中,該等淬滅奈米結構係選自由以下者組成之群組:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻雜矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構、及其等之組合。
在第四態樣之一實例中,該區包括一通路且該等間隙區包圍該通路。
在第四態樣之一實例中,該區為凹陷;該圖案化材料界定複數個該凹陷;並且該複數個凹陷中之每一者由間隙區分隔開。
應理解,第四態樣之任何特徵可以任何所欲方式組合在一起。此外,應理解,第一態樣及/或第二態樣及/或第三態樣及/或第四態樣之特徵之任何組合可一起使用,及/或可與本文中所揭示之實例中之任一者組合以實現如本文之揭示內容中所描述之益處,包括例如在定序方案之成像期間淬滅背景訊號。
在本文中所揭示之實例中,在定序期間進行核苷酸鹼基識別係經由來自光學標記之螢光之偵測而執行。
在一些實例中,經由電漿子共振之螢光增強係經由電漿子奈米結構實現,該等電漿子奈米結構分散遍及用於定序之流動池之水凝膠。水凝膠將電漿子奈米結構中之至少一些係位在光學標記之訊號增強臨近內。呈現螢光之光學標記為已在定序期間併入至初生核酸股中的經標記核苷酸之組分。「訊號增強臨近」意謂電漿子奈米結構及光學標記由一距離分隔開,該距離i)防止在電漿子奈米結構及光學標記彼此係位於過於接近的位置時可能出現之淬滅,以及ii)增加在更大距離處可能顯著下降的電漿子增強。與訊號增強臨近對應之距離可於大於0 nm至約100 nm範圍,但取決於電漿子奈米結構(例如,組成物、形狀、大小)以及在用光源激發時呈現螢光之光學標記。在一些例子中,與訊號增強臨近對應之距離於約0.1 nm至約25 nm範圍,例如,約1 nm至約20 nm等。在一個特定實例中,與訊號增強臨近對應之距離於約3 nm至約12 nm範圍。
在其他實例中,自體螢光淬滅經由電漿子或淬滅奈米結構實現。用於流動池基板中之一些樹脂基質材料在成像期間呈現自體螢光。在一些例子中,自體螢光可為樹脂基質材料中之光學活性組分在加熱期間朝向表面遷移之結果。來自樹脂基質材料之自體螢光可在成像在定序期間已併入至個別初生股中且在用光源激發時呈現螢光的核苷酸之光學標記時增加背景雜訊。增加之背景雜訊可降低訊號雜訊比(SNR),使得在用光源激發時來自個別光學標記之螢光及對應訊號在定序期間更難以解析。在此等實例中,電漿子奈米結構分散於樹脂基質材料內或以層形式施加於樹脂基質材料上,並且因此係位於樹脂基質材料中之光學活性組分之「訊號淬滅臨近」內,吸附於樹脂基質材料之表面處,或在接近樹脂基質材料之表面的溶液中。「訊號淬滅臨近」意謂電漿子奈米結構及樹脂基質材料彼此足夠接近(例如,對於一些奈米結構及光學活性組分在4 nm或更小內),使得來自樹脂基質材料之背景訊號被淬滅。淬滅背景訊號增加了SNR,並且因此改進定序主要及次要量度。作為一個實例,更低背景雜訊使得鹼基能夠被更準確地識別,此又使得定序運行能夠更長。
定義
應理解,除非另外規定,否則本文中所使用之術語將採用其在相關領域中之普通含義。本文中所使用之若干術語及其含義闡述於下文中。
除非上下文另外明確指示,否則單數形式「一(a)」、「一(an)」及「該(the)」之單數形式包括複數個指示物。
術語包含(comprising)、包括(including)、含有(containing)及此等術語之各種形式彼此為同義的且意謂同等廣義。
術語頂部、底部、下部、上部、鄰近、上等在本文中用以描述流動池及/或流動池之各種組分。應理解,此等方向性術語不意謂暗示特定位向,但用於指定組分之間的相對位向。方向性術語之使用不應解釋為將本文中所揭示之實例限制於任何特定位向。
術語第一(first)、第二(second)等亦不意謂暗示特定位向或次序,而是用於將一個組分與另一組分區分開來。
「丙烯醯胺單體(acrylamide monomer)」為具有結構
Figure 02_image001
之單體或包括丙烯醯胺基之單體。包括丙烯醯胺基之單體之實例包括疊氮基乙醯胺基戊基丙烯醯胺:
Figure 02_image003
及N-異丙基丙烯醯胺:
Figure 02_image005
。可使用其他丙烯醯胺單體。
術語「活性區域」係指其中可進行反應之基板之區在流動池之製造期間,活性區域可包括能夠附接可參與核酸模板擴增之引子的水凝膠。在最終流動池中,活性區域可包括具有附接至其之引子的水凝膠。在一些例子中,活性區域亦包括分散遍及水凝膠之電漿子奈米結構。活性區域中之引子可用於產生待定序之核酸模板,並且在定序期間,核酸模板能夠併入用光學標記標記之核苷酸。光學標記呈現螢光(在用光源激發時),並且此螢光可由分散遍及水凝膠之電漿子奈米結構增強。
如本文中所使用,術語「活化」係指在基底支撐件之表面或多層結構之最外層或淬滅奈米結構之膜處產生反應基的製程。活化可使用矽烷化或電漿灰化來實現。應理解,活化可在本文中所揭示之方法中之任一者中執行。在執行活化時,存在矽烷化層或-OH基團(來自電漿灰化)以將水凝膠共價附接至底層支撐件或層或膜。
如本文中所使用,「醛(aldehyde)」為含有具有結構-CHO之官能基的有機化合物,其包括羰基中心(即,碳雙鍵氧)且碳原子亦鍵結至氫及R基團,諸如烷基或其他側鏈。醛之通用結構為:
Figure 02_image007
如本文中所使用,「烷基(alkyl)」係指完全飽和(即,不含雙鍵或參鍵)之直鏈或分支鏈烴鏈。烷基可具有1至20個碳原子。實例烷基包括甲基、乙基、丙基、異丙基、丁基、異丁基、三級丁基、戊基、己基及其類似者。作為實例,名稱「C1-4烷基」指示烷基鏈中存在一至四個碳原子,即,烷基鏈係選自由以下者組成之群組:甲基、乙基、丙基、異丙基、正丁基、異丁基、二級丁基及三級丁基。
如本文中所使用,「烯基(alkenyl)」係指含有一或多個雙鍵之直鏈或分支鏈烴鏈。烯基可具有2至20個碳原子。實例烯基包括乙烯基、丙烯基、丁烯基、戊烯基、己烯基及其類似者。
如本文中所使用,「炔烴(alkyne)」或「炔基(alkynyl)」係指含有一或多個參鍵之直鏈或分支鏈烴鏈。炔基可具有2至20個碳原子。
如本文中所使用,「芳基(aryl)」係指在環主鏈中僅含有碳之芳環或環系統(即,共用兩個鄰近碳原子之兩個或更多個稠環)。在芳基為環系統時,該系統中的每一個環為芳族。芳基可具有6至18個碳原子。芳基之實例包括苯基、萘基、薁基及蒽基。
「胺基(amino)」官能基係指-NR aR b基團,其中R a及R b各自獨立地選自氫(例如,
Figure 02_image009
)、C1-6烷基、C2-6烯基、C2-6炔基、C3-7碳環、C6-10芳基、5-10員雜芳基及5-10員雜環,如本文中所定義。
如本文中所使用,術語「附接(attached)」係指兩個事物彼此直接或間接接合、緊固、黏著、連接或結合之狀態。舉例言之,核酸可藉由共價或非共價鍵附接至聚合水凝膠。共價鍵之特徵在於原子之間的電子對共用。非共價鍵為不涉及電子對共用之物理鍵,並且可包括例如氫鍵、離子鍵、范德華力(van der Waals force)、親水交互作用及疏水交互作用。
「疊氮(azide)」或「疊氮基(azido)」官能基係指-N 3
如本文中所使用,「碳環(carbocycle)」意謂環系統主鏈中僅含有碳原子的非芳族環或環系統。在碳環為環系統時,兩個或更多個環可以稠合、橋連或螺連接方式接合在一起。碳環可具有任何飽和度,其限制條件為環系統中之至少一個環不為芳族。因此,碳環包括環烷基、環烯基及環炔基。碳環基可具有3至20個碳原子。碳環之實例包括環丙基、環丁基、環戊基、環己基、環己烯基、2,3-二氫-茚、雙環[2.2.2]辛烷基、金剛烷基及螺[4.4]壬基。
如本文中所使用,如本文中所使用之術語「羧酸(carboxylic acid)」或「羧基(carboxyl)」係指-COOH。
如本文中所使用,「伸環烷基(cycloalkylene)」意謂經由兩個附接點附接至分子之其餘部分的完全飽和碳環或環系統。
如本文中所使用,「環烯基(cycloalkenyl)」或「環烯(cycloalkene)」意謂具有至少一個雙鍵之碳環或環系統,其中環系統中並無環為芳族。實例包括環己烯基或環己烯及降冰片烯基或降冰片烯。亦如本文中所使用,「雜環烯基(heterocycloalkenyl)」或「雜環烯(heterocycloalkene)」意謂在環主鏈中具有至少一個雜原子之碳環或環系統,其具有至少一個雙鍵,其中環系統中並無環為芳族。
如本文中所使用,「環炔基(cycloalkynyl)」或「環炔(cycloalkyne)」意謂具有至少一個參鍵之碳環或環系統,其中環系統中並無環為芳族。實例為環辛炔。另一實例為雙環壬炔。亦如本文中所使用,「雜環炔基」或「雜環炔」意謂在環主鏈中具有至少一個雜原子之碳環或環系統,其具有至少一個參鍵,其中環系統中並無環為芳族。
如本文中所使用,術語「凹陷(depression)」係指基板中之個別凹形特徵,該基板具有至少部分地由基板之間隙區包圍之表面開口。凹陷在表面中其開口處可具有多種形狀中之任一者,包括例如圓形、橢圓形、正方形、多邊形、星形(具有任何數目個頂點)等。與表面正交獲得之凹陷的橫截面可為曲線、正方形、多邊形、雙曲線、錐形、角形等。作為實例,凹陷可為孔或兩個互連孔。
在參考條項之集合使用時,術語「每一(each)」意欲鑑別該集合中之個別條項,但未必係指該集合中之每一個條項。若明確揭示內容或上下文另外清楚地規定,則可出現例外狀況。
如本文中所使用之術語「環氧基(epoxy)」(亦被稱作縮水甘油基或環氧乙烷基)係指
Figure 02_image011
Figure 02_image013
如本文中所使用,術語「流動池(flow cell)」意欲意謂具有可進行反應之流動通道、用於將試劑遞送至流動通道之入口及用於自流動通道移除試劑之出口的容器。在一些實例中,流動池允許偵測流動池中發生之反應。舉例言之,流動池可包括允許光學偵測陣列、光學標記分子或其類似者之一或多個透明表面。
如本文中所使用,「流動通道(flow channel)」或「通道(channel)」可為界定於兩個接合組分之間的區域,其可選擇性地接收液體樣品、試劑等。在一些實例中,流動通道可界定於兩個基板之間,並且因此可與基板中之每一者之活性區域流體連通。在其他實例中,流動通道可界定於基板與蓋板之間,並且因此可與基板之活性區域流體連通。
如本文中所使用,「雜芳基(heteroaryl)」係指在環主鏈中含有一或多個雜原子之芳族環或環系統(即,兩個或更多個共用兩個鄰近原子之稠環),該雜原子為除碳外之元素,包括但不限於氮、氧及硫。在雜芳基為環系統時,該系統中的每一個環為芳族。雜芳基可具有5至18個環成員。
如本文中所使用,「雜環(heterocycle)」意謂環主鏈中含有至少一個雜原子的非芳族環或環系統。雜環可以稠合、橋連或螺連接方式接合在一起。雜環可具有任何飽和度,其限制條件為環系統中的至少一個環不為芳族。在環系統中,雜原子可存在於非芳族或芳族環中。雜環基可具有3至20個環成員(即,構成環主鏈之原子的數目,包括碳原子及雜原子)。在一些實例中,雜原子為O、N或S。
如本文中所使用之術語「肼(hydrazine)」或「肼基(hydrazinyl)」係指-NHNH 2基團。
如本文中所使用,如本文中所使用之術語「腙(hydrazone)」或「腙基(hydrazonyl)」係指
Figure 02_image015
基團,其中R a及R b各自獨立地選自氫、C1-6烷基、C2-6烯基、C2-6炔基、C3-7碳環、C6-10芳基、5-10員雜芳基及5-10員雜環,如本文中所定義。
如本文中所使用,「羥基(hydroxy)」或「羥基(hydroxyl)」係指-OH基團。
如本文中所使用,術語「間隙區」係指例如分隔開凹陷或包圍通路的基板之區域。作為實例,間隙區可將陣列之凹陷與陣列之另一凹陷分隔開。作為另一實例,間隙區可將流動池之一個通路與流動池之另一通路分隔開。彼此分隔開之凹陷及通路可為離散的,即,彼此不實體接觸。在許多實例中,間隙區為連續的,然而凹陷或通路為離散的,例如如同原本連續表面中或上所界定之複數個凹陷或通路之情況一般。由間隙區提供之分隔可為部分分隔或完全分隔。間隙區可具有不同於凹陷或通路之表面材料的表面材料。舉例言之,凹陷及通路可在其中具有聚合水凝膠及引子,並且間隙區可不含聚合水凝膠及引子兩者。
如本文中所使用,「氧化腈(nitrile oxide)」意謂「R aC≡N +O -」基團,其中R a為本文中所定義。製備氧化腈之實例包括藉由用氯醛甲醯胺-T處理或經由醯亞胺基氯[RC(Cl)=NOH]之作用自醛肟或自羥胺與醛之間的反應原位產生。
如本文中所使用,「硝酮(Nitrone)」意謂
Figure 02_image017
基團,其中R 1、R 2及R 3可為本文中所定義之R a及R b基團中之任一者,但R 3不為氫(H)。
如本文中所使用,「核苷酸(nucleotide)」包括含氮雜環鹼基、糖及一或多個磷酸酯基。核苷酸為核酸序列之單體單元。在RNA中,糖為核糖,並且在DNA中,糖為脫氧核糖,即不具有存在於核糖中之2'位處之羥基的糖。含氮雜環鹼基(即,核鹼基)可為嘌呤鹼基或嘧啶鹼基。嘌呤鹼基包括腺嘌呤(A)及鳥嘌呤(G)及其經改質之衍生物或類似物。嘧啶鹼基包括胞嘧啶(C)、胸腺嘧啶(T)及尿嘧啶(U)以及其經改質之衍生物或類似物。脫氧核糖之C-1原子鍵結至嘧啶之N-1或嘌呤之N-9。核酸類似物可具有磷酸主鏈、糖或核鹼基中之任一者的改變。核酸類似物之實例包括例如通用鹼基或磷酸-糖主鏈類似物,諸如肽核酸(PNA)。「經標記核苷酸」為至少具有附接至其之光學標記的核苷酸。光學標記之實例包括能夠回應於激發波長而發射螢光之任何染料。
「電漿子奈米結構」包括能夠呈現電漿子共振之任何獨立結構。
術語「聚合水凝膠」係指對液體及氣體可透之半剛性聚合物。聚合水凝膠在吸收液體(例如,水)時可膨脹且在例如藉由乾燥移除液體時可收縮。雖然水凝膠可吸收水,但其不具水溶性。
如本文中所使用,術語「引子(primer)」被定義為單股核酸序列(例如,單股DNA)。在本文中被稱作擴增引子之一些引子充當模板擴增及叢集產生之起點。在本文中被稱作定序引子之其他引子充當DNA合成之起點。引子之5'端可經改質以允許與聚合水凝膠之官能基發生偶合反應。引子長度可為任何數目個鹼基長且可包括多種非天然核苷酸。在實例中,定序引子為短股,於10至60個鹼基或20至40個鹼基範圍。
「淬滅奈米結構」為歸因於能量轉移而在處於光學活性組分之淬滅臨近中時最小化由光學活性組分發射之波長的電漿子奈米結構。舉例言之,如果光學活性組分與在由光學活性組分發射之波長處轉移能量的淬滅奈米結構直接接觸,則螢光將被淬滅。
「硫醇(thiol)」官能基係指-SH。
如本文中所使用,術語「四
Figure 110142199-001
(tetrazine)」及「四
Figure 110142199-001
基(tetrazinyl)」係指包含四個氮原子之六員雜芳基。四
Figure 110142199-001
可視情況經取代。
如本文中所使用,「四唑」係指包括四個氮原子之五員雜環基。四唑可視情況經取代。
電漿子或淬滅奈米結構
如本文中所闡述,電漿子奈米結構包括能夠呈現電漿子共振之任何獨立結構。電漿子共振為其中材料表層中之電子藉由入射光之光子以某一入射角激發且接著平行於材料表面傳播的現象。電漿子奈米結構之表面可經由其耦合至傳播或局域表面電漿子來強烈地限制電磁場。此交互作用與局部電場之較大增強相關聯,其又可增強激發及發射速率且減少螢光發射器之激發狀態的壽命。此產生經放大螢光訊號且亦可改進對光漂白之抗性。
亦如本文中所闡述,淬滅奈米結構為歸因於能量轉移而在處於光學活性組分之淬滅臨近中時最小化由光學活性組分發射之波長的奈米結構。因而,在處於光學活性組分之淬滅臨近中時,淬滅奈米結構減少來自光學活性組分之雜訊之自體螢光強度。
能夠電漿子共振之任何材料,在本文中被稱作「電漿子材料」,可用作電漿子奈米結構。能夠電漿子共振之某些奈米結構亦能夠自體螢光淬滅。若干金屬(例如,金、銀、錫、銠、釕、鈀、鋨、銥、鉑、銅、鋁等)、摻雜半金屬(例如,摻雜矽)、直接能隙半導體(例如,砷化鎵)及金屬複合物可能夠電漿子共振。金屬複合物可包括上文所列之金屬中之兩者或更多者。作為實例,雙金屬複合物包括銀及金,並且三金屬複合物包括銀、金及鉑。在本文中所闡述之實例中之任一者中,電漿子奈米結構或淬滅奈米結構可選自由以下者組成之群組:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻雜矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構、及其等之組合。
在實例中,電漿子奈米結構或淬滅奈米結構為球形奈米粒子。在另一實例中,電漿子奈米結構或淬滅奈米結構為非球形奈米粒子,諸如立方體、三稜柱、棒狀、薄片、籠狀(例如,具有多孔殼之非球形空心粒子)、管等。在再一實例中,電漿子奈米結構或淬滅奈米結構為不規律塑形之奈米粒子。電漿子奈米結構之形態可影響本文中所揭示之實例中之一些中的螢光增強之量值。舉例言之,球形奈米粒子、奈米片及奈米立方體可比奈米管更能擴大螢光增強。
電漿子奈米結構或淬滅奈米結構可各自具有實心結構、空心結構或核-殼結構。核-殼結構具有作為核之一種材料及作為至少部分地囊封核之殼的另一材料。在一些實例中,兩種不同電漿子材料用作核及殼。在其他實例中,核為電漿子材料且殼為非電漿子材料。適合殼材料之一些實例包括二氧化矽、金屬氧化物,諸如氧化鋁、二氧化鈦及氧化鉭、蛋白質,諸如牛血清蛋白,以及對在定序期間使用之波長透明的有機聚合物,諸如聚(甲基丙烯酸甲酯)(PMMA)、聚(乳酸)(PLA)及聚(丙烯酸甲酯)(PMA)。非電漿子材料不干擾核之電漿子共振。核-殼結構之一個特定實例包括至少部分地由二氧化矽核囊封之銀與金複合核。
電漿子奈米結構或淬滅奈米結構之尺寸可取決於其形狀而變化。在本文中所揭示之實例中,電漿子奈米結構或淬滅奈米結構之最大尺寸(例如,直徑、長度、中值等)係在奈米級上,並且因此於約1 nm至小於1000 nm範圍。在一些實例中,奈米結構為具有大於或等於1 nm、2 nm、3 nm、4 nm、5 nm、6 nm、7 nm、8 nm、9 nm、10 nm、20 nm、30 nm、40 nm、50 nm、60 nm、70 nm、80 nm、90 nm或大於或等於100 nm之直徑的奈米粒子。電漿子奈米結構之大小可影響本文中所揭示之實例中之一些中的螢光增強之量值。更特定言之,具有不同大小之電漿子奈米結構在不同波長下共振。為了最大化螢光增強,可考慮奈米結構共振波長。舉例言之,模型化可用於預測給定大小及形狀之奈米結構的光學特性,以便以將在所欲波長下共振之奈米結構為目標。在實例中,球形奈米粒子之模型化可藉由米氏理論使用馬克士威光散射等式執行。使其螢光增強之螢光團之化學結構亦可影響本文中所揭示之實例中之一些中的增強之量值。
在一些實例中,電漿子奈米結構經官能化以使得其可附接至水凝膠。
在一個實例中,電漿子奈米結構包括可共價鍵聯至水凝膠之官能基的官能基。作為實例,電漿子奈米結構用炔烴(例如,二苯并環辛炔)官能化,該炔烴共價附接至水凝膠之自由疊氮基;或電漿子奈米結構用疊氮官能化,該疊氮共價附接至水凝膠之炔烴(例如,二炔烴);或電漿子奈米結構用環氧基官能化,該環氧基共價附接至水凝膠之自由胺基。電漿子奈米結構與水凝膠之間的其他共價鍵亦為可能的,包括經由親核取代反應(例如,在親核基團與離核基團之間)獲得的彼等共價鍵。一些特定實例包括涉及醛及肼、或胺及活化羧酸酯(例如,N-羥基丁二醯亞胺酯)、或硫醇及烷基化試劑、或胺基亞磷酸酯及硫醚的彼等實例。
在其他實例中,電漿子奈米結構可能夠非共價結合至水凝膠。舉例言之,電漿子奈米結構用結合對之第一成員官能化,該第一成員與附接至水凝膠之結合對之第二成員交互作用。在實例結合對中,第一成員及第二成員分別包括鎳-氮基三乙酸(NiNTA)配位體及組胺酸標籤、或鏈黴抗生物素蛋白或抗生物素蛋白及生物素、或諜標籤及捕諜子。
用於電漿子增強之方法及流動池
圖1A至圖1E描繪用於製造流動池基板之方法之兩個不同實例,該流動池基板可增強待在定序期間讀取為光學訊號之螢光。一個實例包括圖1A至圖1C及圖1E。另一實例包括圖1A、圖1B、圖1D及圖1E。在此等實例中之每一者中,電漿子奈米結構併入至流動池基板之水凝膠中。方法通常包括將水凝膠施加至基板之表面,將引子接枝至所施加水凝膠,以及在接枝引子之前或之後,將電漿子奈米結構引入至所施加水凝膠。
流動池基板為支撐一或多個活性區域之單層結構或多層結構。在圖1A中,基板為單層結構12。適合單層結構12之實例包括環氧基矽氧烷、玻璃、經改質或官能化玻璃、塑膠(包括丙烯酸樹脂、聚苯乙烯及苯乙烯與其他材料之共聚物、聚丙烯、聚乙烯、聚丁烯、聚胺基甲酸酯、聚四氟乙烯(諸如來自Chemours之TEFLON®)、環烯烴/環烯烴聚合物(COP)(諸如來自Zeon之ZEONOR®)、聚醯亞胺等)、耐綸(聚醯胺)、陶瓷/陶瓷氧化物、二氧化矽、熔融二氧化矽或基於二氧化矽之材料、矽酸鋁、矽及經改質矽(例如,硼摻雜之p+矽)、氮化矽(Si 3N 4)、氧化矽(SiO 2)、五氧化二鉭(Ta 2O 5)或其他氧化鉭(TaO x)、氧化鉿(HfO 2)、碳、金屬、無機玻璃或其類似者。
在其他實例中,圖1A至圖1E中所展示之方法可利用多層結構12'(亦被稱作多層基板12')。多層結構12'之實例在圖2C中展示。多層結構12'之一些實例包括玻璃或矽,具有五氧化二鉭或對用於光學成像之光透明之另一氧化物的塗層。多層基板12'之其他實例可包括絕緣層上矽(silicon-on-insulator;SOI)基板。特定參考圖2C,多層結構12'之另外其他實例包括其上具有圖案化材料16之底層基底支撐件14。
在實例中,圖案化材料16可為經由氣相沈積、氣溶膠印刷或噴墨印刷選擇性地施加至支撐件14的無機氧化物。適合無機氧化物之實例包括氧化鉭(例如,Ta 2O 5)、氧化鋁(例如,Al 2O 3)、氧化矽(例如,SiO 2)、氧化鉿(例如,HfO 2)等。
作為另一實例,圖案化材料16可為施加至支撐件14且接著圖案化之樹脂基質材料。適合沈積技術包括化學氣相沈積、浸塗(dip coating)、浸塗(dunk coating)、旋塗、噴塗、覆液分配、超音波噴塗、刮刀塗佈、氣溶膠印刷、網板印刷、微接觸印刷等。適合圖案化技術包括光微影、奈米壓印微影(NIL)、衝壓技術、壓花技術、模製技術、微蝕刻技術、印刷技術等。適合樹脂之一些實例包括多面體寡聚倍半矽氧烷樹脂、非多面體寡聚倍半矽氧烷環氧樹脂、聚(乙二醇)樹脂、聚醚樹脂(例如,開環環氧樹脂)、丙烯酸類樹脂、丙烯酸酯樹脂、甲基丙烯酸酯樹脂、非晶形含氟聚合物樹脂(例如,來自Bellex之CYTOP®)、及其等之組合。
如本文中所使用,術語「多面體寡聚倍半矽氧烷(polyhedral oligomeric silsesquioxane)」(可以商標「POSS」自Hybrid Plastics商購)係指作為在二氧化矽(SiO 2)與聚矽氧(R 2SiO)化學組成物之間的雜合中間物(例如,RSiO 1.5)的化學組成物。多面體寡聚倍半矽氧烷之實例可為Kehagias等人,Microelectronic Engineering 86(2009),第776-778頁中所描述之多面體寡聚倍半矽氧烷,該參考文獻以全文引用的方式併入本文中。在實例中,組成物為具有化學式[RSiO 3/2]n之有機矽化合物,其中R基團可相同或不同。POSS之實例R基團包括環氧基、疊氮/疊氮基、硫醇、聚(乙二醇)、降冰片烯、四
Figure 110142199-001
、丙烯酸酯及/或甲基丙烯酸酯,或此外例如烷基、芳基、烷氧基及/或鹵烷基。本文中所揭示之樹脂組成物可包含一或多種不同籠或核結構作為單體單元。可在合成期間調節平均籠含量,及/或由純化方法控制,並且在本文中所揭示之實例中可使用單體單元之籠大小之分佈。
在實例中,基板12、12'(無論單層抑或多層)可為圓形且具有於約2 mm至約300 mm範圍之直徑,或可為具有高達約10呎(~3公尺)之其最大尺寸之矩形薄片或板件。在實例中,基板12、12'為具有於約200 mm至約300 mm範圍之直徑的晶圓。晶圓可隨後經切割以形成個別流動池基板。在另一實例中,基板12、12'為具有於約0.1 mm至約10 mm範圍之寬度的晶粒。雖然已提供實例尺寸,但應理解,可使用具有任何適合尺寸之基板12、12'。另舉例言之,可使用呈矩形支撐件之板件,其具有比300 mm圓形晶圓更大的表面積。板件可隨後經切割以形成個別流動池。
在圖1A中,基板描繪為具有平坦表面且無任何特定架構之單層結構12。然而,應理解,基板12或12'包括其中形成活性區域之某一架構。在一些實例中,基板12或12'之架構包括其中形成活性區域之單個通路18(參見圖2B)。在此等實例中,單個通路18由間隙區22包圍。在其他實例中,基板12、12'之架構包括其中形成活性區域之凹陷20(參見圖2C)。在此等實例中,凹陷20由間隙區22分隔開。單個通路18或凹陷20可形成於單層基板12中,或可形成於多層結構12'之最外層中。單個通路18或凹陷20可取決於基板12、12'之材料而經由蝕刻、壓印、奈米壓印微影或另一適合技術界定。將參考圖2A、圖2B及圖2C更詳細地描述基板12、12'之架構。
如圖1B中所展示,方法之每一實例包括將水凝膠24施加至基板12、12'之表面26。基板12、12'之表面26可包括單個通路18或凹陷20,及間隙區22。
水凝膠24可為在吸收液體時可膨脹且在例如藉由乾燥移除液體時可收縮的任何凝膠材料。在實例中,水凝膠24包括丙烯醯胺共聚物,諸如聚(N-(5-疊氮基乙醯胺基戊基)丙烯醯胺-共-丙烯醯胺PAZAM。PAZAM及一些其他形式之丙烯醯胺共聚物由以下結構(I)表示:
Figure 02_image019
其中: R A係選自由以下者組成之群組:疊氮基、視情況經取代之胺基、視情況經取代之烯基、視情況經取代之炔烴、鹵素、視情況經取代之腙、視情況經取代之肼、羧基、羥基、視情況經取代之四唑、視情況經取代之四
Figure 110142199-001
、氧化腈、硝酮、硫酸酯及硫醇; R B為H或視情況經取代之烷基; R C、R D及R E各自獨立地選自由H及視情況經取代之烷基組成之群組; -(CH 2) p-中之每一者可視情況經取代; p為1至50範圍之整數; n為1至50,000範圍之整數;並且 m為1至100,000範圍之整數。
所屬領域中具有通常知識者將認識到,在結構(I)中重複「n」及「m」個特徵之配置係代表性的,並且單體子單元可以任何次序存在於聚合物結構中(例如,無規、嵌段、圖案化或其等之組合)。
PAZAM及其他形式之丙烯醯胺共聚物的分子量可於約5 kDa至約1500 kDa或約10 kDa至約1000 kDa範圍,或在特定實例中可為約312 kDa。
在一些實例中,PAZAM及其他形式之丙烯醯胺共聚物為線性聚合物。在一些其他實例中,PAZAM及其他形式之丙烯醯胺共聚物為輕度交聯之聚合物。
在其他實例中,水凝膠24可為結構(I)之變體。在一個實例中,丙烯醯胺單元可經N,N-二甲基丙烯醯胺(
Figure 02_image021
)置換。在此實例中,結構(I)中之丙烯醯胺單元可經
Figure 02_image023
置換,其中R D、R E及R F各自為H或C1-C6烷基,並且R G及R H各自為C1-C6烷基(而非如同丙烯醯胺之情況為H)。在此實例中,q可為1至100,000範圍之整數。在另一實例中,除丙烯醯胺單元以外可使用N,N-二甲基丙烯醯胺。在此實例中,除重複的「n」及「m」個特徵以外,結構(I)可包括
Figure 02_image025
,其中R D、R E以及R F各自為H或C1-C6烷基,並且R G及R H各自為C1-C6烷基。在此實例中,q可為1至100,000範圍之整數。
作為水凝膠24之另一實例,結構(I)中之重複「n」特徵可經包括具有結構(II)之雜環疊氮基之單體置換:
Figure 02_image027
其中R 1為H或C1-C6烷基;R 2為H或C1-C6烷基;L為包括直鏈之連接子,該直鏈具有2至20個選自由碳、氧及氮組成之群組的原子及10個在鏈中之碳及任何氮原子上視情況存在之取代基;E為直鏈,其包括1至4個選自由碳、氧及氮組成之群組的原子及鏈中之碳及任何氮原子上視情況存在之取代基;A為經N取代之醯胺,其中H或C1-C4烷基附接至N;並且Z為含氮雜環。Z之實例包括以單個環狀結構或稠合結構存在之5至10個環成員。Z之一些特定實例包括吡咯啶基、吡啶基或嘧啶基。
在本文中先前所描述之水凝膠24實例的情況下,取決於電漿子奈米結構10之表面處之官能化,R A、NH 2及/或N 3可附接至電漿子奈米結構10(參見圖1D)。R A及/或N 3基團中之一些可替代地附接寡核苷酸引子28A、28B(參見圖1C)。另外,用於電漿子奈米結構10附接之結合對成員或另一官能基可引入至水凝膠24中,例如,作為在聚合反應中,或在水凝膠24形成之後的接枝製程中,或在化學改質反應中使用之單體之部分。
應理解,可使用其他水凝膠24,只要其經官能化以將寡核苷酸引子28A、28B接枝至其上以及將電漿子奈米結構10附接至其。適合水凝膠24之一些實例包括官能化聚矽烷,諸如降冰片烯矽烷、疊氮基矽烷、炔烴官能化矽烷、胺官能化矽烷、順丁烯二醯亞胺矽烷或具有可附接所欲電漿子奈米結構10及寡核苷酸引子28A、28B之官能基的任何其他聚矽烷。適合水凝膠24之其他實例包括具有以下之彼等水凝膠:膠態結構,諸如瓊脂糖;或聚合物網狀結構,諸如明膠;或交聯聚合物結構,諸如聚丙烯醯胺聚合物及共聚物、無矽烷丙烯醯胺(SFA)或SFA之疊氮化形式。適合聚丙烯醯胺聚合物之實例可由丙烯醯胺及丙烯酸或含有乙烯基之丙烯酸合成,或由形成[2+2]光致環加成反應之單體合成。適合聚合水凝膠之另外其他實例包括丙烯醯胺與丙烯酸酯之混合共聚物。本文中所揭示之實例中可使用多種含有丙烯酸單體(例如,丙烯醯胺、丙烯酸酯等)之聚合物架構,諸如分支鏈聚合物,包括星形聚合物、星形或星形嵌段共聚物、樹枝狀聚合物及其類似者。舉例言之,單體(例如,丙烯醯胺、含有催化劑之丙烯醯胺等)可無規或嵌段併入至星形聚合物之分支(臂)中。
水凝膠24可使用任何適合之共聚製程形成。為了將水凝膠24引入至表面26,水凝膠24之混合物可經產生且接著施加至基板12或12'。在一個實例中,水凝膠24可存在於混合物(例如,與水或與乙醇及水)中。可接著使用旋塗或浸漬或浸塗或材料在正壓或負壓下之流動或另一適合技術來將混合物施加至基板表面26。此等類型之技術將水凝膠24毯式沈積於基板12或12'上(例如,在通路18中、在凹陷20中、在間隙區22上)。其他選擇性沈積技術(例如,涉及遮罩、受控印刷技術等)可用於專門將水凝膠24沈積於通路18中或於凹陷20中而不沈積於間隙區22上。
取決於聚合水凝膠24之化學性質,所施加混合物可曝露於固化製程。在實例中,固化可在於室溫(例如,約25℃)至約95℃範圍之溫度下進行於約1毫秒至約若干天範圍之時間。
水凝膠24至基板12或12'之附接可經由共價鍵結。在一些例子中,底層基板12或12'可首先例如經由矽烷化或電漿灰化活化。在一個實例中,矽烷化涉及將降冰片烯矽烷引入至基板12或12'表面。在多種用途期間,水凝膠24至基板12或12'之共價鍵聯有助於在整個流動池壽命中在活性區域中維持引子28A、28B及電漿子奈米粒子10。
在水凝膠24沈積於通路18中或於凹陷20中及於間隙區22上時,方法可進一步包括在接枝引子28A、28B之前且在引入電漿子奈米粒子10之前自間隙區22移除水凝膠24。水凝膠24之移除可涉及拋光製程。拋光製程可用化學漿料執行,該化學漿料可自間隙區22移除聚合水凝膠24而不會有害地影響彼等區22處之底層基板,並且同時使通路18中或凹陷20中之聚合水凝膠24至少實質上完整。化學漿料之實例可包括研磨粒子、緩衝劑、螯合劑、界面活性劑及/或分散劑。替代地,拋光可用不包括研磨粒子之溶液執行。化學漿料或溶液可用於化學機械拋光系統中以拋光間隙區22之表面。作為實例,拋光頭可為Strasbaugh ViPRR II拋光頭。
方法之一個實例繼續進行至圖1C,其中在電漿子奈米粒子10之引入之前將引子28A、28B接枝至水凝膠24。接枝可涉及流通沈積(例如,使用暫時結合之蓋板)、浸塗、噴塗、覆液分配或將把引子28A、28B附接至聚合水凝膠24之另一適合方法。此等實例技術中之每一者可利用引子溶液或混合物,其可包括引子28A、28B、水、緩衝劑及催化劑。在接枝方法中之任一者之情況下,引子28A、28B與聚合水凝膠24之反應基反應且對於周圍基板12、12'(例如,間隙區22)不具有親和力。因而,引子28A、28B選擇性地接枝至聚合水凝膠24。
在實例中,可藉由在引子28A、28B之5'端處或附近之單點共價附接將引子28A、28B固定至聚合水凝膠24。此附接使i)引子28A、28B之轉接子特異性部分不黏合其同源定序就緒核酸片段及ii)不含引子延伸之3'羥基。出於此目的,可使用任何適合的共價附接。可使用之封端之引子的實例包括炔烴封端之引子(例如,其可附接至聚合水凝膠24之疊氮表面部分),或疊氮封端之引子(例如,其可附接至聚合水凝膠24之炔烴表面部分)。
適合之引子28A、28B之特定實例包括用於在HISEQ™、HISEQX™、MISEQ™、MISEQDX™、MINISEQ™、NEXTSEQ™、NEXTSEQDX™、NOVASEQ™、GENOME、ANALYZER™、ISEQ™及其他儀器平台上定序的由Illumina公司出售之商業流動池之表面上使用的P5及P7引子。
在引子28A、28B接枝(如圖1C中所展示)之後,方法之此實例繼續將電漿子奈米粒子10引入至水凝膠24。此在圖1E中展示。
電漿子奈米粒子10可分散於水中,並且接著基板12、12'(在此實例中其上具有水凝膠24及引子28A、28B)可用分散液沖洗。沖洗可涉及流通沈積(例如,使用暫時結合之蓋板)、浸塗、覆液分配或將把電漿子奈米粒子10引入至聚合水凝膠24之另一適合方法。可允許奈米粒子分散液在基板12、12'上培育,使得電漿子奈米粒子10可附接至水凝膠24。培育時間及附接機制將取決於電漿子奈米粒子10及水凝膠24之官能化、電漿子奈米粒子10及水凝膠24之濃度等。在實例中,培育時間可於2分鐘至12小時範圍。在一些實例中,在室溫(例如,約25℃)下培育於約5分鐘至約1小時範圍,例如,約5分鐘至約30分鐘,或約1分鐘至約10分鐘等。
作為圖1A至圖1C及圖1E中所展示之方法之結果,水凝膠24包括附接至其之引子28A、28B及電漿子奈米粒子10兩者。
返回參考圖1B,在水凝膠24施加之後,方法之另一實例繼續進行至圖1D,其中在引子28A、28B接枝之前電漿子奈米粒子10被引入至水凝膠24中。電漿子奈米粒子10可分散於水中,並且接著基板12、12'(在此實例中其上具有水凝膠24)可用如本文中所描述之分散液沖洗。
在電漿子奈米粒子10引入(如圖1D中所展示)之後,方法之此實例繼續將引子28A、28B接枝至具有附接至其之電漿子奈米粒子10的水凝膠24。此在圖1E中展示。引子28A、28B可經接枝,如參考圖1C所描述。
作為圖1A、圖1B、圖1D及圖1E中所展示之方法之結果,水凝膠24包括附接至其之引子28A、28B及電漿子奈米粒子10兩者。
圖1E中所展示之結構描繪流動池之活性區域之一個實例。活性區域之此實例包括有引子28A、28B及電漿子奈米粒子10附接於其上的水凝膠24。如上文所提及,活性區域可位於流動池之單個通路18中(參見圖2B)或可位於流動池之凹陷20中(參見圖2C)。現將描述流動池之此等實例中之每一者。
流動池30之實例之俯視圖在圖2A中展示。如將參考圖2B所論述,流動池30A之一些實例包括兩個相對基板12及12A,該兩個相對基板中之每一者包括支撐其中可進行定序之活性區域32及32A的通路18、18A。在此等實例中之每一者中,流動通道34界定於基板12與12A之間。如將參考圖2C所論述,流動池30B之其他實例包括兩個相對基板12'及12",該兩個相對基板中之每一者包括支撐其中可進行定序之活性區域32'及32"的凹陷20、20'。在此等實例中之每一者中,流動通道34界定於基板12'與12"之間。在其他實例中,流動池30包括一個基板12或12'(支撐活性區域32或32')及附接至基板12或12'之蓋板。在此等實例中,流動通道34界定於基板12或12'與蓋板之間。
在圖2A中所展示之實例中,流動池30包括多個流動通道34。雖然展示了八個通道34,但應理解,任何數目個通道34可包括於流動池30中(例如,單個通道34、四個通道34等)。在流動池30中,每一流動通道34可與每一其他流動通道34隔離,使得引入至任何特定流動通道34中之流體不流入任何鄰近流動通道34中。用於擴增、叢集、定序、解阻斷等之試劑可分別經由輸入埠及輸出埠引入至流動通道34中及自流動通道34移除。
流動通道34之部分可使用部分取決於基板12及12A或12'及12"之材料的任何適合之技術界定於基板12及12A或12'及12"中。在一個實例中,流動通道34之部分蝕刻至每一玻璃基板(例如,12及12A)中。在另一實例中,流動通道34之部分可使用微影、奈米壓印微影等來圖案化至多層基板12'之材料16中。單獨材料36可施加至基板12或12',使得單獨材料36界定流動通道34之壁之至少部分。
在實例中,流動通道34具有實質上矩形組態,帶有兩個圓形末端。流動通道34之長度及寬度可分別小於基板12或12'之長度及寬度,使得包圍流動通道34之基板表面之部分可用於附接至另一基板12A或12"或至蓋板。在一些例子中,每一流動通道34之寬度可為至少約1 mm、至少約2.5 mm、至少約5 mm、至少約7 mm、至少約10 mm或更大。在一些例子中,每一流動通道34之長度可為至少約10 mm、至少約25 mm、至少約50 mm、至少約100 mm或更大。每一流動通道34之寬度及/或長度可大於上文所指定之值、小於該等值或介於該等值之間。在另一實例中,流動通道34為正方形(例如,10 mm x 10 mm)。
舉例言之,在使用微接觸、氣溶膠或噴墨印刷來沈積至少部分地界定流動通道壁之單獨材料36時,每一流動通道34之深度可小至數個單層厚。在其他實例中,每一流動通道34之深度可為約1 μm、約10 μm、約50 μm、約100 μm或更大。在實例中,深度可於約10 μm至約100 μm範圍。在另一實例中,深度為約5 μm或更小。應理解,每一流動通道34之深度亦可大於上文所指定之值、小於該等值或介於該等值之間。流動通道34之深度亦可沿著流動池30B之長度及寬度變化,例如,在包括凹陷20時。
圖2B說明包括通路18、18A之流動池30A之橫截面圖。在此實例中,流動通道34之部分界定於單層基板12、12A中之每一者中。舉例言之,通路18、18A內之未被活性區域32、32A之組分佔據之空間可被視為流動通道34之部分。
各別基板12、12A之通路18、18A內之活性區域32、32A包括表面26或26A上之水凝膠24或24A、附接至水凝膠24或24A之引子28A、28B以及附接至水凝膠24或24A之電漿子奈米粒子10、10A。此等活性區域32、32A中之每一者可根據參考圖1A至圖1E中所描述之方法中之任一者而在基板12、12A上製備,並且接著基板12、12A可彼此附接以形成流動池30A之實例。可使用任何適合之單獨材料36,諸如黏著劑、有助於接合之輻射吸收材料等來將基板12、12A接合在一起。
圖2C說明包括界定於多層基板12'、12"之圖案化材料16、16'中之凹陷20、20'的流動池30B之橫截面圖。如圖2C中所展示,圖案化材料16、16'包括分別界定於其中之凹陷20、20'以及分隔開鄰近凹陷20、20'之間隙區22、22'。
可設想凹陷20、20'之多種不同佈局,其包括有規則、重複及非規則圖案。在實例中,出於緊密堆積及改進密度,將凹陷20、20'安置於六方柵格中。其他佈局可包括例如直線(矩形)佈局、三角佈局等。在一些實例中,佈局或圖案可為成列及成行的x-y格式之凹陷20、20'。在一些其他實例中,佈局或圖案可為凹陷20、20'及/或間隙區22、22'之重複配置。在另外其他實例中,佈局或圖案可為凹陷20、20'及/或間隙區22、22'之無規配置。圖案可包括條紋、漩渦、線、三角形、矩形、圓形、弧線、對角線、箭頭及/或正方形。
凹陷20、20'之佈局或圖案可以關於所界定區域中凹陷20、20'之密度(例如,凹陷20、20'之數目)為特徵。舉例言之,凹陷20、20'可以大致2百萬個/mm 2之密度存在。密度可經調整至不同密度,包括例如以下密度:約100個/mm 2、約1,000個/mm 2、約10萬個/mm 2、約1百萬個/mm 2、約2百萬個/mm 2、約5百萬個/mm 2、約1千百萬個/mm 2、約5千萬個/mm 2或更大或更小。應進一步理解,圖案化材料16、16'中之凹陷20、20'之密度可在選自以上範圍之下限值中之一者與上限值中之一者之間。作為實例,高密度陣列可特性化為使凹陷20、20'分隔開小於約100 nm,中等密度陣列可特性化為使凹陷20、20'分隔開約400 nm至約1 µm,並且低密度陣列可特性化為使凹陷20、20'分隔開大於約1 µm。雖然已提供實例密度,但應瞭解可使用任何適合之密度。凹陷20、20'之密度可部分取決於凹陷20、20'之深度。在一些例子中,凹陷20、20'之間的間隔甚至大於本文中所列之實例可係所欲的。
凹陷20、20'之佈局或圖案亦可或替代地以平均間距或自凹陷20、20'之中心至鄰近凹陷20、20'之中心的間隔(中心至中心間隔)或自一個凹陷20、20'之左邊緣至鄰近凹陷20、20'之右邊緣的間隔(邊緣至邊緣間隔)之方面為特徵。圖案可為有規則的,使得關於平均間距之變化係數較小,或圖案可為不規則的,在此情況下,變化係數可能相對較大。在任一情況下,平均間距可為例如約50 nm、約0.1 μm、約0.5 μm、約1 μm、約5 μm、約10 μm、約100 μm或更大或更小。凹陷20、20'之特定圖案的平均間距可在選自以上範圍的下限值中之一者與上限值中之一者之間。在實例中,凹陷20、20'具有約1.5 μm之間距(中心至中心間隔)。雖然已提供實例平均間距值,但應瞭解,可使用其他平均間距值。
每一凹陷20、20'之大小特徵可為其容積、開口面積、深度及/或直徑。
每一凹陷20、20'可具有能夠限制引入至流動池30B中之至少一些流體的任何容積。最小或最大容積可經選擇,例如以適應流動池30B之下游使用所預期的通量(例如,多路傳輸量(multiplexity))、解析度、核苷酸或分析物反應性。舉例言之,容積可為至少約1×10 −3μm 3、至少約1×10 −2μm 3、至少約0.1 μm 3、至少約1 μm 3、至少約10 μm 3、至少約100 μm 3或更大。替代地或另外,容積可為至多約1×10 4μm 3、至多約1×10 3μm 3、至多約100 μm 3、至多約10 μm 3、至多約1 μm 3、至多約0.1 μm 3或更小。
可基於如上文關於容積所闡述之類似準則而選擇每一凹陷開口所佔據之面積。舉例言之,每一凹陷開口之面積可為至少約1×10 -3μm 2、至少約1×10 -2μm 2、至少約0.1 μm 2、至少約1 μm 2、至少約10 μm 2、至少約100 μm 2或更大。替代地或另外,該面積可為至多約1×10 3μm 2、至多約100 μm 2、至多約10 μm 2、至多約1 μm 2、至多約0.1 μm 2、至多約1×10 −2μm 2或更小。由每一凹陷開口所佔據之面積可大於上文所指定之值、小於該等值或介於該等值之間。
每一凹陷20、20'之深度可足夠大以容納聚合水凝膠24、24A中之一些。在實例中,深度可為至少約0.1 μm、至少約0.5 μm、至少約1 μm、至少約10 μm、至少約100 μm或更大。替代地或另外,深度可為至多約1×10 3μm、至多約100 μm、至多約10 μm或更小。在一些實例中,深度為約0.4 μm。每一凹陷20、20'之深度可大於上文所指定之值、小於該等值或介於該等值之間。
在一些例子中,每一凹陷20、20'之直徑或長度及寬度可為至少約50 nm、至少約0.1 μm、至少約0.5 μm、至少約1 μm、至少約10 μm、至少約100 μm或更大。替代地或另外,直徑或長度及寬度可為至多約1×10 3μm、至多約100 μm、至多約10 μm、至多約1 μm、至多約0.5 μm、至多約0.1 μm或更小(例如,約50 nm)。在一些實例中,直徑或長度及寬度為約0.4 μm。每一凹陷20、20'之直徑或長度及寬度可大於上文所指定之值、小於該等值或介於該等值之間。
在圖2C中所展示之實例中,流動通道34之部分界定於多層基板12'、12"中之每一者中。舉例言之,凹陷20、20'內之未被活性區域32'、32"之組分佔據之空間可被視為流動通道34之部分。
各別基板12'、12"之活性區域32'、32"包括每一凹陷20、20'之表面上之水凝膠24或24'、附接至水凝膠24或24'之引子28A、28B以及附接至水凝膠24或24'之電漿子奈米粒子10、10'。此等活性區域32'、32"中之每一者可根據參考圖1A至圖1E中所描述之方法中之任一者而在基板12'、12"上製備,並且接著基板12'、12"可彼此附接以形成流動池30B之另一實例。可使用任何適合之單獨材料36,諸如黏著劑、有助於接合之輻射吸收材料等來將基板12'、12"接合在一起。
在流動池30A或30B之實例用於定序時,待定序之模板股(圖中未示)可使用附接至水凝膠24、24A之引子28A、28B來形成於活性區域32、32A或32'、32"中。在模板股形成開始時,可由任何核酸樣本(例如,DNA樣本或RNA樣本)製備庫模板。DNA核酸樣本可經片段化成單股,類似大小(例如,< 1000 bp)為DNA片段。RNA核酸樣本可用於合成互補DNA(cDNA),並且cDNA可經片段化成單股,類似大小(例如,< 1000 bp)為cDNA片段。在製備期間,可將轉接子添加至片段中之任一者之末端。經由減少之循環擴增,不同模體可引入於轉接子中,諸如定序引子結合位點、索引,以及與活性區域32、32A或32'、32"中之引子28A、28B互補的區。在一些實例中,來自單個核酸樣本之片段具有向其中添加之相同轉接子。最終庫模板包括DNA或cDNA片段及在兩個末端處之轉接子。DNA或cDNA片段表示待定序之最終庫模板之部分。
複數個庫模板可引入至流動池30A、30B中。多個庫模板例如與固定於活性區域32、32A或32'、32"中之兩種類型之引子28A、28B中之一者雜合。
可接著執行叢集產生。在叢集產生之一個實例中,使用高保真DNA聚合酶藉由3'延伸自雜合引子複製庫模板。使原始庫模板變性,從而使複本固定於活性區域32、32A或32'、32"中。等溫橋式擴增或某一其他形式之擴增可用於擴增經固定複本。舉例言之,經複製模板循環以與鄰近互補引子雜合,並且聚合酶複製經複製模板以形成雙股橋,其變性以形成兩個單股之股。此兩股循環且與鄰近互補引子雜合並再次延伸以形成兩個新的雙股環。藉由等溫變性及擴增之循環在每一模板複本上重複該製程以產生密集的純系叢集。使雙股橋之每一叢集變性。在實例中,藉由特異性鹼基裂解移除反向股,從而留下正向模板股。叢集引起固定於活性區域32、32A或32'、32"(例如,在如圖2B中所展示之通路18、18A各處或在如圖2C中所展示之凹陷20、20'中)的若干模板股之形成。叢集之此實例被稱作橋式擴增,並且為可執行之擴增之一個實例。應理解,可使用其他擴增技術,諸如排除擴增(Examp)工作流(Illumina公司)。
可引入與模板股之序列之互補部分雜合之定序引子(圖中未示)。此定序引子使得模板股呈現準備好進行定序。
包括經標記核苷酸之併入混合物可接著例如經由輸入埠引入至流動池30A、30B中。除經標記核苷酸以外,併入混合物還可包括水、緩衝劑及聚合酶。在併入混合物引入至流動池30A、30B中時,混合物進入流動通道34,並且接觸其中存在模板股之活性區域32、32A或32'、32"。
允許併入混合物在流動池30A、30B中培育,並且經標記核苷酸藉由各別聚合酶沿著模板股併入至初生股中。在併入期間,經標記核苷酸中之一者藉由各別聚合酶併入至延伸一個定序引子且與模板股中之一者互補的一個初生股中。併入以模板股相依方式執行,並且因此添加至初生股中的經標記核苷酸之類型的螢光偵測可用於判定模板股之序列。在單個定序循環期間,併入發生在活性區域32、32A或32'、32"各處之模板股中之至少一些中。
併入之經標記核苷酸可包括歸因於3' OH阻斷基團之存在的可逆終止特性,一旦已添加經標記核苷酸,就終止進一步定序引子延伸。在培育及併入所欲時間之後,併入混合物,包括未併入之經標記核苷酸,可在清洗循環期間自流動池30A、30B移除。清洗循環可涉及流通技術,其中清洗溶液(例如,緩衝劑)例如藉由泵或其他適合之機構導引至流動通道中、穿過流動通道且接著至流動通道之外。
電漿子奈米粒子10、10A存在於其中固定有模板股且最新近併入之經標記核苷酸位於其中的活性區域32、32A或32'、32"中。因而,電漿子奈米結構10、10A中之至少一些在核苷酸併入之後保持於光學標記之訊號增強臨近內。
在不發生進一步併入之情況下,可經由成像事件偵測到最新近併入之經光學標記核苷酸。在成像事件期間,照明系統(圖中未示)可將激發光提供至活性區域32、32A或32'、32"。併入之經標記核苷酸之光學(例如,染料)標記回應於激發光而發射螢光。另外,因為電漿子奈米結構10、10A中之至少一些係在各別染料標記之訊號增強臨近內,所以來自染料標記之訊號可經由電漿子共振增強。
在執行成像之後,裂解混合物可接著引入至流動池30A、30B中。在實例中,裂解混合物能夠i)自併入之核苷酸移除3' OH阻斷基團,以及ii)自併入之核苷酸裂解染料標記。裂解混合物中3' OH阻斷基團及適合之解阻斷試劑/組分的實例可包括:酯部分,其可藉由鹼水解而移除;烯丙基部分,其可用Nal、氯三甲基矽烷及Na 2S 2O 3或藉由丙酮/水中之Hg(II)來移除;疊氮基甲基,其可用膦來裂解,諸如參(2-羧乙基)膦(tris(2-carboxyethyl)phosphine;TCEP)或參(羥丙基)膦(tri(hydroxypropyl)phosphine;THP);縮醛,諸如可用酸性條件裂解的三級丁氧基-乙氧基;MOM(-CH 2OCH 3)部分,其可用LiBF 4及CH 3CN/H 2O裂解;2,4-二硝基苯次磺醯基,其可用諸如硫酚及硫代硫酸鹽之親核試劑裂解;四氫呋喃基醚,其可用Ag(I)或Hg(II)裂解;以及3'磷酸,其可藉由磷酸酶(例如,多核苷酸激酶)裂解。裂解混合物中適合之染料標記裂解試劑/組分之實例可包括:過碘酸鈉,其可裂解鄰二醇;膦,諸如參(2-羧乙基)膦(TCEP)或參(羥丙基)膦(THP),其可裂解疊氮基甲基鍵;鈀及THP,其可裂解烯丙基;鹼,其可裂解酯部分;或任何其他適合之裂解試劑。
額外定序循環可接著執行,直至模板股經定序為止。
用於淬滅之方法及流動池
本文中所揭示之流動池30之其他實例包括淬滅奈米結構40。此等流動池中之每一者之部分分別在圖3D中以元件符號30C、在圖4C)中以30D及在圖5C中以30E展示。在此等實例中,淬滅奈米結構40係位於圖案化材料16之表面各處,如流動池30C中所展示,或分散遍及圖案化材料16,如流動池30D及30E中所展示。在此等實例流動池30C、30D、30E中,電漿子奈米結構10、10A未附接至水凝膠24。
如圖3D、圖4C及圖5C中所描繪,流動池30C、30D、30E之每一部分包括:基底支撐件14;圖案化材料16,其在基底支撐件14之上,圖案化材料16包括樹脂基質材料42、42'及分散遍及樹脂基質材料42、42'之表面或係位於該表面各處的淬滅奈米結構40,圖案化材料16界定活性區域(例如,32B、32C、32D)之區(例如,通路18或凹陷20),該區由間隙區22包圍;水凝膠24,其在該區中;以及引子28A、28B,其附接至水凝膠24。因而,圖3D、圖4C及圖5C中之每一者描繪其上形成有活性區域32B、32C、32D的多層基板12'、12'-1、12'-2之一個實例。應理解,最終流動池30C、30D、30E包括第二多層基板12'、12'-1、12'-2或接合至多層基板12'、12'-1、12'-2之蓋板及界定於基板12'、12'-1、12'-2之間或基板12'、12'-1、12'-2與蓋板之間的流動通道34。
一些圖案化材料16在所關注之激發波長(例如,於約380 nm至約450 nm範圍之紫色激發波長,或於約450 nm至約495 nm範圍之藍色激發波長,或於約495 nm至約570 nm範圍之綠色激發波長)下呈現非所欲水平的自螢光。來自圖案化材料16之自體螢光可在成像在定序期間已併入至形成於凹陷20中之個別初生股中的核苷酸之光學標記時增加背景雜訊。流動池30C、30D、30E中之淬滅奈米結構40係位於會淬滅來自圖案化材料16之自體螢光的位置。可選擇淬滅例如呈紅色、綠色、藍色、紫色或其等之組合之目標波長的此等奈米結構40。因而,淬滅奈米結構40減少背景雜訊,並且因此增加訊號雜訊比(SNR),使得來自個別凹陷20內之個別叢集之螢光可在定序期間容易地解析。
現參考圖3A至圖3D,描繪用於製造流動池30C之實例方法。此方法通常包括:奈米壓印樹脂基質材料42以形成圖案化材料16,該圖案化材料包括由間隙區22分隔開之凹陷20;將淬滅奈米結構40之膜46沈積至圖案化材料16之表面上,膜46具有於約1 nm至約20 nm範圍之厚度;將水凝膠24引入至凹陷20中;以及將引子28A、28B接枝至水凝膠24。
如圖3A中所描繪,此實例方法利用材料堆疊,包括安置於基底支撐件14之上的樹脂基質材料42。樹脂基質材料42及基底支撐件14可為本文中所提供之實例中之任一者。樹脂基質材料42經圖案化以形成圖案化材料16(圖3B),及多層基板12'之一個實例(類似於圖2C中所展示之實例)。
在圖3A中所展示之實例中,樹脂基質材料42施加至基底支撐件14。樹脂基質材料42可稀釋至適合於施加之黏度。適合液體載劑之實例包括丙二醇單甲醚乙酸酯(propylene glycol monomethyl ether acetate;PGMEA)、甲苯、二甲亞碸(dimethyl sulfoxide;DMSO)、四氫呋喃(tetrahydrofuran;THF)等。經稀釋樹脂基質材料42可接著使用任何適合之施加技術來施加在基底支撐件14上,此可為手動的或自動的。作為實例,可使用氣相沈積技術、塗佈技術或其類似者來執行樹脂基質材料42之施加。一些特定實例包括化學氣相沈積(chemical vapor deposition;CVD)、噴塗(例如,超音波噴塗)、旋塗、浸塗(dunk/dip coating)、刮刀塗佈、覆液分配、氣溶膠印刷、網版印刷、微接觸印刷、噴墨印刷或其類似者。在一個實例中,使用旋塗。
用於施加樹脂基質材料42之技術可使得液體載劑中之至少一些蒸發。在樹脂基質材料42施加至基底支撐件14之表面之後,其可經軟烘烤以移除過量液體載劑。在執行時,軟烘烤可在樹脂基質材料42沈積之後且在工作印模38位於其中之前進行。軟烘烤可在比用於固化之溫度更低的溫度(例如,於約50℃至約150℃範圍)下進行,並且持續於大於0秒至約3分鐘範圍之時間。在實例中,軟烘烤時間於約30秒至約2.5分鐘範圍。
接著使用任何適合之圖案化技術來圖案化樹脂基質材料42。在圖3A及圖3B中所展示之實例中,使用奈米壓印微影來圖案化樹脂基質材料42。奈米壓印微影模具或工作印模38抵靠著樹脂基質材料42之層按壓以在樹脂基質材料42中產生壓印。換言之,樹脂基質材料42藉由工作印模38之突起(奈米特徵44)凹入或打孔。樹脂基質材料42可接著就地藉由工作印模38固化。
固化可藉由將所施加及奈米壓印樹脂基質材料42曝露於光化輻射,諸如紫外線(ultraviolet;UV)輻射來實現。在一個實例中,所發射之UV輻射之大部分可具有約365 nm之波長。固化製程可包括單個UV曝露階段或多個UV固化階段。在固化之後,釋放工作印模38。所得固化樹脂基質材料42'及多層基板12'在圖3B中展示。固化樹脂基質材料42'具有界定於其中之表面形貌特徵,並且因此被稱作圖案化材料16。如圖3B中所展示,圖案化材料16具有界定於其中之凹陷20,並且每一凹陷20由間隙區22分隔開。
如圖3C中所展示,方法接著涉及將淬滅奈米結構40之膜46沈積至圖案化材料16之表面上。淬滅奈米結構40可為本文中所闡述之實例中之任一者,並且可使用任何適合之技術來沈積。作為實例,可使用電沈積、噴塗或化學氣相沈積來沈積淬滅奈米結構40。
淬滅奈米結構40可經沈積以形成具有於約1 nm至約20 nm範圍之厚度的膜46。此厚度使淬滅奈米結構40位於固化樹脂基質材料42'中之螢光團之訊號淬滅臨近內。
如圖3D中所展示,方法接著包括將水凝膠24引入至凹陷20中,並且將引子28A、28B接枝至水凝膠24。如參考圖1B所描述,可執行水凝膠24施加,並且如參考圖1E所描述,可執行引子28A、28B接枝。在其他實例中,水凝膠24可預接枝有引子28A、28B,並且因此可不執行額外接枝製程。
在水凝膠24施加之前,膜46可例如藉由硫化物降冰片烯衍生物或可附接至淬滅奈米結構40之另一降冰片烯衍生物活化。藉由硫化物降冰片烯衍生物,硫化物可附接至膜46中之淬滅奈米結構40且降冰片烯可附接至隨後沈積之水凝膠24。
應理解,當在(預接枝)水凝膠24施加期間執行拋光時,膜46中之淬滅奈米結構40可不自間隙區22移除。
此實例方法產生凹陷20中之每一者中的活性區域32B之另一實例。此活性區域32B包括每一凹陷20之表面上之水凝膠24及附接至水凝膠24之引子28A、28B。淬滅奈米結構40可或可不被視為活性區域32B之部分。如本文中所描述,淬滅奈米結構40係位於會淬滅來自固化樹脂基質材料42'之訊號的位置。膜46中之淬滅奈米結構40中之一些亦可位於在定序期間引入至凹陷20中的光學標記之訊號增強臨近內。此等淬滅奈米結構40可具有淬滅固化樹脂背景訊號及增強光學標記訊號之雙重功能。
具有圖3D中所展示之膜46及活性區域32B之多層基板12'形成流動池30C之部分,並且可附接(例如,經由單獨材料36)至另一多層基板12'(具有膜46及活性區域32B)或至蓋板以形成最終流動池30C。最終流動池30C之架構可類似於圖2C中所展示之架構。
圖4A至圖4C及圖5A至圖5C展示用於製造流動池30D及30E之其他實例方法。此實例方法通常包括:將淬滅奈米結構40併入至樹脂基質材料42中;圖案化樹脂基質材料42以界定由間隙區22包圍之活性區域的區48;將水凝膠24引入至區48中;以及將引子28A、28B接枝至水凝膠24。
現參考圖4A至圖4C,描繪用於製造流動池30D之實例方法。如圖4A中所描繪,此實例方法利用材料堆疊,包括基底支撐件14及在基底支撐件14之上的樹脂基質材料42,其中樹脂基質材料42包括分散於其中之淬滅奈米結構40。
基底支撐件14可為本文中所提供之實例中之任一者。
樹脂基質材料42及淬滅奈米結構40亦可為本文中所提供之實例中之任一者。在此實例中,淬滅奈米結構40分散遍及樹脂基質材料42。在樹脂基質材料42至基底支撐件14上之施加之前,方法可涉及將淬滅奈米結構40併入至樹脂基質材料42中。在實例中,淬滅奈米結構40按於淬滅奈米結構40與樹脂基質材料42之混合物之總重量的約0.1 wt%至約10 wt%範圍之量併入至樹脂基質材料42中。淬滅奈米結構40可添加至樹脂基質材料42以形成混合物,並且混合物可經攪拌或以其他方式攪動以分散淬滅奈米結構40。
在圖4A中所展示之實例中,具有分散於其中之淬滅奈米結構40之樹脂基質材料42施加至基底支撐件14。具有分散於其中之淬滅奈米結構40之樹脂基質材料42可用液體載劑之任何實例稀釋至適合於施加之黏度。具有分散於其中之淬滅奈米結構40之經稀釋樹脂基質材料42可接著使用任何適合之施加技術來施加在基底支撐件14上。在施加之後,具有分散於其中之淬滅奈米結構40之樹脂基質材料42可經軟烘烤以移除過量液體載劑,如參考圖3A及圖3B所描述。
具有分散於其中之淬滅奈米結構40之樹脂基質材料42接著例如使用奈米壓印微影來圖案化以界定由間隙區22包圍之區48,如圖4B中所展示。在此實例中,區48為通路18且間隙區22包圍通路18。如圖4A中所描繪,此實例方法中之工作印模38包括奈米特徵44,其為待形成之通路18之複製陰模。在工作印模38壓入至具有分散於其中之淬滅奈米結構40之樹脂基質材料42中時,樹脂可固化,如參考圖3A及圖3B所描述。所得固化樹脂基質材料42'(圖案化材料16)及多層基板12'-1在圖4B中展示。如圖4B中所展示,圖案化材料16具有界定於其中之通路18,並且通路18由間隙區22包圍。
如圖4C中所展示,方法接著涉及將水凝膠24引入至區48(在此例子中為通路18)中,並且將引子28A、28B接枝至水凝膠24。如參考圖1B所描述,可執行水凝膠24施加,並且如參考圖1E所描述,可執行引子28A、28B接枝。在其他實例中,水凝膠24可預接枝有引子28A、28B,並且因此可不執行額外接枝製程。
此實例方法產生通路18中之活性區域32C之另一實例。此活性區域32C包括通路18之表面上之水凝膠24及附接至水凝膠24之引子28A、28B。在此實例中,淬滅奈米結構40不被視為活性區域32C之部分。
具有圖4C中所展示之活性區域32C之多層基板12'-1形成流動池30D之部分,並且可附接(例如,經由單獨材料36)至另一多層基板12'-1或至蓋板以形成最終流動池30D。最終流動池30D之架構可類似於圖2B中所展示之架構。
現參考圖5A至圖5C,描繪用於製造流動池30E之實例方法。如圖5A中所描繪,此實例方法利用材料堆疊,包括基底支撐件14及在基底支撐件14之上的樹脂基質材料42,其中樹脂基質材料42包括分散於其中之淬滅奈米結構40。
基底支撐件14可為本文中所提供之實例中之任一者。
樹脂基質材料42及淬滅奈米結構40亦可為本文中所提供之實例中之任一者。在此實例中,淬滅奈米結構40分散遍及樹脂基質材料42,如參考圖4A至圖4C所描述。
具有分散於其中之淬滅奈米結構40之樹脂基質材料42接著例如使用奈米壓印微影來圖案化以界定由間隙區22包圍之區48,如圖5B中所展示。在此實例中,每一區48為凹陷20且間隙區22包圍凹陷20。如圖4A中所描繪,此實例方法中之工作印模38包括奈米特徵44,其為待形成之凹陷20之複製陰模。在工作印模38壓入至具有分散於其中之淬滅奈米結構40之樹脂基質材料42中時,樹脂可固化,如參考圖3A及圖3B所描述。所得固化樹脂基質材料42'(圖案化材料16)及多層基板12'-2在圖5B中展示。如圖5B中所展示,圖案化材料16具有界定於其中之複數個凹陷20,並且每一凹陷20由間隙區22分隔開。
如圖5C中所展示,方法接著涉及將水凝膠24引入至區48(在此例子中為凹陷20)中,並且將引子28A、28B接枝至水凝膠24。如參考圖1B所描述,可執行水凝膠24施加,並且如參考圖1E所描述,可執行引子28A、28B接枝。在其他實例中,水凝膠24可預接枝有引子28A、28B,並且因此可不執行額外接枝製程。
此實例方法產生每一凹陷20的活性區域32D之另一實例。此活性區域32D包括每一凹陷20之表面上之水凝膠24及附接至水凝膠24之引子28A、28B。在此實例中,淬滅奈米結構40不被視為活性區域32D之部分。
具有圖5C中所展示之活性區域32D之多層基板12'-2形成流動池30E之部分,並且可附接(例如,經由單獨材料36)至另一多層基板12'-2或至蓋板以形成最終流動池30E。最終流動池30E之架構可類似於圖2C中所展示之架構。
流動池30C、30D及30E之實例可用於如本文中關於流動池30A及30B所描述之定序方法中。歸因於淬滅奈米結構40之存在,訊號雜訊比可在定序期間增加。參考流動池30A及30B所描述之電漿子增強可或可不在流動池30C、30D及30E之情況下發生,並且將部分取決於在成像期間淬滅奈米結構40與每一併入之經標記核苷酸之光學標記的距離。
用於電漿子增強及用於淬滅之流動池
本文中所揭示之流動池30之另外其他實例為雜合體。一個實例為圖2C中所展示之流動池30B及圖3D中所展示之流動池30C之雜合。此實例包括水凝膠24中之電漿子奈米結構10及形成於圖案化材料16之上的膜46中之淬滅奈米結構40。另一實例為圖2B中所展示之流動池30A及圖4C中所展示之流動池30D之雜合。再一實例為圖2C中所展示之流動池30B及圖5C中所展示之流動池30E之雜合。此等實例包括水凝膠24中之電漿子奈米結構10及圖案化材料16中之淬滅奈米結構40。
雜合實例可用於如本文中關於流動池30A及30B所描述之定序方法中。歸因於電漿子奈米結構10及淬滅奈米結構40兩者之存在,來自每一併入之經標記核苷酸之光學標記的訊號可增強且來自固化樹脂基質材料42'之訊號可淬滅。因而,訊號雜訊比可在定序期間增加。
為了進一步說明本文之揭示內容,本文給出實施例。應理解,此等實施例係出於說明目的而提供且不欲理解為限制本文之揭示內容的範圍。 非限制性實施例
實施例 1
此實施例經執行以表明來自併入至流動池之水凝膠中之電漿子奈米粒子的螢光增強。
在此實施例中,使用具有八個流動通道(8 cm長)之圖案化流動池。在此實施例中,流動通道被稱作通路1至8。每一流動通道包括形成於圖案化樹脂材料中之凹陷。
第一流動通道及第二流動通道(通路1及2)為對照流動通道且未塗佈有任何水凝膠。第三流動通道至第八流動通道(通路3至8)塗佈有螢光PAZAM(即,具有ALEXA FLUOR® 545染料接枝至其上之PAZAM)。
在水中用銀奈米立方體(~75 nm)製備了具有不同奈米粒子濃度之五種不同電漿子奈米粒子溶液。溶液之濃度在表1中展示。 1
奈米粒子溶液 ID 奈米粒子濃度
NPS 1 1 mg/mL
NPS 2 0.75 mg/mL
NPS 3 0.5 mg/mL
NPS 4 0.25 mg/mL
NPS 5 0.1 mg/mL
分別在通路3至7(塗佈有螢光PAZAM)中沖洗100 µL之每一溶液NPS1至NPS 5。亦在對照通路2(未塗佈有螢光PAZAM)中沖洗100 µL之NPS 1(1 mg/ml)。奈米粒子溶液中無一者引入至對照通路1(未塗佈有螢光PAZAM)或對照通路8(塗佈有螢光PAZAM)中。獲取在奈米粒子溶液之引入之後的流動池之相片,並且在本文中在圖6A中再現。在原始顏色相片中,塗佈有奈米粒子溶液之通路為綠色,並且顏色隨著奈米粒子濃度增加而更亮。因此,對照通路2及通路3(各自塗佈有NPS 1且因此塗佈最高濃度之奈米粒子)呈現最亮綠色顏色。顏色證實不同奈米粒子溶液NPS 1至NPS 5之存在。
在通路2至7中之奈米粒子溶液之情況下,在流動池之TYPHOON®掃描儀(Amersham)上執行螢光掃描(532 nm激發)。雖然本文中未再現結果,但在通路3至7中(其中分別具有NPS 1至NPS 5)及在對照通路8(螢光PAZAM但奈米粒子溶液中無一者)中觀察到螢光訊號,但未在對照通路1或2中觀察到該等螢光訊號。對照通路2之結果證實無自奈米粒子自身發出之螢光訊號。
接著將奈米粒子溶液NPS 1至NPS 5沖洗出通路2至7。將檸檬酸鈉緩衝劑引入至通路1至8中之每一者中,並且在TYPHOON®掃描儀(Amersham)上執行流動池之另一螢光掃描(532 nm激發)。在圖6B中再現來自此掃描之影像,其中通路8在左側處且通路1在右側處。與圖6B之影像對應的相對強度在圖6C中以圖表展示。如圖6B及圖6C兩者中所展示,未在無螢光PAZAM之對照通路1及2中觀察到螢光訊號。此等結果證實在自其沖洗NPS 1時移除已引入至對照通路2中之奈米粒子。相比之下,在包括螢光PAZAM但無奈米粒子溶液之通路8中且在包括螢光PAZAM且已塗佈有NPS1至NPS 5之通路3至7中之每一者中觀察到螢光訊號。此等結果表明,在自其沖洗各別奈米粒子溶液之前,電漿子奈米粒子確實滯留在通路3至7中之水凝膠中,此係因為通路3至7中之螢光訊號隨著濃度增加而增加(即,通路3具有最強訊號且通路7具有最弱訊號)。此等結果表明奈米粒子增強螢光訊號,並且濃度可影響增強之量值。
在將螢光PAZAM引入至通路3至8中之後且在奈米粒子溶液之引入之前,在流動池之TYPHOON®掃描儀上執行螢光掃描(532 nm激發)。通路8之掃描提供在用NSP 1至NSP 5中之一者處理之前經塗佈通路之基線螢光強度量測結果。此基線量測結果在圖6D中以圖表展示。
在奈米粒子溶液引入、培育及移除之後,並且在檸檬酸鈉緩衝劑引入之後,在TYPHOON®掃描儀(Amersham)上執行流動池之另一螢光掃描(532 nm激發)。來自在奈米粒子溶液引入、培育及移除之後且在檸檬酸鈉緩衝劑引入之後執行之螢光掃描(532 nm激發)的通路3至7之螢光強度亦在圖6D中展示。
圖6D中之結果展示引入至水凝膠中之溶液中的電漿子奈米結構之濃度愈大,螢光增強就愈大。舉例言之,相較於基線量測結果,曝露於最高濃度之奈米粒子(1 mg/ml)的通路3的綠色(532 nm)訊號增強了4.5倍。
實施例 2
為了進一步研究奈米粒子濃度可對電漿子奈米粒子增強之量值具有的影響,製備且測試具有不同螢光水凝膠之另一流動池。
在此實施例中,使用具有八個流動通道(8 cm長)之圖案化流動池。每一流動通道包括形成於圖案化樹脂材料中之凹陷。所有通路塗佈有第二螢光PAZAM,其在此實施例中為其上接枝有ALEXA FLUOR® 488染料之PAZAM。
在第二螢光PAZAM引入至通路中之後,在流動池之TYPHOON®掃描儀上執行螢光掃描(488 nm激發)。通路8之掃描提供在用實施例1之NSP 1至NSP 5中之一者處理之前經塗佈通路之基線螢光強度量測結果。此基線量測結果在圖7中以圖表展示。
分別在通路3至7(塗佈有第二螢光PAZAM)中沖洗來自實施例1之100 µL之每一奈米粒子溶液NPS 1至NPS 5。允許溶液在室溫下培育5分鐘,隨後將其沖洗出流動池。將檸檬酸鈉緩衝劑引入至通路1至8中之每一者中,並且在TYPHOON®掃描儀(Amersham)上執行流動池之另一螢光掃描(488 nm激發)。通路3至7之螢光強度亦在圖7中展示。
圖7中之結果展示引入至水凝膠中之溶液中的電漿子奈米結構之濃度愈大,螢光增強就愈大。舉例言之,相較於在奈米粒子處理之前掃描之同一流動池上獲得的標準強度,曝露於最高濃度之奈米粒子(1 mg/ml)的通路3的藍色(488 nm)訊號兩者增強了4.5倍。此等結果與圖6D中所展示之綠色(532 nm)之結果一致。
實施例 3
使用來自實施例1的相同類型之流動池。在此實施例中,3個通路如下處理:通路1塗佈有PAZAM且接枝有P5及P7引子;通路2塗佈有PAZAM,在移除NPS 1之前在室溫下用來自實施例1之NPS 1(1 mg/ml)處理5分鐘,且接著接枝有P5及P7引子;以及通路3塗佈有PAZAM,接枝有P5及P7引子,且接著在移除NPS 1之前在室溫下用來自實施例1之NPS 1(1 mg/ml)處理5分鐘。
通路1至3中之每一者接著曝露於ALEXA FLUOR™ 545-P5補體,該補體與通路中之P5引子雜合且因此經標記。在TYPHOON®掃描儀(Amersham)上執行流動池之螢光掃描(532 nm激發)。雖然本文中未再現結果,但在通路1中未觀察到螢光增強,而在其兩者均用電漿子奈米粒子處理之通路2及3中觀察到螢光增強。此等結果指示電漿子奈米粒子可在引子接枝之前或之後引入至水凝膠中。
其他注意事項
應瞭解,前述概念及下文更詳細地論述之進一步概念的所有組合(限制條件為此等概念並不彼此不一致)應視為是本文中所揭示之發明標的的一部分。特定言之,在本文之揭示內容結尾處出現之所請標的的所有組合應視為是本文中所揭示之發明標的的一部分。亦應瞭解,本文中明確採用之術語(其等亦可能出現在以引用方式併入之任何揭示內容中)應符合與本文中所揭示之特定概念最一致的含義。
貫穿本說明書,當提及「一個實例」、「另一實例」、「實例」等等時,意謂結合該實例描述之特定要素(例如,特徵、結構、及/或特性)包括於本文中所描述之至少一個實例中,並且可存在或可不存在於其他實例中。另外,應理解,除非上下文另外明確規定,否則關於任何實例所描述之要素可以任何適合方式組合於各種實例中。
應理解,本文中所提供之範圍包括所陳述範圍及在所陳述範圍的任何值或子範圍,如同明確地列舉如此值或子範圍一般。舉例言之,於約2 mm至約300 mm之範圍應解釋為不僅包括約2 mm至約300 mm之明確敍述限值,並且亦包括個別值,諸如約40 mm、約250.5 mm等、及子範圍,諸如約25 mm至約175 mm等。
此外,在「約」及/或「實質上」用以描述值時,其等意謂涵蓋所陳述值的較小變化(達至+/-10%)。
雖然已詳細地描述若干實例,但應理解,可修改所揭示之實例。因此,以上描述應被視為非限制性的。
參考以下實施方式及圖式,本文之揭示內容之實例之特徵將變得明顯,在以下實施方式及圖式中,類似的元件符號對應於類似但或許不完全相同的組件。出於簡潔起見,具有先前所描述功能之元件符號或特徵可或可不結合出現其等之其他圖式來描述。
[圖1A]至[圖1E]描繪本文中所揭示之方法之兩個實例;
[圖2A]為流動池之實例之俯視圖;
[圖2B]為沿著圖2A之2B-2B線截取之放大橫截面圖,其描繪藉由圖1A至圖1E中所展示之實例方法中之任一者形成的流動通道及實例基板;
[圖2C]為沿著圖2A之2C-2C線截取之放大橫截面圖,其描繪藉由圖1A至圖1E中所展示之實例方法中之任一者形成的流動通道及其他實例基板;
[圖3A]至[圖3D]描繪本文中所揭示之另一實例方法;
[圖4A]至[圖4C]描繪本文中所揭示之又一實例方法;
[圖5A]至[圖5C]描繪本文中所揭示之再一實例方法;
[圖6A]為流動池之原始彩色相片之黑白複製品,其中顏色指示引入至流動池之通路中之一些中的電漿子奈米粒子溶液之存在,其中通路1為沒有螢光水凝膠(附接有ALEXA FLUOR® 545染料之水凝膠)且沒有電漿子奈米粒子溶液之對照通路,通路2為塗佈有電漿子奈米粒子溶液但沒有螢光水凝膠之對照通路,通路3至7為塗佈有螢光水凝膠及不同濃度之電漿子奈米粒子溶液兩者的實例通路,並且通路8為塗佈有螢光水凝膠但沒有電漿子奈米粒子溶液之對照通路;
[圖6B]為在從請求項2至7沖洗奈米粒子溶液之後且在緩衝劑引入之後使用532 nm綠色雷射(用於激發)及TAMRA濾光器來收集的圖6A之流動池之螢光掃描儀影像,其展示在通路3至8中之螢光訊號滴定及在通路1或2中沒有訊號;
[圖6C]為描繪與圖6B之螢光掃描儀影像對應之相對強度的圖;
[圖6D]為展示針對以下者使用532 nm綠色雷射來收集的螢光強度的圖:i)包括螢光水凝膠但在用奈米粒子溶液處理之前且在緩衝劑引入之後的圖6A之流動池之一個通路(通路8)、以及ii)在向其中引入並自其沖洗奈米粒子溶液之後且在緩衝劑引入之後的圖6A之流動池之通路3至7;以及
[圖7]為展示針對以下者使用488 nm藍色雷射來收集的螢光強度的圖:i)塗佈有另一螢光水凝膠(包括ALEXA FLUOR® 488染料)而無奈米粒子溶液處理且在緩衝劑引入之後的流動池之一個通路、以及ii)在向其中引入並自其沖洗奈米粒子溶液之後且在緩衝劑引入之後的此流動池之五個其他通路。
10:電漿子奈米粒子/電漿子奈米結構
12:單層結構/基板
12':多層結構/多層基板
24:水凝膠
26:表面
28A:寡核苷酸引子
28B:寡核苷酸引子

Claims (21)

  1. 一種方法,其包含: 將水凝膠施加至一基板之一表面上; 將引子接枝至該所施加水凝膠;以及 在接枝該等引子之前或之後,將電漿子奈米結構引入至該所施加水凝膠。
  2. 如請求項1之方法,其中該等電漿子奈米結構用炔烴官能化,該炔烴共價附接至該水凝膠之自由疊氮基。
  3. 如請求項1之方法,其中該等電漿子奈米結構用疊氮官能化,該疊氮共價附接至該水凝膠之炔烴。
  4. 如請求項1之方法,其中該等電漿子奈米結構用一結合對之第一成員官能化,該第一成員與附接至該水凝膠之該結合對之第二成員交互作用。
  5. 如請求項4之方法,其中該第一成員及該第二成員包括NiNTA配位體及組胺酸標籤、或鏈黴抗生物素蛋白及生物素、或諜標籤(spytag)及捕諜子(spycatcher)、或順丁烯二醯亞胺及半胱胺酸、或N-羥基丁二醯亞胺酯及胺、或醛及肼、或胺及活化羧酸酯(activated carboxylate)、或胺及N-羥基丁二醯亞胺酯、或硫醇及烷基化試劑、或胺基亞磷酸酯(phosphoramidite)及硫醚。
  6. 如請求項1之方法,其中該基板之該表面包括由間隙區分隔開之凹陷,並且其中該方法進一步包含在接枝該等引子之前且在引入該等電漿子奈米結構之前自該等間隙區移除該水凝膠。
  7. 如請求項1之方法,其中該基板之該表面包括由間隙區包圍之一通路,並且其中該方法進一步包含在接枝該等引子之前且在引入該等電漿子奈米結構之前自該等間隙區移除該水凝膠。
  8. 如請求項1之方法,其中該等電漿子奈米結構係選自由以下者組成之群組:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻雜矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構、及其等之組合。
  9. 如請求項1之方法,其中該等電漿子奈米結構各自具有實心結構、空心結構、或核-殼結構。
  10. 一種流動池,其包含: 一基底支撐件; 圖案化材料,其在該基底支撐件之上,該圖案化材料包括: 樹脂基質材料;及 淬滅奈米結構,其分散遍及該樹脂基質材料之一表面或係位於該表面各處, 該圖案化材料界定一活性區域之一區,該區由間隙區包圍; 水凝膠,其在該區中;以及 引子,其附接至該水凝膠。
  11. 如請求項10之流動池,其中該淬滅奈米結構係選自由以下者組成之群組:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻雜矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構、及其等之組合。
  12. 如請求項10之流動池,其中該淬滅奈米結構具有實心結構、空心結構、或核-殼結構。
  13. 如請求項10之流動池,其中該區包括一通路且該等間隙區包圍該通路。
  14. 如請求項10之流動池,其中: 該區為凹陷; 該圖案化材料界定複數個該凹陷;並且 該複數個凹陷中之每一者由該等間隙區分隔開。
  15. 一種用於在一流動池中的定序的期間增加訊號雜訊比之方法,其包含: 奈米壓印樹脂基質材料以形成圖案化材料,該圖案化材料包括由間隙區分隔開之凹陷; 將淬滅奈米結構之膜沈積至該圖案化材料之一表面上,該膜具有於約1 nm至約20 nm範圍之厚度; 將水凝膠引入至該等凹陷中;以及 將引子接枝至該水凝膠。
  16. 如請求項15之方法,其中該等淬滅奈米結構係選自由以下者組成之群組:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻雜矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構、及其等之組合。
  17. 一種用於在一流動池中的定序的期間增加訊號雜訊比之方法,其包含: 將淬滅奈米結構併入至樹脂基質材料中; 圖案化該樹脂基質材料以界定由間隙區包圍之一活性區域的一區; 將水凝膠引入至該區中;以及 將引子接枝至該水凝膠。
  18. 如請求項17之方法,其中該等淬滅奈米結構按於該等淬滅奈米結構與該樹脂基質材料之混合物之總重量的約0.1 wt%至約10 wt%範圍之量併入至該樹脂基質材料中。
  19. 如請求項17之方法,其中該等淬滅奈米結構係選自由以下者組成之群組:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻雜矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構、及其等之組合。
  20. 如請求項17之方法,其中該區包括一通路且該等間隙區包圍該通路。
  21. 如請求項17之方法,其中: 該區為凹陷; 該圖案化材料界定複數個該凹陷;並且 該複數個凹陷中之每一者由該等間隙區分隔開。
TW110142199A 2020-11-16 2021-11-12 改變流動池訊號 TW202235627A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063114305P 2020-11-16 2020-11-16
US63/114,305 2020-11-16

Publications (1)

Publication Number Publication Date
TW202235627A true TW202235627A (zh) 2022-09-16

Family

ID=78806469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110142199A TW202235627A (zh) 2020-11-16 2021-11-12 改變流動池訊號

Country Status (10)

Country Link
US (1) US20220155211A1 (zh)
EP (1) EP4244387A1 (zh)
JP (1) JP2023550676A (zh)
KR (1) KR20230108223A (zh)
CN (1) CN115917004A (zh)
AU (1) AU2021380016A1 (zh)
CA (1) CA3183193A1 (zh)
MX (1) MX2022014810A (zh)
TW (1) TW202235627A (zh)
WO (1) WO2022101401A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003100A1 (en) * 2022-06-30 2024-01-04 Illumina Cambridge Limited Sequencing nanoparticles and methods of making the same
US20240102913A1 (en) * 2022-08-26 2024-03-28 Illumina, Inc. Flow cells with patterned bonding regions
US20240191292A1 (en) * 2022-11-30 2024-06-13 Illumina, Inc. Flow cells with passivation components

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102475314B1 (ko) * 2013-12-23 2022-12-06 일루미나, 인코포레이티드 광 방출의 검출을 개선시키기 위한 구조화 기판 및 이와 관련한 방법
SG11201703386XA (en) * 2014-10-31 2017-05-30 Illumina Cambridge Ltd Novel polymers and dna copolymer coatings
EP3696536A1 (en) * 2015-04-14 2020-08-19 Illumina, Inc. A method of manufacturing a substrate and a method of analyzing biomolecules capable of generating light emissions
ES2945607T3 (es) * 2015-07-17 2023-07-04 Illumina Inc Láminas de polímero para aplicaciones de secuenciación
NL2019044B1 (en) * 2017-05-11 2018-11-15 Illumina Inc Protective surface coatings for flow cells
CN111108219A (zh) * 2017-08-01 2020-05-05 伊鲁米纳公司 使用的水凝胶珠和流动池的遗传物质的空间索引和文库制备
KR20210133298A (ko) * 2017-12-21 2021-11-05 일루미나, 인코포레이티드 하이드로겔 코팅을 가진 플로우 셀
JP2022513547A (ja) * 2018-12-17 2022-02-09 イルミナ インコーポレイテッド フローセルおよびシークエンシングキット

Also Published As

Publication number Publication date
AU2021380016A1 (en) 2023-01-05
KR20230108223A (ko) 2023-07-18
MX2022014810A (es) 2023-03-06
US20220155211A1 (en) 2022-05-19
JP2023550676A (ja) 2023-12-05
WO2022101401A1 (en) 2022-05-19
EP4244387A1 (en) 2023-09-20
CA3183193A1 (en) 2022-05-19
CN115917004A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN212476738U (zh) 流动池
TW202235627A (zh) 改變流動池訊號
WO2021127357A2 (en) Flow cells
US12013330B2 (en) Resin composition and flow cells incorporating the same
US11819843B2 (en) Flow cells with a hydrophobic barrier
TWI822818B (zh) 樹脂組成物與併入其之流體槽
US20220154177A1 (en) Functionalized plasmonic nanostructures
JP2023506103A (ja) キット及びフローセル
CN116848462A (zh) 树脂组合物和并入有该树脂组合物的流通池
US20230302422A1 (en) Chemical planar array
US20240091782A1 (en) Flow cells
US20240191292A1 (en) Flow cells with passivation components
US20240002933A1 (en) Sequencing nanoparticles and methods of making the same
TW202330737A (zh) 可固化的樹脂組成物
TW202235626A (zh) 併入與成像混合物
TW202328330A (zh) 可固化的樹脂組成物