TW202234928A - 變化用於定位的參考信號配置 - Google Patents

變化用於定位的參考信號配置 Download PDF

Info

Publication number
TW202234928A
TW202234928A TW111101087A TW111101087A TW202234928A TW 202234928 A TW202234928 A TW 202234928A TW 111101087 A TW111101087 A TW 111101087A TW 111101087 A TW111101087 A TW 111101087A TW 202234928 A TW202234928 A TW 202234928A
Authority
TW
Taiwan
Prior art keywords
configuration
srs
base station
time period
time
Prior art date
Application number
TW111101087A
Other languages
English (en)
Inventor
史瑞凡斯 葉倫馬里
亞力山德羅斯 瑪諾拉寇斯
慕克許 庫瑪
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202234928A publication Critical patent/TW202234928A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • G01S1/0428Signal details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/045Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

在一個態樣中,BS向UE發送包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置的時變RS-P配置(例如,對於DL-PRS或SRS-P,諸如UL-SRS-P或SL-SRS-P)。在另一態樣中,BS向UE發送變化SRS-P配置,該變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件。UE根據時變RS-P配置或變化SRS-P配置發送SRS-P或接收和量測DL-PRS。

Description

變化用於定位的參考信號配置
本專利申請案主張於2021年2月18日提出申請的標題為「VARYING REFERENCE SIGNAL FOR POSITIONING CONFIGURATIONS」的第20210100107號GR申請案的優先權,該申請案已轉讓給本案的受讓人,並且經由引用將其全部內容明確地併入本案。
本案的各態樣大體而言係關於無線通訊,更特定言之,係關於變化(varying)用於定位的參考信號(RS-P)配置。
無線通訊系統已經發展了幾代,包括第一代類比無線電話服務(1G)、第二代(2G)數位無線電話服務(包括臨時2.5G和2.75G網路)、第三代(3G)高速資料、支援網際網路的無線服務和第四代(4G)服務(例如,長期進化(LTE)或WiMax)。目前有許多不同類型的無線通訊系統在使用,包括蜂巢和個人通訊服務(PCS)系統。已知蜂巢式系統的實例包括蜂巢類比高級行動電話系統(AMPS)和基於分碼多工存取(CDMA)、分頻多工存取(FDMA)、分時多工存取(TDMA)的數位蜂巢式系統、行動通訊全球系統(GSM)等。
第五代(5G)無線標準,稱為新無線電(NR),要求更高的資料傳輸速度、更多的連接數量和更好的覆蓋範圍,以及其他改良。根據下一代行動網路聯盟,5G標準旨在為成千上萬使用者中的每一個提供每秒幾十兆位元的資料速率,為辦公室樓層的數十名員工提供每秒1千兆位元的資料速率。為了支援大型感測器部署,應該支援幾十萬個同時連接。因此,與當前的4G標準相比,5G行動通訊的頻譜效率應該顯著提高。此外,與當前標準相比,應該提高訊號傳遞效率,並且應該大大減少潛時。
以下呈現了與本文揭示的一或多個態樣相關的簡化概述。因此,以下概述不應被視為與所有預期態樣相關的廣泛概述,亦不應被視為識別與所有預期態樣相關的關鍵或重要元素或圖示與任何特定態樣相關的範圍。因此,以下概述的唯一目的是在下文提供的詳細描述之前,以簡化的形式提供與在本文揭示的機構的一或多個態樣相關的某些概念。
在一個態樣中,一種由使用者裝備(UE)執行的無線通訊的方法包括:從網路元件接收第一時變(time-varying)用於定位的參考信號(reference signal for positioning,RS-P)配置,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置;根據第一RS-P配置,在第一時間段期間與至少一個基地台通訊第一RS-P集合;及根據第二RS-P配置,在第二時間段期間與至少一個基地台通訊第二RS-P集合。
在一些態樣中,第一RS-P集合包括由UE向至少一個基地台發送的第一上行鏈路或側行鏈路用於定位的探測參考信號(sounding reference signals for positioning,SRS-P)集合,並且第二RS-P集合包括由UE向至少一個基地台發送的第二上行鏈路或側行鏈路SRS-P集合。
在一些態樣中,第一RS-P集合包括在UE處從至少一個基地台接收的第一下行鏈路定位參考信號(downlink positioning reference signals,DL-PRS)集合,並且第二RS-P集合包括在UE處從至少一個基地台接收的第二DL-PRS集合。
在一些態樣中,該方法包括:在第一時間段之後,發送基於由UE對第一DL-PRS集合的量測的第一量測報告;及在第二時間段之後,發送基於由UE對第二DL-PRS集合的量測的第二量測報告。
在一些態樣中,時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
在一些態樣中,該方法包括從網路元件接收第二時變RS-P配置,該第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一個態樣中,一種由網路元件執行的無線通訊的方法包括:決定第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置;及向使用者裝備(UE)發送第一時變RS-P配置。
在一些態樣中,該方法包括:根據第一RS-P配置,在第一時間段期間與UE通訊第一RS-P集合;及根據第二RS-P配置,在第二時間段期間與UE通訊第二RS-P集合。
在一些態樣中,第一RS-P集合包括在基地台處從UE接收的第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-P)集合,其中第二RS-P集合包括在服務基地台處從UE接收的第二上行鏈路或側行鏈路SRS-P集合。
在一些態樣中,第一RS-P集合包括由基地台向UE發送的第一下行鏈路定位參考信號(DL-PRSs)集合,並且第二RS-P集合包括由基地台向UE發送的第二DL-PRS集合。
在一些態樣中,該方法包括:在第一時間段之後,接收基於由UE對第一DL-PRS集合的量測的第一量測報告;及在第二時間段之後,接收基於由UE對第二DL-PRS集合的量測的第二量測報告。
在一些態樣中,時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
在一些態樣中,該方法包括向UE發送第二時變RS-P配置,該第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
在一個態樣中,一種由使用者裝備(UE)執行的無線通訊的方法包括:從網路元件接收第一變化(varying)用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;根據第一SRS-P配置,在第一時間段期間向至少一個基地台發送第一SRS-P集合;基於對事件觸發條件的監視,決定從第一SRS-P配置轉換到第二SRS-P配置;向至少一個基地台發送轉換的指示;及在發送轉換指示之後,根據第二SRS-P配置,在第二時間段期間向至少一個基地台發送第二SRS-P集合。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
在一些態樣中,該方法包括從網路元件接收第二變化SRS-P配置,該第二變化SRS-P配置相對於第一變化SRS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
在一個態樣中,一種由網路元件執行的無線通訊的方法包括:決定第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;及向使用者裝備(UE)發送第一變化SRS-P配置。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,該方法包括根據第一SRS-P配置,在第一時間段期間從UE接收第一SRS-P集合;從UE接收從第一SRS-P配置到第二SRS-P配置的轉換的指示;及在接收到轉換指示之後,根據第二SRS-P配置,在第二時間段期間從UE接收第二SRS-P集合。
在一些態樣中,至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
在一些態樣中,該方法包括向UE發送第二變化SRS-P配置,該第二變化SRS-P配置相對於第一變化SRS-P配置在一或多個SRS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
在一個態樣中,一種使用者裝備(UE)包括:記憶體;至少一個收發器;及通訊地耦合到記憶體和至少一個收發器的至少一個處理器,至少一個處理器被配置為:從網路元件接收第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置;根據第一RS-P配置,在第一時間段期間與至少一個基地台通訊第一RS-P集合;及根據第二RS-P配置,在第二時間段期間與至少一個基地台通訊第二RS-P集合。
在一些態樣中,第一RS-P集合包括由UE向至少一個基地台發送的第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-P)集合,並且第二RS-P集合包括由UE向至少一個基地台發送的第二上行鏈路或側行鏈路SRS-P集合。
在一些態樣中,第一RS-P集合包括在UE處從至少一個基地台接收的第一下行鏈路定位參考信號(DL-PRSs)集合,並且第二RS-P集合包括在UE處從至少一個基地台接收的第二DL-PRS集合。
在一些態樣中,至少一個處理器進一步被配置為:在第一時間段之後,發送基於由UE對第一DL-PRS集合的量測的第一量測報告;及在第二時間段之後,發送基於由UE對第二DL-PRS集合的量測的第二量測報告。
在一些態樣中,時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
在一些態樣中,至少一個處理器進一步被配置為:從網路元件接收第二時變RS-P配置,該第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
在一些態樣中,至少一個處理器進一步被配置為:向UE發送第二時變RS-P配置,該第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
在一個態樣中,一種網路元件包括:記憶體;至少一個收發器;及通訊地耦合到記憶體和至少一個收發器的至少一個處理器,至少一個處理器被配置為:決定第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置;及向使用者裝備(UE)發送第一時變RS-P配置。
在一些態樣中,至少一個處理器進一步被配置為:根據第一RS-P配置,在第一時間段期間與UE通訊第一RS-P集合;及根據第二RS-P配置,在第二時間段期間與UE通訊第二RS-P集合。
在一些態樣中,第一RS-P集合包括在基地台從UE接收的第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-P)集合,其中第二RS-P集合包括在服務基地台處從UE接收的第二上行鏈路或側行鏈路SRS-P集合。
在一些態樣中,第一RS-P集合包括由基地台向UE發送的第一下行鏈路定位參考信號(DL-PRSs)集合,並且第二RS-P集合包括由基地台向UE發送的第二DL-PRS集合。
在一些態樣中,至少一個處理器進一步被配置為:在第一時間段之後,接收基於由UE對第一DL-PRS集合的量測的第一量測報告;及在第二時間段之後,接收基於由UE對第二DL-PRS集合的量測的第二量測報告。
在一個態樣中,一種UE包括:記憶體;至少一個收發器;及通訊地耦合到記憶體和至少一個收發器的至少一個處理器,至少一個處理器被配置為:從網路元件接收第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置和用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;根據第一SRS-P配置,在第一時間段期間向至少一個基地台發送第一SRS-P集合;基於對事件觸發條件的監視,決定從第一SRS-P配置轉換到第二SRS-P配置;向至少一個基地台發送轉換的指示;及在發送轉換指示之後,根據第二SRS-P配置,在第二時間段期間向至少一個基地台發送第二SRS-P集合。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
在一些態樣中,至少一個處理器進一步被配置為:從網路元件接收第二變化SRS-P配置,該第二變化SRS-P配置在一或多個SRS-P配置參數、一或多個相關聯的時間段或其組合方面相對於第一變化SRS-P配置不同。
在一些態樣中,第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
在一個態樣中,一種網路元件包括:記憶體;至少一個收發器;及通訊地耦合到記憶體和至少一個收發器的至少一個處理器,至少一個處理器被配置為:決定第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;及向使用者裝備(UE)發送第一變化SRS-P配置。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,至少一個處理器進一步被配置為:根據第一SRS-P配置,在第一時間段期間從UE接收第一SRS-P集合;從UE接收從第一SRS-P配置到第二SRS-P配置的轉換的指示;及在接收到轉換指示之後,根據第二SRS-P配置,在第二時間段期間從UE接收第二SRS-P集合。
在一些態樣中,至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
在一些態樣中,至少一個處理器進一步被配置為:向UE發送第二變化SRS-P配置,該第二變化SRS-P配置相對於第一變化SRS-P配置在一或多個SRS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
在一些態樣中,該方法包括用於向UE發送第二時變RS-P配置的構件,第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
在一個態樣中,一種使用者裝備(UE)包括:用於從網路元件接收第一時變用於定位的參考信號(RS-P)配置的構件,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置;用於根據第一RS-P配置在第一時間段期間與至少一個基地台通訊第一RS-P集合的構件;及用於根據第二RS-P配置在第二時間段期間與至少一個基地台通訊第二RS-P集合的構件。
在一些態樣中,第一RS-P集合包括由UE向至少一個基地台發送的第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-P)集合,並且第二RS-P集合包括由UE向至少一個基地台發送的第二上行鏈路或側行鏈路SRS-P集合。
在一些態樣中,第一RS-P集合包括在UE處從至少一個基地台接收的第一下行鏈路定位參考信號(DL-PRSs)集合,並且第二RS-P集合包括在UE處從至少一個基地台接收的第二DL-PRS集合。
在一些態樣中,該方法包括用於在第一時間段之後,發送基於由UE對第一DL-PRS集合的量測的第一量測報告的構件;及用於在第二時間段之後,發送基於由UE對第二DL-PRS集合的量測的第二量測報告的構件。
在一些態樣中,時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
在一些態樣中,該方法包括用於從網路元件接收第二時變RS-P配置的構件,該第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一個態樣中,一種網路元件包括:用於決定第一時變用於定位的參考信號(RS-P)配置的構件,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置;及用於向UE發送第一時變RS-P配置的構件。
在一些態樣中,該方法包括用於根據第一RS-P配置在第一時間段期間與UE通訊第一RS-P集合的構件;及用於根據第二RS-P配置在第二時間段期間與UE通訊第二RS-P集合的構件。
在一些態樣中,第一RS-P集合包括在基地台從UE接收的第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-Ps)集合,其中第二RS-P集合包括在服務基地台從UE接收的第二上行鏈路或側行鏈路SRS-P集合。
在一些態樣中,第一RS-P集合包括由基地台向UE發送的第一下行鏈路定位參考信號(DL-PRSs)集合,並且第二RS-P集合包括由基地台向UE發送的第二DL-PRS集合。
在一些態樣中,該方法包括用於在第一時間段之後,接收基於由UE對第一DL-PRS集合的量測的第一量測報告的構件;及用於在第二時間段之後,接收基於由UE對第二DL-PRS集合的量測的第二量測報告的構件。
在一個態樣中,一種UE包括:用於從網路元件接收第一變化用於定位的探測參考信號(SRS-P)配置的構件,第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;用於根據第一SRS-P配置在第一時間段期間向至少一個基地台發送第一SRS-P集合的構件;用於基於對事件觸發條件的監視來決定從第一SRS-P配置轉換到第二SRS-P配置的構件;用於向至少一個基地台發送轉換指示的構件;及用於在發送轉換指示之後,根據第二SRS-P配置,在第二時間段期間向至少一個基地台發送第二SRS-P集合的構件。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
在一些態樣中,該方法包括用於從網路元件接收第二變化SRS-P配置的構件,該第二變化SRS-P配置相對於第一變化SRS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
在一個態樣中,一種網路元件包括:用於決定第一變化用於定位的探測參考信號(SRS-P)配置的構件,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;及用於向使用者裝備(UE)發送第一變化SRS-P配置的構件。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,該方法包括用於根據第一SRS-P配置在第一時間段期間從UE接收第一SRS-P集合的構件;用於從UE接收從第一SRS-P配置轉換到第二SRS-P配置的指示的構件;及用於在接收到轉換指示之後,根據第二SRS-P配置,在第二時間段期間從UE接收第二SRS-P集合的構件。
在一些態樣中,至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
在一些態樣中,該方法包括用於向UE發送第二變化SRS-P配置的構件,該第二變化SRS-P配置相對於第一變化SRS-P配置在一或多個SRS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
在一些態樣中,一或多個指令進一步使得網路元件:向UE發送第二時變RS-P配置,該第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一SRS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
在一個態樣中,一種儲存指令集的非暫態電腦可讀取媒體包括一或多個指令,當一或多個指令被使用者裝備(UE)的一或多個處理器執行時,使得UE:從網路元件接收第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置;根據第一RS-P配置,在第一時間段期間與至少一個基地台通訊第一RS-P集合;及根據第二RS-P配置,在第二時間段期間與至少一個基地台通訊第二RS-P集合。
在一些態樣中,第一RS-P集合包括由UE向至少一個基地台發送的第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-P)集合,並且第二RS-P集合包括由UE向至少一個基地台發送的第二上行鏈路或側行鏈路SRS-P集合。
在一些態樣中,第一RS-P集合包括在UE處從至少一個基地台接收的第一下行鏈路定位參考信號(DL-PRS)集合,並且第二RS-P集合包括在UE處從至少一個基地台接收的第二DL-PRS集合。
在一些態樣中,一或多個指令進一步使得UE:在第一時間段之後,發送基於由UE對第一DL-PRS集合的量測的第一量測報告;及在第二時間段之後,發送基於由UE對第二DL-PRS集合的量測的第二量測報告。
在一些態樣中,時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
在一些態樣中,一或多個指令進一步使得UE:從網路元件接收第二時變RS-P配置,該第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一個態樣中,一種儲存指令集的非暫態電腦可讀取媒體包括一或多個指令,當一或多個指令被網路元件的一或多個處理器執行時,使得網路元件:決定第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置;及向使用者裝備(UE)發送第一時變RS-P配置。
在一些態樣中,一或多個指令進一步使得網路元件:根據第一RS-P配置,在第一時間段期間與UE通訊第一RS-P集合;及根據第二RS-P配置,在第二時間段期間與UE通訊第二RS-P集合。
在一些態樣中,第一RS-P集合包括在基地台處從UE接收的第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-P)集合,其中第二RS-P集合包括在服務基地台處從UE接收的第二上行鏈路或側行鏈路SRS-P集合。
在一些態樣中,第一RS-P集合包括由基地台向UE發送的第一下行鏈路定位參考信號(DL-PRSs)集合,並且第二RS-P集合包括由基地台向UE發送的第二DL-PRS集合。
在一些態樣中,一或多個指令進一步使得網路元件:在第一時間段之後,接收基於由UE對第一DL-PRS集合的量測的第一量測報告;及在第二時間段之後,接收基於由UE對第二DL-PRS集合的量測的第二量測報告。
在一個態樣中,一種儲存指令集的非暫態電腦可讀取媒體,包括一或多個指令,當一或多個指令被UE的一或多個處理器執行時,使得UE:從網路元件接收第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;根據第一SRS-P配置,在第一時間段期間向至少一個基地台發送第一SRS-P集合;基於對事件觸發條件的監視,決定從第一SRS-P配置轉換到第二SRS-P配置;向至少一個基地台發送轉換的指示;及在發送轉換指示之後,根據第二SRS-P配置,在第二時間段期間向至少一個基地台發送第二SRS-P集合。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
在一些態樣中,一或多個指令進一步使得UE:從網路元件接收第二變化SRS-P配置,該第二變化SRS-P配置相對於第一變化SRS-P配置在一或多個SRS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
在一個態樣中,一種儲存指令集的非暫態電腦可讀取媒體,包括一或多個指令,當一或多個指令被網路元件的一或多個處理器執行時,使得網路元件:決定第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;及向使用者裝備(UE)發送第一變化SRS-P配置。
在一些態樣中,網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
在一些態樣中,一或多個指令進一步使得網路元件:根據第一SRS-P配置,在第一時間段期間從UE接收第一SRS-P集合;從UE接收從第一SRS-P配置轉換到第二SRS-P配置的指示;及在接收到轉換指示之後,根據第二SRS-P配置,在第二時間段期間從UE接收第二SRS-P集合。
在一些態樣中,至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
在一些態樣中,一或多個指令進一步使得網路元件:向UE發送第二變化SRS-P配置,該第二變化SRS-P配置相對於第一變化SRS-P配置在一或多個SRS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
在一些態樣中,第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
基於附圖和詳細描述,與本文揭示的態樣相關聯的其他目的和優點對於本領域技藝人士來說將是顯而易見的。
本案各態樣在以下描述和相關附圖中提供,該等描述和相關附圖針對為說明目的而提供的各種實例。在不脫離本案的範圍的情況下,可以設計替代態樣。此外,為了不模糊本案的相關細節,將不詳細描述或省略本案的眾所周知的元素。
詞語「示例性的」及/或「實例」在本文中用於意謂「用作示例、實例或說明」。本文中描述為「示例性」及/或「實例」的任何態樣不一定被解釋為優選或優於其他態樣。同樣,術語「本案的態樣」不要求本案的所有態樣皆包括所論述的特徵、優點或操作模式。
本領域的技藝人士將理解,可以使用各種不同的技術和技藝中的任何一種來表示下文描述的資訊和信號。例如,在下文的描述中引用的資料、指令、命令、資訊、信號、位元、符號和碼片可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或其任意組合來表示,部分取決於特定的應用,部分取決於期望的設計,部分取決於相應的技術等。
此外,根據將由例如計算設備的元件執行的動作序列來描述許多態樣。將認識到,本文描述的各種動作可以由特定電路(例如,特殊應用積體電路(ASIC))、由一或多個處理器執行的程式指令,或者由兩者的組合來執行。此外,本文描述的動作序列可以被認為完全包含在任何形式的非暫態電腦可讀取儲存媒體中,非暫態電腦可讀取儲存媒體中儲存有相應的一組電腦指令,相應的一組電腦指令在執行之後將導致或指示設備的相關處理器執行本文描述的功能。因此,本案的各個態樣可以以多種不同的形式體現,所有該等形式皆被認為在所主張的標的的範圍內。此外,對於本文描述的每個態樣,任何此種態樣的對應形式在本文可以被描述為例如「被配置為」執行所描述的動作的邏輯。
如本文所用,除非另有說明,否則術語「使用者裝備」(UE)和「基地台」並不意欲具體或以其他方式限制於任何特定的無線電存取技術(RAT)。通常,UE可以是由使用者用於經由無線通訊網路進行通訊的任何無線通訊設備(例如,行動電話、路由器、平板電腦、膝上型電腦、消費者資產追蹤設備、可穿戴設備(例如,智慧手錶、眼鏡、增強實境(AR)/虛擬實境(VR))耳機等)、車輛(例如汽車、摩托車、自行車等)、物聯網路(IoT)設備等)。 UE可以是行動的或者可以(例如,在某些時間)是固定的,並且可以與無線電存取網路(RAN)通訊。如本文所用,術語「UE」可以互換地稱為「存取終端」或「AT」、「客戶端設備」、「無線設備」、「用戶設備」、「用戶終端」、 「用戶站」、「使用者終端」或「UT」、「行動設備」、「行動終端」、「行動站」或其變體。一般來說,UE可以經由RAN與核心網路進行通訊,經由核心網路,UE可以與諸如網際網路的外部網路以及其他UE連接。當然,對於 UE,連接到核心網路及/或網際網路的其他機制亦是可能的,例如經由有線存取網路、無線區域網路(WLAN)網路(例如,基於電機電子工程師協會(IEEE)802.11規範等)等等。
基地台可以根據與UE通訊的幾個RAT中的一個來操作,這取決於其部署的網路,並且可以替代地被稱為存取點(AP)、網路節點、NodeB、進化NodeB(eNB)、下一代eNB(ng-eNB)、新無線電(NR)Node B(亦稱為gNB或gNodeB)等。基地台可以主要用於支援UE的無線存取,包括支援被支援UE的資料、語音及/或訊號傳遞連接。在一些系統中,基地台可以提供純粹的邊緣節點訊號傳遞功能,而在其他系統中,其可以提供附加的控制及/或網路管理功能。UE可以經由其向基地台發送信號的通訊鏈路被稱為上行鏈路(UL)通道(例如,反向訊務通道、反向控制通道、存取通道等)。基地台可以經由其向UE發送信號的通訊鏈路被稱為下行鏈路(DL)或前向鏈路通道(例如,傳呼通道、控制通道、廣播通道、前向訊務通道等)。本文使用的術語訊務通道(TCH)可以指上行鏈路/反向或下行鏈路/前向訊務通道。
術語「基地台」可以指單個實體發送-接收點(TRP),亦可以指多個實體TRP,其可以位於亦可以不位於同一位置。例如,在術語「基地台」指單個實體TRP的情況下,實體TRP可以是對應於基地台的一個細胞服務區(或幾個細胞服務區扇區)的基地台的天線。在術語「基地台」指多個位於同一位置的實體TRP的情況下,實體TRP可以是基地台的天線陣列(例如,在多輸入多輸出(MIMO)系統中或者在基地台採用波束成形的情況下)。在術語「基地台」指多個不在同一位置的實體TRP的情況下,實體TRP可以是分散式天線系統(DAS)(經由傳輸媒體連接到共用源的空間分離天線的網路)或遠端無線電頭端(RRH)(連接到服務基地台的遠端基地台)。或者,不在同一位置的實體基地台可以是從UE接收量測報告的服務基地台和UE正在量測其參考射頻(RF)信號的鄰點基地台。因為如本文所使用的,TRP是基地台發送和接收無線信號的點,所以對來自基地台的發送或在基地台的接收的引用應被理解為是指基地台的特定TRP。
在支援UE定位的一些實施方式中,基地台可能不支援UE的無線存取(例如,可能不支援UE的資料、語音及/或訊號傳遞連接),而是可以向UE發送參考信號以供UE量測,及/或可以接收和量測UE發送的信號。此種基地台可以被稱為定位信標(例如,當向UE發送信號時)及/或位置量測單元(例如,當從UE接收和量測信號時)。
「RF信號」包括給定頻率的電磁波,其經由發送器和接收器之間的空間傳輸資訊。如本文所用,發送器可以向接收器發送單個「RF信號」或多個「RF信號」。然而,由於RF信號通過多徑通道的傳播特性,接收器可以接收對應於每個發送RF信號的多個「RF信號」。發送器和接收器之間不同路徑上的相同發送RF信號可被稱為「多徑」RF信號。
圖1圖示了示例性無線通訊系統100。無線通訊系統100(亦可以稱為無線廣域網路(WWAN))可以包括各種基地台102和各種UE104。基地台102可以包括巨集細胞服務區基地台(高功率蜂巢基地台)及/或小細胞服務區基地台(低功率蜂巢基地台)。在一個態樣中,巨集細胞服務區基地台可以包括其中無線通訊系統100對應於LTE網路的eNB及/或ng-eNB,或者其中無線通訊系統100對應於NR網路的gNB,或者兩者的組合,並且小細胞服務區基地台可以包括毫微微細胞服務區、微微細胞服務區、微細胞服務區等。
基地台102可以共同形成RAN並經由回載鏈路122與核心網路170(例如,進化封包核心(EPC)或5G核心(5GC))介面連接,並經由核心網路170連接到一或多個位置伺服器172(其可以是核心網路170的一部分或可以在核心網路170外部)。除了其他功能之外,基地台102可以執行與傳送使用者資料、無線電通道加密和解密、完整性保護、標頭壓縮、行動性控制功能(例如,交遞、雙連接)、細胞服務區間干擾協調、連接建立和釋放、負載平衡、非存取層(NAS)訊息的分發、NAS節點選擇、同步、RAN共享、多媒體廣播多播服務(MBMS)、用戶和裝備追蹤、RAN資訊管理(RIM)、傳呼、定位和警告訊息的傳遞中的一或多個相關的功能。基地台102可以經由回載鏈路134直接或間接(例如,經由EPC/5GC)彼此通訊,回載鏈路134可以是有線的或無線的。
基地台102可以與UE104無線通訊。每個基地台102可以為各自的地理覆蓋區域110提供通訊覆蓋。在一個態樣中,每個地理覆蓋區域110中的基地台102可以支援一或多個細胞服務區。「細胞服務區」是用於與基地台通訊的邏輯通訊實體(例如,經由一些頻率資源,稱為載波頻率、分量載波、載波、頻帶等),並且可以與識別符(例如,實體細胞服務區識別符(PCI)、虛擬細胞服務區識別符(VCI)、細胞服務區全域識別符(CGI))相關聯,用於區分經由相同或不同載波頻率操作的細胞服務區。在一些情況下,可以根據可以為不同類型的UE提供存取的不同協定類型(例如,機器類型通訊(MTC)、窄頻物聯網路(NB-IoT)、增強型行動寬頻(eMBB)或其他)來配置不同的細胞服務區。因為細胞服務區由特定基地台支援,所以術語「細胞服務區」可以指邏輯通訊實體和支援其的基地台中的一個或兩者,這取決於上下文。在一些情況下,術語「細胞服務區」亦可以指基地台的地理覆蓋區域(例如,扇區),只要載波頻率可以被偵測到並用於地理覆蓋區域110的某個部分內的通訊。
儘管鄰點巨集細胞服務區基地台102的地理覆蓋區域110可能部分重疊(例如,在交遞區域中),但是一些地理覆蓋區域110可能被更大的地理覆蓋區域110基本重疊。例如,小細胞服務區(SC)基地台102’可以具有與一或多個巨集細胞服務區基地台102的地理覆蓋區域110基本重疊的地理覆蓋區域110’。包括小細胞服務區和巨集細胞服務區基地台的網路可以稱為異質網路。異質網路亦可以包括家庭eNB(HeNBs),其可以向被稱為封閉用戶群組(CSG)的受限群組提供服務。
基地台102和UE104之間的通訊鏈路120可以包括從UE104到基地台102的上行鏈路(亦稱為反向鏈路)傳輸及/或從基地台102到UE104的下行鏈路(亦稱為前向鏈路)傳輸。通訊鏈路120可以使用MIMO天線技術,包括空間多工、波束成形及/或發送分集。通訊鏈路120可以通過一或多個載波頻率。載波的分配可以相對於下行鏈路和上行鏈路不對稱(例如,可以為下行鏈路分配比上行鏈路更多或更少的載波)。
無線通訊系統100進一步可以包括無線區域網路(WLAN)存取點(AP)150,其經由通訊鏈路154在未授權的頻譜(例如,5 GHz)中與WLAN站(STAs)152通訊。當在未授權的頻譜中通訊時,WLAN STA 152及/或WLAN AP 150可以在通訊之前執行閒置通道評估(CCA)或先聽後說(LBT)程序,以便決定通道是否可用。
小細胞服務區基地台102’可以在經授權及/或未授權的頻譜中操作。當在未授權的頻譜中操作時,小細胞服務區基地台102’可以採用LTE或NR技術,並且使用與WALN AP150所使用的相同的5 GHz未授權的頻譜。在未授權的頻譜中採用LTE/5G的小細胞服務區基地台102’可以提高存取網路的覆蓋範圍及/或增加存取網路的容量。未授權的頻譜中的NR可以被稱為NR-U。未授權的頻譜中的LTE可以被稱為LTE-U、經授權輔助存取(LAA)或MulteFire。
無線通訊系統100進一步可以包括毫米波(mmW)基地台180,其可以在mmW頻率及/或接近mmW頻率下操作,與UE 182通訊。極高頻率(EHF)是電磁頻譜中RF的一部分。EHF的頻率範圍為30到300 GHz,波長在1毫米到10毫米之間。該頻帶的無線電波可以稱為毫米波。近mmW可以延伸到3 GHz的頻率,波長為100毫米。超高頻(SHF)頻帶在3 GHz和30 GHz之間延伸,亦稱為釐米波。使用mmW/近mmW射頻頻段的通訊具有高路徑損耗和相對較短的距離。mmW基地台180和UE 182可以利用mmW通訊鏈路184上的波束成形(發送及/或接收)來補償極高的路徑損耗和短距離。此外,將會理解,在替代配置中,一或多個基地台102亦可以使用mmW或接近mmW和波束成形來發送。因此,將會瞭解,前述說明僅僅是實例,並且不應該被解釋為限制本文揭示的各個態樣。
發送波束成形是一種將RF信號聚焦在特定方向的技術。傳統上,當網路節點(例如,基地台)廣播RF信號時,其向所有方向(全向)廣播信號。利用發送波束成形,網路節點決定給定目標設備(例如,UE)所在的位置(相對於發送網路節點),並在此特定方向上投射更強的下行鏈路RF信號,從而為接收設備提供更快(就資料速率而言)和更強的RF信號。為了在發送時改變RF信號的方向性,網路節點可以在廣播RF信號的一或多個發送器中的每一個上控制RF信號的相位和相對幅度。例如,網路節點可以使用天線陣列(稱為「相控陣列」或「天線陣列」),其產生RF波的波束,RF波的波束可以被「導向(steer)」以指向不同的方向,而無需實際移動天線。具體而言,來自發送器的RF電流以正確的相位關係饋送到各個天線,使得來自獨立天線的無線電波相加在一起以增加期望方向的輻射,同時抵消以抑制不期望方向的輻射。
發送波束可以是准共址的,這意謂其在接收器(例如,UE)看來具有相同的參數,而不管網路節點的發送天線本身是否實體上共址。在NR中,有四種類型的准共址(QCL)關係。具體而言,給定類型的QCL關係意謂關於目標波束上的目標參考RF信號的某些參數可以從關於源波束上的源參考RF信號的資訊中推導。若源參考RF信號是QCL A型,則接收器可以使用源參考RF信號來估計在同一通道上發送的目標參考RF信號的都卜勒頻移、都卜勒擴展、平均延遲和延遲擴展。若源參考RF信號是QCL B型,則接收器可以使用源參考RF信號來估計在同一通道上發送的目標參考RF信號的都卜勒頻移和都卜勒擴展。若源參考RF信號是QCL C型,則接收器可以使用源參考RF信號來估計在同一通道上發送的目標參考RF信號的都卜勒頻移和平均延遲。若源參考RF信號是QCL類型D,則接收器可以使用源參考RF信號來估計在同一通道上發送的目標參考RF信號的空間接收參數。
在接收波束成形中,接收器使用接收波束來放大在給定通道上偵測到的RF信號。例如,接收器可以在特定方向上增加增益設置及/或調整天線陣列的相位設置,以放大從此方向接收的RF信號(例如,增加該RF信號的增益位準)。因此,當接收器被稱為在某個方向上波束成形時,這意謂在此方向上的波束增益相對於沿其他方向的波束增益是高的,或者在此方向上的波束增益與接收器可用的所有其他接收波束在此方向上的波束增益相比是最高的。這導致從此方向上接收的RF信號的更強的接收信號強度(例如,參考信號接收功率(RSRP)、參考信號接收品質(RSRQ)、信號干擾雜訊比(SINR)等)。
接收波束可以是空間相關的。空間關係意謂第二參考信號的發送波束的參數可以從關於第一參考信號的接收波束的資訊中推導。例如,UE可以使用特定的接收波束從基地台接收一或多個參考下行鏈路參考信號(例如,定位參考信號(PRS)、追蹤參考信號(TRS)、相位追蹤參考信號(PTRS)、細胞服務區特定參考信號(CRS)、通道狀態資訊參考信號(CSI-RS)、主要同步信號(PSS)、次同步信號(SSS)、同步信號區塊(SSBs)等)。隨後,UE可以形成用於基於接收波束的參數向該基地台發送一或多個上行鏈路參考信號(例如,上行鏈路定位參考信號(UL-PRS)、探測參考信號(SRS)、解調參考信號(DMRS)、PTRS等)的發送波束。
注意,「下行鏈路」波束可以是發送波束,亦可以是接收波束,這取決於形成其的實體。例如,若基地台正在形成下行鏈路波束以向UE發送參考信號,則下行鏈路波束是發送波束。然而,若UE正在形成下行鏈路波束,則其是接收下行鏈路參考信號的接收波束。類似地,「上行鏈路」波束可以是發送波束或接收波束,這取決於形成其的實體。例如,若基地台正在形成上行鏈路波束,則其是上行鏈路接收波束,並且若UE正在形成上行鏈路波束,則其是上行鏈路發送波束。
在5G中,無線節點(例如,基地台102/180、UE 104/182)操作的頻譜被分成多個頻率範圍,FR1(從450到6000 MHz)、FR2(從24250到52600 MHz)、FR3(高於52600 MHz)和FR4(在FR1和FR2之間)。在多載波系統中,諸如5G,載波頻率之一被稱為「主載波」或「錨點載波」或「主服務細胞服務區」或「PCell」,而剩餘的載波頻率被稱為「次載波」或「次服務細胞服務區」或「SCell」。在載波聚合中,錨點載波是在由UE 104/182使用的主頻率(例如,FR1)上操作的載波,以及UE 104/182在其中執行初始無線電資源控制(RRC)連接建立程序或者啟動RRC連接重建程序的細胞服務區。主載波攜載所有共用和UE特定的控制通道,並且可以是經授權頻率中的載波(然而,並非總是如此)。次載波是在第二頻率(例如,FR2)上操作的載波,一旦在UE 104和錨點載波之間建立了RRC連接,就可以配置其,並且其可以用於提供額外的無線電資源。在某些情況下,次載波可以是未授權頻率的載波。次載波可以僅包含必要的訊號傳遞資訊和信號,例如,彼等UE特定的資訊和信號可能不存在於次載波中,因為主上行鏈路和下行鏈路載波通常皆是UE特定的。這意謂細胞服務區中的不同UE 104/182可以具有不同的下行鏈路主載波。上行鏈路主載波亦是如此。網路能夠在任何時間改變任何UE 104/182的主載波。例如,這樣做是為了平衡不同載波的負載。因為「服務細胞服務區」(無論是PCell還是SCell)對應於某個基地台正在通訊的載波頻率/分量載波,所以術語「細胞服務區」、「服務細胞服務區」、「分量載波」、「載波頻率」等可以互換使用。
例如,仍然參考圖1,巨集細胞服務區基地台102使用的頻率之一可以是錨點載波(或「PCell」),並且巨集細胞服務區基地台102及/或mmW基地台180使用的其他頻率可以是次載波(「SCell」)。多個載波的同時發送及/或接收使得UE 104/182能夠顯著提高其資料發送及/或接收速率。例如,與單個20 MHz載波相比,多載波系統中的兩個20 MHz聚合載波理論上將導致資料速率增加兩倍(即40 MHz)。
無線通訊系統100進一步可以包括UE164,其可以經由通訊鏈路120與巨集細胞服務區基地台102通訊,及/或經由mmW通訊鏈路184與mmW基地台180通訊。例如,巨集細胞服務區基地台102可以為UE 164支援PCell和一或多個SCell,並且mmW基地台180可以為UE 164支援一或多個SCell。
在圖1的實例中,一或多個地球軌道衛星定位系統(SPS)太空飛行器(SV)112(例如,衛星)可以被用作任何示出的UE(為了簡單起見,在圖1中示出為單個UE 104)的獨立位置資訊源。UE 104可以包括一或多個專用的SPS接收器,接收器被專門設計成從SV 112接收用於推導出地理位置資訊的SPS信號124。SPS通常包括發送器系統(例如,SV 112),其被定位成使得接收器(例如,UE 104)能夠至少部分地基於從發送器接收的信號(例如,SPS信號124)來決定其在地球上或地球上方的位置。此種發送器通常發送標記有設定數量碼片(chip)的重複假性隨機雜訊碼的信號。儘管發送器通常位於SV 112中,但有時亦可能位於地面控制站、基地台102及/或其他UE 104上。
SPS信號124的使用可以經由各種基於衛星的增強系統(SBAS)來增強,SBAS可以與一或多個全球及/或區域導航衛星系統相關聯或者以其他方式能夠與一或多個全球及/或區域導航衛星系統一起使用。例如,SBAS可以包括提供完整性資訊、差分校正等的增強系統,諸如廣域增強系統(WAAS)、歐洲地球同步衛星導航增強服務系統(EGNOS)、多功能衛星增強系統(MSAS)、全球定位系統(GPS)輔助地理增強導航或GPS和地理增強導航系統(GAGAN)等。因此,如本文所使用的,SPS可以包括一或多個全球及/或區域導航衛星系統及/或增強系統的任何組合,並且SPS信號124可以包括SPS、類似SPS及/或與此種一或多個SPS相關聯的其他信號。
無線通訊系統100進一步可以包括一或多個UE,諸如UE 190,其經由一或多個設備到設備(D2D)同級間(P2P)鏈路(稱為「側行鏈路」)間接連接到一或多個通訊網路。在圖1的實例中,UE 190具有:與連接到基地台102之一的UE 104之一的D2D P2P鏈路192(例如,UE 190經由該鏈路間接獲得蜂巢連線性),以及與連接到WLAN AP 150的WLAN STA 152的D2D P2P鏈路194(UE 190經由該鏈路間接獲得基於WLAN的網際網路連線性)。在實例中,D2D P2P鏈路192和194可以由任何眾所周知的D2D RAT來支援,諸如LTE Direct(LTE-D)、WiFi Direct(WiFi-D)、藍牙®等等。
圖2A圖示了示例性無線網路結構200。例如,5GC 210(亦稱為下一代核心(NGC))在功能上可以被視為控制平面功能214(例如,UE登錄、認證、網路存取、閘道選擇等)和使用者平面功能212(例如,UE閘道功能、對資料網路的存取、IP路由等),其協同操作以形成核心網路。使用者平面介面(NG-U)213和控制平面介面(NG-C)215將gNB 222連接到5GC 210,特定地連接到控制平面功能214和使用者平面功能212。在另外的配置中,ng-eNB 224亦可以經由到控制平面功能214的NG-C 215和到使用者平面功能212的NG-U 213連接到5GC 210。此外,ng-eNB 224可以經由回載連接223直接與gNB 222通訊。在一些配置中,新RAN 220可以僅具有一或多個gNB 222,而其他配置包括ng-eNB 224和gNB 222中的一或多個。gNB 222或ng-eNB 224可以與UE 204(例如,圖1中描述的任何UE)通訊。另一可選態樣可以包括位置伺服器230,其可以與5GC 210通訊,以向UE 204提供位置輔助。位置伺服器230可以被實施為複數個獨立的伺服器(例如,實體上獨立的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等),或者可替代地每個可以對應於單個伺服器。位置伺服器230可以被配置為支援UE 204的一或多個位置服務,UE 204可以經由核心網路5GC 210及/或經由網際網路(未圖示)連接到位置伺服器230。此外,位置伺服器230可以整合到核心網路的元件中,或者可替代地可以在核心網路外部。
圖2B圖示了另一示例性無線網路結構250。例如,5GC 260在功能上可以被視為由存取和行動性管理功能(AMF)264提供的控制平面功能,以及由使用者平面功能(UPF)262提供的使用者平面功能,其協同操作以形成核心網路(亦即,5GC 260)。使用者平面介面263和控制平面介面265將ng-eNB 224連接到5GC 260,並且分別特定地連接到UPF 262和AMF 264。在另外的配置中,gNB 222亦可以經由到AMF 264的控制平面介面265和到UPF 262的使用者平面介面263連接到5GC 260。此外,ng-eNB 224可以經由回載連接223直接與gNB 222通訊,無論gNB是否直接連接到5GC 260。在一些配置中,新RAN 220可以僅具有一或多個gNB 222,而其他配置包括ng-eNB 224和gNB 222中的一或多個。gNB 222或ng-eNB 224可以與UE 204(例如,圖1中描述的任何UE)通訊。新RAN 220的基地台經由N2介面與AMF 264通訊,並經由N3介面與UPF 262通訊。
AMF 264的功能包括登錄管理、連接管理、可達性管理、行動性管理、合法攔截、UE 204和通信期管理功能(SMF)266之間的通信期管理(SM)訊息傳輸、用於路由SM訊息的透通代理服務、存取認證和存取授權、UE 204和簡訊服務功能(SMSF)(未圖示)之間的簡訊服務(SMS)訊息傳輸以及安全錨點功能(SEAF)。AMF 264亦與認證伺服器功能(AUSF)(未圖示)和UE 204互動,並且接收作為UE 204認證過程的結果而建立的中間密鑰。在基於UMTS(通用行動電信系統)用戶身份模組(USIM)的認證的情況下,AMF 264從AUSF取得安全材料。AMF 264的功能亦包括安全上下文管理(SCM)。SCM從SEAF接收密鑰,其用該密鑰來推導存取網路特定的密鑰。AMF 264的功能亦包括監管服務的位置服務管理、在UE 204和位置管理功能(LMF)270(其充當位置伺服器230)之間的位置服務訊息的傳輸、在新RAN 220和LMF 270之間的位置服務訊息的傳輸、用於與EPS互通的進化封包系統(EPS)承載識別符分配以及UE 204行動性事件通知。此外,AMF 264亦支援非3GPP(第三代合作夥伴計劃)存取網路的功能。
UPF 262的功能包括充當RAT內/RAT間行動性的錨點(當適用時),充當到資料網路(未圖示)的互連的外部協定資料單元(PDU)通信期點,提供封包路由和轉發、封包檢查、使用者平面策略規則實施(例如,選通(gating)、重定向、訊務操縱)、合法攔截(使用者平面收集)、訊務使用報告、使用者平面的服務品質(QoS)處理(例如,上行鏈路/下行鏈路速率實施、下行鏈路中的反射QoS標記)、上行鏈路訊務驗證(服務資料流(SDF)到QoS流的映射)、上行鏈路和下行鏈路中的傳輸級封包標記、下行鏈路封包緩衝和下行鏈路資料通知觸發,以及向源RAN節點發送和轉發一或多個「結束標記」。UPF 262亦可以支援在使用者平面上在UE 204和位置伺服器(諸如安全使用者平面位置(SUPL)位置平臺(SLP)272)之間傳輸位置服務訊息。
SMF 266的功能包括通信期管理、UE網際網路協定(IP)位址分配和管理、使用者平面功能的選擇和控制、在UPF 262的配置訊務導向以將訊務路由到正確的目的地、控制部分策略實施和QoS,以及下行鏈路資料通知。SMF 266經由其與AMF 264通訊的介面被稱為N11介面。
另一可選態樣可以包括LMF 270,其可以與5GC 260通訊,以為UE 204提供位置輔助。LMF 270可以被實施為複數個獨立的伺服器(例如,實體上獨立的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等),或者可替代地每個可以對應於單個伺服器。LMF 270可以被配置為支援UE 204的一或多個位置服務,UE 204可以經由核心網路5GC 260及/或經由網際網路(未圖示)連接到LMF 270。SLP 272可以支援與LMF 270類似的功能,但是儘管LMF 270可以經由控制平面(例如,使用意欲傳送訊號傳遞訊息而不是語音或資料的介面和協定)與AMF 264、新RAN 220和UE 204通訊,SLP 272可以經由使用者平面(例如,使用意欲攜載語音及/或資料的協定,如傳輸控制協定(TCP)及/或IP)與UE 204和外部客戶端(圖2B中未圖示)通訊。
圖3A、圖3B和圖3C圖示了幾個示例性元件(由相應的方塊表示),該等元件可以被合併到UE 302(其可以對應於本文描述的任何UE)、基地台304(其可以對應於本文描述的任何基地台)和網路實體306(其可以對應於或體現本文描述的任何網路功能,包括位置伺服器230和LMF 270)中,以支援如本文教示的檔案傳輸操作。應當瞭解,該等元件可以在不同實施方式中的不同類型的裝置中(例如,在特殊應用積體電路(ASIC)中、在片上系統(SoC)中等)實施。所示出的元件亦可以結合到通訊系統中的其他裝置中。例如,系統中的其他裝置可以包括類似於所描述的元件,以提供類似的功能。此外,給定的裝置可以包含一或多個元件。例如,裝置可以包括多個收發器元件,該等元件使得裝置能夠在多個載波上操作及/或經由不同的技術進行通訊。
UE 302和基地台304各自分別包括無線廣域網路(WWAN)收發器310和350,提供用於經由一或多個無線通訊網路(未圖示),諸如NR網路、LTE網路、GSM網路等通訊的構件(例如,用於發送的構件、用於接收的構件、用於量測的構件、用於調諧的構件、用於抑制發送的構件等)。WWAN收發器310和350可以分別連接到一或多個天線316和356,用於經由至少一個指定的RAT(例如,NR、LTE、GSM等)通過感興趣的無線通訊媒體(例如,特定頻譜中的某時間/頻率資源集)與其他網路節點(諸如其他UE、存取點、基地台(例如,eNB、gNB)等)通訊。WWAN收發器310和350可以被不同地配置用於根據指定的RAT分別發送和編碼信號318和358(例如,訊息、指示、資訊等),並且相反地,分別用於接收和解碼信號318和358(例如,訊息、指示、資訊、引導頻等)。具體而言,WWAN收發器310和350分別包括一或多個發送器314和354,用於分別發送和編碼信號318和358,以及一或多個接收器312和352,用於分別接收和解碼信號318和358。
至少在某些情況下,UE 302和基地台304亦分別包括一或多個短程無線收發器320和360。短程無線收發器320和360可以分別連接到一或多個天線326和366,並且提供用於經由感興趣的無線通訊媒體通訊與其他網路節點(諸如其他UE、存取點、基地台等)經由至少一個指定的RAT(例如,WiFi、LTE-D、藍牙®、Zigbee®、Z-Wave®、PC5、專用短程通訊(DSRC)、車輛環境無線存取(WAVE)、近場通訊(NFC)等)的構件(例如,用於發送的構件、用於接收的構件、用於量測的構件、用於調諧的構件、用於抑制發送的構件等)。短距離無線收發器320和360可以被不同地配置用於根據指定的RAT分別發送和編碼信號328和368(例如,訊息、指示、資訊等),並且相反地,分別用於接收和解碼信號328和368(例如,訊息、指示、資訊、引導頻等)。具體而言,短程無線收發器320和360分別包括一或多個發送器324和364,用於分別發送和編碼信號328和368,以及一或多個接收器322和362,用於分別接收和解碼信號328和368。作為具體實例,短程無線收發器320和360可以是WiFi收發器、藍牙收發器、Zigbee®及/或Z-Wave®收發器、NFC收發器,或車對車(V2V)及/或車對物(V2X)收發器。
在一些實施方式中,包括至少一個發送器和至少一個接收器的收發器電路可以包括整合設備(例如,體現為單個通訊設備的發送器電路和接收器電路),在一些實施方式中可以包括單獨的發送器設備和單獨的接收器設備,或者在其他實施方式中可以以其他方式體現。在一個態樣中,發送器可以包括或耦合到複數個天線(例如,天線316、326、356、366),諸如天線陣列,其允許相應的裝置執行發送「波束成形」,如本文所述。類似地,接收器可以包括或耦合到複數個天線(例如,天線316、326、356、366),諸如天線陣列,其允許相應的裝置執行接收波束成形,如本文所述。在一個態樣中,發送器和接收器可以共享相同的複數個天線(例如,天線316、326、356、366),使得相應的裝置只能在給定的時間接收或發送,而不能同時接收或發送。UE 302及/或基地台304的無線通訊設備(例如,收發器310和320及/或350和360中的一個或兩個)亦可以包括用於執行各種量測的網路監聽模組(NLM)等。
至少在某些情況下,UE 302和基地台304亦包括衛星定位系統(SPS)接收器330和370。SPS接收器330和370可以分別連接到一或多個天線336和376,並且可以分別提供用於接收及/或量測SPS信號338和378的構件,諸如全球定位系統(GPS)信號、全球導航衛星系統(GLONASS)信號、伽利略信號、北斗信號、印度區域導航衛星系統(NAVIC)、準天頂衛星系統(QZSS)等。SPS接收器330和370可以包括分別用於接收和處理SPS信號338和378的任何合適的硬體及/或軟體。SPS接收器330和370從其他系統請求適當的資訊和操作,並且使用經由任何合適的SPS演算法獲得的量測來執行決定UE 302和基地台304的位置所需的計算。
基地台304和網路實體306各自分別包括至少一個網路介面380和390,提供用於與其他網路實體通訊的構件(例如,用於發送的構件、用於接收的構件等)。例如,網路介面380和390(例如,一或多個網路存取埠)可以被配置為經由基於有線或無線的回載連接與一或多個網路實體通訊。在一些態樣中,網路介面380和390可以被實施為被配置為支援基於有線或無線信號通訊的收發器。該通訊可以包括例如發送和接收訊息、參數及/或其他類型的資訊。
UE 302、基地台304和網路實體306亦包括可以與本文揭示的操作結合使用的其他元件。UE 302包括實施處理系統332的處理器電路,用於提供與例如無線定位相關的功能,以及用於提供其他處理功能。基地台304包括處理系統384,用於提供與例如本文揭示的無線定位相關的功能,以及用於提供其他處理功能。網路實體306包括處理系統394,用於提供與例如本文揭示的無線定位相關的功能,以及用於提供其他處理功能。處理系統332、384和394因此可以提供用於處理的構件,諸如用於決定的構件、用於計算的構件、用於接收的構件、用於發送的構件、用於指示的構件等。在一個態樣中,處理系統332、384和394可以包括例如一或多個處理器,諸如一或多個通用處理器、多核心處理器、ASIC、數位訊號處理器(DSPs)、現場可程式閘陣列(FPGA)、其他可程式邏輯設備或處理電路或其各種組合。
UE 302、基地台304和網路實體306包括分別實施記憶體元件340、386和396(例如,每個包括記憶體設備)的記憶體電路,用於維護資訊(例如,指示保留資源、閾值、參數等的資訊)。記憶體元件340、386和396因此可以提供用於儲存的構件、用於取得的構件、用於維護的構件等。在一些情況下,UE 302、基地台304和網路實體306可以分別包括用於定位的參考信號(RS-P)模組342、388和398。RS-P模組342、388和398可以是分別是處理系統332、384和394的一部分或耦合到處理系統332、384和394的硬體電路,當被執行時,使得UE 302、基地台304和網路實體306執行本文描述的功能。在其他態樣中,RS-P模組342、388和398可以在處理系統332、384和394的外部(例如,數據機處理系統的一部分,與另一處理系統整合等)。或者,RS-P模組342、388和398可以是分別儲存在記憶體元件340、386和396中的記憶體模組,當由處理系統332、384和394(或數據機處理系統、另一處理系統等)執行時,使得UE 302、基地台304和網路實體306執行本文描述的功能。圖3A圖示了RS-P模組342的可能位置,該RS-P模組342可以是WWAN收發器310、記憶體元件340、處理系統332或其任意組合的一部分,或者可以是獨立元件。圖3B圖示了RS-P模組388的可能位置,該RS-P模組388可以是WWAN收發器350、記憶體元件386、處理系統384或其任意組合的一部分,或者可以是獨立元件。圖3C圖示了RS-P模組398的可能位置,該RS-P模組398可以是(多個)網路介面390、記憶體元件396、處理系統394或其任意組合的一部分,或者可以是獨立元件。
UE 302可以包括耦合到處理系統332的一或多個感測器344,以提供用於感測或偵測運動及/或方向資訊的構件,該資訊獨立於從由WWAN收發器310、短程無線收發器320及/或SPS接收器330接收的信號中推導的運動資料。舉例而言,(多個)感測器344可以包括加速度計(例如,微機電系統(MEMS)設備)、陀螺儀、地磁感測器(例如,羅盤)、高度計(例如,氣壓高度計)及/或任何其他類型的運動偵測感測器。此外,(多個)感測器344可以包括複數種不同類型的設備,並組合其輸出以便提供運動資訊。例如,(多個)感測器344可以使用多軸加速度計和方位感測器的組合來提供在2D及/或3D座標系中計算位置的能力。
此外,UE 302包括使用者介面346,提供用於向使用者提供指示(例如,聽覺及/或視覺指示)及/或用於接收使用者輸入(例如,在使用者驅動諸如鍵盤、觸控式螢幕、麥克風等感測設備之後)的構件。儘管未圖示,基地台304和網路實體306亦可以包括使用者介面。
更詳細地參考處理系統384,在下行鏈路中,來自網路實體306的IP封包可以被提供給處理系統384。處理系統384可以實施RRC層、封包資料收斂協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層的功能。處理系統384可以提供與系統資訊(例如,主資訊區塊(MIB)、系統資訊區塊(SIBs))的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改和RRC連接釋放)、RAT間行動性以及用於UE量測報告的量測配置相關聯的RRC層功能;與標頭壓縮/解壓縮、安全性(加密、解密、完整性保護、完整性驗證)和交遞支援功能相關聯的PDCP層功能;與上層PDU的傳輸、經由自動重傳請求(ARQ)的糾錯、RLC服務資料單元(SDUs)的連接、分段和重組、RLC資料PDU的重新分段以及RLC資料PDU的重新排序相關聯的RLC層功能;及與邏輯通道和傳輸通道之間的映射、排程資訊報告、糾錯、優先順序處理和邏輯通道優先順序排序相關聯的MAC層功能。
發送器354和接收器352可以實施與各種信號處理功能相關聯的第1層(L1)功能。包括實體(PHY)層的層1可以包括傳輸通道上的錯誤偵測、傳輸通道的前向糾錯(FEC)編碼/解碼、交錯、速率匹配、到實體通道的映射、實體通道的調制/解調,以及MIMO天線處理。發送器354基於各種調制方案(例如,二元移相鍵控(BPSK)、正交移相鍵控(QPSK)、M相移相鍵控(M-PSK)、M正交幅度調制(M-QAM))處理到信號群集的映射。編碼和調制的符號隨後可以被分成並行串流。隨後,每個串流可以被映射到正交分頻多工(OFDM)次載波,在時域及/或頻域中與參考信號(例如,引導頻)多工,隨後使用快速傅立葉逆變換(IFFT)組合在一起,以產生攜載時域OFDM符號串流的實體通道。OFDM符號串流被空間預編碼以產生多個空間串流。來自通道估計器的通道估計可以用於決定編碼和調制方案,以及用於空間處理。通道估計可以從由UE 302發送的參考信號及/或通道條件回饋中推導。隨後,每個空間串流可以被提供給一或多個不同的天線356。發送器354可以用相應的空間串流來調制RF載波以進行發送。
在UE 302處,接收器312經由其相應的天線316接收信號。接收器312恢復調制到RF載波上的資訊,並將該資訊提供給處理系統332。發送器314和接收器312實施與各種信號處理功能相關聯的第1層功能。接收器312可以對資訊執行空間處理,以恢復去往UE 302的任何空間串流。若多個空間串流被指定給UE 302,其可以被接收器312組合成單個OFDM符號串流。接收器312隨後使用快速傅立葉轉換(FFT)將OFDM符號串流從時域轉換到頻域。頻域信號包括用於OFDM信號的每個次載波的單獨的OFDM符號串流。藉由決定由基地台304發送的最可能的信號群集點,每個次載波上的符號和參考信號被恢復和解調。該等軟決策可以基於由通道估計器計算的通道估計。隨後,軟判決被解碼和解交錯,以恢復最初由基地台304在實體通道上發送的資料和控制信號。資料和控制信號隨後被提供給處理系統332,處理系統332實施第3層(L3)和第2層(L2)功能。
在上行鏈路中,處理系統332提供傳輸和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮和控制信號處理,以從核心網路恢復IP封包。處理系統332亦負責錯誤偵測。
類似於結合基地台304的下行鏈路傳輸描述的功能,處理系統332提供與系統資訊(例如,MIB、SIB)獲取、RRC連接和量測報告相關聯的RRC層功能;與標頭壓縮/解壓縮和安全性(加密、解密、完整性保護、完整性驗證)相關聯的PDCP層功能;與上層PDU的傳輸、經由ARQ的糾錯、RLC SDU的連接、分段和重組、RLC資料PDU的重新分段以及RLC資料PDU的重新排序相關聯的RLC層功能;及與邏輯通道和傳輸通道之間的映射、將MAC SDU多工到傳輸區塊(TBs)、從TB中解多工MAC SDU、排程資訊報告、經由混合自動重複請求(HARQ)的糾錯、優先順序處理和邏輯通道優先順序排序相關聯的MAC層功能。
由通道估計器從基地台304發送的參考信號或回饋中推導的通道估計可以被發送器314用來選擇適當的編碼和調制方案,並促進空間處理。由發送器314產生的空間串流可以被提供給不同的天線316。發送器314可以用相應的空間串流來調制RF載波以進行發送。
上行鏈路傳輸在基地台304以類似於結合UE 302的接收器功能描述的方式進行處理。接收器352經由其相應的天線356接收信號。接收器352恢復調制到RF載波上的資訊,並將該資訊提供給處理系統384。
在上行鏈路中,處理系統384提供傳輸和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以從UE 302恢復IP封包。來自處理系統384的IP封包可以被提供給核心網路。處理系統384亦負責錯誤偵測。
為了方便起見,在圖3A-C中,UE 302、基地台304及/或網路實體306被示為包括可以根據本文描述的各種實例來配置的各種元件。然而,應當瞭解,所示的方塊在不同的設計中可以具有不同的功能。
UE 302、基地台304和網路實體306的各個元件可以分別經由資料匯流排334、382和392相互通訊。圖3A-C的元件可以以各種方式來實施。在一些實施方式中,圖3A-C的元件可以在一或多個電路中實施,例如,一或多個處理器及/或一或多個ASIC(其可以包括一或多個處理器)。這裡,每個電路可以使用及/或併入至少一個記憶體元件,用於儲存電路用來提供該功能的資訊或可執行代碼。例如,由方塊310至346表示的一些或全部功能可以由UE 302的處理器和(多個)記憶體元件來實施(例如,經由執行適當的代碼及/或經由處理器元件的適當配置)。類似地,由方塊350至388表示的一些或全部功能可以由基地台304的處理器和記憶體元件來實施(例如,經由執行適當的代碼及/或經由處理器元件的適當配置)。此外,由方塊390至398表示的一些或全部功能可以由網路實體306的處理器和記憶體元件來實施(例如,經由執行適當的代碼及/或經由適當配置處理器元件)。為簡單起見,各種操作、動作及/或功能在此被描述為由「UE」、「基地台」、「網路實體」等執行。然而,可以瞭解,此種操作、動作及/或功能實際上可以由UE 302、基地台304、網路實體306等的特定元件或元件的組合來執行。諸如處理系統332、384、394、收發器310、320、350和360、記憶體元件340、386和396、RS-P模組342、388和398等。
圖4A是圖示根據本案各態樣的DL訊框結構的實例的圖400。圖4B是圖示根據本案各態樣的DL訊框結構內的通道的實例的圖430。其他無線通訊技術可以具有不同的訊框結構及/或不同的通道。
LTE,以及在某些情況下NR,在下行鏈路上利用OFDM,並且在上行鏈路上利用單載波分頻多工(SC-FDM)。然而,與LTE不同,NR亦可以選擇在上行鏈路上使用OFDM。OFDM和SC-FDM將系統頻寬劃分為多個(K個)正交次載波,該等次載波通常亦被稱為音調(tone)、頻段(bin)等。每個次載波可以用資料調制。通常,使用OFDM在頻域中發送調制符號,並且使用SC-FDM在時域中發送調制符號。相鄰次載波之間的間隔可以是固定的,並且次載波的總數(K)可以取決於系統頻寬。例如,次載波的間隔可以是15 kHz並且最小資源分配(資源區塊)可以是12個次載波(或180 kHz)。因此,對於1.25、2.5、5、10或20兆赫(MHz)的系統頻寬,標稱FFT大小可以分別等於128、256、512、1024或2048。系統頻寬亦可以被劃分為次頻帶。例如,次頻帶可以覆蓋1.08 MHz(亦即,6個資源區塊),對於1.25、2.5、5、10或20 MHz的系統頻寬,可以分別有1、2、4、8或16個次頻帶。
LTE支援單個參數集(次載波間隔、符號長度等)。相反,NR可以支援多種參數集,例如,15 kHz、30 kHz、60 kHz、120 kHz和204 kHz或更大的次載波間隔是可用的。下文提供的表1列出了不同NR參數集的一些不同參數。
次載波間隔 (kHz) 符號/ 時槽 時槽/子訊框 時槽/訊框 時槽 (ms) 符號持續時間 (µs) 具有4K FFT尺寸的最大標稱系統頻寬(MHz)
15 14 1 10 1 66.7 50
30 14 2 20 0.5 33.3 100
60 14 4 40 0.25 16.7 100
120 14 8 80 0.125 8.33 400
240 14 16 160 0.0625 4.17 800
表1
在圖4A和圖4B的實例中,使用了15 kHz的參數集。因此,在時域中,訊框(例如,10 ms)被分成10個大小相等的子訊框,每個子訊框1ms,並且每個子訊框包括一個時槽。在圖4A和圖4B中,時間水平表示(例如,在X軸上),時間從左向右增加,而頻率垂直表示(例如,在Y軸上),頻率從下向上增加(或減少)。
資源網格可以用於表示時槽,每個時槽包括頻域中的一或多個時間併發資源區塊(RBs)(亦稱為實體RB(PRBs))。資源網格進一步被分為多個資源元素(REs)。RE可以對應於時域中的一個符號長度和頻域中的一個次載波。在圖4A和圖4B的參數集中,對於正常循環字首,RB可以包含頻域中的12個連續次載波和7個連續符號(對於DL,OFDM符號;對於UL,SC-FDMA符號),總共84個RE。對於擴展循環字首,RB可以包含頻域中的12個連續次載波和時域中的6個連續符號,總共72個RE。每個RE攜載的位元數取決於調制方案。
如圖4A所示,一些RE攜載用於在UE處進行通道估計的DL參考(引導頻)信號(DL-RS)。DL-RS可以包括解調參考信號(DMRS)和通道狀態資訊參考信號(CSI-RS),其示例性位置在圖4A中標記為「R」。
圖4B圖示了訊框的DL子訊框內的各種通道的實例。實體下行鏈路控制通道(PDCCH)在一或多個控制通道元素(CCEs)內攜載DL控制資訊(DCI),每個CCE包括九個RE群組(REGs),每個REG在OFDM符號中包括四個連續的RE。DCI攜載關於UL資源分配的資訊(持久的和非持久的)以及關於向UE發送的DL資料的描述。在PDCCH可以配置多個(例如,多達8個)DCI,該等DCI可以具有多種格式之一。例如,對於UL排程、非MIMO DL排程、MIMO DL排程和UL功率控制有不同的DCI格式。
UE使用主要同步信號(PSS)來決定子訊框/符號時序和實體層標識。UE使用次同步信號(SSS)來決定實體層細胞服務區標識組號和無線電訊框時序。基於實體層標識和實體層細胞服務區標識組號,UE可以決定PCI。基於PCI,UE可以決定前述DL-RS的位置。攜載MIB的實體廣播通道(PBCH)可以與PSS和SSS邏輯群組以形成SSB(亦稱為SS/PBCH)。MIB在DL系統頻寬中提供了多個RB和系統訊框號(SFN)。實體下行鏈路共享通道(PDSCH)攜載使用者資料、未經由PBCH發送的廣播系統資訊(諸如系統資訊區塊(SIBs))和傳呼訊息。
在某些情況下,圖4A所示的DL RS可以是定位參考信號(PRS)。圖5圖示了由無線節點(諸如基地台102)支援的細胞服務區的示例性PRS配置500。圖5圖示了PRS定位時機如何由系統訊框號(SFN)、細胞服務區特定的子訊框偏移(Δ PRS)552和PRS週期性( T PRS)520來決定。典型地,細胞服務區特定的PRS子訊框配置由「PRS配置索引」 I PRS來定義,該索引包括在觀察到的到達時間差(OTDOA)輔助資料中。PRS週期性( T PRS)520和細胞服務區特定的子訊框偏移(Δ PRS)基於PRS配置索引 I PRS來定義,如下表2所示:
PRS 配置索引 I PRS PRS 週期性 T PRS (子訊框) PRS 子訊框偏移Δ PRS (子訊框)
0 – 159 160
Figure 02_image001
160 – 479 320
Figure 02_image003
480 – 1119 640
Figure 02_image005
1120 – 2399 1280
Figure 02_image007
2400 – 2404 5
Figure 02_image009
2405 – 2414 10
Figure 02_image011
2415 – 2434 20
Figure 02_image013
2435 – 2474 40
Figure 02_image015
2475 – 2554 80
Figure 02_image017
2555-4095 保留
表2
參考發送PRS的細胞服務區的SFN來定義PRS配置。對於包括第一PRS定位時機的 N PRS個下行鏈路子訊框的第一子訊框,PRS實例可以滿足:
Figure 02_image019
,
其中 n f 是SFN,0 ≦ n f ≦ 1023, n s n f 所定義的無線電訊框內的時槽號,0 ≦ n s ≦ 19,
Figure 02_image021
是PRS週期520,並且Δ PRS是細胞服務區特定的子訊框偏移552。
如圖5所示,細胞服務區特定額子訊框偏移Δ PRS552可以根據從系統訊框號0(時槽‘號0’,標記為時槽550)開始到第一(後續)PRS定位時機開始所發送的子訊框的數量來定義。在圖5的實例中,在每個連續PRS定位時機518a、518b和518c中的連續定位子訊框( N PRS )的數量等於4。亦即,代表PRS定位時機518a、518b和518c的每個陰影塊代表四個子訊框。
在一些態樣中,當UE接收到特定細胞服務區的OTDOA輔助資料中的PRS配置索引 I PRS 時,UE可以使用表2來決定PRS週期
Figure 02_image021
520和PRS子訊框偏移Δ PRS。隨後,當在細胞服務區中排程PRS時,UE可以決定無線電訊框、子訊框和時槽(例如,使用等式(1))。OTDOA輔助資料可以由例如位置伺服器(例如,位置伺服器230、LMF 270)來決定,並且包括參考細胞服務區和由各種基地台支援的多個鄰點細胞服務區的輔助資料。
典型地,來自網路中使用相同頻率的所有細胞服務區的PRS時機在時間上對準,並且可以相對於網路中使用不同頻率的其他細胞服務區具有固定的已知時間偏移(例如,細胞服務區特定的子訊框偏移552)。在SFN同步網路中,所有無線節點(例如,基地台102)可以在訊框邊界和系統訊框號上對準。因此,在SFN同步網路中,由各種無線節點支援的所有細胞服務區可以針對PRS傳輸的任何特定頻率使用相同的PRS配置索引。另一方面,在SFN非同步網路中,各種無線節點可以在訊框邊界上對準,但不在系統訊框號上對準。因此,在SFN非同步網路中,每個細胞服務區的PRS配置索引可以由網路單獨配置,使得PRS時機在時間上對準。
若UE能夠獲得至少一個細胞服務區(例如,參考細胞服務區或服務細胞服務區)的細胞服務區時序(例如,SFN),則UE可以決定用於OTDOA定位的參考細胞服務區和鄰點細胞服務區的PRS時機的時序。其他細胞服務區的時序隨後可以由UE基於例如來自不同細胞服務區的PRS時機重疊的假設來推導。
用於傳輸PRS的資源元素的群集(collection)被稱為「PRS資源」。資源元素的群集可以橫跨頻域中的多個PRB和時域中的時槽430內的N個(例如,1個或更多個)連續符號460。在給定的OFDM符號460中,PRS資源佔用連續的PRB。PRS資源至少由以下參數來描述:PRS資源識別符(ID)、序列ID、梳狀大小-N、頻域中的資源元素偏移、起始時槽和起始符號、每個PRS資源的符號數量(亦即,PRS資源的持續時間)和QCL資訊(例如,與其他DL參考信號的QCL)。在某些設計中,支援一個天線埠。梳狀尺寸指示每個符號中攜載PRS的次載波的數量。例如,梳-4的梳尺寸意謂給定符號中的每四個次載波攜帶PRS。
「PRS資源集」是用於傳輸PRS信號的PRS資源集合,其中每個PRS資源具有PRS資源ID。此外,PRS資源集中的PRS資源與同一個發送-接收點(TRP)相關聯。PRS資源集中的PRS資源ID與從單個TRP發送的單個波束相關聯(其中TRP可以發送一或多個波束)。亦即,PRS資源集之每一者PRS資源可以在不同的波束上被發送,因此,「PRS資源」亦可以被稱為「波束」。請注意,這並不影響UE是否知道TRP和發送PRS的波束。「PRS時機」是週期性重複的時間訊窗(例如,一組一或多個連續時槽)的一個實例,其中期望發送PRS。PRS時機亦可稱為「PRS定位時機」、「定位時機」或簡稱為「時機」。
注意,術語「定位參考信號」和「PRS」有時可能指用於LTE或NR系統中定位的特定參考信號。然而,如本文所用,除非另有說明,術語「定位參考信號」和「PRS」指的是可以用於定位的任何類型的參考信號,諸如但不限於,LTE或NR中的PRS信號、5G中的導航參考信號(NRSs)、發送器參考信號(TRSs)、細胞服務區特定的參考信號(CRSs)、通道狀態資訊參考信號(CSI-RSs)、主要同步信號(PSSs)、次同步信號(SSSs)、SSB等。
SRS是僅上行鏈路信號,UE發送該信號以幫助基地台獲得每個使用者的通道狀態資訊。通道狀態資訊描述了RF信號如何從UE傳播到基地台,並表示散射、衰落和隨距離的功率衰減的綜合影響。系統利用SRS進行資源排程、鏈路可適性、大規模MIMO、波束管理等。
已經針對用於定位的SRS(SRS-P)提出了對先前SRS定義的若干增強,諸如SRS資源內的新交錯樣式、SRS的新梳狀類型、SRS的新序列、每個分量載波的SRS資源集的更大數量,以及每個分量載波的SRS資源的更大數量。此外,參數「SpatialRelationInfo(空間關係資訊)」和「PathLossReference(路徑損耗參考)」將基於來自鄰點TRP的DL RS進行配置。此外,SRS資源可以在有效頻寬部分(BWP)之外被發送,並且一個SRS資源可以橫跨多個分量載波。最後,UE可以經由相同的發送波束從用於UL-AoA的多個SRS資源進行發送。所有該等皆是當前SRS框架的附加特徵,當前SRS框架是經由RRC更高層訊號傳遞來配置的(並且可能經由MAC控制元素(CE)或下行鏈路控制資訊(DCI)來觸發或啟動)。
如前述,NR中的SRS是由UE發送的UE特定配置的參考信號,用於探測上行鏈路無線電通道的目的。類似於CSI-RS,此種探測提供了無線電通道特性的不同層次的知識。在一個極端情況下,SRS可以在gNB上簡單地用於獲得信號強度量測,例如,用於UL波束管理的目的。另一極端是,可以在gNB上使用SRS來獲得作為頻率、時間和空間的函數的詳細幅度和相位估計。在NR中,與LTE相比,使用SRS的通道探測支援更多樣的用例集(例如,基於相互的gNB發送波束成形(下行鏈路MIMO)的下行鏈路CSI獲取);用於鏈路可適性的上行鏈路CSI獲取以及用於上行鏈路MIMO、上行鏈路波束管理等的基於編碼簿/非編碼簿的預編碼)。
可以使用各種選項來配置SRS。SRS資源的時間/頻率映射由以下特徵來定義:   持續時間 N symb SRS——SRS資源的持續時間在一個時槽內可以是1、2或4個連續的OFDM符號,而LTE只允許每個時槽有一個OFDM符號。   起始符號位置l 0——若資源不跨越時槽結束邊界,SRS資源的起始符號可以位於時槽的最後6個OFDM符號內的任何位置。   重複因數R——對於配置有跳頻的SRS資源,重複允許在下一跳發生之前,在R個連續的OFDM符號中探測相同的次載波集(如本文所用,「跳」具體指跳頻)。例如,R的值是1,2,4,其中 RN symb SRS。   傳輸梳間距 K TC和梳偏移 k TC——SRS資源可能會佔用頻域梳結構的資源元素(REs),其中梳間距為2或4個RE,就像在LTE中一樣。此種結構允許相同或不同使用者的不同SRS資源在不同的梳上的頻域多工,其中不同的梳彼此偏移整數個RE。梳偏移是相對於PRB邊界定義的,並且可以取0,1,…, K TC-1個RE範圍內的值。因此,對於梳間距 K TC=2,若需要,有2個不同的梳可用於多工,並且對於梳間距 K TC=4,有4個不同的可用梳。  週期性/半持久性SRS情況下的週期性和時槽偏移。  頻寬部分內的探測頻寬。
對於低潛時定位,gNB可以經由DCI觸發UL SRS-P(例如,發送的SRS-P可以包括重複或波束掃瞄,以使幾個gNB能夠接收SRS-P)。或者,gNB可以向UE發送關於非週期性PRS傳輸的資訊(例如,該配置可以包括來自多個gNB的關於PRS的資訊,以使UE能夠執行用於定位(基於UE)或用於報告(UE輔助)的時序計算)。儘管本案的各種實施例與基於DL PRS的定位程序相關,但是該等實施例中的一些或全部亦可以應用於基於ULSRS-P的定位程序。
注意,術語「探測參考信號」、「SRS」和「SRS-P」有時可能指用於LTE或NR系統中定位的特定參考信號。然而,如本文所用,除非另有說明,術語「探測參考信號」、「SRS」和「SRS-P」指的是可以用於定位的任何類型的參考信號,諸如但不限於,LTE或NR中的SRS信號、5G中的導航參考信號(NRSs)、發送器參考信號(TRSs)、用於定位的隨機存取通道(RACH)信號(例如,RACH前序信號,諸如4步RACH程序中的Msg-1或2步RACH程序中的Msg-A)等。
3GPP Rel.16介紹了針對提高定位方案定位精度的各種NR定位態樣,該等定位方案涉及與一或多個UL或DL PRS相關聯的量測(例如,更高頻寬(BW)、FR2波束掃瞄、基於角度的量測,諸如到達角(AoA)和偏離角(AoD)量測、多細胞服務區往返時間(RTT)量測等))。若潛時減少是優先事項,則通常使用基於UE的定位技術(例如,沒有UL位置量測報告的僅DL技術)。然而,若潛時不太重要,則可以使用UE輔助定位技術,由此將UE量測的資料包告給網路實體(例如,位置伺服器230、LMF 270等)。藉由在RAN中實施LMF,可以在一定程度上減少與UE輔助定位技術相關聯的潛時。
第三層(L3)訊號傳遞(例如,RRC或位置定位協定(LPP))通常用於傳輸包括與UE輔助定位技術相關聯的基於位置的資料的報告。與第1層(L1或PHY層)訊號傳遞或第2層(L2或MAC層)訊號傳遞相比,L3訊號傳遞具有相對較高的潛時(例如,100 ms以上)。在某些情況下,可能需要對於基於位置的報告的UE和RAN之間更低的潛時(例如,小於100 ms、小於10 ms等)。在此種情況下,L3訊號傳遞可能無法達到該等較低的潛時位準。定位量測的L3訊號傳遞可以包括以下的任意組合:  一個或多個TOA、TDOA、RSRP或Rx-Tx量測,   一個或多個AoA/AoD(例如,目前僅同意gNB->LMF報告DL AoA和UL AoD)量測,   一個或多個多徑報告量測,例如,每路徑ToA、RSRP、AoA/AoD(例如,目前在LTE中僅允許每路徑ToA)   一個或多個運動狀態(例如,行走、駕駛等))和軌跡(例如,當前對於UE),及/或  一個或多個報告品質指示。
最近,L1和L2訊號傳遞已經被設想用於與基於PRS的報告相關聯的使用。例如,當前在一些系統中使用L1和L2訊號傳遞來傳輸CSI報告(例如,通道品質指示(CQIs)、預編碼矩陣指示(PMIs)、層指示(Lis)、L1-RSRP等的報告)。CSI報告可以包括按(例如,由相關標準定義的)預定義順序的欄位的集合。單個UL傳輸(例如,在PUSCH或PUCCH上)可以包括多個報告,本文稱為「子報告」,該等報告根據(例如,由相關標準定義的)預定義優先順序排列。在一些設計中,預定義順序可以基於關聯的子報告週期性(例如,PUSCH/PUCCH上的非週期性/半持久/週期性(A/SP/P))、量測類型(例如,L1-RSRP與否)、服務細胞服務區索引(例如,在載波聚合(CA)情況下)和 reportconfigID。使用2-部分CSI報告,所有報告的部分1分組在一起,部分2單獨分組,每組單獨編碼(例如,部分1有效負荷大小根據配置參數固定,而部分2大小為變數並且取決於配置參數以及相關聯的部分1內容)。根據相關標準,在編碼和速率匹配之後要輸出的編碼位元/符號的數量是基於輸入位元數和beta因數計算的。在被量測的RS實例和對應的報告之間定義了聯絡(Linkage)(例如,時間偏移)。在一些設計中,可以實施使用L1和L2訊號傳遞的基於PRS的量測資料的類似CSI的報告。
圖6圖示了根據本案各態樣的示例性無線通訊系統600。在圖6的實例中,可以對應於上文關於圖1描述的任何UE(例如,UE 104、UE 182、UE 190等)的UE 604正在嘗試計算其位置的估計,或協助另一個實體(例如,基地台或核心網路元件、另一UE、位置伺服器、第三方應用等)來計算其位置的估計。UE 604可以與複數個基地台602a-d(統稱為基地台602)進行無線通訊,該等基地台可以對應於圖1中的基地台102或180及/或WLAN AP 150的任何組合,使用RF信號和標準化協定進行RF信號的調制和資訊封包的交換。藉由從交換的RF信號中提取不同類型的資訊,並利用無線通訊系統600的佈局(亦即,基地台位置、幾何形狀等),UE 604可以決定其位置,或協助決定其在預定義的參考座標系中的位置。在一個態樣中,UE 604可以使用二維座標系指定其位置;然而,本文揭示的態樣不限於此,並且若需要額外維度,亦可適用於使用三維座標系決定位置。此外,儘管圖6圖示了一個UE 604和四個基地台602,如將瞭解的,可以有更多的UE 604和更多或更少的基地台602。
為了支援位置估計,基地台602可以被配置為廣播參考RF信號(例如,定位參考信號(PRS)、細胞服務區特定的參考信號(CRS)、通道狀態資訊參考信號(CSI-RS)、同步信號等)到其覆蓋區域中的UE 604,以使UE 604能夠量測網路節點對(pair)之間的參考RF信號時序差(例如,OTDOA或參考信號時間差(RSTD))及/或識別最能激發UE 604和發送基地台602之間的LOS或最短無線電路徑的波束。識別LOS/(多個)最短路徑波束是有意義的,不僅因為該等波束隨後可以用於一對基地台602之間的OTDOA量測,亦因為識別該等波束可以直接提供基於波束方向的一些定位資訊。此外,該等波束隨後可以用於需要精確ToA的其他位置估計方法,諸如基於往返時間估計的方法。
如本文所用,「網路節點」可以是基地台602、基地台602的細胞服務區、遠端無線電頭端、基地台602的天線,其中基地台602的天線的位置不同於基地台602本身的位置,或者任何其他能夠發送參考信號的網路實體的位置。此外,如本文所使用的,「節點」可以代表網路節點或UE。
位置伺服器(例如,位置伺服器230)可以向UE 604發送輔助資料,輔助資料包括基地台602的一或多個鄰點細胞服務區的識別和由每個鄰點細胞服務區發送的參考RF信號的配置資訊。或者,輔助資料可以直接源自基地台602本身(例如,在週期性廣播的管理負擔訊息中等)。或者,UE 604可以在不使用輔助資料的情況下偵測基地台602本身的鄰點細胞服務區。UE 604(例如,部分地基於輔助資料,若提供的話)可以量測和(可選地)報告來自各個網路節點的OTDOA及/或從網路節點對接收的參考RF信號之間的RSTD。使用該等量測和量測的網路節點(亦即,基地台602或發送UE 604量測的參考RF信號的天線)的已知位置,UE 604或位置伺服器可以決定UE 604和量測的網路節點之間的距離,從而計算UE 604的位置。
術語「位置估計」在本文中用於代表UE 604的位置估計,其可以是地理的(例如,可以包括緯度、經度和可能的海拔)或城市的(例如,可以包括街道地址、建築物名稱或建築物或街道地址內或附近的精確點或區域,諸如建築物的特定入口、建築物中的特定房間或套房,或諸如城鎮廣場的地標)。位置估計亦可以稱為「位置」、「定位」、「定點(fix)」、「定位定點」、「位置定點」、「位置估計」、「定點估計」,或由其他一些術語。獲得位置估計的方法可以統稱為「定位」、「決定位置」或「定位定點」。用於獲得定位估計的特定解決方案可以稱為「定位解決方案」。用於獲得作為定位解決方案的一部分的定位估計的特定方法可稱為「位置方法」或「定位方法」。
術語「基地台」可以代表單個實體傳輸點或可以共址或不共址的多個實體傳輸點。例如,在術語「基地台」是指單個實體傳輸點的情況下,實體傳輸點可以是與基地台的細胞服務區相對應的基地台(例如,基地台602)的天線。在術語「基地台」代表多個共址的實體傳輸點的情況下,實體傳輸點可以是基地台的天線陣列(例如,如在MIMO系統中或在基地台採用波束成形的情況下)。在術語「基地台」是指多個不不共址的實體傳輸點的情況下,實體傳輸點可以是分散式天線系統(DAS)(經由傳輸媒體連接到共用源的空間分離天線網路)或遠端無線電頭端(RRH)(連接到服務基地台的遠端基地台)。或者,不共址的實體傳輸點可以是從UE(例如,UE 604)接收量測報告的服務基地台和UE正在量測其參考RF信號的鄰點基地台。因此,圖6圖示基地台602a和602b形成DAS/RRH 620的態樣。例如,基地台602a可以是UE 604的服務基地台並且基地台602b可以是UE 604的鄰點基地台。這樣,基地台602b可以是基地台602a的RRH。基地台602a和602b可以經由有線或無線鏈路622相互通訊。
為了使用從網路節點對接收的RF信號之間的OTDOA及/或RSTD準確地決定UE 604的位置,UE 604需要量測在UE 604和網路節點(例如,基地台602、天線)之間的LOS路徑(或在LOS路徑不可用的情況下最短的NLOS路徑)上接收的參考RF信號。然而,RF信號不僅經由發送器和接收器之間的LOS/最短路徑傳播,而且亦經由許多其他路徑傳播,因為RF信號從發送器傳播並在去接收器的路上從其他物體(諸如山丘、建築物、水等)反射。因此,圖6圖示了基地台602和UE 604之間的多個LOS路徑610和多個NLOS路徑612。具體地,圖6圖示了基地台602a經由LOS路徑610a和NLOS路徑612a進行發送,基地台602b經由LOS路徑610b和兩個NLOS路徑612b進行發送,基地台602c經由LOS路徑610c和NLOS路徑612c進行發送,以及基地台602d經由兩個NLOS路徑612d進行發送。如圖6所示,每個NLOS路徑612反射出一些物體630(例如,建築物)。如將瞭解的,基地台602發送的每個LOS路徑610和NLOS路徑612可以由基地台602的不同天線發送(例如,如在MIMO系統中),或者可以由基地台602的相同天線發送(因此圖示了RF信號的傳播)。此外,如本文所使用的,術語「LOS路徑」是指發送器和接收器之間的最短路徑,並且可能不是實際的LOS路徑,而是最短的NLOS路徑。
在一個態樣中,一或多個基地台602可以被配置為使用波束成形來發送RF信號。在那種情況下,一些可用的波束可以將發送的RF信號沿著LOS路徑610聚焦(例如,該等波束沿著LOS路徑產生最高的天線增益),而其他可用的波束可以沿著NLOS路徑612聚焦發送的RF信號。沿某條路徑具有高增益並因此沿該路徑聚焦RF信號的波束可能仍有一些沿其他路徑傳播的RF信號;該RF信號的強度自然取決於其他路徑上的波束增益。「RF信號」包括經由發送器和接收器之間的空間傳輸資訊的電磁波。如本文所使用的,發送器可以向接收器發送單個「RF信號」或多個「RF信號」。然而,如下文進一步描述的,由於RF信號經由多徑通道的傳播特性,接收器可以接收對應於每個發送的RF信號的多個「RF信號」。
在基地台602使用波束成形來發送RF信號的情況下,用於基地台602和UE 604之間的資料通訊的感興趣的波束將是攜載以最高信號強度到達UE 604的RF信號的波束(如由例如存在定向干擾信號時的接收信號接收功率(RSRP)或SINR指示),而用於位置估計的感興趣的波束將是攜載激發最短路徑或LOS路徑(例如,LOS路徑610)的RF信號的波束。在某些頻帶和通常使用的天線系統中,該等波束將是相同的波束。然而,在其他頻帶,諸如mmW,通常可以使用大量天線元件來建立窄發送波束,其可能不是相同的波束。如下文參考圖7所描述的,在某些情況下,LOS路徑610上的RF信號的信號強度可能比NLOS路徑612上的RF信號的信號強度弱(例如,由於障礙物),由於傳播延遲,RF信號在NLOS路徑612上到達較晚。
圖7圖示了根據本案的各個態樣的示例性無線通訊系統700。在圖7的實例中,UE 704(其可以對應於圖6中的UE 604)正在嘗試計算其位置的估計,或協助另一實體(例如,基地台或核心網路元件、另一UE、定位伺服器、第三方應用等)計算其位置的估計。UE 704可以使用RF信號和用於RF信號的調制和資訊封包的交換的標準化協定與基地台702(其可以對應於圖6中的基地台602之一)進行無線通訊。
如圖7所示,基地台702利用波束成形來發送RF信號的複數個波束711-715。每個波束711-715可以由基地台702的天線陣列形成和發送。儘管圖7圖示了發送五個波束711-715的基地台702,如將瞭解的,可能存在多於或少於五個波束,諸如峰值增益、寬度和旁瓣增益的波束形狀在所發送的波束之間可能不同,並且一些波束可能由不同的基地台發送。
可以將波束索引配置給複數個波束711-715中的每一個,以便將與一個波束相關聯的RF信號與和另一波束相關聯的RF信號區分開來。此外,與複數個波束711-715中的特定波束相關聯的RF信號可以攜載波束索引指示符。亦可以從RF信號的傳輸時間(例如,訊框、時槽及/或OFDM符號數)推導波束索引。波束索引指示符可以是例如用於唯一區分多達八個波束的三位元欄位。若接收到具有不同波束索引的兩個不同RF信號,如此將表明RF信號是使用不同波束來發送的。若兩個不同的RF信號共享共用的波束索引,如此將表明不同的RF信號是使用相同的波束來發送的。另一種描述使用相同波束來發送兩個RF信號的方式是,用於發送第一RF信號的(多個)天線埠與用於發送第二RF信號的(多個)天線埠在空間上准共址。
在圖7實例中,UE 704接收在波束713上發送的RF信號的NLOS資料串流723和在波束714上發送的RF信號的LOS資料串流724。儘管圖7圖示了NLOS資料串流723和LOS資料串流724作為單線(分別為虛線和實線),如將瞭解的,由於例如RF信號通過多徑通道的傳播特性,NLOS資料串流723和LOS資料串流724到其到達UE 704時可以各自包括多條射線(亦即,「叢集」)。例如,當電磁波從物體的多個表面反射時形成RF信號的叢集,並且反射從大致相同的角度到達接收器(例如,UE 704),每個比其他更多或更少傳播幾個波長(例如,釐米)。接收到的RF信號的「叢集」通常對應於單個發送的RF信號。
在圖7的實例中,NLOS資料串流723最初不是指向UE 704的,儘管可以瞭解,其可能是,正如圖6中NLOS路徑612上的RF信號。然而,其被反射器740(例如,建築物)反射,並無阻礙地到達UE 704,因此,仍然可能是相對強的RF信號。相比之下,LOS資料串流724指向UE 704,但是穿過障礙物730(例如,植被、建築物、小山、諸如雲或煙的破壞性環境等),如此可能會顯著降低RF信號。可以瞭解,儘管LOS資料串流724比NLOS資料串流723弱,但是LOS資料串流724將在NLOS資料串流723之前到達UE 704,因為其遵循從基地台702到UE704的較短路徑。
如前述,用於基地台(例如,基地台702)和UE(例如,UE 704)之間的資料通訊的感興趣波束是攜載RF信號的、以最高信號強度(例如,最高的RSRP或SINR)到達UE的波束,而用於位置估計的感興趣的波束是攜載RF信號的、激發LOS路徑並且在所有其他波束中沿LOS路徑具有最高增益的波束(例如,波束714)。亦即,即使波束713(NLOS波束)弱激發LOS路徑(由於RF信號的傳播特性,即使沒有沿著LOS路徑聚焦),波束713的LOS路徑的弱信號(若有)可能無法可靠地偵測到(與來自波束714的路徑相比),從而導致執行定位量測的誤差更大。
儘管用於資料通訊的感興趣的波束和用於位置估計的感興趣的波束對於某些頻帶可能是相同的波束,但是對於諸如mmW的其他頻帶,其可能不是相同的波束。這樣,參考圖7,其中UE 704參與與基地台702的資料通訊通信期(例如,其中基地台702是UE 704的服務基地台),而不是簡單地嘗試量測由基地台702發送的參考RF信號,用於資料通訊通信期的感興趣波束可以是波束713,因為其攜帶無阻礙的NLOS資料串流723。然而,用於位置估計的感興趣波束將是波束714,因為其攜載最強的LOS資料串流724,儘管被阻礙。
圖8A是圖示根據本案的態樣的接收器(例如,UE 704)隨時間的RF通道回應的曲線圖800A。在圖8A所示的通道下,接收器在時間T1在通道分接點上接收兩個RF信號的第一叢集,在時間T2在通道分接點上接收五個RF信號的第二叢集,在時間T3在通道分接點上接收五個RF信號的第三叢集,以及在時間T4在通道分接點上接收四個RF信號的第四叢集。在圖8A的實例中,由於在時間T1的RF信號的第一叢集首先到達,因此假定其是LOS資料串流(亦即,經由LOS或最短路徑到達的資料串流),並且可以對應於LOS資料串流724。在時間T3的第三叢集由最強的RF信號組成,並且可以對應於NLOS資料串流723。從發送器一側看,接收到的RF信號的每個叢集可以包括以不同角度發送的RF信號的一部分,因此,可以說每個叢集具有從發送器的不同的偏離角(AoD)。圖8B是圖示AoD中的此種叢集分離的圖800B。在AoD範圍802a中發送的RF信號可以對應於圖 8A中的一個叢集(例如,「叢集 1」)。並且在AoD範圍802b中發送的RF信號可以對應於圖8A中的不同叢集(例如,「叢集3」)。請注意,儘管圖8B中圖示的兩個叢集的AoD範圍是空間隔離的,但是一些叢集的AoD範圍亦可能部分重疊,即使該等叢集在時間上是分開的。例如,當位於從發送器的相同AoD的兩個獨立的建築物將信號反射到接收器時,可能會出現此種情況。請注意,儘管圖8A圖示了2到5個通道分接點(或「峰值」)的叢集,如將瞭解的,叢集可以具有多於或少於所示數量的通道分接點。
RAN1 NR可以定義對適用於NR定位的DL參考信號(例如,用於服務、參考及/或鄰點細胞服務區)的UE量測,包括用於NR定位的DL參考信號時間差(RSTD)量測、用於NR定位的DL RSRP量測和UE Rx-Tx(例如,從UE接收器處的信號接收到UE發送器處的回應信號傳輸的硬體群組延遲,例如,用於NR定位的時間差量測,諸如RTT)。
RAN1 NR可以定義基於適用於NR定位的UL參考信號的gNB量測,諸如用於NR定位的相對UL到達時間(RTOA)、用於NR定位的UL AoA量測(例如,包括方位角和天頂角)、用於NR定位的UL RSRP量測和gNB Rx-Tx(例如,從gNB接收器處的信號接收到gNB發送器處的回應信號傳輸的硬體群組延遲,例如,用於NR定位的時間差量測,諸如RTT)。
圖9是圖示根據本案各態樣的在基地台902(例如,本文描述的任何基地台)和UE 904(例如,本文描述的任何UE)之間交換的RTT量測信號的示例性時序的圖900。在圖9的實例中,基地台902在時間t 1向UE 904發送RTT量測信號910(例如,PRS、NRS、CRS、CSI-RS等)。RTT量測信號910在其從基地台902行進到UE 904時具有一些傳播延遲T Prop。在時間t 2(在UE 904處的RTT量測信號910的ToA),UE 904接收/量測RTT量測信號910。在一些UE處理時間之後,UE 904在時間t 3發送RTT回應信號920。在傳播延遲T Prop之後,基地台902在時間t 4接收/量測來自UE 904的RTT回應信號920(基地台902處的RTT回應信號920的ToA)。
為了識別由給定網路節點(例如,基地台902)發送的參考信號(例如,RTT量測信號910)的ToA(例如,t 2),接收器(例如,UE 904)首先聯合處理發送器發送參考信號的通道上的所有資源元素(REs),並執行傅裡葉逆變換將接收到的參考信號轉換到時域。接收到的參考信號到時域的轉換稱為通道能量回應(CER)的估計。CER圖示通道上隨時間的峰值,並且因此最早的「重要」峰值應對應於參考信號的ToA。通常,接收器將使用雜訊相關的品質閾值來濾除雜散的(spurious)局部峰值,從而可能正確識別通道上的重要峰值。例如,接收器可以選擇ToA估計,其是CER的最早局部最大值,其比CER的中值至少高XdB,並且比通道上的主峰值低最大YdB。接收器決定來自每個發送器的每個參考信號的CER,以便決定來自不同發送器的每個參考信號的ToA。
在一些設計中,RTT回應信號920可以明確地包括時間t 3和時間t 2之間的差值(亦即,
Figure 02_image023
912)。使用該量測以及時間t 4和時間t 1之間的差值(亦即,
Figure 02_image025
922),基地台902(或其他定位實體,諸如位置伺服器230、LMF 270)可以計算到UE 904的距離,如下所示:
Figure 02_image027
其中c是光速。儘管在圖9中沒有明確示出,但是延遲或誤差的附加來源可能是由於位置定位的UE和gNB硬體群組延遲。
與定位相關聯的各種參數可以影響UE處的功耗。此種參數的知曉可以用於估計(或建模)UE功耗。藉由對UE的功耗進行精確建模,可以預測性地利用各種省電特性及/或效能增強特性,從而改善使用者體驗。
延遲或錯誤的附加來源是由於位置定位的UE和gNB硬體群組延遲。圖10圖示了示出根據本案的各態樣的在基地台(gNB)(例如,本文描述的任何基地台)和UE(例如,本文描述的任何UE)之間交換的RTT量測信號的示例性時序的圖1000。圖10在某些方面類似於圖9。然而,在圖10中,關於1002-1008圖示UE和gNB硬體群組延遲(其主要是由於基頻(BB)元件和UE和gNB處的天線(ANT)之間的內部硬體延遲)。如將瞭解的,Tx側和Rx側路徑特定或波束特定的延遲皆會影響RTT量測。諸如1002-1008之類的硬體群組延遲可能會導致時序誤差及/或校準誤差,該等誤差會影響RTT以及其他量測(諸如TDOA、RSTD等),進而影響定位效能。例如,在某些設計中,10奈秒的誤差會在最終定點中引入3米的誤差。
圖11圖示了根據本案各態樣的示例性無線通訊系統1100。在圖11的實例中,UE 1104(其可對應於本文描述的任何UE)正嘗試計算其位置的估計,或協助另一實體(例如,基地台或核心網路元件、另一UE、位置伺服器、第三方應用等)經由多RTT定位方案來計算其位置的估計。UE 1104可以使用RF信號和用於RF信號的調制和資訊封包的交換的標準化協定與複數個基地台1102-1、1102-2和1102-3(統稱為基地台1102,並且其可以對應於本文描述的任何基地台)進行無線通訊。藉由從交換的RF信號中提取不同類型的資訊,並利用無線通訊系統1100的佈局(亦即,基地台的位置、幾何形狀等),UE 1104可以決定其在預定義的參考座標系中的位置,或協助決定其位置。在一個態樣中,UE 1104可以使用二維座標系指定其位置;然而,本文揭示的態樣不限於此,並且若需要額外維度,亦可適用於使用三維座標系決定位置。此外,儘管圖11圖示了一個UE 1104和三個基地台1102,如將瞭解的,可能存在更多的UE 1104和更多的基地台1102。
為了支援位置估計,基地台1102可以被配置為向其覆蓋區域中的UE 1104廣播參考RF信號(例如,PRS、NRS、CRS、TRS、CSI-RS、PSS、SSS等)以使UE 1104能夠量測此種參考RF信號的特性。例如,UE 1104可以量測由至少三個不同基地台1102發送的特定參考RF信號(例如,PRS、NRS、CRS、CSI-RS等)的ToA,並且可以使用RTT定位方法來將該等ToA(和附加資訊)報告回到服務基地台1102或另一定位實體(例如,位置伺服器230、LMF 270)。
在一個態樣中,儘管描述為UE 1104量測來自基地台1102的參考RF信號,但是UE 1104可以量測來自由基地台1102所支援的多個細胞服務區之一的參考RF信號。其中UE 1104量測由基地台1102所支援的細胞服務區發送的參考RF信號,由UE 1104量測以執行RTT程序的至少兩個其他參考RF信號將來自由與第一基地台1102不同的基地台1102所支援的細胞服務區並且可能在UE 1104處具有良好的或差的信號強度。
為了決定UE 1104的位置(x,y),決定UE 1104的位置的實體需要知道基地台1102的位置,其可以在參考座標系中表示為(x k, y k),其中在圖11的實例中k=1、2、3。在基地台1102之一(例如,服務基地台)或UE 1104決定UE 1104的位置的情況下,可以由知曉網路幾何形狀的位置伺服器(例如,位置伺服器230、LMF 270)將所涉及的基地台1102的位置提供給服務基地台1102或UE 1104。或者,位置伺服器可以使用已知的網路幾何形狀來決定UE 1104的位置。
UE 1104或相應基地台1102可以決定UE 1104和相應基地台1102之間的距離(d k,其中k = 1、2、3)。在一個態樣中,決定在UE 1104和任何基地台1102之間交換的信號的RTT 1110可以被執行並且被轉換為距離(d k)。如下文進一步論述的,RTT技術可以量測發送訊號傳遞訊息(例如,參考RF信號)和接收回應之間的時間。該等方法可以使用校準來移除任何處理延遲。在一些環境中,可以假設UE 1104和基地台1102的處理延遲是相同的。然而,此種假設在實踐中可能並不成立。
一旦決定每個距離d k,UE 1104、基地台1102或定位伺服器(例如,定位伺服器230、LMF 270)可以藉由使用各種已知的幾何技術,諸如三邊量測,來解決UE 1104的位置(x, y)。從圖11可以看出UE 1104的位置理想地位於三個半圓的共用交點處,每個半圓由半徑d k和中心(x k, y k)定義,其中k=1、2、3。
在一些情況下,可以以定義直線方向(例如,其可以在水平面中或在三個維度中)或可能的方向範圍(例如,對於UE 1104,從基地台1102的位置的方向範圍)的到達角(AoA)或偏離角(AoD)的形式獲得附加資訊。在點(x, y)處或附近的兩個方向的交點可以為UE 1104提供另一位置估計。
位置估計(例如,對於UE 1104)可以用其他名稱來代表,諸如定位估計、定位、位置、位置定點、定點等。位置估計可以是大地量測的並且包括座標(例如,緯度、經度和可能的高度),或者可以是城市的並且包括街道地址、郵政地址或位置的一些其他口頭描述。位置估計可以進一步相對於一些其他已知位置來定義或以絕對術語來定義(例如,使用緯度、經度和可能的海拔)。位置估計可能包括預期的誤差或不決定性(例如,藉由包括區域或體積,在此區域或體積內,位置被預期包含在某個指定的或預設的置信位準上)。
圖12是圖示根據本案的其他態樣的在基地台(例如,本文描述的任何基地台)和UE(例如,本文描述的任何UE)之間交換的RTT量測信號的示例性時序的圖1200。特定地,圖12的1202-1004分別表示與在gNB和UE處量測的Rx-Tx差相關聯的訊框延遲部分。
如從以上揭示內容將理解的,5G NR中支援的NR原生定位(native positioning)技術包括僅DL定位方案(例如,DL-TDOA、DL-AoD等)、僅UL定位方案(例如,UL-TDOA、UL-AoA)和DL+UL定位方案(例如,具有一或多個鄰點基地台的RTT,或多RTT)。此外,5G NR Rel-16亦支援基於無線電資源管理(RRM)量測的增強型細胞服務區ID(E-CID)。
如前述,PRS被定義用於NR定位以使UE能夠偵測和量測更多的鄰點TRP。支援多種PRS配置以實現各種PRS部署(例如,室內、室外、6 GHz以下、mmW)。為了支援PRS波束操作,PRS支援波束掃瞄。Rel.16和Rel.17中支援UE輔助和基於UE的位置計算。此外,在RRC-連接、RRC-閒置和RRC-非活動模式下支援定位。用於定位的參考信號的配置的實例如表3所示,如下所示:
DL/UL 參考信號類型 UE 量測類型 定位技術
Rel.16 DL PRS DL RSTD DL-TDOA
Rel.16 DL PRS DL PRS RSRP DL-TDOA, DL-AoD, 多RTT
Rel.16 DL PRS / Rel.16 UL SRS-P UE Rx-Tx 時間差 多RTT
Rel. 15 用於RRM的SSB / CSI-RS SS-RSRP(用於RRM的RSRP), SS-RSRQ(用於RRM), CSI-RSRP (用於RRM), CSI-RSRQ (用於 RRM) E-CID
表3:用於定位參考信號的配置
在NR中,頻率層是指在相同頻寬上具有諸如共用SCS、循環字首(CP)等共享特徵的頻域資源的群集。對於TDOA,跨複數個頻率層定義單個TRP參考。可以在從網路通訊到UE的定位輔助資料(AD)中指定單個TRP參考。
如前述,在當前NR規範中,DL-PRS和SRS-P(例如,UL-PRS或側行鏈路PRS(SL-PRS))以分層方式來定義,其中參數諸如資源集、相應的資源集內的資源、每個資源的多個實例或重複,等等。在Rel.16中,DL-PRS資源被配置之後,DL-PRS資源不會隨時間變化,而SRS-P資源可以由gNB依須求配置和關閉。在Rel.18中,可以以各種方式修改DL-PRS或SRS-P配置。例如,可以打開和關閉DL-PRS或SRS-P配置,並且可以基於來自應用或位置伺服器(例如,LMF)的動態請求而改變DL-PRS或SRS-P配置的參數。在另一實例中,UE可以向gNB及/或LMF推薦可以使用(例如,以提高準確性、減少潛時等)的增強參數集。在又一實例中,可以利用UE配置多於一個DL-PRS或SRS-P配置,其中特定DL-PRS或SRS-P配置根據需要經由來自gNB的訊號傳遞被啟動或去啟動。
本案的各態樣由此針對包括多個RS-P配置的時變RS-P(例如,DL-PRS或SRS-P,諸如UL-SRS-P或SL-SRS-P)配置,每個配置皆與不同的時間段相關聯。此種態樣可以提供各種技術優勢,諸如改進與用於UE位置估計的定位相關聯的定位及/或潛時,特別是在可以可靠地預測不同時間的定位環境的場景中。
圖13圖示了根據本案各態樣的無線通訊的示例性過程1300。在一個態樣中,過程1300可以由UE 302執行。
在1310處,UE 302(例如,接收器312或322等)從網路元件(例如,服務基地台、LMF、位置伺服器或其組合,例如,RAN中的LMF)接收第一時變RS-P配置,其包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置。
在1320處,UE 302(例如,接收器312或322、發送器314或324等)根據第一RS-P配置在第一時間段期間與至少一個基地台(例如,服務基地台和一或多個鄰點基地台、與每個相應基地台相關聯的一或多個TRP等)通訊第一RS-P集合。
在1330處,UE 302(例如,接收器312或322、發送器314或324等)根據第二RS-P配置在第二時間段期間與至少一個基地台通訊第二RS-P集合。
圖14圖示了根據本案各態樣的無線通訊的示例性過程1400。在一個態樣中,過程1400可以由網路元件(例如,諸如BS 304的服務基地台、LMF、位置伺服器或其組合,例如,RAN中的LMF)來執行。
在1405處,網路元件(例如,處理系統384或394、RS-P模組388或398等)決定第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置。
在1410處,網路元件(例如,網路介面380或390、資料匯流排382、發送器354或364等)向UE發送第一時變RS-P配置。
在1420處,網路元件(例如,接收器352或362、發送器354或364等)根據第一RS-P配置,在第一時間段期間可選地與UE通訊第一RS-P集合。1420處的通訊是可選的,並且可以在網路元件對應於基地台的場景中執行。
在1430處,網路元件(例如,接收器352或362、發送器354或364等)根據第二RS-P配置,在第二時間段期間可選地與UE通訊第二RS-P集合。1430處的通訊是可選的,並且可以在網路元件對應於基地台的場景中執行。
參參圖13-圖14,在一些設計中,第一RS-P集合可以對應於由UE向至少一個基地台發送的第一上行鏈路或側行鏈路SRS-P集合,第二RS-P集合可以對應於到由UE向至少一個基地台發送的第二上行鏈路或側行鏈路SRS-P集合。在其他設計中,第一RS-P集合可以對應於在UE處從至少一個基地台接收的第一DL-PRS集合,並且第二RS-P集合可以對應於在UE處從至少一個基地台接收的第二DL-PRS集合。在特定於DL-PRS場景的實例中,UE可以在第一時間段之後(例如,向服務gNB)發送基於由UE對第一DL-PRS集合的量測的第一量測報告,以及UE進一步可以在第二時間段之後發送基於由UE對第二DL-PRS集合的量測的第二量測報告。
參考圖13-圖14,在一些設計中,時變RS-P配置進一步可以包括與第三時間段相關聯的第三RS-P配置。換言之,每個時變RS-P配置的RS-P配置的數量不限於兩(2)個,而是可以包括任意數量的RS-P配置。在一些設計中,RS-P配置中的兩個或兩個以上可能是相同的,除了與不同的時間段相關聯(例如,時變RS-P配置可以在RS-P配置之間交替,諸如RS-P#1,隨後是RS-P#2,隨後是RSP#1,等等)。在一些設計中,第一RS-P配置和第二RS-P配置可以在一或多個RS-P配置參數方面不同,諸如RS-P資源集、RS-P資源、週期性、重複因數或其組合。
參考圖13-圖14,在一些設計中,網路(例如,LMF)可以基於預測資訊來配置時變RS-P參數,該時變RS-P參數指示在第一時間段期間第一RS-P配置將提供優越定位效能(例如,準確性、潛時等),以及在第二時間段期間第二RS-P配置將提供優越的定位效能(例如,準確性、潛時等)的。在某些情況下,環境(例如,工業環境,諸如工廠)中的週期性及/或可預測運動可能會改變DL-PRS或SRS-P參數的最佳參數集。例如,若UE在傳送帶上移動需要30秒才能完成一個循環/週期,則UE可能會週期性地改變其優選的參數以匹配環境。在本案的至少一個態樣的上下文中,網路可以學習此種行為並且能夠預測和最佳化UE配置以匹配此種環境。在另一場景中,UE可能在列車上,並且列車路線中的不同點可能具有不同的最佳DL-PRS或SRS-P配置。在本案的至少一個態樣的上下文中,基於其在相同列車路線上的先前UE的經驗,網路可以為UE提供時變配置。在另一場景中,可以為路上的汽車提供大致取決於路線的時變配置(例如,網路可以最佳化對已經變遠的細胞服務區的搜尋等)。在另一場景中,巨型衛星群集可能正在相對於UE快速移動。在實例中,可以指示UE監視與來自衛星的樣式相對應的信號(例如,從UE的視角來看,該等衛星通常比GPS衛星移動得快得多)。由於所涉及的群集的大小,可以經由時變RS-P配置指示UE以時變方式進行監視,而不是指示完整列表。
參考圖13-圖14,在一些設計中,網路(例如,LMF)最初可能不知道最佳化的RS-P配置。在該階段,網路可以配置UE以根據多個RS-P配置(或最密集的RS-P配置)進行報告,隨後修改(例如,最佳化)隨時間的時變RS-P配置。在一些設計中,網路亦可以從多個UE學習(例如,聯合學習(federated learning))並將該等資訊彙集在一起。在一些設計中,即使在網路配置時變RS-P配置之後,網路亦可能(例如,在列車路線的多個週期內)更新時變RS-P配置以匹配變化的環境。
儘管圖13-圖14具體涉及時變RS-P配置,在其他設計中,可以建立變化RS-P配置,由此RS-P配置以事件觸發方式而不是時間觸發方式轉變。此種態樣可以提供各種技術優勢,諸如改進與用於UE位置估計的定位相關聯的定位及/或潛時,特別是在不能可靠地預測不同時間的定位環境的場景中。
圖15圖示了根據本案各態樣的無線通訊的示例性過程1500。在一個態樣中,過程1500可以由UE 302執行。
在1510處,UE 302(例如,接收器312或322等)從網路元件(例如,服務基地台、LMF、位置伺服器或其組合,例如,RAN中的LMF)接收第一變化SRS-P配置,其包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件。
在1520處,UE 302(例如,發送器314或324等)根據第一SRS-P配置,在第一時間段期間向至少一個基地台(例如,服務基地台和一或多個鄰點基地台、與每個相應基地台相關聯的一或多個TRP等)發送第一SRS-P集合。
在1530處,UE 302(例如,處理系統332、RS-P模組342等)基於對事件觸發條件的監視,決定從第一SRS-P配置轉換到第二SRS-P配置。這一態樣可以與某些傳統方法形成對比,在傳統方法中,網路(而不是UE)決定啟動從一個SRS-P配置到另一SRS-P配置的切換。
在1540處,UE 302(例如,發送器314或324等)向至少一個基地台發送轉換的指示。
在1550處,UE 302(例如,發送器314或324等)在發送轉換指示之後,根據第二SRS-P配置,在第二時間段期間向至少一個基地台發送第二SRS-P集合。
圖16圖示了根據本案各態樣的無線通訊的示例性過程1600。在一個態樣中,過程1400可以由網路元件(例如,諸如BS 304的服務基地台、LMF、位置伺服器或其組合,例如,RAN中的LMF)來執行。
在1605處,網路元件(例如,處理系統384或394、RS-P模組388或398等)決定第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件。
在1610處,網路元件(例如,網路介面380或390、資料匯流排382、發送器354或364等)向UE發送第一變化SRS-P配置。
在1620處,網路元件(例如,接收器352或362等)根據第一SRS-P配置,在第一時間段期間從UE可選地接收第一SRS-P集合。1620處的接收是可選的,並且可以在網路元件對應於基地台的場景中執行。
在1630處,網路元件(例如,接收器352或362等)從UE可選地接收從第一SRS-P配置轉換到第二SRS-P配置的指示。1630處的接收是可選的,並且可以在網路元件對應於基地台的場景中執行。
在1640處,BS 304(例如,接收器352或362等)在接收到轉換指示之後,根據第二SRS-P配置,在第二時間段期間從UE可選地接收第二SRS-P集合。1640處的接收是可選的,並且可以在網路元件對應於基地台的場景中執行。
參考圖15-圖16,在一些設計中,至少一個事件觸發條件包括UE的運動條件(例如,若UE運動超過閾值,則使用更密集的SRS-P配置,並且若UE運動沒有超過閾值,則使用不太密集的SRS-P配置)、UE的位置、與UE相關聯的通道特性(例如,若UE位於高雜訊區域,則使用更密集的SRS-P配置,並且若UE位於低雜訊區域,則使用不太密集的UE配置)、與UE相關聯的導航路線條件(例如,路線的一些部分可以被配置有比其他部分更密集的SRS-P配置等)、與UE相關聯的衛星群集條件,或其組合。
參考圖15-圖16,在一些設計中,BS可以發送第二時變RS-P配置,第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。在一些設計中,第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
在上文的詳細描述中,可以看出不同的特徵在實例中被群組在一起。此種揭示方式不應被理解為示例性條款具有比每個條款中明確提到的更多特徵的意圖。相反,本案的各個態樣可以包括少於所揭示的單個示例條款的所有特徵。因此,以下條款應被視為包含在說明書中,其中每個條款本身可以作為單獨的實例。儘管每個從屬條款可以在條款中引用與其他條款之一的特定組合,但是從屬條款的態樣不限於該特定組合。應當理解,其他示例條款亦可以包括從屬條款態樣與任何其他從屬條款或獨立條款的標的的組合,或者任何特徵與其他從屬和獨立條款的組合。本文揭示的各個態樣明確地包括該等組合,除非明確地表達或者可以容易地推斷特定的組合不是有意的(例如,矛盾的態樣,諸如將元件定義為絕緣體和導體)。此外,亦意欲將條款的各個態樣包括在任何其他獨立條款中,即使該條款不直接依賴於獨立條款。
實施實例在以下編號條款中描述:
條款1.一種由使用者裝備(UE)執行的無線通訊的方法,包括:從網路元件接收第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置和與第二時間段相關聯的第二RS-P配置;根據該第一RS-P配置,在第一時間段期間與至少一個基地台通訊第一RS-P集合;及根據該第二RS-P配置,在第二時間段期間與至少一個基地台通訊第二RS-P集合。
條款2.根據條款1之方法,其中該第一RS-P集合包括由UE向至少一個基地台發送的第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-P)集合,並且其中該第二RS-P集合包括由UE向至少一個基地台發送的第二上行鏈路或側行鏈路SRS-P集合。
條款3.根據條款1至2中任一項所述的方法,其中該第一RS-P集合包括在UE處從至少一個基地台接收的第一下行鏈路定位參考信號(DL-PRSs)集合,並且其中該第二RS-P集合包括在UE處從至少一個基地台接收的第二DL-PRS集合。
條款4.根據條款2至3中任一項所述的方法,進一步包括:在第一時間段之後,發送基於由UE對第一DL-PRS集合的量測的第一量測報告;在第二時間段之後,發送基於由UE對第二DL-PRS集合的量測的第二量測報告。
條款5.根據條款1至4中任一項所述的方法,其中該時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
條款6.根據條款1至5中任一項所述的方法,進一步包括:從網路元件接收第二時變RS-P配置,該第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
條款7.根據條款1至6中任一項所述的方法,其中第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
條款8.根據條款1至7中任一項所述的方法,其中網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
條款9.一種由網路元件執行的無線通訊的方法,包括:決定第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與第一時間段相關聯的第一RS-P配置,以及與第二時間段相關聯的第二RS-P配置;及向使用者裝備(UE)發送第一時變RS-P配置。
條款10.根據條款1至9中任一項所述的方法,其中網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
條款11.根據條款9至10中任一項的方法,進一步包括:根據第一RS-P配置,在第一時間段期間與UE通訊第一RS-P集合;及根據第二RS-P配置,在第二時間段期間與UE通訊第二RS-P集合。
條款12.根據條款11之方法,其中該第一RS-P集合包括在基地台處從UE接收的第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-P)集合,其中該第二RS-P集合包括在服務基地台從UE接收的第二上行鏈路或側行鏈路SRS-P集合。
條款13.根據條款11至12中任一項所述的方法,其中該第一RS-P集合包括由基地台向UE發送的第一下行鏈路定位參考信號(DL-PRSs)集合,並且其中該第二RS-P集合包括由基地台向UE發送的第二DL-PRS集合。
條款14.根據條款13之方法,進一步包括:在第一時間段之後,接收基於由UE對第一DL-PRS集合的量測的第一量測報告;及在第二時間段之後,接收基於由UE對第二DL-PRS集合的量測的第二量測報告。
條款15.根據條款9至14中任一項所述的方法,其中時變RS-P配置進一步包括與第三時間段相關聯的第三RS-P配置。
條款16.根據條款15之方法,進一步包括:向UE發送第二時變RS-P配置,該第二時變RS-P配置相對於第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段,或其組合方面不同。
條款17.根據條款9至16中任一項所述的方法,其中第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其組合方面不同。
條款18.一種由使用者設備(UE)執行的無線通訊的方法,包括:從網路元件接收第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置,以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;根據第一SRS-P配置,在第一時間段期間向至少一個基地台發送第一SRS-P集合;基於對事件觸發條件的監視,決定從第一SRS-P配置轉換到第二SRS-P配置;向至少一個基地台發送轉換的指示;在發送該轉換指示之後,根據第二SRS-P配置,在第二時間段期間向至少一個基地台發送第二SRS-P集合。
條款19.根據條款18之方法,其中網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
條款20.根據條款18至19中任一項所述的方法,其中至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
條款21.根據條款18至20中任一項所述的方法,進一步包括:從網路元件接收第二變化SRS-P配置,該第二變化SRS-P配置相對於第一變化SRS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
條款22.根據條款18至21中任一項所述的方法,其中第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
條款23.一種由網路元件執行的無線通訊的方法,包括:決定第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括第一SRS-P配置、第二SRS-P配置,以及用於在第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;及向使用者裝備(UE)發送第一變化SRS-P配置。
條款24.根據條款23之方法,其中網路元件包括服務基地台、位置管理功能(LMF)、位置伺服器或其組合。
條款25.根據條款23至24中任一項所述的方法,進一步包括:根據第一SRS-P配置,在第一時間段期間從UE接收第一SRS-P集合;從UE接收從第一SRS-P配置轉換到第二SRS-P配置的指示;及在接收到該轉換指示之後,根據第二SRS-P配置,在第二時間段期間從UE接收第二SRS-P集合。
條款26.根據條款23至25中任一項所述的方法,其中至少一個事件觸發條件包括UE的運動條件、UE的位置、與UE相關聯的通道特性、與UE相關聯的導航路線條件、與UE相關聯的衛星群集條件或其組合。
條款27.根據條款23至26中任一項所述的方法,進一步包括:向UE發送第二變化SRS-P配置,該第二變化SRS-P配置相對於第一變化SRS-P配置在一或多個SRS-P配置參數、一或多個相關聯的時間段,或其組合方面不同。
條款28.根據條款27之方法,其中第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其組合方面不同。
條款29.一種裝置,包括記憶體和通訊地耦合到記憶體的至少一個處理器,該記憶體和該至少一個處理器被配置為執行根據條款1至28中任一項的方法。
條款30.一種裝置,包括用於執行根據條款1至28中任一項的方法的構件。
條款31.一種儲存電腦可執行指令的非暫態電腦可讀取媒體,該電腦可執行指令包括用於使電腦或處理器執行根據條款1至28中任一項的方法的至少一個指令。
本領域技藝人士將瞭解,可以使用多種不同技術和技藝中的任何一種來表示資訊和信號。例如,在整個以上描述中可以引用的資料、指令、命令、資訊、信號、位元、符號和碼片可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或其任何的組合表示。
此外,本領域技藝人士將瞭解,結合本文揭示的各態樣描述的各種說明性邏輯區塊、模組、電路和演算法步驟可以實施為電子硬體、電腦軟體或兩者的組合。為了清楚地說明硬體和軟體的此種可互換性,各種說明性元件、方塊、模組、電路和步驟已經在上文大體上根據其功能進行了描述。此種功能是作為硬體還是軟體實施取決於特定應用和施加在整體系統上的設計約束。本領域技藝人士可以針對每個特定應用以不同的方式實施所描述的功能,但是此種實施決策不應被解釋為導致背離本案的範圍。
結合本文揭示的各態樣描述的各種說明性邏輯區塊、模組和電路可以用通用處理器、DSP、ASIC、FPGA或其他可程式邏輯設備、個別閘門或電晶體邏輯、個別硬體元件或設計用於執行本文所述功能的任何組合來實施或來執行。通用處理器可以是微處理器,但在替代方案中,處理器可以是任何一般處理器、控制器、微控制器或狀態機。處理器亦可以被實施為計算設備的組合,例如,DSP和微處理器的組合、複數個微處理器、一或多個微處理器與DSP核心相結合,或任何其他此種配置。
結合本文所揭示的態樣描述的方法、序列及/或演算法可以直接體現在硬體中、由處理器執行的軟體模組中,或兩者的組合中。軟體模組可以常駐在隨機存取記憶體(RAM)、快閃記憶體、唯讀記憶體(ROM)、可抹除可程式設計ROM(EPROM)、電子可抹除可程式設計ROM(EEPROM)、暫存器、硬碟、可移除磁碟、CD-ROM,或本領域已知的任何其他形式的儲存媒體。示例性儲存媒體耦合到處理器,使得處理器可以從儲存媒體讀取資訊和將資訊寫入儲存媒體。在替代方案中,儲存媒體可以整合到處理器中。處理器和儲存媒體可以常駐在ASIC中。ASIC可以常駐在使用者終端(例如,UE)中。在替代方案中,處理器和儲存媒體可以作為個別元件常駐在使用者終端中。
在一或多個示例性態樣中,所描述的功能可以以硬體、軟體、韌體或其任何組合來實施。若以軟體來實施,則該等功能可以作為一或多個指令或代碼在電腦可讀取媒體上儲存或經由其傳輸。電腦可讀取媒體包括電腦儲存媒體和通訊媒體,包括促進電腦程式從一個地方到另一地方的傳輸的任何媒體。儲存媒體可以是電腦可以存取的任何可用媒體。舉例而言(但並非限制),此種電腦可讀取媒體可以包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存器、磁碟儲存器或其他磁性儲存設備,或任何其他可用於攜載或儲存所需的以指令或資料結構的形式並且可以由電腦存取的程式碼的媒體。此外,任何連接皆被恰當地稱為電腦可讀取媒體。例如,若使用同軸電纜、光纖電纜、雙絞線、DSL或諸如紅外線、無線電和微波的無線技術從網站、伺服器或其他遠端源反射軟體,則同軸電纜、光纖電纜、雙絞線、DSL或諸如紅外線、無線電和微波的無線技術皆包含在媒體的定義中。如本文所用,磁碟和光碟包括壓縮光碟(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,其中磁碟通常以磁性方式再現資料,而光碟用雷射以光學方式再現資料。上述的組合亦應包括在電腦可讀取媒體的範圍內。
儘管前述揭示顯示了本案的說明性態樣,但應當注意,在不脫離如所附請求項限定的本案的範圍的情況下,可以在本文中進行各種改變和修改。根據在此描述的本案的態樣的方法請求項的功能、步驟及/或動作不需要以任何特定循序執行。此外,儘管可以以單數形式描述或主張本案的元素,但可以預期複數形式,除非明確說明對單數形式的限制。
100:無線通訊系統 102:基地台 102':小細胞服務區基地台 104:使用者裝備 110:地理覆蓋區域 110':地理覆蓋區域 112:地球軌道衛星定位系統(SPS)太空飛行器(SV) 120:通訊鏈路 122:回載鏈路 124:SPS信號 134:回載鏈路 150:無線區域網路(WLAN)存取點(AP) 152:WLAN站 154:通訊鏈路 164:UE 170:核心網路 172:位置伺服器 180:毫米波(mmW)基地台 182:使用者裝備 184:mmW通訊鏈路 190:UE 192:D2D P2P鏈路 194:D2D P2P鏈路 200:無線網路結構 204:UE 210:5GC 212:使用者平面功能 213:使用者平面介面(NG-U) 214:控制平面功能 215:控制平面介面(NG-C) 220:新RAN 222:gNB 223:回載連接 224:ng-eNB 230:位置伺服器 250:無線網路結構 260:5G核心 262:使用者平面功能 263:使用者平面介面 264:存取和行動性管理功能 265:控制平面介面 266:通信期管理功能(SMF) 270:位置管理功能(LMF) 272:安全使用者平面位置(SUPL)位置平臺(SLP) 302:UE 304:基地台 306:網路實體 310:無線廣域網路(WWAN)收發器 312:接收器 314:發送器 316:天線 318:信號 320:短程無線收發器 322:接收器 324:發送器 326:天線 328:信號 330:衛星定位系統(SPS)接收器 332:處理系統 334:資料匯流排 336:天線 338:SPS信號 340:記憶體元件 342:參考信號(RS-P)模組 344:感測器 346:使用者介面 350:無線廣域網路(WWAN)收發器 352:接收器 354:發送器 356:天線 358:信號 360:短程無線收發器 362:接收器 364:發送器 366:天線 368:信號 370:衛星定位系統(SPS)接收器 376:天線 378:SPS信號 380:網路介面 382:資料匯流排 384:處理系統 386:記憶體元件 388:參考信號(RS-P)模組 390:網路介面 392:資料匯流排 394:處理系統 396:記憶體元件 398:參考信號(RS-P)模組 400:DL訊框結構 430:通道 500:PRS配置 518a:PRS定位時機 518b:PRS定位時機 518c:PRS定位時機 520:PRS週期T_PRS 550:時槽 552:子訊框偏移 600:無線通訊系統 602a:基地台 602b:基地台 602c:基地台 604:UE 610a:LOS路徑 610b:LOS路徑 610c:LOS路徑 612a:NLOS路徑 612b:NLOS路徑 612c:NLOS路徑 612d:NLOS路徑 622:有線或無線鏈路 630:物體 700:無線通訊系統 702:基地台 704:UE 711:波束 712:波束 713:波束 714:波束 715:波束 723:NLOS資料串流 724:LOS資料串流 730:障礙物 800A:曲線圖 800B:叢集分離 802a:AoD範圍 802b:AoD範圍 900:時序 902:基地台 904:UE 910:RTT量測信號 912:時間差值 920:RTT回應信號 922:時間差值 1000:時序 1002:硬體群組延遲 1004:硬體群組延遲 1006:硬體群組延遲 1008:硬體群組延遲 1100:無線通訊系統 1102-1:基地台 1102-2:基地台 1102-3:基地台 1200:時序 1202:訊框延遲部分 1300:過程 1310:操作 1320:操作 1330:操作 1400:過程 1405:操作 1410:操作 1420:操作 1430:操作 1500:過程 1510:操作 1520:操作 1530:操作 1540:操作 1550:操作 1600:過程 1605:操作 1610:操作 1620:操作 1630:操作 1640:操作 CSI-RS:通道狀態資訊參考信號 DAS/RRH:分散式天線系統/遠端無線電頭端 DMRS:解調參考信號 PBCH:實體廣播通道 PDCCH:實體下行鏈路控制通道 PDSCH:實體下行鏈路共享通道 PSS:主要同步信號 RB:資源區塊 RTT:量測信號 SSB:同步信號區塊 SSS:次同步信號 t1:時間 t2:時間 t3:時間 t4:時間
呈現附圖是為了幫助描述本案的各個態樣,並且提供附圖僅僅是為了說明該等態樣,而不是對其進行限制。
圖1圖示了根據本案各態樣的示例性無線通訊系統。
圖2A和圖2B圖示了根據本案各態樣的示例性無線網路結構。
圖3A至圖3C是可以分別在使用者裝備(UE)、基地台和網路實體中使用的元件的幾個示例性態樣的簡化方塊圖,並且被配置為支援本文教示的通訊。
圖4A和圖4B是圖示根據本案各態樣的訊框結構和訊框結構內的通道的實例的圖。
圖5圖示了無線節點所支援的細胞服務區的示例性PRS配置。
圖6圖示了根據本案的各個態樣的示例性無線通訊系統。
圖7圖示了根據本案的各個態樣的示例性無線通訊系統。
圖8A是圖示根據本案各態樣的接收器處的RF通道回應隨時間變化的曲線圖。
圖8B是圖示AoD中叢集的此種分離的圖。
圖9是圖示根據本案各態樣的基地台和UE之間交換的RTT量測信號的示例性時序的圖。
圖10是圖示根據本案的其他態樣的在基地台和UE之間交換的RTT量測信號的示例性時序的圖。
圖11圖示了根據本案各態樣的示例性無線通訊系統。
圖12圖示了示出根據本案的其他態樣的在基地台(例如,本文描述的任何基地台)和UE(例如,本文描述的任何UE)之間交換的RTT量測信號的示例性時序的圖。
圖13圖示了根據本案各態樣的無線通訊的示例性過程。
圖14圖示了根據本案各態樣的無線通訊的示例性過程。
圖15圖示了根據本案各態樣的無線通訊的示例性過程。
圖16圖示了根據本案各態樣的無線通訊的示例性過程。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
302:UE
1300:過程
1310:操作
1320:操作
1330:操作

Claims (50)

  1. 一種由一使用者裝備(UE)執行的無線通訊的方法,包括以下步驟: 從一網路元件接收一第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與一第一時間段相關聯的一第一RS-P配置和與一第二時間段相關聯的一第二RS-P配置; 根據該第一RS-P配置,在該第一時間段期間與至少一個基地台通訊一第一RS-P集合;及 根據該第二RS-P配置,在該第二時間段期間與該至少一個基地台通訊一第二RS-P集合。
  2. 如請求項1所述之方法,其中該第一RS-P集合包括由該UE向該至少一個基地台發送的一第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-P)集合,並且 其中該第二RS-P集合包括由該UE向該至少一個基地台發送的一第二上行鏈路或側行鏈路SRS-P集合。
  3. 如請求項1所述之方法,其中該第一RS-P集合包括在該UE處從該至少一個基地台接收的一第一下行鏈路定位參考信號(DL-PRS)集合,並且 其中該第二RS-P集合包括在該UE處從該至少一個基地台接收到的一第二DL-PRS集合。
  4. 如請求項3所述之方法,進一步包括以下步驟: 在該第一時間段之後,發送基於由該UE對該第一DL-PRS集合的量測的一第一量測報告;及 在該第二時間段之後,發送基於由該UE對該第二DL-PRS集合的量測的一第二量測報告。
  5. 如請求項1所述之方法,其中該第一時變RS-P配置進一步包括與一第三時間段相關聯的一第三RS-P配置。
  6. 如請求項1所述之方法,進一步包括以下步驟: 從該網路元件接收一第二時變RS-P配置,該第二時變RS-P配置相對於該第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其一組合方面不同。
  7. 如請求項1所述之方法,其中該第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其一組合方面不同。
  8. 如請求項1所述之方法,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  9. 一種由一網路元件執行的無線通訊的方法,包括以下步驟: 決定一第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與一第一時間段相關聯的一第一RS-P配置和與一第二時間段相關聯的一第二RS-P配置;及 向一使用者裝備(UE)發送該第一時變RS-P配置。
  10. 如請求項9所述之方法,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  11. 如請求項9所述之方法,進一步包括以下步驟: 根據該第一RS-P配置,在該第一時間段期間與該UE通訊一第一RS-P集合;及 根據該第二RS-P配置,在該第二時間段期間與該UE通訊一第二RS-P集合。
  12. 如請求項11所述之方法,其中該第一RS-P集合包括在一基地台處從該UE接收的一第一上行鏈路或側行鏈路用於定位的探測參考信號(SRS-Ps)集合, 其中該第二RS-P集合包括在該基地台處從該UE接收的一第二上行鏈路或側行鏈路SRS-P集合。
  13. 如請求項11所述之方法,其中該第一RS-P集合包括由一基地台向該UE發送的一第一下行鏈路定位參考信號(DL-PRSs)集合,並且 其中該第二RS-P集合包括由該基地台向該UE發送的一第二DL-PRS集合。
  14. 如請求項13所述之方法,進一步包括以下步驟: 在該第一時間段之後,接收基於由該UE對該第一DL-PRS集合的量測的一第一量測報告;及 在該第二時間段之後,接收基於由該UE對該第二DL-PRS集合的量測的一第二量測報告。
  15. 如請求項9所述之方法,其中該第一時變RS-P配置進一步包括與一第三時間段相關聯的一第三RS-P配置。
  16. 如請求項15所述之方法,進一步包括以下步驟: 向該UE發送一第二時變RS-P配置,該第二時變RS-P配置相對於該第一時變RS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其組合方面不同。
  17. 如請求項9所述之方法,其中該第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其一組合方面不同。
  18. 一種由一使用者裝備(UE)執行的無線通訊的方法,包括以下步驟: 從一網路元件接收一第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括一第一SRS-P配置、一第二SRS-P配置和用於在該第一RS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件; 根據該第一SRS-P配置,在一第一時間段期間向至少一個基地台發送一第一SRS-P集合; 基於對該事件觸發條件的監視,決定從該第一SRS-P配置轉換到該第二SRS-P配置; 向該至少一個基地台發送該轉換的一指示;及 在發送轉換指示之後,根據該第二SRS-P配置,在一第二時間段期間向該至少一個基地台發送一第二SRS-P集合。
  19. 如請求項18所述之方法,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  20. 如請求項18所述之方法,其中該至少一個事件觸發條件包括該UE的一運動條件、該UE的一位置、與該UE相關聯的一通道特性、與該UE相關聯的一導航路線條件、與該UE相關聯的一衛星群集條件,或其一組合。
  21. 如請求項18所述之方法,進一步包括以下步驟: 從該網路元件接收一第二變化SRS-P配置,該第二變化SRS-P配置相對於該第一變化SRS-P配置在一或多個RS-P配置參數、一或多個相關聯的時間段或其一組合方面不同。
  22. 如請求項18所述之方法,其中該第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其一組合方面不同。
  23. 一種由一網路元件執行的無線通訊的方法,包括以下步驟: 決定一第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括一第一SRS-P配置、一第二SRS-P配置以及用於在該第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;及 向一使用者裝備(UE)發送該第一變化SRS-P配置。
  24. 如請求項23所述之方法,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  25. 如請求項23所述之方法,亦包括: 根據該第一SRS-P配置,在一第一時間段期間從該UE接收一第一SRS-P集合; 從該UE接收從該第一SRS-P配置轉換到該第二SRS-P配置的一指示;及 在接收到該轉換指示之後,根據該第二SRS-P配置,在一第二時間段期間從該UE接收一第二SRS-P集合。
  26. 如請求項23所述之方法,其中該至少一個事件觸發條件包括該UE的一運動條件、該UE的一位置、與該UE相關聯的一通道特性、與該UE相關聯的一導航路線條件、與該UE相關聯的一衛星群集條件,或其一組合。
  27. 如請求項23所述之方法,進一步包括以下步驟: 向該UE發送一第二變化SRS-P配置,該第二變化SRS-P配置相對於該第一變化SRS-P配置在一或多個SRS-P配置參數、一或多個相關聯的時間段或其一組合方面不同。
  28. 如請求項27所述之方法,其中該第一SRS-P配置和第二SRS-P配置在SRS-P資源集、SRS-P資源、週期性、重複因數或其一組合方面不同。
  29. 一種使用者裝備(UE),包括: 一記憶體; 至少一個收發器;和 通訊地耦合到該記憶體和該至少一個收發器的至少一個處理器,該至少一個處理器被配置為: 從一網路元件接收一第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與一第一時間段相關聯的一第一RS-P配置和與一第二時間段相關聯的一第二RS-P配置; 根據該第一RS-P配置,在該第一時間段期間與至少一個基地台通訊一第一RS-P集合;及 根據該第二RS-P配置,在該第二時間段期間與該至少一個基地台通訊一第二RS-P集合。
  30. 如請求項29所述之UE,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  31. 一種網路元件,包括: 一記憶體; 至少一個收發器;和 通訊地耦合到該記憶體和該至少一個收發器的至少一個處理器,該至少一個處理器被配置為: 決定一第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與一第一時間段相關聯的一第一RS-P配置和與一第二時間段相關聯的一第二RS-P配置;及 向一使用者裝備(UE)發送該第一時變RS-P配置。
  32. 如請求項31所述之UE,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  33. 一種使用者裝備(UE),包括: 一記憶體; 至少一個收發器;和 通訊地耦合到該記憶體和該至少一個收發器的至少一個處理器,該至少一個處理器被配置為: 從一網路元件接收一第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括一第一SRS-P配置、一第二SRS-P配置以及用於在該第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件; 根據該第一SRS-P配置,在一第一時間段期間向至少一個基地台發送一第一SRS-P集合; 基於對該事件觸發條件的監視,決定從該第一SRS-P配置轉換到該第二SRS-P配置; 向該至少一個基地台發送該轉換的一指示;及 在發送轉換指示之後,根據該第二SRS-P配置,在一第二時間段期間向該至少一個基地台發送一第二SRS-P集合。
  34. 如請求項33所述之UE,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  35. 一種網路元件,包括: 一記憶體; 至少一個收發器;和 通訊地耦合到該記憶體和該至少一個收發器的至少一個處理器,該至少一個處理器被配置為: 決定一第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括一第一SRS-P配置、一第二SRS-P配置以及用於在該第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;及 向一使用者裝備(UE)發送該第一變化SRS-P配置。
  36. 如請求項35所述之網路元件,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  37. 一種使用者裝備(UE),包括: 用於從一網路元件接收一第一時變用於定位的參考信號(RS-P)配置的構件,該第一時變RS-P配置包括與一第一時間段相關聯的一第一RS-P配置和與一第二時間段相關聯的一第二RS-P配置; 用於根據該第一RS-P配置在該第一時間段期間與至少一個基地台通訊一第一RS-P集合的構件;和 用於根據該第二RS-P配置在該第二時間段期間與該至少一個基地台通訊一第二RS-P集合的構件。
  38. 如請求項37所述之UE,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  39. 一種網路元件,包括: 用於決定一第一時變用於定位的參考信號(RS-P)配置的構件,該第一時變RS-P配置包括與一第一時間段相關聯的一第一RS-P配置和與一第二時間段相關聯的一第二RS-P配置;和 用於向一使用者裝備(UE)發送該第一時變RS-P配置的構件。
  40. 如請求項39所述之網路元件,其中該第一RS-P配置和第二RS-P配置在RS-P資源集、RS-P資源、週期性、重複因數或其一組合方面不同。
  41. 一種使用者裝備(UE),包括: 用於從一網路元件接收一第一變化用於定位的探測參考信號(SRS-P)配置的構件,該第一變化SRS-P配置包括一第一SRS-P配置、一第二SRS-P配置以及用於在該第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件; 用於根據該第一SRS-P配置在一第一時間段期間向至少一個基地台發送一第一SRS-P集合的構件; 用於基於對該事件觸發條件的監視來決定從該第一SRS-P配置轉換到該第二SRS-P配置的構件; 用於向該至少一個基地台發送該轉換的一指示的構件;和 用於在發送轉換指示之後根據該第二SRS-P配置在一第二時間段期間向該至少一個基地台發送一第二SRS-P集合的構件。
  42. 如請求項42所述之UE,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  43. 一種網路元件,包括: 用於決定一第一變化用於定位的探測參考信號(SRS-P)配置的構件,該第一變化SRS-P配置包括一第一SRS-P配置、一第二SRS-P配置以及用於在該第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件;和 用於向一使用者裝備(UE)發送該第一變化SRS-P配置的構件。
  44. 如請求項43所述之網路元件,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  45. 一種儲存一指令集的非暫態電腦可讀取媒體,該等指令集包括一或多個指令,當該等指令被一使用者裝備(UE)的一或多個處理器執行時,使該UE: 從一網路元件接收一第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與一第一時間段相關聯的一第一RS-P配置和與一第二時間段相關聯的一第二RS-P配置; 根據該第一RS-P配置,在該第一時間段期間與至少一個基地台通訊一第一RS-P集合;及 根據該第二RS-P配置,在該第二時間段期間與該至少一個基地台通訊一第二RS-P集合。
  46. 如請求項45所述之非暫態電腦可讀取媒體,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  47. 一種儲存指令集的非暫態電腦可讀取媒體,該等指令集包括一或多個指令,當該等指令被一網路元件的一或多個處理器執行時,使該網路元件: 決定一第一時變用於定位的參考信號(RS-P)配置,該第一時變RS-P配置包括與一第一時間段相關聯的一第一RS-P配置和與一第二時間段相關聯的一第二RS-P配置;及 向一使用者裝備(UE)發送該第一時變RS-P配置。
  48. 如請求項47所述之非暫態電腦可讀媒體,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
  49. 一種儲存一指令集的非暫態電腦可讀取媒體,該等指令集包括一或多個指令,當該等指令被一UE的一或多個處理器執行時,使該UE: 從一網路元件接收一第一變化用於定位的探測參考信號(SRS-P)配置,該第一變化SRS-P配置包括一第一SRS-P配置、一第二SRS-P配置以及用於在該第一SRS-P配置和第二SRS-P配置之間轉換的至少一個事件觸發條件; 根據該第一SRS-P配置,在一第一時間段期間向至少一個基地台發送該第一SRS-P集合; 基於對該事件觸發條件的監視,決定從該第一SRS-P配置轉換到該第二SRS-P配置; 向該至少一個基地台發送該轉換的一指示;及 在發送轉換指示之後,根據該第二SRS-P配置在一第二時間段期間向該至少一個基地台發送一第二SRS-P集合。
  50. 如請求項49所述之非暫態電腦可讀媒體,其中該網路元件包括一服務基地台、一位置管理功能(LMF)、一位置伺服器或其一組合。
TW111101087A 2021-02-18 2022-01-11 變化用於定位的參考信號配置 TW202234928A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GR20210100107 2021-02-18
GR20210100107 2021-02-18
PCT/US2022/070106 WO2022178467A1 (en) 2021-02-18 2022-01-10 Varying reference signal for positioning configurations
WOPCT/US22/70106 2022-01-10

Publications (1)

Publication Number Publication Date
TW202234928A true TW202234928A (zh) 2022-09-01

Family

ID=80225421

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101087A TW202234928A (zh) 2021-02-18 2022-01-11 變化用於定位的參考信號配置

Country Status (7)

Country Link
US (1) US20240080793A1 (zh)
EP (1) EP4295624A1 (zh)
JP (1) JP2024507158A (zh)
KR (1) KR20230144016A (zh)
CN (1) CN116848901A (zh)
TW (1) TW202234928A (zh)
WO (1) WO2022178467A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092523A1 (zh) * 2022-11-01 2024-05-10 北京小米移动软件有限公司 侧行链路定位消息的发送方法、接收方法及其装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623282B2 (ja) * 2015-08-07 2019-12-18 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 差別化された測位

Also Published As

Publication number Publication date
CN116848901A (zh) 2023-10-03
EP4295624A1 (en) 2023-12-27
WO2022178467A1 (en) 2022-08-25
KR20230144016A (ko) 2023-10-13
US20240080793A1 (en) 2024-03-07
JP2024507158A (ja) 2024-02-16

Similar Documents

Publication Publication Date Title
TW202130200A (zh) 具有進階使用者設備輔助之低層級使用者設備定位
TW202145813A (zh) 未配置量測間隙時的最小定位參考信號(prs)處理
TW202239224A (zh) 可重配智慧表面輔助定位的操作調整
TW202232973A (zh) 具有用於用戶設備與無線網路節點之間的鏈路的視線條件的位置輔助資料
TW202234923A (zh) 可重構智能表面輔助定位
TW202231101A (zh) 雙差分往返時間量測
KR20230087464A (ko) 송신 수신 포인트와 연관된 다수의 포지셔닝 레퍼런스 신호 측정 어케이전들의 측정 정보를 갖는 측정 리포트
JP2022552639A (ja) モバイルデバイスベース測位のための実時間差(rtd)報告
TW202239247A (zh) 基於可重新配置智慧表面輔助的往返時間的使用者設備定位
JP2024510231A (ja) 再構成可能インテリジェントサーフェス補助測位のためのロケーション支援データ
TW202249514A (zh) 用於基於出發角(aod)的定位的探測參考訊號(srs)的可重配置智慧表面(ris)波束掃瞄
TW202234924A (zh) 獲得參考用戶設備的位置以用於一個或多個其他用戶設備的位置確定
TW202239246A (zh) 可重配置智慧表面(ris)輔助的基於使用者設備(ue)的往返時間(rtt)定位
KR20230152000A (ko) 재구성가능한 지능형 표면 보조형 포지셔닝을 위한사이드링크 기준 신호
TW202234928A (zh) 變化用於定位的參考信號配置
TW202308410A (zh) 用於時序誤差群組(teg)報告的信號傳遞
TW202228452A (zh) 用於定位量測時機的參考信號的方差指示
TW202231100A (zh) 精簡管理負擔波束簡檔參數化
TW202203666A (zh) 傳達與用於定位的參考訊號相關聯的峰值幅度資料
KR20230041685A (ko) 특정 시간에 대한 사용자 장비 포지셔닝 추정
TW202231004A (zh) 增加的離開角量測細微性
TW202425692A (zh) 用於帶有參考信號跳頻的設備的組延遲裕度
TW202308414A (zh) 用於定位的波束形狀報告
TW202241157A (zh) 雙差分計時程序以及對所需的定位用參考信號測量集合的指示
TW202404384A (zh) 基於連接智慧邊緣(cie)的定位過程