TW202220207A - 使用底部崩潰電流路徑的雪崩保護電晶體及其形成方法 - Google Patents

使用底部崩潰電流路徑的雪崩保護電晶體及其形成方法 Download PDF

Info

Publication number
TW202220207A
TW202220207A TW110101530A TW110101530A TW202220207A TW 202220207 A TW202220207 A TW 202220207A TW 110101530 A TW110101530 A TW 110101530A TW 110101530 A TW110101530 A TW 110101530A TW 202220207 A TW202220207 A TW 202220207A
Authority
TW
Taiwan
Prior art keywords
conductivity type
buried
type well
region
source
Prior art date
Application number
TW110101530A
Other languages
English (en)
Other versions
TWI788755B (zh
Inventor
蘇亮宇
蔡宏智
柳瑞興
雷明達
楊彰臺
夏德殷
鐘于彰
楊南盈
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202220207A publication Critical patent/TW202220207A/zh
Application granted granted Critical
Publication of TWI788755B publication Critical patent/TWI788755B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0626Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a localised breakdown region, e.g. built-in avalanching region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/027Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Bipolar Transistors (AREA)

Abstract

一種雪崩保護場效電晶體在半導體基底內包括:主體半導體層及經摻雜主體接觸區,具有第一導電類型的摻雜;以及源極區、汲極區,具有第二導電類型的摻雜。隱埋的第一導電類型阱可位於半導體基底內。隱埋的第一導電類型阱位於汲極區之下,且在平面圖中與汲極區具有面積交疊,且在垂直方向上與汲極區間隔開,並且具有比主體半導體層高的第一導電類型的摻雜劑的原子濃度。場效電晶體的配置在雪崩崩潰期間誘導超過90%的碰撞電離電荷從源極區流動、穿過隱埋的第一導電類型阱、並撞擊在汲極區的底表面上。

Description

使用底部崩潰電流路徑的雪崩保護電晶體及其形成方法
對於例如汽車應用及電壓調節器模組(voltage regulator module,VRM)應用等電力應用來說,電力回路或電感電路中的寄生電壓可導致明顯的電壓尖峰和/或振鈴(ringing)。元件可在切換迴圈期間進入到雪崩模式中,且可能會因電荷雪崩在結構層面上所引起的損壞而導致性能下降。為防止元件在雪崩崩潰期間受到此損壞,功率元件需要在非鉗制電感切換(unclamped inductive switching,UIS)事件下具備耐用性。為維持電路性能且防止功率半導體元件在其壽命期間出現功能故障,需要高的單脈衝雪崩能量(single pulse avalanche energy,E AS)及高的重複雪崩能量(repetitive avalanche energy,E AR)。
以下公開提供用於實施所提供主題的不同特徵的許多不同實施例或實例。以下闡述元件及排列的具體實例以簡化本公開。當然,這些僅為實例且不旨在進行限制。舉例來說,以下說明中將第一特徵形成在第二特徵“之上”或第二特徵“上”可包括其中第一特徵與第二特徵被形成為直接接觸的實施例,且也可包括其中第一特徵與第二特徵之間可形成有額外特徵從而使得所述第一特徵與所述第二特徵可能不直接接觸的實施例。另外,本公開可能在各種實例中重複使用參考編號和/或字母。這種重複是出於簡潔及清晰的目的,而非自身指示所論述的各種實施例和/或配置之間的關係。
此外,為易於說明,本文中可使用例如“在…之下(beneath)”、“在…下方(below)”、“下部的(lower)”、“在…上方(above)”、“上部的(upper)”等空間相對性用語來闡述圖中所說明的一個元件或特徵與另一(其他)元件或特徵的關係。除圖中所繪示的定向之外,所述空間相對性用語還旨在囊括元件在使用或操作中的不同定向。裝置可具有其他定向(旋轉90度或處於其他定向),且本文中所使用的空間相對性描述語可同樣相應地進行解釋。
本公開大體來說涉及半導體元件,且具體來說涉及使用底部崩潰電流路徑的雪崩保護電晶體及其形成方法。
在半導體元件的電力應用中,寄生電感可引發高電壓過衝且導致半導體元件中的導通電流(on-current)降級。舉例來說,在電壓過衝狀況下在100小時的應力下通常會觀測到導通電流降低大約10%。導通電流降級的原因可能是由於在電荷載流子雪崩事件(avalanche event)期間在閘極介電質的汲極側邊緣處發生碰撞電離。本公開的實施例提供能內置地保護閘極介電質使其免於雪崩崩潰的半導體結構。本公開的實施例半導體結構可在高電壓、高電流和/或高速切換狀況下提供出色可靠性而不會發生性能降級或使性能降級達到最小。
舉例來說,可通過對與場效電晶體的主體區具有相同導電類型的電摻雜劑進行離子植入,以在場效電晶體(field effect transistor,FET)內形成隱埋的經摻雜阱。此種具有隱埋的經摻雜阱的場效電晶體可具有在汲極區的底部處引發崩潰而不會在汲極區的側壁處引發崩潰的配置。隱埋的經摻雜阱的功能與齊納二極體(Zener diode)相似。汲極區與上覆在隱埋的經摻雜阱上的下伏半導體材料部分形成p-n接面(p-n junction)。下伏半導體材料部分可以是主體半導體層或隱埋的阱延伸區。
設置在汲極區的底部處的雪崩崩潰路徑可提高場效電晶體可在電壓擺動期間吸收的單脈衝雪崩能量(E AS)及重複雪崩能量(E AR)。隱埋的經摻雜阱可通過全面底部崩潰植入或通過局部底部崩潰植入來形成。下文詳細闡述本公開的實施例的各個方面。
參考圖1A,說明根據本公開實施例的第一示例性結構,所述第一示例性結構包括半導體基底8。半導體基底8的至少上部部分包括具有第一導電類型的摻雜的半導體材料層,所述半導體材料層隨後用於形成場效電晶體的主體區,且在本文中被稱為主體半導體層709。半導體基底8可以是整體上包含半導體材料的塊狀基底,例如厚度處於500微米到1 mm範圍中的可市售的單晶矽基底。
可穿過半導體基底8的前表面(即,頂表面)形成淺溝渠。舉例來說,可在半導體基底8的前表面之上施加光阻層,且可以微影方式將所述光阻層圖案化以覆蓋每一元件區。元件區可以是主體半導體層709的隨後可用於形成半導體元件(例如,場效電晶體)的相應部分。可實行蝕刻製程(例如,反應性離子蝕刻製程)以使半導體基底8的未遮蔽部分凹陷,從而形成從包括半導體基底8的頂表面的水平面向下突出的淺溝渠。所述淺溝渠可在側向上環繞半導體基底8的隨後可形成有相應半導體元件的上部部分。可在所述淺溝渠中沉積至少一種介電材料(例如,氧化矽)。可從包括半導體基底8的頂表面的水平面上方移除所述至少一種介電材料的多餘部分。舉例來說,可使用化學機械平坦化(chemical mechanical planarization,CMP)製程移除所述至少一種介電材料的多餘部分。所述至少一種介電材料的填充淺溝渠的剩餘部分構成淺溝渠隔離結構720。淺溝渠隔離結構720的深度可處於80 nm到800 nm(例如160 nm到400 nm)範圍中,但也可使用更小及更大的深度。
主體半導體層709可具有第一導電類型的摻雜,所述第一導電類型可以是p型或n型。主體半導體層709可與所提供的初始半導體基底具有相同的摻雜水平,或可具有不同的摻雜水平,所述不同的摻雜水平可通過植入第一導電類型的摻雜劑或通過外延沉積經摻雜半導體材料來進行調整。在一個實施例中,主體半導體層709整體上可具有均勻的摻雜劑濃度。在說明性實例中,主體半導體層709可包含原子濃度處於1.0 × 10 14/cm 3到3.0 × 10 17/cm 3(例如1.0 × 10 15/cm 3到1.0 × 10 17/cm 3)範圍中的第一導電類型的摻雜劑。
參考圖1B,可通過實行離子植入製程形成隱埋的第一導電類型阱711及隱埋的第二導電類型阱712。隱埋的第一導電類型阱711可以第一毯覆式離子植入製程(即,不使用植入罩幕的植入)來形成。第一毯覆式離子植入製程可將第一導電類型的摻雜劑植入到位於約淺溝渠隔離結構720的底表面的深度處的植入深度。由於所植入的第一導電類型的摻雜劑的深度的隨機性,隱埋的第一導電類型阱711可形成有有限的厚度。此有限的厚度可處於20 nm到600 nm(例如40 nm 到300 nm)範圍中。可將隱埋的第一導電類型阱711與主體半導體層709之間的界面界定為輪廓線(contour line),在所述輪廓線處第一導電類型的摻雜劑的原子濃度是在第一毯覆式離子植入製程之前主體半導體層709中的第一導電類型的摻雜劑的平均原子濃度的200%。主體半導體層709與隱埋的第一導電類型阱711之間的平坦界面可處於200 nm到2,000 nm範圍中,但也可使用更小及更大的深度。隱埋的第一導電類型阱711中的第一導電類型的摻雜劑的平均原子濃度可處於1.0 × 10 17/cm 3到1.0 × 10 19/cm 3(例如3.0 × 10 17/cm 3到3.0 × 10 18/cm 3)範圍中。隱埋的第一導電類型阱711中的第一導電類型的摻雜劑的平均原子濃度可足夠高以在雪崩崩潰期間為電荷載流子提供足夠的電導率,且可足夠低以防止在場效電晶體的正常操作期間出現的低電壓下發生過早崩潰。
隱埋的第一導電類型阱711的頂表面可位於包括淺溝渠隔離結構720的底表面的水平面上方。在此實施例中,每一主體半導體層709可在側向上局限在相應淺溝渠隔離結構720的側壁內,且可在垂直方向上局限在隱埋的第一導電類型阱711的頂表面與半導體基底8的前表面(即,頂表面)之間。最初在圖1A的處理步驟處提供且現在位於隱埋的第一導電類型阱711之下的主體半導體層709的剩餘部分隨後不用作場效電晶體的主體區,且如此,在後文被稱為基底半導體層719。基底半導體層719可具有與主體半導體層709相同的第一導電類型的摻雜劑的原子濃度。在一個實施例中,隱埋的第一導電類型阱711可形成為在所有元件區下面且在所有淺溝渠隔離結構720下面連續地延伸的單一個連續層。另外,隱埋的第一導電類型阱711的底表面可形成在包括淺溝渠隔離結構720的底表面的水平面上方,且可形成多個分開的隱埋的第一導電類型阱711。在此實施例中,每一隱埋的第一導電類型阱711可在側向上被相應的淺溝渠隔離結構720環繞,且可在側向上接觸相應的淺溝渠隔離結構720。
可以第二毯覆式離子植入製程形成隱埋的第二導電類型阱712,所述第二毯覆式離子植入製程可在第一毯覆式離子植入製程之後或之前實行。第二毯覆式離子植入製程可將第二導電類型的摻雜劑植入到可位於淺溝渠隔離結構720的底表面的深度下方的植入深度。由於所植入的第二導電類型的摻雜劑的深度的隨機性,隱埋的第二導電類型阱712可形成有有限的厚度。此有限的厚度可處於20 nm到600 nm(例如40 nm到300 nm)範圍中。隱埋的第二導電類型阱712與隱埋的第一導電類型阱711及基底半導體層719中的每一者之間可形成p-n接面。隱埋的第二導電類型阱712中的第二導電類型的摻雜劑的平均原子濃度可處於1.0 × 10 17/cm 3到1.0 × 10 19/cm 3(例如3.0 × 10 17/cm 3到3.0 × 10 18/cm 3)範圍中。隱埋的第二導電類型阱712中的第二導電類型的摻雜劑的平均原子濃度可足夠高以在雪崩崩潰期間為電荷載流子提供足夠的電導率以用作輔助導電路徑,且可足夠低以防止隱埋的第二導電類型阱712用作在場效電晶體的正常操作期間出現的低電壓下導電路徑。
雖然使用依次形成隱埋的第一導電類型阱711及隱埋的第二導電類型阱712的實施例來闡述形成第一示例性結構的製程,但可在並行處理步驟或同步處理步驟中實行形成隱埋的第一導電類型阱711和/或隱埋的第二導電類型阱712的離子植入製程中的至少一者的實施例顯然涵蓋於本文中。一般來說,可在用於形成閘極堆疊結構、源極區、汲極區及經摻雜主體接觸區的處理步驟之前、之間或之後形成隱埋的第一導電類型阱711和/或隱埋的第二導電類型阱712。在隱埋的第一導電類型阱711在半導體基底8的整個面積之上形成為連續層的實施例中,隱埋的第一導電類型阱711可與將在隨後形成的閘極堆疊結構、源極區、汲極區及經摻雜主體接觸區中的每一者具有面積交疊。就電摻雜劑的物種而言,在離子植入製程期間,硼或銦可用作p型摻雜劑,且磷、砷和/或銻可用作n型摻雜劑。
參考圖1C,可使用第一遮蔽式離子植入製程將第一導電類型的摻雜劑植入到主體半導體層709的至少一個表面區中以形成至少一個經摻雜主體接觸區731。所述至少一個經摻雜主體接觸區731中的每一者可以是具有第一導電類型的摻雜的重度摻雜半導體區,且可用於提供與主體半導體層709的電接觸。在一個實施例中,所述至少一個經摻雜主體接觸區731可被形成為與淺溝渠隔離結構720相鄰。所述至少一個經摻雜主體接觸區731可經重度摻雜以提供高的電導率。舉例來說,所述至少一個經摻雜主體接觸區731可包含平均原子濃度處於5.0 × 10 19/cm 3到2.0 × 10 21/cm 3範圍中的第一導電類型的摻雜劑。每一經摻雜主體接觸區731的平坦底表面的深度可處於50 nm到200 nm範圍中,但也可使用更小及更大的深度。所述至少一個經摻雜主體接觸區731可在垂直方向上與隱埋的第一導電類型阱711間隔開。
可使用第二遮蔽式離子植入製程將第一導電類型的額外摻雜劑植入到主體半導體層709中以形成至少一個源極側第一導電類型阱721。第二遮蔽式離子植入製程的離子植入能量可被選擇成使得每一源極側第一導電類型阱721從半導體基底8的前表面(即,主體半導體層709的頂表面)垂直延伸到隱埋的第一導電類型阱711的頂表面。在一個實施例中,所述至少一個源極側第一導電類型阱721可將隱埋的第一導電類型阱711在垂直方向上連接到相應的經摻雜主體接觸區731。在一個實施例中,所述至少一個源極側第一導電類型阱721可被形成為與淺溝渠隔離結構720相鄰。所述至少一個源極側第一導電類型阱721可具有比主體半導體層709高的第一導電類型的摻雜劑的原子濃度。可將所述至少一個源極側第一導電類型阱721摻雜到這樣的程度:提供足夠的電阻率以使得所述至少一個源極側第一導電類型阱721能夠在雪崩崩潰期間用作導電路徑,但在場效電晶體的正常操作期間不足以用作導電路徑。舉例來說,所述至少一個源極側第一導電類型阱721可包含平均原子濃度處於1.0 × 10 18/cm 3到5.0 × 10 19/cm 3範圍中的第一導電類型的摻雜劑。在一個實施例中,每一經摻雜主體接觸區731可接觸源極側第一導電類型阱721與淺溝渠隔離結構720的組合,且可在側向上由源極側第一導電類型阱721與淺溝渠隔離結構720的組合限界。
可使用第三遮蔽式離子植入製程將第二導電類型的摻雜劑植入到主體半導體層709的表面區中以形成汲極延伸區736。汲極延伸區736可以是具有第二導電類型的摻雜的區且用作汲極區的位於閘極介電質的端部之下的延伸區。汲極延伸區736可通過確定p-n接面在場效電晶體的汲極側上的位置來確定場效電晶體的電壓-電流特性。此外,汲極延伸區736中的第二導電類型的摻雜劑的原子濃度確定在場效電晶體的操作期間汲極側上的電場分佈輪廓。在一個實施例中,場效電晶體可被設計成在源極側與汲極側之間具有不對稱的延伸分佈輪廓,且汲極延伸區736與將在隨後形成的閘極介電質的交疊面積可大於源極延伸區與所述閘極介電質之間的交疊面積。汲極延伸區736可具有第二導電類型的摻雜劑的原子濃度可低於將在隨後形成的深源極區及深汲極區中的第二導電性的摻雜劑的原子濃度。舉例來說,汲極延伸區736可包含平均原子濃度處於1.0 × 10 18/cm 3到1.0 × 10 20/cm 3範圍中的第二導電類型的摻雜劑。汲極延伸區736的底表面的深度可處於20 nm到100 nm範圍中,但也可使用更小及更大的深度。汲極延伸區736與源極側第一導電類型阱721可通過主體半導體層709的表面部分在側向上間隔開,所述主體半導體層709的表面部分中隨後會形成半導體通道。
參考圖1D,可通過沉積閘極介電層、閘極電極層及閘極頂蓋介電層以在半導體基底8的前表面之上依序形成所述閘極介電層、所述閘極電極層及所述閘極頂蓋介電層。可在閘極頂蓋介電層之上施加光阻層759並以微影方式將光阻層759圖案化成閘極圖案,所述閘極圖案可跨越主體半導體層709的相應部分延伸。舉例來說,光阻層759的以微影方式圖案化的每一部分可上覆在延伸到半導體基底8的前表面的主體半導體層709的一部分上。因此,可達成將閘極介電層、閘極電極層及閘極頂蓋介電層圖案化的製程。
可實行非等向性蝕刻製程以將光阻層759中的圖案轉移到閘極頂蓋介電層、閘極電極層及閘極介電層。可形成閘極介電質752、閘極電極754及閘極頂蓋介電質758的堆疊。每一閘極介電質752包括閘極介電層的經圖案化部分。每一閘極電極754包括閘極電極層的經圖案化部分。每一閘極頂蓋介電質包括閘極頂蓋介電層的經圖案化部分。隨後,可例如通過灰化移除光阻層759。每一閘極電極754可上覆在汲極延伸區736中的相應汲極延伸區的一部分上,且可上覆在源極側第一導電類型阱721中的相應源極側第一導電類型阱的周邊部分上。
參考圖1E,可通過遮蔽式離子植入製程且通過植入摻雜劑來形成至少一個源極延伸區734。經圖案化的光阻層757、閘極電極754及閘極頂蓋介電質758的組合可用作複合植入罩幕。可將第二導電類型的摻雜劑植入到源極側第一導電類型阱721的未被光阻層757、閘極電極754或閘極頂蓋介電質758遮蔽的部分中,以形成至少一個源極延伸區734。每一源極延伸區734可包含平均原子濃度處於5.0 × 10 18/cm 3到1.0 × 10 21/cm 3範圍中的第二導電類型的摻雜劑。每一源極延伸區734的底表面的深度可處於20 nm到100 nm範圍中,但也可使用更小及更大的深度。源極延伸區734可與汲極延伸區736具有相同的摻雜劑濃度或可具有比汲極延伸區736高的摻雜劑濃度。每一源極延伸區734可與汲極延伸區736通過主體半導體層709的表面部分及源極側第一導電類型阱721的表面部分在側向上間隔開,這會構成通道區735。每一通道區735可以是場效電晶體的半導體通道。隨後,可例如通過灰化移除光阻層757。
參考圖1F,可在閘極介電質752、閘極電極754及閘極頂蓋介電質758的堆疊上形成介電閘極間隙壁756。舉例來說,可共形地沉積並非等向性地蝕刻介電材料層以形成介電閘極間隙壁756。閘極介電質752、閘極電極754、閘極頂蓋介電質758及至少一個介電閘極間隙壁756的每一集合形成閘極堆疊結構(752、754、758、756)。
可在半導體基底8及閘極堆疊結構(752、754、758、756)之上施加光阻層755,且可將光阻層755圖案化以形成穿過光阻層755的開口。穿過光阻層755的開口可形成在閘極堆疊結構(752、754、758、756)周圍,以使得介電閘極間隙壁756的外邊緣在穿過光阻層755的開口內實體地暴露出。光阻層755覆蓋經摻雜主體接觸區731。
可將第二導電類型的摻雜劑植入到半導體基底8的未被光阻層755或包括元件(752、754、758、756)的閘極堆疊結構750遮蔽的表面部分中。半導體基底8的植入有第二導電類型的摻雜劑的表面部分包括至少一個深源極區732及深汲極區738。所述至少一個深源極區732及深汲極區738可重度摻雜有第二導電類型的摻雜劑以提供高的電導率。經植入區中的第二導電類型的摻雜劑的原子濃度可高於源極延伸區734及汲極延伸區736中的第二導電類型的摻雜劑的原子濃度。舉例來說,所述至少一個深源極區732及深汲極區738可包含平均原子濃度處於5.0 × 10 19/cm 3到2.0 × 10 21/cm 3(例如1.0 × 10 20/cm 3到1.0 × 10 21/cm 3)範圍中的第二導電類型的摻雜劑。隨後,可例如通過灰化移除光阻層755。至少一個深源極區732的底表面及深汲極區738的底表面的深度可處於100 nm到1,600 nm(例如200 nm到800 nm)範圍中,但也可使用更小及更大的深度。
深源極區732與源極延伸區734的每一組合構成源極區(732、734)。深汲極區738與汲極延伸區736的每一組合構成汲極區(736、738)。源極區(732、734)與汲極區(736、738)可通過位於相應閘極堆疊結構(752、754、758、756)之下的通道區735在側向上間隔開。在一個實施例中,源極側第一導電類型阱721可在側向上環繞源極區(732、734),且可與源極區(732、734)形成p-n接面。在一個實施例中,通道區735可位於閘極介電質752之下,且可在側向上延伸穿過源極側第一導電類型阱721的上部部分且穿過主體半導體層709的上部部分。
在一個實施例中,場效電晶體的源極區(732、734)與汲極區(736、738)可具有不對稱的延伸區,以使得汲極延伸區736在平面圖中與閘極電極754的面積交疊大於源極延伸區734在平面圖中與閘極電極754的面積交疊。平面圖是指沿著垂直於半導體基底8的前表面的方向的視圖。
參考圖1G、圖1H及圖1I,可在半導體基底8及閘極堆疊結構(752、754、758、756)之上形成接觸層級介電層770。圖1G是第一示例性結構的第一配置的垂直剖視圖,圖1H是所述第一示例性結構的第一配置的部分透視俯視圖,圖1H中未示出接觸層級介電層770,且圖1I是第一示例性結構的第二配置的部分透視俯視圖,圖1I中未示出接觸層級介電層770。圖1H及圖1I中所說明的兩種配置提供圖1G中所說明的相同的垂直剖視圖。每一俯視圖是平面圖,在所述平面圖中除省略接觸層級介電層770之外,也未示出被上覆的結構元件遮蔽的下伏的結構元件。
接觸層級介電層770可包含介電材料(例如,氧化矽或有機矽酸鹽玻璃),且可通過共形沉積製程或非共形沉積製程來形成。可例如通過化學機械平坦化製程將接觸層級介電層770的頂表面平坦化。可穿過接觸層級介電層770在經摻雜主體接觸區731、源極區(732、734)及汲極區(736、738)中的每一者之上形成通孔腔。
可在通孔腔中沉積金屬層,且所述金屬層可與經摻雜主體接觸區731的下伏半導體材料部分、源極區(732、734)的下伏半導體材料部分及汲極區(736、738)的下伏半導體材料部分發生反應以形成各種金屬半導體合金部分(741、742、748)。金屬半導體合金部分(741、742、748)可包括至少一個主體接觸金屬半導體合金部分741、至少一個源極接觸金屬半導體合金部分742及汲極接觸金屬半導體合金部分748。可例如通過濕式蝕刻製程移除金屬層的未反應部分,所述濕式蝕刻製程相對於金屬半導體合金部分(741、742、748)的金屬半導體合金材料而選擇性地移除金屬層的材料。在一個實施例中,金屬半導體合金部分(741、742、748)可包含金屬矽化物材料,例如矽化鎳、矽化鈦、矽化鎢等。其他適合的材料處於本公開的涵蓋範圍內。
可在通孔腔的剩餘體積中沉積至少一種導電材料。舉例來說,可在通孔腔的剩餘體積中沉積金屬襯墊材料(例如TiN、TaN或WN),且隨後可沉積導電填充材料(例如鎢)。可從包括接觸層級介電層770的頂表面的水平面上方移除所述至少一種導電材料的多餘部分。所述至少一種導電材料的填充通孔腔的剩餘部分構成接觸通孔結構(771、772、778)。接觸通孔結構(771、772、778)可包括:至少一個主體接觸通孔結構771,接觸相應的主體接觸金屬半導體合金部分741;至少一個源極接觸通孔結構772,接觸相應的源極接觸金屬半導體合金部分742;及汲極接觸通孔結構778,接觸汲極接觸金屬半導體合金部分748。
汲極區(736、738)與主體半導體層709形成p-n接面。隱埋的第一導電類型阱711在平面圖中可與整個汲極區(736、738)具有面積交疊,且可在垂直方向上通過主體半導體層709的側向延伸部分與汲極區(736、738)間隔開。隱埋的第一導電類型阱711可具有比主體半導體層709高的第一導電類型的摻雜劑的原子濃度。
隱埋的第一導電類型阱711可在形成閘極堆疊結構(752、754、758、756)之前通過實行離子植入製程來形成,且在平面圖中可與整個的源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731具有面積交疊。如果在形成閘極堆疊結構(752、754、758、756)之前實行離子植入製程,則隱埋的第一導電類型阱711的整個頂表面可以是平坦的,且隱埋的第一導電類型阱711的整個底表面可以是平坦的(即,位於水平面內)。
在一個實施例中,淺溝渠隔離結構720可在側向上環繞源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731。在一個實施例中,隱埋的第一導電類型阱711的頂表面與主體半導體層709之間的界面的整個閉合周邊連續地接觸淺溝渠隔離結構720的側壁。
一般來說,場效電晶體可具有以下配置:使得在雪崩崩潰期間超過90%(可超過95%、和/或超過98%、和/或超過99%)的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是汲極區(736、738)的底表面。汲極區(736、738)可包括汲極延伸區736及具有比汲極延伸區736大的深度的深汲極區738。在一個實施例中,場效電晶體可具有以下配置:使得在雪崩崩潰期間超過90%(可超過95%、和/或超過98%、和/或超過99%)的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是深汲極區738的底表面。深汲極區738的底表面可位於比汲極延伸區736的底表面大的深度處。少於10%(可少於5%、和/或少於2%、和/或少於1%)的電荷可撞擊在p-n接面的在汲極區(736、738)之間位於汲極區(736、738)的最底表面上方的側壁表面上,所述最底表面是深汲極區738的底表面。
參考圖2A及圖2B,可通過改變源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的佈局從第一示例性結構導出根據本公開實施例的第二示例性結構。具體來說,經摻雜主體接觸區731、源極區(732、734)及汲極區(736、738)可沿著水平方向自始至終以均勻的寬度排列,所述均勻的寬度是淺溝渠隔離結構720的兩個平行部分的側向分隔距離。第二示例性結構是第一示例性結構的替代配置。
參考圖3,可通過省略隱埋的第二導電類型阱712的形成從第一示例性結構導出根據本公開實施例的第三示例性結構。在此種情形中,隱埋的第一導電類型阱711的水平底表面可接觸基底半導體層719的頂表面。第三示例性結構是第一示例性結構和/或第二示例性結構的替代配置。
參考圖4,可通過省略隱埋的第二導電類型阱712的形成從第二示例性結構導出根據本公開實施例的第四示例性結構。在此種情形中,隱埋的第一導電類型阱711的水平底表面可接觸基底半導體層719的頂表面。另外,可通過改變源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的佈局從第三示例性結構導出第四示例性結構。
一般來說,可通過在用於形成閘極堆疊結構(752、754、758、756)、源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的處理步驟之前、之間或之後植入第一導電類型的摻雜劑來在半導體基底8內形成隱埋的第一導電類型阱711。此外,可在用於形成隱埋的第一導電類型阱711及隱埋的第二導電類型阱712的離子植入製程期間通過使用經圖案化光阻層作為植入罩幕來限制隱埋的第一導電類型阱711及隱埋的第二導電類型阱712中的每一者的側向幅度。第四示例性結構是第一示例性結構到第三示例性結構中的任一者的替代配置。
參考圖5A,說明根據本公開實施例的第五示例性結構。可通過限制隱埋的第一導電類型阱711及隱埋的第二導電類型阱712中的每一者的側向幅度從圖1C的第一示例性結構導出第五示例性結構。可在形成隱埋的第一導電類型阱711及隱埋的第二導電類型阱712的離子植入製程期間使用經圖案化離子植入罩幕層(例如,經圖案化光阻層)。在一個實施例中,可選擇隱埋的第一導電類型阱711的側向幅度,以使得隱埋的第一導電類型阱711在平面圖中與汲極區(736、738)具有面積交疊,且與經摻雜主體接觸區731不具有面積交疊。在一個實施例中,隱埋的第一導電類型阱711在平面圖中可與整個汲極區(736、738)具有面積交疊。在一個實施例中,可使用同一離子植入罩幕實行形成隱埋的第一導電類型阱711及隱埋的第二導電類型阱712的離子植入製程。可在形成閘極電極754之前在任何處理步驟處實行形成隱埋的第一導電類型阱711及隱埋的第二導電類型阱712的離子植入製程。在此實施例中,隱埋的第一導電類型阱711及隱埋的第二導電類型阱712中的每一者可具有相應的水平頂表面及相應的水平底表面。
在一個實施例中,可選擇隱埋的第一導電類型阱711的側向幅度,以使得源極側第一導電類型阱721連接經摻雜主體接觸區731與隱埋的第一導電類型阱711。隱埋的第二導電類型阱712可位於隱埋的第一導電類型阱711之下,且可與隱埋的第一導電類型阱711形成p-n接面。
參考圖5B,可實行圖1D到圖1I的處理步驟以形成閘極堆疊結構(752、754、758、756)、至少一個源極區(732、734)、汲極區(736、738)、接觸層級介電層770、金屬半導體合金部分(741、742、748)及接觸通孔結構(771、772、778)。汲極區(736、738)與主體半導體層709形成p-n接面。源極側第一導電類型阱721在側向上環繞源極區(732、734)且與源極區(732、734)形成p-n接面。通道區735位於閘極介電質752之下,且在側向上延伸穿過源極側第一導電類型阱721的上部部分且穿過主體半導體層709的上部部分。隱埋的第一導電類型阱711可在平面圖中與汲極區(736、738)的整個面積具有面積交疊,且在平面圖中與經摻雜主體接觸區731的面積不交疊。
場效電晶體可具有以下配置:使得在雪崩崩潰期間超過90%(可超過95%、和/或超過98%、和/或超過99%)的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是汲極區(736、738)的底表面。汲極區(736、738)可包括汲極延伸區736及具有比汲極延伸區736大的深度的深汲極區738。在一個實施例中,場效電晶體可具有以下配置:使得在雪崩崩潰期間超過90%(可超過95%、和/或超過98%、和/或超過99%)的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是深汲極區738的底表面。深汲極區738的底表面可位於比汲極延伸區736的底表面大的深度處。少於10%(可少於5%、和/或少於2%、和/或少於1%)的電荷可撞擊在p-n接面的在汲極區(736、738)之間位於汲極區(736、738)的最底表面上方的側壁表面上,所述最底表面是深汲極區738的底表面。第五示例性結構是第一示例性結構到第四示例性結構中的任一者的替代配置。
參考圖6,可通過改變源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的佈局從第五示例性結構導出根據本公開實施例的第六示例性結構。具體來說,經摻雜主體接觸區731、源極區(732、734)及汲極區(736、738)可沿著水平方向自始至終以均勻的寬度排列,所述均勻的寬度是淺溝渠隔離結構720的兩個平行部分的側向分隔距離。第六示例性結構是第一示例性結構到第五示例性結構中的任一者的替代配置。
參考圖7,可通過省略隱埋的第二導電類型阱712的形成從第五示例性結構導出根據本公開實施例的第七示例性結構。在此種情形中,隱埋的第一導電類型阱711的水平底表面可接觸主體半導體層709的水平表面。第七示例性結構是第一示例性結構到第六示例性結構中的任一者的替代配置。
參考圖8,可通過省略隱埋的第二導電類型阱712的形成從第六示例性結構導出根據本公開實施例的第八示例性結構。在此種情形中,隱埋的第一導電類型阱711的水平底表面可接觸基底半導體層719的頂表面。另外,可通過改變源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的佈局從第七示例性結構導出第八示例性結構。第八示例性結構是第一示例性結構到第七示例性結構中的任一者的替代配置。
參考圖9A,可通過省略圖1B的處理步驟從圖1E的第一示例性結構導出根據本公開實施例的第九示例性結構。換句話說,在圖1B的處理步驟處不形成隱埋的第一導電類型阱711及隱埋的第二導電類型阱712。
參考圖9B,可在半導體基底8及閘極電極754之上形成光阻層767,且可以微影方式將光阻層767圖案化,以在閘極電極754之間或在閘極電極754與淺溝渠隔離結構720之間形成開口。可將第一導電類型的摻雜劑植入到主體半導體層709的未被光阻層767或閘極電極754遮蔽的部分中,以形成隱埋的第一導電類型阱711。隱埋的第一導電類型阱711可具有受兩個閘極電極754之間的側向距離或受閘極電極754與淺溝渠隔離結構720之間的側向距離限制的側向幅度。隱埋的第一導電類型阱711的深度及材料組成可與在第一示例性結構中相同。可將第二導電類型的摻雜劑植入到主體半導體層709的未被光阻層767或閘極電極754遮蔽的部分中以形成隱埋的第二導電類型阱712。隱埋的第二導電類型阱712可具有受兩個閘極電極754之間的側向距離或受閘極電極754與淺溝渠隔離結構720之間的側向距離限制的側向幅度。隱埋的第二導電類型阱712的深度及材料組成可與在第一示例性結構中相同。隱埋的第二導電類型阱712位於隱埋的第一導電類型阱711之下,且與隱埋的第一導電類型阱711形成p-n接面。每一源極側第一導電類型阱721可與隱埋的第一導電類型阱711通過主體半導體層709的位於閘極介電質752之下的一部分在側向上間隔開。
參考圖9C,可實行圖1F及圖1G到圖1I的處理步驟以形成介電閘極間隙壁756、至少一個深源極區732及深汲極區738。汲極區(736、738)與主體半導體層709形成p-n接面。隱埋的第一導電類型阱711在平面圖中與汲極區(736、738)具有面積交疊,且與經摻雜主體接觸區731不具有面積交疊。在一個實施例中,隱埋的第一導電類型阱711可在平面圖中與整個汲極區(736、738)具有面積交疊,且與經摻雜主體接觸區731或與至少一個源極區(732、734)不具有任何面積交疊。源極側第一導電類型阱721在側向上環繞源極區(732、734),且與源極區(732、734)形成p-n接面。通道區735位於閘極介電質752之下,且在側向上延伸穿過源極側第一導電類型阱721的上部部分且穿過主體半導體層709的上部部分。
參考圖9D,可實行圖1G到圖1I的處理步驟以形成接觸層級介電層770、金屬半導體合金部分(741、742、748)及接觸通孔結構(771、772、778)。
場效電晶體可具有以下配置:使得在雪崩崩潰期間超過90%(可超過95%、和/或超過98%、和/或超過99%)的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是汲極區(736、738)的底表面。汲極區(736、738)可包括汲極延伸區736及具有比汲極延伸區736大的深度的深汲極區738。在一個實施例中,場效電晶體可具有以下配置:使得在雪崩崩潰期間超過90%(可超過95%、和/或超過98%、和/或超過99%)的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是深汲極區738的底表面。深汲極區738的底表面可位於比汲極延伸區736的底表面大的深度處。少於10%(可少於5%、和/或少於2%、和/或少於1%)的電荷可撞擊在p-n接面的在汲極區(736、738)之間位於汲極區(736、738)的最底表面上方的側壁表面上,所述最底表面是深汲極區738的底表面。第九示例性結構是第一示例性結構到第八示例性結構中的任一者的替代配置。
參考圖10,可通過改變源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的佈局從第九示例性結構導出根據本公開實施例的第十示例性結構。具體來說,經摻雜主體接觸區731、源極區(732、734)及汲極區(736、738)可沿著水平方向自始至終以均勻的寬度排列,所述均勻的寬度是淺溝渠隔離結構720的兩個平行部分的側向分隔距離。在此種情形中,隱埋的第一導電類型阱711及隱埋的第二導電類型阱712可位於汲極區(736、738)之下且延伸到位於淺溝渠隔離結構720的側壁之下的區。第十示例性結構是第一示例性結構到第九示例性結構中的任一者的替代配置。
參考圖11,可通過省略隱埋的第二導電類型阱712的形成從第九示例性結構導出根據本公開實施例的第十一示例性結構。在此種情形中,隱埋的第一導電類型阱711的水平底表面可接觸主體半導體層709的水平表面。第十一示例性結構是第一示例性結構到第十示例性結構中的任一者的替代配置。
參考圖12,可通過省略隱埋的第二導電類型阱712的形成從第十示例性結構導出根據本公開實施例的第十二示例性結構。在此種情形中,隱埋的第一導電類型阱711的水平底表面可接觸主體半導體層709的下伏部分。另外,可通過改變源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的佈局從第十一示例性結構導出第十二示例性結構。第十二示例性結構是第一示例性結構到第十一示例性結構中的任一者的替代配置。
參考圖13,可通過形成汲極側第一導電類型阱723從第九示例性結構導出根據本公開實施例的第十三示例性結構。可與汲極延伸區736使用同一離子植入罩幕來形成汲極側第一導電類型阱723。舉例來說,可在用於形成汲極延伸區736的離子植入罩幕(例如,經圖案化光阻層)存在於半導體基底8的前表面的同時植入第一導電類型的摻雜劑。形成汲極側第一導電類型阱723的離子植入製程的能量被選擇成使得汲極側第一導電類型阱723從汲極區(736、738)的底表面下方連續地延伸到隱埋的第一導電類型阱711的頂表面。
形成汲極側第一導電類型阱723的離子植入製程的劑量可被選擇成使得汲極側第一導電類型阱723中的平均摻雜劑濃度處於1.0 × 10 16/cm 3到3.0 × 10 18/cm 3範圍中。汲極側第一導電類型阱723中的第一導電類型的摻雜劑的平均原子濃度高於主體半導體層709中的第一導電類型的摻雜劑的原子濃度。選擇汲極側第一導電類型阱723中的第一導電類型的摻雜劑的平均摻雜劑濃度,以在雪崩崩潰狀況期間用作高能量電荷載流子的導電路徑,且在場效電晶體的正常操作期間不用作低能量電荷載流子的導電路徑。汲極側第一導電類型阱723上覆在隱埋的第一導電類型阱711上,且接觸隱埋的第一導電類型阱711,且具有比隱埋的第一導電類型阱711低的第一導電類型的摻雜劑的原子濃度。源極側第一導電類型阱721可與隱埋的第一導電類型阱711及汲極側第一導電類型阱723通過主體半導體層709的位於閘極介電質752之下的一部分在側向上間隔開。在替代實施例中,可在圖9B的處理步驟處使用經圖案化光阻層767作為離子植入罩幕層來形成汲極側第一導電類型阱723。
場效電晶體可具有以下配置:使得在雪崩崩潰期間超過90%(可超過95%、和/或超過98%、和/或超過99%)的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是汲極區(736、738)的底表面。汲極區(736、738)可包括汲極延伸區736及具有比汲極延伸區736大的深度的深汲極區738。在一個實施例中,場效電晶體可具有以下配置:使得在雪崩崩潰期間超過90%(可超過95%、和/或超過98%、和/或超過99%)的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是深汲極區738的底表面。深汲極區738的底表面可位於比汲極延伸區736的底表面大的深度處。少於10%(可少於5%、和/或少於2%、和/或少於1%)的電荷可撞擊在p-n接面的在汲極區(736、738)之間位於汲極區(736、738)的最底表面上方的側壁表面上,所述最底表面是深汲極區738的底表面。第十三示例性結構是第一示例性結構到第十二示例性結構中的任一者的替代配置。
參考圖14,可通過改變源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的佈局從第十三示例性結構導出根據本公開實施例的第十四示例性結構。具體來說,經摻雜主體接觸區731、源極區(732、734)及汲極區(736、738)可沿著水平方向自始至終以均勻的寬度排列,所述均勻的寬度是淺溝渠隔離結構720的兩個平行部分的側向分隔距離。在此種情形中,隱埋的第一導電類型阱711及隱埋的第二導電類型阱712可位於汲極區(736、738)之下且延伸到位於淺溝渠隔離結構720的側壁之下的區。第十四示例性結構是第一示例性結構到第十三示例性結構中的任一者的替代配置。
參考圖15,可通過省略隱埋的第二導電類型阱712的形成從第十三示例性結構導出根據本公開實施例的第十五示例性結構。在此種情形中,隱埋的第一導電類型阱711的水平底表面可接觸主體半導體層709的水平表面。第十五示例性結構是第一示例性結構到第十四示例性結構中的任一者的替代配置。
參考圖16,可通過省略隱埋的第二導電類型阱712的形成從第十四示例性結構導出根據本公開實施例的第十六示例性結構。在此種情形中,隱埋的第一導電類型阱711的水平底表面可接觸主體半導體層709的水平表面。第十六示例性結構是第一示例性結構到第十五示例性結構中的任一者的替代配置。
一般來說,上文所述的各種示例性結構中的每一者可包括場效電晶體。場效電晶體可包括:主體半導體層709,位於半導體基底8中且具有第一導電類型的摻雜;源極區(732、734)及汲極區(736、738),形成在半導體基底8的上部部分中,具有與第一導電類型相反的第二導電類型的摻雜,且通過通道區735在側向上間隔開;經摻雜主體接觸區731,形成在半導體基底8的上部部分中,具有第一導電類型的摻雜,且與源極區(732、734)間隔開;及隱埋的第一導電類型阱711,位於半導體基底8內,位於汲極區(736、738)之下,且在平面圖中與汲極區(736、738)具有面積交疊,在垂直方向上與汲極區(736、738)間隔開,且具有比主體半導體層709高的第一導電類型的摻雜劑的原子濃度。
在一個實施例中,源極側第一導電類型阱721可位於半導體基底8內,且可具有比主體半導體層709高的第一導電類型的摻雜劑的濃度。在一個實施例中,源極側第一導電類型阱721連接經摻雜主體接觸區731與隱埋的第一導電類型阱711。在一個實施例中,源極側第一導電類型阱721在側向上環繞源極區(732、734)且與源極區(732、734)形成p-n接面;且位於閘極介電質752之下的通道區735在側向上延伸穿過源極側第一導電類型阱721的上部部分且穿過主體半導體層709的上部部分。
在一個實施例中,源極側第一導電類型阱721與隱埋的第一導電類型阱711通過主體半導體層709的位於閘極介電質752之下的一部分在側向上間隔開。
在一個實施例中,源極區(732、734)與汲極區(736、738)具有不對稱的延伸區,以使得汲極延伸區736在平面圖中與閘極電極754的面積交疊比源極延伸區734在平面圖中與閘極電極754的面積交疊大。
在一個實施例中,汲極區(736、738)與主體半導體層709或汲極側第一導電類型阱723形成p-n接面,汲極側第一導電類型阱723上覆在隱埋的第一導電類型阱711上且具有比隱埋的第一導電類型阱711低的第一導電類型摻雜劑的原子濃度。
在一個實施例中,場效電晶體具有以下配置:使得在雪崩崩潰期間超過90%的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是汲極區(736、738)的底表面(其是最底表面),且少於10%的電荷撞擊在p-n接面的側壁表面上。
在一個實施例中,隱埋的第一導電類型阱711在平面圖中與源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的整個面積具有面積交疊。
在一個實施例中,淺溝渠隔離結構720可在側向上環繞源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731。隱埋的第一導電類型阱711的頂表面與主體半導體層709之間的界面的整個閉合周邊連續地接觸淺溝渠隔離結構720的側壁。
在一個實施例中,隱埋的第一導電類型阱711在平面圖中與汲極區(736、738)的整個面積具有面積交疊,且在平面圖中與經摻雜主體接觸區731的面積不交疊。
在一個實施例中,隱埋的第二導電類型阱712可位於隱埋的第一導電類型阱711之下,且可與隱埋的第一導電類型阱711形成p-n接面。
上文所述的示例性結構中的任一者之上的介電材料層中可形成有額外金屬內連結構。
參考圖17,說明根據本公開實施例的示例性結構,所述示例性結構可通過形成金屬內連結構(812、822、882、892)而從上述示例性結構中的任一者導出,所述金屬內連結構形成在位於每一場效電晶體800之上的介電材料層(810、820、880、890)中。每一場效電晶體800是雪崩保護場效電晶體,即被配置成在發生雪崩崩潰事件時提供元件保護的場效電晶體。具體來說,在雪崩崩潰事件期間通過誘導電荷載流子穿過隱埋的第一導電類型阱711並到達汲極區(736、738)的最底表面上來保護每一雪崩保護場效電晶體的閘極介電質752不會撞擊到電荷載流子,所述最底表面是深汲極區738的底表面。
金屬內連結構(812、822、882、892)可包括:第一金屬線812,形成在第一線層級介電層810中;第二整合線及通孔結構822,形成在第二線及通孔層級介電層820中;額外的整合線及通孔結構(未示出),形成在額外的線及通孔層級介電層(未示出)中;終端整合線及通孔結構882,形成在終端線及通孔層級介電層880中;接合墊892,形成在接合墊層級介電層890中。包括上覆在接合墊892上的開口的鈍化介電層898可形成在接合墊層級介電層890之上。
參考圖18,說明併入圖17的示例性結構的半導體晶片900。半導體晶片900可包括圖17中所說明的多個場效電晶體800。半導體晶片900中的所述多個場效電晶體800中的每一者可以是雪崩保護場效電晶體。
一般來說,半導體晶片900可包括位於半導體基底8中的至少一個雪崩保護場效電晶體800。至少一個雪崩保護場效電晶體800中的每一者包括:主體半導體層709,位於半導體基底8中且具有第一導電類型的摻雜;源極區(732、734)及汲極區(736、738),形成在半導體基底8的上部部分中,具有與第一導電類型相反的第二導電類型的摻雜,且通過通道區735在側向上間隔開;及隱埋的第一導電類型阱711,位於半導體基底8內,位於汲極區(736、738)之下,且在平面圖中與汲極區(736、738)具有面積交疊,在垂直方向上與汲極區(736、738)間隔開(通過主體半導體層709的側向延伸部分或通過汲極側第一導電類型阱723),且具有比主體半導體層709高的第一導電類型的摻雜劑的原子濃度。至少一個雪崩保護場效電晶體800中的每一者具有以下配置:在雪崩崩潰期間誘導超過90%的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是汲極區(736、738)的底表面,且少於10%的電荷撞擊在p-n接面的側壁表面上。
在一個實施例中,至少一個雪崩保護場效電晶體800中的每一者包括經摻雜主體接觸區731,所述經摻雜主體接觸區731形成在半導體基底8的上部部分中,具有第一導電類型的摻雜,且與源極區(732、734)間隔開。在一個實施例中,至少一個雪崩保護場效電晶體800中的每一者包括源極側第一導電類型阱721,源極側第一導電類型阱721位於半導體基底8內,具有比主體半導體層709高的第一導電類型的摻雜劑的原子濃度。
在一個實施例中,源極側第一導電類型阱721連接至少一個雪崩保護場效電晶體800中的每一者內的經摻雜主體接觸區731與隱埋的第一導電類型阱711。在一個實施例中,至少一個雪崩保護場效電晶體800中的每一者包括隱埋的第二導電類型阱712,隱埋的第二導電類型阱712位於相應的雪崩保護場效電晶體800的隱埋的第一導電類型阱711之下,且與所述相應的雪崩保護場效電晶體800的隱埋的第一導電類型阱711形成p-n接面。
參考圖19,說明在體現本公開的示例性結構的測試樣本及比較示例性測試樣本的雪崩崩潰期間的電壓-電流曲線圖。曲線1910表示在比較示例性測試樣本的雪崩崩潰期間的電流-電壓曲線,所述比較示例性測試樣本是通過移除隱埋的第一導電類型阱711及源極側第一導電類型阱721從圖4的第二示例性結構導出。曲線1920及1930表示在體現圖4的第二示例性結構的示例性測試樣本的雪崩崩潰期間的電流-電壓曲線,圖4的第二示例性結構的隱埋的第一導電類型阱711與源極側第一導電類型阱721具有不同的植入狀況。隱埋的第一導電類型阱711及源極側第一導電類型阱721的存在使得崩潰電壓降低約10%。然而,當場效電晶體記憶體在隱埋的第一導電類型阱711及源極側第一導電類型阱721時,在雪崩崩潰期間電流的量值增加了2.5倍到4.0倍。因此,本公開的實施例的場效電晶體提供抵抗雪崩崩潰的增強的保護。
根據本公開實施例,通過使用本公開實施例的底部雪崩崩潰結構改善元件傳輸線脈衝驟回(snapback)電流。傳輸線脈衝(Transmission line pulse,TLP)測量方法是用於表徵元件在應力作用下的靜電放電(electrostatic discharge,ESD)性能的測量方法。使用短脈衝寬度及快上升時間來仿效靜電放電事件期間的脈衝狀況。曲線1920及1930表明,本公開實施例可改善場效電晶體的ESD性能且改善非鉗制電感切換性能。相信,可通過優化用於形成隱埋的第一導電類型阱711的植入製程的能量及劑量來做出進一步改善。
圖20A到圖20D是根據本公開實施例的用於形成本公開的雪崩保護場效電晶體的步驟的流程圖。流程圖中的處理順序在實行處理步驟2090的時序上彼此不同,在所述步驟2090中在半導體基底8內形成隱埋的第一導電類型阱711。
一般來說,本公開的各種實施例說明形成半導體結構的方法。參考步驟2010,可提供包括具有第一導電類型的摻雜的主體半導體層709的半導體基底8,例如圖1A中所說明。參考步驟2020,可在半導體基底8的表面區中形成具有第一導電類型的摻雜的經摻雜主體接觸區731,例如圖1C、圖2A及圖2B、圖3、圖4、圖5A、圖5B、圖6、圖7、圖8、圖9A、圖10、圖11、圖13、圖14、圖15及圖16中所說明。參考步驟2030,可在半導體基底8之上形成包括閘極介電質752及閘極電極754的閘極堆疊結構(752、754、758、756),例如圖1D、圖2A及圖2B、圖3、圖4、圖5A、圖5B、圖6、圖7、圖8、圖9A、圖10、圖11、圖13、圖14、圖15及圖16中所說明。參考步驟2040,可通過植入與第一導電類型相反的第二導電類型的摻雜劑在半導體基底8的上部部分中形成源極區(732、734)及汲極區(736、738),例如圖1F、圖2A及圖2B、圖3、圖4、圖5A、圖5B、圖6、圖7、圖8、圖9A、圖10、圖11、圖13、圖14、圖15及圖16中所說明。源極區(732、734)與汲極區(736、738)可通過位於閘極堆疊結構(752、754、758、756)之下的通道區735在側向上間隔開。可在圖20A中所說明的步驟2010與步驟2020之間、在圖20B中所說明的步驟2020與步驟2030之間、在圖20C中所說明的步驟2030與步驟2040之間或在圖20D中所說明的步驟2040之後實行步驟2090。在步驟2090處,可在用於形成閘極堆疊結構(752、754、758、756)、源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的處理步驟之前、之間或之後通過植入第一導電類型的摻雜劑來在半導體基底8內形成隱埋的第一導電類型阱711。舉例來說,可在圖1B、圖1C、圖2A及圖2B、圖3、圖4、圖5A、圖5B、圖6、圖7、圖8、圖9A、圖9B、圖9C、圖10、圖11、圖13、圖14、圖15及圖16中所說明的處理步驟中的任一者中但不限於在上述處理步驟中的任一者中實行隱埋的第一導電類型阱711的形成。隱埋的第一導電類型阱711在平面圖中與汲極區(736、738)具有面積交疊,且在垂直方向上與汲極區(736、738)間隔開,且具有比主體半導體層709高的第一導電類型的摻雜劑的原子濃度。
一般來說,汲極區(736、738)與下伏的經p摻雜半導體材料(其可構成主體半導體層709的側向延伸部分或汲極側第一導電類型阱723)之間的p-n接面的底部部分在雪崩崩潰狀況期間崩潰,而p-n接面的側壁部分不會崩潰。在此配置中,碰撞電離的熱點不會出現在p-n接面的側壁部分處而是出現在p-n接面的底表面處。由於p-n接面的底表面在垂直方向上與閘極介電質752間隔開,因此本公開的雪崩保護場效電晶體800中可避免閘極介電質752的永久性損壞。
一般來說,用於形成第一示例性結構到第四示例性結構的全面底部崩潰植入製程簡單且有效。在閘極堆疊結構(752、754、758、756)下邊的額外植入可改變電勢輪廓分佈,這意味著底部崩潰植入優化也將影響閘極邊緣處的電場且可限制元件非鉗制電感切換(unclamped inductive switching,UIS)能力改善。根據本公開實施例,局部底部崩潰植入可用於形成第五示例性結構到第十六示例性結構中的任一者。局部底部崩潰植入可深可淺。所得的崩潰值可遠遠低於或略低於元件表面崩潰值。可基於應用來優化隱埋的第一導電類型阱711的深度、側向幅度及摻雜劑濃度分佈輪廓。在一些實施例中,具有有限的側向延伸的隱埋的第一導電類型阱711所提供的局部底部雪崩崩潰可改善雪崩保護場效電晶體800的重複雪崩能量(E AR)能力和/或單脈衝雪崩能量(E AS)能力。
本公開的各種實施例提供一種雪崩保護場效電晶體,所述雪崩保護場效電晶體通過使用隱埋的第一導電類型阱711作為場效電晶體的雪崩崩潰期間的導電路徑且通過在汲極區(736、738)的最底表面處而不是在汲極區(736、738)的側壁處引發碰撞電離而在雪崩崩潰期間具有出色的元件特性。隱埋的第一導電類型阱711可在雪崩狀況下替代形成在閘極結構750下面的通道區735來為電荷載流子提供導電路徑。通過提供替代導電路徑,各種實施例可顯著地改善元件雪崩耐用性。傳統元件中在雪崩狀況期間可能發生在閘極邊緣處的損壞可移動遠離在包括隱埋的第一導電類型阱711的實施例元件中的閘極邊緣。
上文所述的各種實施例可包括一種場效電晶體。所述場效電晶體可包括:主體半導體層709,位於半導體基底8中且具有第一導電類型的摻雜;源極區(732、734)及汲極區(736、738),形成在半導體基底8的上部部分中,具有與所述第一導電類型相反的第二導電類型的摻雜,且通過通道區735在側向上間隔開;經摻雜主體接觸區731,形成在半導體基底8的上部部分中,具有第一導電類型的摻雜,且與源極區(732、734)間隔開;以及隱埋的第一導電類型阱711,位於半導體基底8內,位於汲極區(736、738)之下,且在平面圖中與汲極區(736、738)具有面積交疊,在垂直方向上與汲極區(736、738)間隔開,且具有比主體半導體層709高的第一導電類型的摻雜劑的原子濃度。
在其他實施例中,半導體晶片900可包括位於半導體基底8中的至少一個雪崩保護場效電晶體800。所述至少一個雪崩保護場效電晶體800中的每一者包括:主體半導體層709,位於半導體基底8中且具有第一導電類型的摻雜;源極區(732、734)及汲極區(736、738),形成在半導體基底8的上部部分中,具有與所述第一導電類型相反的第二導電類型的摻雜,且通過通道區735在側向上間隔開;以及隱埋的第一導電類型阱711,位於半導體基底8內,位於汲極區(736、738)之下,且在平面圖中與汲極區(736、738)具有面積交疊,在垂直方向上與汲極區(736、738)間隔開(通過主體半導體層709的側向延伸部分或通過汲極側第一導電類型阱723),且具有比主體半導體層709高的第一導電類型的摻雜劑的原子濃度。所述至少一個雪崩保護場效電晶體800中的每一者具有以下配置:在雪崩崩潰期間誘導超過90%的碰撞電離電荷從源極區(732、734)流動、穿過隱埋的第一導電類型阱711,並撞擊在p-n接面的水平表面上,該水平表面是汲極區(736、738)的底表面,且少於10%的電荷撞擊在p-n接面的側壁表面上。
在其他實施例中,可提供一種形成半導體結構的方法。所述方法可包括提供半導體基底8的操作,半導體基底8包括具有第一導電類型的摻雜的主體半導體層709。所述方法可包括在半導體基底8的表面區中形成具有第一導電類型的摻雜的經摻雜主體接觸區731的操作。所述方法可包括在半導體基底8之上形成包括閘極介電質752及閘極電極754的閘極堆疊結構750(752、754、756、758)的操作。所述方法可包括通過植入與第一導電類型相反的第二導電類型的摻雜劑在半導體基底8的上部部分中形成源極區(732、734)及汲極區(736、738)的操作,其中源極區(732、734)與汲極區(736、738)通過在閘極堆疊結構750 (752、754、756、758)之下的通道區(735)在側向上間隔開。所述方法可包括在用於形成閘極堆疊結構750、源極區(732、734)、汲極區(736、738)及經摻雜主體接觸區731的處理步驟之前、之間或之後通過植入第一導電類型的摻雜劑在半導體基底8內形成隱埋的第一導電類型阱711的操作,其中隱埋的第一導電類型阱711在平面圖中與汲極區(732、734)具有面積交疊,且在垂直方向上與汲極區(732、734)間隔開,且具有比主體半導體層709高的第一導電類型的摻雜劑的原子濃度。
以上概述了數個實施例的特徵,以使所屬領域中的技術人員可更好地理解本公開的各方面。所屬領域中的技術人員應理解,他們可容易地使用本公開作為設計或修改其他製程及結構的基礎來施行與本文中所介紹的實施例相同的目的和/或實現與本文中所介紹的實施例相同的優點。所屬領域中的技術人員還應認識到,這些等效構造並不背離本公開的精神及範圍,而且他們可在不背離本公開的精神及範圍的情況下對其作出各種改變、代替及變更。
8:半導體基底 709:主體半導體層 711:隱埋的第一導電類型阱 712:隱埋的第二導電類型阱 719:基底半導體層 720:淺溝渠隔離結構 721:源極側第一導電類型阱 723:汲極側第一導電類型阱 731:經摻雜主體接觸區 732:深源極區 734:源極延伸區 735:通道區 736:汲極延伸區 738:深汲極區 741:主體接觸金屬半導體合金部分 742:源極接觸金屬半導體合金部分 748:汲極接觸金屬半導體合金部分 750:閘極堆疊結構 752:閘極介電質 754:閘極電極 755:光阻層 756:介電閘極間隙壁 757:光阻層 758:閘極頂蓋介電質 759、767:光阻層 770:接觸層級介電層 771:主體接觸通孔結構 772:源極接觸通孔結構 778:汲極接觸通孔結構 800:場效電晶體 810:第一線層級介電層 812:第一金屬線 820:第二線及通孔層級介電層 822:第二整合線及通孔結構 880:終端線及通孔層級介電層 882:終端整合線及通孔結構 890:接合墊層級介電層 892:接合墊 898:鈍化介電層 900:半導體晶片 1910、1920、1930:曲線 2010、2020、2030、2040、2090:步驟
結合附圖閱讀以下詳細說明,能最好地理解本公開的各方面。注意,根據本行業中的標準慣例,各種特徵並非按比例繪製。事實上,為使論述清晰起見,可任意增大或減小各種特徵的尺寸。 圖1A是根據本公開實施例的在形成淺溝渠隔離結構之後第一示例性結構的垂直剖視圖。 圖1B是根據本公開實施例的在形成隱埋的第一導電類型阱及隱埋的第二導電類型阱之後第一示例性結構的垂直剖視圖。 圖1C是根據本公開實施例的在形成至少一個源極側第一導電類型阱、至少一個經摻雜主體接觸區及汲極延伸區之後第一示例性結構的垂直剖視圖。 圖1D是根據本公開實施例的在形成至少一個閘極堆疊結構之後第一示例性結構的垂直剖視圖。 圖1E是根據本公開實施例的在形成至少一個源極延伸區之後第一示例性結構的垂直剖視圖。 圖1F是根據本公開實施例的在形成介電閘極間隙壁、至少一個深源極區及深汲極區之後第一示例性結構的垂直剖視圖。 圖1G是根據本公開實施例的在形成接觸層級介電層、各種金屬半導體合金部分及各種接觸通孔結構之後第一示例性結構的垂直剖視圖。 圖1H是在圖1G的處理步驟處的第一示例性結構的第一配置的透視俯視。 圖1I是在圖1G的處理步驟處的第一示例性結構的第二配置的透視俯視。 圖2A是根據本公開實施例的第二示例性結構的垂直剖視圖。 圖2B是圖2A的第二示例性結構的透視俯視圖。 圖3是根據本公開實施例的第三示例性結構的垂直剖視圖。 圖4是根據本公開實施例的第四示例性結構的垂直剖視圖。 圖5A是根據本公開實施例的在形成淺溝渠隔離結構、隱埋的第一導電類型阱及隱埋的第二導電類型阱、至少一個源極側第一導電類型阱、至少一個經摻雜主體接觸區及汲極延伸區之後第五示例性結構的垂直剖視圖。 圖5B是根據本公開實施例的在形成接觸層級介電層、各種金屬半導體合金部分及各種接觸通孔結構之後第五示例性結構的垂直剖視圖。 圖6是根據本公開實施例的第六示例性結構的垂直剖視圖。 圖7是根據本公開實施例的第七示例性結構的垂直剖視圖。 圖8是根據本公開實施例的第八示例性結構的垂直剖視圖。 圖9A是根據本公開實施例的在形成淺溝渠隔離結構、隱埋的第一導電類型阱、隱埋的第二導電類型阱、至少一個源極側第一導電類型阱、至少一個經摻雜主體接觸區、汲極延伸區、至少一個閘極電極及至少一個源極延伸區之後第九示例性結構的垂直剖視圖。 圖9B是根據本公開實施例的在形成隱埋的第一導電類型阱及隱埋的第二導電類型阱之後第九示例性結構的垂直剖視圖。 圖9C是根據本公開實施例的在形成至少一個源極延伸區、介電閘極間隙壁、至少一個深源極區及深汲極區之後第九示例性結構的垂直剖視圖。 圖9D是根據本公開實施例的在形成接觸層級介電層、各種金屬半導體合金部分及各種接觸通孔結構之後第九示例性結構的垂直剖視圖。 圖10是根據本公開實施例的第十示例性結構的垂直剖視圖。 圖11是根據本公開實施例的第十一示例性結構的垂直剖視圖。 圖12是根據本公開實施例的第十二示例性結構的垂直剖視圖。 圖13是根據本公開實施例的第十三示例性結構的垂直剖視圖。 圖14是根據本公開實施例的第十四示例性結構的垂直剖視圖。 圖15是根據本公開實施例的第十五示例性結構的垂直剖視圖。 圖16是根據本公開實施例的第十六示例性結構的垂直剖視圖。 圖17是根據本公開實施例的在形成金屬內連結構、介電材料層、接合墊及鈍化介電層之後示例性結構的垂直剖視圖。 圖18是根據本公開實施例的其中併入有以上示例性結構中的任一者的半導體晶片的俯視圖。 圖19是體現本公開的示例性結構的測試樣本及比較示例性測試樣本的雪崩崩潰期間的電壓-電流曲線圖。 圖20A是說明根據本公開實施例的用於形成本公開的雪崩保護場效電晶體的步驟的第一流程圖。 圖20B是說明根據本公開實施例的用於形成本公開的雪崩保護場效電晶體的步驟的第二流程圖。 圖20C是說明根據本公開實施例的用於形成本公開的雪崩保護場效電晶體的步驟的第三流程圖。 圖20D是說明根據本公開實施例的用於形成本公開的雪崩保護場效電晶體的步驟的第四流程圖。
8:半導體基底
709:主體半導體層
711:隱埋的第一導電類型阱
712:隱埋的第二導電類型阱
719:基底半導體層
720:淺溝渠隔離結構
721:源極側第一導電類型阱
731:經摻雜主體接觸區
732:深源極區
734:源極延伸區
735:通道區
736:汲極延伸區
738:深汲極區
741:主體接觸金屬半導體合金部分
742:源極接觸金屬半導體合金部分
748:汲極接觸金屬半導體合金部分
750:閘極堆疊結構
752:閘極介電質
754:閘極電極
756:介電閘極間隙壁
758:閘極頂蓋介電質
770:接觸層級介電層
771:主體接觸通孔結構
772:源極接觸通孔結構
778:汲極接觸通孔結構

Claims (20)

  1. 一種場效電晶體,包括: 主體半導體層,位於半導體基底中且具有第一導電類型的摻雜; 源極區與汲極區,形成在所述半導體基底的上部部分中,具有與所述第一導電類型相反的第二導電類型的摻雜,且通過通道區在側向上間隔開; 經摻雜主體接觸區,形成在所述半導體基底的所述上部部分中,具有所述第一導電類型的摻雜,且與所述源極區間隔開;以及 隱埋的第一導電類型阱,位於所述半導體基底內,位於所述汲極區之下且在平面圖中與所述汲極區具有面積交疊,在垂直方向上與所述汲極區間隔開,並且具有比所述主體半導體層高的所述第一導電類型的摻雜劑的原子濃度。
  2. 如請求項1之場效電晶體,還包括源極側第一導電類型阱位於所述半導體基底內,且所述源極側第一導電類型阱具有比所述主體半導體層高的所述第一導電類型的摻雜劑的原子濃度。
  3. 如請求項2之場效電晶體,其中所述源極側第一導電類型阱連接所述經摻雜主體接觸區與所述隱埋的第一導電類型阱。
  4. 如請求項3之場效電晶體,其中: 所述源極側第一導電類型阱在側向上環繞所述源極區且與所述源極區形成p-n接面;且 位於閘極介電質之下的通道區在側向上延伸穿過所述源極側第一導電類型阱的上部部分且穿過所述主體半導體層的上部部分。
  5. 如請求項3之場效電晶體,其中所述源極側第一導電類型阱與所述隱埋的第一導電類型阱通過閘極介電質之下的部分所述主體半導體層側向上間隔開。
  6. 如請求項1之場效電晶體,其中所述源極區與所述汲極區具有不對稱的延伸區,使得汲極延伸區在所述平面圖中與閘極電極的面積交疊大於源極延伸區在所述平面圖中與所述閘極電極的面積交疊。
  7. 如請求項1之場效電晶體,其中所述汲極區與所述主體半導體層或汲極側第一導電類型阱形成p-n接面,所述汲極側第一導電類型阱上覆在所述隱埋的第一導電類型阱上且具有比所述隱埋的第一導電類型阱低的所述第一導電類型的摻雜劑的原子濃度。
  8. 如請求項1之場效電晶體,其中所述場效電晶體具有如下配置:所述配置使得在雪崩崩潰期間超過90%的碰撞電離電荷從所述源極區流動、穿過所述隱埋的第一導電類型阱、並撞擊在p-n接面的水平表面上,所述水平表面是所述汲極區的底表面,且少於10%的所述碰撞電離電荷撞擊在所述p-n接面的側壁表面上。
  9. 如請求項1之場效電晶體,其中所述隱埋的第一導電類型阱在所述平面圖中與所述源極區、所述汲極區及所述經摻雜主體接觸區的整個面積具有面積交疊。
  10. 如請求項1之場效電晶體,還包括淺溝渠隔離結構在側向上環繞所述源極區、所述汲極區及所述經摻雜主體接觸區,其中所述隱埋的第一導電類型阱的頂表面與所述主體半導體層之間的界面的整個閉合周邊接觸所述淺溝渠隔離結構的側壁。
  11. 如請求項1之場效電晶體,其中所述隱埋的第一導電類型阱在所述平面圖中與所述汲極區的整個面積具有面積交疊,且在所述平面圖中與所述經摻雜主體接觸區的面積不交疊。
  12. 如請求項1之場效電晶體,還包括隱埋的第二導電類型阱,所述隱埋的第二導電類型阱位於所述隱埋的第一導電類型阱之下且與所述隱埋的第一導電類型阱形成p-n接面。
  13. 一種半導體晶片,包括位於半導體基底中的至少一個雪崩保護場效電晶體,其中所述至少一個雪崩保護場效電晶體中的每一者包括: 主體半導體層,位於所述半導體基底中且具有第一導電類型的摻雜; 源極區與汲極區,形成在所述半導體基底的上部部分中,具有與所述第一導電類型相反的第二導電類型的摻雜,且通過通道區在側向上間隔開;以及 隱埋的第一導電類型阱,位於所述半導體基底內,位於所述汲極區之下且在平面圖中與所述汲極區具有面積交疊,在垂直方向上與所述汲極區間隔開,並且具有比所述主體半導體層高的所述第一導電類型的摻雜劑的原子濃度, 其中所述至少一個雪崩保護場效電晶體中的每一者具有如下配置:使得在雪崩崩潰期間超過90%的碰撞電離電荷從所述源極區流動、穿過所述隱埋的第一導電類型阱、並撞擊在p-n接面的水平表面上所述水平表面是所述汲極區的底表面,且少於10%的所述碰撞電離電荷撞擊在所述p-n接面的側壁表面上。
  14. 如請求項13之半導體晶片,其中所述至少一個雪崩保護場效電晶體中的每一者包括經摻雜主體接觸區,所述經摻雜主體接觸區形成在所述半導體基底的所述上部部分中、具有所述第一導電類型的摻雜且與所述源極區間隔開。
  15. 如請求項14之半導體晶片,其中所述至少一個雪崩保護場效電晶體中的每一者包括源極側第一導電類型阱,所述源極側第一導電類型阱位於所述半導體基底內且具有比所述主體半導體層高的所述第一導電類型的摻雜劑的原子濃度。
  16. 如請求項15之半導體晶片,其中所述源極側第一導電類型阱連接所述至少一個雪崩保護場效電晶體中的每一者內的所述經摻雜主體接觸區與所述隱埋的第一導電類型阱。
  17. 如請求項13之半導體晶片,其中所述至少一個雪崩保護場效電晶體中的每一者包括隱埋的第二導電類型阱,所述隱埋的第二導電類型阱位於相應的雪崩保護場效電晶體的所述隱埋的第一導電類型阱之下且與所述隱埋的第一導電類型阱形成p-n接面。
  18. 一種形成半導體結構的方法,包括: 提供半導體基底,所述半導體基底包括具有第一導電類型的摻雜的主體半導體層; 將所述半導體基底的表面區摻雜成具有所述第一導電類型的摻雜的經摻雜主體接觸區; 沉積閘極介電層及閘極電極層並將所述閘極介電層及所述閘極電極層圖案化,以在所述半導體基底之上形成包括閘極介電質及閘極電極的閘極堆疊結構; 在所述半導體基底的上部部分中植入與所述第一導電類型相反的第二導電類型的摻雜劑,其中形成了源極區與汲極區,所述源極區與所述汲極區通過位於所述閘極堆疊結構之下的通道區在側向上間隔開;以及 在用於形成所述閘極堆疊結構、所述源極區、所述汲極區及所述經摻雜主體接觸區的處理步驟之前、之間或之後,植入所述第一導電類型的摻雜劑,由此形成位於所述半導體基底內的隱埋的第一導電類型阱, 其中所述隱埋的第一導電類型阱在平面圖中與所述汲極區具有面積交疊,且在垂直方向上與所述汲極區間隔開,並且具有比所述主體半導體層高的所述第一導電類型的摻雜劑的原子濃度。
  19. 如請求項18之方法,其中所述隱埋的第一導電類型阱是通過在形成所述閘極堆疊結構之前執行離子植入製程而形成,且在所述平面圖中與整個所述源極區、所述汲極區及所述經摻雜主體接觸區具有面積交疊。
  20. 如請求項18之方法,其中所述隱埋的第一導電類型阱是通過在形成所述閘極電極之後執行離子植入製程而形成,並且在所述平面圖中與所述汲極區具有面積交疊且與所述經摻雜主體接觸區不具有面積交疊。
TW110101530A 2020-08-11 2021-01-15 使用底部崩潰電流路徑的雪崩保護電晶體及其形成方法 TWI788755B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/989,962 US11437466B2 (en) 2020-08-11 2020-08-11 Avalanche-protected transistors using a bottom breakdown current path and methods of forming the same
US16/989,962 2020-08-11

Publications (2)

Publication Number Publication Date
TW202220207A true TW202220207A (zh) 2022-05-16
TWI788755B TWI788755B (zh) 2023-01-01

Family

ID=78124277

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101530A TWI788755B (zh) 2020-08-11 2021-01-15 使用底部崩潰電流路徑的雪崩保護電晶體及其形成方法

Country Status (3)

Country Link
US (2) US11437466B2 (zh)
CN (1) CN113540243A (zh)
TW (1) TWI788755B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936461A (zh) * 2022-10-13 2024-04-26 长鑫存储技术有限公司 半导体器件及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
US7125777B2 (en) * 2004-07-15 2006-10-24 Fairchild Semiconductor Corporation Asymmetric hetero-doped high-voltage MOSFET (AH2MOS)
US8704271B2 (en) * 2012-04-27 2014-04-22 Texas Instruments Incorporated Bidirectional electrostatic discharge (ESD) protection
US9287278B2 (en) * 2013-03-01 2016-03-15 Microsemi SoC Corporation Non-volatile push-pull non-volatile memory cell having reduced operation disturb and process for manufacturing same
US9754929B2 (en) * 2014-06-20 2017-09-05 Texas Instruments Incorporated Positive strike SCR, negative strike SCR, and a bidirectional ESD structure that utilizes the positive strike SCR and the negative strike SCR
US9461046B1 (en) * 2015-12-18 2016-10-04 Texas Instruments Incorporated LDMOS device with graded body doping
US11152505B2 (en) * 2018-06-28 2021-10-19 Texas Instruments Incorporated Drain extended transistor
US10461182B1 (en) * 2018-06-28 2019-10-29 Texas Instruments Incorporated Drain centered LDMOS transistor with integrated dummy patterns

Also Published As

Publication number Publication date
US20220052153A1 (en) 2022-02-17
US20220367614A1 (en) 2022-11-17
US11437466B2 (en) 2022-09-06
CN113540243A (zh) 2021-10-22
TWI788755B (zh) 2023-01-01

Similar Documents

Publication Publication Date Title
US10685955B2 (en) Trench diode and method of forming the same
KR100967883B1 (ko) 개선된 드레인 접점을 가진 트렌치 dmos 디바이스
US6448160B1 (en) Method of fabricating power rectifier device to vary operating parameters and resulting device
EP1610372B1 (en) Fabrication method of a self aligned contact in a semiconductor device
US6979861B2 (en) Power device having reduced reverse bias leakage current
JP2008529279A (ja) パワーダイオードを包含する集積回路
US6674123B2 (en) MOS control diode and method for manufacturing the same
US7932134B2 (en) Method of forming a semiconductor structure
US10600809B2 (en) Semiconductor structure and method for manufacturing the same
US7220661B1 (en) Method of manufacturing a Schottky barrier rectifier
US20090224295A1 (en) Mos transistor manufacturing
JP2004510333A (ja) 高電圧ダイオードおよびその製造方法
CN106571359A (zh) 静电放电保护结构及其形成方法
US20210351304A1 (en) Semiconductor vertical schottky diode and method of manufacturing thereof
US5459083A (en) Method for making BIMOS device having a bipolar transistor and a MOS triggering transistor
US20220367614A1 (en) Avalanche-protected transistors using a bottom breakdown current path and methods of forming the same
US10593754B2 (en) SOI device structures with doped regions providing charge sinking
US11742342B2 (en) FinFET ESD device with fin-cut isolation region
US10529705B2 (en) Integrated transistor and protection diode and fabrication method
US6905924B2 (en) Diode structure for SOI circuits
KR100249016B1 (ko) 반도체장치의 이에스디 보호회로 제조방법
CN117995888A (zh) 具有背侧接触结构的晶体管
CN117497539A (zh) 半导体器件及其制作方法
CN117316945A (zh) 绝缘体上硅技术中的可控硅整流器