TW202214850A - Methods and vectors for enhancing expression and/or inhibiting degradation of protein - Google Patents

Methods and vectors for enhancing expression and/or inhibiting degradation of protein Download PDF

Info

Publication number
TW202214850A
TW202214850A TW110120541A TW110120541A TW202214850A TW 202214850 A TW202214850 A TW 202214850A TW 110120541 A TW110120541 A TW 110120541A TW 110120541 A TW110120541 A TW 110120541A TW 202214850 A TW202214850 A TW 202214850A
Authority
TW
Taiwan
Prior art keywords
rad51
gln
cdata
host cell
asn
Prior art date
Application number
TW110120541A
Other languages
Chinese (zh)
Inventor
王廷方
莊齊寧
吳泰霆
Original Assignee
中央研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央研究院 filed Critical 中央研究院
Publication of TW202214850A publication Critical patent/TW202214850A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/12Dual-specificity kinases (2.7.12)
    • C12Y207/12001Dual-specificity kinase (2.7.12.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/04Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; involved in cellular and subcellular movement (3.6.4)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/23Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a GST-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/61Fusion polypeptide containing an enzyme fusion for detection (lacZ, luciferase)

Abstract

The present disclosure provides a method for increasing expression and/or inhibiting degradation of an interested polypeptide in a host cell with the steps of constructing an expression vector comprising a polynucleotide coding an intrinsically disordered region (IDR) with high S/T and/or Q content and a polypeptide coding the interested polypeptide, transforming the expression vector to a host cell and culturing the host cell under conditions that allow for expression of the interested polypeptide.

Description

增強蛋白質表達和/或抑制其降解的方法和載體Methods and vectors for enhancing protein expression and/or inhibiting its degradation

本發明係關於重組蛋白表達領域。本發明關於包含具有高S/T及/或Q含量或S/T-Q叢集域(S/T-Q cluster domain,SCD)之內在無序區(IDR)的表達載體及使用該表達載體增強蛋白質表達之方法。The present invention relates to the field of recombinant protein expression. The present invention relates to expression vectors comprising intrinsically disordered regions (IDRs) with high S/T and/or Q content or S/T-Q cluster domains (SCDs) and methods of using the expression vectors to enhance protein expression .

重組融合蛋白方法已廣泛應用於生物研究及治療學中。此方法通常涉及經由連接或重疊聚合鏈反應(PCR)同框接合兩個或超過兩個cDNA序列。接著,由此得到的DNA序列編碼具有融合運載體(fusion carrier)或蛋白質標籤之單一多肽,該融合運載體或蛋白質標籤包括表達運載體、溶解性運載體、螢光標籤、靶向標籤、報導體標籤、層析(或親和)標籤及抗原決定基標籤等。US 20160009779提供具有20至50個胺基酸之融合標籤及包含該發明之融合標籤的表達載體系統。US 20200385774揭示一種用於產生呈融合蛋白形式之感興趣肽的來源於蛋白質血影蛋白之SH3域之導引蛋白質的肽序列。Recombinant fusion protein methods have been widely used in biological research and therapeutics. This method typically involves joining two or more cDNA sequences in frame via ligation or overlapping polymer chain reaction (PCR). Next, the DNA sequence thus obtained encodes a single polypeptide with a fusion carrier or a protein tag including an expression carrier, a soluble carrier, a fluorescent tag, a targeting tag, a reporter Body tags, chromatography (or affinity) tags and epitope tags, etc. US 20160009779 provides a fusion tag with 20 to 50 amino acids and an expression vector system comprising the fusion tag of the invention. US 20200385774 discloses a peptide sequence of a guide protein derived from the SH3 domain of the protein spectrin for generating a peptide of interest as a fusion protein.

需要改善生物活性或藥理活性蛋白質之轉譯、摺疊或穩定性。There is a need to improve translation, folding or stability of biologically or pharmacologically active proteins.

在一個態樣中,本發明提供一種用於增強宿主細胞中感興趣多肽之表達及/或抑制其降解的方法,該方法包含以下步驟:構築表達載體,該表達載體包含編碼內在無序區(IDR)之聚核苷酸及編碼該感興趣多肽之聚核苷酸;將該表達載體轉形至該宿主細胞中;及在允許表達該感興趣多肽之條件下培養該宿主細胞;其中S、T及Q之含量佔該IDR之總胺基酸含量的總體百分比高於10%。In one aspect, the present invention provides a method for enhancing the expression and/or inhibiting degradation of a polypeptide of interest in a host cell, the method comprising the steps of: constructing an expression vector comprising an encoding intrinsically disordered region ( IDR) polynucleotides and polynucleotides encoding the polypeptide of interest; transform the expression vector into the host cell; and culture the host cell under conditions that allow expression of the polypeptide of interest; wherein S, The content of T and Q as a percentage of the total amino acid content of the IDR is higher than 10%.

在一個實施例中,IDR包含一或多個S/T-Q叢集域(SCD)。In one embodiment, the IDR contains one or more S/T-Q cluster domains (SCDs).

在本發明之一些實施例中,IDR中之一或多個S、T或Q殘基經具有疏水性側鏈之胺基酸置換。在本發明之一些實施例中,IDR中之1、2、3、4、5、6、7、8、9、10、11或12個殘基經具有疏水性側鏈之胺基酸置換。In some embodiments of the invention, one or more of the S, T or Q residues in the IDR are replaced with an amino acid having a hydrophobic side chain. In some embodiments of the invention, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 residues in the IDR are replaced with amino acids having hydrophobic side chains.

在本發明之一些實施例中,SCD中之一或多個S、T或Q殘基經具有帶負電側鏈之胺基酸置換。在本發明之一些實施例中,IDR中之1、2、3、4、5、6、7、8、9、10、11或12個殘基經具有帶負電側鏈之胺基酸置換。In some embodiments of the invention, one or more of the S, T or Q residues in the SCD are replaced with an amino acid having a negatively charged side chain. In some embodiments of the invention, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 residues in the IDR are replaced with amino acids having negatively charged side chains.

在本發明之一些實施例中,IDR中之一或多個S、T或Q殘基經S、T及Q中之另一個胺基酸置換。在本發明之一些實施例中,IDR中之1、2、3、4、5、6、7、8、9、10、11或12個殘基經S、T及Q中之另一個胺基酸置換。In some embodiments of the invention, one or more of the S, T or Q residues in the IDR are replaced with another amino acid of S, T and Q. In some embodiments of the invention, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 residues in the IDR are via another amine group in S, T and Q Acid replacement.

在另一個態樣中,本發明提供一種載體,其包含可操作地連接至編碼感興趣多肽之多肽的內在無序區,其中S、T及Q之含量佔該IDR之總胺基酸含量的總體百分比高於10%。In another aspect, the present invention provides a vector comprising an intrinsically disordered region operably linked to a polypeptide encoding a polypeptide of interest, wherein the content of S, T and Q accounts for 30% of the total amino acid content of the IDR The overall percentage is above 10%.

在另一個態樣中,本發明提供一種包含本發明之載體的宿主細胞。In another aspect, the present invention provides a host cell comprising a vector of the present invention.

在一個實施例中,SCD或IDR與該感興趣多肽之N末端融合。In one embodiment, the SCD or IDR is fused to the N-terminus of the polypeptide of interest.

在一個實施例中,IDR或SCD用作增強該感興趣多肽之表達及/或抑制其降解的融合標籤。In one embodiment, IDR or SCD is used as a fusion tag to enhance expression and/or inhibit degradation of the polypeptide of interest.

在一個實施例中,該感興趣多肽係異源蛋白質。In one embodiment, the polypeptide of interest is a heterologous protein.

在一個實施例中,SCD或IDR經磷酸化。In one embodiment, the SCD or IDR is phosphorylated.

在一個實施例中,S、T及Q之含量佔IDR或SCD之總胺基酸含量的總體百分比高於15%。在一些實施例中,S、T及Q之含量佔IDR或SCD之總胺基酸含量的總體百分比高於15%、20%、25%或30%。In one embodiment, the content of S, T and Q as a percentage of the total amino acid content of the IDR or SCD is greater than 15%. In some embodiments, the content of S, T and Q is higher than 15%, 20%, 25% or 30% of the total amino acid content of the IDR or SCD.

在一個實施例中,S、T及Q之含量佔IDR或SCD之總胺基酸含量的總體百分比在約30%至約40%範圍內。In one embodiment, the content of S, T, and Q ranges from about 30% to about 40% of the overall percentage of the total amino acid content of the IDR or SCD.

在一個實施例中,SCD係具有高S/T及Q含量之IDR(Traven A.及Heierhorst J. (2006) Bioessays27, 397-407)。 In one embodiment, the SCD is an IDR with high S/T and Q content (Traven A. and Heierhorst J. (2006) Bioessays 27, 397-407).

在一些實施例中,IDR或SCD如表1中所列。 表1.本發明中使用之SCD或IDR之胺基酸序列 SCD或IDR之名稱 序列 SEQ ID NO. Hop1-SCD (258-324 a.a.) MEKAGNTNFIRVDPFDLILQQQEENKLEESAPTKPQNFVTSQTTNVLGNLLNSSQASIQPTQFVSNN 1 Rad51-NTD (1-66 a.a.) MSQVQEQHISESQLQYGNGSLMSTVPADLSQSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 2 Rad51-NTD-3SA (Rad51-NTD-3A) M AQVQEQHISE AQLQYGNGSLMSTVPADL AQSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 3 Rad51-NTD-3SD (Rad51-NTD-3D) M DQVQEQHISE DQLQYGNGSLMSTVPADL DQSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 4 Rad51-NTD-S2A M AQVQEQHISESQLQYGNGSLMSTVPADLSQSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 5 Rad51-NTD-S12A MSQVQEQHISE AQLQYGNGSLMSTVPADLSQSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 6 Rad51-NTD-S30A MSQVQEQHISESQLQYGNGSLMSTVPADL AQSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 7 Rad51-NTD-6SQA M AAVQEQHISE AALQYGNGSLMSTVPADL AASVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 8 Rad51-NTD-9SQA M AAV AE AHISE AAL AYGNGSLMSTVPADL AASVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 9 Rad51-NTD-12SQA M AAV AE AHISE AAL AYGNGSLMSTVPADL AASVVDGNGNGGSEDIEATNGSGDGGGL AE AAEA AGE 10 Rad53-SCD1 (1-29 a.a.) MENITQPTQQSTQATQRFLIEKFSQEQIG 11 Rad53-SCD1-5STA MENI AQP AQQS AQA AQRFLIEKF AQEQIG 12 Rad53-SCD1-7QA MENIT APT AAST AAT ARFLIEKFS AE AIG 13 Rad53-SCD1-12STQA MENI AAP AAAS AAA AARFLIEKF AAE AIG 14 Sml1-NTD (1-27 a.a.) MQNSQDYFYAQNRSQQQQAPSTLRTVT 15 Sml1-NTD (1-50 a.a.) MQNSQDYFYAQNRSQQQQAPSTLRTVTMAEFRRVPLPPMAEVPMLSTQNS 16 Sup35-PND (1-39 a.a.) MSDSNQGNNQQNYQQYSQNGNQQQGNNRYQGYQAYNAQA 17 Sup35-PND-S 17A (Sup35-NTD-S 17A) MSDSNQGNNQQNYQQY AQNGNQQQGNNRYQGYQAYNAQA 18 Sup35-PND-3SA M AD ANQGNNQQNYQQY AQNGNQQQGNNRYQGYQAYNAQA 19 Sup35-PND-3QA MSDSNQGNNQQNYQQYSQNGN AAAGNNRYQGYQAYNAQA 20 Sup35-PND-5QA MSDSNQGNN AANY AAYS ANGNQQQGNNRYQGYQAYNAQA 21 Sup35-PND-8QA MSDSNQGNN AANY AAYS ANGN AAAGNNRYQGYQAYNAQA 22 Sup35-PND-15SQA M AD AN AGNN AANY AAY AANGN AAAGNNRY AGY AAYNA AA 23 Sup35-PND-9NA MSDS AQG AAQQ AYQQYSQ AG AQQQG AARYQGYQAY AAQA 24 Sup35-PND-24SQNA M AD AAAG AAAAAY AAY AAAG AAAAG AARY AGY AAY AA AA 25 Sup35-PFD (1-114 a.a.) MSDSNQGNNQQNYQQYSQNGNQQQGNNRYQGYQAYNAQAQPAGGYYQNYQGYSGYQQGGYQQYNPDAGYQQQYNPQGGYQQYNPQGGYQQQFNPQGGRGNYKNFNYNNSLQGYQ 26 New1-NPD (1-156 a.a.) MPPKKFKDLNSFLDDQPKDPNLVASPFGGYFKNPAADAGSNNASKKSSYQQQRNWKQGGNYQQGGYQSYNSNYNNYNNYNNYNNYNNYNNYNNYNKYNGQGYQKSTYKQSAVTPNQSGTPTPSASTTSLTSLNEKLSNLELTPISQFLSKIPECQS 27 Ure2-UPD (1-91 a.a.) MMNNNGNQVSNLSNALRQVNIGNRNSNTTTDQSNINFEFSTGVNNNNNNNSSSNNNNVQNNNSGRNGSQNNDNENNIKNTLEQHRQQQQAF 28 Vps64-NTD (1-152 a.a.) MVELEKRRRPPPQLQHSPYVRDQSNSQGMTKTPETSPPKRPMGRARSNSRSSGSRSNVDIDQYTIPPGLDLLPTASSPPSVHQVSQQQQLSPILANKIRSPFENQSQDQNDNSIDPTPAGQVTIPVEAVSPPALDELSKFQNGSTETLFRTG 29 Ssk2-NTD (1-191 a.a.) MSHSDYFNYKPYGDSTEKPSSSKMRQSSSSSSSRLRSESLGRNSNTTQARVASSPISPGLHSTQYFRSPNAVYSPGESPLNTVQLFNRLPGIPQGQFFHQNAISGSSSSSARSSRRPSNIGLPLPKNPQQSLPKLSTQPVPVHKKVEASKTESEIIKKPAPVNSNQDPLLTTPTLVISPELASLNTTNTSI 30 Kel1-NTD (1-69 a.a.) MAGFSFAKKFTHKKHGKTPSDASISDQSREASLSTPPNEKFFTKQETPQKGRQFSQGYHSNVNKTSSPP 31 In some embodiments, the IDR or SCD is as listed in Table 1. Table 1. Amino acid sequences of SCD or IDR used in the present invention Name of SCD or IDR sequence SEQ ID NO. Hop1-SCD (258-324 aa) MEKAGNTNFIRVDPFDLILQQQEENKLEESAPTKPQNFVTSQTTNVLGNLLNSSQASIQPTQFVSNN 1 Rad51-NTD (1-66 aa) MSQVQEQHISESQLQYGNGSLMSTVPADLSQSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 2 Rad51-NTD-3SA (Rad51-NTD-3A) M A QVQEQHISE A QLQYGNGSLMSTVPADL A QSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 3 Rad51-NTD-3SD (Rad51-NTD-3D) M D QVQEQHISE D QLQYGNGSLMSTVPADL D QSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 4 Rad51-NTD-S2A M A QVQEQHISESQLQYGNGSLMSTVPADLSQSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 5 Rad51-NTD-S12A MSQVQEQHISE A QLQYGNGSLMSTVPADLSQSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 6 Rad51-NTD-S30A MSQVQEQHISESQLQYGNGSLMSTVPADL A QSVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 7 Rad51-NTD-6SQA M AA VQEQHISE AA LQYGNGSLMSTVPADL AA SVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 8 Rad51-NTD-9SQA M AA V A E A HISE AA L A YGNGSLMSTVPADL AA SVVDGNGNGGSEDIEATNGSGDGGGLQEQAEAQGE 9 Rad51-NTD-12SQA M AA V A E A HISE AA L A YGNGSLMSTVPADL AA SVVDGNGNGGSEDIEATNGSGDGGGL A E A AEA A GE 10 Rad53-SCD1 (1-29 aa) MENITQPTQQSTQATQRFLIEKFSQEQIG 11 Rad53-SCD1-5STA MENI A QP A QQS A QA A QRFLIEKF A QEQIG 12 Rad53-SCD1-7QA MENIT A PT AA ST A AT A RFLIEKFS A E A IG 13 Rad53-SCD1-12STQA MENI AA P AAA S AA A AA RFLIEKF AA E A IG 14 Sml1-NTD (1-27 aa) MQNSQDYFYAQNRSQQQQAPSTLRTVT 15 Sml1-NTD (1-50 aa) MQNSQDYFYAQNRSQQQQAPSTLRTVTMAEFRRVPLPPMAEVPMLSTQNS 16 Sup35-PND (1-39 aa) MSDSNQGNNQQNYQQYSQNGNQQQGNNRYQGYQAYNAQA 17 Sup35-PND-S 17A (Sup35-NTD-S 17A ) MSDSNQGNNQQNYQQY A QNGNQQQGNNRYQGYQAYNAQA 18 Sup35-PND-3SA M A D A NQGNNQQNYQQY A QNGNQQQGNNRYQGYQAYNAQA 19 Sup35-PND-3QA MSDSNQGNNQQNYQQYSQNGN AAA GNNRYQGYQAYNAQA 20 Sup35-PND-5QA MSDSNQGNN AA NY AA YS A NGNQQQGNNRYQGYQAYNAQA twenty one Sup35-PND-8QA MSDSNQGNN AA NY AA YS A NGN AAA GNNRYQGYQAYNAQA twenty two Sup35-PND-15SQA M A D A N A GNN AA NY AA Y AA NGN AAA GNNRY A GY A AYNA A A twenty three Sup35-PND-9NA MSDS A QG AA QQ A YQQYSQ A G A QQQG AA RYQGYQAY A AQA twenty four Sup35-PND-24SQNA M A D AAA G AAAAA Y AA Y AAA G AAAA G AA RY A GY A AY A A A A 25 Sup35-PFD (1-114 aa) MSDSNQGNNQQNYQQYSQNGNQQQGNNRYQGYQAYNAQAQPAGGYYQNYQGYSGYQQGGYQQYNPDAGYQQQYNPQGGYQQYNPQGGYQQQFNPQGGRGNYKNFNYNNSLQGYQ 26 New1-NPD (1-156 aa) MPPKKFKDLNSFLDDQPKDPNLVASPFGGYFKNPAADAGSNNASKKSSYQQQRNWKQGGNYQQGGYQSYNSNYNNYNNYNNYNNYNNYNNYNNYNKYNGQGYQKSTYKQSAVTPNQSGTPTPSASTTSLTSLNEKLSNLELTPISQFLSKIPECQS 27 Ure2-UPD (1-91 aa) MMNNNGNQVSNLSNALRQVNIGNRNSNTTTDQSNINFEFSTGVNNNNNNNSSSNNNNVQNNNSGRNGSQNNDNENNIKNTLEQHRQQQQAF 28 Vps64-NTD (1-152 aa) MVELEKRRRPPPQLQHSPYVRDQSNSQGMTKTPETSPPKRPMGRARSNSRSSGSRSNVDIDQYTIPPGLDLLPTASSPPSVHQVSQQQQLSPILANKIRSPFENQSQDQNDNSIDPTPAGQVTIPVEAVSPPALDELSKFQNGSTETLFRTG 29 Ssk2-NTD (1-191 aa) MSHSDYFNYKPYGDSTEKPSSSKMRQSSSSSSSRLRSESLGRNSNTTQARVASSPISPGLHSTQYFRSPNAVYSPGESPLNTVQLFNRLPGIPQGQFFHQNAISGSSSSSARSSRRPSNIGLPLPKNPQQSLPKLSTQPVPVHKKVEASKTESEIIKKPAPVNSNQDPLLTTPTLVISPELASLNTTNTSI 30 Kel1-NTD (1-69 aa) MAGFSFAKKFTHKKHGKTPSDASISDQSREASLSTPPNEKFFTKQETPQKGRQFSQGYHSNVNKTSSPP 31

在一些實施例中,宿主細胞係原核細胞。在一些實施例中,宿主細胞係哺乳動物細胞、酵母細胞、真菌細胞、昆蟲細胞、植物細胞或原生動物細胞。在另一個實施例中,宿主細胞係釀酒酵母( Saccharomyces cerevisiae)。 In some embodiments, the host cell line is a prokaryotic cell. In some embodiments, the host cell is a mammalian cell, yeast cell, fungal cell, insect cell, plant cell, or protozoan cell. In another embodiment, the host cell line is Saccharomyces cerevisiae .

本發明意外地發現,當SCD天然地存在NH 2末端融合標籤或人工設計為NH 2末端融合標籤時,其具有自主表達增強活性。本發明揭露SCD在活體內蛋白質動態平衡調控中的兩個新穎作用,表明SCD可用作高水準蛋白質製造及/或蛋白質降解抑制之融合標籤。 The present inventors have unexpectedly found that when an SCD has an NH2 -terminal fusion tag naturally present or an artificially designed NH2 -terminal fusion tag, it has autonomous expression enhancing activity. The present invention discloses two novel roles of SCD in the regulation of protein homeostasis in vivo, indicating that SCD can be used as a fusion tag for high-level protein production and/or protein degradation inhibition.

如本文所使用,術語「表達載體」係指用於將編碼資訊轉移至宿主細胞的任何分子。As used herein, the term "expression vector" refers to any molecule used to transfer coding information to a host cell.

如本文所使用,術語「宿主細胞」係指經帶有感興趣基因之表達載體轉形、轉染或轉導的細胞,接著,該表達載體經該細胞表達。As used herein, the term "host cell" refers to a cell transformed, transfected, or transduced with an expression vector carrying a gene of interest, and then the expression vector is expressed by the cell.

如本文所使用,術語「聚核苷酸」係通常自一個脫氧核糖或核糖連接至另一個脫氧核糖或核糖的核苷酸之聚合物,且視情形,係指DNA以及RNA。術語「聚核苷酸」不包含任何大小限制且亦涵蓋包含修飾之聚核苷酸,確切地說,經修飾之核苷酸。As used herein, the term "polynucleotide" is a polymer of nucleotides usually linked from one deoxyribose or ribose sugar to another deoxyribose or ribose sugar, and refers to DNA as well as RNA, as appropriate. The term "polynucleotide" does not contain any size limitation and also encompasses polynucleotides comprising modifications, specifically, modified nucleotides.

如本文所使用,「感興趣多肽」係指欲在宿主細胞中表達之多肽。As used herein, a "polypeptide of interest" refers to a polypeptide to be expressed in a host cell.

如本文所使用,「多肽」係指包含藉由一或多個肽鍵連接在一起之胺基酸聚合物的分子。多肽包括任何長度之多肽,包括蛋白質(例如具有超過50個胺基酸)及肽(例如具有2-49個胺基酸)。多肽包括具有任何活性或生物活性之蛋白質及/或肽。As used herein, "polypeptide" refers to a molecule comprising a polymer of amino acids linked together by one or more peptide bonds. Polypeptides include polypeptides of any length, including proteins (eg, having more than 50 amino acids) and peptides (eg, having 2-49 amino acids). Polypeptides include proteins and/or peptides having any activity or biological activity.

內在無序區(IDR)係缺乏固定或有序之三維結構的蛋白質序列。許多IDR具有重要的分子功能,諸如物理相互作用、轉譯後修飾或溶解性增強。因此,本發明意外地揭露,若干在生物學上重要之IDR可用作N末端融合運載體以促進目標蛋白質摺疊或蛋白質品質控制,由此增強蛋白質表達,且與IDR中之高S/T/Q/N胺基酸含量具有強相關性且其係可調諧的(例如經由磷酸化)以調控蛋白質動態平衡。Intrinsically disordered regions (IDRs) are protein sequences that lack a fixed or ordered three-dimensional structure. Many IDRs have important molecular functions such as physical interactions, post-translational modifications or solubility enhancement. Thus, the present invention unexpectedly discloses that several biologically important IDRs can be used as N-terminal fusion vehicles to facilitate target protein folding or protein quality control, thereby enhancing protein expression, and are compatible with the high S/T/T/T in IDRs. Q/N amino acid content is strongly correlated and is tunable (eg, via phosphorylation) to regulate protein homeostasis.

若干研究揭露,高含量之Ser(S)、Thr(T)、Gln(Q)、Asn(N)、Pro、Gly或帶電胺基酸[Arg(R)、Lys(K)及His(H)]係許多IDR之共同特徵( Macossay-Castillo M, Marvelli G, Guharoy M, Jain A, Kihara D, Tompa P 等人 , The balancing act of intrinsically disordered proteins: enabling functional diversity while minimizing promiscuity. J Mol Biol. 2019;431:1650-70)。由於IDR因其多種可能的亞穩態構形而具有與許多搭配物締合之潛力,故在功能上,其係次細胞機構及信號傳導路徑之關鍵組分。許多IDR係藉由替代性剪接及轉譯後修飾調控。一些IDR經由細胞內液-液相分離而參與形成各種無膜胞器。「IDR」在演化上被保留作為工具包(toolkit)以產生複雜的調控網路且其提供用於細胞類型或組織特異性信號傳導之多種機制,例如溶解性、物理相互作用、轉譯後修飾或液-液相位轉變。IDR為蛋白質提供許多優勢,包括:(1)藉由採用不同構形介導蛋白質-蛋白質或蛋白質-肽相互作用;(2)經由不同轉譯後修飾促進蛋白質調控;及(3)調控作為蛋白酶體降解之目標的蛋白質之半衰期。 Several studies revealed that high levels of Ser(S), Thr(T), Gln(Q), Asn(N), Pro, Gly or charged amino acids [Arg(R), Lys(K) and His(H) ] is a common feature of many IDRs ( Macossay-Castillo M, Marvelli G, Guharoy M, Jain A, Kihara D, Tompa P et al ., The balancing act of intrinsically disordered proteins: enabling functional diversity while minimizing promiscuity. J Mol Biol. 2019 ;431:1650-70 ). Because IDRs have the potential to associate with many partners due to their multiple possible metastable configurations, they are functionally key components of subcellular machinery and signaling pathways. Many IDRs are regulated by alternative splicing and post-translational modifications. Some IDRs are involved in the formation of various membraneless organelles via intracellular liquid-liquid phase separation. "IDR" has been evolutionarily retained as a toolkit to generate complex regulatory networks and it provides multiple mechanisms for cell-type or tissue-specific signaling, such as solubility, physical interactions, post-translational modifications, or Liquid-liquid phase transition. IDRs offer many advantages for proteins, including: (1) mediate protein-protein or protein-peptide interactions by adopting different conformations; (2) facilitate protein regulation through different post-translational modifications; and (3) regulate as a proteasome The half-life of the protein targeted for degradation.

在一個實施例中,本發明提供若干具有高STQN胺基酸含量之IDR,當在活體內與外源目標蛋白質,例如β-半乳糖苷酶(LacZ),融合時,其展現自主表達增強活性以高水準產生天然蛋白質。在一些實施例中,本文所描述的大部分(若非全部)IDR具有一或多個ATR Mec1/ATM Tel1DNA損傷檢查點激酶磷酸化位點,表明其功能及/或穩定性可藉由ATR Mec1或ATM Tel1經蛋白質磷酸化調諧。 In one embodiment, the present invention provides several IDRs with high STQN amino acid content that exhibit autonomous expression enhancing activity when fused in vivo with an exogenous target protein, such as β-galactosidase (LacZ) Produces natural protein at a high level. In some embodiments, most, if not all, IDRs described herein have one or more ATR Mec1 /ATM Tel1 DNA damage checkpoint kinase phosphorylation sites, indicating that their function and/or stability may be mediated by ATR Mec1 Or ATM Tel1 is tuned by protein phosphorylation.

在一個實施例中,出芽酵母釀酒酵母之SCD先前定義為在50個殘基之鏈段內具有至少三個S/T-Q的區域(Cheung H. C.等人, BMC Genomics2012 13:664)。釀酒酵母中之保守DNA損傷反應(DDR)檢查點激酶Tel1及Mec1以及其人類同源物ATM及ATM磷酸化係在S/T-Q共同位點處熟知之DDR蛋白質(Traven A.及Heierhorst J. (2006) Bioessays27, 397-407)。SCD可能在真核細胞中具有更廣泛和全面的作用,因為存在出人意料地豐富的釀酒酵母和哺乳動物含SCD蛋白質,此等蛋白質屬於與DDR無關之功能方案,諸如內吞作用、微管、肌動蛋白細胞骨架,且在與神經系統發育有關之路徑中。本發明意外地發現,SCD及/或其磷酸化涉及調控蛋白質動態平衡中之必要功能。 In one embodiment, the SCD of the budding yeast Saccharomyces cerevisiae was previously defined as a region with at least three S/TQs within a 50-residue stretch (Cheung HC et al., BMC Genomics 2012 13:664). The conserved DNA damage response (DDR) checkpoint kinases Tel1 and Mec1 in Saccharomyces cerevisiae and their human homologues ATM and ATM phosphorylation are well-known DDR proteins at the S/TQ common site (Traven A. and Heierhorst J. ( 2006) Bioessays 27, 397-407). SCD may have a broader and more comprehensive role in eukaryotic cells due to the unexpected abundance of S. cerevisiae and mammalian SCD-containing proteins that belong to DDR-independent functional schemes such as endocytosis, microtubules, myocardium Actin cytoskeleton, and in pathways related to nervous system development. The present inventors have unexpectedly discovered that SCD and/or its phosphorylation are involved in the regulation of essential functions in protein homeostasis.

IDR或SCD中之高S、T及Q含量以及S/T-Q模體之總體數量對於高水準蛋白質製造及/或蛋白質降解功能抑制極為重要。在一個實施例中,S、T及Q之含量佔IDR或SCD之總胺基酸含量高於10%。在一些實施例中,S、T及Q之含量佔IDR或SCD域之總胺基酸含量高於15%、15%、20%、25%或30%。在一個實施例中,S、T及Q之含量佔IDR或SCD之總胺基酸含量的總體百分比在約30%至約40%範圍內(例如31%、32%、33%、34%、35%、36%、37%、38%、39%)。在一個實施例中,SCD係具有高S/T及Q含量之IDR。在一些實施例中,IDR或SCD係Hop1-SCD (258-324個胺基酸)、Rad51-NTD (1-66個胺基酸)、Rad51-NTD-3SA、Rad51-NTD-6SQA、Rad51-NTD-9SQA、Rad51-NTD-12SQA、Rad53-SCD1 (1-29個胺基酸)、Rad53-SCD1-5STA、Rad53-SCD1-7QA、Rad53-SCD1-12STQA、Sml1-NTD (1-27個胺基酸)、Sml1-NTD (1-50個胺基酸)、Sup35-PND (1-39個胺基酸)、Sup35-PND-S17A、Sup35-PND-3SA、Sup35-PND-3QA、Sup35-PND-5QA、Sup35-PND-8QA、Sup35-PND-15SQA、Sup35-PND-9NA、Sup35-PND-24SQNA、Sup35-PFD (1-114個胺基酸)、New1-NPD (1-156個胺基酸)、Ure2-UPD (1-91個胺基酸)、Vps64-NTD (1-152個胺基酸)、Ssk2-NTD (1-191個胺基酸)或Kel1-NTD (1-69個胺基酸),如SEQ ID No: 1至31中所示。High S, T and Q content in the IDR or SCD and the overall number of S/T-Q motifs are extremely important for high levels of protein production and/or functional inhibition of protein degradation. In one embodiment, the content of S, T and Q is higher than 10% of the total amino acid content of the IDR or SCD. In some embodiments, the content of S, T and Q is greater than 15%, 15%, 20%, 25% or 30% of the total amino acid content of the IDR or SCD domain. In one embodiment, the content of S, T and Q is in the range of about 30% to about 40% of the total amino acid content of the IDR or SCD (eg, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%). In one embodiment, the SCD is an IDR with high S/T and Q content. In some embodiments, the IDR or SCD is Hop1-SCD (258-324 amino acids), Rad51-NTD (1-66 amino acids), Rad51-NTD-3SA, Rad51-NTD-6SQA, Rad51- NTD-9SQA, Rad51-NTD-12SQA, Rad53-SCD1 (1-29 amino acids), Rad53-SCD1-5STA, Rad53-SCD1-7QA, Rad53-SCD1-12STQA, Sml1-NTD (1-27 amino acids) amino acids), Sml1-NTD (1-50 amino acids), Sup35-PND (1-39 amino acids), Sup35-PND-S17A, Sup35-PND-3SA, Sup35-PND-3QA, Sup35- PND-5QA, Sup35-PND-8QA, Sup35-PND-15SQA, Sup35-PND-9NA, Sup35-PND-24SQNA, Sup35-PFD (1-114 amino acids), New1-NPD (1-156 amines) amino acids), Ure2-UPD (1-91 amino acids), Vps64-NTD (1-152 amino acids), Ssk2-NTD (1-191 amino acids) or Kell-NTD (1-69 amino acids) amino acids), as shown in SEQ ID Nos: 1 to 31.

在一個特定實施例中,釀酒酵母Rad51之NH 2末端域(NTD;殘基1-66)係具有3個SQ模體(S 2Q、S 12Q及S 30Q)之真實 (bona fide)SCD。全部三個S/Q模體可在營養生長及減數分裂期間藉由Mec1 ATR及Tel1 ATM磷酸化。Rad51-NTD在調控Rad51之穩態含量方面具有兩種不同功能。第一,Rad51-NTD具有自主表達增強活性。第二,Rad51-NTD之Mec1 ATR/Tel1 ATM依賴性磷酸化拮抗蛋白酶體降解路徑,由此增加活體內表達之蛋白質Rad51的穩定性。Rad51中之全部三個S/Q模體不僅在暴露於DNA損傷劑甲烷磺酸甲酯(MMS)之營養細胞中,而且在正常減數分裂期間亦為Mec1 ATR及Tel1 ATM之直接目標位點。 In a specific embodiment, the NH2 -terminal domain (NTD; residues 1-66) of S. cerevisiae Rad51 is a bona fide with 3 SQ motifs (S2Q, S12Q and S30Q ) SCD. All three S/Q motifs can be phosphorylated by Mec1 ATR and Tel1 ATM during vegetative growth and meiosis. Rad51-NTD has two distinct functions in regulating the steady-state content of Rad51. First, Rad51-NTD has autonomous expression enhancing activity. Second, Mec1 ATR /Tel1 ATM -dependent phosphorylation of Rad51-NTD antagonizes the proteasomal degradation pathway, thereby increasing the stability of the in vivo expressed protein Rad51. All three S/Q motifs in Rad51 are direct target sites for Mec1 ATR and Tel1 ATM not only in vegetative cells exposed to the DNA damaging agent methyl methanesulfonate (MMS) but also during normal meiosis .

在一個特定實施例中,Sup35(轉譯終止因子eRF3)係聚集形成[ PSI + ]普里昂蛋白的充分表徵之酵母普里昂蛋白質。Sup35-PND係具有3個絲胺酸、9個天冬醯胺及12個麩醯胺酸且僅具有一個S 17Q模體的富含S且富含Q/N之域。 In a specific embodiment, Sup35 (translation termination factor eRF3) is a well-characterized yeast prion protein that aggregates to form [ PSI + ]prion protein. Sup35-PND is an S-rich and Q/N-rich domain with 3 serines, 9 asparagine and 12 glutamic acids and only one S 17 Q motif.

在一個特定實施例中,Rad53-SCD1含有四個TQ模體及一個SQ模體。In a specific embodiment, Rad53-SCD1 contains four TQ motifs and one SQ motif.

三種酵母普里昂蛋白引起蛋白質(Sup35、Ure2及New1)之普里昂蛋白(成核)域與DDR-SCD共有兩個共同的結構特徵。其不僅具有高S/T/Q/N胺基酸含量,而且亦含有至少一個S/T-Q位點,該位點可經Mec1 ATR或Tel1 ATM磷酸化。 The prion (nucleation) domains of the three yeast prion proteins (Sup35, Ure2 and New1) share two structural features in common with DDR-SCD. Not only does it have a high S/T/Q/N amino acid content, but it also contains at least one S/TQ site that can be phosphorylated by Mec1 ATR or Tel1 ATM .

在一個特定實施例中,Ure2氮分解代謝物阻遏轉錄調控因子之Ure2普里昂蛋白域(UPD)(殘基1-91)係普里昂蛋白[ URE3 + ]之基礎。UPD對於Ure2之活體內功能至關重要,因為移除Ure2中之UPD使相應Ure2-ΔUPD突變體之蛋白質穩定性及穩態蛋白質含量降低(但轉錄物含量不降低)。與Sup35-PND相同,Ure2-UPD具有高STQN含量(>63%;91個胺基酸中有10個絲胺酸、5個蘇胺酸、10個麩醯胺酸、33個天冬醯胺)且採用完全無序的結構。另外,Ure2-UPD亦具有S 68Q模體。 In a specific embodiment, the Ure2 prion protein domain (UPD) (residues 1-91) of the Ure2 nitrogen catabolite-repressing transcriptional regulator is the basis of the prion protein [ URE3 + ]. UPD is critical for the in vivo function of Ure2, as removal of UPD in Ure2 reduces protein stability and steady-state protein content (but not transcript content) of the corresponding Ure2-ΔUPD mutant. Like Sup35-PND, Ure2-UPD has a high STQN content (>63%; 10 serine, 5 threonine, 10 glutamic acid, 33 aspartamine among 91 amino acids) ) and adopts a completely disordered structure. In addition, Ure2-UPD also has the S 68 Q phantom.

在一個特定實施例中,New1普里昂蛋白域(NPD)支持[ NU + ]且易受[ PSI+]普里昂蛋白誘導。New1係非必需ATP結合卡匣F型蛋白質,其精細調諧轉譯終止或核糖體再循環之效率。New1-NPD亦具有高STQN含量(>44%;156個胺基酸中有19個絲胺酸、8個蘇胺酸、14個麩醯胺酸、26個天冬醯胺)及S 145Q模體。 In a specific embodiment, the New1 prion protein domain (NPD) supports [ NU + ] and is susceptible to [ PSI+ ]prion protein induction. New1 is a non-essential ATP-binding cassette F-type protein that fine-tunes the efficiency of translation termination or ribosome recycling. New1-NPD also has high STQN content (>44%; 19 serine, 8 threonine, 14 glutamic acid, 26 aspartamine out of 156 amino acids) and S 145 Q Motif.

亦值得注意的是,三種(N末端IDR)N-IDR蛋白質(Vps64、Ssk2及Kel1)不具有已知之DDR相關功能。Vps64(亦稱為Far9)係蛋白質之細胞質至液泡靶向所需的。引起興趣地是, vps64Δ突變體顯示出增加之非整倍體耐受性。Kel1(Kelch重複序列1)係適當細胞融合及細胞形態所需的,且與Kel2 (Kel1之重複基因(ohnolog))一起作用來負面地調控有絲分裂退出。感受器抑制激酶2 (suppression of sensor kinase 2,Ssk2)係Hog1滲透調節信號傳導路徑之有絲分裂原活化蛋白激酶(MAPK)激酶。Ssk2之活化分別介導肌動蛋白細胞骨架自滲透壓力恢復。 It is also worth noting that the three (N-terminal IDR) N-IDR proteins (Vps64, Ssk2 and Kell) do not have known DDR-related functions. Vps64 (also known as Far9) is required for cytoplasmic to vacuolar targeting of proteins. Interestingly, the vps64Δ mutant showed increased aneuploidy tolerance. Kel1 (Kelch repeat 1) is required for proper cell fusion and cell morphology, and acts in conjunction with Kel2 (ohnolog of Kel1) to negatively regulate mitotic exit. Suppression of sensor kinase 2 (Ssk2) is a mitogen-activated protein kinase (MAPK) kinase of the Hog1 osmotically regulated signaling pathway. Activation of Ssk2 mediates actin cytoskeleton recovery from osmotic stress, respectively.

儘管不打算受任何理論限制,但咸信IDR或SCD本身在促進感興趣多肽之高穩態含量方面的影響要高於IDR或SCD磷酸化之影響。另外,儘管不打算受任何理論限制,但咸信IDR或SCD磷酸化藉由在DNA損傷反應期間防止蛋白酶體降解來使感興趣多肽穩定,較佳地,帶負電之IDR或SCD足以使感興趣多肽穩定。While not intending to be bound by any theory, it is believed that the effect of IDR or SCD itself in promoting high steady state levels of the polypeptide of interest is greater than the effect of IDR or SCD phosphorylation. In addition, while not intending to be bound by any theory, it is believed that IDR or SCD phosphorylation stabilizes the polypeptide of interest by preventing proteasomal degradation during the DNA damage response, preferably a negatively charged IDR or SCD is sufficient to confer interest Peptide stabilization.

在本發明之一些實施例中,IDR中之一或多個S、T或Q殘基經具有疏水性側鏈之胺基酸置換。具有疏水性側鏈之胺基酸的實例包括但不限於丙胺酸、纈胺酸、異白胺酸、白胺酸或甲硫胺酸。較佳地,具有疏水性側鏈之胺基酸係丙胺酸。一或多個S、T或Q殘基經具有疏水性側鏈之胺基酸置換之IDR的實例包括但不限於Rad51-NTD-3SA、Rad51-NTD-6SQA、Rad51-NTD-9SQA、Rad51-NTD-12SQA、Rad53-SCD1-5STA、Rad53-SCD1-7QA或Sup35-PND-1SA。In some embodiments of the invention, one or more of the S, T or Q residues in the IDR are replaced with an amino acid having a hydrophobic side chain. Examples of amino acids with hydrophobic side chains include, but are not limited to, alanine, valine, isoleucine, leucine, or methionine. Preferably, the amino acid with a hydrophobic side chain is alanine. Examples of IDRs in which one or more S, T, or Q residues are replaced by amino acids with hydrophobic side chains include, but are not limited to, Rad51-NTD-3SA, Rad51-NTD-6SQA, Rad51-NTD-9SQA, Rad51- NTD-12SQA, Rad53-SCD1-5STA, Rad53-SCD1-7QA, or Sup35-PND-1SA.

在本發明之一些實施例中,SCD中之一或多個S、T或Q殘基經具有帶負電側鏈之胺基酸置換。具有帶負電側鏈之胺基酸的實例包括但不限於天冬胺酸或麩胺酸兩者。較佳地,具有帶負電側鏈之胺基酸係天冬胺酸。In some embodiments of the invention, one or more of the S, T or Q residues in the SCD are replaced with an amino acid having a negatively charged side chain. Examples of amino acids with negatively charged side chains include, but are not limited to, both aspartic acid or glutamic acid. Preferably, the amino acid with a negatively charged side chain is aspartic acid.

在本發明之一些實施例中,IDR中之一或多個S、T或Q殘基經S、T及Q中之另一個胺基酸置換。In some embodiments of the invention, one or more of the S, T or Q residues in the IDR are replaced with another amino acid of S, T and Q.

在各個態樣中,表達載體係核酸、質體、黏質體、病毒或人工染色體。表達載體包含編碼感興趣多肽之聚核苷酸序列(多肽編碼序列),該感興趣多肽可操作地連接能夠在感興趣之哺乳動物細胞株中實現表達的啟動子或處於該啟動子控制下。表達載體可包含一或多個多肽編碼序列。因此,表達載體包含至少第一、及視情況存在之第二、第三、第四等多肽編碼序列。因此,在一些實施例中,表達卡匣包含第一及第二多肽編碼序列,其可處於單一啟動子或獨立啟動子控制下。In various aspects, the expression vector is a nucleic acid, plastid, cosmid, virus or artificial chromosome. An expression vector comprises a polynucleotide sequence encoding a polypeptide of interest (polypeptide coding sequence) operably linked to or under the control of a promoter capable of effecting expression in a mammalian cell line of interest. An expression vector may contain one or more polypeptide coding sequences. Thus, the expression vector comprises at least a first, and optionally a second, third, fourth, etc. polypeptide coding sequence. Thus, in some embodiments, the expression cassette comprises first and second polypeptide coding sequences, which may be under the control of a single promoter or separate promoters.

載體之選擇將取決於若干因素,包括載體與欲引入該載體之哺乳動物細胞(例如可用於繁殖或擴增載體之哺乳動物細胞,或宿主細胞,諸如細菌細胞)之相容性及該載體整合至哺乳動物細胞基因體中的能力。載體可為病毒載體、噬菌體、噬質體、黏質體、F型黏接質體(fosmid)、細菌噬菌體、人工染色體、選殖載體、穿梭載體、質體(線性或閉環形)或類似物。載體可包括染色體、非染色體及合成DNA序列。熟習此項技術者已知大量適合載體且其為可商購的。適合載體之實例提供於Sambrook等人編, Molecular Cloning: A Laboratory Manual (第2版), 第1-3卷, Cold Spring Harbor Laboratory (1989)中。The choice of vector will depend on several factors, including compatibility of the vector with the mammalian cell into which the vector is to be introduced (eg, mammalian cells that can be used to propagate or amplify the vector, or host cells such as bacterial cells) and integration of the vector into the genome of mammalian cells. The vector can be a viral vector, phage, phage, cosmid, fosmid, bacteriophage, artificial chromosome, colony vector, shuttle vector, plastid (linear or closed circular) or the like . Vectors can include chromosomal, non-chromosomal and synthetic DNA sequences. A large number of suitable vectors are known to those skilled in the art and are commercially available. Examples of suitable vectors are provided in Sambrook et al., eds., Molecular Cloning: A Laboratory Manual (2nd Edition), Vols. 1-3, Cold Spring Harbor Laboratory (1989).

表達載體可包括可用於在此項技術中熟知之哺乳動物宿主細胞中表達一或多種感興趣多肽的額外特徵或元件。此類特徵包括強化子元件、轉錄起始序列及核糖體結合位點、聚腺苷酸化信號序列、終止序列及對於mRNA之核輸出、轉譯及/或穩定性極為重要之其他特徵。Expression vectors may include additional features or elements useful for expressing one or more polypeptides of interest in mammalian host cells well known in the art. Such features include enhancer elements, transcription initiation sequences and ribosome binding sites, polyadenylation signal sequences, termination sequences, and other features that are important for nuclear export, translation, and/or stability of mRNA.

宿主細胞較佳地為真核宿主細胞。該真核細胞較佳地選自由以下組成之群:哺乳動物細胞、酵母細胞、真菌細胞、昆蟲細胞、植物細胞及原生動物細胞,以及母細胞之子代,不管該子代之形態或遺傳組成與原始母體是否相同,只要存在所選擇之基因即可。一般而言,任何載體均可用於本發明之方法中且在一個態樣中,適當載體之選擇係基於選擇用於蛋白質表達之宿主細胞。The host cell is preferably a eukaryotic host cell. The eukaryotic cells are preferably selected from the group consisting of mammalian cells, yeast cells, fungal cells, insect cells, plant cells and protozoan cells, and progeny of the parent cell, regardless of the morphology or genetic composition of the progeny. Whether the original parent is the same or not, as long as the selected gene is present. In general, any vector can be used in the methods of the invention and, in one aspect, the selection of an appropriate vector is based on the selection of a host cell for protein expression.

在各個態樣中,宿主細胞係原核或真核細胞。在各個態樣中,宿主細胞係細菌細胞、原生生物細胞、真菌細胞、植物細胞或動物細胞。In various aspects, the host cell is a prokaryotic or eukaryotic cell. In various aspects, the host cell is a bacterial cell, a protist cell, a fungal cell, a plant cell or an animal cell.

感興趣產物,例如根據本發明產生之多肽可藉由此項技術中已知之方法回收,進一步純化、分離及/或修飾。舉例而言,可藉由習知程序自培養基回收產物,該等程序包括但不限於離心、過濾、超濾、萃取或沈澱。純化可藉由此項技術中已知之多種程序執行,包括但不限於層析(例如離子交換層析、親和層析、疏水性層析、層析聚焦及尺寸排阻層析)、電泳程序(例如製備型等電聚焦)、差異溶解性(例如硫酸銨沈澱)或萃取。Products of interest, eg, polypeptides produced according to the present invention, can be recovered, further purified, isolated and/or modified by methods known in the art. For example, the product can be recovered from the culture medium by conventional procedures including, but not limited to, centrifugation, filtration, ultrafiltration, extraction or precipitation. Purification can be performed by a variety of procedures known in the art, including but not limited to chromatography (eg, ion exchange chromatography, affinity chromatography, hydrophobic chromatography, chromatographic focusing and size exclusion chromatography), electrophoretic procedures ( such as preparative isoelectric focusing), differential solubility (eg ammonium sulfate precipitation) or extraction.

感興趣產物可為能夠藉由轉錄、轉譯或表達由該聚核苷酸編碼之遺傳資訊的任何其他事件產生的任何生物產物。就此而言,產物將為表達產物。該產物可為醫藥活性或治療活性化合物,或欲用於分析中之研究工具。在一個尤其較佳之實施例中,產物係多肽,較佳地為醫藥活性或治療活性多肽,或欲用於診斷或其他分析中之研究工具。因此,多肽不限於任何特定蛋白質或蛋白質群組,但相反地,其可為希望藉由本文所描述之方法選擇及/或表達的任何大小、功能或來源之任何蛋白質。因此,可表達/產生若干不同的感興趣多肽。The product of interest can be any biological product that can be produced by any other event of transcription, translation, or expression of the genetic information encoded by the polynucleotide. In this regard, the product will be the expression product. The product may be a pharmaceutically active or therapeutically active compound, or a research tool to be used in an assay. In a particularly preferred embodiment, the product is a polypeptide, preferably a pharmaceutically active or therapeutically active polypeptide, or a research tool to be used in diagnosis or other assays. Thus, a polypeptide is not limited to any particular protein or group of proteins, but on the contrary, it can be any protein of any size, function or origin desired to be selected and/or expressed by the methods described herein. Thus, several different polypeptides of interest can be expressed/produced.

雖然以下實例進一步提供本發明之某些態樣及實施例的詳細描述,但其應僅視為說明性的且不以任何方式限制申請專利範圍之範圍。 實例 While the following examples provide further detailed descriptions of certain aspects and embodiments of the present invention, they should be considered illustrative only and in no way limit the scope of the claimed scope. example

材料及方法Materials and Methods

酵母菌株及雙雜交分析 所有減數分裂實驗均使用二倍體同基因SK1菌株執行。定量酵母雙雜交分析、四分體解剖、染色體塗片之免疫染色、環己醯亞胺阻斷實驗及物理分析係如先前所描述( Chen. Y.-J., Chuang, Y.-C., Chuang, C.-N., Cheng, Y.-H., Chang, C.-R., Leng, C.-H. Wang, T.-F., S. cerevisiae Mre11 recruits SUMO moietie to facilitate the assembly and function of the Mre11-Rad50-Xrs2 complex. Nucleic Acids Research 2016 44, 2199-2213 )進行。 Yeast strain and two-hybrid analysis : All meiotic experiments were performed using the diploid isogenic SK1 strain. Quantitative yeast two-hybrid analysis, tetrad dissection, immunostaining of chromosome smears, cycloheximide blocking experiments, and physical analysis were performed as previously described ( Chen. Y.-J., Chuang, Y.-C. , Chuang, C.-N., Cheng, Y.-H., Chang, C.-R., Leng, C.-H. and Wang, T.-F., S. cerevisiae Mre11 recruits SUMO moietie to facilitate The assembly and function of the Mre11-Rad50-Xrs2 complex. Nucleic Acids Research 2016 44, 2199-2213 . ) were performed.

抗血清、免疫墨點法及細胞學 使用合成磷酸化肽M 1S [P]QVQEQHISESQL 14、E 6QHI SES [P]QLQYGNGS 20、T 24VPADLS [P]QSVVDGNGN 39及E 182LFGEFRTGKS [P]QLCHT 197作為抗原分別產生針對磷酸化Rad51-S 2Q、Rad51-S 12Q、Rad51-S 30Q及Rad51-S 192Q之兔抗血清,其中S [P]係磷酸化絲胺酸。藉由肽特異性親和層析法,使用與瓊脂糖珠粒偶合之相應非磷酸化肽預先清潔抗血清。磷酸化肽合成及動物免疫接種係由LTK BioLaboratories(臺灣(Taiwan))進行。針對Hop1之兔抗血清、針對磷酸化Hop1-T 318Q之兔抗血清及針對Zip1之山羊抗血清如先前所描述( Chuang C.N., Cheng Y.H., Wang T.F. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 2012; 40:11416-11427)。用於西方墨點法之山羊抗Rad51抗體(yN-19)、山羊抗Clb1抗體(yS-19)及兔抗Sic1抗體(FL-284)係購自Santa Cruz Biotechnology(CA, USA)。兔抗Dmc1抗體係來自Douglas Bishop(University of Chicago, IL, USA)之饋贈。大鼠抗HA抗體係購自Roche(Basel, Switzerland)。小鼠抗V5抗體係購自Bio-Rad(CA, USA)。兔抗Hsp104及抗己醣激酶抗血清係由Chung Wang(Academia Sinica, Taiwan)友情提供。西方墨點分析係如所描述( Lin F.M., Lai Y.J., Shen H.J., Cheng Y.H., Wang T.F. Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis. EMBO J. 2010; 29:586-596)執行。使西方墨點膜上之蛋白質信號暴露於X射線膠片(Fujifilm Medical, Tokyo, Japan)或使用ImageQuant LAS 4000(GE Healthcare, IL, USA)觀測及捕捉並使用ImageJ(NIH, MD, USA)定量。使用兔抗Dmc1及豚鼠抗Rad51之細胞學分析係如先前所描述( Shinohara M., Gasior S.L., Bishop D.K., Shinohara A. Tid1/Rdh54 promotes colocalization of Rad51 and Dmc1 during meiotic recombination. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:10814-10819)進行。使用落射螢光顯微鏡(BX53, Olympus),利用100X物鏡(NA1.4)觀察染色之樣品。在室溫下,藉由CCD相機(CoolSNAP HQ2, Teledyne Photometrics)捕捉圖像且接著使用iVision軟體(BioVision Technologies)處理。 Antiserum, immunoblotting and cytology : using synthetic phosphorylated peptides M 1 S [P] QVQEQHISESQL 14 , E 6 QHI SES [P] QLQYGNGS 20 , T 24 VPADLS [P] QSVVDGNGN 39 and E 182 LFGEFRTGKS [P] QLCHT 197 was used as an antigen to generate rabbit antisera against phosphorylated Rad51-S 2 Q, Rad51-S 12 Q, Rad51-S 30 Q and Rad51-S 192 Q, respectively, wherein S [P] is phosphorylated serine. Antisera were pre-cleaned with the corresponding non-phosphorylated peptides coupled to agarose beads by peptide-specific affinity chromatography. Phosphorylated peptide synthesis and animal immunization were performed by LTK BioLaboratories (Taiwan). Rabbit antiserum against Hop1, rabbit antiserum against phosphorylated Hop1-T 318 Q, and goat antiserum against Zip1 were as previously described ( Chuang CN, Cheng YH, Wang TF Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 2012;40:11416-11427 ). Goat anti-Rad51 antibody (yN-19), goat anti-Clb1 antibody (yS-19) and rabbit anti-Sic1 antibody (FL-284) for Western blotting were purchased from Santa Cruz Biotechnology (CA, USA). The rabbit anti-Dmcl antibody system was a gift from Douglas Bishop (University of Chicago, IL, USA). Rat anti-HA antibody system was purchased from Roche (Basel, Switzerland). Mouse anti-V5 antibody system was purchased from Bio-Rad (CA, USA). Rabbit anti-Hsp104 and anti-hexokinase antisera were kindly provided by Chung Wang (Academia Sinica, Taiwan). Western blot analysis was performed as described ( Lin FM, Lai YJ, Shen HJ, Cheng YH, Wang TF Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis. EMBO J. 2010; 29: 586-596 ) implementation. Protein signals on Western blot membranes were exposed to X-ray film (Fujifilm Medical, Tokyo, Japan) or visualized and captured using ImageQuant LAS 4000 (GE Healthcare, IL, USA) and quantified using ImageJ (NIH, MD, USA). Cytological analysis using rabbit anti-Dmc1 and guinea pig anti-Rad51 was as previously described ( Shinohara M., Gasior SL, Bishop DK, Shinohara A. Tid1/Rdh54 promotes colocalization of Rad51 and Dmc1 during meiotic recombination. Proc. Natl. Acad. Sci. USA 2000;97:10814-10819 ). The stained samples were observed using an epifluorescence microscope (BX53, Olympus) with a 100X objective (NA1.4). Images were captured by a CCD camera (CoolSNAP HQ2, Teledyne Photometrics) at room temperature and then processed using iVision software (BioVision Technologies).

小鼠抗GFP抗體及抗GST抗體分別係購自Bio-Rad(CA, USA, MCA1360)、Clontech(SF, USA, 632381)及GenScript(NJ, USA, A00865)。兔抗Sml1抗體係購自Agrisera(Vännäs, SE, AS10847)。兔抗Hsp104抗血清係由Chung Wang(Academia Sinica, Taiwan)友情提供。使用合成磷酸化肽N 12YQQYS [P]QNGNQQQGNNR 28作為抗原產生針對磷酸化Sup35-S 17Q之兔抗血清,其中S [P]係磷酸化絲胺酸。磷酸化肽合成及動物免疫接種係由LTK BioLaboratories(臺灣)進行。西方墨點分析係如所描述( Chuang CN, Cheng YH, Wang TF. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 2012;40:11416-27 Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res. 2020;48:8474-89)執行。定量β-半乳糖苷酶活性分析係如先前所描述( Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res. 2020;48:8474-89 Lin FM, Lai YJ, Shen HJ, Cheng YH, Wang TF. Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis. EMBO J. 2010;29:586-96 Niethammer M, Sheng M. Identification of ion channel-associated proteins using the yeast two-hybrid system. Methods Enzymol. 1998;293:104-22)進行。 Mouse anti-GFP antibody and anti-GST antibody were purchased from Bio-Rad (CA, USA, MCA1360), Clontech (SF, USA, 632381) and GenScript (NJ, USA, A00865), respectively. Rabbit anti-Sml1 antibody system was purchased from Agrisera (Vännäs, SE, AS10847). Rabbit anti-Hsp104 antiserum was kindly provided by Chung Wang (Academia Sinica, Taiwan). Rabbit antiserum against phosphorylated Sup35- S17Q was generated using the synthetic phosphorylated peptide N12YQQYS [P] QNGNQQQGNNR28 as antigen, where S [P] is phosphorylated serine. Phosphorylated peptide synthesis and animal immunization were performed by LTK BioLaboratories (Taiwan). Western blot analysis was performed as described ( Chuang CN, Cheng YH, Wang TF. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 2012;40:11416-27 ; Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res. 2020;48:8474-89 ). Quantitative β-galactosidase activity assay was performed as previously described ( Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res 2020;48:8474-89 ; Lin FM, Lai YJ, Shen HJ, Cheng YH, Wang TF. Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis. EMBO J. 2010;29 :586-96 ; Niethammer M, Sheng M. Identification of ion channel-associated proteins using the yeast two-hybrid system. Methods Enzymol. 1998;293:104-22 ).

實例Example 11 釀酒酵母Saccharomyces cerevisiae Rad51Rad51 之短short NN 末端end area (NTD(NTD ; 1-661-66 indivual 胺基酸殘基amino acid residue )) 具有出人意料之表達增強活性Has unexpected expression enhancing activity

Rad51之NTD係具有3個SQ模體(S 2Q、S 12Q及S 30Q)之真實SCD,其可在活體內藉由Mec1 ATR及Tel1 ATM磷酸化。生物化學及遺傳分析顯示,Rad51-NTD磷酸化經由防止蛋白酶體介導之降解明顯地促進Rad51之穩定性。半衰期(t1/2)之次序係野生型Rad51(>3小時)~Rad51-3D>>Rad51-3A (20-30分鐘)。Rad51-3D及Rad51-3A係模擬磷酸化突變體及磷酸化缺陷型突變體,且全部三種此等絲胺酸殘基(S 2、S 12及S 30)均突變成天冬胺酸(D)及丙胺酸(A)。 The NTD of Rad51 is a true SCD with 3 SQ motifs (S2Q, S12Q and S30Q ) that can be phosphorylated by Mec1 ATR and Tel1 ATM in vivo. Biochemical and genetic analysis showed that Rad51-NTD phosphorylation significantly promotes the stability of Rad51 by preventing proteasome-mediated degradation. The order of half-lives (t1/2) was wild-type Rad51 (>3 hours) to Rad51-3D >> Rad51-3A (20-30 minutes). Rad51-3D and Rad51-3A are mimic phosphorylation mutants and phosphorylation deficient mutants, and all three of these serine residues (S2, S12 and S30) are mutated to aspartic acid (D) and alanine (A).

值得注意的是,相較於活體內野生型Rad51蛋白質之穩態蛋白質含量,Rad51 ΔN(Rad51之NTD截短形式;殘基67-400)之穩態蛋白質含量<5%(圖1 A及圖1 B)。在營養條件下且在MMS處理以誘導WT中Rad51蛋白質之表達時, rad51-Δ N細胞中Rad51-ΔN蛋白質之穩態含量相對於WT中Rad51之穩態含量僅為約3%(圖1 C)。Rad51 ΔN仍具有修復DNA雙股斷裂之能力,因為 rad51-ΔN細胞在營養生長期間對DNA損傷劑(亦即,羥基脲及甲烷磺酸甲酯)具有抗性(圖1 D)且在減數分裂期間產生約50%之活孢子(圖1 E)。 Notably, the steady-state protein content of Rad51 ΔN (the NTD truncated form of Rad51; residues 67-400) was <5% compared to the steady-state protein content of wild-type Rad51 protein in vivo (Fig. 1A and 1). 1B). Under nutrient conditions and upon MMS treatment to induce the expression of Rad51 protein in WT, the steady-state level of Rad51-ΔN protein in rad51 - ΔN cells was only about 3% relative to the steady-state level of Rad51 in WT (Figure 1C). ). Rad51 ΔN still has the ability to repair DNA double-strand breaks because rad51 -ΔN cells are resistant to DNA damaging agents (i.e., hydroxyurea and methyl methanesulfonate) during vegetative growth (Fig. About 50% viable spores were produced during division (Fig. 1E).

Rad51-NTD包含66個胺基酸殘基。為表徵生物化學特性,藉由用野生型RAD51基因之啟動子(P RAD51)置換GAL1啟動子並在V5之前插入SV40核定位信號(NLS)肽,修飾釀酒酵母pYC2/CT/ lacZ-V5表達載體(Invitrogen, USA),得到P RAD51- lacZ-NLS-V5。此新載體保留C末端V5抗原決定基以藉由免疫墨點法偵測LacZ-V5或LacZ-V5融合蛋白。接下來,構築三個相應的載體:P RAD51-NTD-lacZ-NLS-V5、P RAD51-NTD 3A-lacZ-NLS-V5及P RAD51-NTD 3D-lacZ-NLS-V5。將全部四個此等載體轉形至SK1酵母細胞株中。使轉形體無性繁殖以達到對數期,將其收集起來用於製備變性溶解產物。使用針對磷酸化Rad51-S 12Q之抗血清進行免疫墨點分析指示,Tel1 ATM及Mec1 ATR可使NTD-LacZ-V5磷酸化,但不使NTD 3A-LacZ-V5或NTD 3D-LacZ-V5磷酸化(圖2 A)。可在免疫墨點法中,使用抗Rad51抗血清識別全部三種此等NTD-LacZ-V5融合蛋白且穩態蛋白質含量之次序係NTD-LacZ-V5≈NTD 3D-LacZ-V5>NTD 3A-LacZ-V5(圖2 A),其皆顯示出明顯高於LacZ-V5之蛋白質含量(圖2 B)。因此,Rad51-NTD可增強其融合搭配物之表達,且鑒於墨點中存在較多的NTD 3A-LacZ-V5降解產物(圖2 B,以黑色箭頭標記),故NTD 3A-LacZ-V5可能不如NTD-LacZ-V5及NTD 3D-LacZ-V5穩定。 Rad51-NTD contains 66 amino acid residues. To characterize biochemical properties, the S. cerevisiae pYC2/CT/ lacZ -V5 expression vector was modified by replacing the GAL1 promoter with the promoter of the wild-type RAD51 gene (P RAD51 ) and inserting the SV40 nuclear localization signal (NLS) peptide before V5 (Invitrogen, USA) to give PRAD51 - lacZ -NLS-V5. This new vector retains the C-terminal V5 epitope for detection of LacZ-V5 or LacZ-V5 fusion proteins by immunoblotting. Next, three corresponding vectors were constructed: PRAD51 -NTD-lacZ-NLS-V5, PRAD51 - NTD3A -lacZ-NLS-V5, and PRAD51 - NTD3D -lacZ-NLS-V5. All four of these vectors were transformed into the SK1 yeast cell line. Transformants were vegetatively propagated to log phase and collected for the preparation of denatured lysates. Immunoblotting analysis using antisera against phosphorylated Rad51-S 12 Q indicated that Tel1 ATM and Mec1 ATR phosphorylated NTD-LacZ-V5, but not NTD 3A -LacZ-V5 or NTD 3D -LacZ-V5 phosphorylation (Figure 2A). All three of these NTD-LacZ-V5 fusion proteins can be recognized in immunoblotting using anti-Rad51 antiserum and the order of steady state protein content is NTD-LacZ-V5≈NTD 3D -LacZ-V5>NTD 3A -LacZ -V5 (Fig. 2A), all of which showed significantly higher protein content than LacZ-V5 (Fig. 2B). Therefore, Rad51-NTD can enhance the expression of its fusion partner, and given the presence of more NTD 3A -LacZ-V5 degradation products in the ink dots (Fig. 2B, marked by black arrows), NTD 3A -LacZ-V5 may Not as stable as NTD-LacZ-V5 and NTD 3D -LacZ-V5.

亦測定此四種融合蛋白之β-半乳糖苷酶活性。分層及正規化相對活性水準係NTD 3D-LacZ-V5(13.2倍)=NTD-LacZ-V5(13.2倍)>NTD 3A-LacZ-V5(9.6倍)>>LacZ-V5(1倍)(圖2 C)。此等結果指示,Rad51-NTD可用作表達運載體以促進其融合搭配物之表達、摺疊或穩定化。Rad51-NTD之表達運載體的功能進一步藉由Tel1 ATM依賴性及Mec1 ATR依賴性磷酸化或藉由模擬磷酸化穩定。 The beta-galactosidase activity of these four fusion proteins was also determined. The stratified and normalized relative activity levels were NTD 3D -LacZ-V5 (13.2-fold)=NTD-LacZ-V5 (13.2-fold)>NTD 3A -LacZ-V5 (9.6-fold)>>LacZ-V5 (1-fold)( Figure 2C). These results indicate that Rad51-NTD can be used as an expression vehicle to facilitate expression, folding or stabilization of its fusion partner. The function of the expression vehicle for Rad51-NTD was further stabilized by Tel1 ATM -dependent and Mec1 ATR -dependent phosphorylation or by mimetic phosphorylation.

SCD之表達增強活性係自主式的。當將單獨Rad51-NTD與lacZ-V5-His 6(亦即,具有V5抗原決定基標籤及六聚組胺酸(His 6)親和標籤之β-半乳糖苷酶)之NH 2末端融合時,其不僅增加(>10倍)目標蛋白質(亦即,lacZ-V5-His 6)之穩態含量(圖3 A),而且亦引起明顯(>10倍)更高之β-半乳糖苷酶活性(圖3 B)。亦已展示,Rad53之N末端SCD1(1-29個胺基酸殘基)及Hop1之中間SCD(258-324個胺基酸殘基)亦具有此類表達增強活性(圖3)。接下來,應用四種不同的目標蛋白質確定Rad53-SCD1之表達促進活性,包括β-半乳糖苷酶(LacZ)、綠色螢光蛋白(GFP)、麩胱甘肽S-轉移酶(GST)及非二聚化GST(GST-(nd))。在GST(nd)中,促成GST之二聚體穩定性的兩個重要殘基(Arg73及Asp77)突變成脯胺酸及離胺酸。在N末端Rad53-SCD1融合情況下,發現全部四種目標蛋白質均展示相較於未標記之蛋白質急劇增加之表達(圖4)。 The expression enhancing activity of SCD is autonomous. When Rad51-NTD alone was fused to the NH 2 terminus of lacZ-V5-His 6 (ie, β-galactosidase with a V5 epitope tag and a hexahistidine (His 6 ) affinity tag), It not only increased (>10-fold) the steady-state content of the target protein (ie, lacZ-V5-His 6 ) (Fig. 3A), but also caused significantly (>10-fold) higher β-galactosidase activity (Figure 3B). It has also been shown that the N-terminal SCD1 of Rad53 (1-29 amino acid residues) and the intermediate SCD of Hopl (258-324 amino acid residues) also have such expression enhancing activity (Figure 3). Next, the expression-promoting activity of Rad53-SCD1 was determined using four different target proteins, including β-galactosidase (LacZ), green fluorescent protein (GFP), glutathione S-transferase (GST) and Non-dimerized GST (GST-(nd)). In GST (nd), two important residues (Arg73 and Asp77) that contribute to the dimer stability of GST were mutated to proline and lysine. In the case of the N-terminal Rad53-SCD1 fusion, all four target proteins were found to show dramatically increased expression compared to the untagged protein (Figure 4).

實例example 22 Rad51-NTDRad51-NTD exist 營養生長及減數分裂期間以during vegetative growth and meiosis Mec1 ATR Mec1 ATR 依賴性dependency and Tel1 ATM Tel1 ATM 依賴性dependency 方式磷酸化phosphorylation

Rad51-NTD(殘基1-66)含有三個SQ模體(S 2Q、S 12Q及S 30Q)(圖5 A)。為揭露Rad51-NTD本身及NTD磷酸化之功能,先產生對磷酸化Rad51-S 2Q、Rad51-S 12Q及Rad51-S 30Q蛋白質具有特異性之抗血清(圖5 B)。接下來,產生一組突變體,包括NTD缺失突變體( rad51-Δ Nrad51 67-440 )、 mec1-kd(激酶失活) sml1Δ雙重突變體、 mec1-kd(激酶失活) sml1Δ tel1Δ三重突變體、三個單胺基酸取代突變體( rad51-S2Arad51-S12Arad51-S30A)、磷酸化缺陷型突變體( rad51-3A)及模擬磷酸化突變體( rad51-3D)(圖5 A)。免疫墨點分析之結果(圖5 B至D)指示,Rad51中之全部三個S/Q模體不僅在暴露於DNA損傷劑甲烷磺酸甲酯(MMS)之營養細胞中(圖5 C)而且在正常減數分裂期間(圖5 D)亦為Mec1 ATR及Tel1 ATM之直接目標位點。 Rad51-NTD (residues 1-66) contains three SQ motifs ( S2Q , S12Q and S30Q ) (Fig. 5A). To reveal the function of Rad51-NTD itself and phosphorylation of NTD, antisera specific for phosphorylated Rad51 - S2Q, Rad51- S12Q and Rad51- S30Q proteins were first generated (FIG. 5B). Next, a set of mutants was generated including NTD deletion mutants ( rad51 - ΔN or rad51 67-440 ), mec1-kd (kinase inactive) sml1Δ double mutant, mec1-kd (kinase inactive) sml1Δ tel1Δ triple mutant, three monoamino acid substitution mutants ( rad51-S2A , rad51-S12A , and rad51-S30A ), phosphorylation-deficient mutant ( rad51-3A ), and a phosphorylation-mimicking mutant ( rad51-3D ) ) (Figure 5A). The results of immunoblotting analysis (Figure 5B-D) indicated that all three S/Q motifs in Rad51 were not only in vegetative cells exposed to the DNA damaging agent methyl methanesulfonate (MMS) (Figure 5C) It is also a direct target site for Mec1 ATR and Tel1 ATM during normal meiosis (Fig. 5D).

與若干其他真核生物體(例如高等植物及哺乳動物)相同,釀酒酵母具有兩種RecA樣重組酶Rad51及Dmc1。Rad51在所有真核細胞中普遍存在,而Dmc1具有減數分裂特異性。在釀酒酵母中,Rad51及Dmc1皆非減數分裂必需的。然而,Rad51之催化功能藉由與減數分裂特異性蛋白質Hed1直接相互作用而受到抑制,Hed1使Rad51在減數分裂期間成為Dmc1之輔助因子。減數分裂特異性重組酶Dmc1之缺乏在減數分裂前期I引起極強的細胞週期停滯表型。 dmc1Δ hed1Δ突變體中之孢子形成及孢子活力明顯改善,此可能歸因於在無Hed1施加之抑制作用存在下Rad51進行有效的同源體間重組。 Like several other eukaryotic organisms, such as higher plants and mammals, S. cerevisiae has two RecA-like recombinases, Rad51 and Dmcl. Rad51 is ubiquitous in all eukaryotic cells, whereas Dmc1 is meiosis-specific. In Saccharomyces cerevisiae, neither Rad51 nor Dmc1 is required for meiosis. However, the catalytic function of Rad51 is inhibited by direct interaction with the meiosis-specific protein Hed1, which makes Rad51 a cofactor for Dmc1 during meiosis. Deficiency of the meiosis-specific recombinase Dmc1 causes a very strong cell cycle arrest phenotype in meiotic prophase I. Sporulation and spore viability were significantly improved in the dmc1Δhed1Δ mutant , which may be attributed to efficient interhomologous recombination by Rad51 in the absence of inhibition exerted by Hed1.

已發現,Mec1 ATR/Tel1 ATM依賴性Rad51-NTD磷酸化係 dmc1Δ hed1Δ突變體中之減數分裂重組(圖5 E)及暴露於較高濃度之DNA損傷劑(亦即,0.02%且非0.01%之MMS)之營養細胞中之DNA修復(圖5 F)必不可少的。值得注意的是,模擬磷酸化突變體( rad51-3D)可在功能上取代 dmc1Δ hed1Δ中之磷酸化Rad51(圖5 E)。相比之下, dmc1Δ hed1Δ rad51-3A三重突變體之表現類似於 dmc1Δ,展現出與前期I之強細胞週期停滯相關的表型。亦已說明,可藉由引入表達全長Rad51或Rad51-3A突變體之高複本數載體來拯救(至少部分) dmc1Δ hed1Δ rad51-3A三重突變體之減數分裂缺陷(圖6)。 It was found that Mec1 ATR /Tel1 ATM -dependent Rad51-NTD phosphorylation was associated with meiotic recombination in dmc1Δhed1Δ mutants (Fig. 5E ) and exposure to higher concentrations of DNA damaging agents (ie, 0.02% and Essential for DNA repair (Fig. 5F) in vegetative cells other than 0.01% MMS). Notably, the mimetic phosphorylation mutant ( rad51-3D ) can functionally replace phosphorylated Rad51 in dmc1Δhed1Δ (Fig. 5E ). In contrast, the dmc1Δhed1Δrad51-3A triple mutant behaved similarly to dmc1Δ , exhibiting a phenotype associated with strong cell cycle arrest in prophase I. It has also been shown that the meiotic defect of the dmc1Δhed1Δrad51-3A triple mutant can be rescued (at least in part) by introducing a high-copy number vector expressing the full-length Rad51 or the Rad51-3A mutant (FIG. 6).

實例example 33 Rad51-NTDRad51-NTD 對於for 促進營養生長及減數分裂期間之高穩態Promotes vegetative growth and high homeostasis during meiosis Rad51Rad51 蛋白質含量至關重要Protein content matters

Rad51-NTD本身及Rad51-NTD磷酸化在調控活體內Rad51蛋白質之總體穩態含量方面明顯具有不同作用。 rad51-Δ N( rad51 67-440 )對偶基因在天然 RAD51啟動子控制下編碼NTD截短突變體Rad51-ΔN(殘基67-400)。首先, rad51-Δ N二倍體細胞展示孢子活力降低約50%(圖5 E)。其次, rad51-Δ N在不含或僅含0.01% MMS之YPD盤上之生長與野生型細胞同樣快。相比之下,其在含0.02% MMS之YPD盤上展示較慢之營養生長(圖5 F)。此等結果指示,Rad51-ΔN仍具有(至少部分)在有絲分裂及減數分裂期間促進HDRR之能力。可藉由引入表達全長Rad51或Rad51-3A突變體之高複本數載體來拯救(至少部分) rad51-Δ N dmc1Δ hed1Δ三重突變體之減數分裂細胞週期停滯表型,但引入表達Rad51-ΔN突變體之高複本數載體則不能拯救(圖6)。免疫墨點時程實驗進一步揭露, rad51-Δ N細胞中Rad51-ΔN之穩態含量明顯低於在營養生長(圖1 A及圖1 B)或減數分裂(圖7 A)期間WT細胞中Rad51蛋白質之穩態含量。由此表明,相較於NTD磷酸化,NTD本身對於在營養生長及減數分裂期間促進Rad51之高穩態含量具有較深遠的影響。 Rad51-NTD itself and Rad51-NTD phosphorylation have distinct roles in regulating the overall steady-state level of Rad51 protein in vivo. The rad51 - ΔN ( rad51 67-440 ) dual gene encodes the NTD truncation mutant Rad51-ΔN (residues 67-400) under the control of the native RAD51 promoter. First, rad51-ΔN diploid cells displayed an approximately 50% reduction in spore viability (Fig. 5E). Second, rad51-ΔN grew as fast as wild-type cells on YPD dishes without or with only 0.01% MMS. In contrast, it exhibited slower vegetative growth on YPD disks containing 0.02% MMS (Fig. 5F). These results indicate that Rad51-ΔN still has (at least in part) the ability to promote HDRR during mitosis and meiosis. The meiotic cell cycle arrest phenotype of the rad51 - ΔN dmc1Δhed1Δ triple mutant can be rescued (at least in part) by introducing high-copy number vectors expressing full-length Rad51 or Rad51-3A mutants, but introducing Rad51- The high copy number vector of the ΔN mutant was unable to rescue (Figure 6). The immunoblotting time course experiment further revealed that the steady-state content of Rad51-ΔN in rad51 - ΔN cells was significantly lower than that in WT cells during vegetative growth (Fig. 1A and Fig. 1B) or meiosis (Fig. 7A) Steady-state content of Rad51 protein. This suggests that NTD itself has a more profound effect on promoting high steady-state levels of Rad51 during vegetative growth and meiosis than NTD phosphorylation.

關於 sml1Δ阻遏, rad51-Δ N在表型上類似於 mec1-kd。由於 rad51-Δ N細胞中Rad51-ΔN之穩態含量與在營養生長及減數分裂期間 rad51-Δ N sml1Δ細胞中之該等穩態含量無明顯不同,故吾人推斷Rad51可為釀酒酵母中Mec1 ATR及Tel1 ATM之豐富目標。與此假設一致,據報導(酵母菌基因體資料庫:https://www.yeastgenome.org),營養細胞中Rad51之中值豐度(6070±2766個分子/細胞)高於已知Mec1 ATR及Tel1 ATM目標蛋白質之中值豐度,例如Rad9(1279±701個分子/細胞)、Rad53(1533±520個分子/細胞)及Dun1(1729±971個分子/細胞)。 Regarding sml1Δ repression, rad51 - ΔN is phenotypically similar to mec1-kd . Since the steady-state levels of Rad51-ΔN in rad51 - ΔN cells were not significantly different from those in rad51 -ΔN sml1Δ cells during vegetative growth and meiosis, we concluded that Rad51 may be involved in Saccharomyces cerevisiae. Rich targets for Mec1 ATR and Tel1 ATM . Consistent with this hypothesis, it has been reported (Yeast Genome Database: https://www.yeastgenome.org) that the median abundance of Rad51 (6070±2766 molecules/cell) in vegetative cells is higher than known Mec1 ATRs and median abundances of Tel1 ATM target proteins such as Rad9 (1279±701 molecules/cell), Rad53 (1533±520 molecules/cell) and Dun1 (1729±971 molecules/cell).

經顯示,磷酸化Rad51易於在減數分裂之粗絲期於染色體上形成焦點(圖8 B)。使用靶向天然Rad51及磷酸化Rad51之抗血清偵測的Rad51焦點並未完全共定位,意味著Rad51之部分磷酸化或此分析中關於抗原識別存在之可能競爭。儘管如此,在磷酸化缺陷型 rad51-3A突變體中Rad51焦點之形成與WT對照之焦點形成無法區分(圖8 B至D),不過其在染色體上出現延遲(圖8 E),此可能歸因於Rad51之蛋白質表達量較低(參見下文)。另外,Dmc1焦點之形成在 rad51-3A突變體中未受到明顯擾動(圖8 C及D),表明Rad51充當Dmc1輔助因子之功能可能被磷酸化缺陷型Rad51-3A保留。 Phosphorylated Rad51 was shown to be prone to foci on chromosomes during the thick filament phase of meiosis (FIG. 8B). The Rad51 foci detected using antisera targeting native Rad51 and phosphorylated Rad51 were not fully colocalized, implying partial phosphorylation of Rad51 or possible competition for antigen recognition in this assay. Nonetheless, foci formation of Rad51 in the phosphorylation-deficient rad51-3A mutant was indistinguishable from that of WT controls (Fig. 8B to D), although it was delayed chromosomally (Fig. 8E), which may be due to Due to the low protein expression level of Rad51 (see below). In addition, Dmc1 foci formation was not significantly perturbed in the rad51-3A mutant (Figure 8C and D), suggesting that the function of Rad51 as a Dmc1 cofactor may be retained by the phosphorylation-deficient Rad51-3A.

實例Example 44 NTDNTD and Mec1 ATR/Tel1 ATM Mec1 ATR /Tel1 ATM 依賴性dependency Rad51-NTDRad51-NTD 磷酸化均係Phosphorylation dmc1dmc1 Δ hed1Δ Δ hed1 Δ 突變體中減數分裂重組必不可少的Essential for meiotic recombination in mutants

結果揭露, dmc1Δ hed1Δ雙重突變體及 dmc1Δ hed1Δ rad51-3D三重突變體展現出彼此類似的減數分裂進展及孢子活力(圖8 A),指示Rad51-3D蛋白質具有減數分裂DSB修復功能。另外, dmc1Δ hed1Δ突變體中 rad51-3D之表現類似於WT RAD51,因為觀察到減數分裂進展延遲及減數分裂I不分離表型(多數四分體含有兩個或零個活孢子)(圖8 A)。引人注目地是,與 dmc1Δ突變體相同, dmc1Δ hed1Δ rad51-3Admc1Δ hed1Δ rad51-Δ N三重突變體幾乎不形成孢子,且在前期I展現出較強的減數分裂進展停滯表型(圖8 A)。因此,Rad51-NTD及Rad51-NTD磷酸化對於 dmc1Δ hed1Δ突變體中Rad51介導之減數分裂重組至關重要,且模擬磷酸化突變體Rad51-3D可在功能上取代相同遺傳背景中之磷酸化Rad51。此情形進一步藉由在 dmc1Δ hed1Δ mec1-kd sml1Δ菌株減數分裂之後孢子活力極低證實,其中Rad51-NTD磷酸化僅取決於Tel1 ATM(圖5 B,右圖)。 The results revealed that the dmc1Δhed1Δ double mutant and the dmc1Δhed1Δrad51-3D triple mutant exhibited meiotic progression and spore viability similar to each other (Fig. 8A ), indicating that the Rad51-3D protein has meiotic DSB repair Features. Additionally, rad51-3D in the dmc1Δhed1Δ mutant behaved similarly to WT RAD51 , as delayed meiotic progression and a meiotic I nondisjunctive phenotype were observed (most tetrads contained two or zero viable spores) ) (Figure 8A). Strikingly, like the dmc1Δ mutant, the dmc1Δhed1Δrad51-3A and dmc1Δhed1Δrad51 - ΔN triple mutants hardly sporulate and exhibit strong meiotic progression in prophase I Stalled phenotype (Figure 8A). Thus, Rad51-NTD and Rad51-NTD phosphorylation are critical for Rad51-mediated meiotic recombination in the dmc1Δhed1Δ mutant, and the mimic phosphorylation mutant Rad51-3D can functionally replace Rad51-3D in the same genetic background Phosphorylated Rad51. This situation was further confirmed by the extremely low spore viability following meiosis in the dmc1Δhed1Δmec1 -kd sml1Δ strain , where Rad51-NTD phosphorylation was solely dependent on Tel1 ATM (Fig. 5B, right panel).

實例Example 55 磷酸化缺陷型Phosphorylation deficient Rad51Rad51 exist 減數分裂期間維持不足的蛋白質含量Insufficiently maintained protein levels during meiosis

免疫墨點實驗進一步揭露,在 DMC1 HED1dmc1Δ hed1Δ減數分裂細胞中,Rad51-3A之穩態蛋白質含量均低於Rad51及Rad51-3D之穩態蛋白質含量(圖9 A及B)。在 DMC1 HED1減數分裂細胞中,發現Rad51-3A之最大穩態含量(在SPM中7小時之後)係WT Rad51之最大穩態含量的約30%(圖9 B)。對同一免疫墨點中1小時或5小時減數分裂培養物中WT Rad51、Rad51-3A及Rad51-3D蛋白質含量的比較揭露,Rad51-3A之含量停滯且保持低於WT Rad51含量之30%,而Rad51-3D極為豐富且自減數分裂早期開始,維持相對於WT Rad51約1.4倍之表達量(圖9 C及D)。吾人對Hop1及Zip1進行免疫墨點分析以排除 dmc1Δ hed1Δ rad51-3A菌株中之減數分裂缺陷係間接地由不定期減數分裂進展引起的可能性。在全部六個檢查之菌株中未觀察到Hop1或Zip1之總體蛋白質含量模式之明顯差異(圖9 A及B)。鑒於磷酸化Hop1蛋白質在SDS聚丙烯醯胺凝膠中遷移要比未磷酸化Hop1慢,值得注意的是,處於 dmc1Δ hed1Δ背景中之全部三個菌株甚至在SPM中12小時之後亦積累較多過磷酸化之Hop1 (圖9 A及B)。類似地,在分別使用磷酸特異性Rad51-S 2Q、Rad51-S 12Q及Rad51-S 30Q抗血清之免疫墨點中,在 dmc1Δ hed1Δ突變體中亦觀察到較高的磷酸化Rad51含量(圖9 A及B)。此等結果可反映當不存在Dmc1時由Mec1 ATR及Tel1 ATM引起之長期檢查點活化。 Immunoblotting experiments further revealed that in DMC1 HED1 and dmc1 Δ hed1 Δ meiotic cells, the steady-state protein content of Rad51-3A was lower than that of Rad51 and Rad51-3D (Figure 9 A and B). In DMC1 HED1 meiotic cells, the maximal steady-state content of Rad51-3A (after 7 hours in SPM) was found to be approximately 30% of that of WT Rad51 (Figure 9B). Comparison of WT Rad51, Rad51-3A and Rad51-3D protein levels in 1 hr or 5 hr meiotic cultures in the same immunoblot revealed that Rad51-3A levels stagnated and remained below 30% of WT Rad51 levels, On the other hand, Rad51-3D was extremely abundant and maintained an expression level of about 1.4-fold relative to WT Rad51 since early meiosis (Fig. 9 C and D). We performed immunoblotting analysis of Hop1 and Zip1 to rule out the possibility that the meiotic defect in the dmc1Δhed1Δrad51-3A strain was indirectly caused by aperiodic meiotic progression. No significant differences in the overall protein content pattern of Hopl or Zipl were observed in all six strains examined (Figure 9 A and B). Given that phosphorylated Hop1 protein migrates slower in SDS polyacrylamide gels than unphosphorylated Hop1, it is worth noting that all three strains in the dmc1Δhed1Δ background accumulated more protein even after 12 hours in SPM. Hyperphosphorylated Hop1 (Figure 9 A and B). Similarly, higher phosphorylation was also observed in the dmc1Δhed1Δ mutant in immunoblots using phospho-specific Rad51 - S2Q, Rad51- S12Q , and Rad51- S30Q antisera , respectively Rad51 content (Figure 9 A and B). These results may reflect long-term checkpoint activation by Mec1 ATR and Tel1 ATM in the absence of Dmc1.

實例example 66 Rad51-NTDRad51-NTD 磷酸化產生較穩定之Phosphorylation produces a more stable Rad51Rad51 蛋白質protein

接下來,進行環己醯亞胺阻斷實驗以比較Rad51、Rad51-3A及Rad51-3D之蛋白質穩定性。藉由在4小時的時間點,將200 μg/ml環己醯亞胺添加至減數分裂培養物中來抑制蛋白質合成(圖10 A)。在添加環己醯亞胺之後0、30、60、90、120及180分鐘獲取樣品。免疫墨點分析揭露,在環己醯亞胺存在下,Rad51及Dmc1之含量保持穩定長達180分鐘。相比之下,在 rad51-3Admc1Δ hed1Δ rad51-3A菌株中,在添加環己醯亞胺之30分鐘內,Rad51-3A突變體蛋白質之含量明顯降低且在60分鐘之後很少能偵測到(圖10 A,下圖)。此等結果指示,Rad51-3A之半衰期( t 1/2)≤30分鐘,而Rad51及Dmc1之 t 1/2≥180分鐘。 Next, cycloheximide blocking experiments were performed to compare the protein stability of Rad51, Rad51-3A and Rad51-3D. Protein synthesis was inhibited by adding 200 μg/ml cycloheximide to the meiotic cultures at the 4 hour time point (Figure 10A). Samples were taken at 0, 30, 60, 90, 120 and 180 minutes after the addition of cycloheximide. Immunoblotting analysis revealed that in the presence of cycloheximide, the levels of Rad51 and Dmc1 remained stable for up to 180 minutes. In contrast, in the rad51-3A and dmc1Δhed1Δrad51-3A strains, the protein content of the Rad51-3A mutant was significantly reduced within 30 minutes of the addition of cycloheximide and little after 60 minutes. detected (Fig. 10A, bottom). These results indicate that the half-life ( t 1/2 ) of Rad51-3A is ≤ 30 minutes, while the t 1/2 of Rad51 and Dmc1 is ≥ 180 minutes.

在對WT菌株進行之時程實驗中,在樣品收集之間具有30分鐘時間間隔情況下,發現天然Rad51蛋白質含量隨著減數分裂進展逐漸增加,伴隨三個SQ模體之逐漸磷酸化(圖10 B及C)。吾人推測,在早期減數分裂期間(亦即,在1小時之減數分裂時間點時),未磷酸化之天然Rad51(但Rad51-3D並非如此)在4小時之時間點的不穩定程度與Rad51-3A類似( t 1/2≤30分鐘)且在進入後續減數分裂時在Rad51-NTD磷酸化後變穩定。吾人使用圖10 B中所示之相同培養物之等分試樣,在不同時間點進行環己醯亞胺阻斷分析,並比較來自1小時及5小時減數分裂培養物之WT Rad51、Rad51-3A及Rad51-3D的穩定性。結果顯示,來自5小時減數分裂培養物之天然Rad51( t 1/2≥180分鐘)實際上要比來自1小時減數分裂培養物者穩定(t 1/2≈180分鐘)(圖10 D及E)。吾人進一步展示,1小時或5小時減數分裂培養物中之模擬磷酸化突變體(Rad51-3D)與來自5小時減數分裂培養物之天然Rad51同樣穩定( t 1/2≥180分鐘)(圖10 D及E),表明帶負電之NTD足以使Rad51在減數分裂期間穩定。 In time-course experiments performed on the WT strain, with a 30-minute interval between sample collections, native Rad51 protein content was found to increase gradually as meiosis progresses, with progressive phosphorylation of the three SQ motifs (Fig. 10 B and C). We speculate that during early meiosis (ie, at the 1 hr meiotic time point), the degree of instability at the 4 hr time point of unphosphorylated native Rad51 (but not Rad51-3D) is similar to that of Rad51-3D. Rad51-3A is similar ( t 1/2 ≤ 30 min) and becomes stable upon phosphorylation of Rad51-NTD upon entry into subsequent meiosis. Using aliquots of the same cultures shown in Figure 10B, we performed cycloheximide blocking assays at different time points and compared WT Rad51, Rad51 from 1 hour and 5 hour meiotic cultures - Stability of 3A and Rad51-3D. The results showed that native Rad51 ( t 1/2 ≥ 180 min) from 5 hr meiotic cultures was actually more stable than that from 1 hr meiotic cultures (t 1/2 ≈ 180 min) (Fig. 10D and E). We further show that the mock phosphorylated mutant (Rad51-3D) in 1 hr or 5 hr meiotic cultures is as stable as native Rad51 from 5 hr meiotic cultures ( t 1/2 ≥ 180 min) ( Figure 10 D and E), showing that negatively charged NTDs are sufficient to stabilize Rad51 during meiosis.

因此,Rad51-NTD磷酸化在增強Rad51之蛋白質穩定性方面發揮重要作用。當Dmc1存在於 rad51-3A菌株中時,Rad51-3A之低穩態含量明顯足以促進Dmc1介導減數分裂重組,此與細胞學觀察結果一致(圖8 C及D)。相比之下,當Rad51係減數分裂細胞中(亦即,在 dmc1Δ hed1Δ菌株中)之唯一『活性』重組酶時,Rad51-NTD磷酸化對於確保較高的Rad51穩態含量以修復由Spo11誘導之DSB至關重要。另外,磷酸化Rad51可在功能上經Rad51-3D取代。 Therefore, Rad51-NTD phosphorylation plays an important role in enhancing the protein stability of Rad51. When Dmc1 was present in the rad51-3A strain, low steady-state levels of Rad51-3A were apparently sufficient to promote Dmc1-mediated meiotic recombination, consistent with cytological observations (Figure 8C and D). In contrast, when Rad51 is the only "active" recombinase in meiotic cells (ie, in the dmc1Δhed1Δ strain ), Rad51-NTD phosphorylation is essential for ensuring higher steady-state levels of Rad51 for repair DSB induced by Spo11 is critical. Additionally, phosphorylated Rad51 can be functionally substituted with Rad51-3D.

實例example 77 未磷酸化Not phosphorylated Rad51Rad51 蛋白質經由蛋白酶體路徑降解Proteins are degraded via the proteasome pathway

經顯示,26S蛋白酶體係釀酒酵母中之HDRR所需的。接下來,使用蛋白酶體抑制劑MG132確定在DNA損傷反應期間WT Rad51及Rad51-3A是否被蛋白酶體降解。為促進MG132吸收,該等菌株缺失 PDR5以降低外排泵活性。在MMS處理30分鐘後,Rad51-3A在環己醯亞胺處理下要比Rad51更快消失(圖11 A至C)。相比之下,同時添加MG132及環己醯亞胺推遲Rad51-3A之降解,指示Rad51-NTD磷酸化在DNA損傷反應期間藉由防止蛋白酶體降解來使Rad51蛋白質穩定。 It has been shown that the 26S protease system is required for HDRR in S. cerevisiae. Next, the proteasome inhibitor MG132 was used to determine whether WT Rad51 and Rad51-3A were degraded by the proteasome during the DNA damage response. To promote MG132 uptake, these strains deleted PDR5 to reduce efflux pump activity. After 30 min of MMS treatment, Rad51-3A disappeared faster under cycloheximide treatment than Rad51 (Figure 11 A to C). In contrast, simultaneous addition of MG132 and cycloheximide delayed the degradation of Rad51-3A, indicating that Rad51-NTD phosphorylation stabilizes Rad51 protein during the DNA damage response by preventing proteasomal degradation.

為確定Rad51-NTD中哪種SQ模體磷酸化對於其穩定性最重要,進行環乙醯亞胺阻斷實驗以確定Rad51-S2A、Rad51-S12A及Rad51-S30A之相對蛋白質穩定性(圖11 D)。結果顯示,全部三種此等Rad51蛋白質變異體不如WT Rad51穩定,但該等變異體要比Rad51-3A穩定得多,其中最不穩定的突變蛋白Rad51-S2A展現約3小時之半衰期(圖11 E)。因此,Rad51-NTD中每一SQ模體之磷酸化協同地促成Rad51蛋白質穩定化。To determine which SQ motif phosphorylation in Rad51-NTD is most important for its stability, cycloacetimide blocking experiments were performed to determine the relative protein stability of Rad51-S2A, Rad51-S12A, and Rad51-S30A (Figure 11). D). The results show that all three of these Rad51 protein variants are less stable than WT Rad51, but these variants are much more stable than Rad51-3A, with the least stable mutant protein Rad51-S2A exhibiting a half-life of about 3 hours (Figure 11E ). Thus, phosphorylation of each SQ motif in Rad51-NTD synergistically contributes to Rad51 protein stabilization.

所得實例1至7之結果概述於本文中:The results obtained for Examples 1 to 7 are summarized herein:

(a)自Rad51移除NTD引起低穩態Rad51-ΔN蛋白質含量及對MMS之較高敏感性。(a) Removal of NTD from Rad51 resulted in low steady-state Rad51-ΔN protein content and higher sensitivity to MMS.

(b)已提出,Rad51-NTD可具有促進Rad51-ΔN蛋白質表達之自主活性。引起關注的是,Rad51-NTD之此種新穎功能可經Rad53-SCD1及酵母Sup35蛋白質之普里昂蛋白成核域(PND;殘基1-39)置換。Rad53-SCD1含有四個TQ模體及一個SQ模體。Sup35(轉譯終止因子eRF3)係聚集形成[ PSI + ]普里昂蛋白的充分表徵之酵母普里昂蛋白。其係僅具有一個S 17Q模體的富含S且富含Q/N之域。因此,Sup35-PND係IDR,而非SCD。結果亦揭露,Mec1 ATR依賴性及Tel1 ATM依賴性磷酸化並不影響Rad51-NTD、Rad53-SCD1及Sup35-PND之蛋白質表達增強功能,因為其磷酸化缺陷型突變體均可誘導相應融合蛋白,亦即Rad51-3A(或Rad51-NTD-3A-Rad51-ΔN)、Rad53-SCD1-5A-Rad51-ΔN及Sup35-PND-S 17A-Rad51-ΔN之高穩態含量。 (b) It has been suggested that Rad51-NTD may have autonomous activity to promote Rad51-ΔN protein expression. Interestingly, this novel function of Rad51-NTD can be replaced by Rad53-SCD1 and the prion nucleation domain (PND; residues 1-39) of the yeast Sup35 protein. Rad53-SCD1 contains four TQ motifs and one SQ motif. Sup35 (translation termination factor eRF3) is a well-characterized yeast prion protein that aggregates to form [ PSI + ]prion protein. It is an S-rich and Q/N-rich domain with only one S17Q motif. Therefore, Sup35-PND is an IDR, not an SCD. The results also revealed that Mec1 ATR -dependent and Tel1 ATM -dependent phosphorylation did not affect the protein expression enhancement function of Rad51-NTD, Rad53-SCD1 and Sup35-PND, because their phosphorylation-deficient mutants could induce the corresponding fusion proteins, That is, high steady state levels of Rad51-3A (or Rad51-NTD-3A-Rad51-ΔN), Rad53-SCD1-5A-Rad51-ΔN, and Sup35-PND-S 17 A-Rad51-ΔN.

(c)結果證實,Rad51-NTD可自主起作用以促進β-半乳糖苷酶(LacZ)之表達。藉由用天然 RAD51基因之啟動子( Pr RAD51 )置換 GAL1啟動子並在V5抗原決定基標籤及六聚組胺酸(His6)親和標籤前插入LacZ基因來修飾釀酒酵母中節表達載體pYC2/CT/ Pr GAL1 -LacZ-V5-His6(Invitrogen, USA),得到 Pr RAD51 -LacZ-V5-His6。接下來,構築三個相應的突變體載體: Pr RAD51 -NTD-LacZ-V5-His6、 Pr RAD51 -NTD-3A-LacZ-NLS-V5-His6及 Pr RAD51 -NTD-3D-LacZ-V5-His6。將全部四個此等載體轉形至SK1酵母細胞株中。使轉形體無性繁殖以達到對數期,且接著,將其收集起來用於製備變性溶解產物。使用針對磷酸化Rad51-S 12Q之抗血清進行免疫墨點分析指示,Tel1 ATM及Mec1 ATR可使NTD-LacZ-V5-His6磷酸化,但不使NTD-3A-LacZ-V5-His6或NTD-3D-LacZ-V5-His6磷酸化。全部三種此等融合蛋白均可在免疫墨點法中使用抗Rad51抗血清識別。穩態蛋白質含量之次序係NTD-LacZ-V5-His6≈NTD-3D-LacZ-V5-His6>NTD-3A-LacZ-V5-His6,其皆顯示出明顯高於LacZ-NLS-V5-His 6之蛋白質含量。因此,NTD、NTD-3A及NTD-3D均具有增強其融合搭配物LacZ-V5-His6之表達的能力。值得注意的是,鑒於免疫墨點中存在較多的NTD-3A-LacZ-V5-His6降解產物,NTD-3A-LacZ-V5-His6不如NTD-LacZ-V5-His6及NTD-3D-LacZ-V5-His6穩定。亦測定此四種融合蛋白之β-半乳糖苷酶活性。分層及正規化之相對活性水準係NTD-3D-LacZ-V5-His 6(13.2倍)~NTD-LacZ-V5-His6(13.2倍)>NTD-3A-LacZ-V5-His6(9.6倍)>>LacZ-V5-His6(控制對照組;1.0倍)。此等結果亦表明,與天然WT Rad51蛋白質相同,大多數(若非全部)NTD-LacZ-V5-His6融合蛋白經磷酸化。 (c) The results demonstrate that Rad51-NTD can act autonomously to promote the expression of β-galactosidase (LacZ). Saccharomyces cerevisiae midsection expression vector pYC2/CT was modified by replacing the GAL1 promoter with the promoter of the native RAD51 gene ( PrRAD51 ) and inserting the LacZ gene before the V5 epitope tag and the hexahistidine (His6) affinity tag / Pr GAL1 -LacZ-V5-His6 (Invitrogen, USA) to give Pr RAD51 -LacZ-V5-His6. Next, three corresponding mutant vectors were constructed: Pr RAD51 -NTD-LacZ-V5-His6, Pr RAD51 -NTD-3A-LacZ-NLS-V5-His6 and Pr RAD51 -NTD-3D-LacZ-V5-His6 . All four of these vectors were transformed into the SK1 yeast cell line. Transformants were vegetatively propagated to log phase and then collected for the preparation of denatured lysates. Immunoblotting analysis using antiserum against phosphorylated Rad51-S 12 Q indicated that Tel1 ATM and Mec1 ATR phosphorylated NTD-LacZ-V5-His6, but not NTD-3A-LacZ-V5-His6 or NTD -3D-LacZ-V5-His6 phosphorylation. All three of these fusion proteins were recognized in immunoblotting using anti-Rad51 antiserum. The order of steady-state protein content is NTD-LacZ-V5-His6≈NTD-3D-LacZ-V5-His6>NTD-3A-LacZ-V5-His6, all of which were significantly higher than LacZ-NLS-V5 - His6 the protein content. Thus, NTD, NTD-3A and NTD-3D all have the ability to enhance the expression of their fusion partner LacZ-V5-His6. It is worth noting that NTD-3A-LacZ-V5-His6 is inferior to NTD-LacZ-V5-His6 and NTD-3D-LacZ- V5-His6 is stable. The beta-galactosidase activity of these four fusion proteins was also determined. The relative activity levels of stratification and normalization are NTD-3D-LacZ-V5 - His6 (13.2 times) ~ NTD-LacZ-V5-His6 (13.2 times) > NTD-3A-LacZ-V5-His6 (9.6 times) >>LacZ-V5-His6 (control; 1.0-fold). These results also show that most, if not all, NTD-LacZ-V5-His6 fusion proteins are phosphorylated like the native WT Rad51 protein.

(d) Rad51-NTD並非能促進高水準LacZ-V5-His6蛋白質製造之唯一SCD。此處,亦報導Rad53-SCD1(殘基1-29)、Hop1-SCD(殘基258-324)或Sml1-SCD(殘基1-27或殘基1-50)皆可分別用作NH 2末端融合標籤以增強LacZ-V5-His6表達(上圖),引起β-半乳糖苷酶活性之6-10倍增加(下圖)。 (d) Rad51-NTD is not the only SCD capable of promoting high-level LacZ-V5-His6 protein production. Here, it is also reported that Rad53-SCD1 (residues 1-29), Hop1-SCD (residues 258-324) or Sml1-SCD (residues 1-27 or residues 1-50) can all be used as NH2 , respectively A terminal fusion tag to enhance LacZ-V5-His6 expression (upper panel) resulted in a 6-10-fold increase in beta-galactosidase activity (lower panel).

(e) Rad53-SCD1不僅增強LacZ,而且亦增強三種其他目標蛋白質,亦即綠色螢光蛋白(GFP)、麩胱甘肽S-轉移酶(GST)及非二聚化GST[GST-(nd)]之高水準製造(圖10H)。β-半乳糖苷酶係四聚體蛋白質。GFP係單體蛋白質。GST係二聚體蛋白質。在GST(nd)中,促成GST之二聚體穩定性的兩個重要殘基(Arg73及Asp77)突變成脯胺酸及離胺酸。此等結果指示,目標蛋白質之四級結構出乎意料地與SCD之表達增強功能相關。(e) Rad53-SCD1 enhances not only LacZ but also three other target proteins, namely green fluorescent protein (GFP), glutathione S-transferase (GST) and non-dimerized GST [GST-(nd )] of high-level manufacturing (Fig. 10H). β-Galactosidase is a tetrameric protein. GFP is a monomeric protein. GST is a dimeric protein. In GST (nd), two important residues (Arg73 and Asp77) that contribute to the dimer stability of GST were mutated to proline and lysine. These results indicate that the quaternary structure of the target protein is unexpectedly associated with the expression enhancing function of SCD.

(f) SCD定義為釀酒酵母中<50個胺基酸之鏈段中的至少三個S/T-Q位點 ( Cheung, H.C., San Lucas, F.A., Hicks, S., Chang, K., Bertuch, A.A. Ribes-Zamora, A. (2012) An S/T-Q cluster domain census unveils new putative targets under Tel1/Mec1 control. BMC Genomics, 13, 664 ))。SCD中S/T-Q模體之富集意謂其展現較低的序列複雜性。低序列複雜性以及高S/T及Q含量係蛋白質中內在無序區(IDR)之特有特徵。需要瞭解SCD之IDR特性是否對於其促進高水準蛋白質製造之能力至關重要。因此,使用丙胺酸掃描方法檢查不同SCD中S/T或Q之作用。首先,Rad51-NTD-LacZ-V5-His6變異體之正規化蛋白質穩態含量的分層係NTD~NTD-3A>NTD-6SQA>NTD-9SQA>NTD-12SQA~控制對照組。Rad51-SCD-LacZ-V5變異體之各別正規化β-半乳糖苷酶活性分層係NTD(11.3倍)~NTD-3A(11.3倍)>NTD-6SQA(7.7倍)>>NTD-9SQA(2.5倍)>NTD-12SQA(1.3倍)~控制對照組(1.0倍)。此等結果指示,對於由Rad51-NTD引起之高水準蛋白質製造,Rad51-SCD序列中之前六個麩醯胺酸的影響要比最後三個麩醯胺酸及三個絲胺酸(S 2、S 12及S 30)之影響深遠。此等結果亦顯示,Rad53-SCD1-LacZ-V5-His6融合變異體之正規化蛋白質穩態含量及β-半乳糖苷酶活性的分層係SCD1(6.5倍)>SCD1-5STA(5.3倍)>SCD1-7QA(4.3倍)>>SCD1-12STQA(1.1倍)~控制對照組(1.0倍)。由此得出結論,高S/T及/或Q含量對於高水準蛋白質製造功能的重要性要高於S/T-Q模體之總體數量。 (f) SCD is defined as at least three S/TQ sites in a segment of <50 amino acids in S. cerevisiae ( Cheung, HC, San Lucas, FA, Hicks, S., Chang, K., Bertuch, AA and Ribes-Zamora, A. (2012) An S/TQ cluster domain census unveils new putative targets under Tel1/Mec1 control. BMC Genomics, 13 , 664 ) ). The enrichment of S/TQ motifs in SCD means that it exhibits lower sequence complexity. Low sequence complexity and high S/T and Q content are characteristic features of intrinsically disordered regions (IDRs) in proteins. It remains to be seen whether the IDR properties of SCD are critical to its ability to promote high-level protein production. Therefore, the role of S/T or Q in different SCDs was examined using the alanine scanning method. First, the normalized protein steady state content of the Rad51-NTD-LacZ-V5-His6 variant was stratified in the line NTD~NTD-3A>NTD-6SQA>NTD-9SQA>NTD-12SQA~control. The respective normalized β-galactosidase activities of Rad51-SCD-LacZ-V5 variants were stratified by NTD (11.3 times) ~ NTD-3A (11.3 times) > NTD-6SQA (7.7 times) >> NTD-9SQA (2.5 times)>NTD-12SQA (1.3 times)~control group (1.0 times). These results indicate that for high levels of protein production by Rad51-NTD, the first six glutamic acids in the Rad51-SCD sequence are more influential than the last three glutamic acids and three serines (S 2 , S 12 and S 30 ) have far-reaching effects. These results also show that the normalized protein steady state content and β-galactosidase activity of the Rad53-SCD1-LacZ-V5-His6 fusion variant is stratified by SCD1 (6.5-fold) > SCD1-5STA (5.3-fold) >SCD1-7QA (4.3 times) >>SCD1-12STQA (1.1 times) ~ control control group (1.0 times). It is concluded from this that high S/T and/or Q content is more important for high-level protein manufacturing function than the overall number of S/TQ motifs.

(g)結果進一步證實,Sup35-PND亦可誘導Rad51-ΔN及LacZ-V5-His6之高穩態含量。Sup35-PND係具有3個絲胺酸、9個天冬醯胺及12個麩醯胺酸的富含S且富含Q/N之域。Sup35-NTD-LacZ-V5-His6融合變異體之正規化LacZ活性的分層係Sup35-NTD(8.6倍)~Sup35-NTD-S 17A(8.1倍)>>控制對照組(1.0倍)。 (g) The results further confirmed that Sup35-PND could also induce high steady-state levels of Rad51-ΔN and LacZ-V5-His6. The Sup35-PND line has S-rich and Q/N-rich domains of 3 serine, 9 asparagine, and 12 glutamic acid. Stratification of normalized LacZ activity of Sup35-NTD-LacZ-V5-His6 fusion variants Sup35-NTD (8.6-fold) ~ Sup35-NTD-S 17 A (8.1-fold) >> control control (1.0-fold).

(h)使用在圖6中分析之所有LacZ融合蛋白,發現相對LacZ活性與SCD或IDR之總胺基酸含量中之總體STQ百分比之間存在值得關注的相關性。為達到超過8倍之最佳LacZ活性,SCD或IDR之總體STQ含量應在約30%至約40%範圍內。(h) Using all LacZ fusion proteins analyzed in Figure 6, a noteworthy correlation was found between relative LacZ activity and the percentage of overall STQ in the total amino acid content of SCD or IDR. To achieve more than 8-fold optimal LacZ activity, the overall STQ content of the SCD or IDR should be in the range of about 30% to about 40%.

實例example 88 四個four DDR-SCDDDR-SCD 及三個普里昂蛋白域均可促進目標蛋白質表達and three prion protein domains can promote target protein expression

如近期所報導( Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res. 2020;48: 8474-89),自Rad51移除NTD使相應Rad51-ΔN蛋白質之蛋白質含量相對於野生型減少約97%(圖12 A),使得酵母對DNA損傷劑甲烷磺酸甲酯(MMS)具有高敏感性(圖12 B)。可在Rad51-ΔN中,藉由N末端分別融合Rad53-SCD1、Rad53-SCD1-5STA(全部五個S/T-Q模體皆變為AQ)或Sup35-PND來拯救Rad51-NTD之此種保姆功能(nanny function)(Chuang CN, Woo TT, Tsai, SY, Li, WC, Chen CL, Liu HC, Chen CY, Hsueh YP, Wang TF. Intrinsic disorder codes for leaps of protein expression. BioRxiv. 2020.12.08.407247; doi: https://doi.org/10.1101/2020.12.08.407247)。 As recently reported ( Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res. 2020;48: 8474-89 ), Removal of NTDs from Rad51 reduced the protein content of the corresponding Rad51-ΔN protein by approximately 97% relative to wild type (Fig. 12A), making yeast highly sensitive to the DNA damaging agent methyl methanesulfonate (MMS) (Fig. 12B). ). This nanny function of Rad51-NTD can be rescued in Rad51-ΔN by N-terminal fusion of Rad53-SCD1, Rad53-SCD1-5STA (all five S/TQ motifs become AQ), or Sup35-PND, respectively (nanny function)(Chuang CN, Woo TT, Tsai, SY, Li, WC, Chen CL, Liu HC, Chen CY, Hsueh YP, Wang TF. Intrinsic disorder codes for leaps of protein expression. BioRxiv . 2020.12.08.407247; doi : https://doi.org/10.1101/2020.12.08.407247).

接下來,使用 CEN-ARS質體(低複本數),在天然 RAD51基因啟動子( P RAD51 )控制下表達不同X-LacZ-NVH融合蛋白,包括Rad51-NTD、Rad53-SCD1、Hop1-SCD(殘基258-324)、Sml1-NTD(殘基1-27)、Sml1-NTD(殘基1-50)、Sup35-PFD、Sup35-PND、Sup35-PND-S 17A、Ure2-UPD及New1-NPD (圖12 C)。NVH標籤在 V5抗原決定基標籤及六聚組胺酸( His 6)親和標籤之前含有SV40核定位信號( NLS)肽( Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res. 2020;48:8474-89)。在Sup35-PND-S 17A中,S 17Q模體變為AQ。Sml1係核糖核苷酸還原酶之強力抑制劑且在SK1釀酒酵母菌株中,其具有三個S/T-Q模體(S 4Q、S 14Q及T 47Q)。吾人發現,所有X-LacZ-NVH融合蛋白之β-半乳糖苷酶活性比LacZ-NVH之活性要高4.1-11.6倍(圖12 C)。引起關注地是,使用抗磷酸化Rad51-S 12Q、Rad51-S 30Q、Hop1-T 318Q及Sup35-S 17Q抗血清分別發現,Rad51-NTD-LacZ-NVH、Hop1-SCD-LacZ-NVH及Sup35-PND-LacZ-NVH回應於MMS處理而磷酸化,但Sup35-PND-S 17A-LacZ-NVH則不然。如近期所描述( Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res. 2020;48:8474-89),不管存在或不存在MMS誘導之DNA損傷反應,此等IDR之保姆功能均會發生。 Next, different X-LacZ-NVH fusion proteins, including Rad51-NTD, Rad53 - SCD1 , Hop1 -SCD ( Residues 258-324), Sml1-NTD (residues 1-27), Sml1-NTD (residues 1-50), Sup35-PFD, Sup35-PND, Sup35-PND- S17A , Ure2-UPD and New1 -NPD (Figure 12C). The NVH tag contains the SV40 nuclear localization signal ( N LS) peptide (Woo TT, Chuang CN, Higashide M, Shinohara A , Wang TF. Dual ) before the V5 epitope tag and the hexahistidine ( His6 ) affinity tag roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res. 2020;48:8474-89 ). In Sup35-PND-S 17 A, the S 17 Q motif becomes AQ. Sml1 is a potent inhibitor of ribonucleotide reductase and in the SK1 S. cerevisiae strain, it has three S/TQ motifs ( S4Q , S14Q and T47Q ). We found that the β-galactosidase activity of all X-LacZ-NVH fusion proteins was 4.1-11.6-fold higher than that of LacZ-NVH (Figure 12C). Interestingly, the use of anti-phosphorylated Rad51-S 12 Q, Rad51-S 30 Q, Hop1-T 318 Q and Sup35-S 17 Q antisera, respectively, found that Rad51-NTD-LacZ-NVH, Hop1-SCD-LacZ -NVH and Sup35-PND-LacZ-NVH were phosphorylated in response to MMS treatment, but not Sup35-PND- S17A -LacZ-NVH. As recently described ( Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res. 2020;48:8474-89 ), The nanny functions of these IDRs occur in the presence or absence of MMS-induced DNA damage responses.

Sup35主要位於細胞溶質中,而Mec1 ATR及Tel1 ATM係核蛋白質。NVH標籤含有SV40 NLS肽。Sup35-PND-LacZ-NVH可靶向核且變得接近Mec1 ATR及Tel1 ATM以進行磷酸化。接著吾人確定,MMS在分別僅表達野生型Sup35、表達GFP標記之Sup35(Sup35-GFP)( Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nuske E 等人 , Phase separation of a yeast prion protein promotes cellular fitness. Science. 2018;359)及表達Sup35-S 17A-GFP突變體(Chuang CN, Woo TT, Tsai, SY, Li, WC, Chen CL, Liu HC, Chen CY, Hsueh YP, Wang TF. Intrinsic disorder codes for leaps of protein expression. BioRxiv. 2020.12.08.407247; doi: https://doi.org/10.1101/2020.12.08.407247)之釀酒酵母細胞中不能誘導Sup35-PND-S 17Q之磷酸化。 Sup35 is mainly located in the cytosol, while Mec1 ATR and Tel1 ATM are nuclear proteins. The NVH tag contains the SV40 NLS peptide. Sup35-PND-LacZ-NVH can target the nucleus and become accessible to Mec1 ATR and Tel1 ATM for phosphorylation. Then we determined that MMS only expresses wild-type Sup35 and expresses GFP-tagged Sup35 (Sup35-GFP) respectively ( Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nuske E et al ., Phase separation of a yeast prion protein promotes cellular fitness. Science. 2018;359 ) and expressing Sup35-S 17 A-GFP mutants (Chuang CN, Woo TT, Tsai, SY, Li, WC, Chen CL, Liu HC, Chen CY, Hsueh YP, Wang TF. Intrinsic disorder codes for leaps of protein expression. BioRxiv . 2020.12.08.407247; doi: https://doi.org/10.1101/2020.12.08.407247) Saccharomyces cerevisiae cannot induce phosphorylation of Sup35-PND-S 17 Q .

實例example 99 high STQNSTQN 含量對於content for IDRIDR 之保姆功能至關重要The babysitter function is very important

DDR-SCDs、Sup35-PND、Ure2-UPD及New1-NPD之共同特徵係其高STQN胺基酸含量(圖13 A)。吾人想要瞭解IDR之高STQN含量對於促進高水準蛋白質表達是否至關重要。吾人採用丙胺酸掃描突變誘發方法來測試此假設。按照定義,丙胺酸掃描增加給定序列中之丙胺酸殘基的相對含量,已知丙胺酸殘基有利於α螺旋之形成( Marqusee S, Robbins VH, Baldwin RL. Unusually stable helix formation in short alanine-based peptides. Proc Natl Acad Sci U S A. 1989;86:5286-90)且因此有利於無序向有序之轉變。 A common feature of DDR-SCDs, Sup35-PND, Ure2-UPD and New1-NPD is their high STQN amino acid content (Figure 13A). We wanted to know if high STQN content in IDRs is critical for promoting high levels of protein expression. We used alanine scanning mutagenesis to test this hypothesis. By definition, alanine scanning increases the relative amount of alanine residues in a given sequence that are known to favor alpha helix formation ( Marqusee S, Robbins VH, Baldwin RL. Unusually stable helix formation in short alanine- based peptides. Proc Natl Acad Sci US A. 1989;86:5286-90 ) and thus facilitates the transition from disorder to order.

結果揭露,在相對β-半乳糖苷酶活性或LacZ-NVH融合蛋白含量與IDR中之總體STQN胺基酸百分比之間存在正相關性(圖13 A至D)。對於所檢查的每一個別IDR,在其STQN胺基酸含量與其LacZ活性之間觀察到線性關係(R 2=0.86-0.94)(圖13 B至D)。儘管此等IDR之總體長度不同,但結果指示,為了達到相對於野生型超過5倍之最佳LacZ活性,IDR中之STQN胺基酸含量應至少≥30%(Chuang CN, Woo TT, Tsai, SY, Li, WC, Chen CL, Liu HC, Chen CY, Hsueh YP, Wang TF. Intrinsic disorder codes for leaps of protein expression. BioRxiv. 2020.12.08.407247; doi: https://doi.org/10.1101/2020.12.08.407247)。 The results revealed a positive correlation between relative β-galactosidase activity or LacZ-NVH fusion protein content and the percentage of total STQN amino acids in the IDR (Figures 13A-D). For each individual IDR examined, a linear relationship (R2 = 0.86-0.94) was observed between its STQN amino acid content and its LacZ activity (Figure 13 B-D). Although the overall lengths of these IDRs vary, the results indicate that in order to achieve optimal LacZ activity over 5-fold relative to wild type, the STQN amino acid content in the IDR should be at least ≥30% (Chuang CN, Woo TT, Tsai, SY, Li, WC, Chen CL, Liu HC, Chen CY, Hsueh YP, Wang TF. Intrinsic disorder codes for leaps of protein expression. BioRxiv . 2020.12.08.407247; doi: https://doi.org/10.1101/2020.12. 08.407247).

值得注意的是,在此處呈現的三種情形中,STQN含量之臨限值不同(圖13 B至D),指示IDR中之STQN殘基百分率並非促成蛋白質表達量之唯一因素。因此,吾人對此處分析之所有N-IDR的胺基酸組成進行更深入之分析。Notably, the thresholds for STQN content were different in the three cases presented here (Figures 13B-D), indicating that the percentage of STQN residues in the IDR is not the only factor contributing to protein expression. Therefore, we performed a more in-depth analysis of the amino acid composition of all N-IDRs analyzed here.

圖1 A至D顯示,NTD (一種典型SCD)對於在活體內促進釀酒酵母Rad51之高穩態蛋白質含量至關重要。圖1 A顯示,總細胞溶解產物係在指定時間點,在甲烷磺酸甲酯(MMS)處理下由營養細胞製備且經歷免疫墨點法。使用Hsp104作為內參照物。使用購自Santa Cruz Biotechnology(CA, USA) 之山羊抗Rad51抗體(yN-19)進行免疫墨點法。此抗體係使用肽(sc-8936)圖譜在酵母Rad51之N末端處產生。圖1 B顯示,使用豚鼠抗Rad51抗體執行免疫墨點法。Rad51-ΔN之預測分子量係36,270道爾頓。圖1 C顯示,在MMS處理下由野生型(WT)有絲分裂細胞得到的總細胞溶解產物用 rad51-Δ N或空樣品緩衝液以指定力價稀釋以估計WT Rad51及Rad51-ΔN之相對穩態蛋白質含量。圖1 D顯示,NTD對於營養生長中之DNA損傷耐受並非必需的。斑點分析顯示在YPD盤及含有指定濃度MMS之YPD盤上生長的指定單倍體或二倍體株之五倍連續稀釋液。不同株之倍數性在右側上指示。圖1 E顯示,在30℃下於孢子形成培養基上保持3天之後,分析孢子活力。為了對孢子活力進行評分,在YPD上僅解剖出四分體(但未解剖出二分體或三分體)。 Figures 1 A to D show that NTD, a canonical SCD, is essential for promoting high steady-state protein content of S. cerevisiae Rad51 in vivo. Figure 1 A shows that total cell lysates were prepared from vegetative cells under methyl methanesulfonate (MMS) treatment and subjected to immunoblotting at the indicated time points. Hsp104 was used as an internal reference. Immunoblotting was performed using goat anti-Rad51 antibody (yN-19) purchased from Santa Cruz Biotechnology (CA, USA). This antibody system was generated at the N-terminus of yeast Rad51 using a peptide (sc-8936) map. Figure 1B shows that immunoblotting was performed using guinea pig anti-Rad51 antibody. The predicted molecular weight of Rad51-ΔN is 36,270 Daltons. Figure 1C shows that total cell lysates from wild-type (WT) mitotic cells under MMS treatment were diluted with rad51 - ΔN or empty sample buffer at the indicated titers to estimate the relative steady state of WT Rad51 and Rad51-ΔN protein content. Figure 1 D shows that NTDs are not essential for DNA damage tolerance in vegetative growth. Spot analysis showed five-fold serial dilutions of the indicated haploid or diploid strains growing on YPD plates and YPD plates containing the indicated concentrations of MMS. The ploidy of the different strains is indicated on the right. Figure 1 E shows that spore viability was analyzed after 3 days at 30°C on sporulation medium. To score spore viability, only tetrads (but not dyads or triads) were dissected on the YPD.

圖2 A至C顯示,Rad51-NTD磷酸化不僅促進蛋白質表達,而且亦增強蛋白質穩定性。用指定酵母表達載體,亦即, P RAD51 - lacZ-V5(控制對照組)、 P RAD51 -NTD- lacZ-V5、 P RAD51 -NTD 3A- lacZ-V5或 P RAD51 -NTD 3D- lacZ-V5,對野生型SK1單倍體株進行轉形。在圖2C中,由處於指數生長之有絲分裂細胞製備總細胞溶解產物,藉由利用相應抗血清之免疫墨點法及定量酵母LacZ分析進行觀測。圖2 A顯示,NTD-LacZ-V5融合蛋白(約128千道爾頓)以白色箭頭標記。內源性Rad51(約43千道爾頓)以黑色箭頭指示。在抗Rad51免疫墨點下方之數字指示在同一墨點中針對內源性Rad51蛋白質含量正規化的NTD-LacZ-V5融合蛋白含量之倍數變化。圖2 B顯示,使用抗V5抗血清執行免疫墨點法。假定的降解產物以黑色箭頭指示。使用Hsp104作為內參照物。圖2 C顯示,定量酵母LacZ分析係如先前所描述( Chuang C.N., Cheng Y.H., Wang T.F. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 2012; 40:11416-11427)執行。誤差條指示實驗之間之標準差。星號指示顯著差異,其中 p值係使用雙尾t檢定計算(*, p值<0.05及***, p值<0.001)。 Figures 2A to C show that Rad51-NTD phosphorylation not only promotes protein expression, but also enhances protein stability. Using the indicated yeast expression vector, i.e., PRAD51 - lacZ -V5 (control), PRAD51 -NTD- lacZ -V5, PRAD51 - NTD3A - lacZ -V5 or PRAD51 - NTD3D - lacZ -V5, The wild-type SK1 haploid strain was transformed. In Figure 2C, total cell lysates were prepared from exponentially growing mitotic cells and visualized by immunoblotting and quantitative yeast LacZ analysis with the corresponding antisera. Figure 2A shows that the NTD-LacZ-V5 fusion protein (approximately 128 kilodaltons) is marked with a white arrow. Endogenous Rad51 (approximately 43 kilodaltons) is indicated by black arrows. The numbers below the anti-Rad51 immune dots indicate the fold change in NTD-LacZ-V5 fusion protein content normalized to endogenous Rad51 protein content in the same dot. Figure 2B shows that immunoblotting was performed using anti-V5 antiserum. Putative degradation products are indicated by black arrows. Hsp104 was used as an internal reference. Figure 2C shows that quantitative yeast LacZ assay was performed as previously described ( Chuang CN, Cheng YH, Wang TF Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 2012; 40:11416- 11427 ) is executed. Error bars indicate the standard deviation between experiments. Asterisks indicate significant differences, where p -values were calculated using a two-tailed t-test (*, p -value &lt; 0.05 and ***, p -value &lt; 0.001).

圖3 A及B顯示,三種不同釀酒酵母蛋白質之SCD具有「促進表達」之活性。用具有內源性RAD51啟動子之指定酵母表達載體,亦即, P RAD51 - lacZ-V5-His 6(控制對照組)、 P RAD51 -Rad51-SCD- lacZ-V5-His 6P RAD51 -Rad53-SCD1- lacZ-V5-His 6P RAD51 -Hop1-SCD- lacZ-V5-His 6,對野生型單倍體株進行轉形。Rad51-SCD及Rad53-SCD1分別含有Rad51及Rad53之N末端1-66個及1-29個胺基酸殘基。Hop1-SCD含有Hop1之中間區(258-324個胺基酸殘基)。由處於指數生長之有絲分裂細胞製備總細胞溶解產物,藉由利用相應抗血清之免疫墨點法及定量酵母LacZ分析進行觀測。圖3 A顯示,使用抗V5抗血清執行免疫墨點法。使用Hsp104作為內參照物。圖3 B顯示,定量酵母LacZ(β-半乳糖苷酶)分析係如先前所描述執行。誤差條指示實驗之間之標準差。星號指示顯著差異,其中 p值係使用雙尾t檢定計算(*, p值<0.05及***, p值<0.001)。 Figures 3 A and B show that the SCD of three different S. cerevisiae proteins has "expression-promoting" activity. The indicated yeast expression vectors with the endogenous RAD51 promoter were used, i.e., PRAD51 - lacZ -V5-His6 (control), PRAD51 -Rad51-SCD- lacZ -V5-His6, PRAD51 - Rad53 -SCD1- lacZ -V5-His6 or PRAD51 - Hop1 -SCD- lacZ -V5 - His6 to transform wild-type haploid strains. Rad51-SCD and Rad53-SCD1 contain N-terminal 1-66 and 1-29 amino acid residues of Rad51 and Rad53, respectively. Hopl-SCD contains the intermediate region of Hopl (258-324 amino acid residues). Total cell lysates were prepared from exponentially growing mitotic cells and visualized by immunoblotting and quantitative yeast LacZ analysis with the corresponding antisera. Figure 3A shows that immunoblotting was performed using anti-V5 antiserum. Hsp104 was used as an internal reference. Figure 3B shows that a quantitative yeast LacZ (beta-galactosidase) assay was performed as previously described. Error bars indicate the standard deviation between experiments. Asterisks indicate significant differences, where p -values were calculated using a two-tailed t-test (*, p -value &lt; 0.05 and ***, p -value &lt; 0.001).

圖4顯示,Rad53-SCD1在釀酒酵母中大規模表達四種不同的目標蛋白質。用指定酵母表達載體,亦即, P RAD51 -lacZ-V5-His 6(控制對照組)、 P RAD51 -Rad53-SCD1-lacZ-V5-His 6P RAD51 - GFP-V5-His 6(控制對照組)、 P RAD51 -Rad53-SCD1-GFP-V5-His 6P RAD51 - GST-V5-His 6(控制對照組)、 P RAD51 -Rad53-SCD1-GST-V5-His 6P RAD51 -GST(nd)-V5-His 6(控制對照組)或 P RAD51 -Rad53-SCD1-GST(nd)-V5-His 6,對野生型單倍體株進行轉形。β-半乳糖苷酶係一種四聚體蛋白質,而GST係一種二聚體蛋白質。已知GFP在活體內呈單體形式。GST(nd)係非二聚化GST突變體。使用抗V5抗血清執行免疫墨點法。使用Hsp104作為內參照物。 Figure 4 shows that Rad53-SCD1 expresses four different target proteins on a large scale in S. cerevisiae. The indicated yeast expression vectors, namely, PRAD51 -lacZ-V5-His6 (control), PRAD51 -Rad53-SCD1-lacZ-V5 - His6 , PRAD51 - GFP -V5 - His6 (control) group), PRAD51 -Rad53-SCD1-GFP-V5-His6, PRAD51 - GST - V5-His6 (control group), PRAD51 -Rad53-SCD1-GST-V5 - His6 , PRAD51 -GST (nd) -V5 -His6 (control) or P RAD51 -Rad53-SCD1-GST(nd) -V5 -His6, wild-type haploid strains were transformed. Beta-galactosidase is a tetrameric protein, while GST is a dimeric protein. GFP is known to be in monomeric form in vivo. GST(nd) is a non-dimerizing GST mutant. Immunoblotting was performed using anti-V5 antiserum. Hsp104 was used as an internal reference.

圖5 A至F顯示,出芽酵母Rad51之NTD係Mec1 ATR及Tel1 ATM之直接目標。圖5 A顯示Rad51-NTD、磷酸化缺陷型突變體(Rad51-3A)及模擬磷酸化突變體(Rad51-3D)之胺基酸序列(1-66個殘基)。圖5 B、C及D顯示,Rad51-NTD在營養生長及減數分裂期間執行之磷酸化。Rad51-NTD在營養生長及減數分裂期間執行ATR Mec1依賴性及ATM Tel1依賴性磷酸化。圖5 B顯示抗磷酸化Rad51-S 2Q、Rad51-S 12Q及Rad51-S 30Q抗血清之特異性的論證。在MMS處理下由有絲分裂細胞(如圖5 C中所示)製備或在指定孢子形成時間點由減數分裂細胞(如圖5 D中所示)製備總細胞溶解產物,且接著藉由利用相應抗血清之免疫墨點法進行觀測。使用Hsp104作為內參照物。以千道爾頓計的標準蛋白質標記物之大小在墨點之左側標出。圖5 E顯示,在30℃下於孢子形成培養基上保持3天之後,分析孢子活力。為了對孢子活力進行評分,在YPD上僅解剖出四分體(但未解剖出二分體或三分體)。圖5 F展示斑點分析,顯示指定株之五倍連續稀釋液在YPD盤及含有0.01%或0.02% MMS之YPD盤上生長。 Figures 5A-F show that the NTD of budding yeast Rad51 is a direct target of Mec1 ATR and Tel1 ATM . Figure 5A shows the amino acid sequences (1-66 residues) of Rad51-NTD, a phosphorylation-deficient mutant (Rad51-3A) and a phosphorylation-mimicking mutant (Rad51-3D). Figure 5 B, C and D show phosphorylation of Rad51-NTD performed during vegetative growth and meiosis. Rad51-NTD performs ATR Mec1 -dependent and ATM Tel1 -dependent phosphorylation during vegetative growth and meiosis. Figure 5B shows demonstration of the specificity of anti-phosphorylated Rad51 - S2Q, Rad51- S12Q and Rad51- S30Q antisera. Total cell lysates were prepared from mitotic cells (as shown in Figure 5C) under MMS treatment or from meiotic cells (as shown in Figure 5D) at the indicated sporulation time points, and then by using the corresponding Antiserum immunoblotting method was used for observation. Hsp104 was used as an internal reference. The sizes of standard protein markers in kilodaltons are indicated to the left of the dots. Figure 5E shows that spore viability was analyzed after 3 days on sporulation medium at 30°C. To score spore viability, only tetrads (but not dyads or triads) were dissected on the YPD. Figure 5F shows spot analysis showing that five-fold serial dilutions of the indicated strains grew on YPD plates and YPD plates containing 0.01% or 0.02% MMS.

圖6顯示四分體解剖分析。用指定 過度表達載體對酵母二倍體細胞進行轉形。 RAD51rad51-3Arad51-Δ N在天然 RAD51啟動子下過度表達。 Figure 6 shows tetrad anatomy analysis. Yeast diploid cells were transformed with the indicated overexpression vector. RAD51 , rad51-3A and rad51-ΔN were overexpressed under the native RAD51 promoter.

圖7 A至B顯示Rad51-ΔN在減數分裂細胞中低水準表達。在MMS處理下由有絲分裂細胞製備或在指定時間點,由減數分裂培養物製備總細胞溶解產物,並對其進行免疫墨點法,如圖1中所描述。使用Hsp104作為內參照物。圖7 A顯示,使用購自Santa Cruz Biotechnology(CA, USA)之山羊抗Rad51抗體(yN-19)進行免疫墨點法。此抗體係使用肽(sc-8936)圖譜在酵母Rad51之N末端處產生。將攜帶WT RAD51rad51-Δ N對偶基因的基於 之過度表達載體轉形至指定基因型之二倍體株中(如圖1D中所示)並使用豚鼠抗Rad51抗體進行免疫墨點時程分析。圖7 B顯示, sml1Δ對指定減數分裂細胞中Rad51-ΔN表達之影響係如圖7 A中所描述分析。 Figures 7 A to B show that Rad51-ΔN is expressed at low levels in meiotic cells. Total cell lysates were prepared from mitotic cells under MMS treatment or at indicated time points from meiotic cultures and subjected to immunoblotting as described in Figure 1. Hsp104 was used as an internal reference. Figure 7A shows that immunoblotting was performed using goat anti-Rad51 antibody (yN-19) purchased from Santa Cruz Biotechnology (CA, USA). This antibody system was generated at the N-terminus of yeast Rad51 using a peptide (sc-8936) map. The -based overexpression vector carrying the WT RAD51 or rad51-ΔN dual gene was transformed into diploid strains of the indicated genotypes (as shown in Figure ID) and immunoblotting time course using guinea pig anti-Rad51 antibody analyze. Figure 7B shows that the effect of sml1Δ on Rad51-ΔN expression in the indicated meiotic cells was analyzed as described in Figure 7A.

圖8 A至E顯示Rad51-NTD及其磷酸化係在 dmc1Δ hed1Δ減數分裂期間僅Rad51減數分裂重組必不可少的。圖8 A顯示,減數分裂進展係藉由用DAPI(4',6-二脒基-2-苯基吲哚)對核染色進行監測。自SPM收集的具有兩個或四個細胞核(如藉由螢光顯微鏡檢查法所測定)之細胞係評估為已完成減數分裂I(MI),且標繪出每個時間點此類細胞相對於總細胞計數( n=200)之百分比。圖8 B及圖8 C顯示細胞學。減數分裂核表面擴散實驗之代表性圖像分別使用豚鼠抗Rad51(綠色)及抗磷酸化Rad51-S 30Q(紅色)或抗Dmc1(紅色)抗血清。在指定的孢子形成時間點,用DAPI (藍色)對減數分裂染色體染色。比例尺,5 μm。圖8 D顯示在WT及 rad51-3A株中Rad51及Dmc1焦點數量之定量。對各焦點陽性染色體塗片(具有超過五個焦點)中焦點之數量計數並如所示進行標繪。圓形之大小與具有給定數量之焦點之核的數量成比例。每個核之焦點的平均數量以紅色(底部)顯示,且在圖中亦以紅色條柱顯示。焦點數量之標準差在圓括號中顯示。 N表示進行焦點計數分析之核的數量。 P值係使用雙尾曼-惠特尼氏 U檢定(two-tailed Mann-Whitney's U-test)計算。圖8 E顯示在WT及 rad51-3A株之減數分裂中Rad51焦點之動力學。對於每次重複實驗( n=3),檢查60個染色體塗片中之Rad51焦點陽性核(具有超過五個焦點)。誤差條指示實驗之間之標準差。星號指示WT與 rad51-3A株之間的顯著差異,其中 P值係使用雙尾t檢定(two-tailed t-test)計算(* P值<0.05;** P值<0.01及*** P值<0.001)。 Figures 8 A to E show that Rad51-NTD and its phosphorylation line are essential for only Rad51 meiotic recombination during dmc1Δhed1Δmeiosis . Figure 8A shows that meiotic progression was monitored by nuclear staining with DAPI (4',6-diamidino-2-phenylindole). Cell lines collected from SPM with two or four nuclei (as determined by fluorescence microscopy) were assessed as having completed meiosis I (MI), and relative to each time point such cells are plotted Percentage of total cell count ( n =200). Figures 8B and 8C show cytology. Representative images of meiotic nuclear surface diffusion experiments using guinea pig anti-Rad51 (green) and anti-phosphorylated Rad51-S 30 Q (red) or anti-Dmc1 (red) antisera, respectively. Meiotic chromosomes were stained with DAPI (blue) at the indicated sporulation time points. Scale bar, 5 μm. Figure 8D shows quantification of the number of Rad51 and Dmc1 foci in WT and rad51-3A strains. The number of foci in each foci-positive chromosomal smear (with more than five foci) was counted and plotted as indicated. The size of the circle is proportional to the number of nuclei with a given number of foci. The average number of foci per nucleus is shown in red (bottom) and is also shown as a red bar in the figure. The standard deviation of the number of foci is shown in parentheses. N represents the number of nuclei for focus count analysis. P values were calculated using the two-tailed Mann-Whitney's U - test. Figure 8E shows the kinetics of Rad51 foci in meiosis of WT and rad51-3A strains. For each replicate ( n =3), 60 chromosomal smears were examined for Rad51 foci-positive nuclei (with more than five foci). Error bars indicate the standard deviation between experiments. Asterisks indicate significant differences between WT and rad51-3A strains, where P -values were calculated using a two-tailed t-test (* P -value<0.05; ** P -value<0.01 and *** P value < 0.001).

圖9 A至D顯示磷酸化缺陷型Rad51在減數分裂期間維持不足的蛋白質含量。圖9 A顯示,野生型及突變體株之免疫墨點時程分析係如先前所述執行 21,45。總細胞溶解產物係在指定孢子形成時間點,由減數分裂細胞製備,且接著藉由免疫墨點法,利用相應抗血清觀測。包括針對Zip1及Hop1之抗血清作為減數分裂進展之參照物。使用Hsp104作為內參照物。以千道爾頓計的標準蛋白質標記物之大小在墨點之左側標出。星號指示非特異性譜帶。圖9 B顯示,在各時間點,使用ImageJ軟體將圖9 A中蛋白質譜帶之定量針對Hsp104之定量正規化且以指定蛋白質之相對穩態含量顯示。使用各墨點之免疫墨點信號的最高水準作為比較標準。圖9 C顯示,使用WT細胞溶解產物之兩倍連續稀釋液估計在SPM中1小時及5小時 rad51突變體之Rad51蛋白質含量。圖9 D顯示,對圖9 C中所顯示的來自未稀釋之溶解產物之Rad51變異體的蛋白質含量定量並針對Hsp104含量正規化。使用在SPM中1小時之WT的Rad51含量作為標準。 Figures 9 A to D show that phosphorylation-deficient Rad51 maintains insufficient protein levels during meiosis. Figure 9A shows that immunoblotting time course analysis of wild-type and mutant strains was performed as previously described 21,45 . Total cell lysates were prepared from meiotic cells at the indicated sporulation time points and then visualized by immunoblotting with the corresponding antisera. Antisera to Zip1 and Hopl were included as references for meiotic progression. Hsp104 was used as an internal reference. The sizes of standard protein markers in kilodaltons are indicated to the left of the dots. Asterisks indicate nonspecific bands. Figure 9B shows that, at each time point, the quantification of the protein bands in Figure 9A was normalized to the quantification of Hsp104 using ImageJ software and displayed as relative steady-state levels of the indicated proteins. The highest level of immune dot signal of each dot was used as a comparison standard. Figure 9C shows the estimation of Rad51 protein content of rad51 mutants at 1 hour and 5 hours in SPM using two-fold serial dilutions of WT cell lysates. Figure 9D shows that the protein content of the Rad51 variant from the undiluted lysate shown in Figure 9C was quantified and normalized to Hsp104 content. The Rad51 content of WT in SPM for 1 hour was used as a standard.

圖10 A至E顯示不同Rad51蛋白質之半衰期的測定。圖10 A顯示環己醯亞胺阻斷(cycloheximide-shutoff)實驗。藉由在指定時間點,亦即,在減數分裂細胞轉移至孢子形成培養基中之後4小時(如圖10 A中所示)或1小時及5小時(如圖10 D中所示),將200 μg/ml環己醯亞胺添加至減數分裂培養物中來抑制蛋白質合成。在添加環己醯亞胺之後0、30、60、90、120及180分鐘獲取未處理(上圖)或經環己醯亞胺處理(下圖)之樣品進行免疫墨點分析。圖10 B顯示,對WT減數分裂之免疫墨點時程分析揭露天然Rad51及Hop1之磷酸化狀態。使用Hsp104作為內參照物。圖10 C顯示,在SPM中各時間點( T SPM)針對Hsp104正規化之後,相較於在5小時( T 5)之相對穩態蛋白質含量標繪圖10 B中之相對穩態蛋白質含量。圖10 E展示的曲線圖顯示圖10 D中之相對蛋白質含量。誤差條指示實驗( n=3)之間之標準差。星號指示在 T C(環己醯亞胺處理之小時數)=3小時的值,該等值明顯不同於在 T C=3小時的WT[ T 0=5小時]之值,其中 P值係使用雙尾t檢定計算(** P值<0.01及*** P值<0.001)。 Figures 10 A to E show the determination of the half-life of different Rad51 proteins. Figure 10A shows a cycloheximide-shutoff experiment. by 4 hours (as shown in Figure 10A) or 1 hour and 5 hours (as shown in Figure 10D) after the transfer of meiotic cells into the sporulation medium at the indicated time points 200 μg/ml cycloheximide was added to meiotic cultures to inhibit protein synthesis. Untreated (upper panel) or cycloheximide-treated (lower panel) samples were taken for immunoblot analysis at 0, 30, 60, 90, 120, and 180 minutes after cycloheximide addition. Figure 10B shows that immunoblotting time course analysis of WT meiosis revealed the phosphorylation status of native Rad51 and Hop1. Hsp104 was used as an internal reference. Figure 10C shows the relative steady state protein content in Figure 10B is plotted compared to the relative steady state protein content at 5 hours ( T5 ) after normalization for Hsp104 at each time point (TSPM) in SPM . Figure 10E shows a graph showing the relative protein content in Figure 10D. Error bars indicate standard deviation between experiments ( n =3). Asterisks indicate values at TC ( hours of cycloheximide treatment) = 3 hours, which are significantly different from the values at TC = 3 hours for WT [ T 0 =5 hours], where the P value is Calculated using a two-tailed t-test (** P -value<0.01 and *** P -value<0.001).

圖11 A至E顯示Rad51-3A經26S蛋白酶體降解。在添加環己醯亞胺(200 μg/ml)及/或MG132(25 μM)之前30分鐘,用MMS(0.02%)處理指定株之指數培養物。如圖6中所描述,在指定時間點收集蛋白質樣品並執行免疫墨點法。為減少MG132外排,使編碼ABC轉運蛋白之 PDR5基因缺失。藉由免疫墨點法,使用抗己醣激酶抗體分析另一營養性管家蛋白質己醣激酶之蛋白質含量,並在圖11 A中作為內參照物顯示。圖11 A及D中免疫墨點結果之定量分別標繪於圖11 C及E中,其中標繪出在該時間點時針對Hsp104含量正規化之總Rad51蛋白質含量。在圖11 E中包括來自圖11 C的在環己醯亞胺存在下WT及 rad51-3A樣品之定量結果以供比較。 Figures 11 A to E show that Rad51-3A is degraded by the 26S proteasome. Exponential cultures of the indicated strains were treated with MMS (0.02%) 30 minutes prior to the addition of cycloheximide (200 μg/ml) and/or MG132 (25 μM). As described in Figure 6, protein samples were collected at the indicated time points and immunoblotting was performed. To reduce MG132 efflux, the PDR5 gene encoding the ABC transporter was deleted. Another nutritional housekeeping protein, hexokinase, was analyzed for protein content by immunoblotting using an anti-hexokinase antibody and shown in Figure 11A as an internal reference. Quantification of immunoblotting results in Figures 11 A and D is plotted in Figures 11 C and E, respectively, where total Rad51 protein content normalized to Hsp104 content at that time point is plotted. Quantitative results for WT and rad51-3A samples in the presence of cycloheximide from Figure 11 C are included in Figure 11 E for comparison.

圖12 A至C顯示,SCD或普里昂蛋白(成核)域之N末端融合促進目標蛋白質之高水準表達。圖12 A顯示藉由免疫墨點法觀測天然Rad51(NTD-Rad51-ΔN)、Rad51-ΔN及Rad51-ΔN融合蛋白。使用Hsp104作為內參照物。以千道爾頓計的標準蛋白質標記物之大小在墨點之左側標出。黑色箭頭指示Rad51-ΔN之蛋白質譜帶。圖12 B顯示MMS敏感性。斑點分析顯示在指定濃度(w/v)之MMS存在或不存在下在YPD盤上生長之指定株的五倍連續稀釋液。圖12 C顯示定量β-半乳糖苷酶分析。誤差條指示實驗(n≥3)之間之標準差。星號指示顯著差異,其中 P值係使用雙尾t檢定計算(***, P值<0.001)。 Figures 12A-C show that N-terminal fusions of SCD or prion protein (nucleation) domains promote high level expression of the target protein. Figure 12A shows native Rad51 (NTD-Rad51-ΔN), Rad51-ΔN and Rad51-ΔN fusion proteins visualized by immunoblotting. Hsp104 was used as an internal reference. The sizes of standard protein markers in kilodaltons are indicated to the left of the dots. Black arrows indicate the protein band of Rad51-ΔN. Figure 12B shows MMS sensitivity. Spot analysis showed five-fold serial dilutions of the indicated strains grown on YPD plates in the presence or absence of the indicated concentrations (w/v) of MMS. Figure 12C shows quantitative beta-galactosidase assay. Error bars indicate the standard deviation between experiments (n > 3). Asterisks indicate significant differences, where P values were calculated using a two-tailed t-test (***, P value < 0.001).

圖13 A及D顯示相對β-半乳糖苷酶(LacZ)活性與IDR之STQN胺基酸含量百分比相關。圖13 A顯示具有各別長度、S/T/Q/N胺基酸數量、總體STQN百分比及相對β-半乳糖苷酶活性之IDR的清單。圖13 B至D顯示Rad51-NTD(如圖13 B中所示)、Sup35-PND(如圖13 C中所示)及Rad53-SCD1(如圖13 D中所示)之相對β-半乳糖苷酶活性與總體STQN百分比之間的線性回歸。指示每次簡單線性回歸之決定係數(R 2)。 Figures 13 A and D show that relative beta-galactosidase (LacZ) activity correlates with the percent STQN amino acid content of IDRs. Figure 13A shows a list of IDRs with respective length, number of S/T/Q/N amino acids, overall STQN percentage and relative β-galactosidase activity. Figures 13B-D show the relative β-galactogens of Rad51-NTD (shown in Figure 13B), Sup35-PND (shown in Figure 13C), and Rad53-SCD1 (shown in Figure 13D) Linear regression between glycosidase activity and overall STQN percentage. The coefficient of determination (R 2 ) for each simple linear regression is indicated.

                                  
          <![CDATA[<110>  中央研究院(ACADEMIA SINICA)]]>
          <![CDATA[<120>  增強蛋白質表達和/或抑制其降解的方法和載體 ]]>
          <![CDATA[<130>  none]]>
          <![CDATA[<160>  31    ]]>
          <![CDATA[<170>  PatentIn version 3.5]]>
          <![CDATA[<210>  1]]>
          <![CDATA[<211>  67]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  1]]>
          Met Glu Lys Ala Gly Asn Thr Asn Phe Ile Arg Val Asp Pro Phe Asp 
          1               5                   10                  15      
          Leu Ile Leu Gln Gln Gln Glu Glu Asn Lys Leu Glu Glu Ser Ala Pro 
                      20                  25                  30          
          Thr Lys Pro Gln Asn Phe Val Thr Ser Gln Thr Thr Asn Val Leu Gly 
                  35                  40                  45              
          Asn Leu Leu Asn Ser Ser Gln Ala Ser Ile Gln Pro Thr Gln Phe Val 
              50                  55                  60                  
          Ser Asn Asn 
          65          
          <![CDATA[<210>  2]]>
          <![CDATA[<211>  66]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  2]]>
          Met Ser Gln Val Gln Glu Gln His Ile Ser Glu Ser Gln Leu Gln Tyr 
          1               5                   10                  15      
          Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ser Gln Ser 
                      20                  25                  30          
          Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 
                  35                  40                  45              
          Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 
              50                  55                  60                  
          Gly Glu 
          65      
          <![CDATA[<210>  3]]>
          <![CDATA[<211>  66]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  3]]>
          Met Ala Gln Val Gln Glu Gln His Ile Ser Glu Ala Gln Leu Gln Tyr 
          1               5                   10                  15      
          Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Gln Ser 
                      20                  25                  30          
          Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 
                  35                  40                  45              
          Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 
              50                  55                  60                  
          Gly Glu 
          65      
          <![CDATA[<210>  4]]>
          <![CDATA[<211>  66]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  4]]>
          Met Asp Gln Val Gln Glu Gln His Ile Ser Glu Asp Gln Leu Gln Tyr 
          1               5                   10                  15      
          Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Asp Gln Ser 
                      20                  25                  30          
          Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 
                  35                  40                  45              
          Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 
              50                  55                  60                  
          Gly Glu 
          65      
          <![CDATA[<210>  5]]>
          <![CDATA[<211>  66]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  5]]>
          Met Ala Gln Val Gln Glu Gln His Ile Ser Glu Ser Gln Leu Gln Tyr 
          1               5                   10                  15      
          Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ser Gln Ser 
                      20                  25                  30          
          Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 
                  35                  40                  45              
          Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 
              50                  55                  60                  
          Gly Glu 
          65      
          <![CDATA[<210>  6]]>
          <![CDATA[<211>  66]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  6]]>
          Met Ser Gln Val Gln Glu Gln His Ile Ser Glu Ala Gln Leu Gln Tyr 
          1               5                   10                  15      
          Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ser Gln Ser 
                      20                  25                  30          
          Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 
                  35                  40                  45              
          Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 
              50                  55                  60                  
          Gly Glu 
          65      
          <![CDATA[<210>  7]]>
          <![CDATA[<211>  66]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  7]]>
          Met Ser Gln Val Gln Glu Gln His Ile Ser Glu Ser Gln Leu Gln Tyr 
          1               5                   10                  15      
          Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Gln Ser 
                      20                  25                  30          
          Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 
                  35                  40                  45              
          Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 
              50                  55                  60                  
          Gly Glu 
          65      
          <![CDATA[<210>  8]]>
          <![CDATA[<211>  66]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  8]]>
          Met Ala Ala Val Gln Glu Gln His Ile Ser Glu Ala Ala Leu Gln Tyr 
          1               5                   10                  15      
          Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Ala Ser 
                      20                  25                  30          
          Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 
                  35                  40                  45              
          Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 
              50                  55                  60                  
          Gly Glu 
          65      
          <![CDATA[<210>  9]]>
          <![CDATA[<211>  66]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  9]]>
          Met Ala Ala Val Ala Glu Ala His Ile Ser Glu Ala Ala Leu Ala Tyr 
          1               5                   10                  15      
          Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Ala Ser 
                      20                  25                  30          
          Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 
                  35                  40                  45              
          Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 
              50                  55                  60                  
          Gly Glu 
          65      
          <![CDATA[<210>  10]]>
          <![CDATA[<211>  66]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  10]]>
          Met Ala Ala Val Ala Glu Ala His Ile Ser Glu Ala Ala Leu Ala Tyr 
          1               5                   10                  15      
          Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Ala Ser 
                      20                  25                  30          
          Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 
                  35                  40                  45              
          Asn Gly Ser Gly Asp Gly Gly Gly Leu Ala Glu Ala Ala Glu Ala Ala 
              50                  55                  60                  
          Gly Glu 
          65      
          <![CDATA[<210>  11]]>
          <![CDATA[<211>  29]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  11]]>
          Met Glu Asn Ile Thr Gln Pro Thr Gln Gln Ser Thr Gln Ala Thr Gln 
          1               5                   10                  15      
          Arg Phe Leu Ile Glu Lys Phe Ser Gln Glu Gln Ile Gly 
                      20                  25                  
          <![CDATA[<210>  12]]>
          <![CDATA[<211>  29]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  12]]>
          Met Glu Asn Ile Ala Gln Pro Ala Gln Gln Ser Ala Gln Ala Ala Gln 
          1               5                   10                  15      
          Arg Phe Leu Ile Glu Lys Phe Ala Gln Glu Gln Ile Gly 
                      20                  25                  
          <![CDATA[<210>  13]]>
          <![CDATA[<211>  29]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  13]]>
          Met Glu Asn Ile Thr Ala Pro Thr Ala Ala Ser Thr Ala Ala Thr Ala 
          1               5                   10                  15      
          Arg Phe Leu Ile Glu Lys Phe Ser Ala Glu Ala Ile Gly 
                      20                  25                  
          <![CDATA[<210>  14]]>
          <![CDATA[<211>  29]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  14]]>
          Met Glu Asn Ile Ala Ala Pro Ala Ala Ala Ser Ala Ala Ala Ala Ala 
          1               5                   10                  15      
          Arg Phe Leu Ile Glu Lys Phe Ala Ala Glu Ala Ile Gly 
                      20                  25                  
          <![CDATA[<210>  15]]>
          <![CDATA[<211>  27]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  15]]>
          Met Gln Asn Ser Gln Asp Tyr Phe Tyr Ala Gln Asn Arg Ser Gln Gln 
          1               5                   10                  15      
          Gln Gln Ala Pro Ser Thr Leu Arg Thr Val Thr 
                      20                  25          
          <![CDATA[<210>  16]]>
          <![CDATA[<211>  50]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  16]]>
          Met Gln Asn Ser Gln Asp Tyr Phe Tyr Ala Gln Asn Arg Ser Gln Gln 
          1               5                   10                  15      
          Gln Gln Ala Pro Ser Thr Leu Arg Thr Val Thr Met Ala Glu Phe Arg 
                      20                  25                  30          
          Arg Val Pro Leu Pro Pro Met Ala Glu Val Pro Met Leu Ser Thr Gln 
                  35                  40                  45              
          Asn Ser 
              50  
          <![CDATA[<210>  17]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  17]]>
          Met Ser Asp Ser Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 
          1               5                   10                  15      
          Ser Gln Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 
                      20                  25                  30          
          Gln Ala Tyr Asn Ala Gln Ala 
                  35                  
          <![CDATA[<210>  18]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  18]]>
          Met Ser Asp Ser Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 
          1               5                   10                  15      
          Ala Gln Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 
                      20                  25                  30          
          Gln Ala Tyr Asn Ala Gln Ala 
                  35                  
          <![CDATA[<210>  19]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  19]]>
          Met Ala Asp Ala Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 
          1               5                   10                  15      
          Ala Gln Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 
                      20                  25                  30          
          Gln Ala Tyr Asn Ala Gln Ala 
                  35                  
          <![CDATA[<210>  20]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  20]]>
          Met Ser Asp Ser Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 
          1               5                   10                  15      
          Ser Gln Asn Gly Asn Ala Ala Ala Gly Asn Asn Arg Tyr Gln Gly Tyr 
                      20                  25                  30          
          Gln Ala Tyr Asn Ala Gln Ala 
                  35                  
          <![CDATA[<210>  21]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  21]]>
          Met Ser Asp Ser Asn Gln Gly Asn Asn Ala Ala Asn Tyr Ala Ala Tyr 
          1               5                   10                  15      
          Ser Ala Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 
                      20                  25                  30          
          Gln Ala Tyr Asn Ala Gln Ala 
                  35                  
          <![CDATA[<210>  22]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  22]]>
          Met Ser Asp Ser Asn Gln Gly Asn Asn Ala Ala Asn Tyr Ala Ala Tyr 
          1               5                   10                  15      
          Ser Ala Asn Gly Asn Ala Ala Ala Gly Asn Asn Arg Tyr Gln Gly Tyr 
                      20                  25                  30          
          Gln Ala Tyr Asn Ala Gln Ala 
                  35                  
          <![CDATA[<210>  23]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  23]]>
          Met Ala Asp Ala Asn Ala Gly Asn Asn Ala Ala Asn Tyr Ala Ala Tyr 
          1               5                   10                  15      
          Ala Ala Asn Gly Asn Ala Ala Ala Gly Asn Asn Arg Tyr Ala Gly Tyr 
                      20                  25                  30          
          Ala Ala Tyr Asn Ala Ala Ala 
                  35                  
          <![CDATA[<210>  24]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  24]]>
          Met Ser Asp Ser Ala Gln Gly Ala Ala Gln Gln Ala Tyr Gln Gln Tyr 
          1               5                   10                  15      
          Ser Gln Ala Gly Ala Gln Gln Gln Gly Ala Ala Arg Tyr Gln Gly Tyr 
                      20                  25                  30          
          Gln Ala Tyr Ala Ala Gln Ala 
                  35                  
          <![CDATA[<210>  25]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  人工突變體]]>
          <![CDATA[<400>  25]]>
          Met Ala Asp Ala Ala Ala Gly Ala Ala Ala Ala Ala Tyr Ala Ala Tyr 
          1               5                   10                  15      
          Ala Ala Ala Gly Ala Ala Ala Ala Gly Ala Ala Arg Tyr Ala Gly Tyr 
                      20                  25                  30          
          Ala Ala Tyr Ala Ala Ala Ala 
                  35                  
          <![CDATA[<210>  26]]>
          <![CDATA[<211>  114]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  26]]>
          Met Ser Asp Ser Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 
          1               5                   10                  15      
          Ser Gln Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 
                      20                  25                  30          
          Gln Ala Tyr Asn Ala Gln Ala Gln Pro Ala Gly Gly Tyr Tyr Gln Asn 
                  35                  40                  45              
          Tyr Gln Gly Tyr Ser Gly Tyr Gln Gln Gly Gly Tyr Gln Gln Tyr Asn 
              50                  55                  60                  
          Pro Asp Ala Gly Tyr Gln Gln Gln Tyr Asn Pro Gln Gly Gly Tyr Gln 
          65                  70                  75                  80  
          Gln Tyr Asn Pro Gln Gly Gly Tyr Gln Gln Gln Phe Asn Pro Gln Gly 
                          85                  90                  95      
          Gly Arg Gly Asn Tyr Lys Asn Phe Asn Tyr Asn Asn Ser Leu Gln Gly 
                      100                 105                 110         
          Tyr Gln 
          <![CDATA[<210>  27]]>
          <![CDATA[<211>  156]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  27]]>
          Met Pro Pro Lys Lys Phe Lys Asp Leu Asn Ser Phe Leu Asp Asp Gln 
          1               5                   10                  15      
          Pro Lys Asp Pro Asn Leu Val Ala Ser Pro Phe Gly Gly Tyr Phe Lys 
                      20                  25                  30          
          Asn Pro Ala Ala Asp Ala Gly Ser Asn Asn Ala Ser Lys Lys Ser Ser 
                  35                  40                  45              
          Tyr Gln Gln Gln Arg Asn Trp Lys Gln Gly Gly Asn Tyr Gln Gln Gly 
              50                  55                  60                  
          Gly Tyr Gln Ser Tyr Asn Ser Asn Tyr Asn Asn Tyr Asn Asn Tyr Asn 
          65                  70                  75                  80  
          Asn Tyr Asn Asn Tyr Asn Asn Tyr Asn Asn Tyr Asn Asn Tyr Asn Lys 
                          85                  90                  95      
          Tyr Asn Gly Gln Gly Tyr Gln Lys Ser Thr Tyr Lys Gln Ser Ala Val 
                      100                 105                 110         
          Thr Pro Asn Gln Ser Gly Thr Pro Thr Pro Ser Ala Ser Thr Thr Ser 
                  115                 120                 125             
          Leu Thr Ser Leu Asn Glu Lys Leu Ser Asn Leu Glu Leu Thr Pro Ile 
              130                 135                 140                 
          Ser Gln Phe Leu Ser Lys Ile Pro Glu Cys Gln Ser 
          145                 150                 155     
          <![CDATA[<210>  28]]>
          <![CDATA[<211>  91]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  28]]>
          Met Met Asn Asn Asn Gly Asn Gln Val Ser Asn Leu Ser Asn Ala Leu 
          1               5                   10                  15      
          Arg Gln Val Asn Ile Gly Asn Arg Asn Ser Asn Thr Thr Thr Asp Gln 
                      20                  25                  30          
          Ser Asn Ile Asn Phe Glu Phe Ser Thr Gly Val Asn Asn Asn Asn Asn 
                  35                  40                  45              
          Asn Asn Ser Ser Ser Asn Asn Asn Asn Val Gln Asn Asn Asn Ser Gly 
              50                  55                  60                  
          Arg Asn Gly Ser Gln Asn Asn Asp Asn Glu Asn Asn Ile Lys Asn Thr 
          65                  70                  75                  80  
          Leu Glu Gln His Arg Gln Gln Gln Gln Ala Phe 
                          85                  90      
          <![CDATA[<210>  29]]>
          <![CDATA[<211>  152]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  29]]>
          Met Val Glu Leu Glu Lys Arg Arg Arg Pro Pro Pro Gln Leu Gln His 
          1               5                   10                  15      
          Ser Pro Tyr Val Arg Asp Gln Ser Asn Ser Gln Gly Met Thr Lys Thr 
                      20                  25                  30          
          Pro Glu Thr Ser Pro Pro Lys Arg Pro Met Gly Arg Ala Arg Ser Asn 
                  35                  40                  45              
          Ser Arg Ser Ser Gly Ser Arg Ser Asn Val Asp Ile Asp Gln Tyr Thr 
              50                  55                  60                  
          Ile Pro Pro Gly Leu Asp Leu Leu Pro Thr Ala Ser Ser Pro Pro Ser 
          65                  70                  75                  80  
          Val His Gln Val Ser Gln Gln Gln Gln Leu Ser Pro Ile Leu Ala Asn 
                          85                  90                  95      
          Lys Ile Arg Ser Pro Phe Glu Asn Gln Ser Gln Asp Gln Asn Asp Asn 
                      100                 105                 110         
          Ser Ile Asp Pro Thr Pro Ala Gly Gln Val Thr Ile Pro Val Glu Ala 
                  115                 120                 125             
          Val Ser Pro Pro Ala Leu Asp Glu Leu Ser Lys Phe Gln Asn Gly Ser 
              130                 135                 140                 
          Thr Glu Thr Leu Phe Arg Thr Gly 
          145                 150         
          <![CDATA[<210>  30]]>
          <![CDATA[<211>  191]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  30]]>
          Met Ser His Ser Asp Tyr Phe Asn Tyr Lys Pro Tyr Gly Asp Ser Thr 
          1               5                   10                  15      
          Glu Lys Pro Ser Ser Ser Lys Met Arg Gln Ser Ser Ser Ser Ser Ser 
                      20                  25                  30          
          Ser Arg Leu Arg Ser Glu Ser Leu Gly Arg Asn Ser Asn Thr Thr Gln 
                  35                  40                  45              
          Ala Arg Val Ala Ser Ser Pro Ile Ser Pro Gly Leu His Ser Thr Gln 
              50                  55                  60                  
          Tyr Phe Arg Ser Pro Asn Ala Val Tyr Ser Pro Gly Glu Ser Pro Leu 
          65                  70                  75                  80  
          Asn Thr Val Gln Leu Phe Asn Arg Leu Pro Gly Ile Pro Gln Gly Gln 
                          85                  90                  95      
          Phe Phe His Gln Asn Ala Ile Ser Gly Ser Ser Ser Ser Ser Ala Arg 
                      100                 105                 110         
          Ser Ser Arg Arg Pro Ser Asn Ile Gly Leu Pro Leu Pro Lys Asn Pro 
                  115                 120                 125             
          Gln Gln Ser Leu Pro Lys Leu Ser Thr Gln Pro Val Pro Val His Lys 
              130                 135                 140                 
          Lys Val Glu Ala Ser Lys Thr Glu Ser Glu Ile Ile Lys Lys Pro Ala 
          145                 150                 155                 160 
          Pro Val Asn Ser Asn Gln Asp Pro Leu Leu Thr Thr Pro Thr Leu Val 
                          165                 170                 175     
          Ile Ser Pro Glu Leu Ala Ser Leu Asn Thr Thr Asn Thr Ser Ile 
                      180                 185                 190     
          <![CDATA[<210>  31]]>
          <![CDATA[<211>  69]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  釀酒酵母]]>
          <![CDATA[<400>  31]]>
          Met Ala Gly Phe Ser Phe Ala Lys Lys Phe Thr His Lys Lys His Gly 
          1               5                   10                  15      
          Lys Thr Pro Ser Asp Ala Ser Ile Ser Asp Gln Ser Arg Glu Ala Ser 
                      20                  25                  30          
          Leu Ser Thr Pro Pro Asn Glu Lys Phe Phe Thr Lys Gln Glu Thr Pro 
                  35                  40                  45              
          Gln Lys Gly Arg Gln Phe Ser Gln Gly Tyr His Ser Asn Val Asn Lys 
              50                  55                  60                  
          Thr Ser Ser Pro Pro 
          65                  
          <![CDATA[<110> ACADEMIA SINICA]]> <![CDATA[<120> Methods and vectors for enhancing protein expression and/or inhibiting its degradation]]> <![CDATA[<130 > none]]> <![CDATA[<160> 31 ]]> <![CDATA[<170> PatentIn version 3.5]]> <![CDATA[<210> 1]]> <![CDATA[<211 > 67]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA[<400> 1]]> Met Glu Lys Ala Gly Asn Thr Asn Phe Ile Arg Val Asp Pro Phe Asp 1 5 10 15 Leu Ile Leu Gln Gln Gln Glu Glu Asn Lys Leu Glu Glu Ser Ala Pro 20 25 30 Thr Lys Pro Gln Asn Phe Val Thr Ser Gln Thr Thr Asn Val Leu Gly 35 40 45 Asn Leu Leu Asn Ser Ser Gln Ala Ser Ile Gln Pro Thr Gln Phe Val 50 55 60 Ser Asn Asn 65 <![CDATA[<210> 2]]> <![CDATA[<211> 66]]> <![ CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA[<400> 2]]> Met Ser Gln Val Gln Glu Gln His Ile Ser Glu Ser Gln Leu Gln Tyr 1 5 10 15 Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ser Gln Ser 20 25 30 Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 35 40 45 Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 50 55 60 Gly Glu 65 <![CDATA [<210> 3]]> <![CDATA[<211> 66]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Artificial Sequence]]> <![CDATA[ <220>]]> <![CDATA[<223> Artificial Mutants]]> <![CDATA[<400> 3]]> Met Ala Gln Val Gln Glu Gln His Ile Ser Glu Ala Gln Leu Gln Tyr 1 5 10 15 Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Gln Ser 20 25 30 Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 35 40 45 Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 50 55 60 Gly Glu 65 <![CDATA[<210> 4]]> <![CDATA[<211> 66]]> <![CDATA[<212> PRT]]> <! [CDATA[<213> Artificial Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutant]]> <![CDATA[<400> 4]]> Met Asp Gln Val Gln Glu Gln His Ile Ser Glu Asp Gln Leu Gln Tyr 1 5 10 15 Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Asp Gln Ser 20 25 30 Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 35 40 45 Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 50 55 60 Gly Glu 65 <![CDATA[<210> 5]]> <![CDATA[<211> 66] ]> <![CDATA[<212> PRT]]> <![CDATA[<213> Manual Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutants]]> <![CDATA[<400> 5]]> Met Ala Gln Val Gln Glu Gln His Ile Ser Glu Ser Gln Leu Gln Tyr 1 5 10 15 Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ser Gln Ser 20 25 30 Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 35 40 45 Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 50 55 60 Gly Glu 65 <![CDATA[<210> 6]]> <![CDATA[<211> 66]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Artificial Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutant]]> <![CDATA[<400> 6]]> Met Ser Gln Val Gln Glu Gln His Ile Ser Glu Ala Gln Leu Gln Tyr 1 5 10 15 Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ser Gln Ser 20 25 30 Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 35 40 45 Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 50 55 60 Gly Glu 65 <![CDATA[<210> 7]]> <![CDATA[<211> 66]]> <![CDATA [<212> PRT]]> <![CDATA[<213> Artificial Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutant]]> <![CDATA [<400> 7]]> Met Ser Gln Val Gln Glu Gln His Ile Ser Glu Ser Gln Leu Gln Tyr 1 5 10 15 Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Gln Ser 20 25 30 Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 35 40 45 Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 50 55 60 Gly Glu 65 <![CDATA[<210> 8]]> <![CDATA[<211> 66]]> <![CDATA[<212> PRT ]]> <![CDATA[<213> Artificial Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutant]]> <![CDATA[<400> 8 ]]> Met Ala Ala Val Gln Glu Gln His Ile Ser Glu Ala Ala Leu Gln Tyr 1 5 10 15 Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Ala Ser 20 25 30 Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 35 40 45 Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 50 55 60 Gly Glu 65 <![CDATA[<210> 9]]> <![CDATA[ <211> 66]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Manual Sequence]]> <![CDATA[<220>]]> <![CDATA[<223 > Artificial mutants]]> <![CDATA[<400> 9]]> Met Ala Ala Val Ala Glu Ala His Ile Ser Glu Ala Ala Leu Ala Tyr 1 5 10 15 Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Ala Ser 20 25 30 V al Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 35 40 45 Asn Gly Ser Gly Asp Gly Gly Gly Leu Gln Glu Gln Ala Glu Ala Gln 50 55 60 Gly Glu 65 <![CDATA[<210> 10 ]]> <![CDATA[<211> 66]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Manual Sequence]]> <![CDATA[<220>]] > <![CDATA[<223> Artificial Mutants]]> <![CDATA[<400> 10]]> Met Ala Ala Val Ala Glu Ala His Ile Ser Glu Ala Ala Leu Ala Tyr 1 5 10 15 Gly Asn Gly Ser Leu Met Ser Thr Val Pro Ala Asp Leu Ala Ala Ser 20 25 30 Val Val Asp Gly Asn Gly Asn Gly Gly Ser Glu Asp Ile Glu Ala Thr 35 40 45 Asn Gly Ser Gly Asp Gly Gly Gly Leu Ala Glu Ala Ala Glu Ala Ala 50 55 60 Gly Glu 65 <![CDATA[<210> 11]]> <![CDATA[<211> 29]]> <![CDATA[<212> PRT]]> <![CDATA[<213 > Saccharomyces cerevisiae]]> <![CDATA[<400> 11]]> Met Glu Asn Ile Thr Gln Pro Thr Gln Gln Ser Thr Gln Ala Thr Gln 1 5 10 15 Arg Phe Leu Ile Glu Lys Phe Ser Gln Glu Gln Ile Gly 20 25 <![CDATA[<210> 12]]> <![CDATA[<211> 29]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Artificial Sequence] ]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutants]]> <![CDATA[<400> 12]]> Met Glu Asn Ile Ala Gln Pro Ala Gln Gln Ser Ala Gln Ala Ala Gln 1 5 10 15 Arg Phe Leu Ile Glu Lys Phe Ala Gln Glu Gln Ile Gly 20 25 <![CDATA[<210> 13]]> <![ CDATA[<211> 29]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Manual Sequence]]> <![CDATA[<220>]]> <![CDATA[ <223> Artificial mutant]]> <![CDATA[<400> 13]]> Met Glu Asn Ile Thr Ala Pro Thr Ala Ala Ser Thr Ala Ala Thr Ala 1 5 10 15 Arg Phe Leu Ile Glu Lys Phe Ser Ala Glu Ala Ile Gly 20 25 <![CDATA[<210> 14]]> <![CDATA[<211> 29]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Artificial Sequences]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutants]]> <![CDATA[<400> 14]]> Met Glu Asn Ile Ala Ala Pro Ala Ala Ala Ser Ala Ala Ala Ala Ala 1 5 10 15 Arg Phe Leu Ile Glu Lys Phe Ala Ala Glu Ala Ile Gly 20 25 <![CDATA[<210> 15]]> <![CDATA[<211> 27]] > <![CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA[<400> 15]]> Met Gln Asn Ser Gln Asp Tyr Phe Tyr Ala Gln Asn Arg Ser Gln Gln 1 5 10 15 Gln Gln Ala Pro Ser Thr Leu Arg Thr Val Thr 20 25 <![CDATA[<210> 16]]> <![CDATA[<211> 50]]> <![CDATA[ <212> PRT]]> <![CDATA [<213> Saccharomyces cerevisiae]]> <![CDATA[<400> 16]]> Met Gln Asn Ser Gln Asp Tyr Phe Tyr Ala Gln Asn Arg Ser Gln Gln 1 5 10 15 Gln Gln Ala Pro Ser Thr Leu Arg Thr Val Thr Met Ala Glu Phe Arg 20 25 30 Arg Val Pro Leu Pro Pro Met Ala Glu Val Pro Met Leu Ser Thr Gln 35 40 45 Asn Ser 50 <![CDATA[<210> 17]]> <![CDATA[< 211> 39]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA[<400> 17]]> Met Ser Asp Ser Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 1 5 10 15 Ser Gln Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 20 25 30 Gln Ala Tyr Asn Ala Gln Ala 35 <![CDATA[<210> 18] ]> <![CDATA[<211> 39]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Manual Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutants]]> <![CDATA[<400> 18]]> Met Ser Asp Ser Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 1 5 10 15 Ala Gln Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 20 25 30 Gln Ala Tyr Asn Ala Gln Ala 35 <![CDATA[<210> 19]]> <![CDATA[<211> 39]]> <![ CDATA[<212> PRT]]> <![CDATA[<213> Manual Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial mutant]]> <![CDATA[<400> 19]]> Met Ala Asp Ala Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 1 5 10 15 Ala Gln Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 20 25 30 Gln Ala Tyr Asn Ala Gln Ala 35 <![CDATA[<210> 20]]> <![CDATA[<211> 39]]> <![CDATA[<212> PRT]] > <![CDATA[<213> Artificial Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutant]]> <![CDATA[<400> 20]] > Met Ser Asp Ser Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 1 5 10 15 Ser Gln Asn Gly Asn Ala Ala Ala Gly Asn Asn Arg Tyr Gln Gly Tyr 20 25 30 Gln Ala Tyr Asn Ala Gln Ala 35 <! [CDATA[<210> 21]]> <![CDATA[<211> 39]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Manual Sequence]]> <![ CDATA[<220>]]> <![CDATA[<223> Artificial Mutants]]> <![CDATA[<400> 21]]> Met Ser Asp Ser Asn Gln Gly Asn Asn Ala Ala Asn Tyr Ala Ala Tyr 1 5 10 15 Ser Ala Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 20 25 30 Gln Ala Tyr Asn Ala Gln Ala 35 <![CDATA[<210> 22]]> <![CDATA[<211 > 39]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Manual Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Manual Mutant]]> <![CDA TA[<400> 22]]> Met Ser Asp Ser Asn Gln Gly Asn Asn Ala Ala Asn Tyr Ala Ala Tyr 1 5 10 15 Ser Ala Asn Gly Asn Ala Ala Ala Gly Asn Asn Arg Tyr Gln Gly Tyr 20 25 30 Gln Ala Tyr Asn Ala Gln Ala 35 <![CDATA[<210> 23]]> <![CDATA[<211> 39]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Artificial Sequences]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutants]]> <![CDATA[<400> 23]]> Met Ala Asp Ala Asn Ala Gly Asn Asn Ala Ala Asn Tyr Ala Ala Tyr 1 5 10 15 Ala Ala Asn Gly Asn Ala Ala Ala Gly Asn Asn Arg Tyr Ala Gly Tyr 20 25 30 Ala Ala Tyr Asn Ala Ala Ala 35 <![CDATA[<210> 24]] > <![CDATA[<211> 39]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Manual Sequence]]> <![CDATA[<220>]]> < ![CDATA[<223> Artificial Mutants]]> <![CDATA[<400> 24]]> Met Ser Asp Ser Ala Gln Gly Ala Ala Gln Gln Ala Tyr Gln Gln Tyr 1 5 10 15 Ser Gln Ala Gly Ala Gln Gln Gln Gly Ala Ala Arg Tyr Gln Gly Tyr 20 25 30 Gln Ala Tyr Ala Ala Gln Ala 35 <![CDATA[<210> 25]]> <![CDATA[<211> 39]]> <![CDATA [<212> PRT]]> <![CDATA[<213> Artificial Sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Artificial Mutant]]> <![CDATA [<400> 25]]> M et Ala Asp Ala Ala Ala Gly Ala Ala Ala Ala Ala Tyr Ala Ala Tyr 1 5 10 15 Ala Ala Ala Gly Ala Ala Ala Ala Gly Ala Ala Arg Tyr Ala Gly Tyr 20 25 30 Ala Ala Tyr Ala Ala Ala Ala 35 <![ CDATA[<210> 26]]> <![CDATA[<211> 114]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA [<400> 26]]> Met Ser Asp Ser Asn Gln Gly Asn Asn Gln Gln Asn Tyr Gln Gln Tyr 1 5 10 15 Ser Gln Asn Gly Asn Gln Gln Gln Gly Asn Asn Arg Tyr Gln Gly Tyr 20 25 30 Gln Ala Tyr Asn Ala Gln Ala Gln Pro Ala Gly Gly Tyr Tyr Gln Asn 35 40 45 Tyr Gln Gly Tyr Ser Gly Tyr Gln Gln Gly Gly Tyr Gln Gln Tyr Asn 50 55 60 Pro Asp Ala Gly Tyr Gln Gln Gln Tyr Asn Pro Gln Gly Gly Tyr Gln 65 70 75 80 Gln Tyr Asn Pro Gln Gly Gly Tyr Gln Gln Gln Phe Asn Pro Gln Gly 85 90 95 Gly Arg Gly Asn Tyr Lys Asn Phe Asn Tyr Asn Asn Ser Leu Gln Gly 100 105 110 Tyr Gln <![CDATA[ <210> 27]]> <![CDATA[<211> 156]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA[< 400> 27]]> Met Pro Pro Lys Lys Phe Lys Asp Leu Asn Ser Phe Leu Asp Asp Gln 1 5 10 15 Pro Lys Asp Pro Asn Leu Val Ala Ser Pro Phe Gly Gly Tyr Phe Lys 20 25 30 Asn Pro Ala Ala Asp Ala Gly Ser Asn Asn Ala Ser Lys Lys Ser Ser 35 40 45 Tyr Gln Gln Gln Arg Asn Trp Lys Gln Gly Gly Asn Tyr Gln Gln Gly 50 55 60 Gly Tyr Gln Ser Tyr Asn Ser Asn Tyr Asn Asn Tyr Asn Asn Tyr Asn 65 70 75 80 Asn Tyr Asn Asn Tyr Asn Asn Tyr Asn Asn Tyr Asn Asn Tyr Asn Lys 85 90 95 Tyr Asn Gly Gln Gly Tyr Gln Lys Ser Thr Tyr Lys Gln Ser Ala Val 100 105 110 Thr Pro Asn Gln Ser Gly Thr Pro Thr Pro Ser Ala Ser Thr Thr Ser 115 120 125 Leu Thr Ser Leu Asn Glu Lys Leu Ser Asn Leu Glu Leu Thr Pro Ile 130 135 140 Ser Gln Phe Leu Ser Lys Ile Pro Glu Cys Gln Ser 145 150 155 <![CDATA[<210> 28]]> <![CDATA[<211> 91]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA[<400> 28]]> Met Met Asn Asn Asn Gly Asn Gln Val Ser Asn Leu Ser Asn Ala Leu 1 5 10 15 Arg Gln Val Asn Ile Gly Asn Arg Asn Ser Asn Thr Thr Asp Gln 20 25 30 Ser Asn Ile Asn Phe Glu Phe Ser Thr Gly Val Asn Asn Asn Asn Asn 35 40 45 Asn Asn Ser Ser Ser Asn Asn Asn Asn Val Gln Asn Asn Asn Ser Gly 50 55 60 Arg Asn Gly Ser Gln Asn Asn Asp Asn Glu Asn Asn Ile Lys Asn Thr 65 70 75 80 Leu Glu Gln His Arg Gln Gln Gln Gln Gln Ala Phe 85 90 <![CDATA[<210> 29]]> <![CDATA[<211> 152]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA[<400> 29]]> Met Val Glu Leu Glu Lys Arg Arg Arg Pro Pro Pro Gln Leu Gln His 1 5 10 15 Ser Pro Tyr Val Arg Asp Gln Ser Asn Ser Gln Gly Met Thr Lys Thr 20 25 30 Pro Glu Thr Ser Pro Pro Lys Arg Pro Met Gly Arg Ala Arg Ser Asn 35 40 45 Ser Arg Ser Ser Gly Ser Arg Ser Asn Val Asp Ile Asp Gln Tyr Thr 50 55 60 Ile Pro Pro Gly Leu Asp Leu Leu Pro Thr Ala Ser Ser Pro Pro Ser 65 70 75 80 Val His Gln Val Ser Gln Gln Gln Gln Leu Ser Pro Ile Leu Ala Asn 85 90 95 Lys Ile Arg Ser Pro Phe Glu Asn Gln Ser Gln Asp Gln Asn Asp Asn 100 105 110 Ser Ile Asp Pro Thr Pro Ala Gly Gln Val Thr Ile Pro Val Glu Ala 115 120 125 Val Ser Pro Pro Ala Leu Asp Glu Leu Ser Lys Phe Gln Asn Gly Ser 130 135 140 Thr Glu Thr Leu Phe Arg Thr Gly 145 150 <![ CDATA[<210> 30]]> <![CDATA[<211> 191]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA [<400> 30]]> Met Ser His Ser Asp Tyr Phe Asn Tyr Lys Pro Tyr Gly Asp Ser Thr 1 5 10 15 Glu Lys Pro Ser Ser Ser Lys Met Arg Gln Ser Ser Ser Ser Ser Ser 20 25 30 Ser Arg Leu Arg Ser Glu Ser Leu Gly Arg Asn Ser Asn Thr Thr Gln 35 40 45 Ala Arg Val Ala Ser Ser Pro Ile Ser Pro Gly Leu His Ser Thr Gln 50 55 60 Tyr Phe Arg Ser Pro Asn Ala Val Tyr Ser Pro Gly Glu Ser Pro Leu 65 70 75 80 Asn Thr Val Gln Leu Phe Asn Arg Leu Pro Gly Ile Pro Gln Gly Gln 85 90 95 Phe Phe His Gln Asn Ala Ile Ser Gly Ser Ser Ser Ser Ser Ala Arg 100 105 110 Ser Ser Arg Arg Pro Ser Asn Ile Gly Leu Pro Leu Pro Lys Asn Pro 115 120 125 Gln Gln Ser Leu Pro Lys Leu Ser Thr Gln Pro Val Pro Val His Lys 130 135 140 Lys Val Glu Ala Ser Lys Thr Glu Ser Glu Ile Ile Lys Lys Pro Ala 145 150 155 160 Pro Val Asn Ser Asn Gln Asp Pro Leu Leu Thr Thr Pro Thr Leu Val 165 170 175 Ile Ser Pro Glu Leu Ala Ser Leu Asn Thr Thr Asn Thr Ser Ile 180 185 190 <![CDATA[<210> 31]]> <![CDATA[<211> 69] ]> <![CDATA[<212> PRT]]> <![CDATA[<213> Saccharomyces cerevisiae]]> <![CDATA[<400> 31]]> Met Ala Gly Phe Ser Phe Ala Lys Lys Phe Thr His Lys Lys His Gly 1 5 10 15 Lys Thr Pro Ser Asp Ala Ser Ile Ser Asp Gln Ser Arg Glu Ala Ser 20 25 30 Leu Ser Thr Pro Asn Glu Lys Phe Phe Thr Lys Gln Glu Thr Pro 35 40 45 Gln Lys Gly Arg Gln Phe Ser Gln Gly Tyr His Ser Asn Val Asn Lys 50 55 60 Thr Ser Ser Pro Pro 65
      

Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0001

Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0002

Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0003

Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0004

Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0005

Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0006

Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0007

Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0008

Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0009

Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0010

Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0011

Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0012

Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0013

Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0014

Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0015

Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0016

Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0017

Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0018

Claims (19)

一種用於增強宿主細胞中感興趣多肽之表達及/或抑制其降解的方法,該方法包含以下步驟:構築表達載體,該表達載體包含編碼內在無序區(IDR)之聚核苷酸及編碼該感興趣多肽之聚核苷酸;將該表達載體轉形至該宿主細胞中;及在允許表達該感興趣多肽之條件下培養該宿主細胞;其中S、T及Q之含量佔該IDR之總胺基酸含量的總體百分比高於10%。A method for enhancing the expression of a polypeptide of interest in a host cell and/or inhibiting its degradation, the method comprising the steps of: constructing an expression vector comprising a polynucleotide encoding an intrinsic disordered region (IDR) and encoding The polynucleotide of the polypeptide of interest; transforming the expression vector into the host cell; and culturing the host cell under conditions that allow expression of the polypeptide of interest; wherein the content of S, T and Q accounts for the IDR The overall percentage of total amino acid content is higher than 10%. 如請求項1之方法,其中該IDR包含一或多個S/T-Q叢集域(SCD)。The method of claim 1, wherein the IDR includes one or more S/T-Q cluster domains (SCDs). 一種載體,其包含可操作地連接至編碼感興趣多肽之多肽的IDR,其中S、T及Q之含量佔該IDR之總胺基酸含量的總體百分比高於10%。A vector comprising an IDR operably linked to a polypeptide encoding a polypeptide of interest, wherein the content of S, T and Q is greater than 10% of the total amino acid content of the IDR. 如請求項3之載體,其中該IDR包含一或多個SCD。The carrier of claim 3, wherein the IDR comprises one or more SCDs. 一種包含如請求項3之載體的宿主細胞。A host cell comprising the vector of claim 3. 一種包含如請求項4之載體的宿主細胞。A host cell comprising the vector of claim 4. 如請求項1或2之方法、如請求項3或4之載體或如請求項5或6之宿主細胞,其中該等SCD或該IDR與該感興趣多肽之N末端融合。The method of claim 1 or 2, the vector of claim 3 or 4, or the host cell of claim 5 or 6, wherein the SCD or the IDR is fused to the N-terminus of the polypeptide of interest. 如請求項1或2之方法、如請求項3或4之載體或如請求項5或6之宿主細胞,其中該等SCD或該IDR係用作增強該感興趣多肽之表達及/或抑制其降解的融合標籤。The method of claim 1 or 2, the vector of claim 3 or 4, or the host cell of claim 5 or 6, wherein the SCDs or the IDRs are used to enhance the expression and/or inhibit the polypeptide of interest Degraded fusion tags. 如請求項1或2之方法、如請求項3或4之載體或如請求項5或6之宿主細胞,其中該感興趣多肽係異源蛋白質。The method of claim 1 or 2, the vector of claim 3 or 4, or the host cell of claim 5 or 6, wherein the polypeptide of interest is a heterologous protein. 如請求項1或2之方法、如請求項3或4之載體或如請求項5或6之宿主細胞,其中該SCD或該IDR經磷酸化。The method of claim 1 or 2, the vector of claim 3 or 4, or the host cell of claim 5 or 6, wherein the SCD or the IDR is phosphorylated. 如請求項1或2之方法、如請求項3或4之載體或如請求項5或6之宿主細胞,其中該S、T及Q之含量佔該IDR之總胺基酸含量的總體百分比高於15%。The method of claim 1 or 2, the vector of claim 3 or 4, or the host cell of claim 5 or 6, wherein the content of S, T and Q as a percentage of the total amino acid content of the IDR is high at 15%. 如請求項1或2之方法、如請求項3或4之載體或如請求項5或6之宿主細胞,其中該S、T及Q之含量佔該IDR之總胺基酸含量的總體百分比高於20%。The method of claim 1 or 2, the vector of claim 3 or 4, or the host cell of claim 5 or 6, wherein the content of S, T and Q as a percentage of the total amino acid content of the IDR is high at 20%. 如請求項1或2之方法、如請求項3或4之載體或如請求項5或6之宿主細胞,其中該S、T及Q之含量佔該IDR之總胺基酸含量的總體百分比高於30%。The method of claim 1 or 2, the vector of claim 3 or 4, or the host cell of claim 5 or 6, wherein the content of S, T and Q as a percentage of the total amino acid content of the IDR is high at 30%. 如請求項1或2之方法、如請求項3或4之載體或如請求項5之宿主細胞,其中該S、T及Q之含量佔該IDR之總胺基酸含量的總體百分比在約30%至約40%範圍內。The method of claim 1 or 2, the vector of claim 3 or 4, or the host cell of claim 5, wherein the content of S, T and Q as a percentage of the total amino acid content of the IDR is about 30% % to about 40%. 如請求項1或2之方法、如請求項3或4之載體或如請求項5之宿主細胞,其中該IDR中之一或多個S、T或Q殘基經具有疏水性側鏈之胺基酸、具有帶負電側鏈之胺基酸或經S、T及Q中之另一個胺基酸置換。The method of claim 1 or 2, the vector of claim 3 or 4, or the host cell of claim 5, wherein one or more S, T or Q residues in the IDR are via an amine having a hydrophobic side chain base acid, amino acid with negatively charged side chain or replaced by another amino acid of S, T and Q. 如請求項1或2之方法、如請求項3或4之載體或如請求項5或6之宿主細胞,其中該IDR或該SCD係選自由SEQ ID No:1至31組成之群。The method of claim 1 or 2, the vector of claim 3 or 4 or the host cell of claim 5 or 6, wherein the IDR or the SCD is selected from the group consisting of SEQ ID Nos: 1 to 31. 如請求項1或2之方法或如請求項5或6之宿主細胞,其中該宿主細胞係原核細胞。The method of claim 1 or 2 or the host cell of claim 5 or 6, wherein the host cell is a prokaryotic cell. 如請求項1或2之方法或如請求項5或6之宿主細胞,其中該宿主細胞係哺乳動物細胞、酵母細胞、真菌細胞、昆蟲細胞、植物細胞或原生動物細胞。The method of claim 1 or 2 or the host cell of claim 5 or 6, wherein the host cell is a mammalian cell, a yeast cell, a fungal cell, an insect cell, a plant cell or a protozoan cell. 如請求項1或2之方法或如請求項5或6之宿主細胞,其中該宿主細胞係釀酒酵母( Saccharomyces cerevisiae)。 The method of claim 1 or 2 or the host cell of claim 5 or 6, wherein the host cell is Saccharomyces cerevisiae .
TW110120541A 2020-06-09 2021-06-07 Methods and vectors for enhancing expression and/or inhibiting degradation of protein TW202214850A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063036704P 2020-06-09 2020-06-09
US63/036,704 2020-06-09

Publications (1)

Publication Number Publication Date
TW202214850A true TW202214850A (en) 2022-04-16

Family

ID=78846476

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120541A TW202214850A (en) 2020-06-09 2021-06-07 Methods and vectors for enhancing expression and/or inhibiting degradation of protein

Country Status (2)

Country Link
TW (1) TW202214850A (en)
WO (1) WO2021252391A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050272130A1 (en) * 2004-03-17 2005-12-08 Chin-Yen King Methods and compositions relating to prion-only transmission of yeast strains
EP3331557B1 (en) * 2015-08-04 2021-04-07 Duke University Genetically encoded intrinsically disordered stealth polymers for delivery and methods of using same
DE102016005169B3 (en) * 2016-04-29 2017-07-13 Forschungszentrum Jülich GmbH Method of identifying inhibitors of primary nucleation of amyloid-beta aggregation

Also Published As

Publication number Publication date
WO2021252391A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
Tang et al. EH domain proteins Pan1p and End3p are components of a complex that plays a dual role in organization of the cortical actin cytoskeleton and endocytosis in Saccharomyces cerevisiae
Hellmuth et al. Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA
Nedea et al. The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes
Kremerskothen et al. Characterization of KIBRA, a novel WW domain-containing protein
Cairns et al. TFG3/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9
Chao et al. Polarization of the endoplasmic reticulum by ER-septin tethering
Adams et al. Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae
Méthot et al. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3
Kasten et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14
Tang et al. The EH-domain-containing protein Pan1 is required for normal organization of the actin cytoskeleton in Saccharomyces cerevisiae
Yang et al. Identification of a regulatory subcomplex in the guanine nucleotide exchange factor eIF2B that mediates inhibition by phosphorylated eIF2
KR101915740B1 (en) Novel Peptide for Enhancing Expression Efficiency and Fusion Protein Including the Same
Radcliffe et al. Functional dissection and hierarchy of tubulin-folding cofactor homologues in fission yeast
Kasten et al. Identification of the Saccharomyces cerevisiae genes STB1–STB5 encoding Sin3p binding proteins
Galindo et al. PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32
Ritz et al. The prion-like domain in the exomer-dependent cargo Pin2 serves as a trans-Golgi retention motif
Prajapati et al. Microtubule‐associated proteins, B ik1 and B im1, are required for faithful partitioning of the endogenous 2 micron plasmids in budding yeast
JP2001516587A (en) G protein chimera
McGuire et al. Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery
Chen et al. Srv2 is a pro-fission factor that modulates yeast mitochondrial morphology and respiration by regulating actin assembly
Woo et al. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks
TW202214850A (en) Methods and vectors for enhancing expression and/or inhibiting degradation of protein
Delgehyr et al. Dissecting the involvement of formins in Bud6p-mediated cortical capture of microtubules in S. cerevisiae
Mort-Bontemps-Soret et al. Physical interaction of Cdc28 with Cdc37 in Saccharomyces cerevisiae
Palecek et al. Rpg1p/Tif32p, a subunit of translation initiation factor 3, interacts with actin-associated protein Sla2p