TW202211287A - High throughput multi-beam charged particle inspection system with dynamic control - Google Patents

High throughput multi-beam charged particle inspection system with dynamic control Download PDF

Info

Publication number
TW202211287A
TW202211287A TW110115043A TW110115043A TW202211287A TW 202211287 A TW202211287 A TW 202211287A TW 110115043 A TW110115043 A TW 110115043A TW 110115043 A TW110115043 A TW 110115043A TW 202211287 A TW202211287 A TW 202211287A
Authority
TW
Taiwan
Prior art keywords
charged particle
image
time interval
stage
wafer
Prior art date
Application number
TW110115043A
Other languages
Chinese (zh)
Other versions
TWI787794B (en
Inventor
迪瑞克 列德雷
尤瑞奇 比爾
安卓亞斯 阿道夫
尼可拉斯 高夫曼
英格 穆勒
麥可 班克
Original Assignee
德商卡爾蔡司多重掃描電子顯微鏡有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司多重掃描電子顯微鏡有限公司 filed Critical 德商卡爾蔡司多重掃描電子顯微鏡有限公司
Publication of TW202211287A publication Critical patent/TW202211287A/en
Application granted granted Critical
Publication of TWI787794B publication Critical patent/TWI787794B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20278Motorised movement
    • H01J2237/20285Motorised movement computer-controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20292Means for position and/or orientation registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/248Components associated with the control of the tube
    • H01J2237/2485Electric or electronic means
    • H01J2237/2487Electric or electronic means using digital signal processors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31761Patterning strategy
    • H01J2237/31767Step and repeat

Abstract

A multi-beam charged particle inspection system and a method of operating a multi-beam charged particle inspection system for wafer inspection with high throughput and with high resolution and high reliability is provided. The method and the multi-beam charged particle beam inspection system are configured to extract from a plurality of sensor data a set of control signals to control the multi-beam charged particle beam inspection system and thereby maintain the imaging specifications including a movement of a wafer stage during the wafer inspection task.

Description

具有動態控制的高通量多重射束帶電粒子檢測系統High-throughput multiple-beam charged particle detection system with dynamic control

本發明係關於一種多重射束帶電粒子檢測系統、及一種操作多重射束帶電粒子檢測系統之方法。特別是,本發明係關於一種用於具有高通量、高解析度和高可靠度的晶圓檢測之多重射束帶電粒子射束檢測系統及一相關方法和一電腦程式產品。該方法和該多重射束帶電粒子射束檢測系統構造成從複數個感測器資料中擷取一組控制信號,以控制該多重射束帶電粒子射束檢測系統。The present invention relates to a multiple beam charged particle detection system and a method of operating the multiple beam charged particle detection system. In particular, the present invention relates to a multiple beam charged particle beam inspection system for wafer inspection with high throughput, high resolution and high reliability, and an associated method and a computer program product. The method and the multiple beam charged particle beam detection system are configured to extract a set of control signals from a plurality of sensor data to control the multiple beam charged particle beam detection system.

隨著諸如半導體器件之類越來越小並且更複雜的微結構不斷發展,需要進一步開發和最佳化平面製造技術,及用於小尺寸微結構的製造和檢測之檢測系統。半導體器件的開發和製造需要例如測試晶圓的設計驗證,而平面製造技術涉及用於可靠高通量製造的處理最佳化。另外,最近需要對半導體晶圓進行分析,以用於半導體器件的逆向工程和客製化、個性化設置。因此,需要用於以高精度試驗晶圓上微結構的高通量檢測工具。As smaller and more complex microstructures such as semiconductor devices continue to evolve, there is a need to further develop and optimize planar fabrication techniques, as well as inspection systems for the fabrication and inspection of small-scale microstructures. The development and manufacture of semiconductor devices requires, for example, design verification of test wafers, while planar manufacturing techniques involve process optimization for reliable high-throughput manufacturing. Additionally, there has recently been a need for analysis of semiconductor wafers for reverse engineering and customization and personalization of semiconductor devices. Therefore, there is a need for high-throughput inspection tools for testing on-wafer microstructures with high precision.

用於製造半導體器件的典型矽晶圓直徑最大為12英吋(300毫米)。每個晶圓劃分成30至60個重複區域(「晶粒(Die)」),最大面積約為800平方毫米。半導體包括通過平面整合技術在晶圓表面上分層製造的多個半導體結構。由於所涉及的製程,半導體晶圓通常具有平坦表面。積體半導體結構的部件尺寸數個µm範圍內向下延伸到5 nm的關鍵尺寸(CD),並且在不久的將來甚至會逐漸減小特徵尺寸,例如3 nm以下(例如2 nm)的部件尺寸或關鍵尺寸(CD),或者甚至低於1 nm。利用前述小結構尺寸,必須在短時間內於很大區域中識別出關鍵尺寸的尺寸缺陷。Typical silicon wafers used to manufacture semiconductor devices are up to 12 inches (300 mm) in diameter. Each wafer is divided into 30 to 60 repeating regions (“Dies”), with a maximum area of approximately 800 square millimeters. Semiconductors include multiple semiconductor structures fabricated in layers on the surface of a wafer by planar integration techniques. Due to the processes involved, semiconductor wafers typically have flat surfaces. The feature size of integrated semiconductor structures extends down to a critical dimension (CD) of 5 nm in the several µm range, and will even gradually decrease feature size in the near future, such as sub-3 nm (e.g. 2 nm) feature size or Critical dimension (CD), or even below 1 nm. With the aforementioned small feature sizes, critical dimension dimensional defects must be identified in a short time over a large area.

因此,本發明目的為提供一種帶電粒子系統和帶電粒子系統的操作方法,其允許在開發或製造過程中以至少關鍵尺寸的解析度對積體半導體部件進行高通量檢測,或用於半導體器件的逆向工程。另可擷取晶圓上一組特定位置的高解析度影像,例如僅用於所謂的處理控制監控PCM或關鍵區域。Accordingly, it is an object of the present invention to provide a charged particle system and a method of operating a charged particle system that allow high-throughput inspection of integrated semiconductor components with at least critical dimension resolution during development or manufacturing, or for use in semiconductor devices reverse engineering. It is also possible to capture a set of high-resolution images of specific locations on the wafer, for example only for so-called process control monitoring PCMs or critical areas.

帶電粒子顯微鏡CPM領域的最新發展是MSEM,一種多重射束掃描電子顯微鏡,例如在美國專利案US20190355545或美國專利案US20190355544揭露一種多重射束帶電粒子射束顯微鏡。在諸如多重射束電子顯微鏡或MSEM的多重射束帶電粒子顯微鏡中,樣品由包括例如4至高達10000個電子射束(當成一次輻射)的電子子射束陣列所照射,藉使每一電子射束與其下一相鄰電子射束之間分隔距離為1 – 200微米。例如,MSEM具有配置成六邊形陣列的約100個分隔電子射束或子射束,其中電子子射束分開約10 µm的距離。複數個一次帶電粒子子射束通過共用物鏡聚焦在受研究樣品的表面上,例如固定在晶圓卡盤上的半導體晶圓,該卡盤安裝在可移動平台上。在用一次帶電粒子子射束照射晶圓表面期間,相互作用產物,例如二次電子,起源於由一次帶電粒子子射束焦點形成的多個交點,而相互作用產物的數量和能量則取決於晶圓表面的材料成分和形貌。相互作用產物形成複數個二次帶電粒子子射束,其由共用物鏡收集並通過多重射束檢測系統的投影成像系統引導到配置於偵測器平面上的偵測器上。該偵測器包括多個偵測區域,每一區域包括多個偵測像素,並且偵測複數個二次帶電粒子子射束中每一者的強度分佈,並且獲得例如100 µm × 100 µm的影像斑塊。The latest development in the field of charged particle microscopy CPM is MSEM, a multiple beam scanning electron microscope, such as disclosed in US Patent No. US20190355545 or US Patent No. US20190355544. In a multiple beam charged particle microscope, such as a multiple beam electron microscope or MSEM, the sample is irradiated by an array of electron sub-beams comprising, for example, 4 up to 10,000 electron beams (as primary radiation), with each electron beam being The beam is separated from its next adjacent electron beam by a distance of 1 - 200 microns. For example, an MSEM has about 100 separate electron beams or sub-beams arranged in a hexagonal array, where the electron sub-beams are separated by a distance of about 10 μm. A plurality of primary charged particle sub-beams are focused by a common objective lens on the surface of a sample under study, such as a semiconductor wafer held on a wafer chuck, which is mounted on a movable stage. During irradiation of the wafer surface with a beam of primary charged particle beams, interaction products, such as secondary electrons, originate from multiple intersections formed by the focal point of the beam of primary charged particles, and the number and energy of the interaction products depend on The material composition and morphology of the wafer surface. The interaction products form a plurality of secondary charged particle sub-beams, which are collected by a common objective and directed onto detectors disposed on the detector plane by the projection imaging system of the multiple beam detection system. The detector includes a plurality of detection regions, each region includes a plurality of detection pixels, and detects the intensity distribution of each of the plurality of secondary charged particle sub-beams, and obtains, for example, 100 µm × 100 µm Image patches.

先前技術的多重射束帶電粒子顯微鏡包括一系列靜電元件和磁性元件。至少一些靜電元件和磁性元件可調整,以調整多個二次帶電粒子射束的焦點位置和像散。例如,美國專利案US10535494提出如果偵測到的二次帶電粒子子射束的焦點強度分佈偏離預定強度分佈,則重新調整帶電粒子顯微鏡。如果偵測到的強度分佈符合預定強度分佈,則達成調整。二次帶電粒子子射束的強度分佈之全局位移或變形允許得出關於地形效應、樣品幾何形狀或傾斜或樣品充電效應之結論。美國專利案US9336982揭露一種帶有將二次帶電粒子轉換為光的閃爍器板的二次帶電粒子偵測器。為了減少閃爍器板的轉換效率損失,複數個二次帶電粒子子射束的焦點與閃爍器板的相對橫向位置可變,例如通過帶電粒子射束偏轉器或用於閃爍器板橫向位移的致動器。Prior art multiple beam charged particle microscopes include a series of electrostatic and magnetic elements. At least some of the electrostatic and magnetic elements are adjustable to adjust the focal position and astigmatism of the plurality of secondary charged particle beams. For example, US Patent No. 10535494 proposes to readjust the charged particle microscope if the focal intensity distribution of the detected secondary charged particle beamlets deviates from a predetermined intensity distribution. An adjustment is achieved if the detected intensity distribution conforms to the predetermined intensity distribution. Global displacement or deformation of the intensity distribution of the secondary charged particle sub-beam allows conclusions to be drawn about topographic effects, sample geometry or tilt, or sample charging effects. US Patent No. 9,336,982 discloses a secondary charged particle detector with a scintillator plate that converts secondary charged particles into light. In order to reduce the loss of conversion efficiency of the scintillator plate, the relative lateral position of the focal points of the plurality of secondary charged particle beamlets to the scintillator plate can be varied, for example by a charged particle beam deflector or induction for lateral displacement of the scintillator plate. actuator.

先前技術的多重射束帶電粒子顯微鏡包括一次或二次帶電粒子子射束之至少一交叉平面,先前技術的多重射束帶電粒子顯微鏡包括便於調整的偵測系統和方法。Prior art multiple beam charged particle microscopes include at least one intersecting plane of primary or secondary charged particle sub-beams, and prior art multiple beam charged particle microscopes include easily adjustable detection systems and methods.

通常希望改變帶電粒子顯微鏡的成像設定。美國專利案US9799485揭露一種將多重射束帶電粒子顯微鏡的影像擷取設定從第一成像設定改變為不同的第二成像設定之方法。It is often desirable to change the imaging settings of a charged particle microscope. US Patent No. 9,799,485 discloses a method of changing the image capture setting of a multiple beam charged particle microscope from a first imaging setting to a second, different imaging setting.

然而,在用於晶圓檢測的帶電粒子顯微鏡中,期望保持成像條件穩定,從而能夠以高可靠性和高重複性進行成像。通量取決於幾個參數,例如載台的速度和新測量點的重新對準,以及每個擷取時間本身的測量面積,後者由停留時間、解析度和子射束數決定。在擷取兩個影像斑塊之間,晶圓由晶圓載台橫向移到下一相關點。用於影像擷取的載台移動和精確對準下一位置為多光束檢測系統通量之限制因素之一。在高通量的影像擷取期間,不需要的載台移動或漂移會降低影像解析度。在高通量的影像擷取期間,預定的一次和二次帶電粒子射束路徑的漂移和偏差對影像品質和測量結果的可靠性具有負面影響。例如,複數個一次帶電粒子子射束可能從平面區域段內的光柵組態惡化,或者多重射束帶電粒子檢測系統的解析度可能改變。However, in charged particle microscopes for wafer inspection, it is desirable to keep imaging conditions stable so that imaging can be performed with high reliability and repeatability. The flux depends on several parameters, such as the speed of the stage and the realignment of the new measurement point, as well as the measurement area per acquisition time itself, which is determined by dwell time, resolution and number of beamlets. Between capturing two image patches, the wafer is moved laterally from the wafer stage to the next relevant point. Stage movement and precise alignment of the next position for image capture is one of the limiting factors for the throughput of multi-beam detection systems. During high-throughput image acquisition, unwanted stage movement or drift can degrade image resolution. During high-throughput image acquisition, drift and deviation of the predetermined primary and secondary charged particle beam paths have a negative impact on image quality and reliability of measurement results. For example, the plurality of primary charged particle sub-beams may deteriorate from the grating configuration within the planar area segment, or the resolution of the multiple beam charged particle detection system may change.

單束電子顯微鏡通常使用所謂的束誤差函數(BEF),以改善電子射束的定位精度以及載物台移動。為此,BEF反饋來自將樣品固定到光束偏轉系統上的載台之(位置)信號。專利案WO2020/136094 A2中給出一最近的範例。然而,多重射束帶電粒子顯微鏡更複雜,單束電子顯微鏡的簡單方法並不足夠。例如,先前技術無法補償複數個一次帶電粒子子射束的複數個焦點相對於晶圓載台之旋轉。此外,多重射束帶電粒子顯微鏡具有用於將複數個二次電子子射束成像到偵測器上的成像投影系統,並且必須保持對複數個二次電子的精確成像。此外,還必須分離並考慮二次光束路徑的像差。Single-beam electron microscopes typically use a so-called beam error function (BEF) to improve the positioning accuracy of the electron beam as well as stage movement. For this purpose, the BEF feeds back the (position) signal from the stage that fixes the sample to the beam deflection system. A recent example is given in patent case WO2020/136094 A2. However, multiple beam charged particle microscopy is more complex and the simple methods of single beam electron microscopy are not sufficient. For example, the prior art cannot compensate for the rotation of the focal points of the primary charged particle beamlets relative to the wafer stage. Furthermore, multiple beam charged particle microscopes have an imaging projection system for imaging a plurality of secondary electron sub-beams onto a detector and must maintain accurate imaging of the plurality of secondary electrons. In addition, the aberrations of the secondary beam path must be separated and taken into account.

美國專利案US9530613揭露一種多重射束帶電粒子顯微鏡的聚焦控制方法。複數個帶電粒子子射束的子集以散光形式成形,並用於偵測焦點位置的偏差。根據散光形狀的子射束之相應橢圓形狀產生誤差信號,並且調整樣品載台的垂直位置或改變通過帶電粒子顯微鏡中一或多個透鏡的電流。藉此,最佳化複數個帶電粒子子射束的焦點。該方法與掃描電子顯微鏡的正常操作並行運作。然而,該方法僅提供用於聚焦控制的反饋迴路,並且既不提供預測控制也不考慮來自載台位置感測器的感測器信號。US Patent No. US9530613 discloses a focus control method of a multiple beam charged particle microscope. Subsets of the plurality of charged particle beamlets are shaped as astigmatism and used to detect deviations in focus position. An error signal is generated based on the corresponding elliptical shape of the astigmatic shaped sub-beams and adjusts the vertical position of the sample stage or changes the current through one or more lenses in the charged particle microscope. Thereby, the focal points of the plurality of charged particle sub-beams are optimized. The method operates in parallel with the normal operation of a scanning electron microscope. However, this approach only provides a feedback loop for focus control and neither provides predictive control nor takes into account the sensor signal from the stage position sensor.

美國專利案US20190355544或US20190355545揭露一種多重射束帶電粒子顯微鏡,其具有可調節的投影系統以補償掃描期間樣品的帶電。因此,投影系統配置有快速靜電元件,以保持二次帶電粒子子射束從樣品到偵測器的正確成像。兩參考文獻使用影像偵測器來分析二次子射束的成像品質,並補償由於二次電子射束路徑中的樣品充電而導致的劣化。兩參考文獻描述用於控制二次電子射束路徑的方法和裝置,二次電子射束從樣品表面開始。然而,本發明的問題在於,在一次射束路徑內也存在誤差源,其為造成基材表面上的複數個一次帶電粒子子射束的光斑位置和光斑形狀惡化之原因。此外,額外的誤差源可能是定位誤差或基材載台的移動,導致所獲得的物體數位影像出現像差,而沒有任何主光束路徑惡化。這些額外的像差和誤差可在不同的時間比例上變化,例如緩慢變化的漂移,例如由於熱漂移。另一範例為快速變化的動態像差,例如由於聲音振動。這些誤差不能僅通過輔助光束路徑來補償。本發明的問題在於提供一種多重射束帶電粒子檢測系統,其具有能夠以高通量和高可靠性,實現高精度和高解析度影像擷取之器件。本發明的問題在於提供一種具有快速載台的多重射束帶電粒子檢測系統,其具有將複數個一次帶電粒子子射束的橫向位置和焦點保持在預定光柵配置內的預定位置精度之內,即使減少載台精確對準的時間。本發明的一個問題在於提供一種多重射束帶電粒子檢測系統,其具有以影像斑塊順序的高通量和高可靠性,在影像擷取期間保持高解析度和高影像對比度之器件。本發明的一個問題在於提供一種多重射束帶電粒子檢測系統,其具有具有高通量和高可靠性,具有將晶圓從第一檢測點移到第二檢測點的載台。本發明的一個問題在於提供一種多重射束帶電粒子檢測系統,其具有補償預定一次和二次帶電粒子射束路徑的漂移以及載台移動,例如寄生載台移動之器件。US patent applications US20190355544 or US20190355545 disclose a multiple beam charged particle microscope with an adjustable projection system to compensate for the charging of the sample during scanning. Therefore, the projection system is configured with fast electrostatic elements to maintain proper imaging of the secondary charged particle beamlets from the sample to the detector. Both references use an image detector to analyze the imaging quality of the secondary electron beam and compensate for degradation due to sample charging in the secondary electron beam path. Both references describe methods and apparatus for controlling the path of a secondary electron beam, starting from the surface of the sample. However, the problem with the present invention is that there is also a source of error within the primary beam path, which is responsible for the deterioration of the spot position and spot shape of the plurality of primary charged particle sub-beams on the surface of the substrate. Furthermore, additional error sources may be positioning errors or movement of the substrate stage, resulting in aberrations in the obtained digital image of the object without any main beam path degradation. These additional aberrations and errors may vary over different time scales, such as slowly varying drift, eg due to thermal drift. Another example is rapidly changing dynamic aberrations, eg due to sound vibrations. These errors cannot be compensated by auxiliary beam paths alone. The problem of the present invention is to provide a multiple beam charged particle detection system, which has a device capable of realizing high-precision and high-resolution image capture with high throughput and high reliability. The problem of the present invention is to provide a multiple beam charged particle detection system with a fast stage, which has the ability to maintain the lateral position and focus of a plurality of primary charged particle sub-beams within a predetermined positional accuracy within a predetermined grating configuration, even if Reduce time for precise stage alignment. It is a problem of the present invention to provide a multiple beam charged particle detection system with high throughput and high reliability in image patch order, maintaining high resolution and high image contrast during image capture. One problem of the present invention is to provide a multiple beam charged particle detection system with high throughput and high reliability, with a stage for moving wafers from a first inspection point to a second inspection point. It is a problem of the present invention to provide a multiple beam charged particle detection system with means to compensate for drift in predetermined primary and secondary charged particle beam paths and for stage movement, eg parasitic stage movement.

載台的加速、減速和振鈴等載台移動為多重射束檢測系統通量的限制因素之一。載台在短時間內加速和減速通常需要複雜且昂貴的載台。本發明的問題在於提供一種多重射束帶電粒子檢測系統,其具有能夠用降低技術複雜度和降低成本的載台,以高通量和高可靠性,實現高精度和高解析度影像擷取之器件。Stage movement, such as stage acceleration, deceleration, and ringing, is one of the limiting factors for the throughput of multiple beam detection systems. Accelerating and decelerating a stage in a short period of time often requires a complex and expensive stage. The problem of the present invention is to provide a multi-beam charged particle detection system, which has a stage capable of achieving high-throughput and high-reliability, high-precision and high-resolution image capture with a stage that reduces technical complexity and cost. device.

一般而言,會希望提供一種多重射束帶電粒子檢測系統,其用於以高通量和高可靠性,實現高精度和高解析度影像擷取之器件來進行晶圓檢測。In general, it would be desirable to provide a multiple beam charged particle inspection system for wafer inspection with high throughput and high reliability for devices that enable high precision and high resolution image capture.

本發明的具體實施例通過包括一組補償器的多重射束帶電粒子顯微鏡解決本發明的目的,該補償器用於在影像斑塊的影像擷取期間補償誤差振幅之變化。多重射束帶電粒子顯微鏡包括複數個偵測器或感測器,以提供複數個感測器資料並從複數個感測器資料中擷取一組預定義的正常化誤差向量之一組實際誤差振幅。通過推導出正常化誤差向量,可分離來自不同誤差源的貢獻。不同的誤差源包括在一次帶電粒子射束路徑上、在二次電子射束路徑上和在載台位置之內的誤差源。多重射束帶電粒子顯微鏡包括控制單元,該單元推導出驅動信號,用於驅動該組補償器補償與一組成像像差對應的一組誤差振幅,從而在成像斑塊數位影像的影像擷取期間,讓實際誤差振幅保持低於一預定臨界。從代表來自不同誤差源貢獻的正常化誤差向量,推導出一組補償器的驅動信號,其包括一次帶電粒子射束路徑內的第一補償器和二次電子射束路徑內的第二補償器之至少一者。另一補償器可包括所獲得數位影像的計算影像後處理,或晶圓載台內的補償器。Embodiments of the present invention address the objects of the present invention by a multiple beam charged particle microscope comprising a set of compensators for compensating for variations in error amplitude during image acquisition of image patches. The multiple beam charged particle microscope includes a plurality of detectors or sensors to provide a plurality of sensor data and extract a set of actual errors from a set of predefined normalized error vectors from the plurality of sensor data amplitude. Contributions from different error sources can be separated by deriving a normalized error vector. Different sources of error include error sources on the primary charged particle beam path, on the secondary electron beam path, and within the stage position. The multiple beam charged particle microscope includes a control unit that derives a drive signal for driving the set of compensators to compensate for a set of error amplitudes corresponding to a set of imaging aberrations so that during image acquisition of the digital image of the imaging plaque , keeping the actual error amplitude below a predetermined threshold. From normalized error vectors representing contributions from different error sources, the drive signals for a set of compensators are derived, including a first compensator in the path of the primary charged particle beam and a second compensator in the path of the secondary electron beam at least one of them. Another compensator may include computational image post-processing of the acquired digital image, or a compensator within the wafer stage.

在一範例中,多重射束帶電粒子顯微鏡構造成預測該組誤差振幅中至少一誤差振幅的變化,並相應提供對應的驅動信號給該組補償器。在一範例中,複數個感測器資料包括來自載台位置感測器或載台加速度感測器的資料。在一範例中,該組補償器包括多重射束帶電粒子顯微鏡的第一和第二偏轉系統或偏轉掃描器。在另一範例中,該組補償器包括多重射束帶電粒子顯微鏡的偵測單元內之第三偏轉系統。在一範例中,該組補償器更包括至少一快速靜電補償器或一個多孔徑(multi-aperture)主動陣列元件。In one example, the multiple beam charged particle microscope is configured to predict changes in at least one error amplitude of the set of error amplitudes, and provide corresponding drive signals to the set of compensators accordingly. In one example, the plurality of sensor data includes data from a stage position sensor or a stage acceleration sensor. In one example, the set of compensators includes first and second deflection systems or deflection scanners of a multiple beam charged particle microscope. In another example, the set of compensators includes a third deflection system within the detection unit of the multiple beam charged particle microscope. In one example, the set of compensators further includes at least one fast electrostatic compensator or one multi-aperture active array element.

根據本發明的具體實施例,多重射束帶電粒子檢測系統配置有以高通量和高可靠性,實現高精度和高解析度影像擷取之器件。提供晶圓載台和控制該晶圓載台位置的器件,其中該晶圓載台構造成維持諸如晶圓這類樣品,並且可往x方向、y方向或z方向之至少一者移動。載台通常包括載台運動控制器,該控制器包括多個可獨立致動或控制的馬達或致動器。馬達或致動器可包括壓電馬達、壓電致動器或超音波壓電馬達之至少一者。其更包括構造成確定載台橫向和垂直位移或旋轉的位置感測系統,位置感測系統使用雷射干涉儀、電容感測器、共焦感測器陣列、光柵干涉儀或其組合之任一者。According to specific embodiments of the present invention, the multiple beam charged particle detection system is equipped with devices that achieve high-precision and high-resolution image capture with high throughput and high reliability. A wafer stage and means for controlling the position of the wafer stage are provided, wherein the wafer stage is configured to hold a sample, such as a wafer, and is movable in at least one of an x-direction, a y-direction, or a z-direction. The carrier typically includes a carrier motion controller that includes a plurality of motors or actuators that can be actuated or controlled independently. The motor or actuator may include at least one of a piezoelectric motor, a piezoelectric actuator, or an ultrasonic piezoelectric motor. It further includes a position sensing system configured to determine lateral and vertical displacement or rotation of the stage using any of laser interferometers, capacitive sensors, confocal sensor arrays, grating interferometers, or combinations thereof. one.

多重射束帶電粒子檢測系統配置有維持複數個一次帶電粒子子射束的焦點在晶圓表面上橫向(lateral)位置之器件,和維持複數個二次電子子射束的焦點橫向位置之器件,每一子射束在預定的光柵(raster)配置內,每一子射束在低於一組臨界的預定義位置精度內。從而,在一範例中,實現縮短載台精確對準之時間。在另一範例中,通過重疊影像擷取和晶圓載台移動所需的時間間隔,以進一步提高通量。額外器件包括用於掃描複數個一次帶電粒子子射束偏轉的第一偏轉單元,及用於掃描複數個二次電子子射束偏轉的至少第二偏轉單元。The multiple beam charged particle detection system is configured with means for maintaining the focal points of the plurality of primary charged particle beamlets at a lateral position on the wafer surface, and means for maintaining the lateral positions of the focal points of the plurality of secondary electron beamlets, Each beamlet is within a predetermined raster configuration, and each beamlet is within a predefined positional accuracy below a set of thresholds. Thus, in one example, shortening the time for precise stage alignment is achieved. In another example, throughput is further increased by overlapping the time interval required for image capture and wafer stage movement. The additional device includes a first deflection unit for scanning deflections of a plurality of primary charged particle beamlets, and at least a second deflection unit for scanning deflections of a plurality of secondary electron beamlets.

根據本發明的具體實施例,一種多重射束帶電粒子檢測系統配置有以影像斑塊順序的高通量和高可靠性,在影像擷取期間保持高解析度和高影像對比度之器件。在第一和第二影像擷取期間,產生複數個感測器資料,其包括來自影像感測器和載台位置感測器的感測器資料。多重射束帶電粒子檢測系統包括控制單元,其構造成產生來自該等複數個感測器資料的一組控制信號。該組控制信號配置成控制模組,以控制一組補償器。根據本發明的具體實施例,多重射束帶電粒子檢測系統設有補償預定一次和二次帶電粒子射束路徑漂移以及載台移動之器件。According to an embodiment of the present invention, a multiple beam charged particle detection system is configured with high throughput and high reliability in image patch order, maintaining high resolution and high image contrast during image capture. During the first and second image capture, a plurality of sensor data is generated, including sensor data from the image sensor and the stage position sensor. The multiple beam charged particle detection system includes a control unit configured to generate a set of control signals from the plurality of sensor data. The group of control signals is configured as a control module to control a group of compensators. According to specific embodiments of the present invention, a multiple beam charged particle detection system is provided with means to compensate for predetermined primary and secondary charged particle beam path drift and stage movement.

根據一範例,多重射束帶電粒子射束系統包括控制器或控制單元,其構造成施加第一信號以偏轉入射在樣品上的複數個一次帶電粒子射束,以至少部分補償載台的橫向位移;並且施加第二信號以偏轉複數個二次電子子射束,以至少部分補償源自該樣品上已偏轉一次帶電粒子子射束位置的複數個二次電子子射束之位移。第一信號包括影響複數個一次帶電粒子子射束如何在至少X軸或Y軸之一者上偏轉之電信號。控制器更構造成在樣品上的複數個一次帶電粒子子射束的掃描期間,動態調整第一信號或第二信號之至少一者。控制器連接至載台運動控制器,且複數個馬達之每一者獨立控制以調整載台的傾斜度,使得載台基本垂直於一次帶電粒子射束的光軸。根據本發明的一具體實施例,多重射束帶電粒子顯微鏡系統包括帶電粒子源,其構造成在使用期間產生第一帶電粒子射束;及多重射束產生器,其構造成在使用期間產生來自該入射的第一帶電粒子射束之複數個一次帶電粒子子射束,其中複數個一次帶電粒子子射束的每一個別子射束與複數個帶電粒子子射束的所有其他子射束在空間上分開。多重射束帶電粒子顯微鏡系統更包括物體照射單元,該單元包括物鏡,該物鏡構造成以其中複數個帶電粒子子射束中的一第一個別一次子射束撞擊在該物平面中之第一影像子場與其中複數個一次帶電粒子子射束中第二個別一次子射束撞擊在該物平面中之第二影像子場在空間上分離之方式,將入射的一次帶電粒子子射束聚焦在提供晶圓表面的物平面上。多重射束帶電粒子顯微鏡系統更包括偵測單元,該單元包括投影系統和影像感測器,該感測器包括多個個別的偵測器。由於一次帶電粒子撞擊到多個個別偵測器中的一第一個或第一組,投影系統構造成在物平面之內的第一影像子場中對離開晶圓的二次電子進行成像,並且由於一次帶電粒子撞擊到多個個別偵測器中第二個或第二組,投影系統構造成在物平面之內的第二影像子場中對離開晶圓的二次電子進行成像。According to one example, a multiple beam charged particle beam system includes a controller or control unit configured to apply a first signal to deflect a plurality of primary charged particle beams incident on a sample to at least partially compensate for lateral displacement of the stage and applying a second signal to deflect the plurality of secondary electron sub-beams to at least partially compensate for displacement of the plurality of secondary electron sub-beams originating from the positions on the sample where the primary charged particle sub-beams have been deflected. The first signal includes an electrical signal that affects how the plurality of primary charged particle beamlets are deflected in at least one of the X-axis or the Y-axis. The controller is further configured to dynamically adjust at least one of the first signal or the second signal during scanning of the plurality of primary charged particle sub-beams on the sample. The controller is connected to the stage motion controller, and each of the plurality of motors is independently controlled to adjust the tilt of the stage so that the stage is substantially perpendicular to the optical axis of the primary charged particle beam. According to an embodiment of the present invention, a multiple beam charged particle microscope system includes a charged particle source configured to generate a first charged particle beam during use; and a multiple beam generator configured to generate, during use, a beam from a plurality of primary charged particle sub-beams of the incident first charged particle beam, wherein each individual sub-beam of the plurality of primary charged particle sub-beams and all other sub-beams of the plurality of charged particle sub-beams are in the Spatially separated. The multiple beam charged particle microscope system further includes an object illumination unit including an objective lens configured to impinge on a first one in the object plane with a first individual primary beamlet of the plurality of charged particle beamlets The manner in which the image subfield is spatially separated from the second image subfield in which a second individual primary beamlet of the plurality of primary charged particle beamlets impinges on the object plane, focusing the incident primary charged particle beamlet on the object plane that provides the wafer surface. The multiple beam charged particle microscope system further includes a detection unit including a projection system and an image sensor including a plurality of individual detectors. The projection system is configured to image the secondary electrons exiting the wafer in a first image subfield within the object plane as the primary charged particles impinge on a first one or a first group of the plurality of individual detectors, And since the primary charged particles impinge on the second or second set of the plurality of individual detectors, the projection system is configured to image the secondary electrons exiting the wafer in a second imaging subfield within the object plane.

在多重射束帶電粒子顯微鏡系統的具體實施例中,其包括提供誤差振幅動態變化快速補償的快速補償器之子集。快速補償器的子集包括靜電透鏡、靜電偏轉器、靜電像散器、靜電微透鏡陣列、靜電像散器陣列或靜電偏轉器陣列之至少一者。靜電元件,例如靜電偏轉器及/或靜電像散器,具有無渦流、無電感的優點,並提供低於10 µs範圍內的調整時間,以補償誤差振幅的動態變化。In a specific embodiment of the multiple beam charged particle microscope system, it includes a subset of fast compensators that provide fast compensation of error amplitude dynamic changes. A subset of fast compensators include at least one of electrostatic lenses, electrostatic deflectors, electrostatic astigmatists, electrostatic microlens arrays, electrostatic astigmatism arrays, or electrostatic deflector arrays. Electrostatic components, such as electrostatic deflectors and/or electrostatic astigmatism, are eddy-current free, non-inductive, and provide settling times in the sub-10 µs range to compensate for dynamic changes in error amplitude.

提供動態變化快速補償的子部件可提供與掃描一次帶電粒子子射束的掃描頻率相當之調整頻率,即動態變化的快速補償可執行多次,即不止一次,而晶圓表面上影像斑塊的影像擷取則使用複數個一次帶電粒子子射束來執行。典型的行掃描頻率在1kHz到5kHz的數量級,動態補償元件的電驅動信號之頻寬可在0.1kHz到10kHz的範圍內,從而提供例如每50條掃描線或每條掃描線10倍之間的補償。Subcomponents that provide fast compensation for dynamic changes can provide an adjustment frequency equivalent to the scanning frequency of the charged particle sub-beam scanning once, i.e. fast compensation for dynamic changes can be performed multiple times, ie more than once, while the image patches on the wafer surface are swept away. Image acquisition is performed using a plurality of primary charged particle beamlets. Typical line scan frequencies are on the order of 1 kHz to 5 kHz, and the electrical drive signal of the dynamic compensation element can have a bandwidth in the range of 0.1 kHz to 10 kHz, providing for example between 10 times per 50 scan lines or 10 times per scan line. compensate.

在多重射束帶電粒子顯微鏡系統的具體實施例中,其包括提供對誤差振幅的緩慢變化或漂移之補償的緩慢作用補償器子集。緩慢作用補償器的子集包括磁透鏡、磁偏轉器、磁像散器或磁分射束器之至少一者。In a specific embodiment of a multiple beam charged particle microscope system, it includes a subset of slow acting compensators that provide compensation for slow changes or drifts in error amplitude. A subset of slow-acting compensators include at least one of a magnetic lens, a magnetic deflector, a magnetic astigmatism, or a magnetic beam splitter.

在一具體實施例中,提供一種用於晶圓檢測的多重射束帶電粒子顯微鏡。用於晶圓檢測的多重射束帶電粒子顯微鏡包括用於產生複數個一次帶電粒子子射束的帶電粒子多重子射束產生器,以及包括第一偏轉系統來使用複數個一次帶電粒子子射束掃描配置在物平面中晶圓表面區域,以產生從晶圓表面發射的複數個二次電子子射束之物體照射單元。用於晶圓檢測的多重射束帶電粒子顯微鏡更包括具有投影系統、第二偏轉系統和影像感測器的偵測單元,用於將複數個二次電子子射束成像到該影像感測器上,並在使用期間中擷取晶圓表面的第一影像斑塊之數位影像。用於晶圓檢測的多重射束帶電粒子顯微鏡更包括具有載台位置感測器的樣品載台,用於在擷取第一影像斑塊的數位影像期間將晶圓表面定位和維持在物平面中。當晶圓由晶圓載台維持時,第一偏轉系統沿著晶圓表面上的預定掃描路徑掃描複數個一次帶電粒子子射束,並且第二偏轉單元沿著預定掃描路徑掃描複數個二次電子子射束,以保持複數個二次電子子射束的影像點在偵測單元的影像感測器處固定不變。用於晶圓檢測的多重射束帶電粒子顯微鏡更包括控制單元和複數個偵測器,該偵測器包括一載台位置感測器和該影像感測器,其構造成在使用期間產生複數個感測器資料,該感測器資料包括以下樣品載台的位置和方向資料。用於晶圓檢測的多重射束帶電粒子顯微鏡更包括一組補償器,該組補償器包括至少第一和第二偏轉系統。控制單元構造成從複數個感測器資料產生一組P控制信號Cp ,以在擷取第一影像斑塊的數位影像期間控制該組補償器。該組補償器另可包括帶電粒子多重子射束產生器的補償器和偵測單元的補償器之至少一者。在一範例中,控制單元包括感測器資料分析系統,該系統構造成在使用期間分析複數個感測器資料,並在使用期間計算K個誤差向量的K個振幅Ak 之集合。在一具體實施例中,控制單元更包括影像資料擷取單元,其構造成在使用期間將來自影像感測器的影像感測器資料減少到小於影像感測器資料的10%、較佳小於2%之影像感測器資料部分,並將影像感測器資料部分提供給該感測器資料分析系統。在一範例中,影像感測器資料部分包括在降低採樣率之下複數個二次電子子射束之數位影像資料。在一範例中,影像感測器資料部分包括降低二次電子子射束集合(9)之數位影像資料。In a specific embodiment, a multiple beam charged particle microscope for wafer inspection is provided. A multiple beam charged particle microscope for wafer inspection includes a charged particle multiple beam generator for generating a plurality of primary charged particle beamlets, and a first deflection system to scan using the plurality of primary charged particle beamlets The object irradiation unit is arranged in the wafer surface area in the object plane to generate a plurality of secondary electron sub-beams emitted from the wafer surface. The multi-beam charged particle microscope for wafer inspection further includes a detection unit having a projection system, a second deflection system and an image sensor for imaging a plurality of secondary electron beams onto the image sensor on the wafer surface, and captures a digital image of the first image patch on the wafer surface during use. The multiple beam charged particle microscope for wafer inspection further includes a sample stage with a stage position sensor for positioning and maintaining the wafer surface at the object plane during acquisition of the digital image of the first image patch middle. While the wafer is being held by the wafer stage, the first deflection system scans a plurality of primary charged particle beamlets along a predetermined scan path on the wafer surface, and the second deflection unit scans a plurality of secondary electron beams along the predetermined scan path sub-beams, so as to keep the image points of the plurality of secondary electron sub-beams fixed at the image sensor of the detection unit. The multiple beam charged particle microscope for wafer inspection further includes a control unit and a plurality of detectors including a stage position sensor and the image sensor configured to generate a plurality of detectors during use A sensor data that includes the following sample stage position and orientation data. The multiple beam charged particle microscope for wafer inspection further includes a set of compensators, the set of compensators including at least first and second deflection systems. The control unit is configured to generate a set of P control signals Cp from the plurality of sensor data to control the set of compensators during the capture of the digital image of the first image patch. The set of compensators may further include at least one of a compensator of the charged particle multiple sub-beam generator and a compensator of the detection unit. In one example, the control unit includes a sensor data analysis system configured to analyze a plurality of sensor data during use and to calculate a set of K amplitudes Ak of the K error vectors during use. In one embodiment, the control unit further includes an image data capture unit configured to reduce the image sensor data from the image sensor during use to less than 10% of the image sensor data, preferably less than 2% of the image sensor data portion, and provide the image sensor data portion to the sensor data analysis system. In one example, the image sensor data portion includes digital image data of a plurality of secondary electron beamlets at a reduced sampling rate. In one example, the image sensor data portion includes digital image data that reduces the secondary electron beamlet set (9).

在一範例中,感測器資料分析系統更構造成推導出或預測誤差向量中振幅Ak 的集合內至少一振幅An 之時間發展。In one example, the sensor data analysis system is further configured to derive or predict the temporal development of at least one amplitude An within the set of amplitudes Ak in the error vector .

在一範例中,控制單元更包括一控制運算處理器,用於根據誤差向量的振幅Ak 之集合,以計算控制信號Cp 的集合。在一範例中,多個或一組控制信號中之至少一者的擷取進一步基於載台的致動輸出之預測模型。In an example, the control unit further includes a control arithmetic processor for calculating the set of control signals C p according to the set of amplitudes A k of the error vectors. In one example, the acquisition of at least one of the plurality or set of control signals is further based on a predictive model of the actuation output of the stage.

在一範例中,感測器資料分析系統構造成從複數個感測器資料推導出長度為L的感測器資料向量DV,其中L >= K。In one example, the sensor data analysis system is configured to derive a sensor data vector DV of length L, where L >= K, from a plurality of sensor data.

在一範例中,控制單元構造成通過計算第一組控制信號Cp 的至少一控制信號並將其提供給第一和第二偏轉單元,以補償樣品載台的位置或方位變化。樣品載台的位置或方位變化由載台的橫向位移賦予,對應於載台的當前位置和旋轉與載台的目標位置和旋轉之間於XY軸之至少一者內的差異。In one example, the control unit is configured to compensate for changes in the position or orientation of the sample stage by calculating and providing at least one control signal of the first set of control signals Cp to the first and second deflection units. The change in position or orientation of the sample stage is imparted by the lateral displacement of the stage, corresponding to the difference in at least one of the XY axes between the current position and rotation of the stage and the target position and rotation of the stage.

控制單元構造成從複數個感測器資料中推導出用於物體照射單元中的一第一補償器的驅動信號,以實現複數個一次帶電粒子子射束的掃描光斑位置(scanning spot position)之額外位移與晶圓表面的橫向位移同步。在一範例中,該額外位移包括複數個一次帶電粒子子射束的光柵組態旋轉。控制單元更構造成通過投影系統中的第二補償器,補償已位移晶圓表面上光斑位置的額外位移,其中該投影系統中的第二補償器構造成與物體照射單元中的第一補償器同步操作,從而使影像偵測器上的複數個二次電子子射束之光斑位置保持恆定。在一範例中,物體照射單元中的第一補償器為第一偏轉系統,並且控制單元構造成通過計算並將用於複數個一次帶電粒子子射束的掃描光斑位置之額外位移或旋轉的控制信號提供給第一偏轉系統,以補償樣品載台的位移或旋轉。在一範例中,第二補償器投影系統為第二偏轉系統,並且控制單元構造成通過計算並提供控制信號給該第二偏轉系統,以補償複數個一次帶電粒子子射束的掃描光斑位置在已位移晶圓表面上之額外位移或旋轉。因此,二次電子子射束的光斑位置在影像感測器處維持恆定,而與根據晶圓載台的位移或移動而修改之掃描路徑無關。The control unit is configured to derive a drive signal for a first compensator in the object irradiation unit from the plurality of sensor data, so as to achieve a difference between the scanning spot positions of the plurality of primary charged particle beamlets The additional displacement is synchronized with the lateral displacement of the wafer surface. In one example, the additional displacement includes a plurality of grating configuration rotations of the primary charged particle beamlets. The control unit is further configured to compensate for additional displacement of the spot position on the displaced wafer surface via a second compensator in the projection system, wherein the second compensator in the projection system is configured to be compatible with the first compensator in the object illumination unit Synchronous operation, so that the spot positions of the plurality of secondary electron sub-beams on the image detector remain constant. In one example, the first compensator in the object illumination unit is a first deflection system, and the control unit is configured to calculate and use for control of additional displacement or rotation of the scanning spot positions of the plurality of primary charged particle sub-beams Signals are provided to the first deflection system to compensate for displacement or rotation of the sample stage. In one example, the second compensator projection system is a second deflection system, and the control unit is configured to compensate the scanning spot positions of the plurality of primary charged particle beamlets by calculating and providing control signals to the second deflection system. Additional displacement or rotation on the displaced wafer surface. Thus, the spot position of the secondary electron sub-beam remains constant at the image sensor regardless of the scan path modified according to the displacement or movement of the wafer stage.

在一具體實施例中,多重射束帶電粒子顯微鏡的帶電粒子多重子射束產生器更包括一快速補償器,且該控制單元構造成通過計算並提供第一組控制信號Cp 的控制信號之至少一者給快速補償器,以引起複數個一次帶電粒子子射束的旋轉,以補償樣品載台的旋轉。在一實施例中,多重射束帶電粒子顯微鏡的控制單元更構造成產生第三控制信號,用於通過晶圓載台將晶圓表面移到物平面中第二影像斑塊的第二中心位置,進行第二影像斑塊的數位影像之影像擷取。在一具體實施例中,控制單元更構造成從複數個感測器資料計算第二組P控制信號Cp ,以在晶圓載台移到第二影像斑塊的第二中心位置之時間間隔Tr期間,控制該組補償器。在一具體實施例中,控制單元更構造成在時間間隔Tr期間計算第二影像斑塊的影像擷取開始時間,並且在晶圓載台的減速時間間隔Td期間開始第二影像斑塊的影像擷取,並且其中控制單元更構造成將至少在時間間隔Td期間晶圓載台的預測偏移位置之一偏移信號提供給第一和第二偏轉系統。In a specific embodiment, the charged particle multiple beam sub-beam generator of the multiple beam charged particle microscope further includes a fast compensator, and the control unit is configured to calculate and provide at least one of the control signals of the first set of control signals C p . One gives a fast compensator to cause rotation of a plurality of primary charged particle beamlets to compensate for rotation of the sample stage. In one embodiment, the control unit of the multiple beam charged particle microscope is further configured to generate a third control signal for moving the wafer surface through the wafer stage to a second center position of the second image patch in the object plane, Image capture of the digital image of the second image patch is performed. In a specific embodiment, the control unit is further configured to calculate a second set of P control signals C p from the data of the plurality of sensors for the time interval Tr when the wafer stage moves to the second center position of the second image patch During this time, the group of compensators are controlled. In a specific embodiment, the control unit is further configured to calculate the image capture start time of the second image patch during the time interval Tr, and to start the image capture of the second image patch during the deceleration time interval Td of the wafer stage. and wherein the control unit is further configured to provide the first and second deflection yokes with an offset signal at least one of the predicted offset positions of the wafer stage during the time interval Td.

在一具體實施例中,提供一種使用多重射束帶電粒子顯微鏡檢測晶圓之方法。該方法的多重射束帶電粒子顯微鏡包括複數個偵測器,該等偵測器包括一影像感測器和一載台位置感測器;及一組補償器,該組補償器包括至少第一和第二偏轉系統。該方法包含下列步驟: a.      以該多重射束帶電粒子顯微鏡的視線,定位晶圓的晶圓表面並與局部晶圓坐標系統的位置對準; b.     執行一影像擷取,以擷取該晶圓表面的第一影像斑塊之數位影像; c.      在影像擷取步驟期間,從該等複數個偵測器收集複數個感測器資料; d.     從該等複數個感測器資料推導出一組K個誤差振幅Ak ;及 e.      從該組誤差振幅Ak 中推導出一組P個控制信號Cp ; f.       在影像擷取的步驟b期間將該組控制信號Cp 提供給一組補償器。In one embodiment, a method of inspecting a wafer using a multiple beam charged particle microscope is provided. The multiple beam charged particle microscope of the method includes a plurality of detectors, the detectors including an image sensor and a stage position sensor; and a set of compensators, the set of compensators including at least a first and the second deflection yoke. The method includes the following steps: a. Using the line of sight of the multiple beam charged particle microscope, locate the wafer surface of the wafer and align with the location of the local wafer coordinate system; b. Perform an image capture to capture the a digital image of the first image patch on the wafer surface; c. collecting a plurality of sensor data from the plurality of detectors during the image capture step; d. deriving from the plurality of sensor data derive a set of K error amplitudes Ak ; and e. derive a set of P control signals Cp from the set of error amplitudes Ak ; f. provide the set of control signals Cp during step b of image capture to a set of compensators.

在一具體實施例中,該晶圓檢測方法更包括從該等複數個感測器資料推導出長度為L的感測器資料向量DV之步驟(g),其中L >=K。在一具體實施例中,該晶圓檢測方法更包括推導出該組誤差向量振幅Ak 中至少一振幅An 的時間發展之步驟(h)。在一具體實施例中,該晶圓檢測方法更包括通過將控制信號Cp 提供給該第一和該第二偏轉單元,以補償該樣品載台的位置或方位變化之步驟(i)。在一具體實施例中,該晶圓檢測方法更包括從該組誤差振幅Ak 中推導出第二組控制信號Cp ,並在定位和對準該晶圓的晶圓表面之步驟(a)期間提供該第二組控制信號之步驟(j)。In a specific embodiment, the wafer inspection method further includes the step (g) of deriving a sensor data vector DV of length L from the plurality of sensor data, where L >=K. In one embodiment, the wafer inspection method further includes the step (h) of deriving the time development of at least one amplitude An in the set of error vector amplitudes Ak . In a specific embodiment, the wafer inspection method further includes the step (i) of compensating for changes in the position or orientation of the sample stage by providing a control signal C p to the first and second deflection units. In a specific embodiment, the wafer inspection method further includes deriving a second set of control signals Cp from the set of error amplitudes Ak , and in the step (a) of locating and aligning the wafer surface of the wafer During the step (j) of providing the second group of control signals.

在本發明的一具體實施例中,提供一帶電粒子顯微鏡及一根據晶圓檢測任務的該成像規格要求以高通量和高解析度來操作帶電粒子顯微鏡之方法,其中一系列影像斑塊按影像擷取步驟順序成像,其包括在第一時間間隔Ts1中的一第一影像斑塊的第一影像擷取以及在第二時間間隔Ts2中第二影像斑塊的第二影像擷取,並且更包括用於將一樣品載台從該第一影像斑塊的第一中心位置移到該第二影像斑塊的第二中心位置之第三時間間隔Tr,使得該第一和該第二時間間隔Ts1或Ts2之至少一者與該第三時間間隔Tr具有一重疊。從該第一時間間隔Ts1開始到該第二時間間隔Ts2結束的總時間間隔小於三個時間間隔Ts1、Tr和Ts2的總和,並且實現高通量的快速晶圓檢測。在一範例中,在該第三時間間隔Tr結束之前,即當樣品載台已經完全停止時之前,開始該第二影像斑塊的第二影像擷取。在一示例中,當樣品移動的第三時間間隔Tr在該時間間隔Ts1結束之前,即該第一影像斑塊的影像擷取完成時之前,啟動。在該方法的範例中,在該第一影像斑塊的影像擷取第一時間間隔Ts1期間執行樣品移動的第三時間間隔Tr之開始時間之計算,使得該第一影像斑塊的第一中心位置與多重射束帶電粒子顯微鏡視線之位置偏差或該樣品載台的移動速度低於預定臨界。在該方法的範例中,在樣品載台移動的時間間隔Tr期間執行該第二影像擷取的第二時間間隔Ts2之開始時間之計算,使得該第二影像斑塊的第二中心位置與多重射束帶電粒子顯微鏡視線之位置偏差或該樣品載台的移動速度低於預定臨界。In one embodiment of the present invention, a charged particle microscope and a method of operating a charged particle microscope at high throughput and high resolution according to the imaging specification requirements of wafer inspection tasks are provided, wherein a series of image patches are The image capturing step is sequential imaging, which includes a first image capturing of a first image patch in a first time interval Ts1 and a second image capturing of a second image patch in a second time interval Ts2, and It further includes a third time interval Tr for moving a sample stage from the first center position of the first image patch to the second center position of the second image patch, so that the first and second time At least one of the intervals Ts1 or Ts2 has an overlap with the third time interval Tr. The total time interval from the start of the first time interval Ts1 to the end of the second time interval Ts2 is less than the sum of the three time intervals Ts1 , Tr and Ts2 , and high-throughput fast wafer inspection is achieved. In one example, before the end of the third time interval Tr, ie, before the sample stage has come to a complete stop, the second image capture of the second image patch is started. In an example, when the third time interval Tr of the sample movement is started before the end of the time interval Ts1, that is, before the image capture of the first image patch is completed. In an example of the method, the calculation of the start time of the third time interval Tr of the sample movement is performed during the first time interval Ts1 of the image capture of the first image patch such that the first center of the first image patch The positional deviation from the line of sight of the multiple beam charged particle microscope or the moving speed of the sample stage is below a predetermined threshold. In an example of the method, the calculation of the start time of the second time interval Ts2 of the second image capture is performed during the time interval Tr of the movement of the sample stage, so that the second center position of the second image patch and the multiple The positional deviation of the beam charged particle microscope sight line or the moving speed of the sample stage is below a predetermined threshold.

在操作多重射束帶電粒子顯微鏡的方法範例中,該方法包括下列進一步步驟: 在該晶圓載台移動的時間間隔Tr期間,預測樣品載台位置的順序; 根據該預測樣品載台位置計算至少第一和第二控制信號; 將該第一控制信號提供給該多重射束帶電粒子顯微鏡的該一次射束路徑內第一偏轉系統,以及將該第二控制信號提供給該二次射束路徑內第二偏轉系統。In an exemplary method of operating a multiple beam charged particle microscope, the method includes the following further steps: predicting the sequence of sample stage positions during the time interval Tr of the wafer stage movement; calculating at least first and second control signals based on the predicted sample stage position; The first control signal is provided to a first deflection system in the primary beam path of the multiple beam charged particle microscope, and the second control signal is provided to a second deflection system in the secondary beam path.

在一範例中,帶電粒子顯微鏡包括一控制單元,該控制單元構造成計算在該第一影像斑塊的第一影像擷取期間,樣品載台從第一影像斑塊移到第二影像斑塊的開始時間。在本發明的範例中,帶電粒子顯微鏡包括一控制單元,該控制單元構造成計算樣品載台從第一影像斑塊移到第二影像斑塊的期間,擷取該第二影像斑塊的第二影像之開始時間。In one example, the charged particle microscope includes a control unit configured to calculate the movement of the sample stage from the first image patch to the second image patch during a first image acquisition of the first image patch start time. In an example of the present invention, the charged particle microscope includes a control unit configured to calculate the period during which the sample stage moves from the first image patch to the second image patch, and to capture the first image of the second image patch. 2. The start time of the image.

在一具體實施例中,描述一種構造成用於晶圓檢測的多重射束帶電粒子顯微鏡操作方法,其包括下列準備步驟: 定義一組影像品質及一組描述與該組影像品質偏差的預定、正常化之誤差向量; 針對該組或正常化誤差向量的振幅確定一組臨界; 選擇一組多重射束帶電粒子顯微鏡的補償器; 根據線性及/或非線性擾動模型,通過改變該組補償器中每一補償器的至少一驅動信號,以確定靈敏度矩陣; 推導出一組正常化驅動信號,用於補償該組正常化誤差向量之每一者;及 將該等正常化驅動信號和該組臨界儲存在該多重射束帶電粒子顯微鏡的控制單元之記憶體中。In a specific embodiment, a method of operating a multiple beam charged particle microscope configured for wafer inspection is described that includes the following preparatory steps: define a set of image qualities and a set of predetermined, normalized error vectors describing deviations from the set of image qualities; determine a set of thresholds for the amplitude of the set or normalized error vector; Select a set of compensators for multiple beam charged particle microscopes; determining a sensitivity matrix by varying at least one drive signal of each compensator in the set of compensators according to a linear and/or nonlinear perturbation model; deriving a set of normalized drive signals for compensating each of the set of normalized error vectors; and The normalized drive signals and the set of thresholds are stored in the memory of the control unit of the multiple beam charged particle microscope.

在一範例中,該組補償器包括用於掃描和偏轉複數個一次帶電粒子的該多重射束帶電粒子顯微鏡之第一偏轉單元,及用於掃描和偏轉在該多重射束帶電粒子顯微鏡使用期間所產生複數個二次電子之第二偏轉單元。In one example, the set of compensators includes a first deflection unit of the multiple beam charged particle microscope for scanning and deflecting a plurality of primary charged particles, and for scanning and deflecting the multiple beam charged particle microscope during use of the multiple beam charged particle microscope The second deflection unit of the generated secondary electrons.

該靈敏度矩陣例如通過奇異值分解或類似演算法來分析。在一範例中,該靈敏度矩陣通過分成影像品質的兩、三或多個內核或獨立子集來分解。從而降低計算複雜度,並減少非線性效應或高階效應。This sensitivity matrix is analyzed, for example, by singular value decomposition or similar algorithms. In one example, the sensitivity matrix is decomposed by dividing into two, three or more kernels or independent subsets of image quality. This reduces computational complexity and reduces nonlinear or higher-order effects.

在使用期間,例如在晶圓檢測期間,操作方法包括使用儲存在該多重射束帶電粒子顯微鏡的控制單元記憶體中之正常化誤差向量、正常化驅動信號和該組臨界。一種多重射束帶電粒子顯微鏡操作方法包括: 在使用期間從該多重射束帶電粒子顯微鏡的複數個感測器接收複數個感測器資料來形成一感測器資料向量之步驟; 擴展儲存於控制單元記憶體中一組正常化誤差向量內的該感測器資料向量,並從該感測器資料向量確定一組正常化誤差向量的實際振幅之步驟; 將該組實際振幅與一組儲存在控制單元記憶體中的臨界進行比較之步驟,並且根據該比較結果; 從該組實際振幅中推導出一組控制信號之步驟; 從該組控制信號中儲存在該控制單元記憶體中的一組正常化驅動信號中推導出一組實際驅動信號之步驟; 將該組實際驅動信號提供給該多重射束帶電粒子顯微鏡中一組補償器之步驟,從而在該多重射束帶電粒子顯微鏡操作期間,讓該組正常化誤差向量的該組實際振幅低於該組臨界。During use, such as during wafer inspection, the method of operation includes using the normalized error vector, normalized drive signal and the set of thresholds stored in the control unit memory of the multiple beam charged particle microscope. A method of operating a multiple beam charged particle microscope comprising: the step of receiving a plurality of sensor data from a plurality of sensors of the multiple beam charged particle microscope during use to form a sensor data vector; the step of expanding the sensor data vector within a set of normalized error vectors stored in control unit memory, and determining the actual amplitude of a set of normalized error vectors from the sensor data vector; a step of comparing the set of actual amplitudes with a set of thresholds stored in the control unit memory, and according to the comparison result; the step of deriving a set of control signals from the set of actual amplitudes; The step of deriving a set of actual drive signals from a set of normalized drive signals stored in the control unit memory from the set of control signals; the step of providing the set of actual drive signals to a set of compensators in the multiple beam charged particle microscope to keep the set of actual amplitudes of the set of normalized error vectors below the multiple beam charged particle microscope during operation of the multiple beam charged particle microscope group critical.

在一範例中,複數個感測器資料包括在使用多重射束帶電粒子顯微鏡檢測期間用於維持晶圓的晶圓載台實際位置與實際速度之位置或速度資訊之至少一者。來自感測器資料向量的正常化誤差向量之該組實際振幅表示多重射束帶電粒子顯微鏡的影像品質集合之實際狀態。通過與已預定和已儲存的臨界比較,得出一組控制信號。根據控制信號,計算一組實際驅動信號,例如通過將控制信號與預定的一組正常化驅動信號相乘。在影像掃描或至少一影像斑塊的影像擷取期間,將該組實際驅動信號提供給該組補償器,從而在多重射束帶電粒子顯微鏡的操作期間,將實際振幅的子集減至低於儲存在控制單元記憶體中預定臨界的子集。該方法步驟在每個影像斑塊的擷取期間重複至少兩次、至少十次、較佳每條掃描線重複。In one example, the plurality of sensor data includes at least one of position or velocity information for maintaining actual wafer stage position and actual velocity of the wafer during inspection using multiple beam charged particle microscopy. The set of actual amplitudes from the normalized error vector of the sensor data vector represents the actual state of the image quality set of the multiple beam charged particle microscope. A set of control signals is derived by comparison with predetermined and stored thresholds. From the control signal, a set of actual drive signals is calculated, eg by multiplying the control signal by a predetermined set of normalized drive signals. During image scanning or image acquisition of at least one image patch, the set of actual drive signals is provided to the set of compensators to reduce the subset of actual amplitudes to below A predetermined critical subset is stored in the control unit memory. The method steps are repeated at least twice, at least ten times, preferably for each scan line, during the capture of each image patch.

在一範例中,該方法更包括在晶圓檢測期間,根據多重射束帶電粒子顯微鏡在預測時間間隔內的預期發展,以預測該組實際振幅的至少一子集的發展振幅子集之步驟。該方法可更包括在使用期間,記錄多重射束帶電粒子顯微鏡的該組實際振幅的至少一子集,以用於產生該組實際振幅的子集歷史之步驟。多重射束帶電粒子顯微鏡的操作方法更包括在晶圓檢測期間,從該組發展振幅推導出一組預測控制信號和從該組預測控制信號推導出一組預測驅動信號之步驟,以及在晶圓檢測期間,以時間順序方式將該組預測驅動信號提供給該組補償器之步驟,從而在多重射束帶電粒子顯微鏡在預測時間間隔內的操作期間,將實際振幅的子集減至低於該組臨界。In one example, the method further includes the step of predicting a subset of developed amplitudes of at least a subset of the set of actual amplitudes based on expected development of the multiple beam charged particle microscope over a predicted time interval during wafer inspection. The method may further comprise the step of recording at least a subset of the set of actual amplitudes of the multiple beam charged particle microscope during use for generating the subset history of the set of actual amplitudes. The method of operation of the multiple beam charged particle microscope further includes the steps of deriving a set of predictive control signals from the set of developmental amplitudes and deriving a set of predictive drive signals from the set of predictive control signals during wafer inspection, and The step of providing the set of predicted drive signals to the set of compensators in a time-sequential manner during detection to reduce the subset of actual amplitudes below the set of compensators during operation of the multiple beam charged particle microscope over the predicted time interval group critical.

根據預測模型函數或一組實際振幅歷史的線性、二階或更高階外推法之一者,以確定多重射束帶電粒子顯微鏡在預測時間間隔內的預期發展。在一範例中,該方法可更包括在使用期間,記錄多重射束帶電粒子顯微鏡的該組實際振幅的至少一子集,以用於產生該組實際振幅的子集歷史之步驟。該方法更包括在晶圓檢測期間,從該組發展振幅推導出一組預測控制信號和從該組預測控制信號推導出一組預測驅動信號之步驟,以及在晶圓檢測期間,以時間順序方式將該組預測驅動信號提供給該組補償器之步驟,從而在多重射束帶電粒子顯微鏡在預測時間間隔內的操作期間,將實際振幅的子集減至低於該組臨界。該具體實施例包括多重射束帶電粒子顯微鏡,其構造成在使用期間應用前述方法步驟。The expected development of the multiple beam charged particle microscope over the predicted time interval is determined from a predictive model function or one of a set of linear, second- or higher-order extrapolations of the actual amplitude history. In one example, the method may further include the step of recording at least a subset of the set of actual amplitudes of the multiple beam charged particle microscope during use for generating the subset history of the set of actual amplitudes. The method further includes the steps of deriving a set of predicted control signals from the set of developmental amplitudes and deriving a set of predicted drive signals from the set of predicted control signals during wafer inspection, and in a time-sequential manner during wafer inspection The step of providing the set of predicted drive signals to the set of compensators reduces a subset of the actual amplitudes below the set of thresholds during operation of the multiple beam charged particle microscope within the predicted time interval. This particular embodiment includes a multiple beam charged particle microscope configured to apply the aforementioned method steps during use.

在多個具體實施例中,從感測器資料所推導出的誤差振幅代表晶圓檢測任務的影像性能規範,例如晶圓載台相對於多重射束帶電粒子顯微鏡的視線和多重射束帶電粒子顯微鏡的影像座標系統之相對位置和方位之至少一者、多重射束帶電粒子顯微鏡的放大倍數或間距、遠心條件、對比條件、複數個帶電粒子子射束的絕對位置精度、及高階像差,例如複數個帶電粒子子射束的扭曲、像散和色差。In various embodiments, the error amplitudes derived from sensor data represent image performance specifications for wafer inspection tasks, such as the line of sight of the wafer stage relative to the multiple beam charged particle microscope and the multiple beam charged particle microscope at least one of the relative position and orientation of the image coordinate system, the magnification or spacing of the multiple-beam charged particle microscope, the telecentricity condition, the contrast condition, the absolute positional accuracy of the plurality of charged particle beamlets, and higher-order aberrations such as Distortion, astigmatism and chromatic aberration of a plurality of charged particle beamlets.

在一具體實施例中,揭示一多重射束帶電粒子顯微鏡和軟體程式碼。多重射束帶電粒子顯微鏡包括一組補償器,該等補償器包括多個偏轉器、一控制單元和安裝的軟體程式碼,其構造成用於應用根據前述方法步驟中的任何方法。In one embodiment, a multiple beam charged particle microscope and software code are disclosed. The multiple beam charged particle microscope includes a set of compensators including a plurality of deflectors, a control unit and installed software code configured for applying any of the methods according to the preceding method steps.

在一具體實施例中,揭示一種非暫態電腦可讀取媒體,其包括一指令集,該指令集可由多重射束帶電粒子裝置的一或多個處理器執行,以使該裝置執行一方法,其中該裝置包括一帶電粒子源,以產生複數個一次帶電粒子子射束,且該方法包括: 確定載台的橫向位移,其中該載台可在X-Y軸之至少一者內移動;及 指示控制器施加第一信號,以偏轉入射在樣品上的複數個一次帶電粒子子射束,以至少部分補償橫向位移。在一範例中,該指令集包括方法的執行,該方法包括指示控制器施加第二信號,以偏轉從樣品發射的複數個二次電子子射束,以至少部分補償樣品載台的橫向位移。In one embodiment, a non-transitory computer-readable medium is disclosed that includes a set of instructions executable by one or more processors of a multiple beam charged particle device to cause the device to perform a method , wherein the device includes a charged particle source to generate a plurality of primary charged particle beamlets, and the method includes: determining the lateral displacement of the stage, wherein the stage is movable in at least one of the X-Y axes; and The controller is instructed to apply a first signal to deflect the plurality of primary charged particle beamlets incident on the sample to at least partially compensate for the lateral displacement. In one example, the set of instructions includes execution of a method including instructing the controller to apply a second signal to deflect a plurality of secondary electron beamlets emitted from the sample to at least partially compensate for lateral displacement of the sample stage.

在下面描述的示範具體實施例中,在功能和結構上相似的部件盡可能用相似或相同的參考編號表示。In the exemplary embodiments described below, functionally and structurally similar components are denoted by similar or identical reference numerals wherever possible.

圖1的示意圖表示根據本發明具體實施例的多重子射束帶電粒子顯微鏡系統1之基本特徵和功能。要注意的是,圖中所使用的符號並不代表所例示部件的實體組態,而是已經過選擇來象徵其各自功能。所示系統類型為掃描電子顯微鏡(SEM),該系統使使用複數個一次電子子射束3在物體7的表面上,例如位於物鏡102的物平面101中之晶圓,產生複數個一次帶電粒子射束斑點5。為簡單起見,僅顯示五個一次帶電粒子子射束3和五個一次帶電粒子射束斑點5。可使用電子或其他類型的一次帶電粒子(例如離子,特別是氦離子),以實現多重子射束帶電粒子顯微鏡系統1的特性和功能。1 is a schematic diagram showing the basic features and functions of a multiple sub-beam charged particle microscope system 1 according to an embodiment of the present invention. It is noted that the symbols used in the figures do not represent the physical configuration of the illustrated components, but have been chosen to symbolize their respective functions. The type of system shown is a Scanning Electron Microscope (SEM) that uses a plurality of primary electron beamlets 3 to generate a plurality of primary charged particles on the surface of an object 7, such as a wafer located in the object plane 101 of the objective 102 Beam spot 5. For simplicity, only five primary charged particle sub-beams 3 and five primary charged particle beam spots 5 are shown. Electrons or other types of primary charged particles (eg ions, especially helium ions) may be used to achieve the properties and functionality of the multiple sub-beam charged particle microscope system 1 .

顯微鏡系統1包括一物體照射單元100和一偵測單元200,及用於將二次帶電粒子射束路徑11與一次帶電粒子射束路徑13分離的分射束器單元400。物體照射單元100包括用於產生複數個一次帶電粒子子射束3並且適於將複數個一次帶電粒子子射束3聚焦在物平面101中的帶電粒子多重子射束產生器300,其中晶圓7的表面25由樣品載台500定位。樣品載台500包括載台運動控制器,其中該載台運動控制器包括構造成由控制信號獨立控制的複數個馬達。該載台運動控制器已連接到控制單元800。The microscope system 1 includes an object irradiation unit 100 and a detection unit 200 , and a beam splitter unit 400 for separating the secondary charged particle beam path 11 from the primary charged particle beam path 13 . The object irradiation unit 100 comprises a charged particle multiple beamlet generator 300 for generating a plurality of primary charged particle beamlets 3 and adapted to focus the plurality of primary charged particle beamlets 3 in the object plane 101, wherein the wafer 7 The surface 25 is positioned by the sample stage 500 . The sample stage 500 includes a stage motion controller, wherein the stage motion controller includes a plurality of motors configured to be independently controlled by control signals. The stage motion controller is connected to the control unit 800 .

一次子射束產生器300在中間像平面321內產生複數個一次帶電粒子子射束斑點311,該表面通常是球面彎曲表面,以補償物體照射單元100的場曲。一次子射束產生器300包括一次帶電粒子(例如電子)的來源301。例如一次帶電粒子源301發射一發散的一次帶電粒子射束309,其由準直透鏡303.1和303.2準直以形成準直束。準直透鏡303.1和303.2通常由一或多個靜電或磁性透鏡組成,或者由靜電和磁性透鏡組合而成。準直的一次帶電粒子射束入射在一次多重子射束形成單元305上。多重子射束形成單元305基本上包括由一次帶電粒子射束309照射的第一多重孔板306.1。第一多重孔板306.1包括於光柵組態下的多個孔,用於產生複數個一次帶電粒子子射束3,這些子射束通過準直的一次帶電粒子射束309透射過多個孔而產生。多重子射束形成單元305包括至少另外的多重孔板306.2,其相對於電子射束309中電子的運動方向位於第一多重孔板306.1的下游。例如,第二多重孔板306.2具有微透鏡陣列的功能,並且較佳設定為已界定電位,從而調節中間像平面321內的多個一次子射束3之聚焦位置。第三主動式多重孔板配置306.3(未顯示)包括用於多個孔中每一者的個別靜電元件,以分別影響多個子射束中每一者。主動式多重孔板配置306.3由具有靜電元件的一或多個多重孔板組成,例如用於微透鏡的圓形電極,多極電極或一系列多極電極以形成偏轉器陣列、微透鏡陣列或柱頭陣列。多重子射束形成單元305由相鄰的第一靜電場透鏡307構成,並且與第二場透鏡308和第二多重孔板306.2一起,將複數個一次帶電粒子子射束3聚焦在中間像平面321內或附近。The primary sub-beam generator 300 generates a plurality of primary charged particle sub-beam spots 311 in an intermediate image plane 321 , which is typically a spherically curved surface, to compensate for the field curvature of the object illumination unit 100 . The primary beamlet generator 300 includes a source 301 of primary charged particles (eg, electrons). For example primary charged particle source 301 emits a diverging primary charged particle beam 309, which is collimated by collimating lenses 303.1 and 303.2 to form a collimated beam. Collimating lenses 303.1 and 303.2 typically consist of one or more electrostatic or magnetic lenses, or a combination of electrostatic and magnetic lenses. The collimated primary charged particle beam is incident on the primary multiple sub-beam forming unit 305 . The multiple sub-beam forming unit 305 basically comprises a first multiple aperture plate 306 . 1 irradiated by the primary charged particle beam 309 . The first multiple aperture plate 306.1 comprises a plurality of apertures in a grating configuration for generating a plurality of primary charged particle beamlets 3 which are transmitted through the plurality of apertures by a collimated primary charged particle beam 309. produce. The multiple sub-beam forming unit 305 comprises at least a further multiple aperture plate 306.2 which is located downstream of the first multiple aperture plate 306.1 with respect to the direction of movement of the electrons in the electron beam 309. For example, the second multi-well plate 306.2 has the function of a microlens array and is preferably set to a defined potential to adjust the focus position of the plurality of primary beamlets 3 in the intermediate image plane 321. A third active multi-well plate configuration 306.3 (not shown) includes individual electrostatic elements for each of the plurality of wells to individually affect each of the plurality of beamlets. Active multi-well plate configuration 306.3 consists of one or more multi-well plates with electrostatic elements, such as circular electrodes for microlenses, multipole electrodes or a series of multipole electrodes to form a deflector array, microlens array or Column head array. The multiple beamlet forming unit 305 consists of the adjacent first electrostatic field lens 307 and, together with the second field lens 308 and the second multiple aperture plate 306.2, focuses the plurality of primary charged particle beamlets 3 at the intermediate image plane In or near 321.

在中間像平面321內或附近,光射束轉向(steering)多重孔板390配置有具有靜電元件(例如,偏轉器)的多個孔,以分別操縱複數個帶電粒子子射束3中每一者。光射束轉向多重孔板390的孔徑構造成具有更大直徑,以允許複數個一次帶電粒子子射束3通過,即使在一次帶電粒子子射束3的焦點偏離其設計位置的情況下也可通過。In or near the intermediate image plane 321, a beam steering multi-aperture plate 390 is configured with a plurality of apertures with electrostatic elements (eg, deflectors) to steer each of the plurality of charged particle beamlets 3, respectively By. The aperture of the beam-steering multi-orifice plate 390 is configured to have a larger diameter to allow the passage of a plurality of primary charged particle beamlets 3, even if the focal point of the primary charged particle beamlets 3 is deviated from its design position. pass.

穿過中間像平面321的一次帶電粒子子射束3之複數個焦點在像平面101中由場透鏡組103.1和103.2以及物鏡102成像,其中晶圓7所需研究的表面由樣品載台500上的物體支架定位。物體照射系統100更包括在第一光束交叉點108附近的一偏轉系統110,如此複數個帶電粒子子射束3可往與光束傳播方向垂直之方向(在此為z方向)偏轉。偏轉系統110已連接至控制單元800。物鏡102和偏轉系統110置中於與晶圓表面25垂直的多重子射束帶電粒子顯微鏡系統1之光軸105上。然後用偏轉系統110光柵掃描配置在像平面101中的晶圓表面25。從而在晶圓表面101上同步掃描形成多個在光柵組態下的束斑5之複數個一次帶電粒子子射束3。在一範例中,複數個一次帶電粒子射束3的焦點5之光柵組態為大約一百個或複數個一次帶電粒子子射束3的六邊形光柵。一次束斑5具有約6 µm至15 µm的距離,並且直徑小於5 nm,例如3 nm、2 nm或甚至更小。在一範例中,束斑尺寸約為1.5 nm,並且兩相鄰束斑之間的距離為8 µm。在多個一次束斑5每一者的每一掃描位置處,分別產生複數個二次電子,以與一次束斑5相同的光柵組態形成複數個二次電子子射束9。在每個束斑5處產生的二次帶電粒子之數量或強度取決於撞擊的一次帶電粒子子射束之強度、照亮相應斑、束斑下物體的材料組成和形貌。二次帶電粒子子射束9在樣品帶電單元503所產生的靜電場作用下加速,並由物鏡102收集,由分射束器400導向偵測單元200。偵測單元200將二次電子子射束9成像到影像感測器207上,以在其中形成複數個二次帶電粒子像斑15。該偵測器包括複數個偵測器像素或個別偵測器。對於多個二次帶電粒子射束斑15每一者,分別偵測強度,並且以高通量對大影像斑塊以高解析度偵測晶圓表面的材料成分。例如,對於具有8 µm間距的10×10子射束光柵,利用偏轉系統110的一次影像掃描,影像解析度為例如2 nm,產生大約88 µm × 88 µm的影像斑塊。以一半的束斑尺寸,例如2 nm,對影像斑塊進行採樣,因此對於每個子射束,每個影像行的像素數為8000像素,從而由100個子射束產生的影像斑塊包括64億像素。控制單元800收集影像資料。在德國專利申請案102019000470.1(其在此是以引用方式併入本說明書中)以及前述美國專利案US 9.536.702中,皆描述使用例如平行處理的數位影像資料收集和處理之細節。The foci of the primary charged particle sub-beam 3 passing through the intermediate image plane 321 are imaged in the image plane 101 by the field lens groups 103.1 and 103.2 and the objective lens 102, wherein the surface to be investigated of the wafer 7 is captured by the sample stage 500. object holder positioning. The object illumination system 100 further includes a deflection system 110 near the first beam intersection 108, so that the plurality of charged particle beamlets 3 can be deflected in a direction perpendicular to the beam propagation direction (here, the z-direction). The deflection yoke 110 has been connected to the control unit 800 . Objective 102 and deflection system 110 are centered on optical axis 105 of multiple beamlet charged particle microscope system 1 perpendicular to wafer surface 25 . The wafer surface 25 disposed in the image plane 101 is then raster scanned with the deflection yoke 110 . Thus, a plurality of primary charged particle beamlets 3 of a plurality of beam spots 5 in a grating configuration are formed by synchronous scanning on the wafer surface 101 . In one example, the grating of the focal points 5 of the primary charged particle beams 3 is configured as a hexagonal grating of about one hundred or more primary charged particle beamlets 3 . The primary beam spot 5 has a distance of about 6 μm to 15 μm and a diameter of less than 5 nm, eg 3 nm, 2 nm or even smaller. In one example, the beam spot size is about 1.5 nm, and the distance between two adjacent beam spots is 8 µm. At each scanning position of each of the plurality of primary beam spots 5 , a plurality of secondary electrons are respectively generated to form a plurality of secondary electron sub-beams 9 in the same grating configuration as the primary beam spot 5 . The number or intensity of secondary charged particles generated at each beam spot 5 depends on the intensity of the impinging primary charged particle sub-beam, the illumination of the corresponding spot, the material composition and topography of the object under the beam spot. The secondary charged particle sub-beam 9 is accelerated by the electrostatic field generated by the sample charging unit 503 , collected by the objective lens 102 , and guided to the detection unit 200 by the beam splitter 400 . The detection unit 200 images the secondary electron beam 9 onto the image sensor 207 to form a plurality of secondary charged particle image spots 15 therein. The detector includes a plurality of detector pixels or individual detectors. For each of the plurality of secondary charged particle beam spots 15, the intensity is detected separately, and the material composition of the wafer surface is detected at high resolution with high throughput for large image patches. For example, for a 10x10 beamlet grating with 8 µm pitch, one image scan with deflection yoke 110, with an image resolution of eg 2 nm, produces an image patch of approximately 88 µm x 88 µm. Image patches are sampled at half the beam spot size, e.g. 2 nm, so for each sub-beam, the number of pixels per image row is 8000 pixels, so that the image patch produced by 100 sub-beams includes 6.4 billion pixel. The control unit 800 collects image data. Details of digital image data collection and processing using eg parallel processing are described in German Patent Application 102019000470.1, which is hereby incorporated by reference into the present specification, and in the aforementioned US Patent No. 9.536.702.

複數個二次電子子射束9通過第一偏轉系統110,並由第一掃描系統110偏轉並由分射束器單元400引導,以沿著偵測單元200的二次粒子射束路徑11。複數個二次電子子射束9與一次帶電粒子子射束3在相反方向上行進,並且分射束器單元400構造成通常藉助於磁場或電磁場的組合,將二次粒子射束路徑11與一次粒子射束路徑13分開。選擇性,額外磁修正元件420存在於一次粒子射束路徑和二次粒子射束路徑中。投影系統205更包括至少一第二偏轉系統222,其連接到投影系統控制單元820。控制單元800構造成補償複數個二次電子子射束9的複數個焦點15之位置上殘餘差(residual difference),使得多個電子焦點15的位置在影像感測器207上保持恆定。The plurality of secondary electron beamlets 9 pass through the first deflection system 110 and are deflected by the first scanning system 110 and directed by the beam splitter unit 400 to follow the secondary particle beam path 11 of the detection unit 200 . The plurality of secondary electron beamlets 9 travel in opposite directions from the primary charged particle beamlets 3, and the beamsplitter unit 400 is configured to connect the secondary particle beam path 11 to the secondary particle beam path 11, typically by means of a combination of magnetic or electromagnetic fields. The primary particle beam paths 13 are separated. Optionally, additional magnetic correction elements 420 are present in the primary particle beam path and the secondary particle beam path. The projection system 205 further includes at least a second deflection system 222 connected to the projection system control unit 820 . The control unit 800 is configured to compensate for residual differences in the positions of the plurality of focal points 15 of the plurality of secondary electron beamlets 9 so that the positions of the plurality of electron focal points 15 remain constant on the image sensor 207 .

偵測單元200的投影系統205包括複數個二次電子子射束9的至少一第二交叉點212,孔徑214位於其中。在一範例中,孔徑214更包括偵測器(未顯示),其連接至投影控制控制單元820。投影系統控制單元820進一步連接到投影系統205的至少一靜電透鏡206,其包括另外的靜電或磁透鏡208、209、210,並且進一步連接到第三偏轉單元218。投影系統205更包括至少一第一多孔修正器220,其具有用於分別影響複數個二次電子子射束9之每一者的孔徑和電極;及選擇性另外的主動元件216,其連接至控制單元800。The projection system 205 of the detection unit 200 includes at least a second intersection 212 of the plurality of secondary electron beamlets 9, in which the aperture 214 is located. In one example, the aperture 214 further includes a detector (not shown) that is connected to the projection control control unit 820 . The projection system control unit 820 is further connected to at least one electrostatic lens 206 of the projection system 205 , which includes further electrostatic or magnetic lenses 208 , 209 , 210 , and is further connected to the third deflection unit 218 . The projection system 205 further includes at least a first aperture modifier 220 having apertures and electrodes for influencing each of the plurality of secondary electron sub-beams 9, respectively; and an optional further active element 216 connected to to the control unit 800.

影像感測器207由感測區域的陣列構成,其排列圖案相容於由投影透鏡205聚焦到影像感測器207上的二次電子子射束9之光柵配置。這使得能夠獨立於入射在影像感測器207上的其他二次電子子射束,以偵測每個個別的二次電子子射束。建立多個電信號並將其轉換為數位影像資料,並由控制單元800進行處理。在影像掃描期間,控制單元800構造成觸發影像感測器207,以預定時間間隔偵測來自複數個二次電子子射束9的多個及時解析強度信號,而影像斑塊的數位影像累積並從複數個一次帶電粒子子射束3的所有掃描位置拼接在一起。Image sensor 207 consists of an array of sensing regions whose arrangement pattern is compatible with the grating configuration of secondary electron beamlets 9 focused on image sensor 207 by projection lens 205 . This enables each individual secondary electron beamlet to be detected independently of other secondary electron beamlets incident on image sensor 207 . A plurality of electrical signals are created and converted into digital image data, which are processed by the control unit 800 . During image scanning, the control unit 800 is configured to trigger the image sensor 207 to detect a plurality of timely resolved intensity signals from the plurality of secondary electron beamlets 9 at predetermined time intervals, while the digital images of the image patches are accumulated and All scan positions from a plurality of primary charged particle beamlets 3 are stitched together.

圖1所示的影像感測器207可為電子靈敏度偵測器陣列,例如CMOS或CCD感測器。這種電子靈敏度偵測器陣列可包括電子到光子轉換單元,例如閃爍器元件或閃爍器元件的陣列。在另一具體實施例中,影像感測器207可構造成配置在複數個二次電子粒子像斑15的焦平面中之電子到光子轉換單元或閃爍器板。在此具體實施例中,影像感測器207可更包括中繼光學系統,該系統用於在諸如多個光電倍增管或雪崩光電二極體(未顯示)之類專用光子偵測元件上的二次帶電粒子像斑15處,將由電子至光子轉換單元產生的光子成像並引導。在US 9,536,702中公開這樣的影像感測器,其以引用方式併入本說明書中。在一範例中,中繼光學系統更包括用於將光分離並引導至第一慢光偵測器和第二快光偵測器的分射束器。第二快光偵測器例如由像是雪崩光電二極體的光電二極體陣列構成,該偵測器的速度足夠快來根據複數個一次帶電粒子子射束的掃描速度,以解析複數個二次電子子射束的影像信號。第一慢光檢測器較佳為CMOS或CCD感測器,其提供高解析度感測器資料信號,以監視焦點15或複數個二次電子子射束9並控制多重射束帶電粒子顯微鏡的操作,底下有更詳細說明。The image sensor 207 shown in FIG. 1 may be an array of electronically sensitive detectors, such as CMOS or CCD sensors. Such electron-sensitive detector arrays may include electron-to-photon conversion elements, such as scintillator elements or arrays of scintillator elements. In another embodiment, the image sensor 207 may be configured as an electron-to-photon conversion unit or scintillator plate disposed in the focal plane of the plurality of secondary electron particle image spots 15 . In this embodiment, the image sensor 207 may further include a relay optical system for photon detection on dedicated photon detection elements such as multiple photomultiplier tubes or avalanche photodiodes (not shown) At the secondary charged particle image spot 15, the photons generated by the electron-to-photon conversion unit are imaged and guided. Such an image sensor is disclosed in US 9,536,702, which is incorporated herein by reference. In one example, the relay optical system further includes a beam splitter for splitting and directing the light to the first slow light detector and the second fast light detector. The second fast photodetector consists, for example, of an array of photodiodes such as avalanche photodiodes, which is fast enough to resolve the plurality of primary charged particle beamlets according to the scanning speed of the plurality of primary charged particle beams. The image signal of the secondary electron beam. The first slow light detector is preferably a CMOS or CCD sensor, which provides high resolution sensor data signals to monitor the focus 15 or a plurality of secondary electron beamlets 9 and to control the multiple beam charged particle microscope. The operation is described in more detail below.

在例示的範例中,一次帶電粒子源以電子源301的形式實現,該電子源具有發射器尖端和擷取電極。當使用除電子之外的一次帶電粒子時,例如氦離子,一次帶電粒子源301的配置可與所示的不同。一次帶電粒子源301和主動多重孔板配置306.1…306.3以及射束轉向多重孔板390由一次子射束控制模組830控制,其連接到控制單元800。In the illustrated example, the primary charged particle source is implemented in the form of an electron source 301 having an emitter tip and an extraction electrode. When primary charged particles other than electrons are used, such as helium ions, the configuration of the primary charged particle source 301 may vary from that shown. The primary charged particle source 301 and the active multi-orifice plate configurations 306.1 . . . 306.3 and the beam-steering multi-orifice plate 390 are controlled by the primary beamlet control module 830, which is connected to the control unit 800.

在通過掃描複數個一次帶電粒子子射束3來擷取影像斑塊期間,較佳不移動平台500,並且在擷取影像斑塊之後,將平台500移動至下一要擷取的影像斑塊處。平台移動和平台位置由業界已知的感測器監測和控制,例如雷射干涉儀、光柵干涉儀、共聚焦微透鏡陣列或類似儀器。例如,位置感測系統使用雷射干涉儀、電容感測器、共焦感測器陣列、光柵干涉儀或其組合之任一者,以確定載台的橫向和垂直位移與旋轉。如以下在本發明的具體實施例中所示,載台500從第一影像斑塊到下一影像斑塊的移動與影像斑塊的擷取重疊,並且通量增加。During the acquisition of image patches by scanning the plurality of primary charged particle beamlets 3, the platform 500 is preferably not moved, and after the image patches are acquired, the platform 500 is moved to the next image patch to be acquired place. Stage movement and stage position are monitored and controlled by sensors known in the industry, such as laser interferometers, grating interferometers, confocal microlens arrays, or similar instruments. For example, position sensing systems use any of laser interferometers, capacitive sensors, confocal sensor arrays, grating interferometers, or combinations thereof, to determine lateral and vertical displacement and rotation of the stage. As shown below in embodiments of the invention, the movement of the stage 500 from the first image patch to the next image patch overlaps with the capture of the image patch, and the throughput is increased.

圖2內對於通過擷取影像斑塊來檢測晶圓的方法具體實施例有更詳細說明。將晶圓以其晶圓表面25放置在複數個一次帶電粒子子射束3的聚焦平面中,並以第一影像斑塊17.1的中心21.1放置。影像斑塊17.1...k的預定位置對應於晶圓上用於半導體特徵檢測的檢測部位。從標準檔案格式的檢測檔案中,載入第一檢測部位33和第二檢測部位35的預定位置。預定的第一檢測部位33分成多個影像斑塊,例如第一影像斑塊17.1和第二影像斑塊17.2,並且第一影像斑塊17.1的第一中心位置21.1在多重射束帶電粒子顯微鏡的光學軸下方對準,用於該檢測任務的第一影像擷取步驟。選擇第一影像斑塊21.1的第一中心當成用於擷取第一影像斑塊17.1的第一局部晶圓坐標系統原點。對準晶圓以註冊晶圓表面25並產生晶圓坐標的坐標系統之方法在本領域中是眾所周知的。A specific embodiment of a method for inspecting a wafer by capturing image patches is described in more detail in FIG. 2 . The wafer is placed with its wafer surface 25 in the focal plane of the primary charged particle beamlets 3 and with the center 21.1 of the first image patch 17.1. The predetermined locations of the image patches 17.1 . . . k correspond to inspection sites on the wafer for semiconductor feature inspection. From the detection file in the standard file format, the predetermined positions of the first detection part 33 and the second detection part 35 are loaded. The predetermined first detection site 33 is divided into a plurality of image patches, such as a first image patch 17.1 and a second image patch 17.2, and the first center position 21.1 of the first image patch 17.1 is in the multiple beam charged particle microscope. Below the optical axis is aligned for the first image capture step of the inspection task. The first center of the first image patch 21.1 is selected as the first local wafer coordinate system origin for capturing the first image patch 17.1. Methods of aligning wafers to register wafer surface 25 and generate a coordinate system of wafer coordinates are well known in the art.

多個一次子射束以規則的光柵組態41分佈在每一影像斑塊中,並且通過掃描機構進行掃描,以產生影像斑塊的數位影像。在此範例中,複數個一次帶電粒子子射束3以矩形光柵組態41配置,在具有n個束斑的第一行中具有N個一次束斑5.11、5.12至5.1N,而第M行具有束斑5.11至束斑5.MN。為了簡單起見,僅示出了M=五乘N=五束斑,但是束斑數量J=M乘N可更大,並且多個束斑5.11至5.MN可具有不同光柵組態41,例如六邊形或圓形光柵。A plurality of primary beamlets are distributed in each image patch in a regular raster configuration 41 and are scanned by a scanning mechanism to generate a digital image of the image patch. In this example, a plurality of primary charged particle beamlets 3 are arranged in a rectangular grating configuration 41, with N primary beam spots 5.11, 5.12 to 5.1N in the first row of n beam spots, and the Mth row With beam spot 5.11 to beam spot 5.MN. For simplicity, only M=five by N=five beam spots are shown, but the number of beam spots J=M by N could be larger and the plurality of beam spots 5.11 to 5.MN could have different grating configurations 41 , For example hexagonal or circular gratings.

每個一次帶電粒子子射束掃描通過晶圓表面25,如具有束斑5.11至5.MN以及一次帶電粒子子射束的掃描路徑27.11至掃描路徑27.MN之一次帶電粒子子射束範例所示。例如,沿著掃描路徑27.11...27.MN來回移動來執行複數個一次帶電粒子每一者的掃描,並且掃描偏轉器110使每個一次帶電粒子子射束的每個焦點5.11...5.MN從影像子場線的起始位置開始往x方向共同移動,該影像線在該範例中為例如影像子場31.MN的最左側影像點。然後,通過將一次帶電粒子子射束掃描到正確位置,以掃描每個焦點,然後掃描偏轉器110將複數個帶電粒子子射束之每一者平行移動置每一個別子場31.11...31.MN中下一線的線起始位置。返回到下一條掃描線的線起始位置之移動稱為反跳(flyback)。複數個一次帶電粒子子射束在平行掃描路徑27.11至27.MN中跟隨,從而同時獲得各個子場31.11至31.MN的多個掃描影像。對於影像擷取,如上所述,在焦點5.11至5.MN處發射複數個二次電子,並且產生複數個二次電子子射束9。複數個二次電子子射束9由物鏡102收集,通過第一偏轉系統110,並受引導至偵測單元200,並由影像感測器207偵測。複數個二次電子子射束9之每一者的順序資料串流與多個2D資料集內掃描路徑27.11…27.MN同步變換,從而形成每一子場的數位影像資料。根據預選的掃描程式,複數個一次帶電粒子子射束遵循預定掃描路徑27.11至27.MN。最後,通過影像拼接單元將多個子場的多個數位影像拼接在一起,以形成第一影像斑塊17.1的數位影像。每個影像子場構造成與相鄰影像子場具有小的重疊區域,如子場31.mn和子場31.m(n+1)的重疊區域39所示。先前技術的複數個一次帶電粒子射束光斑5.11至5.MN之間的間距通常由於漂移、透鏡畸變和其他像差而變化。因此,先前技術的重疊區域39通常構造成足夠大,以用一次影像掃描覆蓋整個影像斑塊,而不管束斑位置的波動。Each primary charged particle beamlet scans across wafer surface 25, as in the example of a primary charged particle beamlet with beam spot 5.11 to 5.MN and scan path 27.11 to scan path 27.MN of the primary charged particle beamlet Show. For example, scanning of each of the plurality of primary charged particles is performed by moving back and forth along the scan paths 27.11...27.MN, and the scan deflector 110 causes each focal point of each primary charged particle beamlet to 5. MN moves together in the x-direction from the starting position of the image subfield line, which in this example is, for example, the leftmost image point of the image subfield 31.MN. Each focal point is then scanned by scanning a primary charged particle beamlet to the correct location, and then the scanning deflector 110 translates each of the plurality of charged particle beamlets into each individual subfield 31.11... 31. The line start position of the next line in MN. The movement back to the line start position of the next scan line is called flyback. A plurality of primary charged particle sub-beams follow in parallel scan paths 27.11 to 27.MN, thereby simultaneously acquiring a plurality of scan images of each subfield 31.11 to 31.MN. For image capture, as described above, a plurality of secondary electrons are emitted at the focal points 5.11 to 5.MN, and a plurality of secondary electron sub-beams 9 are generated. A plurality of secondary electron beamlets 9 are collected by the objective lens 102 , pass through the first deflection system 110 , and are directed to the detection unit 200 and detected by the image sensor 207 . The sequential data streams of each of the plurality of secondary electron beamlets 9 are transformed synchronously with scan paths 27.11 . . . 27.MN within the plurality of 2D data sets to form digital image data for each subfield. The plurality of primary charged particle beamlets follow predetermined scan paths 27.11 to 27.MN according to a preselected scan program. Finally, the digital images of the subfields are spliced together by the image splicing unit to form a digital image of the first image patch 17.1. Each image subfield is constructed to have a small overlap area with adjacent image subfields, as shown by the overlap area 39 of subfield 31.mn and subfield 31.m(n+1). The spacing between the plurality of primary charged particle beam spots 5.11 to 5.MN of the prior art typically varies due to drift, lens distortion and other aberrations. Therefore, the overlap region 39 of the prior art is generally constructed to be large enough to cover the entire image patch with one image scan, regardless of beam spot position fluctuations.

在晶圓檢測方法的具體實施例中,用於晶圓檢測的多重射束帶電粒子顯微鏡系統通量通過減小重疊區域39的尺寸而增加。從而增加每個影像斑塊的大小,並增加通量。在一範例中,複數個一次帶電粒子子射束的焦點5之束間距為10 μm。如果每個200 nm的重疊區域39之寬度減小例如25%,則影像斑塊尺寸增加大約1%並且通量增加大約1%。隨著重疊區域寬度進一步減少65%,則通量增加2.5%。重疊區域39的減少係通過控制複數個一次帶電粒子子射束3的間距來實現。利用諸如圖1中主動式多重孔板306.3的補償器,諸如多重射束多極偏轉器器件,由複數個一次帶電粒子子射束3形成的束斑5之位置通過高精度控制。對於控制操作,用於偵測複數個二次電子子射束9的偵測器,例如偵測單元200的影像感測器207,構造成提供表示多個束斑5的位置之感測器信號。然後校正多個一次束斑5的光束位置偏差,並且減少重疊區域。通過以低於70 nm的精度將複數個一次帶電粒子子射束3之每一者的一次帶電粒子射束斑5精準控制在相應光柵位置處,實現通量提高2%。通過進一步精確控制低於30 nm的一次帶電粒子射束斑位置,則通量可提高3.5%以上。在下一步驟中,在擷取第一影像斑塊的數位影像後,晶圓在感測器控制下由晶圓載台移到相鄰預定義中心位置21.2,並定義新的局部晶圓坐標系統,中心位於預定義中心位置21.2。獲得第二影像斑塊17.2,從而獲得兩相鄰的影像斑塊17.1和17.2,其具有重疊區域19。同樣,與前述重疊區域39的減小類似,重疊區域19的尺寸減小並且通量增加。兩個影像斑塊17.1和17.2拼接在一起,以形成預定晶圓區域的影像。在擷取第一檢測部位33的數位影像之後,晶圓載台將晶圓移到預定中心位置21.k,以用於下一第二檢測部位35的影像擷取,例如檢測該預定晶圓區域處一處理控制監視器(PCM)。執行掃描操作(未例示),並獲得影像斑塊17.k。如這個簡化範例所示,通過此方法,依序檢測晶圓的幾個檢測部位。In a particular embodiment of the wafer inspection method, the throughput of a multiple beam charged particle microscope system for wafer inspection is increased by reducing the size of the overlap region 39 . This increases the size of each image patch and increases throughput. In one example, the beam spacing of the focal points 5 of the primary charged particle sub-beams is 10 μm. If the width of each 200 nm overlap region 39 is reduced, eg, by 25%, the image patch size increases by about 1% and the flux increases by about 1%. With a further 65% reduction in the width of the overlapping region, the flux increases by 2.5%. The reduction of the overlapping area 39 is achieved by controlling the spacing of the plurality of primary charged particle beamlets 3 . The position of the beam spot 5 formed by the plurality of primary charged particle beamlets 3 is controlled with high precision using a compensator such as the active multiple aperture plate 306.3 in Figure 1, such as a multiple beam multipole deflector device. For control operations, a detector for detecting the plurality of secondary electron beamlets 9, such as the image sensor 207 of the detection unit 200, is configured to provide sensor signals indicative of the positions of the plurality of beam spots 5 . The beam position deviations of the plurality of primary beam spots 5 are then corrected, and the overlapping area is reduced. By precisely controlling the primary charged particle beam spot 5 of each of the plurality of primary charged particle sub-beams 3 at the corresponding grating position with an accuracy of less than 70 nm, a 2% increase in flux is achieved. Through further precise control of the beam spot position of primary charged particles below 30 nm, the flux can be increased by more than 3.5%. In the next step, after capturing the digital image of the first image patch, the wafer is moved from the wafer stage to the adjacent predefined center position 21.2 under the control of the sensor, and a new local wafer coordinate system is defined, The center is at the predefined center position 21.2. A second image patch 17.2 is obtained, thereby obtaining two adjacent image patches 17.1 and 17.2, which have overlapping regions 19. Also, similar to the aforementioned reduction in overlap region 39, the size of overlap region 19 is reduced and the flux is increased. The two image patches 17.1 and 17.2 are stitched together to form an image of a predetermined wafer area. After capturing the digital image of the first inspection part 33, the wafer stage moves the wafer to the predetermined center position 21.k for image capture of the next second inspection part 35, such as inspecting the predetermined wafer area Execute a Process Control Monitor (PCM). A scan operation (not illustrated) is performed and image patches 17.k are obtained. With this method, several inspection sites of the wafer are inspected sequentially, as shown in this simplified example.

接下來,說明晶圓檢測任務的要求或規格。對於高通量晶圓檢測,影像斑塊17.1…k的影像擷取以及影像斑塊17.1…k之間的載台移動必須快速。另一方面,必須保持嚴格的影像品質規格,例如影像解析度、影像精度和可重複性。例如,影像解析度的要求通常為2 nm或以下,並且具有很高的可重複性。影像精度也稱為影像傳真度,例如,部件的邊緣位置,通常部件的絕對位置精度將以高絕對精度來決定。例如,複數個一次帶電粒子子射束中每一者的絕對橫向位置精度必須在10 nm以下,並且複數個一次帶電粒子子射束中每一者的絕對橫向位置必須知道精度小於1 nm。通常,對位置精度的要求約為解析度要求的50%更低。其次,必須獲得高影像一致性。影像一致性誤差定義為dU = (Imax – Imin) / (Imax + Imin),具有影像擷取之下均勻物體的最大和最小影像強度Imax和Imin。通常,影像一致性誤差dU必須低於5%。影像對比度和動態範圍必須足夠,以獲得受檢測半導體晶圓的半導體特徵和材料成分之精確表示。通常,動態範圍必須優於6或8位元,影像對比度必須優於80%。Next, the requirements or specifications of the wafer inspection task are described. For high throughput wafer inspection, image capture of image patches 17.1...k and stage movement between image patches 17.1...k must be fast. On the other hand, strict image quality specifications such as image resolution, image accuracy and repeatability must be maintained. For example, image resolution requirements are typically 2 nm or less with high repeatability. Image accuracy is also called image fidelity, for example, the edge position of the part, usually the absolute position accuracy of the part will be determined with high absolute accuracy. For example, the absolute lateral position of each of the plurality of primary charged particle beamlets must be known to an accuracy of less than 10 nm, and the absolute lateral position of each of the plurality of primary charged particle beamlets must be known to an accuracy of less than 1 nm. Typically, the positional accuracy requirement is about 50% lower than the resolution requirement. Second, high image consistency must be obtained. Image uniformity error is defined as dU = (Imax – Imin) / (Imax + Imin) with the maximum and minimum image intensities Imax and Imin of a homogeneous object under image capture. Typically, the image consistency error dU must be less than 5%. Image contrast and dynamic range must be sufficient to obtain an accurate representation of the semiconductor features and material composition of the semiconductor wafer being inspected. Typically, the dynamic range must be better than 6 or 8 bits, and the image contrast must be better than 80%.

在高影像可重複性下,應當理解,在相同區域的重複影像擷取下,產生第一和第二重複的數位影像,並且第一和第二重複數位影像之間的差低於預定臨界。例如,第一和第二重複數位影像之間的影像失真差異必須低於1 nm,較佳低於0.5 nm,並且影像對比度差異必須低於10%。以這種方式,即使通過重複成像操作也可獲得相似的影像結果。這對於例如影像擷取和不同晶圓晶粒中類似半導體結構的比較,或對於將獲得的影像與從CAD資料或資料庫或參考影像的影像模擬所獲得的代表性影像進行比較而言非常重要。At high image repeatability, it should be understood that with repeated image captures of the same area, first and second repeated digital images are generated, and the difference between the first and second repeated digital images is below a predetermined threshold. For example, the difference in image distortion between the first and second replicate digital images must be below 1 nm, preferably below 0.5 nm, and the difference in image contrast must be below 10%. In this way, similar imaging results can be obtained even by repeating imaging operations. This is important, for example, for image capture and comparison of similar semiconductor structures in different wafer dies, or for comparing acquired images with representative images obtained from CAD data or image simulations of databases or reference images .

晶圓檢測任務的要求或規格之一是通量。通量取決於幾個參數,例如樣品載台的速度、載台加速和減速所需的時間、在每個新測量位置對準樣品載台所需的重複次數,以及每次擷取所需的測量面積。上面說明通過減少重疊區域而增加影像斑塊大小,以提高通量之範例。每擷取時間的測量面積由停留時間、解析度和子射束數決定。停留時間的典型範例在20 ns至80 ns之間。因此,快速影像感測器207處的像素速率在12 Mhz和50 MHz之間的範圍內,並且每分鐘可獲得大約20個影像斑塊或幀。然而,在擷取兩個影像斑塊之間,晶圓由晶圓載台橫向移到下一相關點。在一範例中,晶圓從第一影像斑塊移到第二影像斑塊時間間隔Tr大約為1秒,並且幀速率降低到大約15幀/分鐘。使用標準載台的晶圓從第一影像斑塊移到第二影像斑塊的典型時間間隔Tr,其包括第二影像斑塊的精度調整時間間隔超過1秒,可為3秒或甚至更久,例如5秒。對於100個子射束,像素尺寸為0.5 nm的高解析度模式下,通量的典型範例約為0.045 sqmm/min(平方毫米每分鐘),並且子射束的數量較大並且解析度較低,例如10000個子射束和25 ns的停留時間,則通量可能超過7 sqmm/min。包括載台的加速和減速等載台移動為多重射束檢測系統通量的限制因素之一。載台在短時間內更快地加速和減速通常需要複雜且昂貴的載台,或者在多重射束帶電粒子系統中引起動態振動。本發明的具體實施例實現晶圓檢測任務的高通量,同時將影像性能規格很好地維持在前述要求之內。One of the requirements or specifications for wafer inspection tasks is throughput. Throughput depends on several parameters, such as the speed of the sample stage, the time it takes for the stage to accelerate and decelerate, the number of repetitions required to align the sample stage at each new measurement location, and the amount of time required for each acquisition. Measure the area. An example of increasing the image patch size by reducing the overlapping area to increase throughput is described above. The measurement area per acquisition time is determined by dwell time, resolution and number of beamlets. Typical examples of dwell times are between 20 ns and 80 ns. Thus, the pixel rate at the fast image sensor 207 is in the range between 12 Mhz and 50 MHz, and approximately 20 image patches or frames can be obtained per minute. However, between capturing two image patches, the wafer is moved laterally from the wafer stage to the next relevant point. In one example, the time interval Tr of the wafer moving from the first image patch to the second image patch is about 1 second, and the frame rate is reduced to about 15 frames/minute. Typical time interval Tr for wafer movement from a first image patch to a second image patch using a standard stage, including a precision adjustment time interval of more than 1 second for the second image patch, may be 3 seconds or even longer , for example 5 seconds. A typical example of flux is about 0.045 sqmm/min (square millimeters per minute) in high-resolution mode with a pixel size of 0.5 nm for 100 beamlets, and the number of beamlets is larger and the resolution is lower, For example with 10000 beamlets and a dwell time of 25 ns, the flux may exceed 7 sqmm/min. Stage movement, including stage acceleration and deceleration, is one of the limiting factors for the throughput of multiple beam detection systems. Faster acceleration and deceleration of the stage in a short period of time often requires complex and expensive stages, or induces dynamic vibrations in multiple beam charged particle systems. Embodiments of the present invention achieve high throughput for wafer inspection tasks while maintaining image performance specifications well within the aforementioned requirements.

通常,由於漂移和動態效應,其包括殘留和不需要的載台運動,在沒有控制的情況下,快速和高通量的影像擷取會惡化。通常,與理想影像擷取條件的偏差由誤差函數所描述。在圖3a中以多個束斑5的圓形配置範例,示出其中多個像斑5相對於晶圓7旋轉和位移的誤差函數範例。具有影像坐標xi和yi的影像坐標系統51由影像斑塊中心處的虛擬坐標系統定義,如通過用束斑5(例如三個)掃描一次帶電粒子子射束集合而獲得。預定中心掃描位置處的一組一次帶電粒子子射束中心線稱為視線53,使得視線53和影像坐標系統的z軸相同。在理想情況下,並且在對多重子射束帶電粒子顯微系統1進行適當校準後,多重子射束帶電粒子顯微系統1的視線53和光軸105是相同的。在實際成像情況下,視線53偏離多重子射束帶電粒子顯微鏡系統1的光軸105。該偏差例如來自於物體照射單元100的漂移、第一掃描偏轉器110中的像差或一次帶電粒子射束路徑13中的其他靜電和磁性元件,例如多重子射束產生器主動元件330或分射束器400之任一者。在實際成像情況下,視線53的偏差隨時間變化,其包括每個影像斑塊17.1…k的一次影像掃描之影像擷取時間。Often, fast and high-throughput image acquisition is degraded without control due to drift and dynamic effects, which include residual and unwanted stage motion. Typically, the deviation from ideal image capture conditions is described by an error function. An example of the error function in which the plurality of image spots 5 are rotated and displaced relative to the wafer 7 is shown in FIG. 3 a with an example of a circular configuration of the plurality of beam spots 5 . An image coordinate system 51 with image coordinates xi and yi is defined by a virtual coordinate system at the center of the image patch, as obtained by scanning a primary set of charged particle beamlets with beam spots 5 (eg three). The centerline of a set of primary charged particle beamlets at the predetermined central scan location is referred to as line of sight 53, such that line of sight 53 and the z-axis of the image coordinate system are the same. Ideally, and after proper calibration of the multiple sub-beam charged particle microscope 1, the line of sight 53 and the optical axis 105 of the multiple sub-beam charged particle microscope 1 are the same. In the actual imaging situation, the line of sight 53 is deviated from the optical axis 105 of the multiple sub-beam charged particle microscope system 1 . This deviation arises, for example, from drift of the object illumination unit 100 , aberrations in the first scanning deflector 110 or other electrostatic and magnetic elements in the primary charged particle beam path 13 , such as multiple sub-beam generator active elements 330 or splitters any of the beamers 400 . In the actual imaging situation, the deviation of the line of sight 53 varies with time, which includes the image capture time of one image scan of each image patch 17.1 . . . k.

局部晶圓坐標系統551被定義在具有局部晶圓坐標xl和yl的晶圓之檢測部位處。在實際成像情況下,局部晶圓坐標系統551偏離具有視線53的影像坐標系統51。位移向量55例如由晶圓載台的未對準、晶圓載台的漂移或影像坐標系統51的漂移或兩者所引起。在實際成像情況下,局部晶圓座標系統551的偏差隨時間變化,其包括一次影像掃描的影像擷取時間。位移向量55通常描述為時間相關向量D(t)=[Dx, Dy, Dz] (t)。在實際成像情況下,位移向量55包括視線53的偏差與晶圓載台500的飄移之差異,兩者各自隨時間變化,其包括每個影像斑塊17.1…k的一次影像掃描之影像擷取時間。A local wafer coordinate system 551 is defined at the inspection site of the wafer having local wafer coordinates x1 and yl. In the actual imaging situation, the local wafer coordinate system 551 deviates from the image coordinate system 51 with the line of sight 53 . Displacement vector 55 is caused, for example, by wafer stage misalignment, wafer stage drift, or image coordinate system 51 drift, or both. In the actual imaging situation, the deviation of the local wafer coordinate system 551 varies with time, which includes the image capture time of one image scan. The displacement vector 55 is generally described as the time correlation vector D(t)=[Dx, Dy, Dz](t). In the actual imaging situation, the displacement vector 55 includes the difference between the deviation of the line of sight 53 and the drift of the wafer stage 500, both of which vary with time, including the image capture time of one image scan of each image patch 17.1...k .

影像坐標系統51可繞著z軸或視線53,相對於局部晶圓坐標系統551旋轉旋轉角Rz,由箭頭57指示,並且在具有坐標(xi’, yi’)的旋轉影像坐標系統59中獲得來自晶圓表面25的影像斑塊17之影像。旋轉角可發生在任何軸上,並且可隨時間變化以形成旋轉角向量R(t) = [Rx, Ry, Rz](t)。通過繞z軸旋轉,所有像斑5旋轉到像斑5'(指示的點),由未旋轉的像斑5與已旋轉的像斑5'間之位移向量61所示。影像旋轉所引起的偏差係由像斑5的旋轉或由載台繞垂直軸或z軸的旋轉或這兩者而產生。The image coordinate system 51 may be rotated about the z-axis or line of sight 53 by an angle of rotation Rz relative to the local wafer coordinate system 551, indicated by arrow 57, and obtained in the rotated image coordinate system 59 with coordinates (xi', yi') Image of image patch 17 from wafer surface 25 . The rotation angle can occur on any axis and can vary over time to form the rotation angle vector R(t) = [Rx, Ry, Rz](t). By rotating around the z-axis, all image spots 5 are rotated to image spots 5' (points indicated), as shown by the displacement vector 61 between the unrotated image spots 5 and the rotated image spots 5'. Aberrations caused by image rotation are caused by rotation of the image spot 5 or by rotation of the stage about the vertical axis or the z-axis or both.

圖3b以圖2的影像斑塊17.1為例,說明影像旋轉的情況。使用與圖2中相同的參考編號,但成像坐標系統51相對於晶圓坐標系統551旋轉。旋轉以光柵結構配置的複數個焦點5、旋轉影像斑塊31,並且旋轉每個掃描路徑27。在本發明的一具體實施例中,底下有更詳細說明,影像旋轉透過複數個焦點5的光柵配置旋轉來補償。這與單束帶電粒子顯微鏡不同,單束帶電粒子顯微鏡可通過動態掃描旋轉來補償影像旋轉,即通過改變單一掃描路徑來有效地實現單一掃描路徑的旋轉。在子場37.1和37.2處例示掃描旋轉的效果,作為兩個一次帶電粒子子射束範例中掃描旋轉對複數個一次帶電粒子子射束的影響之範例。多重射束帶電粒子顯微鏡的掃描束偏轉器可旋轉掃描路徑27,但是掃描偏轉器不能旋轉多個光斑5的光柵結構。為了補償旋轉,其包括多個光斑5的光柵配置旋轉之動態變化,需要額外器件,如本發明的一些具體實施例中所提供。Fig. 3b takes the image patch 17.1 of Fig. 2 as an example to illustrate the situation of image rotation. The same reference numbers as in FIG. 2 are used, but the imaging coordinate system 51 is rotated relative to the wafer coordinate system 551 . The plurality of focal points 5 arranged in a grating structure are rotated, the image patches 31 are rotated, and each scan path 27 is rotated. In an embodiment of the present invention, described in more detail below, the image rotation is compensated for by the rotation of the grating arrangement of the plurality of focal points 5 . This is different from the single-beam charged particle microscope, which can compensate for the image rotation through dynamic scanning rotation, that is, the rotation of the single scanning path is effectively realized by changing the single scanning path. The effect of scan rotation is illustrated at subfields 37.1 and 37.2 as an example of the effect of scan rotation on a plurality of primary charged particle beamlets in two primary charged particle beamlet examples. The scanning beam deflector of a multiple beam charged particle microscope can rotate the scanning path 27 , but the scanning deflector cannot rotate the grating structure of the multiple spots 5 . To compensate for the rotation, which includes dynamic changes in the rotation of the grating configuration of the plurality of light spots 5, additional components are required, as provided in some embodiments of the present invention.

根據本發明實施例的多重子射束帶電粒子顯微系統包括複數個感測器,這些感測器在影像擷取期間提供感測器信號。感測器是例如載台500的載台位置感測器、配置在諸如孔214的孔處之感測器或影像感測器207。控制單元800構造成從感測器信號中提取誤差函數,例如影像位移向量D(t)、影像旋轉R(t),其包括焦點位置變化或影像平面傾斜。通常,控制單元800構造成通過本領域已知方法來分析感測器信號,並將感測器信號分解成一組個別的模型誤差函數,例如通過一組具有誤差振幅的預定模型誤差函數之擬合運算至感測器資料。這種擬合運算例如可為最小二乘擬合運算或奇異值分解,並且計算模型誤差函數集合中每個模型誤差函數的多個誤差振幅。通過誤差振幅的計算,用於控制多個一次和二次帶電粒子子射束3和9以及載台500的資料量顯著減少到例如六個誤差振幅。然而,在本發明的具體實施例中,以相同方式考慮大量誤差振幅,例如放大誤差、不同的高階失真和個別場相關影像像差圖案。正常化誤差振幅可描述例如視線在兩橫向方向上的位移、晶圓載台在橫向和軸向上的位移、晶圓載台的旋轉、視線的旋轉、放大誤差、聚焦誤差、像散誤差或失真誤差。通過在一組有限的誤差振幅中分解感測器信號,顯著提高校正信號的計算和控制速度。Multiple sub-beam charged particle microscopy systems according to embodiments of the present invention include a plurality of sensors that provide sensor signals during image acquisition. The sensor is, for example, a stage position sensor of stage 500 , a sensor arranged at a hole such as hole 214 , or image sensor 207 . The control unit 800 is configured to extract an error function from the sensor signal, such as the image displacement vector D(t), the image rotation R(t), including focus position changes or image plane tilt. Typically, the control unit 800 is configured to analyze the sensor signal by methods known in the art and decompose the sensor signal into a set of individual model error functions, such as by fitting a set of predetermined model error functions with error amplitudes Compute to sensor data. Such a fitting operation may be, for example, a least squares fitting operation or singular value decomposition, and calculates a plurality of error amplitudes for each model error function in the set of model error functions. Through the calculation of error amplitudes, the amount of data used to control the plurality of primary and secondary charged particle beamlets 3 and 9 and stage 500 is significantly reduced to, for example, six error amplitudes. However, in particular embodiments of the present invention, a large number of error amplitudes, such as amplification errors, different higher order distortions and individual field-dependent image aberration patterns, are considered in the same way. The normalized error amplitude may describe, for example, displacement of the line of sight in both lateral directions, displacement of the wafer stage in the lateral and axial directions, rotation of the wafer stage, rotation of the line of sight, magnification error, focus error, astigmatism error or distortion error. By decomposing the sensor signal in a limited set of error amplitudes, the calculation and control speed of the correction signal is significantly increased.

在具體實施例的範例中,控制單元800構造成分析誤差振幅隨時間的發展。記錄誤差振幅隨時間變化的歷史,並且控制單元構造成將誤差振幅的變化擴展為時間相關模型函數。控制單元800構造成預測至少一誤差振幅子集在短時間內的變化,例如在掃描時間間隔Ts的影像掃描中一小部分期間。影像斑塊的掃描時間間隔Ts介於1秒與5秒之間,具體取決於停留時間(dwell time)。在一個典型範例中,一個影像斑塊Ts的掃描時間間隔約為3秒。在一範例中,誤差振幅的預測變化之緩慢改變(通常稱為漂移)與誤差振幅的預測發展之快速動態改變(通常稱為動態變化)分開。在一範例中,控制單元800構造成預測在載台從第一影像斑塊移到第二影像斑塊的時間間隔Tr期間,至少誤差振幅子集的變化。載台從第一影像斑塊移到第二影像斑塊的時間間隔Tr在0.5秒到5秒之間。在一範例中,控制單元800構造成預測在載台從快速運動減速至停止位置的時間Td期間,至少誤差振幅子集的變化。通常,控制單元800構造成用於根據載台的致動輸出預測模型,提取複數個控制信號之至少一者。In an example of a specific embodiment, the control unit 800 is configured to analyze the development of the error amplitude over time. A history of the variation of the error amplitude over time is recorded, and the control unit is configured to expand the variation of the error amplitude as a time-dependent model function. The control unit 800 is configured to predict changes in at least one subset of the error amplitudes over a short period of time, eg during a small fraction of the image scans of the scan time interval Ts. The scanning time interval Ts of the imaged patches was between 1 and 5 seconds, depending on the dwell time. In a typical example, the scanning time interval of one image patch Ts is about 3 seconds. In one example, slow changes in predicted changes in error amplitude (often referred to as drift) are separated from fast dynamic changes in predicted development of error amplitudes (often referred to as dynamics). In one example, the control unit 800 is configured to predict the change in at least a subset of the error amplitudes during the time interval Tr when the stage moves from the first image patch to the second image patch. The time interval Tr for moving the stage from the first image patch to the second image patch is between 0.5 seconds and 5 seconds. In one example, the control unit 800 is configured to predict the change in at least a subset of the error amplitudes during the time Td when the stage decelerates from the fast motion to the stop position. Typically, the control unit 800 is configured to extract at least one of a plurality of control signals based on the actuation output prediction model of the stage.

在具體實施例的範例中,分別外推緩慢變化部分、漂移和動態變化部分或誤差振幅的動態變化之誤差振幅發展。例如,漂移部分通常表現出線性行為或漸近行為。例如,熱效應通常會導致具有漸近行為的緩慢漂移。利用對時間誤差振幅發展的先前知識,基於具有預定漸近行為的模型函數推導出漂移之發展,並且控制單元800構造成產生期望預測誤差振幅的控制信號。誤差振幅的緩慢變化發展或漂移與快速發展分開,並且例如直接轉發誤差振幅的漂移,以控制載台500。圖4和圖5例示代表性誤差振幅隨時間的變化。圖4a顯示具有誤差振幅模型函數907隨時間t的預定漸近行為的漂移或緩慢變化誤差振幅Sn(t)之範例。這種行為對於熱漂移或靜電或電磁元件漂移為典型的,但隨時間推移,其他影響也有類似發展。漂移的其他來源可以是可變電致伸縮力,或在影像掃描期間由導電部件或晶圓充電引起的漂移。在操作期間,控制單元800構造成從感測器資料連續推導出漂移誤差振幅Sn(t)。操作時間包括第一影像斑塊17.1的第一影像掃描之第一時間間隔Ts1、晶圓載台從第一影像斑塊17.1的第一中心位置21.1移動至第二影像斑塊17.2的第二中心位置21.2之時間間隔Tr,以及第二影像斑塊17.2的第二影像掃描之第二時間間隔Ts2(參見圖2的參考編號)。例如,在第一時間間隔Ts1期間的實際時間Ta上,確定誤差振幅Sn(t)的時間梯度903或者模型函數907近似於測量誤差振幅Sn(t)。利用誤差振幅模型函數907或梯度向量903,預測誤差振幅Sn(t)的發展,並預測在第二時間間隔Ts2期間的未來時間tc,誤差振幅Sn(t)的漂移部分達到預定臨界值Sn_max ,如線901所示。該臨界例如根據與誤差向量Sn(t)相關的影像品質參數的規範而預先確定。在兩個影像斑塊17.1和17.2的兩個後續影像掃描間之時間間隔Tr中,控制單元800構造成相應改變補償器的控制值,並且通過調整多重射束帶電粒子顯微鏡1的主動元件,以減小誤差振幅Sn(t)的漂移分量。主動元件可包括緩慢作用的補償器,例如磁性元件或載台。在本發明的具體實施例中,視線53或影像坐標系統51的橫向漂移例如通過添加偏移至晶圓載台500的橫向位置來補償,並且焦點位置的漂移例如通過添加偏移至晶圓載台500的z位置來補償。在本發明的具體實施例中,複數個一次帶電粒子子射束3的成像放大率漂移會引起複數個一次帶電粒子子射束3的間距變化,並且例如通過添加偏移電流至物鏡102的專用磁透鏡元件來補償。在本發明的具體實施例中,如圖3中所描述複數個一次帶電粒子子射束3的旋轉漂移,通過載台500繞z軸的相應旋轉或複數個一次帶電粒子子射束3的旋轉校正來補償,一次帶電粒子子射束係通過添加偏移電流至第二專用磁透鏡元件(例如物鏡102)以產生。圖4b內例示結果。通過此調整,校正後的緩慢變化漂移誤差振幅Sn(t)受控制遠遠超出誤差振幅臨界Sn_max。由於漂移部分隨時間緩慢變化,可至少部分在與後續影像掃描之間的時間Tr期間調整和補償誤差振幅Sn(t)。因此,賦予一種使用多重射束帶電粒子顯微鏡檢測晶圓之方法,步驟如下: 在第一時間間隔Ts1期間第一影像斑塊的第一影像擷取步驟, 在時間間隔Tr期間該晶圓載台從第一影像斑塊的位置到第二影像斑塊的移動, 以及在第二時間間隔Ts2期間第二影像斑塊的第二影像擷取步驟,藉此, 在第一時間間隔Ts1期間,從複數個感測器信號計算至少第一誤差振幅, 在第一時間間隔Ts1期間,預測第一誤差振幅至少經過第一時間間隔Ts1、移動時間間隔Tr和第二時間間隔Ts2的發展, 並且,至少在移動時間間隔Tr期間,將控制信號提供給多重射束帶電粒子顯微鏡的控制單元,用於將第二時間間隔Ts2期間誤差振幅的預測發展保持低於一預定臨界。In an example of a specific embodiment, the error amplitude development of the slowly varying portion, the drift and the dynamically varying portion or the dynamic variation of the error amplitude, respectively, is extrapolated. For example, drift parts often exhibit linear or asymptotic behavior. For example, thermal effects often lead to slow drifts with asymptotic behavior. Using prior knowledge of the temporal error amplitude development, the drift development is derived based on a model function with predetermined asymptotic behavior, and the control unit 800 is configured to generate a control signal of the desired predicted error amplitude. The slowly varying development or drift of the error amplitude is separated from the fast development and, for example, the drift of the error amplitude is directly relayed to control the stage 500 . 4 and 5 illustrate representative error amplitudes over time. Figure 4a shows an example of a drifting or slowly varying error amplitude Sn(t) with a predetermined asymptotic behavior of the error amplitude model function 907 over time t. This behavior is typical for thermal drift or electrostatic or electromagnetic component drift, but other effects develop similarly over time. Other sources of drift can be variable electrostrictive force, or drift caused by charging of conductive parts or wafers during image scanning. During operation, the control unit 800 is configured to continuously derive the drift error amplitude Sn(t) from the sensor data. The operation time includes the first time interval Ts1 of the first image scan of the first image patch 17.1, the movement of the wafer stage from the first center position 21.1 of the first image patch 17.1 to the second center position of the second image patch 17.2 The time interval Tr of 21.2, and the second time interval Ts2 of the second image scan of the second image patch 17.2 (see reference numerals in FIG. 2). For example, over the actual time Ta during the first time interval Ts1, the time gradient 903 or model function 907 of the determined error amplitude Sn(t) is approximated to the measured error amplitude Sn(t). Using the error amplitude model function 907 or the gradient vector 903, the development of the error amplitude Sn(t) is predicted, and at a future time tc during the second time interval Ts2, the drifted part of the error amplitude Sn(t) reaches a predetermined critical value Sn_max, As shown by line 901 . The threshold is predetermined, for example, according to the specification of the image quality parameter related to the error vector Sn(t). In the time interval Tr between two subsequent image scans of the two image patches 17.1 and 17.2, the control unit 800 is configured to change the control value of the compensator accordingly, and by adjusting the active elements of the multiple beam charged particle microscope 1 to The drift component of the error amplitude Sn(t) is reduced. Active elements may include slow acting compensators, such as magnetic elements or stages. In particular embodiments of the invention, lateral drift of the line of sight 53 or image coordinate system 51 is compensated for, for example, by adding an offset to the lateral position of the wafer stage 500 , and shifts in focus position, for example, by adding an offset to the wafer stage 500 . z position to compensate. In particular embodiments of the present invention, the imaging magnification drift of the plurality of primary charged particle beamlets 3 causes the spacing of the plurality of primary charged particle beamlets 3 to vary, and for example by adding an offset current to the dedicated Magnetic lens elements to compensate. In a specific embodiment of the present invention, the rotational drift of the plurality of primary charged particle beamlets 3 as depicted in FIG. Correction to compensate, a primary charged particle beamlet is produced by adding an offset current to a second dedicated magnetic lens element (eg, objective 102). The results are illustrated in Figure 4b. With this adjustment, the corrected slowly varying drift error amplitude Sn(t) is controlled well beyond the error amplitude critical Sn_max. Since the drift portion varies slowly with time, the error amplitude Sn(t) can be adjusted and compensated at least in part during the time Tr between subsequent image scans. Therefore, a method of inspecting wafers using multiple beam charged particle microscopy is provided, the steps are as follows: The first image capturing step of the first image patch during the first time interval Ts1, movement of the wafer stage from the position of the first image patch to the second image patch during the time interval Tr, and a second image capturing step of the second image patch during the second time interval Ts2, whereby, During a first time interval Ts1, at least a first error amplitude is calculated from the plurality of sensor signals, During the first time interval Ts1, the first error amplitude is predicted to develop through at least the first time interval Ts1, the moving time interval Tr and the second time interval Ts2, And, at least during the moving time interval Tr, a control signal is provided to the control unit of the multiple beam charged particle microscope for keeping the predicted development of the error amplitude during the second time interval Ts2 below a predetermined threshold.

在一範例中,根據預測模型或外推法,產生對第一誤差振幅發展的預測。In one example, a prediction of the development of the first error amplitude is generated according to a prediction model or extrapolation.

在一範例中,控制信號提供給多重射束帶電粒子顯微鏡的控制單元,用於也在時間間隔Ts1或Ts2的影像掃描期間,將誤差振幅的預測發展保持低於一預定臨界。例如,如果預測到影像坐標系統的緩慢漂移,則影像坐標系統的漂移可通過載台500的緩慢補償運動來補償,使得在影像擷取期間Sn(t)受控制在遠低於臨界Sn_max。In one example, a control signal is provided to the control unit of the multiple beam charged particle microscope for keeping the predicted development of the error amplitude below a predetermined threshold also during the image scanning of the time interval Ts1 or Ts2. For example, if a slow drift of the image coordinate system is predicted, the drift of the image coordinate system can be compensated by slow compensation motion of stage 500 so that Sn(t) is controlled well below the critical Sn_max during image capture.

圖5例示由誤差振幅Nn(t)的動態變化所描述成像偏差的快速動態變化。成像偏差的這種動態變化可例如由內部噪訊源(例如真空泵)或其他內部噪訊源(例如由晶圓載台的快速加速和減速引起的振動)引入。其他噪訊源可為外部來源。Figure 5 illustrates the rapid dynamic changes in imaging bias described by the dynamic changes in the error amplitude Nn(t). Such dynamic changes in imaging bias may be introduced, for example, by internal noise sources (eg, vacuum pumps) or other internal noise sources (eg, vibrations caused by rapid acceleration and deceleration of the wafer stage). Other noise sources may be external sources.

動態變化Nn(t)顯示一種簡化的週期行為,其半週期小於一個影像斑塊的一個掃描時間間隔Ts1或Ts2。在本發明的一具體實施例中,控制單元800構造成推導出誤差振幅Nn(t)的動態變化,並高速確定多重射束帶電粒子顯微鏡1的快速主動元件之控制信號。這種主動元件例如為靜電束偏轉掃描器或靜電校正器,其可高速調整。在具有掃描時間Ts的第一影像斑塊之影像掃描期間,不受控制的誤差振幅Nn(t)至少超過兩倍tc1和tc2的預定誤差振幅窗口DNn,由參考編號905表示。具有上下臨界用於誤差振幅Nn(t)的誤差振幅窗口905代表誤差振幅Nn(t)所表示影像品質參數的規範要求。控制單元800更構造成提供動態控制信號給快速主動元件的控制單元,使得如圖5b所示的該已校正動態偏差或誤差振幅Nn(t)受控制在預定誤差振幅窗口905的上臨界與下臨界之間。控制操作器800設置有快速控制迴路,例如開放式控制迴路,允許以超過約0.3Hz的影像掃描頻率或幀速率1/Ts至少50倍之頻寬進行調整和控制,較佳為至少100倍,或甚至更佳為1000倍。在一範例中,如果已執行成像像差,則以大約2.5kHz或更高的控制頻率,每行掃描至少一次誤差向量的計算和用於補償的控制信號擷取。因此,電控制信號包括具有在0.1kHz到10kHz或更大範圍頻寬的信號。The dynamic variation Nn(t) shows a simplified periodic behavior whose half-period is less than one scan time interval Ts1 or Ts2 of one image patch. In an embodiment of the present invention, the control unit 800 is configured to derive the dynamic variation of the error amplitude Nn(t) and to determine the control signal of the fast active element of the multiple beam charged particle microscope 1 at high speed. Such active elements are, for example, electrostatic beam deflection scanners or electrostatic correctors, which can be adjusted at high speed. During image scanning of the first image patch with scanning time Ts, the uncontrolled error amplitude Nn(t) exceeds at least twice the predetermined error amplitude window DNn of tc1 and tc2, denoted by reference numeral 905 . The error amplitude window 905 with upper and lower thresholds for the error amplitude Nn(t) represents the normative requirements for the image quality parameter represented by the error amplitude Nn(t). The control unit 800 is further configured to provide a dynamic control signal to the control unit of the fast active element such that the corrected dynamic deviation or error amplitude Nn(t) as shown in FIG. between critical. The control operator 800 is provided with a fast control loop, such as an open control loop, allowing adjustment and control at a bandwidth of at least 50 times, preferably at least 100 times, over an image scan frequency of about 0.3 Hz or a frame rate of 1/Ts, Or even better 1000 times. In one example, if imaging aberrations have been performed, then at a control frequency of about 2.5 kHz or higher, the calculation of the error vector and the acquisition of the control signal for compensation are performed at least once per line scan. Accordingly, electrical control signals include signals having a bandwidth in the range of 0.1 kHz to 10 kHz or more.

應注意,根據控制運算器800的控制迴路之頻率響應,圖5b所示的校正誤差振幅Nn(t)之頻率可不同於圖5a所示的未校正誤差振幅Nn(t)之頻率。It should be noted that depending on the frequency response of the control loop of the control operator 800, the frequency of the corrected error amplitude Nn(t) shown in FIG. 5b may be different from the frequency of the uncorrected error amplitude Nn(t) shown in FIG. 5a.

在一範例中,控制單元800構造成預測誤差振幅Nn(t)的動態變化。例如,通過在誤差振幅Nn(t)的時間Ta推導出局部梯度909,控制單元800構造成在時間間隔Ts1的影像掃描期間,推導出用於動態控制的快速主動元件之控制信號。In one example, the control unit 800 is configured to predict the dynamic variation of the error amplitude Nn(t). For example, by deriving the local gradient 909 at the time Ta of the error amplitude Nn(t), the control unit 800 is configured to derive the control signal for the dynamic control of the fast active element during the image scan of the time interval Ts1.

晶圓載台未對準或漂移的驅動誤差源為將載台從第一影像斑塊17.1移到第二影像斑塊17.2而提供的時間間隔Tr。特別地,晶圓載台的未對準或漂移取決於調整重複次數和將載台從移動速度減速到第二影像斑塊17.2附近的停止位置所需之時間Td。在本發明的具體實施例中,第一影像斑塊17.1和第二影像斑塊17.2的影像擷取步驟間之時間間隔顯著減少,並且通量增加。通過本發明的一具體實施例中,提供一種帶電粒子顯微鏡操作方法,其中一系列影像斑塊按影像擷取步驟順序成像,其包括在第一時間間隔Ts1中的一第一影像斑塊17.1的第一影像擷取以及在第二時間間隔Ts2中第二影像斑塊17.2的第二影像擷取,並且更包括用於將一晶圓載台500從該第一影像斑塊17.1的第一中心位置21.1移到該第二影像斑塊17.2的第二中心位置21.2之第三時間間隔Tr,使得該第一和該第二時間間隔Ts1或Ts2之至少一者與該第三時間間隔Tr具有一重疊。從該第一時間間隔Ts1開始到該第二時間間隔Ts2結束的總時間間隔小於三個時間間隔Ts1、Tr和Ts2的總和,並且通量提高並實現快速檢測模式。圖5a和圖5c例示這種具有高通量的快速檢測模式之具體實施例。在圖5a的第一範例中,在晶圓載台500完全停止之前啟動第二影像斑塊17.2的影像擷取。在晶圓載台減速到結束位置的時間間隔Td期間,影像擷取開始並且影像擷取的時間間隔Ts2與載台500的減速時間間隔Td具有一重疊。減速時間間隔Td包括載台的反覆調整,以及完全停止載台所需的時間。快速移動後,載台可漂移或擺動或振動,載台減速時間間隔Td包括載台減速直到其位置與多重射束帶電粒子顯微鏡的視線重合所需之時間,而精度低於第一預定臨界並且動態位置穩定性低於第二預定臨界。控制單元800構造成在時間Td期間監測或預測預期橫向位置Xl(t)、Yl(t)和晶圓載台500的移動速度。控制單元800針對帶電粒子顯微鏡的掃描偏轉單元推導出控制信號,以通過視線53的可變偏移量Dx(t)、Dy(t)來補償減速時間Td期間晶圓載台之剩餘運動。控制單元800構造成根據晶圓載台的預測移動速度,計算第二影像斑塊17.2的影像擷取開始時間。例如,將第二影像斑塊17.2的影像擷取時間間隔Ts2之開始時間確定為晶圓載台的預測速度低於預定臨界之時間,使得可補償晶圓載台在減速時間間隔Td期間的剩餘運動。控制單元800構造成通過對第二影像斑塊17.2進行掃描成像來開始影像擷取,並提供偏移座標的時間函數給偏轉單元,以在減速時間間隔Td的至少一部分期間補償晶圓載台的殘餘運動,其中減速時間間隔與第二影像擷取的時間間隔Ts2具有一重疊。因此,第一時間間隔Ts1期間的第一影像掃描與第二時間間隔Ts2期間的第二影像掃描間之時間間隔Tr'減少。A source of drive error for wafer stage misalignment or drift is the time interval Tr provided for moving the stage from the first image patch 17.1 to the second image patch 17.2. In particular, the misalignment or drift of the wafer stage depends on the number of adjustment repetitions and the time Td required to decelerate the stage from the moving speed to the stop position near the second image patch 17.2. In an embodiment of the invention, the time interval between the image capture steps of the first image patch 17.1 and the second image patch 17.2 is significantly reduced and the throughput is increased. According to an embodiment of the present invention, a charged particle microscope operating method is provided, wherein a series of image patches are sequentially imaged in the image capturing steps, which includes a first image patch 17.1 in the first time interval Ts1. The first image capture and the second image capture of the second image patch 17.2 in the second time interval Ts2, and further include a wafer stage 500 for moving a wafer stage 500 from the first center position of the first image patch 17.1 21.1 move to the third time interval Tr of the second central position 21.2 of the second image patch 17.2 so that at least one of the first and the second time interval Ts1 or Ts2 has an overlap with the third time interval Tr . The total time interval from the start of the first time interval Ts1 to the end of the second time interval Ts2 is less than the sum of the three time intervals Ts1, Tr and Ts2, and the throughput is increased and the fast detection mode is realized. Figures 5a and 5c illustrate specific embodiments of such a rapid detection mode with high throughput. In the first example of Fig. 5a, the image capture of the second image patch 17.2 is started before the wafer stage 500 comes to a complete stop. During the time interval Td during which the wafer stage decelerates to the end position, image capture starts and the time interval Ts2 for image capture has an overlap with the deceleration time interval Td of the stage 500 . The deceleration time interval Td includes the repeated adjustment of the stage and the time required to completely stop the stage. After rapid movement, the stage may drift or oscillate or vibrate, the stage deceleration time interval Td includes the time required for the stage to decelerate until its position coincides with the line of sight of the multiple beam charged particle microscope with an accuracy below a first predetermined threshold and The dynamic positional stability is below a second predetermined threshold. The control unit 800 is configured to monitor or predict the expected lateral positions Xl(t), Yl(t) and the movement speed of the wafer stage 500 during the time Td. The control unit 800 derives control signals for the scanning deflection unit of the charged particle microscope to compensate for the residual motion of the wafer stage during the deceleration time Td by the variable offsets Dx(t), Dy(t) of the sight line 53 . The control unit 800 is configured to calculate the image capture start time of the second image patch 17.2 according to the predicted movement speed of the wafer stage. For example, the start time of the image capture time interval Ts2 of the second image patch 17.2 is determined as the time when the predicted speed of the wafer stage is below a predetermined threshold, so that the remaining motion of the wafer stage during the deceleration time interval Td can be compensated. The control unit 800 is configured to initiate image acquisition by scanning the second image patch 17.2 and provide a time function of the offset coordinates to the deflection unit to compensate for remnants of the wafer stage during at least a portion of the deceleration time interval Td motion, wherein the deceleration time interval has an overlap with the time interval Ts2 of the second image capture. Therefore, the time interval Tr' between the first image scan during the first time interval Ts1 and the second image scan during the second time interval Ts2 decreases.

圖5c更詳細說明此具體實施例的第二範例。在此範例中,控制單元800構造成在第一影像斑塊的第一影像擷取時間間隔Ts1期間,推導出晶圓載台加速之開始時間r1,使得通過掃描偏轉器對晶圓移動的補償位於帶電粒子顯微鏡的掃描偏轉器之最大範圍內。在影像擷取期間以及在用於加速晶圓載台的時間間隔Tu之至少一部分期間,控制單元800構造成提供控制信號給偏轉單元,並且在此範例中為如前述座標系統的橫向位置偏移之誤差振幅Nn(t)在第一影像斑塊的橫向位置偏移之指定臨界範圍905.1內,並且在晶圓移動的開始時間ri之後繼續影像擷取,直到第一影像擷取的時間間隔Ts1之結束時間t1。在時間間隔Tr內的晶圓移動期間,控制單元800構造成推導出第二影像斑塊的第二影像擷取之第二時間間隔Ts2開始時間t0',使得通過掃描偏轉器對晶圓移動的補償位於帶電粒子顯微鏡的掃描偏轉器之最大範圍內,並且坐標系統的橫向位置偏移在第二影像斑塊的橫向位置偏移之指定臨界範圍905.2內。第二影像擷取在晶圓移動期間的開始時間t0'開始,結束時間為r2,此時晶圓載台到達其目標位置附近。因此,第一時間間隔Ts1期間的第一影像掃描與第二時間間隔Ts2期間的第二影像掃描間之時間間隔Tr'減少。從第二影像擷取開始t0'與晶圓載台減速到晶圓載台移動時間間隔Tr的結束時間rs間之重疊時間間隔,通常大於第一影像擷取結束t1與晶圓載台加速到晶圓載台移動時間間隔Tr的開始時間ri間之重疊時間間隔。在一範例中,晶圓載台的減速時間間隔Td包括在各個檢測部位處影像斑塊的影像擷取期間晶圓載台的精確對準之至少一次重複,藉此控制單元與偏轉單元同步控制晶圓移動,並且通過將對應於晶圓載台位置的偏移坐標之序列或函數提供給偏轉單元,以補償在晶圓載台移動期間晶圓載台的預測和監測位置。晶圓載台精確對準的重複為,晶圓載台位置從與目標位置的較大偏差的第一位置,到與目標位置的偏差低於預定臨界之第二位置的重複重新調整。在一範例中,臨界根據兩相鄰影像斑塊之間重疊區域的減少來確定,例如確定為低於100 nm、低於50 nm,甚至低於30 nm。因此,通過減少後續影像擷取之間的時間間隔和減少相鄰影像斑塊之間的重疊區域來提高通量。在一範例中,第一和第二影像斑塊之間後續影像擷取間的時間間隔減少兩倍,並且多重射束帶電粒子顯微鏡的通量或幀速率從大約每分鐘10增加到大約14幀數。在一範例中,第一和第二影像斑塊之間後續影像擷取間的時間間隔減少三倍,並且多重射束帶電粒子顯微鏡的通量或幀速率從大約每分鐘10增加到超過15幀數,並且通過本具體實施例的晶圓移動過程中之影像品質控制方法,通量提高50%以上。通常,與擷取兩個遠距影像斑塊17.1和17.2中每一者所需的時間間隔Ts1和Ts2以及將樣品從第一檢測部位移到第二檢測部位所需的時間Tr相比,所提供的方法允許在更短的時間間隔TG內擷取至少兩個遠距影像斑塊17.1和17.2的影像,其中TG < Ts1 + Ts2 + Tr 。Figure 5c illustrates a second example of this specific embodiment in more detail. In this example, the control unit 800 is configured to derive the start time r1 of the wafer stage acceleration during the first image capture time interval Ts1 of the first image patch so that the compensation for the wafer movement by the scanning deflector is at within the maximum range of scanning deflectors for charged particle microscopes. During image capture and during at least a portion of the time interval Tu for accelerating the wafer stage, the control unit 800 is configured to provide control signals to the deflection unit, and in this example, a lateral position offset of the coordinate system as previously described The error amplitude Nn(t) is within the specified critical range 905.1 of the lateral position shift of the first image patch, and the image capture continues after the start time ri of the wafer movement until the time interval Ts1 of the first image capture End time t1. During the wafer movement within the time interval Tr, the control unit 800 is configured to derive the second time interval Ts2 start time t0' for the second image capture of the second image patch, such that the effect of the wafer movement by the scanning deflector is The compensation is within the maximum range of the scanning deflector of the charged particle microscope and the lateral position shift of the coordinate system is within the specified critical range 905.2 of the lateral position shift of the second image patch. The second image capture starts at the start time t0' of the wafer movement period and ends at r2, when the wafer stage reaches the vicinity of its target position. Therefore, the time interval Tr' between the first image scan during the first time interval Ts1 and the second image scan during the second time interval Ts2 decreases. The overlapping time interval between the start t0' of the second image capture and the end time rs of the wafer stage deceleration time interval Tr is usually greater than the end time t1 of the first image capture and the acceleration of the wafer stage to the wafer stage The overlapping time intervals between the start times ri of the movement time interval Tr. In one example, the deceleration time interval Td of the wafer stage includes at least one repetition of precise alignment of the wafer stage during image capture of image patches at each detection site, whereby the control unit and the deflection unit control the wafer synchronously move and compensate for the predicted and monitored position of the wafer stage during wafer stage movement by providing a sequence or function of offset coordinates corresponding to the wafer stage position to the deflection unit. The repetition of precise wafer stage alignment is the repeated readjustment of the wafer stage position from a first position with a large deviation from the target position to a second position with a deviation from the target position below a predetermined threshold. In one example, the threshold is determined according to the reduction of the overlapping area between two adjacent image patches, eg, determined to be lower than 100 nm, lower than 50 nm, or even lower than 30 nm. Thus, throughput is improved by reducing the time interval between subsequent image acquisitions and reducing the overlapping area between adjacent image patches. In one example, the time interval between subsequent image acquisitions between the first and second image patches is reduced by a factor of two, and the throughput or frame rate of the multiple beam charged particle microscope is increased from about 10 to about 14 frames per minute number. In one example, the time interval between subsequent image acquisitions between the first and second image patches was reduced by a factor of three, and the throughput or frame rate of the multiple beam charged particle microscope was increased from about 10 to over 15 frames per minute and the throughput is increased by more than 50% through the image quality control method in the wafer moving process of this specific embodiment. In general, compared to the time intervals Ts1 and Ts2 required to capture each of the two distant image patches 17.1 and 17.2 and the time Tr required to move the sample from the first detection site to the second detection site, the The provided method allows the acquisition of images of at least two distant image patches 17.1 and 17.2 within a shorter time interval TG, where TG < Ts1 + Ts2 + Tr .

例如通過快速傅立葉分析或移動平均計算方法,實現將誤差振幅發展或分離為漂移和動態變化。也可用業界內熟知的其他方法。在一範例中,應用對誤差振幅變化的最大梯度之預定臨界,並分解為具有最大梯度的線性漂移和誤差振幅部分超過最大梯度的殘餘動態變化。減去低於最大梯度的誤差振幅線性部分,通過線性漂移減去誤差振幅的發展獲得動態變化。根據補償器的最大速度確定誤差振幅的最大梯度,以補償線性漂移。這種緩慢作用的補償器例如可為多重射束帶電粒子顯微鏡的磁性元件。在另一範例中,應用用於誤差振幅最大變化頻率的預定臨界,並通過對誤差振幅的發展進行低通濾波來確定漂移部分。在一範例中,對於漂移部分和動態部分的分離,考慮停留時間、線掃描速率和幀速率。例如,停留時間為50 ns,線掃描速率約為2.5 kHz。控制單元800和多重射束帶電粒子顯微鏡的快速補償器可補償大約10 kHz或更高頻率範圍的成像性能變化或偏差。因此,可在使用複數個一次帶電粒子子射束掃描多條線期間,控制成像性能的快速和動態變化或偏差。因此,在大約3秒的時間間隔Ts之影像擷取期間,多次補償動態變化,例如每次控制頻率為2.5 kHz左右的反跳(flyback),甚至在控制頻率超過2.5 kHz的每次線掃描期間,例如5 kHz或10 kHz或更高。例如,在兩個連續影像掃描之間的時間間隔Tr'期間,例如通過大約低於0.5秒的時間間隔Tr'內的慢補償器,以補償秒的時間間隔上的緩慢漂移。為了使具有不同響應時間的補償器同步,例如可在控制單元中包括延遲線。The development or separation of the error amplitude into drift and dynamic changes is achieved, for example, by means of fast Fourier analysis or moving average calculation methods. Other methods well known in the art can also be used. In one example, a predetermined threshold for the maximum gradient of the error amplitude variation is applied and decomposed into a linear drift with the maximum gradient and a residual dynamic variation where the error amplitude portion exceeds the maximum gradient. Subtracting the linear part of the error amplitude below the maximum gradient, the dynamic change is obtained by subtracting the evolution of the error amplitude from the linear drift. Determine the maximum gradient of the error amplitude based on the maximum speed of the compensator to compensate for linear drift. Such a slow-acting compensator can be, for example, a magnetic element of a multiple beam charged particle microscope. In another example, a predetermined threshold for the maximum frequency of change in error amplitude is applied, and the drift portion is determined by low-pass filtering the evolution of the error amplitude. In one example, dwell time, line scan rate and frame rate are considered for the separation of drift and dynamic parts. For example, the dwell time is 50 ns and the line scan rate is about 2.5 kHz. The control unit 800 and the fast compensator of the multiple beam charged particle microscope can compensate for imaging performance variations or deviations in the frequency range of about 10 kHz or higher. Thus, rapid and dynamic changes or deviations in imaging performance can be controlled during scanning of multiple lines using a plurality of primary charged particle beamlets. Therefore, during the image capture period of the time interval Ts of about 3 seconds, the dynamic changes are compensated for many times, such as the flyback each time the control frequency is about 2.5 kHz, and even each line scan when the control frequency exceeds 2.5 kHz. period, such as 5 kHz or 10 kHz or higher. For example, during the time interval Tr' between two consecutive image scans, the slow drift over the time interval of seconds is compensated for, for example, by a slow compensator in the time interval Tr' below about 0.5 seconds. To synchronize compensators with different response times, delay lines can be included in the control unit, for example.

誤差振幅發展的預測是根據多項式展開和外推法(例如線性外推法)的近似來計算,但也可用其他更高階的外推法(例如二階或更高階的外推法)。Runge-Kutta方法給出高階多項式外推的一範例。在緩慢變化補償器(例如移動晶圓載台)的範例中,通過控制和監測緩慢變化補償器(例如晶圓)的校準性能,以實現對誤差振幅發展的預測,例如載台位置。誤差振幅發展的預測也可遵循模型,所謂基於模型的預測器根據誤差振幅的預期發展之模型函數,產生預期誤差振幅。這樣的預定模型函數例如通過模擬或通過多重射束帶電粒子顯微鏡的代表性測試操作所產生,並且儲存在控制單元800的記憶體中。在一範例中,這種預定模型函數對於每個個別的多重射束帶電粒子顯微鏡是個別的。在許多範例中,遵循預測模型的錯誤行為估計包括頻率分析、低通濾波和多項式近似。Predictions of error amplitude development are computed from polynomial expansions and approximations of extrapolation (eg, linear extrapolation), but other higher-order extrapolations (eg, second- or higher-order extrapolations) are also available. The Runge-Kutta method gives an example of higher order polynomial extrapolation. In the case of a slowly changing compensator (eg moving wafer stage), the calibration performance of the slowly changing compensator (eg wafer) is controlled and monitored to enable prediction of the development of error amplitudes such as stage position. The prediction of error amplitude development may also follow a model, so-called model-based predictors that generate expected error amplitudes from a model function of the expected development of error amplitudes. Such predetermined model functions are generated, for example, by simulation or by representative testing operations of a multiple beam charged particle microscope, and are stored in the memory of the control unit 800 . In one example, this predetermined model function is individual for each individual multiple beam charged particle microscope. In many paradigms, estimates of misbehavior following predictive models include frequency analysis, low-pass filtering, and polynomial approximation.

前述發展和外推方法,例如將誤差振幅分離為漂移和動態變化或從先前知識的模型函數應用,可針對誤差的時間發展所描述影像性能參數之不同偏差做不同的選擇。在一範例中,控制單元800構造成在一系列影像斑塊的影像擷取期間執行一系列操作步驟,其包括: A)  將形成複數個感測器資料的資料串流擴展為一組誤差振幅, E)   擷取一組漂移控制信號和一組動態控制信號,以及 F)    提供該組漂移控制信號給緩慢作用的補償器,以及 G)  提供該組漂移控制信號給快速作用的補償器。The aforementioned development and extrapolation methods, such as separation of error amplitudes into drift and dynamics or application of model functions from prior knowledge, can be chosen differently for different deviations in image performance parameters described by the temporal development of error. In one example, the control unit 800 is configured to perform a series of operational steps during image capture of a series of image patches, including: A) Expand the data stream forming the data of the plurality of sensors into a set of error amplitudes, E) Capture a set of drift control signals and a set of dynamic control signals, and F) Provide the set of drift control signals to the slow-acting compensator, and G) Provide the set of drift control signals to the fast acting compensator.

在一具體實施例中,控制單元800更構造成包括將時間發展近似為誤差振幅之至少一者的步驟B。在一具體實施例中,控制單元800更構造成包括預測誤差振幅之至少一者緩慢改變漂移的步驟C。在一具體實施例中,控制單元800更構造成包括預測誤差振幅之至少一者快速改變動態變化的步驟D。In a specific embodiment, the control unit 800 is further configured to include step B of approximating the time development as at least one of the error amplitudes. In a specific embodiment, the control unit 800 is further configured to include step C of slowly changing the drift of at least one of the prediction error amplitudes. In a specific embodiment, the control unit 800 is further configured to include a step D of rapidly changing at least one of the prediction error amplitudes dynamically.

在一範例中,控制單元800的組態包括步驟G的執行:在一系列影像斑塊中的一第一影像斑塊的影像掃描時間間隔Ts1中,提供該組動態控制信號給快速作用補償器。In an example, the configuration of the control unit 800 includes the execution of step G: providing the set of dynamic control signals to the fast acting compensator during the image scanning time interval Ts1 of a first image patch in a series of image patches .

在一範例中,控制單元800的組態包括步驟F的執行:在一系列影像斑塊中的一第一影像斑塊的第一影像掃描與第二影像斑塊的第二後續影像掃描間之時間間隔Tr中,提供該組漂移控制信號給緩慢作用補償器。時間間隔Tr定義為晶圓載台500從第一影像斑塊的第一中心位置,移到通過用多重射束帶電粒子顯微鏡1掃描成像所要獲得的第二後續影像斑塊之第二中心位置所需之時間間隔。在一範例中,控制單元800的組態包括步驟F的執行:在一個影像斑塊的一個影像掃描時間間隔Ts中,提供該組漂移控制參數給緩慢作用補償器。In one example, the configuration of the control unit 800 includes the execution of step F: between a first image scan of a first image patch and a second subsequent image scan of a second image patch in a series of image patches During the time interval Tr, the set of drift control signals is provided to the slow acting compensator. The time interval Tr is defined as the time required for the wafer stage 500 to move from the first center position of the first image patch to the second center position of the second subsequent image patch to be obtained by scanning imaging with the multiple beam charged particle microscope 1. time interval. In one example, the configuration of the control unit 800 includes the execution of step F: providing the set of drift control parameters to the slow-acting compensator during an image scan time interval Ts of an image patch.

在一範例中,控制單元800的組態包括在至少一重疊時間間隔內,影像斑塊的影像掃描時間間隔Ts1或Ts2中執行步驟G,該時間間隔與用於載台移動的時間間隔Tr重疊。在一範例中,至少一重疊時間間隔係用於晶圓載台加速的時間間隔Tu之至少一部分,或者用於晶圓載台減速的時間間隔Td之至少一部分,或者這兩個時間間隔。In one example, the configuration of the control unit 800 includes performing step G in the image scanning time interval Ts1 or Ts2 of the image patch in at least one overlapping time interval, the time interval overlapping with the time interval Tr for the stage movement . In one example, the at least one overlapping time interval is at least a portion of the time interval Tu for wafer stage acceleration, or at least a portion of the time interval Td for wafer stage deceleration, or both.

本發明的一具體實施例為執行晶圓檢測任務的多重子射束帶電粒子顯微鏡系統1之操作方法,及用於這種晶圓檢測任務之軟體產品。執行晶圓檢測任務的方法包括執行前述步驟A至G的軟體程式碼,在下面的圖7中進一步更詳細解釋該方法。An embodiment of the present invention is a method of operation of a multiple sub-beam charged particle microscope system 1 for performing wafer inspection tasks, and a software product for such wafer inspection tasks. A method of performing a wafer inspection task comprising executing the software code of the aforementioned steps A to G, the method is further explained in more detail in FIG. 7 below.

在本發明的一具體實施例中,用於晶圓檢測的多重子射束帶電粒子顯微系統1因此具有多種措施來補償漂移、動態效應以及殘留和不需要的載台移動。範例例示於圖6內。使用與先前圖式中相同的參考編號並且參考先前的圖式。用於晶圓檢測的多重射束帶電粒子顯微鏡(1)包括用於產生複數個一次帶電粒子子射束(3)的帶電粒子多重子射束產生器(300),以及包括第一偏轉系統(110)來使用複數個一次帶電粒子子射束(3)掃描配置在物平面(101)中晶圓表面(25),以產生從晶圓表面(25)發射的複數個二次電子子射束(9)之物體照射單元(100)。複數個二次電子子射束(9)由具有投影系統(205)和用於將複數個二次電子子射束(9)成像到影像感測器(207)上的第二偏轉系統(222)之偵測單元(200)成像,並在使用期間擷取晶圓表面(25)的第一影像斑塊(17.1)之數位影像。多重射束帶電粒子顯微鏡(1)更包括具有載台位置感測器(520)的晶圓載台(500),用於在擷取第一影像斑塊(17.1)的數位影像期間將晶圓表面(25)定位和維持在物平面(101)中。In a specific embodiment of the present invention, the multiple sub-beam charged particle microscopy system 1 for wafer inspection therefore has various measures to compensate for drift, dynamic effects and residual and unwanted stage movement. An example is illustrated in FIG. 6 . The same reference numbers as in the previous figures are used and reference is made to the previous figures. A multiple beam charged particle microscope (1) for wafer inspection includes a charged particle multiple beam sub-beam generator (300) for generating a plurality of primary charged particle beamlets (3), and includes a first deflection system (110) ) to scan the wafer surface (25) arranged in the object plane (101) using a plurality of primary charged particle beamlets (3) to generate a plurality of secondary electron beamlets ( 9) The object irradiation unit (100). The plurality of secondary electron beamlets (9) are formed by a projection system (205) and a second deflection system (222) for imaging the plurality of secondary electron beamlets (9) onto the image sensor (207) ) of the detection unit (200) images and captures a digital image of the first image patch (17.1) of the wafer surface (25) during use. The multiple beam charged particle microscope (1) further comprises a wafer stage (500) having a stage position sensor (520) for scanning the wafer surface during the acquisition of the digital image of the first image patch (17.1) (25) is positioned and maintained in the object plane (101).

多重射束帶電粒子顯微鏡1包括一組補償器,其包括至少第一和第二偏轉系統(110、222),以及緩慢作用補償器,例如磁性元件或機械致動器。在一範例中,緩慢作用補償器包括晶圓載台500。該組補償器更包括一組快速作用補償器(132、232、332),例如靜電元件或低質量的機械致動器。多重子射束帶電粒子顯微系統1設置有包括載台位置感測器(520)和影像感測器(207)的複數個偵測器,構造成在使用期間產生複數個感測器資料。複數個感測器資料包括由載台位置感測器(520)提供的樣品載台(500)之位置和方位資料。The multiple beam charged particle microscope 1 includes a set of compensators including at least first and second deflection systems (110, 222), and slow acting compensators, such as magnetic elements or mechanical actuators. In one example, the slow acting compensator includes wafer stage 500 . The set of compensators further includes a set of fast acting compensators (132, 232, 332), such as electrostatic elements or low mass mechanical actuators. The multiple beamlet charged particle microscopy system 1 is provided with a plurality of detectors including a stage position sensor (520) and an image sensor (207), configured to generate a plurality of sensor data during use. The plurality of sensor data includes position and orientation data of the sample stage (500) provided by the stage position sensor (520).

多重射束帶電粒子顯微鏡1更包括控制單元(800),其中控制單元(800)構造成從複數個感測器資料中產生第一組P控制信號Cp ,以在擷取第一影像斑塊(17.1)的數位影像期間控制該組補償器,使得在使用期間實現操作控制並且在一系列影像斑塊的影像擷取期間保持前述規範。The multiple beam charged particle microscope 1 further includes a control unit (800), wherein the control unit (800) is configured to generate a first set of P control signals Cp from the data of the plurality of sensors, so as to capture the first image patch The set of compensators are controlled during digital imaging of (17.1) such that operational control is achieved during use and the aforementioned specifications are maintained during image capture of a series of image patches.

在載台500的載台移動期間,載台移動由載台位置感測器520監控。載台位置感測器520在本領域中為已知,並且可包括雷射干涉儀、光柵感測器或共焦透鏡陣列感測器。在一系列影像斑塊中一個影像斑塊的影像掃描時間間隔Ts期間,晶圓載台500的相對位置較佳以高穩定性控制在,例如低於1 nm,較佳低於0.5 nm。如上所述,在第一和第二後續影像斑塊的第一與第二影像掃描之間,載台500由控制單元800觸發,以從第一檢測部位移到第二檢測部位。在第二檢測部位處,定義新的局部晶圓坐標系統,並且載台500由載台控制模組880控制以位於其預測位置,並且以高穩定性控制與視線的相對位置。載台位置感測器520以低於1 nm、較佳低於0.5 nm的精度,在六個自由度上測量載台位置和移動。在範例中(未示出),載台位置感測器520直接連接到載台控制模組880,用於直接反饋迴路以控制載台位置和移動。然而,這種對具有高質量的晶圓載台之直接反饋迴路和控制通常很慢,並且在影像掃描期間不能提供足夠的準確度。反饋迴路可能會導致不必要的載台抖動或滯後。根據本發明的具體實施例,載台位置感測器520因此連接到控制單元800的感測器資料分析系統818。During the stage movement of the stage 500 , the stage movement is monitored by the stage position sensor 520 . Stage position sensors 520 are known in the art and may include laser interferometers, grating sensors, or confocal lens array sensors. During the image scanning time interval Ts of one image patch in a series of image patches, the relative position of the wafer stage 500 is preferably controlled with high stability, eg, less than 1 nm, preferably less than 0.5 nm. As described above, between the first and second image scans of the first and second subsequent image patches, the stage 500 is triggered by the control unit 800 to move from the first detection portion to the second detection portion. At the second inspection site, a new local wafer coordinate system is defined, and the stage 500 is controlled by the stage control module 880 to be at its predicted position and to control the relative position to the line of sight with high stability. Stage position sensor 520 measures stage position and movement in six degrees of freedom with an accuracy of less than 1 nm, preferably less than 0.5 nm. In an example (not shown), the stage position sensor 520 is directly connected to the stage control module 880 for a direct feedback loop to control stage position and movement. However, this direct feedback loop and control of a wafer stage with high quality is generally slow and does not provide sufficient accuracy during image scanning. Feedback loops can cause unwanted stage jitter or lag. The stage position sensor 520 is thus connected to the sensor data analysis system 818 of the control unit 800 according to a particular embodiment of the invention.

根據具體實施例的範例,控制單元(800)更包括影像資料擷取單元(810),其構造成在使用期間將來自影像感測器(207)的影像感測器資料減少到例如小於影像感測器資料的10%之影像感測器資料部分,並將影像感測器資料部分提供給該感測器資料分析系統(818)。在使用期間,電子靈敏度影像感測器207接收複數個二次電子強度值的影像感測器資料之大影像資料串流,並將影像資料饋送到控制單元800的影像資料擷取單元810。大量影像資料並未直接用於監測多重射束帶電粒子顯微系統1的影像操作。影像資料串流的一小部分從影像資料串流分支出來,並且影像感測器資料部分被引導到感測器資料分析系統818。例如,影像資料擷取單元810構造成用於將在複數個帶電粒子子射束的預定掃描位置處產生的二次帶電粒子信號子集分支(branch off),或擷取在掃描帶電粒子射束3的反跳期間產生之信號並轉發到感測器資料分析系統818。預定掃描位置例如可為掃描線子集的行起始位置,例如每第五條掃描線,或者每一者的中心位置。在一範例中,一次帶電粒子子射束子集的影像資料,例如僅在光斑位置5.11處的一個子射束(參見圖2),用於產生影像感測器資料部分。US 9,530,613,其以引用的方式併入本說明書,顯示配置在外圍以提供用於控制多重射束帶電粒子顯微鏡的感測器信號之一次帶電粒子子射束專用子集的範例。US 9,536,702,其以引用的方式併入本說明書,顯示將多個子場中每一者的影像資料專用子集分支,以用於產生即時取景圖像的範例。即時取景影像資料的至少一部分可套用當成影像感測器資料部分。通過將來自帶電粒子子射束的預定子集之信號分支,或通過使用帶電粒子子射束的預定掃描位置處之信號,轉發到感測器資料分析系統818的影像感測器資料部分顯著減少到約小於2%、小於1%、較佳小於0.5%、甚至更佳小於0.1%或甚至小於0.01%的影像資料串流。在一具體實施例中,影像感測器207包括第一、慢且高解析度影像感測器和第二、快速影像感測器,如上文結合圖1所述。在此具體實施例中,影像感測器資料部分由第一緩慢影像感測器提供的感測器資料形成,影像資料擷取單元810構造成將第一緩慢影像感測器提供的感測器資料提供給感測器資料分析系統818,並將第二快速影像感測器的感測器信號提供給影像拼接單元812。According to an example of an embodiment, the control unit (800) further includes an image data capture unit (810) configured to reduce the image sensor data from the image sensor (207) during use, eg, to be smaller than the image sensor 10% of the image sensor data portion of the sensor data and provide the image sensor data portion to the sensor data analysis system (818). During use, the electronic sensitivity image sensor 207 receives a large image data stream of image sensor data of a plurality of secondary electron intensity values and feeds the image data to the image data capture unit 810 of the control unit 800 . A large amount of imaging data is not directly used to monitor the imaging operation of the multiple beam charged particle microscopy system 1 . A small portion of the image data stream is branched from the image data stream, and the image sensor data portion is directed to the sensor data analysis system 818 . For example, the image data acquisition unit 810 is configured to branch off secondary charged particle signals generated at predetermined scanning positions of the plurality of charged particle beamlets, or to extract a subset of secondary charged particle signals generated at the scanning charged particle beams The signal generated during the debounce period of 3 is forwarded to the sensor data analysis system 818. The predetermined scan position may be, for example, the row start position of a subset of scan lines, such as every fifth scan line, or the center position of each. In one example, image data for a subset of primary charged particle sub-beams, eg only one sub-beam at spot position 5.11 (see Figure 2), is used to generate the image sensor data portion. US 9,530,613, which is incorporated herein by reference, shows an example of a primary charged particle sub-beam dedicated subset configured at the periphery to provide a sensor signal for controlling a multiple beam charged particle microscope. US 9,536,702, which is incorporated herein by reference, shows an example of branching a dedicated subset of image data for each of a plurality of subfields for use in generating live view images. At least a portion of the live view image data can be applied as a portion of the image sensor data. The portion of image sensor data forwarded to sensor data analysis system 818 is significantly reduced by branching the signal from a predetermined subset of charged particle beamlets, or by using the signals at predetermined scanning locations of the charged particle beamlets to about less than 2%, less than 1%, preferably less than 0.5%, even better less than 0.1% or even less than 0.01% of the image data stream. In a specific embodiment, the image sensor 207 includes a first, slow and high resolution image sensor and a second, fast image sensor, as described above in connection with FIG. 1 . In this embodiment, the image sensor data is partially formed by the sensor data provided by the first slow image sensor, and the image data capture unit 810 is configured to combine the sensor data provided by the first slow image sensor. The data is provided to the sensor data analysis system 818 and the sensor signals of the second fast image sensor are provided to the image stitching unit 812 .

影像感測器資料部分和來自載台感測器520的載台位置資料在感測器資料分析系統818中組合。感測器資料分析系統818分析來自影像感測器207的影像感測器資料部分以及來自載台感測器520的位置資訊,並擷取晶圓載台相對於複數個一次帶電粒子子射束3的實際影像坐標系統之位置資訊,如在圖3的範例中所解釋。The image sensor data portion and stage position data from stage sensor 520 are combined in sensor data analysis system 818 . The sensor data analysis system 818 analyzes the image sensor data portion from the image sensor 207 and the position information from the stage sensor 520 and captures the wafer stage relative to the plurality of primary charged particle beamlets 3 The position information of the actual image coordinate system of , as explained in the example of FIG. 3 .

多重射束帶電粒子顯微鏡(1)的控制單元(800)包括感測器資料分析系統(818),其構造成從複數個感測器資料推導出長度為L的感測器資料向量DV並分析該感測器資料向量DV,並從該感測器資料向量DV中擷取誤差函數,例如影像位移、影像旋轉、焦點位置變化和影像平面傾斜。感測器資料分析系統818構造成在使用期間計算K個誤差向量的K個振幅Ak 之集合,其中K

Figure 02_image001
L。通常,感測器資料分析系統818構造成分析複數個感測器信號,並且通過本領域已知方法將多個傳感器信號分解成一組正常化誤差函數,例如通過該組正常化誤差函數對複數個感測器信號的擬合操作(fit operation)。The control unit (800) of the multiple beam charged particle microscope (1) includes a sensor data analysis system (818) configured to derive a sensor data vector DV of length L from the plurality of sensor data and analyze it The sensor data vector DV, and error functions such as image displacement, image rotation, focus position change and image plane tilt are extracted from the sensor data vector DV. The sensor data analysis system 818 is configured to compute, during use, the set of K amplitudes Ak of the K error vectors, where K
Figure 02_image001
L. Generally, the sensor data analysis system 818 is configured to analyze a plurality of sensor signals and decompose the plurality of sensor signals into a set of normalized error functions by methods known in the art, such as for the plurality of Fit operation of the sensor signal.

控制單元(800)更包括一控制操作處理器(840),用於從誤差向量的振幅Ak 之集合來計算第一組控制信號Cp 。在像斑5的橫向位移之動態變化範例中,控制操作處理器840構造成推導出用於誤差振幅的動態變化之校正或控制信號。控制單元(800)構造成通過計算第一組控制信號Cp 的至少一控制信號並將其提供給第一和第二偏轉單元(110、222),以補償晶圓載台(500)的位置或方位變化。來自影像感測器207的感測器資料與來自載台位置感測器520的資訊同步並組合。在檢測部位處之局部晶圓坐標系統與由視線定義的影像坐標系統間之相對橫向位移向量55由感測器資料分析系統818推導出。控制操作處理器840構造成提供校正或控制信號給偏轉控制模組860,該模組控制多重子射束帶電粒子顯微系統1的第一掃描偏轉器110的操作。結果,第一靜電掃描偏轉器110控制一次帶電粒子子射束3的掃描操作與晶圓載台500在橫向方向上(此處為x和y方向)的非所要動態變化同步。同時,偏轉控制模組860另控制第二掃描偏轉器222的操作,使得影像感測器207上的複數個二次電子子射束9之位置保持恆定。從而,控制單元800構造成通過第一和第二偏轉器110和222修正一次和二次帶電粒子子射束的掃描操作,以補償載台500的位置在橫向方向上之動態變化,並且具有高影像傳真度和高影像對比度的影像擷取在晶圓檢測任務的要求或規範內保持良好。因此,控制單元800構造成計算至少一額外電壓信號並施加到一次帶電粒子射束路徑13中的束偏轉器110,用於在使用期間產生複數個一次帶電粒子子射束3的額外位移或旋轉,用於至少部分補償載台相對於視線的橫向位移或旋轉。因此,控制單元800構造成計算至少第二額外電壓信號並施加到二次電子射束路徑11中的束偏轉器222,以在調整掃描期間,至少部分補償源自複數個一次帶電粒子子射束3的束斑5之複數個二次電子子射束的額外位移或旋轉。The control unit (800) further includes a control operation processor (840) for calculating a first set of control signals Cp from the set of amplitudes Ak of the error vectors. In the dynamic variation example of the lateral displacement of the image spot 5, the control operation processor 840 is configured to derive a correction or control signal for the dynamic variation of the error amplitude. The control unit (800) is configured to compensate for the position of the wafer stage (500) or Orientation changes. Sensor data from image sensor 207 is synchronized and combined with information from stage position sensor 520 . The relative lateral displacement vector 55 between the local wafer coordinate system at the inspection site and the image coordinate system defined by the line of sight is derived by the sensor data analysis system 818 . The control operation processor 840 is configured to provide correction or control signals to the deflection control module 860 which controls the operation of the first scanning deflector 110 of the multiple sub-beam charged particle microscopy system 1 . As a result, the first electrostatic scanning deflector 110 controls the scanning operation of the primary charged particle beamlet 3 in synchronization with undesired dynamic changes of the wafer stage 500 in the lateral directions (here, the x and y directions). Meanwhile, the deflection control module 860 also controls the operation of the second scanning deflector 222 so that the positions of the plurality of secondary electron beamlets 9 on the image sensor 207 remain constant. Thus, the control unit 800 is configured to correct the scanning operation of the primary and secondary charged particle sub-beams through the first and second deflectors 110 and 222 to compensate for dynamic changes in the position of the stage 500 in the lateral direction, and to have high Image capture with high image fidelity and high image contrast remains well within the requirements or specifications of the wafer inspection task. Accordingly, the control unit 800 is configured to calculate and apply at least one additional voltage signal to the beam deflector 110 in the primary charged particle beam path 13 for generating additional displacement or rotation of the plurality of primary charged particle beamlets 3 during use , for at least partially compensating for lateral displacement or rotation of the stage relative to the line of sight. Accordingly, the control unit 800 is configured to calculate and apply at least a second additional voltage signal to the beam deflector 222 in the secondary electron beam path 11 to at least partially compensate for the electron beams originating from the plurality of primary charged particles during the adjustment scan Additional displacement or rotation of the secondary electron beamlets of the beam spot 5 of 3.

接下來,例示誤差函數的範例,其中晶圓載台500往垂直或z方向漂移。多重射束帶電粒子顯微鏡(1)的補償器組包括帶電粒子多重子射束產生器(300)的補償器(332)、物體照射單元(132)的快速補償器以及偵測單元(200)的補償器(230、232)之至少一者。再次,影像感測器資料部分由感測器資料分析系統818與來自載台位置感測器520的載台位置資料一起分析。感測器資料分析系統818分析來自影像感測器207的影像感測器資料部分以及來自載台感測器520的位置資訊,並擷取晶圓相對於實際掃描位置以及複數個一次帶電粒子子射束3的視線之位置資訊。控制操作處理器840擷取用於多個一次和二次帶電粒子子射束3和9的聚焦控制之控制信號。控制單元800的控制操作處理器840因此經由一次射束路徑控制模組830連接到多重子射束產生器300的至少一快速補償器332,例如一次帶電粒子射束路徑13的靜電聚焦透鏡,像是靜電場透鏡308(見圖1)或物體照射單元的快速補償器132,其控制複數個一次帶電粒子子射束3的焦點位置。控制操作處理器840另連接至投影系統控制模組820,以控制偵測單元200的至少一快速補償器232,例如靜電聚焦透鏡206(見圖1),使得影像感測器207上複數個二次電子子射束9的聚焦位置保持恆定。藉此,一次射束路徑控制模組830和投影系統控制模組820在垂直或z方向上補償載台500的載台漂移,並且在晶圓檢測任務的要求或規範內保持良好具有高對比度和高解析度的影像擷取。Next, an example of an error function is illustrated where wafer stage 500 is drifted in the vertical or z direction. The compensator group of the multiple beam charged particle microscope (1) comprises a compensator (332) of a charged particle multiple sub-beam generator (300), a fast compensator of an object irradiation unit (132) and a compensation of the detection unit (200) at least one of the devices (230, 232). Again, the image sensor data is analyzed in part by the sensor data analysis system 818 along with the stage position data from the stage position sensor 520 . The sensor data analysis system 818 analyzes the image sensor data portion from the image sensor 207 and the position information from the stage sensor 520 and captures the wafer relative to the actual scan position and a plurality of primary charged particles The position information of the line of sight of beam 3. The control operation processor 840 retrieves control signals for focus control of the plurality of primary and secondary charged particle beamlets 3 and 9 . The control operation processor 840 of the control unit 800 is thus connected via the primary beam path control module 830 to at least one fast compensator 332 of the multiple beamlet generator 300, such as an electrostatic focusing lens of the primary charged particle beam path 13, such as The electrostatic field lens 308 (see FIG. 1 ) or the fast compensator 132 of the object illumination unit controls the focal position of the plurality of primary charged particle beamlets 3 . The control operation processor 840 is further connected to the projection system control module 820 to control at least one fast compensator 232 of the detection unit 200 , such as the electrostatic focusing lens 206 (see FIG. 1 ), so that the image sensor 207 has a plurality of two The focus position of the sub-electron sub-beam 9 remains constant. Thereby, the primary beam path control module 830 and the projection system control module 820 compensate for the stage drift of the stage 500 in the vertical or z-direction and remain well within the requirements or specifications of the wafer inspection task with high contrast and High-resolution image capture.

在一範例中,多重射束帶電粒子顯微鏡(1)的感測器資料分析系統(818)構造成預測誤差向量中振幅Ak 的集合內至少一振幅An 之時間發展。一些成像透鏡,例如物鏡102或分射束器元件420(見圖1),為磁性元件,其引起一次和二次電子子射束3和9的束路徑旋轉。靜態影像旋轉或影像旋轉的漂移通過例如物體照射單元100的磁性聚焦元件來補償。控制單元(800)更構造成產生第三信號,用於通過晶圓載台(500)在物平面(101)中定位晶圓表面(25),用於第二影像斑塊(17.2)的數位影像之影像擷取,並且其中控制單元(800)更構造成提供來自複數個感測器資料的第二組漂移控制信號,以在將晶圓載台(500)定位到第二影像斑塊(17.2)的位置期間控制該組補償器。在一範例中,控制操作處理器840連接到一次射束路徑控制模組830。一次射束路徑控制模組830連接到物體照射單元100的至少一緩慢補償器130或分射束器400的磁性元件430(見圖1),以校正該組一次帶電粒子子射束3旋轉的漂移或緩慢變化部分。在一範例中,靜態影像旋轉另通過影像感測器207的預定旋轉來補償。控制操作處理器840進一步連接到投影系統控制模組820,其控制二次電子射束路徑的緩慢補償器230,例如是磁透鏡。然而,磁性元件僅可以有限的速度補償旋轉的漂移部分。In one example, the sensor data analysis system (818) of the multiple beam charged particle microscope (1) is configured to predict the temporal development of at least one amplitude An within the set of amplitudes Ak in the error vector . Some imaging lenses, such as objective 102 or beamsplitter element 420 (see FIG. 1 ), are magnetic elements that cause the beam paths of primary and secondary electron sub-beams 3 and 9 to rotate. Still image rotation or drift of image rotation is compensated for, for example, by a magnetic focusing element of the object illumination unit 100 . The control unit (800) is further configured to generate a third signal for positioning the wafer surface (25) in the object plane (101) by the wafer stage (500) for digital imaging of the second imaging patch (17.2) and wherein the control unit (800) is further configured to provide a second set of drift control signals from the plurality of sensor data for positioning the wafer stage (500) to the second image patch (17.2) control the set of compensators during the position. In one example, the control operations processor 840 is connected to the primary beam path control module 830 . The primary beam path control module 830 is connected to at least one slow compensator 130 of the object irradiation unit 100 or the magnetic element 430 of the beam splitter 400 (see FIG. 1 ) to correct the rotation of the set of primary charged particle beamlets 3 . Drift or slowly changing parts. In one example, the still image rotation is further compensated for by a predetermined rotation of the image sensor 207 . The control operation processor 840 is further connected to the projection system control module 820, which controls the slow compensator 230 of the secondary electron beam path, such as a magnetic lens. However, the magnetic element can only compensate for the drift portion of the rotation at a limited speed.

在一範例中,帶電粒子多重子射束產生器(300)更包括一快速補償器(332),且該控制單元(800)構造成通過計算並提供第一組控制信號Cp 的控制信號至少之一者給快速補償器(332),以引起複數個一次帶電粒子子射束的旋轉,以補償晶圓載台(500)的旋轉。例如,晶圓載台旋轉的動態變化導致複數個一次帶電粒子子射束相對於晶圓載台的預定方位快速變化和偏離。在該範例中,運用高速補償旋轉的動態變化。控制操作處理器840連接到一次射束路徑控制模組830。一次射束路徑控制模組830更連接到多重子射束產生器300的快速補償器332,例如主動式多重孔板306.3(見圖1),在此範例中,其包括靜電偏轉器陣列以個別且快速地偏轉每個一次帶電粒子子射束,以補償一次子射束3的集合相對於局部晶圓坐標系統的旋轉之非想要動態變化。投影系統控制模組820連接到偵測單元200的快速補償器232,其包括例如具有靜電偏轉器陣列的第二多重孔板,以補償複數個二次電子子射束9的非所要旋轉動態變化。藉此,補償一系列影像間距中一影像間距進行影像掃描期間的影像旋轉,並且在晶圓檢測任務規範之內良好保持高影像傳真度和影像對比度。In one example, the charged particle multiple beamlet generator (300) further includes a fast compensator (332), and the control unit (800) is configured to calculate and provide at least one of the control signals of the first set of control signals Cp . One gives a fast compensator (332) to cause rotation of the plurality of primary charged particle beamlets to compensate for the rotation of the wafer stage (500). For example, dynamic changes in the rotation of the wafer stage cause rapid changes and deviations of the plurality of primary charged particle beamlets relative to the predetermined orientation of the wafer stage. In this example, high speed is used to compensate for rotational dynamics. The control operation processor 840 is connected to the primary beam path control module 830 . The primary beam path control module 830 is further connected to the fast compensator 332 of the multiple beamlet generator 300, such as an active multiple aperture plate 306.3 (see FIG. 1), which in this example includes an array of electrostatic deflectors to individually and Each primary charged particle beamlet is rapidly deflected to compensate for undesired dynamic changes in the rotation of the set of primary beamlets 3 relative to the local wafer coordinate system. The projection system control module 820 is connected to the fast compensator 232 of the detection unit 200 , which includes, for example, a second multi-orifice plate with an electrostatic deflector array to compensate for the undesired rotational dynamics of the plurality of secondary electron beamlets 9 Variety. Thereby, image rotation during image scanning at one image pitch in a series of image pitches is compensated, and high image fidelity and image contrast are well maintained within wafer inspection task specifications.

在一範例中,載台位置感測器520包括位置和旋轉靈敏度感測器,例如用於x軸和y軸每一者的雙干涉儀。In one example, stage position sensor 520 includes position and rotational sensitivity sensors, such as dual interferometers for each of the x-axis and y-axis.

在一範例中,在晶圓載台從第一影像斑塊移到第二影像斑塊的時間間隔Tr期間,執行晶圓載台旋轉的補償,如上文結合圖5a和圖5c所述。因此,可提高通量。In one example, compensation of wafer stage rotation is performed during the time interval Tr during which the wafer stage moves from the first image patch to the second image patch, as described above in connection with FIGS. 5a and 5c. Therefore, the throughput can be increased.

在一具體實施例中,控制操作處理器840進一步連接到影像拼接單元812。影像拼接單元812接收來自影像資料擷取單元810的大影像資料串流,並通過資料串流的時序反捲積(deconvolution)和影像子場27的影像拼接,以將影像資料串流轉換為2D影像,以獲得一個影像斑塊17(見圖2)。幾個影像斑塊,例如第一和第二影像斑塊17.1和17.2,縫合在一起,以獲得晶圓表面25的區域之2D影像表示。為了補償例如通過載台抖動和晶圓7相對於影像坐標系統的快速旋轉的快速影像旋轉,控制操作處理器840構造成在掃描期間擷取多個像斑5的剩餘旋轉,並將像斑5的剩餘旋轉饋送到影像拼接單元812。影像拼接單元812構造成通過已知的數位影像處理方法補償像斑5的剩餘旋轉,以從具有高影像傳真度的一個影像斑塊之資料串流中獲得2D影像。最終影像進行最終壓縮,並儲存影像資料記憶體814中。In a specific embodiment, the control operation processor 840 is further connected to the image stitching unit 812 . The image splicing unit 812 receives the large image data stream from the image data capturing unit 810, and converts the image data stream into 2D through time-series deconvolution of the data stream and image splicing of the image subfield 27 image to obtain an image patch 17 (see Figure 2). Several image patches, such as the first and second image patches 17.1 and 17.2, are stitched together to obtain a 2D image representation of the area of the wafer surface 25. To compensate for rapid image rotation, eg, through stage jitter and rapid rotation of wafer 7 relative to the image coordinate system, control operations processor 840 is configured to capture the remaining rotation of the plurality of image spots 5 during scanning, and to convert image spots 5 The remaining rotations are fed to the image stitching unit 812 . The image stitching unit 812 is configured to compensate for the residual rotation of the image patch 5 by known digital image processing methods to obtain a 2D image from a data stream of one image patch with high image fidelity. The final image is finally compressed and stored in the image data memory 814 .

在一範例中,控制單元800的控制操作處理器840構造成通過同時漂移和動態補償,以補償影像旋轉。由於設置為偏轉器陣列的多重孔板對影像旋轉的補償範圍有限,因此可通過包括磁透鏡的漂移補償器(130、230、330)連續改變緩慢變化的漂移偏移,從而通過在一次帶電粒子射束路徑13和二次電子射束路徑11中設置為偏轉器陣列的多重孔板,以減少並實現快速變化動態補償的範圍。In one example, the control operation processor 840 of the control unit 800 is configured to compensate for image rotation by simultaneous drift and motion compensation. Due to the limited range of image rotation compensation of multiple orifice plates arranged as a deflector array, the slowly varying drift offset can be continuously changed by drift compensators (130, 230, 330) comprising magnetic lenses, thereby allowing the The beam path 13 and the secondary electron beam path 11 are provided as multiple aperture plates of a deflector array to reduce and achieve the range of rapidly varying dynamic compensation.

接著,說明在相對於晶圓表面傾斜的像平面中形成多個像斑5之誤差函數範例。在此範例中,控制操作處理器840推導出用於校正影像傾斜的信號,該信號被轉發到一次射束路徑控制模組830。一次射束路徑控制模組830構造成控制多重子射束產生器300的快速補償器332,例如主動式多重孔板306(見圖1),其改變每個一次帶電粒子子射束3的焦點位置,以有效實現複數個焦點5的傾斜焦平面表面。藉此,即使晶圓載台500傾斜或改變其傾斜角,每個一次帶電粒子子射束3也聚焦在晶圓表面25處。控制操作處理器840進一步連接到投影系統控制模組820,其控制偵測單元200的快速補償器232,其包括例如多孔徑校正器220。偵測單元200的快速補償器232校正每一或二次電子子射束9的焦點位置,使得束斑15在影像感測器207處的焦點位置內保持恆定。因此,控制操作處理器840、一次射束路徑控制模組830和投影系統控制模組820構造成補償影像傾斜,並且在整個影像斑塊17中保持具有高對比度和高解析度的影像擷取。Next, an example of an error function for forming a plurality of image spots 5 in an image plane inclined with respect to the wafer surface will be described. In this example, the control operation processor 840 derives a signal for correcting image tilt, which is forwarded to the primary beam path control module 830. The primary beam path control module 830 is configured to control the fast compensator 332 of the multiple beamlet generator 300 , such as the active multiple aperture plate 306 (see FIG. 1 ), which changes the focus position of each primary charged particle beamlet 3 , in order to effectively realize the inclined focal plane surface of the plurality of focal points 5 . Thereby, each primary charged particle beam 3 is focused at the wafer surface 25 even if the wafer stage 500 is tilted or its tilt angle is changed. The control operation processor 840 is further connected to the projection system control module 820 , which controls the fast compensator 232 of the detection unit 200 , which includes, for example, the multi-aperture corrector 220 . The fast compensator 232 of the detection unit 200 corrects the focal position of each or secondary electron sub-beam 9 so that the beam spot 15 remains constant within the focal position at the image sensor 207 . Therefore, the control operation processor 840 , the primary beam path control module 830 and the projection system control module 820 are configured to compensate for image tilt and maintain image capture with high contrast and high resolution throughout the image patch 17 .

在本發明的一範例中並且與前述範例類似,在控制單元800內載台位置感測器520與第一偏轉系統110之間提供直接反饋迴路,並且控制單元800構造成接收來自載台位置感測器520的載台位置信號,並將至少一第一偏移信號提供給第一偏移系統110,以通過控制第一偏轉系統110來補償晶圓載台500的移動以及與晶圓載台500的目標位置之偏差。控制單元800更構造成提供至少相應第二偏移信號給第二偏轉系統222。因此,提供晶圓載台的位置誤差或移動的快速補償並且增加通量,同時保持晶圓檢測任務的要求規範。In one example of the present invention and similar to the previous examples, a direct feedback loop is provided within the control unit 800 between the stage position sensor 520 and the first deflection yoke 110, and the control unit 800 is configured to receive feedback from the stage position sensor The stage position signal of the detector 520 is detected, and at least one first offset signal is provided to the first offset system 110 to compensate the movement of the wafer stage 500 and the movement of the wafer stage 500 by controlling the first deflection system 110 The deviation of the target position. The control unit 800 is further configured to provide at least a corresponding second offset signal to the second deflection yoke 222 . Thus, fast compensation for positional errors or movement of the wafer stage is provided and throughput is increased while maintaining the required specifications of the wafer inspection task.

上面描述的範例當然不僅只是獨立發生,而且還同時發生。前述裝置與誤差校正方法不限於前述範例。控制操作處理器840構造成針對一組成像偏差的一組誤差振幅,通過如上所述的直接反饋或預測校正或基於模型的校正,同時推導出控制信號。在一範例中,投影系統控制模組820進一步連接到樣品電壓源503,以控制用於擷取二次帶電粒子的擷取場,從而控制二次電子的收集效率,進而也控制二次電子子射束9的強度以及二次電子的動能。動能對應影響其他幾個屬性,例如影像對比度。在一範例中,投影系統控制模組820連接到偵測單元200的另外主動元件230和232,例如第三偏轉系統218,或校正器,例如多極透鏡216(見圖1)。在一範例中,二次電子射束路徑的感測器238向感測器資料分析系統818,例如孔徑元件上的感測器,提供額外感測器信號。在一範例中,多極感測器配置在孔徑元件214的圓周中,該元件位於二次帶電粒子射束路徑11(見圖1)的交叉點212處。利用多極感測器提供的信號,測量二次帶電粒子射束路徑11的遠心條件。在另一範例中,帶電粒子顯微鏡1中包括諸如射束轉向多重孔板390(見圖1)的主動和快速元件,例如用於複數個一次帶電粒子子射束3的遠心校正。射束轉向多重孔板390連接到一次射束路徑控制模組830,其通過控制操作處理器840接收控制信號。在一範例中,感測器138包含在物體照射單元100內,其提供額外感測器信號給感測器資料分析系統818,例如孔徑元件附近或多重孔板上的感測器。在範例中,其包括線圈陣列,以測量不同方位的電磁噪訊。在一範例中,一次射束路徑控制模組830連接到來源301,並且構造成控制來源301提供的電源或帶電粒子量。因此,在一組影像斑塊的一系列影像掃描中保持恆定的帶電粒子量。在一範例中,諸如加速度計或陀螺儀之類的振動感測器連接到帶電粒子顯微鏡的元件,例如晶圓載台500。振動感測器測量振動,並將信號提供給感測器資料分析系統818。溫度感測器,例如磁性透鏡中或冷卻流體回流中的溫度感測器,提供系統元件狀態和某些影像品質的大約預期漂移行為之指標。例如,可在測試樣品的模擬檢測任務中校準所有感測器信號,以提供晶圓檢測任務的代表性感測器資料。代表性感測器資料可用於設置感測器資料向量,並從實際晶圓檢測任務的感測器資料向量中擷取正常化誤差向量的振幅。The paradigms described above are of course not only occurring independently, but also simultaneously. The aforementioned apparatus and error correction method are not limited to the aforementioned examples. The control operations processor 840 is configured to simultaneously derive a control signal for a set of error amplitudes for a set of imaging biases through direct feedback or predictive correction or model-based correction as described above. In one example, the projection system control module 820 is further connected to the sample voltage source 503 to control the extraction field used to capture the secondary charged particles, thereby controlling the collection efficiency of the secondary electrons, which in turn also controls the secondary electrons. The intensity of the beam 9 and the kinetic energy of the secondary electrons. Kinetic energy correspondingly affects several other properties, such as image contrast. In one example, the projection system control module 820 is connected to further active elements 230 and 232 of the detection unit 200, such as the third deflection yoke 218, or a corrector, such as the multipole lens 216 (see FIG. 1). In one example, the sensor 238 of the secondary electron beam path provides additional sensor signals to the sensor data analysis system 818, eg, a sensor on an aperture element. In one example, the multipole sensor is arranged in the circumference of the aperture element 214 at the intersection 212 of the secondary charged particle beam paths 11 (see FIG. 1 ). Using the signal provided by the multipole sensor, the telecentric condition of the secondary charged particle beam path 11 is measured. In another example, the charged particle microscope 1 includes active and fast elements such as a beam steering multiple aperture plate 390 (see FIG. 1 ), eg for telecentric correction of a plurality of primary charged particle beamlets 3 . The beam steering multiple aperture plate 390 is connected to the primary beam path control module 830, which receives control signals through the control operation processor 840. In one example, sensor 138 is included within object illumination unit 100, which provides additional sensor signals to sensor data analysis system 818, such as sensors near aperture elements or on a multi-well plate. In an example, it includes an array of coils to measure electromagnetic noise at different orientations. In one example, the primary beam path control module 830 is connected to the source 301 and is configured to control the power supply or the amount of charged particles provided by the source 301 . Thus, a constant amount of charged particles is maintained over a series of image scans of a set of image patches. In one example, vibration sensors such as accelerometers or gyroscopes are connected to elements of a charged particle microscope, such as wafer stage 500 . The vibration sensor measures vibration and provides the signal to the sensor data analysis system 818 . Temperature sensors, such as in magnetic lenses or in cooling fluid return, provide an indication of system component status and approximate expected drift behavior of certain image qualities. For example, all sensor signals can be calibrated in a simulated inspection task for a test sample to provide representative sensor data for a wafer inspection task. The representative sensor data can be used to set the sensor data vector and extract the amplitude of the normalized error vector from the sensor data vector of the actual wafer inspection task.

通常,控制單元800的控制操作處理器840構造成從誤差振幅推導出校正信號,以補償誤差函數的緩慢變化發展,例如載台500的緩慢漂移。控制操作處理器840從誤差振幅的動態變化推導出用於動態變化的快速補償校正策略,並將控制信號分配給一次子射束控制模組830、投影系統控制模組820和偏轉控制模組860,以補償誤差振幅的快速或動態變化,例如載台500的快速振動。誤差振幅的漂移和動態變化由控制單元800的感測器資料分析系統818計算,並且可基於外推法或基於模型控制直接推導出。校正策略可遵循查找表(look up table),或通過線性分解將誤差振幅分解為由帶電粒子顯微鏡1的不同主動元件提供的預定校正函數。因此,控制操作處理器840另監視帶電粒子顯微鏡1的主動元件之實際狀態和狀態變化。在一範例中,控制操作處理器840構造成累積提供給主動元件的控制信號之歷史,例如二次電子路徑主動元件230、232、一次射束路徑主動元件330和332、偏轉器單元110或222,並且從而預測帶電粒子顯微鏡1的主動元件之實際狀態。Typically, the control operation processor 840 of the control unit 800 is configured to derive a correction signal from the error amplitude to compensate for slowly varying development of the error function, such as a slow drift of the stage 500 . The control operation processor 840 derives a fast compensation correction strategy for the dynamic change from the dynamic change of the error amplitude, and distributes the control signal to the primary beamlet control module 830, the projection system control module 820 and the deflection control module 860 , to compensate for rapid or dynamic changes in error amplitude, such as rapid vibration of the stage 500 . Drift and dynamic changes in error amplitude are calculated by the sensor data analysis system 818 of the control unit 800 and can be directly derived based on extrapolation or model based control. The correction strategy may follow a look up table, or by linear decomposition to decompose the error amplitude into predetermined correction functions provided by the different active elements of the charged particle microscope 1 . Therefore, the control operation processor 840 also monitors the actual state and state changes of the active elements of the charged particle microscope 1 . In one example, control operation processor 840 is configured to accumulate a history of control signals provided to active elements, such as secondary electron path active elements 230, 232, primary beam path active elements 330 and 332, deflector unit 110 or 222 , and thereby predict the actual state of the active elements of the charged particle microscope 1 .

本發明的一個態樣為推導出誤差向量,以及驅動補償器的驅動信號,以在多重射束帶電粒子顯微鏡的使用期間最佳化影像品質參數,如圖1結合圖6所示。該態樣例示在一次射束路徑處,類似的考慮適用於偵測單元200的元件。在圖1和圖6中,例示帶電粒子顯微鏡的一次射束路徑元件的典型子集,具有帶電粒子源301、第一和第二準直透鏡303.1和303.2、第一和第二主動多重孔板配置306.1和306.2(僅示出一個)、第一場透鏡308、第二場透鏡307、第三場透鏡103.1和第四場透鏡103.2、射束轉向多重孔板390、第一和第二物鏡102.1和102.2(僅示出一個)以及樣品電壓源503和載台500。控制單元800構造成在使用期間向所有這些元件提供至少一控制信號,例如電壓或電流或兩者。多孔徑配置提供有多種電壓,例如對於複數個一次帶電粒子子射束之每一者至少有個別的電壓。對於具有100個一次帶電粒子子射束的多重子射束帶電粒子顯微鏡系統,在使用過程中將大約50種不同的驅動信號施加到全局元件,並將大約200到800種不同的電壓施加到每個多孔徑配置,並且單一電壓或電流的數量可超過一次帶電粒子子射束數量約10倍。在根據本發明具體實施例的多重子射束帶電粒子顯微系統之操作之前,根據晶圓檢測任務的規範定義一組影像品質。某些規範描述如上。該組影像品質形成影像品質向量,並且影像品質的偏差量對應於誤差向量的振幅。為方便起見,對該組誤差向量進行正常化,以形成一組正常化的誤差向量。例如通過模擬或通過校準測量來確定靈敏度,即確定一組成像品質相對於施加到一次射束路徑的每組元件中每個元件的驅動信號之變化量。例如,在校準測量中,代表性感測器資料集由一組感測器或偵測器測量,並且為每個靈敏度產生感測器資料向量。形成一次射束路徑的元件靈敏度之靈敏度矩陣。靈敏度矩陣相對於與晶圓檢測任務相關的該組成像品質形成多重射束帶電粒子顯微鏡的線性擾動(linear perturbation)模型,並且通常並非正交。靈敏度矩陣例如通過奇異值(singular value)分解或類似演算法進行分析,對於每種影像品質,至少選擇一組驅動信號作為補償器的控制信號,用於補償影像品質的偏差或像差,從而減少相應誤差向量的振幅。在一範例中,通過將矩陣拆分為兩個、三個或更多個核心或獨立靈敏度核心的子集,對應於影像品質集合的特定子集,以分解靈敏度矩陣。從而降低計算複雜度,並減少非線性效應或高階效應。One aspect of the present invention is to derive an error vector, and a drive signal to drive the compensator, to optimize image quality parameters during use of the multiple beam charged particle microscope, as shown in FIG. 1 in conjunction with FIG. 6 . This aspect is illustrated at the primary beam path, and similar considerations apply to the elements of detection unit 200 . In Figures 1 and 6, a typical subset of primary beam path elements of a charged particle microscope is illustrated, with a charged particle source 301, first and second collimating lenses 303.1 and 303.2, first and second active multiwell plates Configurations 306.1 and 306.2 (only one shown), first field lens 308, second field lens 307, third field lens 103.1 and fourth field lens 103.2, beam steering multiple aperture plate 390, first and second objective lens 102.1 and 102.2 (only one shown) as well as sample voltage source 503 and stage 500. The control unit 800 is configured to provide at least one control signal, eg voltage or current or both, to all of these elements during use. A multi-aperture configuration is provided with a variety of voltages, eg, at least a separate voltage for each of the plurality of primary charged particle beamlets. For a multiple sub-beam charged particle microscope system with 100 primary charged particle sub-beams, approximately 50 different drive signals are applied to the global elements during use, and approximately 200 to 800 different voltages are applied to each Multi-aperture configuration, and the number of single voltage or current can exceed the number of primary charged particle sub-beams by about 10 times. Prior to operation of a multiple sub-beam charged particle microscopy system according to an embodiment of the present invention, a set of image qualities are defined according to the specifications of the wafer inspection task. Some specifications are described above. The set of image qualities forms an image quality vector, and the amount of deviation in image quality corresponds to the amplitude of the error vector. For convenience, the set of error vectors is normalized to form a set of normalized error vectors. Sensitivity, ie, the amount of change in a set of imaging qualities relative to the drive signal applied to each element of each set of elements of the primary beam path, is determined, for example, by simulation or by calibration measurements. For example, in a calibration measurement, a representative sensor data set is measured by a set of sensors or detectors, and a sensor data vector is generated for each sensitivity. Sensitivity matrix of element sensitivities forming the primary beam path. The sensitivity matrix forms a linear perturbation model of the multiple beam charged particle microscope with respect to the set of image qualities relevant to the wafer inspection task, and is generally not orthogonal. For example, the sensitivity matrix is analyzed by singular value decomposition or a similar algorithm. For each image quality, at least one set of driving signals is selected as the control signal of the compensator to compensate for the deviation or aberration of the image quality, thereby reducing the The amplitude of the corresponding error vector. In one example, the sensitivity matrix is decomposed by splitting the matrix into two, three or more cores or subsets of independent sensitivity cores, corresponding to specific subsets of the image quality set. This reduces computational complexity and reduces nonlinear or higher-order effects.

在一範例中,靈敏度矩陣的至少一核心取決於多重射束帶電粒子顯微鏡的溫度。例如,多重射束帶電粒子顯微鏡的筒身或筒身元件的溫度變化導致焦點漂移、放大率漂移或像散漂移。多重射束帶電粒子顯微鏡中提供的偵測器包括溫度偵測器,例如在冷卻水中或附接到機械部件、多重孔板或磁性元件內部的溫度感測器。藉此,可在多個代表性溫度下執行靈敏度矩陣的各個核心的正交化,並且使用溫度校正的靈敏度矩陣,以根據溫度信號計算補償器的相應驅動信號。實際溫度的考慮以及溫度校正的靈敏度矩陣和相應驅動信號的應用,與如下所述多重射束帶電粒子顯微系統的重複校準步驟特別相關。在簡化的範例中,減少多個溫度感測器,並且根據多重射束帶電粒子顯微鏡系統的操作歷史預測預期溫度。In one example, at least one core of the sensitivity matrix is dependent on the temperature of the multiple beam charged particle microscope. For example, temperature changes in the barrel or barrel elements of a multiple beam charged particle microscope lead to focus shift, magnification shift, or astigmatism shift. Detectors provided in multiple beam charged particle microscopes include temperature detectors, such as temperature sensors in cooling water or attached to the interior of mechanical components, multiple well plates, or magnetic elements. Thereby, orthogonalization of the various cores of the sensitivity matrix can be performed at multiple representative temperatures, and the temperature corrected sensitivity matrix can be used to calculate the corresponding drive signal of the compensator from the temperature signal. Consideration of actual temperature and the application of temperature-corrected sensitivity matrices and corresponding drive signals are particularly relevant for the repeated calibration steps of a multiple beam charged particle microscopy system as described below. In a simplified example, multiple temperature sensors are reduced, and the expected temperature is predicted from the operating history of the multiple beam charged particle microscope system.

在一範例中,為快速補償器選擇驅動信號的第一基組,例如包括靜電補償器和偏轉器,像是多重子射束產生器的快速補償器332、第一偏轉系統110、物體照射單元100的快速補償器132,並且為包括例如磁性元件的緩慢作用補償器,像是圖6中物體照射單元130的緩慢補償器,選擇驅動信號的第二基組。在一範例中,驅動信號的每一基組因此最小化到驅動信號之最少數量,從而減少各個元件的控制運算子之數量,縮短計算時間,並且影像品質的集合可控制在晶圓檢測任務的需求規範之內。In one example, a first basis set of drive signals is selected for a fast compensator, eg comprising electrostatic compensators and deflectors, such as fast compensators 332 of multiple beamlet generators, first deflection system 110, object illumination unit 100 A second basis set of drive signals is selected for the fast compensator 132, and for a slow acting compensator comprising eg magnetic elements, like the slow compensator of the object illumination unit 130 in FIG. 6 . In one example, each basis set of drive signals is thus minimized to the minimum number of drive signals, thereby reducing the number of control operators for each component, shortening computation time, and the aggregation of image quality can be controlled within the wafer inspection task. within the requirements specification.

每個驅動信號基組儲存在控制單元800的記憶體中,例如儲存在一次射束路徑控制模組830的記憶體中。控制操作處理器840從一組誤差向量的振幅中推導出一組控制信號。一次射束路徑控制模組830例如通過與由控制操作處理器840計算的控制信號集相乘(multiplication),從驅動信號基組推導出驅動信號集。二次射束路徑控制模組820例如通過與由控制操作處理器840計算的控制信號集相乘,從驅動信號基組推導出驅動信號集。Each driving signal basis set is stored in the memory of the control unit 800 , for example, in the memory of the primary beam path control module 830 . Control operation processor 840 derives a set of control signals from the amplitudes of a set of error vectors. The primary beam path control module 830 derives the set of drive signals from the base set of drive signals, eg, by multiplying with the set of control signals calculated by the control operation processor 840 . The secondary beam path control module 820 derives the set of drive signals from the base set of drive signals, eg, by multiplying the set of control signals calculated by the control operations processor 840 .

因此,一種準備用於晶圓檢測的多重射束帶電粒子顯微鏡之操作方法包括定義一組影像品質和一組或正常化誤差向量,該向量描述與感測器資料向量相結合的一組影像品質之偏差。根據前述晶圓檢測任務的成像規範,確定一組用於該組或正常化誤差向量振幅的臨界,以及執行多重射束帶電粒子顯微鏡的一組補償器之預選擇。該組補償器包括用於掃描和偏轉複數個一次帶電粒子的該多重射束帶電粒子顯微鏡之第一偏轉單元,及用於掃描和偏轉在該多重射束帶電粒子顯微鏡使用期間所產生複數個二次電子之第二偏轉單元。準備用於晶圓檢測的多重射束帶電粒子顯微鏡之操作方法更包括:根據線性及/或非線性擾動模型,通過改變用於該組補償器中每一個補償器的至少一驅動信號,以確定靈敏度矩陣。該靈敏度矩陣例如通過奇異值分解或類似演算法來分析。在一範例中,該靈敏度矩陣通過分成影像品質的兩個、三個或更多個內核或獨立子集來分解。從而降低計算複雜度,並減少非線性效應或高階效應。準備用於晶圓檢測的多重射束帶電粒子顯微鏡之操作方法更包括推導一組正常化驅動信號,以補償該組正常化誤差向量中之每一者。正常化誤差向量、正常化驅動信號和臨界組儲存在多重射束帶電粒子顯微鏡控制單元的記憶體中,形成預定誤差向量和預定驅動信號。Accordingly, a method of operating a multiple beam charged particle microscope in preparation for wafer inspection includes defining a set of image qualities and a set or normalized error vector describing a set of image qualities combined with a vector of sensor data deviation. Based on the imaging specification for the aforementioned wafer inspection task, a set of thresholds for the set or normalized error vector amplitudes are determined and a pre-selection of a set of compensators to perform multiple beam charged particle microscopy. The set of compensators includes a first deflection unit of the multiple beam charged particle microscope for scanning and deflecting a plurality of primary charged particles, and a first deflection unit for scanning and deflecting a plurality of secondary charged particle microscopes generated during use of the multiple beam charged particle microscope The second deflection unit of the secondary electron. The method of operation of a multiple beam charged particle microscope in preparation for wafer inspection further comprises: by varying at least one drive signal for each compensator in the set of compensators according to a linear and/or nonlinear perturbation model to determine Sensitivity matrix. This sensitivity matrix is analyzed, for example, by singular value decomposition or similar algorithms. In one example, the sensitivity matrix is decomposed by dividing into two, three or more kernels or independent subsets of image quality. This reduces computational complexity and reduces nonlinear or higher-order effects. The method of operation of the multiple beam charged particle microscope in preparation for wafer inspection further includes deriving a set of normalization drive signals to compensate for each of the set of normalization error vectors. The normalized error vector, the normalized drive signal and the critical group are stored in the memory of the multiple beam charged particle microscope control unit to form the predetermined error vector and the predetermined drive signal.

在使用期間,例如在晶圓檢測期間,多重射束帶電粒子顯微鏡的操作方法更包括從多重射束帶電粒子顯微鏡的複數個感測器接收複數個感測器資料來形成感測器資料向量之步驟。在一範例中,複數個感測器資料包括在使用多重射束帶電粒子顯微鏡檢測期間用於維持晶圓的晶圓載台實際位置與實際速度之位置或速度資訊之至少一者。用於產生複數個感測器資料的該組感測器準備並構造成使得可明確推導出預定誤差向量,並且在使用期間,從感測器資料向量推導出一組正常化誤差向量的實際振幅,代表多重射束帶電粒子顯微鏡影像品質的實際狀態。例如通過與控制信號相乘,從該組實際振幅中推導出一組控制信號,並且從該預定正常化驅動信號中推導出一組實際驅動信號。控制單元控制多重射束帶電粒子顯微鏡的補償器,並提供該組實際驅動信號給補償器組,使得一組實際振幅保持在該組臨界以下,並且晶圓檢測任務的操作良好地保持在成像規範之內。在圖7中,更詳細解釋根據本發明具體實施例的操作方法。圖1-6中相同的參考編號用於說明。針對晶圓檢測,多重射束帶電粒子顯微鏡(1)包括複數個偵測器,該等偵測器包括一影像感測器(207)和一載台位置感測器(520),以及一組補償器,該組補償器包括至少第一和第二偏轉系統(110、222)。在多重射束帶電粒子顯微鏡(1)的控制單元800之記憶體中,儲存誤差向量振幅的臨界和至少一組正常化驅動信號。During use, such as during wafer inspection, the method of operation of the multiple beam charged particle microscope further includes receiving a plurality of sensor data from a plurality of sensors of the multiple beam charged particle microscope to form a sum of sensor data vectors step. In one example, the plurality of sensor data includes at least one of position or velocity information for maintaining actual wafer stage position and actual velocity of the wafer during inspection using multiple beam charged particle microscopy. The set of sensors used to generate the plurality of sensor data is prepared and constructed such that a predetermined error vector can be unambiguously derived, and during use, the actual amplitude of a set of normalized error vectors is derived from the sensor data vector , representing the actual state of image quality in multiple beam charged particle microscopy. A set of control signals is derived from the set of actual amplitudes, and a set of actual drive signals is derived from the predetermined normalized drive signal, eg by multiplying with the control signal. The control unit controls the compensators of the multiple beam charged particle microscope and provides the set of actual drive signals to the set of compensators so that the set of actual amplitudes remains below the set critical and the operation of the wafer inspection task is well maintained within imaging specifications within. In FIG. 7, the method of operation according to a specific embodiment of the present invention is explained in more detail. The same reference numbers in Figures 1-6 are used for illustration. For wafer inspection, the multiple beam charged particle microscope (1) includes a plurality of detectors including an image sensor (207) and a stage position sensor (520), and a set of A compensator, the set of compensators includes at least first and second deflection yokes (110, 222). In the memory of the control unit 800 of the multiple beam charged particle microscope (1), thresholds for the amplitude of the error vector and at least one set of normalized drive signals are stored.

在第一步驟SR中,例如由操作員登錄晶圓檢測任務或由外部操作系統提供指令。載入的晶圓在多重射束帶電粒子顯微鏡系統1的預定全局晶圓坐標系統中對齊和登錄。晶圓檢測任務包括一系列檢測部位(例如圖2的33、35)。從一序列檢測部位,產生至少在第一和第二檢測部位33和35處的多個晶圓區域中一系列影像擷取任務。至少一檢測部位可包括至少第一和第二成像斑塊17.1和17.2。橫向尺寸PX的每個成像斑塊通過配置在光柵陣列中的複數個一次帶電粒子子射束3,成像在多重射束帶電粒子顯微鏡1內,其中複數個一次帶電粒子子射束2中每一者掃描過橫向尺寸SX的每個子場31。由複數個一次帶電粒子子射束3掃描的多個子場拼接在一起,以形成影像斑塊17。子場的橫向尺寸SX通常為10 μm或更小,一個影像斑塊17的影像尺寸PX通常為約100 μm或更大。一次子射束3的數量通常為10×10個子射束或甚至更多重子射束,例如300個子射束或1000個子射束。較佳的光柵組態為例如六邊形光柵、矩形光柵、具有配置在至少圓形上的子射束之圓形光柵,但是其他光柵組態也是可能的。In the first step SR, the wafer inspection task is logged in, for example, by an operator or instructions are provided by an external operating system. The loaded wafers are aligned and registered in a predetermined global wafer coordinate system of the multiple beam charged particle microscope system 1 . The wafer inspection task includes a series of inspection sites (eg, 33, 35 in Figure 2). From a sequence of inspection sites, a series of image capture tasks in a plurality of wafer regions at least at the first and second inspection sites 33 and 35 are generated. The at least one detection site may include at least first and second imaging patches 17.1 and 17.2. Each imaging patch of lateral dimension PX is imaged in the multi-beam charged particle microscope 1 by a plurality of primary charged particle beamlets 3 arranged in a grating array, wherein each of the plurality of primary charged particle beamlets 2 The user scans each subfield 31 of lateral dimension SX. The subfields scanned by the primary charged particle beamlets 3 are stitched together to form image patches 17 . The lateral size SX of the subfield is typically 10 μm or less, and the image size PX of one image patch 17 is typically about 100 μm or more. The number of primary sub-beams 3 is typically 10×10 sub-beams or even more bary sub-beams, eg 300 sub-beams or 1000 sub-beams. Preferred grating configurations are eg hexagonal gratings, rectangular gratings, circular gratings with sub-beams arranged at least in circles, but other grating configurations are also possible.

影像斑塊17.1和17.2的第一和第二斑塊中心位置21.1和21.2係根據檢測任務清單計算,該清單包括晶圓表面上檢測部位33的位置和檢測任務的區域。如果檢測部位區域的橫向尺寸超過影像斑塊,則檢測部位區域劃分為至少兩個影像斑塊17.1、17.2,具有至少第一和第二斑塊中心位置21.1、21.2。第一和第二中心斑塊位置21.1、21.2在晶圓坐標中進行轉換,並且相對於全局晶圓坐標系統定義第一和第二局部晶圓坐標系統。藉此,產生用於擷取相應影像斑塊17.1和17.2的多個局部晶圓坐標系統清單。The first and second patch center positions 21.1 and 21.2 of the image patches 17.1 and 17.2 are calculated from the inspection task list, which includes the positions of the inspection sites 33 on the wafer surface and the area of the inspection task. If the lateral dimension of the detection site area exceeds the image patch, the detection site area is divided into at least two image patches 17.1, 17.2, with at least first and second patch center positions 21.1, 21.2. The first and second center patch locations 21.1, 21.2 are transformed in wafer coordinates and define the first and second local wafer coordinate systems relative to the global wafer coordinate system. Thereby, a plurality of local wafer coordinate system lists for capturing the corresponding image patches 17.1 and 17.2 are generated.

應理解,每次通過第一和第二成員只是用來舉例解釋多個成員,該等複數個成員還可包含兩個以上的成員,例如一個檢測任務可包含多個50、100或更多個檢測部位,並且每個檢測部位可包含多個2、4或更多個影像斑塊。It should be understood that the first and second members are only used to illustrate multiple members each time, and these multiple members may also include more than two members, for example, a detection task may include multiple 50, 100 or more Detection sites, and each detection site may contain a plurality of 2, 4 or more image patches.

在步驟S1中,多重子射束帶電粒子顯微系統的狀態例如根據操作歷史或從多重子射束帶電粒子顯微系統1的初始化來確定。如果提供相應的觸發信號,則多重子射束帶電粒子顯微系統1的初始化可包括系統校準。複數個帶電粒子子射束3中選定的子射束可用於系統校準。附接到晶圓載台500或第二計量載台上專用支架的至少一參考樣品可用於系統校準,及用於確定帶電粒子顯微鏡和晶圓載台位置的視線53。不同位置處的兩或多個參考樣品可用於校準不同影像性能函數,例如放大率、失真或像散。In step S1 , the state of the multiple sub-beam charged particle microscope system is determined, for example, from the operation history or from the initialization of the multiple sub-beam charged particle microscope 1 . The initialization of the multiple sub-beam charged particle microscopy system 1 may include system calibration if a corresponding trigger signal is provided. Selected sub-beams of the plurality of charged particle sub-beams 3 can be used for system calibration. At least one reference sample attached to a dedicated holder on the wafer stage 500 or the second metrology stage can be used for system calibration and line of sight 53 for determining the position of the charged particle microscope and the wafer stage. Two or more reference samples at different locations can be used to calibrate different image performance functions such as magnification, distortion or astigmatism.

步驟S0包括以多重射束帶電粒子顯微鏡(1)的視線,定位晶圓的晶圓表面(25)並與局部晶圓坐標系統(551)的位置對準。晶圓定位在多重子射束帶電粒子顯微鏡1的光軸或視線53下方並與下一局部晶圓坐標系統551對齊。下一局部晶圓坐標系統551可為來自步驟SR中產生的局部晶圓坐標系統清單中的一第一或任何後續局部晶圓坐標系統551。Step S0 includes positioning the wafer surface ( 25 ) of the wafer and aligning it with the position of the local wafer coordinate system ( 551 ) in the line of sight of the multiple beam charged particle microscope ( 1 ). The wafer is positioned below the optical axis or line of sight 53 of the multiple sub-beam charged particle microscope 1 and aligned with the next local wafer coordinate system 551 . The next local wafer coordinate system 551 may be a first or any subsequent local wafer coordinate system 551 from the list of local wafer coordinate systems generated in step SR.

觸發晶圓載台500以移動晶圓,使得局部晶圓坐標系統551與帶電粒子顯微鏡的視線53對準。借助於在晶圓表面上形成或可見的圖案,選擇性執行通過移動晶圓載台對每個局部晶圓坐標系統的對準。當以視線53當成多重射束帶電粒子顯微鏡1中z軸的影像坐標系統51與晶圓局部坐標系統551間之差異向量低於臨界時,停止調整。差異向量55例如是包括用於載台移動的六個自由度之向量,其包括位移和旋轉或傾斜。對於微調,差異向量在橫向上小於50 nm甚至更小,在視線或聚焦方向可小於100 nm。影像在z軸上旋轉的臨界通常為0.5毫弧度,並且相對於x-y平面影像坐標系統的傾斜臨界通常為1毫弧度。微調可包括至少一檢測部位的成像步驟,以及載台移動的幾次重複。The wafer stage 500 is triggered to move the wafer so that the local wafer coordinate system 551 is aligned with the line of sight 53 of the charged particle microscope. Alignment of each local wafer coordinate system by moving the wafer stage is selectively performed by means of patterns formed or visible on the wafer surface. When the difference vector between the image coordinate system 51 and the wafer local coordinate system 551 with the line of sight 53 as the z-axis in the multiple beam charged particle microscope 1 is lower than a critical value, the adjustment is stopped. Difference vector 55 is, for example, a vector including six degrees of freedom for stage movement, including displacement and rotation or tilt. For fine-tuning, the difference vector is less than 50 nm or even less in the lateral direction, and can be less than 100 nm in the line-of-sight or focus direction. The threshold for image rotation in the z-axis is typically 0.5 milliradians, and the threshold for tilt relative to the x-y plane of the image coordinate system is typically 1 milliradian. Fine-tuning may include imaging steps of at least one detection site, and several repetitions of stage movement.

在本發明的一具體實施例中,選擇晶圓檢測任務的快速操作模式,並且對精度調整的要求放寬,並且臨界增加2倍或甚至10倍或甚至更多,並且量超過臨界的剩餘差異向由多重射束帶電粒子顯微鏡1的該組補償器進行補償。為此,控制單元800產生多個偏移誤差向量振幅,並提供給下面的步驟S2。In a specific embodiment of the present invention, the fast mode of operation for wafer inspection tasks is selected, and the requirements for precision adjustment are relaxed, and the threshold is increased by a factor of 2 or even 10 times or even more, and the amount of residual difference over the threshold increases to Compensation is performed by the set of compensators of the multiple beam charged particle microscope 1 . For this purpose, the control unit 800 generates a plurality of offset error vector amplitudes and provides them to the following step S2.

在步驟S1中,執行影像擷取以擷取晶圓表面(25)的第一影像斑塊(17.1)之數位影像,並且收集來自複數個偵測器的複數個偵測器資料。執行來自一系列檢測部位的檢測任務。步驟S1包括至少: 在步驟S1-1中,影像擷取處理從第一影像斑塊17.1的掃描成像開始。每個影像斑塊17較佳利用根據步驟S0調整成與多重射束帶電粒子顯微鏡1的視線53重合之載台500成像,或利用如上所述以低速移動的載台成像。 在步驟S1-2中,與步驟S1-1並行,由複數個偵測器產生複數個感測器資料。複數個偵測器包括至少載台位置感測器520和影像感測器207。在一範例中,複數個偵測器更包括多重子射束帶電粒子顯微鏡的其他偵測器,例如偵測器238和138,其在影像擷取期間產生感測器資料。複數個感測器資料另可包括施加到靜電和磁性元件的電流或電壓。提供感測器資料的其他感測器範例為例如溫度感測器,例如監控冷卻流體或磁性元件中溫度的溫度感測器。In step S1, image capture is performed to capture a digital image of the first image patch (17.1) of the wafer surface (25), and to collect a plurality of detector data from a plurality of detectors. Perform detection tasks from a series of detection sites. Step S1 includes at least: In step S1-1, the image capture process starts with the scanning imaging of the first image patch 17.1. Each image patch 17 is preferably imaged using the stage 500 adjusted to coincide with the line of sight 53 of the multiple beam charged particle microscope 1 according to step S0, or using a stage moving at a low speed as described above. In step S1-2, in parallel with step S1-1, a plurality of sensor data are generated by a plurality of detectors. The plurality of detectors include at least the stage position sensor 520 and the image sensor 207 . In one example, the plurality of detectors further includes other detectors of the multiple sub-beam charged particle microscope, such as detectors 238 and 138, which generate sensor data during image capture. The plurality of sensor data may additionally include current or voltage applied to electrostatic and magnetic elements. Other examples of sensors that provide sensor data are, for example, temperature sensors, such as those monitoring temperature in cooling fluids or magnetic elements.

步驟S1-1的成像包括在複數個一次帶電粒子子射束3與晶圓表面25相互作用的位置處,產生複數個二次電子之集合。由二次電子形成複數個二次電子子射束9。複數個二次帶電粒子子射束9中每一者分開偵測,從而獲得在相應局部晶圓坐標系統551處的影像斑塊17之數位影像。The imaging of step S1 - 1 includes generating a plurality of sets of secondary electrons at positions where the plurality of primary charged particle beamlets 3 interact with the wafer surface 25 . A plurality of secondary electron sub-beams 9 are formed from the secondary electrons. Each of the plurality of secondary charged particle beamlets 9 is detected separately to obtain a digital image of the image patch 17 at the corresponding local wafer coordinate system 551 .

在步驟S2期間,在感測器資料分析系統818中評估複數個感測器資料。步驟S2包括至少: 在S2-1中,將來自不同感測器的複數個感測器資料與實際時間Ta 時長度為L的感測器資料向量DV(i)結合,以及在長度為L的K預定誤差向量Ek (i)集合中擴展感測器資料向量DV(i)。預定誤差向量Ek (i)的集合代表影像擷取的影像品質參數集合之偏差,如上所述。計算該組預定誤差向量Ek (i)的一組K誤差振幅Ak 使得 DV(i) =

Figure 02_image003
其中剩餘誤差向量低於預定臨界。在計算誤差振幅AK 期間,考慮步驟S0內產生的多個偏移誤差向量振幅或偏移誤差向量振幅的預測時間行為。在一範例中,K的大小為6,代表晶圓局部坐標系統與視線之間差異的六個自由度,但一般情況下,K大於6,例如誤差向量集合包括K = 14個誤差向量,其包括晶圓載台位置、局部晶圓坐標系統和視線、放大倍數變化、變形失真變化、像散、場曲、三階失真和色差的六個自由度差異。通常,K與L相比較小,即K<L。形成感測器資料向量DV(i)的感測器資料之數量L可為10或更多,但L較佳為較小數量,以提高計算速度,例如K < L < 4 K。例如,如果K = 14,L較佳低於50。通過將複數個感測器資料減少到已減少長度L的錯誤向量和K誤差向量振幅,如此減少資料量,並且增加計算時間。 在S2-2中,根據多重射束帶電粒子顯微鏡在預測時間間隔內的預期發展,以預測該組實際振幅的至少一子集之發展振幅子集。推導出n個誤差振幅An 的至少一子集之時間發展,並且誤差振幅的子集被認為是時間相關函數An (t)。在實際時間Ta 之後的預測時間間隔內,誤差振幅An (t > Ta)的時間發展之推導範例是從誤差振幅An (t < Ta )的歷史外推,通過如前述的線性或更高階外推。因此,在使用期間,記錄多重射束帶電粒子顯微鏡的該組實際振幅的至少一子集,以用於產生該組實際振幅的子集歷史。誤差振幅An (t > Ta )的時間發展推導之另一範例為誤差振幅An (t)的歷史到一組預定模型函數Mn (t)的近似。 在S2-3中,誤差振幅An (t)的至少一子集之時間發展分成振幅的時間發展中之漂移部分Sn (t)和動態變化Nn (t),An(t) = Sn (t) + Nn (t)。During step S2, a plurality of sensor data are evaluated in the sensor data analysis system 818. Step S2 includes at least: In S2-1, combining a plurality of sensor data from different sensors with a sensor data vector DV( i ) of length L at the actual time Ta, and combining the sensor data vector DV(i) of length L at the actual time Ta, The extended sensor data vector DV(i) in the set of K predetermined error vectors E k (i). The set of predetermined error vectors E k (i) represents the deviation of the image quality parameter set for image capture, as described above. Calculate a set of K error amplitudes A k for the set of predetermined error vectors E k (i) such that DV(i) =
Figure 02_image003
where the residual error vector is below a predetermined threshold. During the calculation of the error amplitude AK , the multiple offset error vector amplitudes or the predicted temporal behavior of the offset error vector amplitudes generated in step S0 are considered. In an example, the magnitude of K is 6, representing six degrees of freedom of the difference between the wafer local coordinate system and the line of sight, but in general, K is greater than 6, for example, the error vector set includes K = 14 error vectors, which are Six DOF differences including wafer stage position, local wafer coordinate system and line-of-sight, magnification change, deformation distortion change, astigmatism, field curvature, third-order distortion, and chromatic aberration. Typically, K is small compared to L, ie, K<L. The number L of sensor data forming the sensor data vector DV(i) may be 10 or more, but L is preferably a smaller number to improve the calculation speed, eg K < L < 4 K. For example, if K=14, L is preferably less than 50. By reducing the plurality of sensor data to error vectors of reduced length L and K error vector amplitudes, the amount of data is thus reduced and computation time is increased. In S2-2, a subset of developed amplitudes of at least a subset of the set of actual amplitudes is predicted based on the expected development of the multiple beam charged particle microscope over the predicted time interval. The time development of at least a subset of n error amplitudes An is derived, and the subset of error amplitudes is considered to be the time correlation function An( t ). An example of the derivation of the time development of the error amplitude An ( t > Ta ) in the predicted time interval after the actual time Ta is to extrapolate from the history of the error amplitude An ( t < Ta ) , by linear or Higher order extrapolation. Thus, during use, at least a subset of the set of actual amplitudes of the multiple beam charged particle microscope is recorded for use in generating a subset history of the set of actual amplitudes. Another example of the derivation of the time development of the error amplitude An ( t >T a ) is the approximation of the history of the error amplitude An (t) to a set of predetermined model functions Mn ( t ). In S2-3, the time development of at least a subset of the error amplitude An ( t ) is divided into the drift part Sn (t) in the time development of the amplitude and the dynamic change N n ( t), An(t) = S n (t) + N n (t).

在一範例中,預定誤差向量包括在一次帶電粒子射束路徑中引入的影像像差。一次帶電粒子射束路徑中的像差包括諸如放大誤差之類的失真、諸如梯形失真之類的變形失真或三階和更高階失真。其他像差為例如場曲、像散或色差。In one example, the predetermined error vector includes image aberrations introduced in the primary charged particle beam path. Aberrations in the primary charged particle beam path include distortions such as magnification errors, deformation distortions such as keystone distortion, or third and higher order distortions. Other aberrations are eg field curvature, astigmatism or chromatic aberration.

在一範例中,預定誤差向量包括在二次電子射束路徑11中引入的影像像差。二次電子射束路徑11中的像差例如降低二次電子的收集效率,並且例如導致降低的影像對比度和增加的噪訊。In one example, the predetermined error vector includes image aberrations introduced in the secondary electron beam path 11 . Aberrations in the secondary electron beam path 11, for example, reduce the collection efficiency of the secondary electrons, and lead, for example, to reduced image contrast and increased noise.

在一範例中,複數個感測器資料與感測器資料向量DV(i)的組合包括計算複數個感測器資料的差值,例如多重射束帶電粒子顯微鏡的視線之位置座標與載台位置感測器的位置和方位資料間之差值。In one example, the combination of the plurality of sensor data and the sensor data vector DV(i) includes calculating the difference of the plurality of sensor data, such as the position coordinates of the line of sight of the multiple beam charged particle microscope and the stage The difference between the position sensor's position and orientation data.

在一範例中,濾波器應用於誤差振幅An (t)的時間發展中的至少一者,使得從誤差振幅An (t)的時間發展中減去所選誤差振幅的特定特徵。因此,減去不影響影像品質的誤差振幅An (t)之時間發展中特定特徵並且減少控制操作的量。In one example, a filter is applied to at least one of the time development of the error amplitude An ( t ) such that a particular characteristic of the selected error amplitude is subtracted from the time development of the error amplitude An ( t ). Therefore, the specific characteristics of the time development of the error amplitude An ( t ) which do not affect the image quality are subtracted and the amount of control operations is reduced.

在一範例中,該組或誤差向量是從多重射束帶電粒子顯微鏡中可用的一組補償器能力所推導出,使得該組或誤差向量可通過控制該組補償器的致動來補償。在一範例中,一組可能的誤差向量係從成像實驗中得出,多重射束帶電粒子顯微鏡設置有一組能夠補償該組誤差向量的補償器。In one example, the set or error vector is derived from a set of compensator capabilities available in multiple beam charged particle microscopes such that the set or error vector can be compensated by controlling the actuation of the set of compensators. In one example, a set of possible error vectors is derived from imaging experiments, and the multiple beam charged particle microscope is provided with a set of compensators capable of compensating for the set of error vectors.

在一範例中,將誤差向量組的振幅或振幅發展與儲存在控制單元800的記憶體中預定臨界組進行比較。In one example, the amplitude or amplitude development of the set of error vectors is compared to a predetermined threshold set stored in the memory of the control unit 800 .

在晶圓檢測任務期間,根據振幅的發展確定一組預測控制信號和來自該組預測控制信號的一組預測驅動信號,並將該組預測驅動信號依時間順序提供給該補償器組,從而在預測時間間隔期間將實際振幅的子集減少到各自臨界以下。During a wafer inspection task, a set of predicted control signals and a set of predicted drive signals from the set of predicted control signals are determined based on the development of the amplitude, and the set of predicted drive signals is provided to the set of compensators in time sequence, thereby reducing the A subset of the actual amplitudes are reduced below their respective thresholds during the prediction time interval.

在步驟S3中,從該組誤差振幅Ak 中推導出一組P個控制信號Cp 。誤差振幅Ak 的偏差和振幅,其包括誤差函數En 的誤差振幅An 之時間發展,經過分析並由控制操作處理器840用預定映射函數MF映射到一組P控制信號Cp : MF:Ak -> Cp K誤差振幅組到P控制信號組具有預定映射函數MF的映射,例如通過查找表、矩陣求逆或諸如奇異值分解的數值擬合操作來實現。In step S3, a set of P control signals Cp is derived from the set of error amplitudes Ak . The deviation and amplitude of the error amplitude Ak , which includes the time development of the error amplitude An of the error function En , is analyzed and mapped by the control operation processor 840 to a set of P control signals Cp with a predetermined mapping function MF: MF: The mapping of A k -> C p K error amplitude sets to P control signal sets has a predetermined mapping function MF, eg by a look-up table, matrix inversion or numerical fitting operations such as singular value decomposition.

在一範例中,不同的錯誤向量組在不同的錯誤向量類別中平行處理。例如,由視線定義的兩坐標系統與局部晶圓坐標系統的坐標系統漂移在坐標誤差類別中分開處理。高階成像像差或遠心像差在各自的誤差向量類別中處理。從而,並行且高速計算用於一組誤差向量的一組控制信號。In one example, different sets of error vectors are processed in parallel in different error vector classes. For example, the coordinate system drift of the two coordinate system defined by the line of sight and the local wafer coordinate system are treated separately in the coordinate error category. Higher order imaging aberrations or telecentric aberrations are handled in their respective error vector categories. Thus, a set of control signals for a set of error vectors is calculated in parallel and at high speed.

在步驟S3-1中,從一組控制信號Cp 中推導出一組偏轉控制信號。In step S3-1, a set of deflection control signals is derived from a set of control signals Cp .

在步驟S3-2中,從一組控制信號Cp 中推導出一組一次控制信號。選擇一次控制信號來控制一次射束路徑的補償器,以補償成像像差,例如散焦、像平面傾斜、場曲、放大率、像散、色差、遠心像差或其他更高階的像差。In step S3-2, a set of primary control signals is derived from a set of control signals Cp . The primary control signal is selected to control the compensator of the primary beam path to compensate for imaging aberrations such as defocus, image plane tilt, field curvature, magnification, astigmatism, chromatic aberration, telecentricity or other higher order aberrations.

在步驟S3-3中,從一組控制信號Cp 中推導出一組二次控制信號。In step S3-3, a set of secondary control signals is derived from a set of control signals Cp .

在步驟S3-4中,從一組控制信號Cp 中推導出一組影像處理控制信號。該組影像處理控制信號包括在影像拼接期間要考慮的影像拼接分量ISp 的子集。In step S3-4, a set of image processing control signals is derived from a set of control signals Cp . The set of image processing control signals includes a subset of image stitching components IS p to be considered during image stitching.

在選擇性步驟S3-5中(未示出),從一組控制信號Cp 中推導出一組載台控制信號。In an optional step S3-5 (not shown), a set of carrier control signals is derived from a set of control signals Cp .

在步驟S4中,該組控制信號Cp 提供給該組控制模組中至少一控制模組,該組控制模組包括投影系統控制模組820、一次射束路徑控制模組830、偏轉控制模組860、載台控制模組880和影像拼接單元812。每個控制模組從該組控制信號Cp 推導出一組致動值或驅動信號,例如電壓或電流序列,將提供給該組補償器中至少一補償器,以補償由該組或多個錯誤向量的一錯誤向量表示之成像像差。在影像擷取的步驟S1期間,將第一控制信號提供給一組補償器。控制信號的第二子集儲存在記憶體中,並提供給步驟S0以在定位和對準下一局部晶圓坐標系統期間應用。In step S4, the set of control signals C p is provided to at least one control module in the set of control modules, and the set of control modules includes a projection system control module 820, a primary beam path control module 830, a deflection control module group 860 , stage control module 880 and image stitching unit 812 . Each control module derives from the set of control signals Cp a set of actuation values or drive signals, such as voltage or current sequences, to be provided to at least one compensator of the set of compensators to compensate for the set of actuation values or drive signals from the set of compensators or compensators The imaging disparity represented by an error vector of error vectors. During step S1 of image capture, a first control signal is provided to a set of compensators. A second subset of control signals is stored in memory and provided to step SO for application during positioning and aligning the next local wafer coordinate system.

在步驟S4-1中,將一組偏轉控制信號提供給偏轉控制模組860。為了補償代表像差的一組誤差向量,首先校正複數個一次帶電粒子子射束3的焦點5之橫向位置,使得焦點形成在晶圓表面25上預定橫向位置處,由局部晶圓坐標系統551和預定光柵組態所定義,其橫向位置精度低於10 nm或更小。焦點5與預定位置的橫向對準由第一偏轉單元110控制,偏轉複數個一次帶電粒子子射束3。藉此,例如通過向第一和第二偏轉單元(110、222)提供控制信號Cp ,以補償晶圓載台(500)的位置或方位變化。In step S4-1, a set of deflection control signals are provided to the deflection control module 860. To compensate for a set of error vectors representing aberrations, the lateral positions of the focal points 5 of the plurality of primary charged particle beamlets 3 are first corrected so that the focal points are formed at predetermined lateral positions on the wafer surface 25, determined by the local wafer coordinate system 551 and a predetermined grating configuration with a lateral positional accuracy of less than 10 nm or less. The lateral alignment of the focal point 5 with the predetermined position is controlled by the first deflection unit 110 to deflect the plurality of primary charged particle beamlets 3 . Thereby, for example by providing a control signal C p to the first and second deflection units ( 110 , 222 ), the position or orientation variation of the wafer stage ( 500 ) is compensated.

因此,偏轉控制信號組的控制信號Cp 之範例為提供給偏轉控制模組860的一次偏移信號。偏轉控制模組860為第一偏轉單元110推導出第一偏移信號,該單元包括靜電偏轉掃描器,並且複數個一次帶電粒子子射束3通過具有偏移位置的掃描路徑27在晶圓表面25上掃描。從而,補償局部晶圓坐標系統551和多重射束帶電粒子顯微鏡1的視線53間之橫向位移向量55,並且實現視線53的校正,使得其偏離局部晶圓坐標系統551小於預定臨界或例如小於10 nm、5 nm或甚至2 nm,或甚至低於1 nm。Therefore, an example of the control signal C p of the deflection control signal group is the primary offset signal provided to the deflection control module 860 . The deflection control module 860 derives a first offset signal for the first deflection unit 110, which includes an electrostatic deflection scanner, and a plurality of primary charged particle beamlets 3 pass through the scanning path 27 with offset positions on the wafer surface 25 on scan. Thereby, the lateral displacement vector 55 between the local wafer coordinate system 551 and the line of sight 53 of the multiple beam charged particle microscope 1 is compensated, and a correction of the line of sight 53 is achieved such that its deviation from the local wafer coordinate system 551 is less than a predetermined threshold or, for example, less than 10 nm, 5 nm or even 2 nm, or even below 1 nm.

此外,通過提供第二偏移信號給第二偏轉單元222,二次電子子射束9的焦點15在影像偵測器207處保持在恆定位置,並且實現高影像對比度和影像傳真度。為了在影像感測器207處將複數個二次電子子射束9的焦點15之位置保持在恆定位置,複數個二次電子子射束9通過第一偏轉單元110和第二偏轉單元222。在以偏移位置(offset position)改變晶圓表面25上的複數個一次帶電粒子子射束5之掃描路徑27之後,獨立的第二偏轉單元222提供給偏轉控制信號組的第二偏移信號,並且晶圓表面5上焦點5的偏移位置由第二偏轉單元222補償,使得複數個二次電子子射束9的焦點15在影像感測器207處保持恆定。Furthermore, by providing the second offset signal to the second deflection unit 222, the focal point 15 of the secondary electron sub-beam 9 remains at a constant position at the image detector 207, and high image contrast and image fidelity are achieved. In order to maintain the position of the focal point 15 of the plurality of secondary electron sub-beams 9 at a constant position at the image sensor 207 , the plurality of secondary electron sub-beams 9 pass through the first deflection unit 110 and the second deflection unit 222 . After changing the scanning path 27 of the plurality of primary charged particle beamlets 5 on the wafer surface 25 with an offset position, the independent second deflection unit 222 provides the second offset signal of the deflection control signal group , and the offset position of the focal point 5 on the wafer surface 5 is compensated by the second deflection unit 222 so that the focal point 15 of the plurality of secondary electron beamlets 9 remains constant at the image sensor 207 .

偏移位置可隨時間改變,並且偏移控制信號在影像斑塊17的影像掃描期間改變。從而,例如補償樣品載台500的橫向漂移或抖動。The offset position may vary over time, and the offset control signal changes during the image scan of the image patch 17 . Thus, for example, lateral drift or jitter of the sample stage 500 is compensated.

在步驟S4-2中,將一組一次控制信號提供給一次射束路徑控制模組830。為了補償代表像差的一組誤差向量,校正複數個一次帶電粒子子射束3的焦點5之縱向位置,使得焦點形成在晶圓表面25上,其精度低於多重射束帶電粒子顯微鏡的景深。多重射束掃描電子顯微鏡的景深一般在10 nm-100 nm左右,最大焦斑偏離像平面的規範在10 nm以下,最好在5 nm以下。複數個一次帶電粒子子射束3的焦點5之像差包括散焦、像平面傾斜和場曲。In step S4-2, a set of primary control signals are provided to the primary beam path control module 830. In order to compensate for a set of error vectors representing aberrations, the longitudinal position of the focal points 5 of the plurality of primary charged particle beamlets 3 is corrected so that the focal points are formed on the wafer surface 25 with an accuracy lower than the depth of field of the multiple beam charged particle microscope . The depth of field of a multi-beam scanning electron microscope is generally around 10 nm-100 nm, and the maximum focal spot deviation from the image plane is less than 10 nm, preferably less than 5 nm. Aberrations at the focal point 5 of the plurality of primary charged particle beamlets 3 include defocusing, image plane tilt and field curvature.

例如,用於校正像平面傾斜的一次控制信號提供給一次射束路徑控制模組830,並且一次射束路徑控制模組830推導出一組聚焦校正電壓,用於主動式多重孔板配置306,例如多孔透鏡陣列。因此,每個個別一次帶電粒子子射束3的每個焦點位置個別改變,並且實現像平面傾斜以補償例如樣品載台500相對於影像坐標系統51的傾斜。For example, a primary control signal for correcting for image plane tilt is provided to the primary beam path control module 830, and the primary beam path control module 830 derives a set of focus correction voltages for the active multi-orifice plate configuration 306, For example a porous lens array. Thus, each focal position of each individual primary charged particle beamlet 3 is changed individually, and the image plane tilt is implemented to compensate, for example, the tilt of the sample stage 500 relative to the image coordinate system 51 .

在另一範例中,用於校正散焦的一次控制信號提供給一次射束路徑控制模組830,並且一次射束路徑控制模組830推導出用於場透鏡306的電壓變化,以整個改變z方向上的像平面位置。因此,改變複數個一次帶電粒子子射束3的焦點位置,以補償例如樣品載台500往z方向的移動,即一次子射束3的傳播方向。In another example, the primary control signal used to correct for defocus is provided to the primary beam path control module 830, and the primary beam path control module 830 derives a voltage change for the field lens 306 to change z overall The image plane position in the direction. Therefore, the focal positions of the plurality of primary charged particle sub-beams 3 are changed to compensate, for example, the movement of the sample stage 500 in the z direction, that is, the propagation direction of the primary sub-beams 3 .

在另一範例中,用於校正影像座標系統51與局部晶圓座標系統551之間旋轉的一次控制信號提供給一次射束路徑控制模組830,並且一次射束路徑控制模組830推導出一組偏轉電壓,用於主動多重孔板配置306,例如多孔徑偏轉器陣列。因此,每個個別一次帶電粒子子射束3個別偏轉,並且實現影像坐標系統51的旋轉,以補償例如樣品載台500相對於影像坐標系統51的旋轉。In another example, the primary control signal for correcting the rotation between the image coordinate system 51 and the local wafer coordinate system 551 is provided to the primary beam path control module 830, and the primary beam path control module 830 derives a Group deflection voltages for active multi-orifice plate configurations 306, such as multi-aperture deflector arrays. Thus, each individual primary charged particle beamlet 3 is deflected individually and a rotation of the image coordinate system 51 is effected to compensate, for example, the rotation of the sample stage 500 relative to the image coordinate system 51 .

相應提供用於校正一次射束路徑的其他像差之其他控制信號。一次射束路徑的成像像差包括放大率變化、像散、色差等像差。該組一次控制信號包括控制一次射束路徑的補償器之控制信號,其包括帶電粒子多重子射束產生器300和物體照射單元100的補償器。Further control signals for correcting other aberrations of the primary beam path are accordingly provided. Imaging aberrations of the primary beam path include aberrations such as magnification variation, astigmatism, and chromatic aberration. The set of primary control signals includes control signals for compensators that control the path of the primary beam, including the charged particle multiple sub-beam generator 300 and the compensators of the object irradiation unit 100 .

在步驟S4-3中,將一組二次控制信號提供給投影系統控制模組820。為了補償代表像差的一組誤差向量,校正二次射束路徑或偵測單元的成像像差。In step S4-3, a group of secondary control signals are provided to the projection system control module 820. Imaging aberrations of the secondary beam path or detection unit are corrected in order to compensate for a set of error vectors representing aberrations.

例如,用於校正像平面傾斜的二次控制信號提供給投影系統控制模組820,並且投影系統控制模組820推導出一組聚焦校正電壓,用於多孔徑校正器220,例如多孔徑透鏡陣列。從而,每個個別二次電子子射束9的每個焦點位置個別改變,並且實現像平面傾斜以補償例如樣品載台500相對於影像坐標系統51的傾斜,並且來自傾斜晶圓表面25的二次電子子射束9之成像維持在影像偵測器207上。For example, a secondary control signal for correcting image plane tilt is provided to projection system control module 820, and projection system control module 820 derives a set of focus correction voltages for use in multi-aperture corrector 220, such as a multi-aperture lens array . Thus, each focal position of each individual secondary electron sub-beam 9 is changed individually, and image plane tilt is achieved to compensate, for example, for the tilt of the sample stage 500 relative to the image coordinate system 51, and the two from the tilted wafer surface 25 The image of the sub-electron beam 9 is maintained on the image detector 207 .

在另一範例中,用於校正散焦(defocus)的二次控制信號提供給投影系統控制模組820,並且投影系統控制模組820推導出用於靜電透鏡206的電壓變化,以整個改變像平面位置。從而,複數個二次電子子射束9的焦點位置改變,以補償例如樣品載台500往z方向的移動、一次子射束的傳播方向,並且來自散焦晶圓表面25的二次電子子射束9之成像維持在影像偵測器207上。In another example, a secondary control signal for correcting defocus is provided to the projection system control module 820, and the projection system control module 820 derives a voltage change for the electrostatic lens 206 to change the overall image flat position. Thereby, the focal position of the plurality of secondary electron beamlets 9 is changed to compensate, for example, the movement of the sample stage 500 in the z direction, the propagation direction of the primary beamlets, and the secondary electron beams from the defocused wafer surface 25 The image of beam 9 is maintained on image detector 207 .

在另一範例中,用於校正影像座標系統51與局部晶圓座標系統551之間旋轉的二次控制信號提供給投影系統控制模組820,並且投影系統控制模組820推導出一組偏轉電壓,用於多孔徑校正器220,例如多孔徑偏轉器陣列。因此,每個個別二次電子子射束9個別偏轉,並且補償影像坐標系統51的旋轉,以在影像偵測器上的恆定、預定位置處對複數個二次電子子射束9成像。In another example, a secondary control signal for correcting rotation between the image coordinate system 51 and the local wafer coordinate system 551 is provided to the projection system control module 820, and the projection system control module 820 derives a set of deflection voltages , for a multi-aperture corrector 220, such as a multi-aperture deflector array. Thus, each individual secondary electron beamlet 9 is deflected individually and compensates for the rotation of the image coordinate system 51 to image a plurality of secondary electron beamlets 9 at a constant, predetermined location on the image detector.

這些範例結合說明一次射束路徑13和二次電子射束13中像差的補償。一些一次控制信號用於校正例如一次射束路徑的像差,如此像散或場曲提供給一次射束路徑控制模組830,並且僅在一次射束路徑13中補償像差。一些二次控制信號用於校正例如二次射束路徑的像差,如此提供給投影系統控制模組820,並且僅在二次射束路徑11中補償像差。These examples combine to illustrate the compensation of aberrations in the primary beam path 13 and the secondary electron beam 13 . Some primary control signals are used to correct for example aberrations of the primary beam path, such as astigmatism or field curvature, are provided to the primary beam path control module 830 and aberrations are compensated in the primary beam path 13 only. Some secondary control signals are used to correct for example secondary beam path aberrations and are thus provided to projection system control module 820 and only compensate for aberrations in secondary beam path 11 .

在步驟S4-4中,將一組影像處理控制信號提供給影像拼接單元812。直接應用該組影像處理控制信號ISp 或與影像資料串流一起儲存,以應用於由影像拼接單元812執行的影像處理和影像拼接操作。In step S4-4, a group of image processing control signals are provided to the image stitching unit 812. The set of image processing control signals IS p is directly applied or stored with the image data stream for application in image processing and image stitching operations performed by the image stitching unit 812 .

在操作步驟S4-5中(未示出),將一組載台控制信號提供給載台控制模組880。在一範例中,在步驟S2中偵測到樣品載台500的緩慢漂移,並且通過載台控制信號進行補償。In operation S4-5 (not shown), a set of stage control signals is provided to the stage control module 880. In one example, slow drift of the sample stage 500 is detected in step S2 and compensated for by the stage control signal.

在一範例中,根據漂移部分Sn (t)與動態變化Nn (t)中誤差振幅An (t)的至少一子集之時間發展分離,控制信號集Cp 的至少子集被劃分為漂移控制分量CSp 的子集和動態控制分量CNp 的子集。漂移控制部件CSp 的子集提供給多重子射束帶電粒子顯微鏡系統的一組補償器或主動元件。在一範例中,漂移控制部件CSp 提供給包括磁性元件的緩慢變化主動部件之子集,並且驅動緩慢變化主動部件以改變其狀態。在一範例中,漂移控制部件CSp 提供給快速變化主動元件,例如靜電偏轉器、靜電多極校正器或靜電多孔徑元件。在一範例中,漂移控制部件CSp 提供給補償器的兩個子集。動態控制部件CNp 的子集提供給多重子射束帶電粒子顯微鏡系統的快速變化主動元件,並且驅動快速變化主動部件以改變其對帶電粒子子射束的作用。快速變化主動元件為靜電元件,例如靜電偏轉器、靜電多極校正器、靜電透鏡或靜電多孔徑元件。In one example, at least a subset of the control signal set Cp is divided according to the time development separation of the drift portion Sn (t) and at least a subset of the error amplitude An( t ) in the dynamic variation Nn( t ) are a subset of the drift control component CS p and a subset of the dynamic control component CN p . A subset of drift control components CS p are provided to a set of compensators or active elements of a multiple sub-beam charged particle microscope system. In one example, the drift control component CS p is provided to a subset of slowly varying active components comprising magnetic elements, and drives the slowly varying active components to change their states. In one example, the drift control component CS p is provided to rapidly changing active elements such as electrostatic deflectors, electrostatic multipole correctors or electrostatic multi-aperture elements. In one example, the drift control component CS p is provided to two subsets of compensators. A subset of the dynamic control components CNp provide the rapidly changing active elements of the multiple sub-beam charged particle microscope system, and actuate the rapidly changing active components to vary their effect on the charged particle sub-beams. The rapidly changing active elements are electrostatic elements such as electrostatic deflectors, electrostatic multipole correctors, electrostatic lenses or electrostatic multiaperture elements.

一般而言,控制信號P的數量可超過誤差振幅Ak 和P

Figure 02_image005
K的數量K。每個控制信號Cp 可隨時間改變,並且至少一些控制信號Cp 在影像斑塊17的影像掃描期間改變。從而,例如在一個影像斑塊的影像擷取期間補償樣本載台500的橫向漂移。在一範例中,至少一控制信號為依賴於時間並且表示在隨後時間間隔中誤差振幅的預測發展之函數。藉此,實現用於補償預測成像偏差的連續控制操作。In general, the amount of the control signal P may exceed the error amplitudes Ak and P
Figure 02_image005
The number of K is K. Each control signal C p may vary over time, and at least some of the control signals C p vary during an image scan of an image patch 17 . Thus, for example, lateral drift of the sample stage 500 is compensated during image acquisition of an image patch. In one example, the at least one control signal is a function that is time-dependent and represents the predicted development of the error amplitude in subsequent time intervals. Thereby, a continuous control operation for compensating for the predicted imaging deviation is realized.

在步驟S5中,其包括漂移控制分量CSp 和動態控制分量CNp 的子集的一組控制信號Cp 受到監控並累積,以記錄多重射束帶電粒子顯微鏡的變化歷史。In step S5, a set of control signals Cp comprising a subset of the drift control component CSp and the dynamic control component CNp is monitored and accumulated to record the change history of the multiple beam charged particle microscope.

在步驟S6中,根據變化歷史估計多重射束帶電粒子顯微鏡的實際系統狀態。In step S6, the actual system state of the multiple beam charged particle microscope is estimated from the change history.

在選擇性步驟S7中,時間發展模型函數Mn (t)適應多重射束帶電粒子顯微鏡的變化歷史和實際系統狀態,並提供給步驟S2。In optional step S7, the time-development model function Mn (t) is adapted to the change history of the multiple beam charged particle microscope and the actual system state and provided to step S2.

在步驟S8中,分析多重射束帶電粒子顯微鏡的實際系統狀態,並在隨後的影像掃描期間預測系統狀態的發展。如果系統狀態的預測指出誤差向量的發展達到無法補償之值,例如因為在隨後影像掃描期間可能達到用於補償的致動器範圍,則在隨後影像掃描之前觸發多重射束帶電粒子顯微鏡的致動器之重新校準和重設。在此情況下,將觸發信號提供給步驟S1。如果系統狀態的預測指出下一成像任務有可能,則該方法從步驟S0繼續到步驟S7,其中在來自檢測任務清單的下一局部晶圓坐標系統處進行後續影像斑塊的影像擷取。In step S8, the actual system state of the multiple beam charged particle microscope is analyzed and the development of the system state is predicted during subsequent image scans. If the prediction of the system state indicates that the error vector develops to a value that cannot be compensated, for example because the actuator range for compensation may be reached during the subsequent image scan, the actuation of the multiple beam charged particle microscope is triggered before the subsequent image scan recalibration and reset of the device. In this case, a trigger signal is supplied to step S1. If the prediction of the system state indicates that the next imaging task is possible, the method continues from step S0 to step S7 where image capture of subsequent image patches is performed at the next local wafer coordinate system from the inspection task list.

在一範例中,在步驟S8中,例如通過預測誤差振幅的發展,以計算控制信號的漂移分量並將其提供給步驟S0。在步驟S0中,在載台從第一影像斑塊移到下一第二影像斑塊或下一檢測部位期間,通過啟動補償器來補償漂移分量。因此,在步驟S0中,控制單元800提供控制信號給載台控制模組880,以將載台500從第一局部晶圓坐標系統移到後續局部晶圓坐標系統,並且另將控制信號的漂移分量提供給包括一次束控制模組830、投影系統控制模組820或偏轉控制模組860的控制模組之至少一者。In one example, in step S8, the drift component of the control signal is calculated and provided to step S0, eg by predicting the development of the error amplitude. In step S0, the drift component is compensated by activating the compensator during the movement of the stage from the first image patch to the next second image patch or the next detection site. Therefore, in step S0, the control unit 800 provides a control signal to the stage control module 880 to move the stage 500 from the first local wafer coordinate system to the subsequent local wafer coordinate system, and also control the drift of the signal The components are provided to at least one of the control modules including primary beam control module 830 , projection system control module 820 or deflection control module 860 .

從描述中可清楚看出,操作方法的步驟S1至S7並行執行,並且在影像斑塊的影像擷取期間即時執行並且彼此交互。精通技術領域人士將能夠認識可對前述方法進行變化和修改。It is clear from the description that the steps S1 to S7 of the operating method are performed in parallel, and are performed in real time and interact with each other during the image capture of the image patch. Those skilled in the art will recognize that variations and modifications may be made to the foregoing methods.

在本發明的具體實施例中,在維持晶圓檢測任務的規範要求的同時,能夠改變複數個一次帶電粒子子射束的物平面101或焦點位置。物平面101改變的原因例如可為用於影像擷取的成像設定之預定義改變,例如放大率的改變或數值孔徑的改變、期望解析度的改變或配置在一次射束路徑13或二次射束路徑11內的元件漂移,例如在步驟S7或步驟S8中所監測。通過多重射束帶電粒子顯微鏡1的磁性物鏡102改變焦平面,對複數個一次帶電粒子子射束3具有旋轉的效果。如果焦平面或物平面101改變,則複數個一次帶電粒子子射束的光柵組態相對於多重射束帶電粒子顯微鏡1的光軸105旋轉,如圖3所示,並且產生影像座標系統51相對於局部晶圓坐標系統551旋轉。配置在晶圓表面25上的半導體結構通常是彼此正交配置的結構。隨著影像坐標系統或一次帶電粒子子射束3的掃描路徑27相對於如圖3b所示的半導體結構配置旋轉,則無法實現高通量晶圓檢測任務的至少一些規範要求。此外,改變其他影像性能參數,例如複數個一次帶電粒子子射束的遠心度,或者複數個一次帶電粒子子射束的放大率或間距。在複數個一次帶電粒子射束斑的變化位置處發射之複數個二次電子由調整過後的物鏡102收集,增加影像性能參數的變化。在該具體實施例中,通過控制單元800補償由像平面或焦平面變化所引起不需要的影像性能參數變化。控制單元800構造成預測控制信號,以補償由像平面位置或焦點位置從第一像平面位置改變到第二像平面位置所引起的誤差振幅。控制單元800構造成提供控制信號給一次束斑塊13和二次射束路徑11中的補償器以及給晶圓載台。一次射束路徑的補償器包括例如第二物鏡(圖1中未示出)、場透鏡103.1或103.2、多孔徑偏轉器陣列306.3或配置在中間像平面321附近的多孔徑偏轉器陣列390。二次射束路徑的補償器包括例如磁透鏡、像散器或多孔徑陣列元件。在觸發像平面或焦點位置從第一位置改變到第二位置之後,控制單元800控制多個元件,其包括一次射束路徑和二次射束路徑的補償器或晶圓載台的組合。In a specific embodiment of the present invention, the object plane 101 or the focal position of the plurality of primary charged particle beamlets can be changed while maintaining the specification requirements of the wafer inspection task. The reason for the change in the object plane 101 can be, for example, a predefined change in the imaging settings used for image acquisition, such as a change in magnification or a change in numerical aperture, a change in the desired resolution or placement in the primary beam path 13 or secondary beam Element drift within the beam path 11, eg monitored in step S7 or step S8. The change of the focal plane by the magnetic objective lens 102 of the multiple beam charged particle microscope 1 has the effect of rotating the plurality of primary charged particle sub-beams 3 . If the focal plane or object plane 101 changes, the grating configuration of the plurality of primary charged particle sub-beams is rotated relative to the optical axis 105 of the multiple beam charged particle microscope 1, as shown in FIG. 3, and the resulting image coordinate system 51 is relatively Rotate in the local wafer coordinate system 551 . The semiconductor structures disposed on the wafer surface 25 are generally structures disposed orthogonal to each other. As the image coordinate system or scan path 27 of the primary charged particle beam 3 rotates relative to the semiconductor structure configuration shown in Figure 3b, at least some of the specification requirements of high throughput wafer inspection tasks cannot be achieved. In addition, other image performance parameters are changed, such as the telecentricity of the plurality of primary charged particle beamlets, or the magnification or spacing of the plurality of primary charged particle beamlets. The plurality of secondary electrons emitted at the changing positions of the plurality of primary charged particle beam spots are collected by the adjusted objective lens 102, increasing the variation of image performance parameters. In this specific embodiment, unwanted changes in image performance parameters caused by changes in the image plane or focal plane are compensated by the control unit 800 . The control unit 800 is configured to predict the control signal to compensate for the error amplitude caused by the image plane position or focus position changing from the first image plane position to the second image plane position. The control unit 800 is configured to provide control signals to the primary beam spot 13 and compensators in the secondary beam path 11 and to the wafer stage. Compensators for the primary beam path include, for example, a second objective lens (not shown in FIG. 1 ), a field lens 103.1 or 103.2, a multi-aperture deflector array 306.3 or a multi-aperture deflector array 390 arranged near the intermediate image plane 321. Compensators for the secondary beam path include, for example, magnetic lenses, astigmatists or multi-aperture array elements. After the trigger image plane or focus position is changed from the first position to the second position, the control unit 800 controls a number of elements including a combination of compensators or wafer stages for the primary beam path and the secondary beam path.

在一範例中,控制單元800或多重射束帶電粒子顯微鏡1構造成從複數個感測器資料,推導出描述半導體結構方位與影像坐標系統51或掃描路徑27或複數個一次帶電粒子子射束的偏差之誤差向量,並且更構造成推導出一組控制信號並將該組信號提供給控制模組。控制模組構造成實現複數個一次帶電粒子子射束的旋轉、複數個二次電子子射束的旋轉以及樣品載台500的旋轉之至少一者。例如,控制單元800構造成提供控制信號給向前述方法的步驟0,以通過包括晶圓載台500的緩慢動作補償器或物鏡102引起旋轉。例如,控制單元800更構造成提供控制信號,以引起快速作用補償器,例如配置在一次帶電粒子中或二次電子射束路徑中或兩者中的靜電偏轉器陣列之旋轉。In one example, the control unit 800 or the multiple beam charged particle microscope 1 is configured to derive from the plurality of sensor data, a description of the semiconductor structure orientation and image coordinate system 51 or scan path 27 or a plurality of primary charged particle beamlets The error vector of the deviation, and is further configured to derive a set of control signals and provide the set of signals to the control module. The control module is configured to effect at least one of rotation of the plurality of primary charged particle beamlets, rotation of the plurality of secondary electron beamlets, and rotation of the sample stage 500 . For example, the control unit 800 is configured to provide a control signal to step 0 of the aforementioned method to cause rotation by the slow motion compensator including the wafer stage 500 or the objective lens 102 . For example, the control unit 800 is further configured to provide control signals to cause rotation of a fast acting compensator, such as an electrostatic deflector array disposed in the primary charged particle or in the secondary electron beam path, or both.

在一具體實施例中,構造成用於晶圓檢測的多重射束帶電粒子顯微鏡之操作方法包括:步驟a)將描述與一組影像品質偏差的一組預定正常化誤差向量載入至記憶體中;步驟b)將一組預定正常化誤差向量振幅的一組預定臨界載入至記憶體中;及步驟c)載入一組預定正常化驅動信號,用於補償記憶體中的每一組正常化誤差向量。在執行晶圓檢測任務期間,多重射束帶電粒子顯微鏡的操作方法包括步驟d)從多重射束帶電粒子顯微鏡的複數個感測器接收複數個感測器資料,以形成感測器資料向量。在一範例中,複數個感測器資料包括在使用多重射束帶電粒子顯微鏡檢測期間用於維持晶圓的晶圓載台實際位置與實際速度之位置或速度資訊之至少一者。在執行晶圓檢測任務期間,多重射束帶電粒子顯微鏡的操作方法更包括步驟e)從感測器資料向量確定預定正常化誤差向量的一組實際振幅,表示多重射束帶電粒子顯微鏡影像品質集合的實際狀態;步驟f)在晶圓檢測期間,從該組實際振幅中推導出一組控制信號,並從該組預定正常化驅動信號中推導出一組實際驅動信號;步驟g)在晶圓檢測期間,提供該組實際驅動信號給一組補償器,從而在多重射束帶電粒子顯微鏡的操作期間,將實際振幅的子集降低到低於步驟b)中確定的臨界之子集。在一範例中,多重射束帶電粒子顯微鏡的操作方法更包括步驟h)在晶圓檢測期間,根據多重射束帶電粒子顯微鏡在預測時間間隔內的預期發展,以預測該組實際振幅的至少一子集之發展振幅子集。在一範例中,根據預測模型函數或一組實際振幅歷史的線性、二階或更高階外推法之一者,以確定多重射束帶電粒子顯微鏡在預測時間間隔內的預期發展。多重射束帶電粒子顯微鏡的操作方法更包括步驟i)在晶圓檢測期間,從該組發展振幅推導出一組預測控制信號和從該組預測控制信號推導出一組預測驅動信號;步驟j)在晶圓檢測期間,以時間順序方式將該組預測驅動信號提供給該組補償器,從而在多重射束帶電粒子顯微鏡於預測時間間隔內的操作期間,將實際振幅的子集減至低於臨界的子集;及步驟k)在晶圓檢測期間,記錄多重射束帶電粒子顯微鏡的該組實際振幅的至少一子集,以用於產生該組實際振幅的子集歷史。In one embodiment, a method of operation of a multiple beam charged particle microscope configured for wafer inspection includes step a) loading into memory a set of predetermined normalized error vectors describing deviations from a set of image quality step b) loading into memory a set of predetermined thresholds for a set of predetermined normalized error vector amplitudes; and step c) loading a set of predetermined normalized drive signals for compensating each set in memory Normalize the error vector. During wafer inspection tasks, the method of operation of the multiple beam charged particle microscope includes step d) receiving a plurality of sensor data from a plurality of sensors of the multiple beam charged particle microscope to form a sensor data vector. In one example, the plurality of sensor data includes at least one of position or velocity information for maintaining actual wafer stage position and actual velocity of the wafer during inspection using multiple beam charged particle microscopy. During the execution of wafer inspection tasks, the method of operation of the multiple beam charged particle microscope further comprises the step e) determining a set of actual amplitudes of a predetermined normalized error vector from the sensor data vector, representing a set of multiple beam charged particle microscope image qualities step f) during wafer inspection, deriving a set of control signals from the set of actual amplitudes and deriving a set of actual drive signals from the set of predetermined normalized drive signals; step g) during wafer inspection During detection, the set of actual drive signals is provided to a set of compensators to reduce the subset of actual amplitudes below the subset of critical determined in step b) during operation of the multiple beam charged particle microscope. In one example, the method of operation of the multiple beam charged particle microscope further includes step h) during wafer inspection, predicting at least one of the set of actual amplitudes based on the expected development of the multiple beam charged particle microscope within the predicted time interval. A subset of the development amplitude of the subset. In one example, the expected development of the multiple beam charged particle microscope over the predicted time interval is determined from a predictive model function or one of a set of linear, second or higher order extrapolations of the actual amplitude history. The method of operating the multiple beam charged particle microscope further comprises step i) deriving a set of predictive control signals from the set of developmental amplitudes and deriving a set of predictive drive signals from the set of predictive control signals during wafer inspection; step j) During wafer inspection, the set of predicted drive signals is provided to the set of compensators in a time-sequential manner to reduce the subset of actual amplitudes to below a critical subset; and step k) during wafer inspection, recording at least a subset of the set of actual amplitudes of the multiple beam charged particle microscope for use in generating a subset history of the set of actual amplitudes.

多重射束帶電粒子顯微鏡的操作方法是在操作前通過選擇多重射束帶電粒子顯微鏡的補償器組之步驟來準備。在一範例中,該組補償器包括用於掃描和偏轉複數個一次帶電粒子的該多重射束帶電粒子顯微鏡之第一偏轉單元,及用於掃描和偏轉在該多重射束帶電粒子顯微鏡使用期間所產生複數個二次電子之第二偏轉單元。多重射束帶電粒子顯微鏡的操作方法在操作之前還通過以下步驟準備:確定描述與一組影像品質偏差的一組預定正常化誤差向量,並根據線性擾動模型通過改變該組補償器中每一補償器的至少一驅動信號來確定靈敏度矩陣,以及從該靈敏度矩陣確定該組預定正常化驅動信號,以補償該組預定正常化誤差向量之每一者。The operation method of the multiple beam charged particle microscope is prepared by selecting the compensator set of the multiple beam charged particle microscope before operation. In one example, the set of compensators includes a first deflection unit of the multiple beam charged particle microscope for scanning and deflecting a plurality of primary charged particles, and for scanning and deflecting the multiple beam charged particle microscope during use of the multiple beam charged particle microscope The second deflection unit of the generated secondary electrons. The method of operation of the multiple beam charged particle microscope is also prepared prior to operation by determining a set of predetermined normalized error vectors describing deviations from a set of image quality, and by varying each compensation in the set of compensators according to a linear perturbation model A sensitivity matrix is determined from at least one drive signal of the device, and the set of predetermined normalization drive signals is determined from the sensitivity matrix to compensate for each of the set of predetermined normalization error vectors.

可理解的是,結合圖6描述的多重射束帶電粒子顯微鏡之部件和結合圖7描述的方法步驟為簡化範例,用於說明根據本發明用於晶圓檢測的多重射束帶電粒子顯微鏡之組態和操作方法。至少一些方法步驟或部件可結合,例如控制操作處理器840和感測器資料分析系統818可組合在一個單元中,或一次射束路徑控制模組820可組合在控制操作處理器840中。It will be appreciated that the components of the multiple beam charged particle microscope described in connection with FIG. 6 and the method steps described in connection with FIG. 7 are simplified examples for illustrating the set of multiple beam charged particle microscopes for wafer inspection according to the present invention. state and method of operation. At least some method steps or components may be combined, eg, the control operations processor 840 and the sensor data analysis system 818 may be combined in one unit, or the primary beam path control module 820 may be combined in the control operations processor 840.

在前述具體實施例中使用的補償器之至少一者為多重射束主動陣列元件。通過一次帶電粒子射束路徑中的靜電微透鏡陣列、靜電像散器陣列或靜電偏轉器陣列,複數個一次帶電粒子子射束中各個一次帶電粒子子射束之每一者個別受到影響。例如,圖8中說明這樣的多孔徑陣列601。多孔徑陣列601包括以複數個一次帶電粒子子射束的光柵組態排列的多個孔 - 在該範例中為六邊形光柵組態。其中兩個孔用參考編號685.1和685.2表示。在多個孔每一者的圓周上,配置了多個電極681.1-681.8,在此範例中,電極的數量為八個,但是也可為其他數量,例如一個、兩個、四個或更多個。電極相對於彼此並且相對於多孔徑陣列601的載體電絕緣。多個電極之每一者通過導電線607之一連接到控制模組。通過施加個別和預定電壓給每個電極681,針對通過每一孔685的複數個一次帶電粒子子射束之每一者可實現不同的效果。由於僅使用靜電效應,傳輸一孔685的帶電粒子子射束可以高速和高頻個別調整或改變。例如,該效果可為偏轉、焦平面改變、一次帶電粒子子射束的像散校正。在一範例中,多個例如兩或三個這樣的多重孔板依次配置。通過二次電子射束路徑中的靜電微透鏡陣列、靜電像散器陣列或靜電偏轉器陣列,複數個二次電子子射束中各個二次電子子射束之每一者以類似方式個別受到影響。At least one of the compensators used in the foregoing embodiments is a multiple beam active array element. Each of the primary charged particle sub-beams of the plurality of primary charged particle beamlets are individually influenced by an electrostatic microlens array, electrostatic astigmatism array, or electrostatic deflector array in the primary charged particle beam path. For example, such a multi-aperture array 601 is illustrated in FIG. 8 . The multi-aperture array 601 includes a plurality of apertures arranged in a grating configuration of a plurality of primary charged particle beamlets - in this example a hexagonal grating configuration. Two of the holes are designated by reference numbers 685.1 and 685.2. On the circumference of each of the plurality of holes, a plurality of electrodes 681.1-681.8 are arranged, in this example the number of electrodes is eight, but other numbers such as one, two, four or more are possible indivual. The electrodes are electrically isolated from each other and from the carrier of the multi-aperture array 601 . Each of the plurality of electrodes is connected to the control module by one of the conductive wires 607 . By applying an individual and predetermined voltage to each electrode 681, a different effect can be achieved for each of the plurality of primary charged particle sub-beams passing through each aperture 685. By using only electrostatic effects, the charged particle sub-beams transporting an aperture 685 can be individually adjusted or varied at high speed and high frequency. For example, the effect may be deflection, focal plane change, astigmatism correction of primary charged particle beamlets. In one example, multiple, eg, two or three, such multiple-well plates are arranged in sequence. Each of the secondary electron sub-beams of the plurality of secondary electron sub-beams are individually each similarly subjected to an array of electrostatic microlenses, electrostatic astigmatism, or electrostatic deflector arrays in the secondary electron beam path. Influence.

接下來,更詳細解釋本發明的另一具體實施例。參照圖1描述構造成用於晶圓檢測的多重射束帶電粒子顯微鏡和操作這種顯微鏡之方法。從上面的描述中可理解,在擷取例如第一影像賭片17.1的數位影像期間,複數個一次帶電粒子子射束3和複數個二次電子9聯合掃描,被共用束路徑內的第一偏轉系統110偏轉,並且複數個二次電子9在偵測單元200的二次射束路徑11中,被第二偏轉系統222進一步掃描偏轉。藉此,影像感測器207上的複數個二次電子子射束9的焦點15在影像掃描期間維持在恆定位置。偵測單元200包括一孔214,複數個二次電子子射束9通過該孔過濾。孔濾波器214從而控制提供給影像感測器207的二次電子子射束之拓撲對比度。由於偵測單元200的偏差,例如由於複數個二次電子子射束9的交叉點212之中心偏移,或者第二偏轉系統222的偏差,該影像對比度會改變。根據該具體實施例,偵測並補償拓撲對比度的非所要變化。因此,偵測單元200包括第三偏轉系統218,並且通過第一、第二和第三偏轉單元110、222和218的組合作用,複數個二次電子子射束9的交叉點212之中心維持與孔徑光闌214的孔徑光闌位置重合,並且二次帶電粒子像斑15的位置在影像感測器207上維持恆定。從而,能夠根據晶圓檢測任務的規範要求進行晶圓檢測。對於掃描路徑27.11…27.MN上和影像斑塊17.1的不同子場31.11…31.MN之內的複數個二次電子子射束之每一者,維持恆定的影像對比度。偵測單元200的投影系統205中第二和第三偏轉系統222和218的位置以範例方式例示於圖1中,而第二和第三偏轉系統222和218在投影系統205中的其他位置可在影像感測器207上實現恆定影像對比度,以及複數個二次電子子射束9的焦點15之恆定位置。例如,第二和第三偏轉系統222和218可配置在孔濾波器214的前面。控制單元800構造成從感測器資料向量推導出表示複數個二次電子子射束9上對比度變化的誤差向量振幅,並且更構造成推導出第一控制信號並將第一控制信號提供給偏轉控制模組860。偏轉控制模組860構造成推導出偏轉驅動信號給偏轉系統,該系統包括配置在偵測單元200的二次射束路徑11中之第二和第三偏轉系統222和218。在一範例中,控制模組800更構造成推導出第二控制信號並將第二控制信號提供給投影系統控制模組820。投影系統控制模組820構造成推導出第二驅動信號以控制投影系統205的其他快速補償器232,例如多陣列主動元件220的靜電透鏡或像散器。因此,影像對比度良好地保持在具有高通量的晶圓檢測任務之性能規範內。在另一範例中,用於掃描偏轉複數個一次帶電粒子子射束3的第一偏轉系統110如果較佳位於複數個一次帶電粒子子射束3的第一束交叉點108附近。然而,由於一次射束路徑13的偏差,第一束交叉點108的位置可能偏離其設計位置,並且引入複數個一次帶電粒子子射束3的遠心誤差。控制單元800構造成從感測器資料推導出表示複數個一次帶電粒子子射束3對晶圓表面25的遠心照明偏差之誤差向量振幅,從偏差推導出控制信號,並將驅動信號例如提供到中間像平面321附近的多孔徑偏轉器390。藉此,維持複數個一次帶電粒子子射束3對晶圓表面的遠心照明。遠心照明係指其中複數個一次帶電粒子子射束3中每一者平行且幾乎垂直於晶圓表面25撞擊在晶圓表面25上之照明,例如與表面法線的角度偏差低於25毫弧度。在具體實施例中,從感測器資料向量推導出的實際誤差振幅表示晶圓檢測任務的影像性能規範,例如晶圓載台對於多重射束帶電粒子顯微鏡的視線和多重射束帶電粒子顯微鏡影像坐標系統的相對位置和方位、遠心條件、對比度條件、複數個帶電粒子子射束的絕對位置精度、多重射束帶電粒子顯微鏡的放大率或間距,或多重射束帶電粒子顯微鏡的一次帶電粒子子射束數值孔徑中的至少一者。晶圓檢測任務的影像性能規範之其他偏差,例如高階像差,例如複數個帶電粒子子射束的失真、像散和色差,也可在影像掃描期間進行監測和補償。例如,代表像散的誤差向量振幅可從影像感測器資料部分推導出,並且由靜電補償器補償。表示一次帶電粒子子射束色差的誤差向量振幅可例如通過分射束器單元400的額外磁透鏡420以及電壓供應單元503來補償。利用根據以上給出的具體實施例或範例之多重射束帶電粒子顯微鏡,能夠實現晶圓表面的快速掃描,並且以至少低至幾奈米的臨界尺寸解析度,提供積體半導體部件的高通量檢驗,例如在開發或製造期間或半導體器件的逆向工程期間低於2 nm。Next, another specific embodiment of the present invention is explained in more detail. A multiple beam charged particle microscope configured for wafer inspection and a method of operating such a microscope is described with reference to FIG. 1 . As can be understood from the above description, during the acquisition of a digital image such as the first image film 17.1, the plurality of primary charged particle beamlets 3 and the plurality of secondary electrons 9 are jointly scanned by the first electron beams in the shared beam path. The deflection system 110 is deflected, and the plurality of secondary electrons 9 are further scanned and deflected by the second deflection system 222 in the secondary beam path 11 of the detection unit 200 . Thereby, the focal points 15 of the plurality of secondary electron sub-beams 9 on the image sensor 207 are maintained at a constant position during the image scanning. The detection unit 200 includes an aperture 214 through which a plurality of secondary electron beamlets 9 are filtered. Aperture filter 214 thus controls the topological contrast of the secondary electron beamlets provided to image sensor 207 . The image contrast changes due to deviations of the detection unit 200 , for example due to the deviation of the centers of the intersections 212 of the secondary electron beamlets 9 , or the deviation of the second deflection yoke 222 . According to this particular embodiment, undesired changes in topological contrast are detected and compensated. Therefore, the detection unit 200 includes the third deflection system 218, and by the combined action of the first, second and third deflection units 110, 222 and 218, the center of the intersection 212 of the plurality of secondary electron beamlets 9 is maintained Coinciding with the aperture stop position of aperture stop 214 , the position of secondary charged particle image spot 15 remains constant on image sensor 207 . Thus, wafer inspection can be performed according to the specification requirements of the wafer inspection task. A constant image contrast is maintained for each of the plurality of secondary electron sub-beams on scan paths 27.11...27.MN and within different subfields 31.11...31.MN of image patch 17.1. The positions of the second and third deflection yokes 222 and 218 in the projection system 205 of the detection unit 200 are illustrated in FIG. 1 by way of example, while other positions of the second and third deflection yokes 222 and 218 in the projection system 205 may be A constant image contrast is achieved on the image sensor 207, as well as a constant position of the focal point 15 of the plurality of secondary electron beamlets 9. For example, the second and third deflection yokes 222 and 218 may be configured in front of the aperture filter 214 . The control unit 800 is configured to derive from the sensor data vector an error vector amplitude representing the contrast variation on the plurality of secondary electron beamlets 9, and is further configured to derive a first control signal and provide the first control signal to the deflection Control module 860. The deflection control module 860 is configured to derive a deflection drive signal to a deflection yoke including the second and third deflection yokes 222 and 218 disposed in the secondary beam path 11 of the detection unit 200 . In one example, the control module 800 is further configured to derive a second control signal and provide the second control signal to the projection system control module 820 . Projection system control module 820 is configured to derive a second drive signal to control other fast compensators 232 of projection system 205 , such as electrostatic lenses or astigmatism of multi-array active elements 220 . Thus, image contrast is well maintained within performance specifications for wafer inspection tasks with high throughput. In another example, the first deflection system 110 for scanning and deflecting the plurality of primary charged particle beamlets 3 is preferably located near the first beam intersection 108 of the plurality of primary charged particle beamlets 3 . However, due to the deviation of the primary beam path 13, the position of the first beam intersection 108 may deviate from its designed position and introduce telecentricity errors of the plurality of primary charged particle beamlets 3. The control unit 800 is configured to derive from the sensor data an error vector amplitude representing the deviation of the telecentric illumination of the plurality of primary charged particle beamlets 3 to the wafer surface 25, to derive a control signal from the deviation, and to provide a drive signal, eg, to Multi-aperture deflector 390 near intermediate image plane 321. Thereby, the telecentric illumination of the wafer surface by the plurality of primary charged particle beamlets 3 is maintained. Telecentric illumination means illumination in which each of the plurality of primary charged particle sub-beams 3 impinges on the wafer surface 25 parallel and almost perpendicular to the wafer surface 25 , eg with an angular deviation from the surface normal of less than 25 milliradians . In a specific embodiment, the actual error amplitude derived from the sensor data vector represents the image performance specification of the wafer inspection task, such as the line of sight of the wafer stage for the MLM and MLM image coordinates Relative position and orientation of the system, telecentric conditions, contrast conditions, absolute positional accuracy of multiple charged particle beamlets, magnification or spacing of multiple beam charged particle microscopes, or a single charged particle beam of multiple beam charged particle microscopes at least one of the beam numerical apertures. Other deviations from image performance specifications for wafer inspection tasks, such as higher-order aberrations such as distortion, astigmatism, and chromatic aberration of multiple charged particle beamlets, can also be monitored and compensated for during image scanning. For example, an error vector amplitude representing astigmatism can be derived from the image sensor data portion and compensated by an electrostatic compensator. The error vector amplitude representing the chromatic aberration of the primary charged particle sub-beam can be compensated, for example, by the additional magnetic lens 420 of the beam splitter unit 400 and the voltage supply unit 503 . Using a multiple beam charged particle microscope according to the specific embodiments or examples given above, it is possible to achieve fast scanning of the wafer surface and provide high-pass imaging of integrated semiconductor components with critical dimension resolutions at least down to a few nanometers. Quantitative inspection, such as below 2 nm during development or manufacturing or during reverse engineering of semiconductor devices.

複數個一次帶電粒子子射束在晶圓表面上平行掃描,產生二次帶電粒子並形成例如直徑為100 μm – 1000 μm的影像斑塊之數位影像。在擷取第一影像斑塊的第一數位影像之後,將基材或晶圓載台移到下一第二影像斑塊位置,通過再次掃描複數個一次帶電粒子子射束,獲得第二影像斑塊的第二數位影像。在操作期間以及在每次影像擷取期間,複數個感測器資料由包括影像感測器和載台位置感測器的複數個偵測器產生,並且產生一組控制信號。控制信號提供給控制模組,該模組控制主動元件的動作,例如用於掃描多個一次和二次帶電粒子子射束的偏轉單元、靜電透鏡、磁透鏡、像散器或主動多孔徑陣列或其他補償器。例如,在第一和第二數位影像的擷取之間,並且當載台從第一影像斑塊移到第二影像斑塊時,例如通過像是磁性元件的緩慢補償器,以補償至少一部分成像像差。在第一或第二影像斑塊數位影像的影像擷取期間,將控制信號子集提供給包括偏轉單元的控制模組。藉此,例如在影像掃描期間補償晶圓載台相對於多重射束帶電粒子顯微鏡視線的位置誤差或漂移。根據感測器資料確定和預測與成像性能規範的其他像差或偏差,並且即時產生和提供給快速致動器的相應控制信號。從而通過將多個影像子場或斑塊拼接在一起,形成具有高影像傳真度和高精度以及低於5 nm或2 nm或1 nm解析度的高解析度數位影像。載台在第一和第二影像斑塊之間移動或移到下一感興趣位置,例如下一PCM或相鄰像場,以高速並且例如減少精確載台對準重複次數。A plurality of primary charged particle sub-beams are scanned in parallel on the wafer surface, generating secondary charged particles and forming digital images of image patches, eg, 100 μm – 1000 μm in diameter. After capturing the first digital image of the first image patch, move the substrate or the wafer stage to the next second image patch position, and obtain the second image patch by scanning a plurality of primary charged particle beams again A second digital image of the block. During operation and during each image capture, a plurality of sensor data is generated by a plurality of detectors including an image sensor and a stage position sensor, and a set of control signals are generated. Control signals are provided to a control module that controls the action of active elements, such as deflection units, electrostatic lenses, magnetic lenses, astigmatists or active multi-aperture arrays for scanning multiple primary and secondary charged particle sub-beams or other compensators. For example, between the capture of the first and second digital images, and as the stage moves from the first image patch to the second image patch, at least a portion is compensated, for example, by a slow compensator such as a magnetic element Imaging aberrations. During image capture of the digital image of the first or second image patch, a subset of control signals is provided to a control module including a deflection unit. Thereby, position errors or drifts of the wafer stage relative to the line of sight of the multiple beam charged particle microscope are compensated for, for example, during image scanning. Other aberrations or deviations from imaging performance specifications are determined and predicted from the sensor profiles, and corresponding control signals are generated and provided on-the-fly to the fast actuators. Thus, by stitching together multiple image subfields or patches, high-resolution digital images with high image fidelity and high precision and sub-5 nm or 2 nm or 1 nm resolution are formed. The stage is moved between the first and second image patches or to the next position of interest, eg the next PCM or adjacent image field, at high speed and eg reducing the number of precise stage alignment repetitions.

從說明書中將清楚了解,範例和具體實施例的組合及各種修改有可能,並可同樣應用具體實施例或範例。一次射束的帶電粒子可例如是電子,但也可為其他帶電粒子,例如氦離子。二次電子在狹義上包括二次電子,但也包括通過一次帶電粒子子射束與樣品相互作用而產生的任何其他二次帶電粒子,例如由反向散射電子產生的反向散射電子或二階的二次電子。在另一範例中,可收集二次離子而不是二次電子。It will be apparent from the description that combinations and various modifications of examples and specific embodiments are possible and that specific embodiments or examples may be equally applicable. The charged particles of the primary beam can be, for example, electrons, but also other charged particles, such as helium ions. Secondary electrons include secondary electrons in a narrow sense, but also include any other secondary charged particles produced by the interaction of a beam of primary charged particle sub-beams with the sample, such as backscattered electrons produced by backscattered electrons or second-order ones. secondary electrons. In another example, secondary ions may be collected instead of secondary electrons.

一些具體實施例可使用以下多組項目來進一步描述。然而,本發明不應限於該等多組項目之任一者: 第一組項目Some specific embodiments may be further described using the following sets of items. However, the present invention should not be limited to any one of these sets of items: first group of projects

項目1:一種具有高通量與高解析度的多重射束帶電粒子顯微鏡(1)之操作方法,其包括: 在一第一時間間隔Ts1中的一第一影像斑塊17.1的第一影像擷取及 在第二時間間隔Ts2中第二影像斑塊17.2的第二影像擷取;及 用於將該晶圓載台(500)從該第一影像斑塊(17.1)的第一中心位置(21.1)移到該第二影像斑塊17.2的第二中心位置(21.2)之第三時間間隔Tr,使得該第一和該第二時間間隔Ts1或Ts2之至少一者與該第三時間間隔Tr具有一重疊。Item 1: A method of operating a multi-beam charged particle microscope (1) with high throughput and high resolution, comprising: A first image capture of a first image patch 17.1 in a first time interval Ts1 and the second image capture of the second image patch 17.2 in the second time interval Ts2; and a third time interval for moving the wafer stage (500) from the first center position (21.1) of the first image patch (17.1) to the second center position (21.2) of the second image patch 17.2 Tr, such that at least one of the first and the second time interval Ts1 or Ts2 has an overlap with the third time interval Tr.

項目2:如項目1之多重射束帶電粒子顯微鏡(1)之操作方法,其中在該第三時間間隔Tr結束之前,即當晶圓載台(500)已經完全停止時之前,開始該第二影像斑塊17.2的第二影像擷取。Item 2: The method of operation of the multiple beam charged particle microscope (1) of item 1, wherein the second image is started before the third time interval Tr ends, that is, before the wafer stage (500) has come to a complete stop Second image capture of plaque 17.2.

項目3:如項目1或2之多重射束帶電粒子顯微鏡(1)之操作方法,其中晶圓移動的該第三時間間隔Tr在該時間間隔Ts1結束之前,即當該第一影像斑塊17.1的一影像擷取完成時之前,開始。Item 3: The operation method of the multiple beam charged particle microscope (1) according to item 1 or 2, wherein the third time interval Tr of wafer movement is before the end of the time interval Ts1, that is, when the first image patch 17.1 Start before an image capture is complete.

項目4:如項目1至3中任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其更包括計算在該第一影像斑塊17.1的影像擷取之第一時間間隔Ts1期間執行晶圓移動的第三時間間隔Tr之開始時間計算,使得該第一影像斑塊17.1的第一中心位置與該多重射束帶電粒子顯微鏡(1)的視線(53)之位置偏差或該晶圓載台(500)的移動速度低於一預定臨界。Item 4: The operating method of the multiple beam charged particle microscope (1) according to any one of Items 1 to 3, which further comprises calculating performed during the first time interval Ts1 of the image capture of the first image patch 17.1 The start time of the third time interval Tr for wafer movement is calculated such that the positional deviation between the first center position of the first image patch 17.1 and the line of sight (53) of the multiple beam charged particle microscope (1) or the wafer carrier The moving speed of the table (500) is below a predetermined threshold.

項目5:如項目1至4中任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其更包括計算在晶圓載台移動的時間間隔Tr期間該第二影像擷取的該第二時間間隔Ts2之開始時間,使得該第二影像斑塊17.2的第二中心位置21.2與該多重射束帶電粒子顯微鏡(1)的視線(53)之位置偏差或該晶圓載台(500)的移動速度低於一預定臨界。Item 5: The operating method of the multiple-beam charged particle microscope (1) according to any one of Items 1 to 4, further comprising calculating the second image captured during the time interval Tr of the wafer stage movement The start time of the time interval Ts2 such that the positional deviation of the second center position 21.2 of the second image patch 17.2 from the line of sight (53) of the multiple beam charged particle microscope (1) or the movement of the wafer stage (500) The speed is below a predetermined threshold.

項目6:如項目1至5中任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其更包括下列步驟: 預測在該晶圓載台(500)移動的時間間隔Tr期間之一系列晶圓載台位置; 從預測的晶圓載台位置計算至少第一和第二控制信號; 將該第一控制信號提供給該多重射束帶電粒子顯微鏡(1)的一次射束路徑(13)中的第一偏轉系統(110),並將該第二控制信號提供給該多重射束帶電粒子顯微鏡(1)的二次射束路徑(11)中之第二偏轉系統(222)。Item 6: The operation method of the multiple-beam charged particle microscope (1) according to any one of items 1 to 5, further comprising the following steps: predicting a series of wafer stage positions during the time interval Tr of the movement of the wafer stage (500); calculating at least first and second control signals from the predicted wafer stage position; The first control signal is provided to a first deflection yoke (110) in the primary beam path (13) of the multiple beam charged particle microscope (1), and the second control signal is provided to the multiple beam charged A second deflection system (222) in the secondary beam path (11) of the particle microscope (1).

項目7:一種具有高通量和高解析度的多重射束帶電粒子系統(1),其包括: 一帶電粒子多重子射束產生器(300),用於產生複數個一次帶電粒子子射束(3); 一物體照射單元(100),其包括一第一偏轉系統(110),供使用複數個一次帶電粒子子射束(3)掃描配置在物平面(101)中的晶圓表面(25),以用於在複數個一次帶電粒子子射束(3)的光斑位置(5)處,產生從該晶圓表面(25)發射的複數個二次電子子射束(9), 具有一投影系統(205)、一第二偏轉系統(222)和一影像感測器(207)的一偵測單元(200),用於將複數個二次電子子射束(9)成像在影像感測器(207)上,並在使用期間擷取該晶圓表面(25)的第一影像斑塊(17.1)和第二影像斑塊(17.2)之數位影像; 一晶圓載台(500),其包括一載台運動控制器,其中該載台運動控制器包括構造成獨立控制的複數個馬達,該載台構造成用於在擷取該第一影像斑塊(17.1)和該第二影像斑塊(17.2)的數位影像期間,將晶圓表面(25)定位並維持在該物平面(101)內; 複數個偵測器,其包括該載台位置感測器(520)和該影像感測器(207),該等偵測器構造成在使用期間產生複數個感測器資料,該感測器資料包括該晶圓載台(500)的位置資料; 一控制單元(800),其構造成用於在使用期間,執行在第一時間間隔Ts1中的一第一影像斑塊17.1的第一影像擷取、及在第二時間間隔Ts2中第二影像斑塊17.2的第二影像擷取,並且構造成在第三時間間隔Tr內觸發該晶圓載台(500),將該晶圓載台(500)從該第一影像斑塊(17.1)的第一中心位置(21.1)移到該第二影像斑塊17.2的第二中心位置(21.2),使得該第一和該第二時間間隔Ts1或Ts2之至少一者與該第三時間間隔Tr具有一重疊。Item 7: A multi-beam charged particle system (1) with high flux and high resolution, comprising: a charged particle multiple beamlet generator (300) for generating a plurality of primary charged particle beamlets (3); An object irradiation unit (100) comprising a first deflection system (110) for scanning a wafer surface (25) arranged in the object plane (101) using a plurality of primary charged particle beamlets (3) to for generating a plurality of secondary electron beamlets (9) emitted from the wafer surface (25) at spot positions (5) of a plurality of primary charged particle beamlets (3), A detection unit (200) having a projection system (205), a second deflection system (222) and an image sensor (207) for imaging a plurality of secondary electron beamlets (9) on on an image sensor (207) and during use to capture digital images of a first image patch (17.1) and a second image patch (17.2) of the wafer surface (25); A wafer stage (500) including a stage motion controller, wherein the stage motion controller includes a plurality of motors configured to be independently controlled, the stage configured for capturing the first image patch (17.1) and during digital imaging of the second image patch (17.2), positioning and maintaining the wafer surface (25) within the object plane (101); a plurality of detectors including the stage position sensor (520) and the image sensor (207), the detectors configured to generate a plurality of sensor data during use, the sensor The data includes the position data of the wafer stage (500); A control unit (800) configured to perform, during use, a first image capture of a first image patch 17.1 in a first time interval Ts1 and a second image in a second time interval Ts2 second image capture of patch 17.2 and configured to trigger the wafer stage (500) during a third time interval Tr to remove the wafer stage (500) from the first image of the patch (17.1) The center position (21.1) is moved to the second center position (21.2) of the second image patch 17.2 so that at least one of the first and the second time interval Ts1 or Ts2 has an overlap with the third time interval Tr .

項目8:如項目7之系統,其中該控制單元更構造成用於確定在該第一影像斑塊17.1的影像擷取之第一時間間隔Ts1期間,晶圓移動的第三時間間隔Tr之開始時間,使得該第一影像斑塊17.1的第一中心位置與該多重射束帶電粒子顯微鏡(1)的視線(53)之位置偏差或該晶圓載台(500)的移動速度低於一預定臨界。Item 8: The system of item 7, wherein the control unit is further configured to determine the start of a third time interval Tr of wafer movement during a first time interval Ts1 of image capture of the first image patch 17.1 time, so that the positional deviation between the first center position of the first image patch 17.1 and the line of sight (53) of the multiple beam charged particle microscope (1) or the moving speed of the wafer stage (500) is lower than a predetermined threshold .

項目9:如項目7或8之系統,其中該控制單元更構造成用於確定在晶圓載台移動的時間間隔Tr期間,該第二影像擷取的該第二時間間隔Ts2之開始時間,使得該第二影像斑塊17.2的第二中心位置21.2與該多重射束帶電粒子顯微鏡(1)的視線(53)之位置偏差或該晶圓載台(500)的移動速度低於一預定臨界。Item 9: The system of item 7 or 8, wherein the control unit is further configured to determine the start time of the second time interval Ts2 of the second image capture during the time interval Tr of the wafer stage movement, such that The positional deviation of the second center position 21.2 of the second image patch 17.2 from the line of sight (53) of the multiple beam charged particle microscope (1) or the moving speed of the wafer stage (500) is below a predetermined threshold.

項目10:如項目7至9中任一項之系統,其中該控制單元更構造成用於預測在該晶圓載台(500)移動的時間間隔Tr期間之一系列晶圓載台位置,及用於從預測的晶圓載台位置計算至少第一和第二控制信號,及用於將該第一控制信號提供給該一次射束路徑(13)中的第一偏轉系統(110)並將該第二控制信號提供給該多重射束帶電粒子顯微鏡(1)的二次射束路徑(11)中之第二偏轉系統(222)。Item 10: The system of any of items 7 to 9, wherein the control unit is further configured for predicting a series of wafer stage positions during the time interval Tr of the movement of the wafer stage (500), and for At least first and second control signals are calculated from the predicted wafer stage position and used to provide the first control signal to the first deflection yoke ( 110 ) in the primary beam path ( 13 ) and to provide the second control signal A control signal is provided to a second deflection system (222) in the secondary beam path (11) of the multiple beam charged particle microscope (1).

項目11:一種具有高通量和高解析度的多重射束帶電粒子系統(1)之操作方法,其包括: 一第一影像斑塊17.1的第一影像擷取、一第二影像斑塊17.2的第二影像擷取以及將該晶圓載台(500)從該第一影像斑塊(17.1)的第一中心位置(21.1)移到該第二影像斑塊17.2的第二中心位置(21.2),全部在一時間間隔TG內 其中 第一影像斑塊17.1的該第一影像擷取在第一時間間隔Ts1期間內 ; 第二影像斑塊17.2的該第二影像擷取在第二時間間隔Ts2期間內;及 在第三時間間隔Tr中,將該晶圓載台(500)從該第一影像斑塊(17.1)的第一中心位置(21.1)移到該第二影像斑塊17.2的第二中心位置(21.2);並且其中 該時間間隔TG小於Ts1、Ts2和Tr的總和:TG < Ts1 + Ts2 + Tr。Item 11: A method of operating a multi-beam charged particle system (1) with high flux and high resolution, comprising: A first image capture of a first image patch 17.1, a second image capture of a second image patch 17.2 and the wafer stage (500) from the first center of the first image patch (17.1) The position (21.1) is moved to the second center position (21.2) of the second image patch 17.2, all within a time interval TG in The first image capture of the first image patch 17.1 is during the first time interval Ts1; The second image capture of the second image patch 17.2 is during the second time interval Ts2; and During a third time interval Tr, the wafer stage (500) is moved from a first center position (21.1) of the first image patch (17.1) to a second center position (21.2) of the second image patch 17.2 ); and in which The time interval TG is less than the sum of Ts1, Ts2 and Tr: TG < Ts1 + Ts2 + Tr.

項目12:一種用於晶圓檢測的多重射束帶電粒子顯微鏡(1),其包括: 一帶電粒子多重子射束產生器(300),用於產生複數個一次帶電粒子子射束(3); 一物體照射單元(100),其包括第一偏轉系統(110),供使用複數個一次帶電粒子子射束(3)掃描配置在物平面(101)中的晶圓表面(25),以用於在複數個一次帶電粒子子射束(3)的該掃描光斑位置(5)處,產生從該晶圓表面(25)發射的複數個二次電子子射束(9); 具有一投影系統(205)、一第二偏轉系統(222)和一影像感測器(207)的一偵測單元(200),用於將複數個二次電子子射束(9)成像在影像感測器(207)上,並在使用期間擷取該晶圓表面(25)的第一影像斑塊(17.1)和第二影像斑塊(17.2)之數位影像; 具有載台位置感測器(520)的晶圓載台(500),用於在擷取該第一影像斑塊(17.1)的數位影像期間,將該晶圓表面(25)定位和維持在物平面(101)中,並用於將該晶圓表面從該第一影像斑塊(17.1)移到該第二影像斑塊(17.2); 複數個偵測器,其包括該載台位置感測器(520)和該影像感測器(207),該等偵測器構造成在使用期間產生複數個感測器資料,該感測器資料包括該晶圓載台(500)的位置資料; 該物體照射單元(100)中的第一補償器構造成用於移動或旋轉該晶圓表面(25)上的複數個一次帶電粒子子射束(3)之掃描光斑位置(5); 該投影系統(205)中的第二補償器,其構造成用於補償複數個一次帶電粒子子射束(3)的掃描光斑位置(5)之位移或旋轉,並維持該影像偵測器(207)上的複數個二次電子子射束(9)的光斑位置(15)恆定不變; 一控制單元(800)構造成從複數個感測器資料中產生第一組控制信號Cp,以在擷取該第一影像斑塊(17.1)或該第二影像斑塊(17.2)的數位影像期間,同步控制該物體照射單元(100)中的一第一補償器與該投影系統(205)中第二補償器。Item 12: A multiple beam charged particle microscope (1) for wafer inspection, comprising: a charged particle multiple beamlet generator (300) for generating a plurality of primary charged particle beamlets (3); An object irradiation unit (100) comprising a first deflection system (110) for scanning a wafer surface (25) arranged in an object plane (101) with a plurality of primary charged particle beamlets (3) for scanning with a plurality of primary charged particle beamlets (3) generating a plurality of secondary electron beamlets (9) emitted from the wafer surface (25) at the scanning spot position (5) of the plurality of primary charged particle beamlets (3); A detection unit (200) having a projection system (205), a second deflection system (222) and an image sensor (207) for imaging a plurality of secondary electron beamlets (9) on on an image sensor (207) and during use to capture digital images of a first image patch (17.1) and a second image patch (17.2) of the wafer surface (25); Wafer stage (500) with stage position sensor (520) for positioning and maintaining the wafer surface (25) in the object during acquisition of digital images of the first image patch (17.1) in plane (101) and for moving the wafer surface from the first image patch (17.1) to the second image patch (17.2); a plurality of detectors including the stage position sensor (520) and the image sensor (207), the detectors configured to generate a plurality of sensor data during use, the sensor The data includes the position data of the wafer stage (500); The first compensator in the object irradiation unit (100) is configured to move or rotate the scanning spot position (5) of the plurality of primary charged particle beamlets (3) on the wafer surface (25); A second compensator in the projection system (205) configured to compensate for displacement or rotation of the scanning spot positions (5) of the plurality of primary charged particle beamlets (3) and maintain the image detector ( The spot positions (15) of the plurality of secondary electron beamlets (9) on 207) are constant; A control unit (800) is configured to generate a first set of control signals Cp from a plurality of sensor data for capturing digital images of the first image patch (17.1) or the second image patch (17.2) During this period, a first compensator in the object irradiation unit (100) and a second compensator in the projection system (205) are controlled synchronously.

項目13:如項目12之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償該晶圓載台(500)的位置變化或方位變化。Item 13: The multiple-beam charged particle microscope (1) of item 12, wherein the control unit (800) is configured to provide the first set of control signals Cp by calculating the first set of control signals Cp One and the second compensator to compensate for positional or orientation changes of the wafer stage (500).

項目14:如項目12或13中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償該物體照射單元(100)的視線(53)之位置變化。Item 14: The multiple-beam charged particle microscope (1) of any one of items 12 or 13, wherein the control unit (800) is configured to calculate the first set of control signals C p and convert the first set of control signals C p is provided to the first and the second compensator to compensate for positional variations of the line of sight ( 53 ) of the object illumination unit ( 100 ).

項目15:如項目12至14中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償該晶圓載台(500)的位置變化或方位變化與該物體照射單元(100)的視線(53)之位置變化。Item 15: The multiple-beam charged particle microscope (1) of any one of items 12 to 14, wherein the control unit (800) is configured to convert the first set of control signals C p by calculating the first set of control signals Cp is provided to the first and the second compensators to compensate for positional or orientation changes of the wafer stage (500) and positional changes of the line of sight (53) of the object irradiation unit (100).

項目16:如項目12至15中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償在擷取該第一影像斑塊(17.1)或該第二影像斑塊(17.2)的數位影像期間該晶圓載台(500)的移動速度。Item 16: The multiple-beam charged particle microscope (1) of any one of items 12 to 15, wherein the control unit (800) is configured to convert the first set of control signals by calculating the first set of control signals C p C p is provided to the first and the second compensator to compensate for the wafer stage ( 500 ) during the capture of digital images of the first image patch ( 17.1 ) or the second image patch ( 17.2 ). Moving speed.

項目17:一種使用多重射束帶電粒子顯微鏡檢測晶圓之方法,步驟如下: 在第一時間間隔Ts1期間第一影像斑塊的第一影像擷取步驟; 在時間間隔Tr期間該晶圓載台從第一影像斑塊的位置到第二影像斑塊的移動, 以及在第二時間間隔Ts2期間第二影像斑塊的第二影像擷取步驟,藉此, 在第一時間間隔Ts1期間,從複數個感測器信號計算至少第一誤差振幅, 在第一時間間隔Ts1期間,預測第一誤差振幅至少經過移動時間間隔Tr和第二時間間隔Ts2的發展, 並且,至少在移動時間間隔Tr期間,將控制信號提供給多重射束帶電粒子顯微鏡的控制單元,用於將該第二時間間隔Ts2期間誤差振幅的預測發展保持低於一預定臨界。Item 17: A method of inspecting wafers using multiple beam charged particle microscopy, the steps are as follows: the first image capturing step of the first image patch during the first time interval Ts1; movement of the wafer stage from the position of the first image patch to the second image patch during the time interval Tr, and a second image capturing step of the second image patch during the second time interval Ts2, whereby, During a first time interval Ts1, at least a first error amplitude is calculated from the plurality of sensor signals, During the first time interval Ts1, the predicted first error amplitude develops at least through the moving time interval Tr and the second time interval Ts2, And, at least during the moving time interval Tr, a control signal is provided to the control unit of the multiple beam charged particle microscope for keeping the predicted development of the error amplitude during this second time interval Ts2 below a predetermined threshold.

項目18:如項目17之方法,其中根據預測模型或外推法,產生對第一誤差振幅發展的預測。Item 18: The method of item 17, wherein the prediction of the development of the first error amplitude is generated according to a prediction model or extrapolation.

項目19:如項目17或18之方法,其中該第一誤差振幅代表視線位移、晶圓載台位移、晶圓載台旋轉、視線旋轉、放大誤差、聚焦誤差、像散誤差或失真誤差之至少一者。Item 19: The method of item 17 or 18, wherein the first error amplitude represents at least one of line-of-sight displacement, wafer stage displacement, wafer stage rotation, line-of-sight rotation, magnification error, focus error, astigmatism error, or distortion error .

項目20:如項目17至19中任一項之方法,其中該控制信號提供給該多重射束帶電粒子顯微鏡的控制單元,用於控制包括晶圓載台、第一偏轉單元、第二偏轉單元、多重子射束產生單元的快速補償器或偵測單元的快速補償器之至少一者的部件。Item 20: The method of any one of items 17 to 19, wherein the control signal is provided to a control unit of the multiple-beam charged particle microscope for controlling a wafer stage, a first deflection unit, a second deflection unit, A component of at least one of the fast compensator of the multiple beamlet generation unit or the fast compensator of the detection unit.

項目21:一種具備控制單元的多重射束帶電粒子顯微鏡之操作方法,該方法包括在含有第一影像斑塊和第二後續影像斑塊的一系列影像斑塊之影像擷取期間的一系列操作步驟,其包括: 將形成複數個感測器資料的資料串流擴展為一組誤差振幅; 擷取一組漂移控制信號和一組動態控制信號,以及 提供該組漂移控制信號給緩慢作用的補償器;以及 提供該組漂移控制信號給快速作用的補償器。Item 21: A method of operating a multiple beam charged particle microscope with a control unit, the method comprising a series of operations during image acquisition of a series of image patches containing a first image patch and a second subsequent image patch steps, which include: expanding the data stream forming the plurality of sensor data into a set of error amplitudes; capture a set of drift control signals and a set of dynamic control signals, and providing the set of drift control signals to a slow acting compensator; and The set of drift control signals are provided to the fast acting compensator.

項目22:如項目21之方法,其中擷取該組漂移控制信號和該組動態控制信號的步驟為在第一影像斑塊的影像擷取之時間間隔Ts1期間執行;並將該組漂移控制信號提供給緩慢作用補償器的步驟為在通過使用從該第一影像斑塊到該第二影像斑塊的基材載台移動基材之時間間隔Tr期間執行。Item 22: The method of Item 21, wherein the step of capturing the set of drift control signals and the set of dynamic control signals is performed during a time interval Ts1 of image capturing of the first image patch; and combining the set of drift control signals The step provided to the slow acting compensator is performed during the time interval Tr during which the substrate is moved by using the substrate stage from the first image patch to the second image patch.

項目23:如項目21或22之方法,其中將該組動態控制信號提供給快速動作補償器的步驟在時間間隔Ts1內執行。Item 23: The method of item 21 or 22, wherein the step of providing the set of dynamic control signals to the fast motion compensator is performed within a time interval Ts1.

項目24:如項目22或23之方法,其中將該組動態控制信號提供給快速動作補償器的步驟進一步在該第二影像斑塊的影像掃描時間間隔Ts2內執行。Item 24: The method of item 22 or 23, wherein the step of providing the set of dynamic control signals to the fast motion compensator is further performed within the image scanning time interval Ts2 of the second image patch.

項目25:如項目21至24中任一項之方法,更包括預測至少一誤差振幅的時間發展之步驟。Item 25: The method of any one of items 21 to 24, further comprising the step of predicting the temporal development of at least one error amplitude.

項目26:如項目25之方法,其包括預測至少一誤差振幅的緩慢變化漂移和預測至少一誤差振幅的快速變化動態改變。Item 26: The method of item 25, comprising predicting at least one slowly varying drift in error amplitude and predicting at least one rapidly varying dynamic change in error amplitude.

項目27:一種非暫態電腦可讀取媒體,其包括一指令集,該指令集可由一裝置的一或多個處理器執行,以使該裝置執行一方法,其中該裝置包括一帶電粒子源,以產生複數個一次帶電粒子子射束,且該方法包括: 確定載台的橫向位移,其中該載台可在X-Y軸之至少一者內移動; 確定一物體照射單元的視線之橫向位移;及 指示控制器施加第一信號,以偏轉入射在樣品上的複數個一次帶電粒子子射束,以至少部分補償橫向位移。 第二組項目Item 27: A non-transitory computer-readable medium comprising a set of instructions executable by one or more processors of a device to cause the device to perform a method, wherein the device includes a source of charged particles , to generate a plurality of primary charged particle sub-beams, and the method includes: determining the lateral displacement of the stage, wherein the stage is movable in at least one of the X-Y axes; determining the lateral displacement of the line of sight of an object illuminating unit; and The controller is instructed to apply a first signal to deflect the plurality of primary charged particle beamlets incident on the sample to at least partially compensate for the lateral displacement. The second group of projects

項目1:一種多重射束帶電粒子射束系統,其包括: 一可移動載台,其構造成固定一樣品; 一物體照射單元,其構造成使用複數個一次帶電粒子子射束的複數個焦點照射樣品的表面; 一帶電粒子射束產生器,其構造成用於從一帶電粒子源產生複數個一次帶電粒子子射束; 一載台感測器,其構造成用於確定該載台的橫向位移或旋轉; 一影像感測器,其構造成用於確定該物體照射單元的視線之橫向位移;及 一控制單元,其構造成用於產生至少一額外電壓信號並將其施加到該物體照射單元中的第一束偏轉器,該物體照射單元構造成用於在使用期間產生複數個一次帶電粒子子射束的額外位移或旋轉,用於至少部分補償該視線橫向位移與該載台橫向位移或旋轉之間的差異。Item 1: A multiple beam charged particle beam system comprising: a movable stage configured to hold a sample; an object irradiation unit configured to irradiate the surface of the sample with a plurality of foci of a plurality of primary charged particle sub-beams; a charged particle beam generator configured to generate a plurality of primary charged particle sub-beams from a charged particle source; a stage sensor configured to determine lateral displacement or rotation of the stage; an image sensor configured to determine the lateral displacement of the line of sight of the object illumination unit; and a control unit configured to generate and apply at least one additional voltage signal to a first beam deflector in the object illumination unit configured to generate a plurality of primary charged particles during use Additional displacement or rotation of the beam to at least partially compensate for the difference between the lateral displacement of the line of sight and the lateral displacement or rotation of the stage.

項目2:如項目1之系統,其中該控制單元更構造成在該樣品表面上掃描複數個一次帶電粒子子射束期間,計算與該載台的當前位置和該載台的目標位置之間差異相對應之該載台橫向位移或旋轉。Item 2: The system of item 1, wherein the control unit is further configured to calculate the difference between the current position of the stage and the target position of the stage during scanning of the plurality of primary charged particle beamlets on the sample surface Correspondingly, the stage is laterally displaced or rotated.

項目3:如項目1或2之系統,其中該控制單元更構造成在該樣品表面上掃描複數個一次帶電粒子子射束期間,計算與該視線的當前位置和該視線的目標位置之間差異相對應之該視線橫向位移。Item 3: The system of item 1 or 2, wherein the control unit is further configured to calculate the difference between the current position of the line of sight and the target position of the line of sight during scanning of the plurality of primary charged particle beamlets on the sample surface Correspondingly, the line of sight is displaced laterally.

項目4:如項目2或3之系統,其中該控制單元和該第一束偏轉器更構造成在該一次帶電粒子子射束於該樣品上掃描期間,動態調整至少一驅動電壓信號。Item 4: The system of item 2 or 3, wherein the control unit and the first beam deflector are further configured to dynamically adjust at least one driving voltage signal during the scanning of the primary charged particle beam on the sample.

項目5:如項目1至4中任一項之系統,更包括在該二次電子射束路徑內的一第二束偏轉器,其構造成至少部分補償源自掃描期間複數個一次帶電粒子子射束的束斑位置之複數個二次電子子射束的額外位移或旋轉。Item 5: The system of any one of items 1 to 4, further comprising a secondary beam deflector within the secondary electron beam path configured to at least partially compensate for the plurality of primary charged particle electrons originating during scanning Additional displacement or rotation of the plurality of secondary electron beamlets at the beam spot position of the beam.

項目6:如項目1至5中任一項之系統,其中該控制單元更包括一載台運動控制器,其中該載台運動控制器包括構造成由一控制信號獨立控制的複數個馬達。Item 6: The system of any one of items 1 to 5, wherein the control unit further includes a stage motion controller, wherein the stage motion controller includes a plurality of motors configured to be independently controlled by a control signal.

項目7:如項目1至6中任一項之系統,其中該控制單元包括一處理器,該處理器構造成基於複數個感測器資料推導出複數個誤差向量振幅,並且從複數個誤差向量振幅中擷取複數個控制信號之至少一者。Item 7: The system of any one of items 1 to 6, wherein the control unit includes a processor configured to derive the plurality of error vector amplitudes based on the plurality of sensor data, and to derive the plurality of error vector amplitudes from the plurality of error vectors At least one of the plurality of control signals is extracted from the amplitude.

項目8:一種用於照射多重射束帶電粒子射束系統中放置在一載台上的樣品之方法,該方法包括: 從帶電粒子源產生複數個一次帶電粒子子射束; 確定該載台的橫向位移或旋轉,其中該載台可在x-y平面內移動;及 確定該多重射束帶電粒子系統的視線; 根據該載台橫向位移或旋轉以及視線位置,確定一位移向量; 將至少一額外電壓信號施加到該一次帶電粒子射束路徑中該束偏轉器,用於在使用期間產生該等複數個一次帶電粒子子射束的額外位移或旋轉,用於至少部分補償對應至該載台相對於該視線位置的該橫向位移或旋轉之該位移向量。Item 8: A method for irradiating a sample placed on a stage in a multiple beam charged particle beam system, the method comprising: generating a plurality of primary charged particle sub-beams from a charged particle source; determine the lateral displacement or rotation of the stage, wherein the stage is movable in the x-y plane; and determining the line of sight of the multiple beam charged particle system; Determine a displacement vector according to the lateral displacement or rotation of the stage and the line-of-sight position; applying at least one additional voltage signal to the beam deflector in the primary charged particle beam path for generating, during use, additional displacement or rotation of the plurality of primary charged particle beamlets for at least partially compensating for corresponding to The displacement vector of the lateral displacement or rotation of the stage relative to the line-of-sight position.

項目9:如項目8之方法,其中該載台的橫向位移或旋轉對應至該載台的當前位置和該載台的目標位置間之差異,並且其中該旋轉位移在該等複數個一次帶電粒子子射束於該樣品載台上掃描期間改變。Item 9: The method of item 8, wherein the lateral displacement or rotation of the stage corresponds to the difference between the current position of the stage and the target position of the stage, and wherein the rotational displacement is between the plurality of primary charged particles The beamlets change during scanning on the sample stage.

項目10:如項目8至9中任一項之方法,其更包括在該等一次帶電粒子子射束於該樣品上掃描期間,動態調整該等電壓信號之至少一者。Item 10: The method of any one of items 8 to 9, further comprising dynamically adjusting at least one of the voltage signals during the scanning of the primary charged particle beams on the sample.

項目11:如項目8至10中任一項之方法,其更包括: 將至少一第二額外電壓信號供應給該二次電子射束路徑內的該束偏轉器,用於至少部分補償源自掃描期間複數個一次帶電粒子子射束的束斑位置之複數個二次電子子射束的額外位移或旋轉。Item 11: The method of any one of items 8 to 10, further comprising: supplying at least a second additional voltage signal to the beam deflector in the secondary electron beam path for at least partially compensating for a plurality of secondary electron beam spot positions resulting from a plurality of primary charged particle sub-beams during scanning Additional displacement or rotation of the electron beam.

項目12:如項目8至11中任一項之方法,其更包括將一控制信號供應給一載台運動控制器,其中該載台運動控制器包括構造成由一控制信號獨立控制的複數個馬達。Item 12: The method of any one of items 8 to 11, further comprising supplying a control signal to a stage motion controller, wherein the stage motion controller includes a plurality of motor.

項目13:如項目8至12中任一項之方法,其更包括: 基於複數個感測器資料推導出複數個誤差向量振幅,並且從複數個誤差向量振幅中擷取複數個控制信號之至少一者。 第三組項目Item 13: The method of any one of items 8 to 12, further comprising: A plurality of error vector amplitudes are derived based on the plurality of sensor data, and at least one of the plurality of control signals is extracted from the plurality of error vector amplitudes. The third group of projects

項目1:一種用於晶圓檢測的多重射束帶電粒子顯微鏡(1),其包括: 一帶電粒子多重子射束產生器(300),構造成用於以光柵組態(41)產生複數個一次帶電粒子子射束(3); 一物體照射單元(100),其構造成供使用複數個一次帶電粒子子射束(3)掃描配置在物平面(101)中的晶圓表面(25),以用於在複數個一次帶電粒子子射束(3)的掃描光斑位置(5)處,產生從該晶圓表面(25)發射的複數個二次電子子射束(9); 具有投影系統(205)的一偵測單元(200)和一影像感測器(207)構造成用於將複數個二次電子子射束(9)成像在影像感測器(207)上,並構造成擷取該晶圓表面(25)的第一影像斑塊(17.1)之數位影像; 具有載台位置感測器(520)的晶圓載台(500),其構造成在使用期間定位和維持晶圓表面(25)在該物體照射單元(100)的物平面(101)中; 該物體照射單元(100)中的第一補償器(132、110),其構造成用於額外位移或旋轉該晶圓表面(25)上的複數個一次帶電粒子子射束(3)之該掃描光斑位置(5), 該投影系統(205)中的第二補償器(232、222),其構造成用於補償在使用期間複數個一次帶電粒子子射束(3)的掃描光斑位置(5)之額外位移或旋轉,並維持該影像偵測器(207)上的複數個二次電子子射束(9)的光斑位置(15)恆定不變;及 一控制單元(800),構造成至少利用該第一補償器(132、110)和該第二補償器(232、222),以補償由該晶圓載台(500)移動引起的該晶圓表面(25)之位移。Item 1: A multiple beam charged particle microscope (1) for wafer inspection comprising: a charged particle multiple beamlet generator (300) configured to generate a plurality of primary charged particle beamlets (3) in a grating configuration (41); An object irradiation unit (100) configured for scanning a wafer surface (25) arranged in an object plane (101) using a plurality of primary charged particle beamlets (3) for illuminating a plurality of primary charged particle beams (3) At the scanning spot position (5) of the sub-beam (3), a plurality of secondary electron sub-beams (9) emitted from the wafer surface (25) are generated; a detection unit (200) having a projection system (205) and an image sensor (207) configured to image a plurality of secondary electron beamlets (9) on the image sensor (207), and configured to capture a digital image of the first image patch (17.1) of the wafer surface (25); a wafer stage (500) having a stage position sensor (520) configured to position and maintain the wafer surface (25) in the object plane (101) of the object illumination unit (100) during use; A first compensator (132, 110) in the object irradiation unit (100) configured to additionally displace or rotate the plurality of primary charged particle beamlets (3) on the wafer surface (25) Scan spot position (5), a second compensator (232, 222) in the projection system (205) configured to compensate for additional displacement or rotation of the scanning spot positions (5) of the plurality of primary charged particle beamlets (3) during use , and maintain the spot position (15) of the plurality of secondary electron beamlets (9) on the image detector (207) constant; and A control unit (800) configured to utilize at least the first compensator (132, 110) and the second compensator (232, 222) to compensate for the wafer surface caused by movement of the wafer stage (500) (25) displacement.

項目2:如項目1之多重射束帶電粒子顯微鏡(1),其中該第一補償器(132、110)包括靜電透鏡、靜電偏轉器、靜電像散器、靜電微透鏡陣列、靜電像散器陣列或靜電偏轉器陣列之一者。Item 2: The multi-beam charged particle microscope (1) of item 1, wherein the first compensator (132, 110) comprises an electrostatic lens, an electrostatic deflector, an electrostatic astigmatism, an electrostatic microlens array, an electrostatic astigmatism one of an array or an array of electrostatic deflectors.

項目3:如項目1或2中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成產生第一組控制信號Cp ,以在擷取該第一影像斑塊(17.1)的數位影像期間,同步控制該物體照射單元(100)中該第一補償器(132、110)和該投影系統(205)中該第二補償器(232)。Item 3: The multiple-beam charged particle microscope (1) according to any one of items 1 or 2, wherein the control unit (800) is configured to generate a first set of control signals Cp for capturing the first image spot During the digital imaging of block (17.1), the first compensator (132, 110) in the object illumination unit (100) and the second compensator (232) in the projection system (205) are controlled synchronously.

項目4:如項目1至3中任一項之多重射束帶電粒子顯微鏡(1),其更包括在該帶電粒子多重子射束產生器(300)內第三補償器(330、332),其構造成用於額外位移或旋轉該晶圓表面(25)上的複數個一次帶電粒子子射束(3)之該掃描光斑位置(5)。Item 4: The multiple-beam charged particle microscope (1) according to any one of items 1 to 3, further comprising a third compensator (330, 332) in the charged-particle multiple sub-beam generator (300), which The scanning spot position (5) of the plurality of primary charged particle beamlets (3) on the wafer surface (25) is configured for additional displacement or rotation.

項目5:如項目4之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成產生第一組控制信號Cp ,以在擷取該第一影像斑塊(17.1)的數位影像期間,同步控制該物體照射單元(100)中該第一補償器(132、110)、該投影系統(205)中該第二補償器(232、222)或該帶電粒子多重子射束產生器(300)中該第三補償器(330、332)。Item 5: The multiple-beam charged particle microscope (1) of item 4, wherein the control unit (800) is configured to generate a first set of control signals Cp for capturing the digital bits of the first image patch (17.1) During imaging, the first compensator (132, 110) in the object irradiation unit (100), the second compensator (232, 222) in the projection system (205) or the charged particle multiple sub-beam generator are controlled synchronously The third compensator (330, 332) in (300).

項目6:如項目1至5中任一項之多重射束帶電粒子顯微鏡(1),其更包括含有該載台位置感測器(520)和該影像感測器(207)的複數個偵測器,構造成在使用期間產生複數個感測器資料。Item 6: The multiple-beam charged particle microscope (1) according to any one of items 1 to 5, further comprising a plurality of detectors including the stage position sensor (520) and the image sensor (207) a sensor configured to generate a plurality of sensor data during use.

項目7:如項目6之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成從複數個感測器資料中推導出用於該物體照射單元(100)中該第一補償器(132、110)的一驅動信號,以達到複數個一次帶電粒子子射束(3)的該掃描光斑位置(5)之額外位移與該晶圓表面(25)的位移同步。Item 7: The multiple beam charged particle microscope (1) of item 6, wherein the control unit (800) is configured to deduce from the plurality of sensor data for the first compensation in the object illumination unit (100) A drive signal of the transducers (132, 110) to achieve additional displacement of the scanning spot position (5) of the primary charged particle beamlets (3) in synchronization with the displacement of the wafer surface (25).

項目8:如項目7之多重射束帶電粒子顯微鏡(1),其中該額外位移包括複數個一次帶電粒子子射束(3)的該光柵組態(41)之旋轉。Item 8: The multiple beam charged particle microscope (1) of item 7, wherein the additional displacement includes rotation of the grating configuration (41) of the plurality of primary charged particle beamlets (3).

項目9:如項目6至8中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過該投影系統(205)中該第二補償器(232、222),補償該已位移晶圓表面(25)上該光斑位置(5)的額外位移,其中該投影系統(205)中該第二補償器(232、222)構造成與該物體照射單元(100)中該第一補償器(132、110)同步操作,從而使該影像偵測器(207)上複數個二次電子子射束(9)的該光斑位置保持恆定。Item 9: The multiple beam charged particle microscope (1) of any one of items 6 to 8, wherein the control unit (800) is configured to pass the second compensator (232, 222) in the projection system (205) , compensating for additional displacement of the spot position (5) on the displaced wafer surface (25), wherein the second compensator (232, 222) in the projection system (205) is configured to be compatible with the object illumination unit (100) The first compensators (132, 110) operate synchronously in the image detector (207) so that the spot positions of the plurality of secondary electron beamlets (9) on the image detector (207) remain constant.

項目10:如前述項目中任一項之多重射束帶電粒子顯微鏡(1),其中該物體照射單元(100)中該第一補償器為該第一偏轉系統(110),並且其中該控制單元(800)構造成通過計算並將用於複數個一次帶電粒子子射束(3)的該掃描光斑位置(5)之額外位移或旋轉的一控制信號提供給該第一偏轉系統(110),以補償該晶圓載台(500)相對於該物體照射單元(100)的視線(53)之位移或旋轉。Item 10: The multiple-beam charged particle microscope (1) of any of the preceding items, wherein the first compensator in the object irradiation unit (100) is the first deflection system (110), and wherein the control unit (800) configured to provide the first deflection system (110) by computing and providing to the first deflection system (110) a control signal for additional displacement or rotation of the scanning spot position (5) of the plurality of primary charged particle beamlets (3), To compensate for the displacement or rotation of the wafer stage (500) relative to the sight line (53) of the object irradiation unit (100).

項目11:如前述項目中任一項之多重射束帶電粒子顯微鏡(1),其中該投影系統(205)的該第二補償器為該第二偏轉系統(222),並且其中該控制單元(800)構造成通過計算並提供一控制信號給該第二偏轉系統(222),以補償複數個一次帶電粒子子射束(3)的該掃描光斑位置(5)在該已位移晶圓表面(25)上之額外位移或旋轉。Item 11: The multiple beam charged particle microscope (1) of any preceding item, wherein the second compensator of the projection system (205) is the second deflection system (222), and wherein the control unit ( 800) is configured to compensate for the scanning spot position (5) of the plurality of primary charged particle sub-beams (3) on the displaced wafer surface ( 25) on the additional displacement or rotation.

項目12:如前述項目中任一項之多重射束帶電粒子顯微鏡(1),其包括帶電粒子多重子射束產生器(300)的另一補償器、該偵測單元(200)的另一補償器或該物體照射單元(100)的另一補償器之至少一者。Item 12: The multiple beam charged particle microscope (1) of any of the preceding items, comprising another compensator of the charged particle multiple sub-beam generator (300), another compensation of the detection unit (200) at least one of the compensator or another compensator of the object illumination unit (100).

項目13:如前述項目中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)包括一感測器資料分析系統(818),該系統構造成在使用期間分析複數個感測器資料,並在使用期間計算K個誤差向量的K個振幅Ak 之集合。Item 13: The multiple beam charged particle microscope (1) of any preceding item, wherein the control unit (800) includes a sensor data analysis system (818) configured to analyze a plurality of sensor data, and computes the set of K amplitudes Ak of the K error vectors during use.

項目14:如項目13之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更包括一影像資料擷取單元(810),其構造成在使用期間將來自影像感測器(207)的影像感測器資料減少到例如小於影像感測器資料的10%,較佳小於2%之影像感測器資料部分,並將影像感測器資料部分提供給該感測器資料分析系統(818)。Item 14: The multiple-beam charged particle microscope (1) of item 13, wherein the control unit (800) further includes an image data acquisition unit (810) configured to capture data from the image sensor (207) during use ) to, for example, less than 10% of the image sensor data, preferably less than 2% of the image sensor data portion, and provide the image sensor data portion to the sensor data analysis system (818).

項目15:如項目14之多重射束帶電粒子顯微鏡(1),其中該影像資料擷取單元(810)構造成在使用期間以降低的採樣率,將來自該影像感測器(207)的影像感測器資料減少為包括複數個二次電子子射束的數位影像資料之影像感測器資料部分。Item 15: The multiple beam charged particle microscope (1) of item 14, wherein the image data acquisition unit (810) is configured to capture images from the image sensor (207) at a reduced sampling rate during use The sensor data is reduced to an image sensor data portion that includes digital image data of a plurality of secondary electron beamlets.

項目16:如項目14之多重射束帶電粒子顯微鏡(1),其中該影像資料擷取單元(810)構造成在使用期間將來自該影像感測器(207)的影像感測器資料減少為包括已減少的二次電子子射束集合中數位影像資料之影像感測器資料部分。Item 16: The multiple-beam charged particle microscope (1) of item 14, wherein the image data acquisition unit (810) is configured to reduce image sensor data from the image sensor (207) during use to The image sensor data portion includes the digital image data in the reduced secondary electron beamlet set.

項目17:如項目13至16中任一項之多重射束帶電粒子顯微鏡(1),其中該感測器資料分析系統(818)構造成預測誤差向量的該組振幅Ak中至少一振幅An的時間發展。Item 17: The multiple beam charged particle microscope (1) of any one of items 13 to 16, wherein the sensor data analysis system (818) is configured to predict the difference of at least one amplitude An of the set of amplitudes Ak of the error vector time develops.

項目18:如項目13至17中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更包括一控制操作處理器(840),用於從誤差向量的振幅Ak 之集合來計算該第一組控制信號CpItem 18: The multiple-beam charged particle microscope (1) of any one of items 13 to 17, wherein the control unit (800) further comprises a control operation processor (840) for determining the amplitude Ak from the error vector to calculate the first set of control signals C p .

項目19:如項目13至18中任一項之多重射束帶電粒子顯微鏡(1),其中該感測器資料分析系統(818)構造成從複數個感測器資料推導出長度為L的感測器資料向量DV,其中L >= K。Item 19: The multiple beam charged particle microscope (1) of any one of items 13 to 18, wherein the sensor data analysis system (818) is configured to derive a sensor of length L from the plurality of sensor data The detector data vector DV, where L >= K.

項目20:如項目4至19中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算並提供該第一組控制信號Cp 的控制信號之至少一者給該第三補償器(330、332),以引起複數個一次帶電粒子子射束(3)的該光柵組態(41)之旋轉,以補償該晶圓載台(500)的旋轉。Item 20: The multiple beam charged particle microscope (1) of any one of items 4 to 19, wherein the control unit (800) is configured to calculate and provide at least one of the control signals of the first set of control signals Cp The third compensator (330, 332) is given to cause a rotation of the grating configuration (41) of the primary charged particle beamlets (3) to compensate for the rotation of the wafer stage (500).

項目21:如項目1至20中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更構造成產生一控制信號,用於通過該晶圓載台(500)將該晶圓表面(25)移到該物平面(101)中第二影像斑塊(17.2)的第二中心位置,進行第二影像斑塊(17.2)的數位影像之影像擷取。Item 21: The multiple-beam charged particle microscope (1) of any one of items 1 to 20, wherein the control unit (800) is further configured to generate a control signal for passing the wafer stage (500) to the The wafer surface (25) is moved to the second center position of the second image patch (17.2) in the object plane (101), and the image capture of the digital image of the second image patch (17.2) is performed.

項目22:如項目21之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更構造成從複數個感測器資料計算第二組P控制信號Cp ,以在該晶圓載台(500)移到該第二影像斑塊(17.2)的第二中心位置之時間間隔Tr期間,控制該等補償器任一者。Item 22: The multiple-beam charged particle microscope (1) of item 21, wherein the control unit (800) is further configured to calculate a second set of P control signals Cp from the plurality of sensor data for use on the wafer stage (500) Control any of the compensators during the time interval Tr when moving to the second center position of the second image patch (17.2).

項目23:如項目21至22中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更構造成計算在時間間隔Tr期間該第二影像斑塊(17.2)的影像擷取開始時間,並且在該晶圓載台(500)的減速時間間隔Td期間開始該第二影像斑塊(17.2)的影像擷取,並且其中該控制單元(800)更構造成將至少在時間間隔Td期間該晶圓載台(500)的預測偏移位置之一偏移信號提供給該第一和第二補償器。 第四組項目Item 23: The multiple beam charged particle microscope (1) of any one of items 21 to 22, wherein the control unit (800) is further configured to calculate the image of the second image patch (17.2) during the time interval Tr capture start time and start image capture of the second image patch (17.2) during the deceleration time interval Td of the wafer stage (500), and wherein the control unit (800) is further configured to An offset signal of the predicted offset position of the wafer stage (500) during interval Td is provided to the first and second compensators. Fourth group of projects

項目1:一種多重射束帶電粒子射束系統,其包括: 一載台,其構造成維持樣品並且可在X-Y和Z軸之至少一者上移動; 一位置感測系統,其構造成確定該載台橫向和垂直位移或旋轉;及 一控制器,其構造成施加第一信號以偏轉入射在樣品上的複數個一次帶電粒子射束,以至少部分補償載台的橫向位移;並且施加第二信號以偏轉複數個二次電子子射束,以至少部分補償源自該樣品上已偏轉一次帶電粒子子射束位置的複數個二次電子子射束之位移。Item 1: A multiple beam charged particle beam system comprising: a stage configured to hold the sample and movable in at least one of the X-Y and Z axes; a position sensing system configured to determine lateral and vertical displacement or rotation of the stage; and a controller configured to apply a first signal to deflect the plurality of primary charged particle beams incident on the sample to at least partially compensate for lateral displacement of the stage; and to apply a second signal to deflect the plurality of secondary electron beams beam to at least partially compensate for the displacement of the plurality of secondary electron beamlets originating from the positions of the deflected primary charged particle beamlets on the sample.

項目2:如項目1之系統,其中該第一信號包括影響複數個一次帶電粒子子射束如何在X-Y軸之至少一者上偏轉之電信號。Item 2: The system of item 1, wherein the first signal comprises an electrical signal that affects how the plurality of primary charged particle beamlets are deflected in at least one of the X-Y axes.

項目3:如項目2之系統,其中該電驅動信號包括具有頻寬範圍在0.1 kHz至10 kHz的信號。Item 3: The system of item 2, wherein the electrical drive signal comprises a signal having a frequency bandwidth ranging from 0.1 kHz to 10 kHz.

項目4:如項目1至3中任一項之系統,其中該橫向位移對應於該載台的當前位置與該載台的目標位置之間於X-Y軸之至少一者內的差異。Item 4: The system of any one of items 1 to 3, wherein the lateral displacement corresponds to a difference in at least one of the X-Y axes between the current position of the stage and the target position of the stage.

項目5:如項目1至4中任一項之系統,其中該控制器更構造成在樣品上複數個一次帶電粒子子射束的掃描期間,動態調整第一信號或第二信號之至少一者。Item 5: The system of any one of items 1 to 4, wherein the controller is further configured to dynamically adjust at least one of the first signal or the second signal during scanning of the plurality of primary charged particle sub-beams on the sample .

項目6:如項目1至5中任一項之系統,其更包括一載台運動控制器,其中該載台運動控制器包括構造成由一第三信號獨立控制的複數個馬達。Item 6: The system of any one of items 1 to 5, further comprising a stage motion controller, wherein the stage motion controller includes a plurality of motors configured to be independently controlled by a third signal.

項目7:如項目6之系統,其中該等複數個馬達之每一者獨立控制以調整載台的傾斜度,使得載台基本垂直於一次帶電粒子射束的光軸。Item 7: The system of item 6, wherein each of the plurality of motors is independently controlled to adjust the tilt of the stage so that the stage is substantially perpendicular to the optical axis of the primary charged particle beam.

項目8:如項目6或7中任一項之系統,其中該等複數個馬達包括壓電馬達、壓電致動器或超音波壓電馬達之至少一者。Item 8: The system of any one of items 6 or 7, wherein the plurality of motors comprise at least one of piezoelectric motors, piezoelectric actuators, or ultrasonic piezoelectric motors.

項目9:如項目1至8中任一項之系統,其更包括一第一部件,其構造成基於複數個感測器信號形成複數個誤差向量振幅;及一第二部件,其構造成從複數個誤差向量振幅中擷取複數個控制信號之至少一者。Item 9: The system of any one of items 1 to 8, further comprising a first component configured to form a plurality of error vector amplitudes based on the plurality of sensor signals; and a second component configured from At least one of the plurality of control signals is extracted from the plurality of error vector amplitudes.

項目10:如項目9之系統,其中該第一部件構造成基於該載台的橫向位移以及該多重射束帶電粒子射束系統視線的實際位置之橫向位移,以形成複數個誤差向量振幅。Item 10: The system of item 9, wherein the first component is configured to form a plurality of error vector amplitudes based on the lateral displacement of the stage and the lateral displacement of the actual position of the line of sight of the multiple beam charged particle beam system.

項目11:如項目9或10中任一項之系統,其中該等複數個控制信號之至少一者的擷取係基於複數個誤差向量振幅之預測模型。Item 11: The system of any of items 9 or 10, wherein the extraction of at least one of the plurality of control signals is based on a prediction model of the plurality of error vector amplitudes.

項目12:如項目9或11中任一項之系統,其中該等複數個控制信號之至少一者的擷取係基於該載台的致動輸出之預測模型。Item 12: The system of any of items 9 or 11, wherein the acquisition of at least one of the plurality of control signals is based on a predictive model of the actuation output of the stage.

項目13:如項目1至12中任一項之系統,其中該位置感測系統使用雷射干涉儀、電容感測器、共焦感測器陣列、光柵干涉儀或其組合之任一者,以確定載台的橫向和垂直位移與旋轉。 第五組項目Item 13: The system of any one of items 1 to 12, wherein the position sensing system uses any one of a laser interferometer, a capacitive sensor, a confocal sensor array, a grating interferometer, or a combination thereof, To determine the lateral and vertical displacement and rotation of the stage. Fifth group of projects

項目1:一種用於照射多重射束帶電粒子射束系統中放置在一載台上的樣品之方法,該方法包括: 從帶電粒子源產生複數個一次帶電粒子子射束; 確定該載台的橫向位移與旋轉,其中該載台可在至少X-Y和Z軸之一者內移動; 施加第一信號以偏轉入射在樣品上的複數個一次帶電粒子子射束,以至少部分補償該載台的橫向位移或旋轉;及 施加第二信號以偏轉複數個二次電子子射束,以至少部分補償源自該樣品上已偏轉的一次帶電粒子子射束位置的複數個二次電子子射束之位移。Item 1: A method for irradiating a sample placed on a stage in a multiple beam charged particle beam system, the method comprising: generating a plurality of primary charged particle sub-beams from a charged particle source; determining lateral displacement and rotation of the stage, wherein the stage is movable in at least one of the X-Y and Z axes; applying a first signal to deflect a plurality of primary charged particle beamlets incident on the sample to at least partially compensate for lateral displacement or rotation of the stage; and A second signal is applied to deflect the plurality of secondary electron beamlets to at least partially compensate for displacement of the plurality of secondary electron beamlets originating from the position of the deflected primary charged particle beamlets on the sample.

項目2:如項目1之方法,其中該第一信號包括影響一次帶電粒子射束如何在X-Y軸之至少一者上偏轉之電信號。Item 2: The method of item 1, wherein the first signal comprises an electrical signal that affects how the primary charged particle beam is deflected in at least one of the X-Y axes.

項目3:如項目1至2中任一項之方法,其中該橫向位移對應於該載台的當前位置與該載台的目標位置之間於X-Y軸之至少一者內的差異。Item 3: The method of any one of items 1 to 2, wherein the lateral displacement corresponds to a difference in at least one of the X-Y axes between the current position of the stage and the target position of the stage.

項目4:如項目1至3中任一項之方法,其更包括在樣品上複數個一次帶電粒子射束的掃描期間,動態調整該第一信號或該第二信號之至少一者。Item 4: The method of any one of Items 1 to 3, further comprising dynamically adjusting at least one of the first signal or the second signal during scanning of the plurality of primary charged particle beams on the sample.

項目5:如項目1至4中任一項之方法,其更包括: 施加第三信號給一載台運動控制器,其中該載台運動控制器包括構造成由該第三信號獨立控制的複數個馬達。Item 5: The method of any one of Items 1 to 4, further comprising: The third signal is applied to a stage motion controller, wherein the stage motion controller includes a plurality of motors configured to be independently controlled by the third signal.

項目6:如項目1至5中任一項之方法,其更包括: 基於複數個感測器資料推導出複數個誤差向量振幅,並且從複數個誤差向量振幅中擷取複數個控制信號之至少一者。Item 6: The method of any one of items 1 to 5, further comprising: A plurality of error vector amplitudes are derived based on the plurality of sensor data, and at least one of the plurality of control signals is extracted from the plurality of error vector amplitudes.

項目7:如項目6之方法,其更包括基於複數個誤差向量振幅的時間行為預測模型,以預測控制信號之至少一者。Item 7: The method of item 6, further comprising a temporal behavior prediction model based on the amplitudes of the plurality of error vectors to predict at least one of the control signals.

項目8:如項目6至7中任一項之方法,其更包括基於該載台的致動輸出之預測模型,預測複數個控制信號之至少一者。 第六組項目Item 8: The method of any one of items 6 to 7, further comprising predicting at least one of the plurality of control signals based on the prediction model of the actuation output of the stage. The sixth group of projects

項目1:一種使用多重射束帶電粒子顯微鏡(1)的晶圓檢測方法,該顯微鏡具有複數個偵測器,該等偵測器包括一影像感測器(207)和一載台位置感測器(520),以及具有一組補償器,該組補償器包括至少第一和第二偏轉系統(110、222),該方法包括: 以多重射束帶電粒子顯微鏡(1)的視線,定位晶圓的晶圓表面(25)並與局部晶圓坐標系統(551)的位置對準; 執行一影像擷取,以擷取該晶圓表面(25)的第一影像斑塊(17.1)之數位影像; 從該等複數個偵測器收集複數個感測器資料; 從該等複數個感測器資料推導出一組K個誤差振幅Ak ; 從該組誤差振幅Ak 中推導出第一組控制信號Cp ; 在影像擷取的步驟期間將該第一組控制信號Cp 提供給一組補償器。Item 1: A wafer inspection method using a multiple beam charged particle microscope (1), the microscope having a plurality of detectors, the detectors including an image sensor (207) and a stage position sensing and having a set of compensators, the set of compensators including at least first and second deflection systems (110, 222), the method comprising: positioning the crystal with the line of sight of the multiple beam charged particle microscope (1) round wafer surface (25) and aligned with the position of the local wafer coordinate system (551); performing an image capture to capture the digits of the first image patch (17.1) of the wafer surface (25) image; collecting a plurality of sensor data from the plurality of detectors; deriving a set of K error amplitudes Ak from the plurality of sensor data; deriving a first set of control signals Cp ; the first set of control signals Cp is supplied to a set of compensators during the step of image capture.

項目2:如項目1之用多重射束帶電粒子顯微鏡(1)的晶圓檢測方法,更包括: 從複數個感測器資料推導出長度為L的感測器資料向量DV,其中L >= K。Item 2: The wafer inspection method using the multiple-beam charged particle microscope (1) as in Item 1, further including: A sensor data vector DV of length L is derived from the plurality of sensor data, where L >= K.

項目3:如項目1至2中任一項之用多重射束帶電粒子顯微鏡(1)的晶圓檢測方法,其更包括: 推導出一組誤差向量振幅Ak中的至少一振幅An的時間發展。Item 3: The wafer inspection method using the multiple-beam charged particle microscope (1) according to any one of Items 1 to 2, further comprising: A time development of at least one amplitude An of a set of error vector amplitudes Ak is derived.

項目4:如項目1至3中任一項之用多重射束帶電粒子顯微鏡(1)的晶圓檢測方法,其更包括: 通過提供控制信號Cp 給該第一和該第二偏轉單元(110、222),以補償該晶圓載台(500)的位置或方位變化。Item 4: The wafer inspection method using a multiple-beam charged particle microscope (1) according to any one of items 1 to 3, further comprising: by providing a control signal C p to the first and the second deflection unit ( 110, 222) to compensate for changes in the position or orientation of the wafer stage (500).

項目5:如項目1至4中任一項之使用多重射束帶電粒子顯微鏡(1)的晶圓檢測方法,其更包括: 從該組誤差振幅Ak 中推導出第二組控制信號Cp ,並在定位和對準該晶圓的該晶圓表面(25)之步驟a)期間提供該第二組控制信號。 第七組項目Item 5: The wafer inspection method using the multiple-beam charged particle microscope (1) according to any one of Items 1 to 4, further comprising: deriving a second set of control signals Cp from the set of error amplitudes Ak , and provide the second set of control signals during step a) of positioning and aligning the wafer surface (25) of the wafer. Seventh group of projects

項目1:一種構造成用於晶圓檢測的多重射束帶電粒子顯微鏡(1)之操作方法,其包括: 定義一組影像品質以及一組描述與該組影像品質偏差的預定、正常化之誤差向量; 針對該組或正常化誤差向量的振幅確定一組臨界; 選擇一組多重射束帶電粒子顯微鏡的補償器; 根據線性擾動模型,通過改變該組補償器中每一補償器的至少一驅動信號,以確定靈敏度矩陣; 推導出一組正常化驅動信號,用於補償該組正常化誤差向量之每一者; 將正常化誤差向量、臨界組和正常化誤差向量儲存在多重射束帶電粒子顯微鏡控制單元的記憶體中。Item 1: A method of operation of a multiple beam charged particle microscope (1) configured for wafer inspection, comprising: define a set of image qualities and a set of predetermined, normalized error vectors describing deviations from the set of image qualities; determine a set of thresholds for the amplitude of the set or normalized error vector; Select a set of compensators for multiple beam charged particle microscopes; According to the linear disturbance model, by changing at least one driving signal of each compensator in the set of compensators, to determine the sensitivity matrix; deriving a set of normalized drive signals for compensating for each of the set of normalized error vectors; The normalization error vector, the critical group and the normalization error vector are stored in the memory of the multiple beam charged particle microscope control unit.

項目2:如項目1之多重射束帶電粒子顯微鏡(1)之操作方法,其中該組補償器包括用於掃描和偏轉複數個一次帶電粒子(3)的該多重射束帶電粒子顯微鏡(1)之第一偏轉單元(110),及用於掃描和偏轉在該多重射束帶電粒子顯微鏡(1)使用期間所產生複數個二次電子子射束(9)之第二偏轉單元(222)。 第八組項目Item 2: The method of operation of the multiple-beam charged particle microscope (1) of item 1, wherein the set of compensators includes the multiple-beam charged particle microscope (1) for scanning and deflecting a plurality of primary charged particles (3) a first deflection unit (110), and a second deflection unit (222) for scanning and deflecting a plurality of secondary electron sub-beams (9) generated during use of the multiple beam charged particle microscope (1). Eighth group of projects

項目1:一種多重射束帶電粒子顯微鏡(1)之操作方法,其包括: 在使用期間從該多重射束帶電粒子顯微鏡(1)的複數個感測器接收複數個感測器資料並形成一感測器資料向量之步驟; 擴展儲存於控制單元記憶體中一組正常化誤差向量內的該感測器資料向量,並從該感測器資料向量確定一組正常化誤差向量的實際振幅之步驟; 將該組實際振幅與一組儲存在控制單元記憶體中的臨界進行比較之步驟; 基於該組實際振幅與一組已儲存的臨界之比較,從該組實際振幅中推導出一組控制信號之步驟; 從該組控制信號中儲存在該控制單元記憶體中的一組正常化驅動信號中推導出一組實際驅動信號之步驟; 將該組實際驅動信號提供給多重射束帶電粒子顯微鏡(1)的一組補償器,從而在多重射束帶電粒子顯微鏡(1)操作期間將該組正常化誤差向量的該組實際振幅降低至低於該組臨界之步驟。Item 1: A method of operating a multiple beam charged particle microscope (1), comprising: the step of receiving, during use, a plurality of sensor data from a plurality of sensors of the multiple beam charged particle microscope (1) and forming a sensor data vector; the step of expanding the sensor data vector within a set of normalized error vectors stored in control unit memory, and determining the actual amplitude of a set of normalized error vectors from the sensor data vector; the step of comparing the set of actual amplitudes with a set of thresholds stored in the control unit memory; the step of deriving a set of control signals from the set of actual amplitudes based on a comparison of the set of actual amplitudes with a set of stored thresholds; The step of deriving a set of actual drive signals from a set of normalized drive signals stored in the control unit memory from the set of control signals; The set of actual drive signals is provided to a set of compensators of the multiple beam charged particle microscope (1), thereby reducing the set of actual amplitudes of the set of normalized error vectors to steps below the set threshold.

項目2:如項目1之多重射束帶電粒子顯微鏡(1)之操作方法,其中該等複數個感測器資料包括在使用多重射束帶電粒子顯微鏡(1)檢測期間,用於維持或移動晶圓的該晶圓載台(500)實際位置與實際速度之位置或速度資訊之至少一者。Item 2: The method of operation of the multiple-beam charged particle microscope (1) of item 1, wherein the plurality of sensor data are included in the data for maintaining or moving the crystal during detection using the multiple-beam charged particle microscope (1). At least one of the actual position of the wafer stage ( 500 ) and the actual velocity of the position or velocity information of the circle.

項目3:如項目1之多重射束帶電粒子顯微鏡(1)之操作方法,其中該等複數個感測器資料包括在使用多重射束帶電粒子顯微鏡(1)檢測晶圓期間,視線(52)的實際位置之至少一者。Item 3: The method of operation of the multiple beam charged particle microscope (1) of item 1, wherein the plurality of sensor data includes the line of sight (52) during wafer inspection using the multiple beam charged particle microscope (1) at least one of the actual locations.

項目4:如項目1至3中任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其中該等步驟重複至少兩次、至少十次,較佳在影像斑塊擷取期間每次掃描時。Item 4: The method of operating the multiple-beam charged particle microscope (1) according to any one of Items 1 to 3, wherein the steps are repeated at least twice, at least ten times, preferably each time during image plaque capture while scanning.

項目5:如項目1至4中任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其更包括在晶圓檢測期間,根據多重射束帶電粒子顯微鏡在預測時間間隔內的預期發展,以預測該組實際振幅的至少一子集的發展振幅子集之步驟。Item 5: The method of operating the multiple beam charged particle microscope (1) according to any one of items 1 to 4, further comprising, during wafer inspection, according to the expected development of the multiple beam charged particle microscope within a predicted time interval , to predict the step of developing a subset of amplitudes for at least a subset of the actual amplitudes of the set.

項目6:如項目1至5中任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其更包括在使用期間,記錄多重射束帶電粒子顯微鏡的該組實際振幅的至少一子集,以用於產生該組實際振幅的子集歷史之步驟。Item 6: The method of operation of the multiple beam charged particle microscope (1) according to any one of items 1 to 5, further comprising, during use, recording at least a subset of the set of actual amplitudes of the multiple beam charged particle microscope , for the step of generating a subset histories of actual amplitudes for the set.

項目7:如項目1至6中任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其更包括在晶圓檢測期間,從該組發展振幅推導出一組預測控制信號和從該組預測控制信號推導出一組預測驅動信號之步驟,以及在晶圓檢測期間,以時間順序方式將該組預測驅動信號提供給該組補償器之步驟,從而在多重射束帶電粒子顯微鏡在預測時間間隔內的操作期間,將實際振幅的子集減至低於該組臨界。Item 7: The method of operating the multiple beam charged particle microscope (1) of any one of Items 1 to 6, further comprising deriving a set of predictive control signals from the set of developed amplitudes during wafer inspection and deriving from the set of predictive control signals The step of deriving a set of predicted drive signals from the set of predictive control signals, and the step of providing the set of predicted drive signals to the set of compensators in a time-sequential manner during wafer inspection, results in a multi-beam charged particle microscope in predicting During operation within the time interval, a subset of the actual amplitudes are reduced below the set of thresholds.

項目8:一種具有控制單元(800)並且已安裝軟體程式碼之多重射束帶電粒子顯微鏡,其構造成用於應用如項目1至7中任一項之任何方法。 第九組項目Item 8: A multiple beam charged particle microscope having a control unit (800) and having installed software code, configured for applying any of the methods of any of items 1-7. ninth group of projects

項目1:一種將複數個一次帶電粒子子射束聚焦在一樣品上之方法,該方法包括: 使用複數個一次帶電粒子子射束照射置於多重射束帶電粒子射束系統載台上之樣品,並在該樣品表面形成複數個焦點; 使用多重射束帶電粒子系統的至少第一部件,調整複數個帶電粒子子射束的複數個焦點相對於該樣品之位置和旋轉;及 使用多重射束帶電粒子系統的第二部件,沿著多個預定一次掃描束路徑參考該樣品,掃描複數個一次帶電粒子子射束的焦點;及 使用該第一、該第二或一第三部件,動態操縱關於該樣品的預定掃描束路徑。Item 1: A method of focusing a plurality of primary charged particle sub-beams on a sample, the method comprising: Using a plurality of primary charged particle sub-beams to irradiate the sample placed on the stage of the multi-beam charged particle beam system, and to form a plurality of foci on the surface of the sample; adjusting the position and rotation of the plurality of focal points of the plurality of charged particle sub-beams relative to the sample using at least a first component of the multi-beam charged particle system; and scanning the focal points of the plurality of primary charged particle sub-beams with reference to the sample along a plurality of predetermined primary scanning beam paths using a second component of the multiple beam charged particle system; and Using the first, the second or a third component, a predetermined scanning beam path with respect to the sample is dynamically manipulated.

項目2:如項目1之方法,其中該方法包括至少將第一偏轉電壓添加到用於通過使用該第二部件掃描複數個一次帶電粒子子射束的焦點之第一掃描電壓。Item 2: The method of item 1, wherein the method includes adding at least a first deflection voltage to a first scan voltage for scanning a focal point of the plurality of primary charged particle beamlets by using the second component.

項目3:如項目1或2之方法,其更包括: 使用帶電粒子多重子射束產生器產生複數個一次帶電粒子子射束;及 使用帶電粒子多重子射束產生器的一部件,調整或動態操縱複數個帶電粒子子射束的複數個焦點參考該樣品之位置和旋轉。Item 3: The method of item 1 or 2, which further includes: generating a plurality of primary charged particle beamlets using a charged particle multiple beamlet generator; and The position and rotation of the plurality of focal points of the plurality of charged particle sub-beams are adjusted or dynamically manipulated with reference to the sample using a component of the charged particle multiple sub-beam generator.

項目4:如項目1至3中任一項之方法,其更包括: 在複數個一次帶電粒子子射束的複數個焦點處產生和收集源自該樣品表面的複數個二次電子子射束; 使用多重射束帶電粒子系統中投影系統的第四部件,沿著預定的二次電子射束路徑掃描複數個二次電子子射束,使得複數個二次電子子射束的焦點位於影像感測器處恆定位置上; 使用多重射束帶電粒子系統中該投影系統的第四部件或第五部件,參照影像感測器動態操縱預定的二次電子射束路徑。Item 4: The method of any one of Items 1 to 3, further comprising: generating and collecting a plurality of secondary electron beamlets originating from the sample surface at a plurality of foci of a plurality of primary charged particle beamlets; Using the fourth component of the projection system in the multiple-beam charged particle system, scanning a plurality of secondary electron sub-beams along a predetermined secondary electron beam path such that the focal point of the plurality of secondary electron sub-beams is at the image sensing at the constant position of the device; The predetermined secondary electron beam path is dynamically steered with reference to the image sensor using the fourth or fifth component of the projection system in the multiple beam charged particle system.

項目5:如項目4之方法,其中該方法包括將至少第二偏轉電壓添加到用於通過使用該第四部件掃描複數個二次帶電粒子子射束的第二掃描電壓。Item 5: The method of item 4, wherein the method includes adding at least a second deflection voltage to a second scan voltage for scanning the plurality of secondary charged particle beamlets by using the fourth component.

項目6:如項目1至5中任一項之方法,其更包括: 確定該載台的當前位置;及 根據該載台的當前位置與該載台的目標位置間之差異,以確定該載台的橫向位移或旋轉。Item 6: The method of any one of items 1 to 5, further comprising: determine the current position of the stage; and The lateral displacement or rotation of the stage is determined based on the difference between the current position of the stage and the target position of the stage.

項目7:如項目6之方法,其更包括: 確定用於補償該載台橫向位移或旋轉的該第一偏轉電壓, 該供該第一偏轉電壓給至少該第一、該第二或該第三部件,以用於參照該樣品動態操縱預定的第一掃描束路徑。Item 7: The method of item 6, which further includes: determining the first deflection voltage for compensating for lateral displacement or rotation of the stage, The first deflection voltage is applied to at least the first, the second or the third component for dynamically steering a predetermined first scanning beam path with reference to the sample.

項目8:如項目6或7中任一項之方法,其更包括: 確定該第二偏轉電壓, 該供該第二偏轉電壓給至少該第四或第五部件,以用於參照該影像感測器動態操縱預定的二次電子射束路徑。 第十組項目Item 8: The method of any one of Items 6 or 7, further comprising: determine the second deflection voltage, The second deflection voltage is applied to at least the fourth or fifth component for dynamically steering a predetermined secondary electron beam path with reference to the image sensor. tenth group of projects

項目1:一種多重射束帶電粒子射束系統,其包括: 一物體照射單元,其構造成使用複數個一次帶電粒子子射束的複數個焦點照射樣品的表面; 該物體照射單元的第一部件,其構造成用於調整複數個帶電粒子子射束的複數個焦點相對於該樣品之位置和旋轉;及 該物體照射單元的第二部件,其構造成用於沿著多個預定一次掃描束路徑參照該樣品,掃描複數個一次帶電粒子子射束的焦點;及 第三部件,其構造成用於參照該樣品位置動態操縱預定掃描束路徑。Item 1: A multiple beam charged particle beam system comprising: an object irradiation unit configured to irradiate the surface of the sample with a plurality of foci of a plurality of primary charged particle sub-beams; a first component of the object irradiation unit configured to adjust the position and rotation of the plurality of focal points of the plurality of charged particle sub-beams relative to the sample; and a second component of the object irradiation unit configured to scan a focal point of a plurality of primary charged particle beamlets with reference to the sample along a plurality of predetermined primary scanning beam paths; and A third component configured to dynamically steer the predetermined scanning beam path with respect to the sample position.

項目2:如項目1之多重射束帶電粒子射束系統,其中該第三部件為該第一部件。Item 2: The multiple beam charged particle beam system of item 1, wherein the third component is the first component.

項目3:如項目2之多重射束帶電粒子射束系統,其中該第三部件為該第二部件。Item 3: The multiple beam charged particle beam system of item 2, wherein the third component is the second component.

項目4:如項目3之多重射束帶電粒子射束系統,其更包括一控制單元,其構造成用於將至少構造成用於動態操縱預定掃描束路徑的第一偏轉電壓添加到提供給構造成用於掃描複數個一次帶電粒子子射束焦點的第二部件之第一掃描電壓。Item 4: The multiple-beam charged particle beam system of item 3, further comprising a control unit configured to add at least a first deflection voltage configured to dynamically steer the predetermined scanning beam path to a supply to the configuration is a first scan voltage of the second component for scanning the focal points of the plurality of primary charged particle sub-beams.

項目5:如項目1至4中任一項之多重射束帶電粒子射束系統,其更包括一帶電粒子多重子射束產生器,其設置用於產生複數個一次帶電粒子子射束。Item 5: The multiple beam charged particle beam system of any one of items 1 to 4, further comprising a charged particle multiple sub-beam generator configured to generate a plurality of primary charged particle beamlets.

項目6:如項目1至5中任一項之多重射束帶電粒子射束系統,其更包括一控制單元,其構造成用於在使用期間使用該第一部件調整該物體照射單元之視線。Item 6: The multi-beam charged particle beam system of any one of items 1 to 5, further comprising a control unit configured to use the first component to adjust the line of sight of the object irradiation unit during use.

項目7:如項目1至6中任一項之多重射束帶電粒子射束系統,其更包括: 一投影系統,其構造成用於在複數個一次帶電粒子子射束的複數個焦點處,收集源自該樣品表面的複數個二次電子子射束並成像; 一影像感測器,用以偵測複數個二次電子子射束的多個焦斑; 多重射束帶電粒子系統中該投影系統的第四部件,其構造成用於沿著預定的二次電子射束路徑掃描複數個二次電子子射束,使得複數個二次電子子射束的焦點位於影像感測器處恆定位置上; 多重射束帶電粒子系統中該投影系統的第五部件,其構造成用於參照該影像感測器動態操縱預定的二次電子射束路徑。Item 7: The multiple-beam charged particle beam system of any one of items 1 to 6, further comprising: a projection system configured to collect and image a plurality of secondary electron beamlets originating from the sample surface at a plurality of foci of a plurality of primary charged particle beamlets; an image sensor for detecting a plurality of focal spots of a plurality of secondary electron beamlets; A fourth component of the projection system in a multiple beam charged particle system configured to scan a plurality of secondary electron sub-beams along a predetermined secondary electron beam path such that the plurality of secondary electron sub-beams are The focal point is at a constant position at the image sensor; A fifth component of the projection system in a multiple beam charged particle system configured to dynamically steer a predetermined secondary electron beam path with reference to the image sensor.

項目8:如項目7之多重射束帶電粒子射束系統,其中該第五部件為該第四部件。Item 8: The multiple beam charged particle beam system of item 7, wherein the fifth component is the fourth component.

項目9:如項目8之多重射束帶電粒子射束系統,其中該控制單元更構造成用於將至少構造成用於動態操縱預定次要電子射束路徑的第二偏轉電壓添加到提供給用於掃描複數個二次帶電粒子子射束的第四部件之第二掃描電壓。Item 9: The multiple beam charged particle beam system of item 8, wherein the control unit is further configured to add at least a second deflection voltage configured to dynamically steer the predetermined secondary electron beam path to the A second scan voltage for scanning the fourth component of the plurality of secondary charged particle sub-beams.

項目10:如項目1至9中任一項之多重射束帶電粒子射束系統,其更包括一載台感測器,其構造成用於確定該載台的橫向位移或旋轉。Item 10: The multiple beam charged particle beam system of any one of items 1 to 9, further comprising a stage sensor configured to determine lateral displacement or rotation of the stage.

項目11:如項目10之多重射束帶電粒子射束系統,其中該控制單元更構造成用於從由該載台感測器提供的橫向位移或旋轉推導出該第一和該第二偏轉電壓。Item 11: The multiple beam charged particle beam system of item 10, wherein the control unit is further configured to derive the first and the second deflection voltages from lateral displacement or rotation provided by the stage sensor .

項目12:如項目1至11中任一項之系統,其中該第一部件位於該第二部件的上游。 第十一組項目Item 12: The system of any one of items 1 to 11, wherein the first component is located upstream of the second component. Eleventh group of projects

項目1:一種使用多重射束帶電粒子射束裝置執行晶圓檢測之方法,該方法包括: 使用複數個一次帶電粒子子射束照射放置在載台上的樣品; 對複數個一次帶電粒子子射束的焦點進行靜態調整; 對複數個一次帶電粒子子射束的焦點進行動態操縱。Item 1: A method of performing wafer inspection using a multiple beam charged particle beam apparatus, the method comprising: irradiating the sample placed on the stage with a plurality of primary charged particle electron beams; Static adjustment of the focus of a plurality of primary charged particle beamlets; Dynamic manipulation of the focus of a plurality of primary charged particle beamlets.

項目2:如項目1之方法,其更包括: 確定多重射束帶電粒子射束裝置的緩慢變化,其包括確定物體照射單元的緩慢變化和偵測構造成維持該樣品的該載台漂移; 確定第一漂移補償信號以補償緩慢變化;及 將該第一漂移補償信號施加到該物體照射單元的至少一部件上,以執行複數個一次帶電粒子子射束焦點的靜態調整。Item 2: The method of item 1, which further includes: determining the slow change of the multiple beam charged particle beam device, comprising determining the slow change of the object irradiation unit and detecting the drift of the stage configured to maintain the sample; determining a first drift compensation signal to compensate for slow changes; and The first drift compensation signal is applied to at least one component of the object illumination unit to perform a static adjustment of the focal points of a plurality of primary charged particle sub-beams.

項目3:如項目2之方法,其中確定該物體照射單元的緩慢變化包括確定該物體照射單元視線的緩慢變化。Item 3: The method of item 2, wherein determining the slow change of the object illumination unit comprises determining the slow change of the line of sight of the object illumination unit.

項目4:如項目1至3中任一項之方法,其更包括: 確定多重射束帶電粒子射束裝置的動態變化,其包括確定物體照射單元的動態變化和偵測構造成維持該樣品的該載台振動; 確定第一動態補償信號以補償動態變化;及 將該第一動態補償信號施加到該物體照射單元的至少一部件上,以執行複數個一次帶電粒子子射束焦點的動態操縱。Item 4: The method of any one of Items 1 to 3, further comprising: determining the dynamics of the multiple beam charged particle beam apparatus, comprising determining the dynamics of the object irradiation unit and detecting vibrations of the stage configured to maintain the sample; determining a first dynamic compensation signal to compensate for dynamic changes; and The first dynamic compensation signal is applied to at least one component of the object illumination unit to perform dynamic manipulation of the focal points of a plurality of primary charged particle sub-beams.

項目5:如項目4之方法,其中確定該物體照射單元的動態變化包括確定該物體照射單元視線的動態改變。Item 5: The method of item 4, wherein determining the dynamic change of the object illumination unit comprises determining the dynamic change of the line of sight of the object illumination unit.

項目6:如項目2至5中任一項之方法,其更包括: 確定第二漂移補償信號以補償緩慢變化;及 將第二漂移補償信號施加到投影單元的至少一部件,以補償複數個二次電子子射束的靜態調整,該靜態調整源自複數個一次帶電粒子子射束的已調整焦點。Item 6: The method of any one of items 2 to 5, further comprising: determining a second drift compensation signal to compensate for slow changes; and A second drift compensation signal is applied to at least one component of the projection unit to compensate for static adjustments of the plurality of secondary electron beamlets resulting from the adjusted focus of the plurality of primary charged particle beamlets.

項目7:如項目4至6中任一項之方法,其更包括: 確定第二動態補償信號以補償動態變化;及 將第二動態補償信號施加到投影單元的至少一部件,以補償複數個二次電子子射束的動態操縱,該動態操縱源自複數個一次帶電粒子子射束的已動態操縱焦點。Item 7: The method of any one of items 4 to 6, further comprising: determining a second dynamic compensation signal to compensate for dynamic changes; and A second dynamic compensation signal is applied to at least one component of the projection unit to compensate for dynamic steering of the plurality of secondary electron beamlets resulting from dynamically steered focal points of the plurality of primary charged particle beamlets.

項目8:如項目1至7中任一項之方法,其中該第一和第二漂移補償信號的確定係基於多重射束帶電粒子射束裝置的時間行為之預測模型。Item 8: The method of any one of items 1 to 7, wherein the determination of the first and second drift compensation signals is based on a predictive model of the temporal behavior of the multiple beam charged particle beam device.

項目9:如項目8之方法,其中該第一或第二漂移補償信號和第一或第二動態補償信號的確定係基於多重射束帶電粒子射束裝置的時間行為之頻率分析。Item 9: The method of item 8, wherein the determination of the first or second drift compensation signal and the first or second dynamic compensation signal is based on a frequency analysis of the temporal behavior of the multiple beam charged particle beam device.

項目10:如項目1至9中任一項之方法,其更包括接收複數個感測器信號,其包括來自載台位置感測器和影像感測器的感測器信號。Item 10: The method of any one of items 1 to 9, further comprising receiving a plurality of sensor signals including sensor signals from the stage position sensor and the image sensor.

項目11:如項目10之方法,其更包括使用控制單元基於接收到的複數個感測器信號,確定該漂移和動態補償信號。Item 11: The method of item 10, further comprising determining, using a control unit, the drift and motion compensation signals based on the plurality of sensor signals received.

項目12:如項目1至11中任一項之方法,其更包括: 使用該控制單元的處理器評估多重射束帶電粒子射束裝置的時間行為之預測模型;及 使用控制單元基於該預測模型確定該漂移和動態補償信號。Item 12: The method of any one of items 1 to 11, further comprising: using the processor of the control unit to evaluate a predictive model of the temporal behavior of the multiple beam charged particle beam device; and The drift and dynamic compensation signals are determined based on the predictive model using a control unit.

項目13:如項目12之方法,其中該預測模型的評估包括頻率分析、低通濾波和多項式近似。Item 13: The method of item 12, wherein the evaluation of the predictive model includes frequency analysis, low-pass filtering, and polynomial approximation.

項目14:如項目12或13之方法,其更包括使用至少一條延遲線,將該漂移和動態補償信號與該預測模型同步。Item 14: The method of item 12 or 13, further comprising synchronizing the drift and motion compensation signal with the prediction model using at least one delay line.

項目15:如項目1至14中任一項之方法,其更包括: 基於動態補償信號產生一束偏轉信號; 用該束偏轉信號修改一束掃描信號;及 將修改後的束掃描信號提供給一掃描束偏轉單元。 第十二組項目Item 15: The method of any one of Items 1 to 14, further comprising: generating a beam of deflection signals based on the dynamic compensation signal; modifying a beam of scanning signals with the beam deflection signal; and The modified beam scanning signal is provided to a scanning beam deflection unit. Twelfth group of projects

項目1:一種用於晶圓檢測的多重射束帶電粒子顯微鏡(1),其包括: 一帶電粒子多重子射束產生器(300),用於產生複數個一次帶電粒子子射束(3), 一物體照射單元(100),其包括第一偏轉系統(110),供使用複數個一次帶電粒子子射束(3)掃描配置在物平面(101)中的晶圓表面(25),以用於在複數個一次帶電粒子子射束(3)的光斑位置(5)處,產生從該晶圓表面(25)發射的複數個二次電子子射束(9), 具有一投影系統(205)、一第二偏轉系統(222)和一影像感測器(207)的一偵測單元(200),用於將複數個二次電子子射束(9)成像在影像感測器(207)上,並在使用期間擷取該晶圓表面(25)的第一影像斑塊(17.1)之數位影像, 具有載台位置感測器(520)的晶圓載台(500),用於在擷取第一影像斑塊(17.1)的數位影像期間將晶圓表面(25)定位和維持在物平面(101)中。 複數個偵測器,其包括該載台位置感測器(520)和該影像感測器(207),該等偵測器構造成在使用期間產生複數個感測器資料,該感測器資料包括該晶圓載台(500)的位置資料, 一組補償器,其至少包括物體照射單元(100)中的補償器和投影系統(205)中的補償器, 一控制單元(800),其構造成從複數個感測器資料產生一第一組控制信號Cp ,以在擷取該第一影像斑塊(17.1)的數位影像期間控制該組補償器, 其中該控制單元(800)構造成補償由該晶圓載台(500)的移動引起之晶圓表面(25)位移。Item 1: A multiple beam charged particle microscope (1) for wafer inspection, comprising: a charged particle multiple beamlet generator (300) for generating a plurality of primary charged particle beamlets (3), An object irradiation unit (100) comprising a first deflection system (110) for scanning a wafer surface (25) arranged in an object plane (101) with a plurality of primary charged particle beamlets (3) for scanning with a plurality of primary charged particle beamlets (3) generating a plurality of secondary electron beamlets (9) emitted from the wafer surface (25) at spot positions (5) of a plurality of primary charged particle beamlets (3), having a projection system (205) ), a second deflection system (222) and a detection unit (200) of an image sensor (207) for imaging a plurality of secondary electron beamlets (9) on the image sensor (207) ) and captures a digital image of the first image patch (17.1) of the wafer surface (25) during use, a wafer stage (500) having a stage position sensor (520) for use in The wafer surface (25) is positioned and maintained in the object plane (101) during the acquisition of the digital image of the first image patch (17.1). a plurality of detectors including the stage position sensor (520) and the image sensor (207), the detectors configured to generate a plurality of sensor data during use, the sensor The data include position data of the wafer stage (500), a set of compensators, which at least include compensators in the object irradiation unit (100) and compensators in the projection system (205), a control unit (800), which configured to generate a first set of control signals Cp from a plurality of sensor data to control the set of compensators during the capture of the digital image of the first image patch (17.1), wherein the control unit (800) is configured To compensate for the displacement of the wafer surface (25) caused by the movement of the wafer stage (500).

項目2:如項目1之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償該物體照射單元(100)的視線(53)之位置變化。Item 2: The multiple-beam charged particle microscope (1) of item 1, wherein the control unit (800) is configured to provide the first set of control signals Cp by calculating the first set of control signals Cp A and the second compensator to compensate for the positional variation of the sight line (53) of the object illuminating unit (100).

項目3:如項目1或2中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償該晶圓載台(500)的位置變化或方位變化與該物體照射單元(100)的視線(53)之位置變化。 第十三組項目Item 3: The multiple-beam charged particle microscope (1) of any one of items 1 or 2, wherein the control unit (800) is configured to calculate the first set of control signals C p and convert the first set of control signals Cp is provided to the first and the second compensators to compensate for positional or orientation changes of the wafer stage (500) and positional changes of the line of sight (53) of the object irradiation unit (100). Thirteenth group of projects

項目1:一種用於晶圓檢測的多重射束帶電粒子顯微鏡(1),其包括: a.      一帶電粒子多重子射束產生器(300),用於產生複數個一次帶電粒子子射束(3); b.     一物體照射單元(100),其包括第一偏轉系統(110),供使用複數個一次帶電粒子子射束(3)掃描配置在物平面(101)中的晶圓表面(25),以用於產生從該晶圓表面(25)發射的複數個二次電子子射束(9); c.      具有一投影系統(205)、一第二偏轉系統(222)和一影像感測器(207)的一偵測單元(200),用於將複數個二次電子子射束(9)成像在影像感測器(207)上,並在使用期間擷取該晶圓表面(25)的第一影像斑塊(17.1)之數位影像; d.     具有載台位置感測器(520)的晶圓載台(500),用於在擷取第一影像斑塊(17.1)的數位影像期間將晶圓表面(25)定位和維持在物平面(101)中; e.      一控制單元(800); f.       複數個偵測器,其包括該載台位置感測器(520)和該影像感測器(207),該等偵測器構造成在使用期間產生複數個感測器資料,該感測器資料包括該晶圓載台(500)的位置資料; g.     一組補償器,其包括至少該第一和該第二偏轉系統(110、222), 其中該控制單元(800)構造成從複數個感測器資料產生一第一組控制信號Cp ,以在擷取該第一影像斑塊(17.1)的數位影像期間控制該組補償器。Item 1: A multiple beam charged particle microscope (1) for wafer inspection, comprising: a. a charged particle multiple beamlet generator (300) for generating a plurality of primary charged particle beamlets (3 ); b. an object irradiation unit (100) comprising a first deflection system (110) for scanning a wafer surface (25) arranged in the object plane (101) using a plurality of primary charged particle beamlets (3) ) for generating a plurality of secondary electron beamlets (9) emitted from the wafer surface (25); c. having a projection system (205), a second deflection system (222) and an image sensor a detection unit (200) of the detector (207) for imaging a plurality of secondary electron beams (9) on the image sensor (207) and capturing the wafer surface (207) during use 25) digital image of the first image patch (17.1); d. a wafer stage (500) having a stage position sensor (520) for capturing the digital image of the first image patch (17.1) positioning and maintaining the wafer surface (25) in the object plane (101) during imaging; e. a control unit (800); f. a plurality of detectors including the stage position sensor (520) and the image sensors (207) configured to generate a plurality of sensor data during use, the sensor data including position data of the wafer stage (500); g. a set of compensators , which includes at least the first and the second deflection system (110, 222), wherein the control unit (800) is configured to generate a first set of control signals Cp from a plurality of sensor data for capturing the The set of compensators are controlled during digital imaging of the first image patch (17.1).

項目2:如項目1之多重射束帶電粒子顯微鏡(1),其中該組補償器更包括帶電粒子多重子射束產生器(300)的補償器(330、332)和該偵測單元(200)的補償器(230、232)之至少一者。Item 2: The multiple-beam charged particle microscope (1) of item 1, wherein the set of compensators further comprises compensators (330, 332) of the charged-particle multiple sub-beam generator (300) and the detection unit (200) At least one of the compensators (230, 232).

項目3:如項目1或2中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)包括一感測器資料分析系統(818),該系統構造成在使用期間分析複數個感測器資料,並在使用期間計算K個誤差向量的K個振幅Ak 之集合。Item 3: The multiple beam charged particle microscope (1) of any of items 1 or 2, wherein the control unit (800) includes a sensor data analysis system (818) configured to analyze during use A plurality of sensor data, and the set of K amplitudes Ak of the K error vectors is calculated during use.

項目4:如項目3之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更包括一影像資料擷取單元(810),其構造成在使用期間將來自影像感測器(207)的影像感測器資料減少到例如小於影像感測器資料的10%,較佳小於2%之影像感測器資料部分(fraction),並將該影像感測器資料部分提供給該感測器資料分析系統(818)。Item 4: The multiple-beam charged particle microscope (1) of item 3, wherein the control unit (800) further comprises an image data acquisition unit (810) configured to capture data from the image sensor (207) during use ) to, for example, less than 10% of the image sensor data, preferably less than 2% of the image sensor data fraction, and provide the image sensor data fraction to the sensor Device Data Analysis System (818).

項目5:如項目3或4中任一項之多重射束帶電粒子顯微鏡(1),其中該感測器資料分析系統(818)構造成預測誤差向量的該組振幅Ak 中的至少一振幅An 的時間發展。Item 5: The multiple beam charged particle microscope (1) of any of items 3 or 4, wherein the sensor data analysis system (818) is configured to predict at least one amplitude of the set of amplitudes Ak of the error vector The time development of An.

項目6:如項目3至5中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更包括一控制操作處理器(840),用於從誤差向量的振幅Ak 之集合來計算該第一組控制信號CpItem 6: The multiple-beam charged particle microscope (1) according to any one of items 3 to 5, wherein the control unit (800) further comprises a control operation processor (840) for determining the amplitude Ak of the error vector to calculate the first set of control signals C p .

項目7:如項目3至6中任一項之多重射束帶電粒子顯微鏡(1),其中該感測器資料分析系統(818)構造成從複數個感測器資料推導出長度為L的感測器資料向量DV,其中L > K。Item 7: The multiple beam charged particle microscope (1) of any one of items 3 to 6, wherein the sensor data analysis system (818) is configured to derive a sensor of length L from the plurality of sensor data The detector data vector DV, where L > K.

項目8:如項目1至7中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 中至少一者並將該第一組控制信號Cp 中至少一者提供給該第一和該第二偏轉單元(110、222),以補償該晶圓載台(500)的位置變化或方位變化。Item 8: The multiple-beam charged particle microscope (1) of any one of items 1 to 7, wherein the control unit (800) is configured to convert the first set of control signals C p by calculating at least one of the first set of control signals C p At least one of a set of control signals Cp is provided to the first and second deflection units (110, 222) to compensate for positional or orientation changes of the wafer stage (500).

項目9:如項目1至8中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 中至少一者並將該第一組控制信號Cp 中至少一者提供給該第一和該第二偏轉單元(110、222),以補償該物體照射單元(100)的視線(53)之位置變化。Item 9: The multiple beam charged particle microscope (1) of any one of items 1 to 8, wherein the control unit (800) is configured to convert the first set of control signals C p by calculating at least one of the first set of control signals C p At least one of a set of control signals C p is provided to the first and second deflection units ( 110 , 222 ) to compensate for changes in the position of the line of sight ( 53 ) of the object illumination unit ( 100 ).

項目10:如項目1至9中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 中至少一者並將該第一組控制信號Cp 中至少一者提供給該第一和該第二偏轉單元(110、222),以補償該晶圓載台(500)的位置變化或方位變化與該物體照射單元(100)的視線(53)之位置變化。Item 10: The multiple beam charged particle microscope (1) of any one of items 1 to 9, wherein the control unit (800) is configured to convert the first set of control signals C p by calculating at least one of the first set of control signals C p At least one of a set of control signals C p is provided to the first and the second deflection units ( 110 , 222 ) to compensate for changes in position or orientation of the wafer stage ( 500 ) and the object irradiation unit ( 100 ) The position of the line of sight (53) changes.

項目11:如項目1至10中任一項之多重射束帶電粒子顯微鏡(1),其中帶電粒子多重子射束產生器(300)更包括一快速補償器(330),且該控制單元(800)構造成通過計算該第一組控制信號Cp 中至少一者並提供該第一組控制信號Cp 中至少一者給快速補償器(330),以引起複數個一次帶電粒子子射束的旋轉,以補償晶圓載台(500)的旋轉。Item 11: The multiple-beam charged particle microscope (1) according to any one of items 1 to 10, wherein the charged-particle multiple sub-beam generator (300) further comprises a fast compensator (330), and the control unit (800 ) is configured to cause at least one of the plurality of primary charged particle beamlets by calculating at least one of the first set of control signals Cp and providing at least one of the first set of control signals Cp to a fast compensator (330). Rotate to compensate for the rotation of the wafer stage (500).

項目12:如項目1至11中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更構造成產生一第三控制信號,用於通過該晶圓載台(500)將該晶圓表面(25)移到該物平面(101)中第二影像斑塊17.2的第二中心位置,進行第二影像斑塊(17.2)的數位影像之影像擷取。Item 12: The multiple beam charged particle microscope (1) of any one of items 1 to 11, wherein the control unit (800) is further configured to generate a third control signal for passing the wafer stage (500) The wafer surface (25) is moved to the second center position of the second image patch 17.2 in the object plane (101), and the digital image of the second image patch (17.2) is captured.

項目13:如項目12之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更構造成從複數個感測器資料計算第二組P控制信號Cp ,以在該晶圓載台(500)移到該第二影像斑塊(17.2)的第二中心位置之時間間隔Tr期間,控制該組補償器。Item 13: The multiple-beam charged particle microscope (1) of item 12, wherein the control unit (800) is further configured to calculate a second set of P control signals Cp from the plurality of sensor data for use on the wafer stage (500) Control the set of compensators during the time interval Tr when moving to the second center position of the second image patch (17.2).

項目14:如項目12至13中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)更構造成計算在時間間隔Tr期間該第二影像斑塊17.2的影像擷取開始時間,並且在該晶圓載台(500)的減速時間間隔Td期間開始該第二影像斑塊17.2的影像擷取,並且其中該控制單元(800)更構造成將至少該晶圓載台(500)在時間間隔Td期間的預測偏移位置之一偏移信號提供給該第一和第二偏轉系統(110、222)。 第十四組項目Item 14: The multiple beam charged particle microscope (1) of any one of items 12 to 13, wherein the control unit (800) is further configured to calculate the image capture of the second image patch 17.2 during the time interval Tr start time, and start the image capture of the second image patch 17.2 during the deceleration time interval Td of the wafer stage (500), and wherein the control unit (800) is further configured to convert at least the wafer stage (500) ) one of the predicted offset positions during the time interval Td is provided to the first and second deflection yokes (110, 222) with an offset signal. Group 14 Projects

項目1:一種改善多重射束帶電粒子顯微鏡通量之方法,其包括: 在具有束間距d1的光柵組態之樣品表面上,產生複數個一次帶電粒子子射束的多個束斑; 沿預定掃描路徑共同掃描複數個一次帶電粒子; 控制複數個一次帶電粒子子射束的束間距d1; 其中該控制包括通過使用用於操縱束斑位置的補償器來補償束間距d1之變化,從而減少一重疊區域。Item 1: A method of improving the throughput of a multiple beam charged particle microscope, comprising: generating a plurality of beam spots of a plurality of primary charged particle sub-beams on a sample surface having a grating configuration with a beam spacing d1; jointly scanning a plurality of primary charged particles along a predetermined scanning path; controlling the beam spacing d1 of a plurality of primary charged particle beams; Wherein the control includes compensating for changes in the beam spacing d1 by using a compensator for manipulating the position of the beam spot, thereby reducing an overlapping area.

項目2:如項目1之方法,其中該控制包括提供控制信號給多光束多極偏轉器器件,以高精度動態控制該樣品表面的多個束斑位置,該高精度為100 nm以下、70 nm以下,甚至30 nm以下。Item 2: The method of item 1, wherein the controlling includes providing a control signal to a multi-beam multi-pole deflector device to dynamically control the positions of a plurality of beam spots on the sample surface with high precision, the high precision being 100 nm or less and 70 nm Below, even below 30 nm.

項目3:如項目1或2之方法,其更包括使用100 nm以下、70 nm以下甚至30 nm以下的高精度影像感測器感測該樣品表面焦點位置之步驟。Item 3: The method of item 1 or 2, further comprising the step of sensing the focal position of the sample surface with a high-precision image sensor below 100 nm, below 70 nm or even below 30 nm.

項目4:如項目1至3中任一項之方法,其中該束路徑d1約為10 µm。Item 4: The method of any one of items 1 to 3, wherein the beam path d1 is about 10 μm.

可提供一種非暫態電腦可讀取媒體,其儲存供(例如控制單元800或感測器資料分析系統818的)處理器執行晶圓檢測、晶圓成像、載台校準、位移誤差校準、位移誤差補償,操縱與樣品相關聯的電磁場,與影像資料擷取單元810通訊,啟動加速度感測器,或執行演算法以評估或預測包括樣品載台500的多重子射束帶電粒子顯微系統1的性能以及該多重子射束帶電粒子系統的控制操作之指令。該非暫態媒體的常見形式包括例如硬碟、固態硬碟、任何光學資料儲存媒體、隨機存取記憶體(RAM)、可編程唯讀記憶體(PROM)以及可抹除可編程唯讀記憶體(EPROM)、FLASH-EPROM或任何其他快閃記憶體、非揮發性隨機存取記憶體(NVRAM)、快取、暫存器、任何其他記憶體晶圓或儲存卡匣。A non-transitory computer-readable medium may be provided that stores a processor (eg, of control unit 800 or sensor data analysis system 818) to perform wafer inspection, wafer imaging, stage calibration, displacement error calibration, displacement Error compensation, manipulating the electromagnetic field associated with the sample, communicating with the image data acquisition unit 810, activating an acceleration sensor, or executing an algorithm to evaluate or predict the multiple beamlet charged particle microscopy system 1 including the sample stage 500 Instructions for performance and control operations of the multiple sub-beam charged particle system. Common forms of such non-transitory media include, for example, hard drives, solid state drives, any optical data storage media, random access memory (RAM), programmable read only memory (PROM), and erasable programmable read only memory (EPROM), FLASH-EPROM or any other flash memory, non-volatile random access memory (NVRAM), cache, scratchpad, any other memory wafer or storage cartridge.

圖式內的方塊圖說明根據本發明許多示範具體實施例的系統、方法和電腦硬體或軟體產品可能實施之架構、功能和操作。如此,流程圖或方塊圖內的每一方塊可代表模組、區段或程式碼部分,這部分程式碼可包括一或多個可執行指令來實施特定邏輯功能。應了解,在某些替代實施中,方塊圖內提到的功能可以不依照圖式內順序來執行。例如:兩連續顯示的方塊實際上可同時執行,或可顛倒順序執行,這取決於所牽涉到的功能。某些方塊也可省略。應了解到,使用執行特殊功能或動作的特殊用途硬體系統或通過特殊用途硬體與電腦指令的組合,可實施方塊圖的每一方塊以及方塊圖內方塊的組合。The block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer hardware or software products according to the many exemplary embodiments of the present invention. Thus, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which may include one or more executable instructions to implement the specified logical function(s). It should be understood that, in some alternative implementations, the functions noted in the block diagrams may be performed out of the order noted in the figures. For example, two blocks shown in succession may in fact be executed concurrently or the order may be reversed, depending upon the functionality involved. Certain blocks can also be omitted. It will be understood that each block of the block diagrams, and combinations of blocks within the block diagrams, can be implemented using special purpose hardware systems that perform special functions or actions, or through combinations of special purpose hardware and computer instructions.

應理解,本發明的具體實施例並不受限於以上已描述並且在附圖中例示的確切構造,並且在不悖離本發明範圍的情況下可進行各種修改和改變。應當理解,本發明不限於該等子項組合,並且在不悖離其範疇的情況下可進行各種修改和改變或子項的其他組合。應理解,本發明不限於一方法或一裝置,而是將涵蓋構造成根據任何方法或利用所描述或子項組合的任何裝置元件和組態之任何方法操作之任何裝置。It is to be understood that the specific embodiments of the present invention are not limited to the precise constructions described above and illustrated in the accompanying drawings, and that various modifications and changes may be made without departing from the scope of the present invention. It should be understood that the present invention is not limited to these combinations of sub-items and that various modifications and changes or other combinations of sub-items may be made without departing from its scope. It should be understood that the present invention is not limited to a method or an apparatus, but will encompass any apparatus configured to operate according to any method or any method utilizing any of the apparatus elements and configurations described or combinations of subitems.

1:多重子射束帶電粒子顯微系統 3:一次帶電粒子子射束,形成複數個一次帶電粒子子射束 5:一次帶電粒子射束焦點 7:物體或晶圓 9:二次電子子射束,形成複數個二次電子子射束 11:二次電子射束路徑 13:一次射束路徑 15:二次帶電粒子像斑或焦點 17:影像斑塊 19:重疊區域 21:影像斑塊中心位置 25:晶圓表面 27:一次帶電粒子子射束的掃描路徑 29:影像子場的中心 31:影像子場 33:第一檢測部位 35:第二檢測部位 37:掃描旋轉之後的影像子場 39:子場31的重疊區域 41:光柵組態 51:影像座標系統 53:多重射束帶電粒子顯微鏡的視線 55:位移向量 59:旋轉向量分量 61:像斑的個別位移 100:物體照射單元 101:物平面 102:物鏡 103.1,103.2:第一和第二場透鏡 105:多重子射束帶電粒子顯微系統的光軸 108:第一束交叉點 110:第一偏轉系統 130:物體照射單元的緩慢補償器 132:物體照射單元的快速動態補償器 138:物體照射單元感測器 200:偵測單元 205:投影系統 206:靜電透鏡 207:影像感測器 208:成像透鏡 209:成像透鏡 212:第二交叉點 214:孔 216:主動元件 218:第三偏轉系統 220:多孔徑校正器 222:第二偏轉系統 230:二次電子射束路徑的緩慢補償器 232:偵測單元的快速補償器 238:二次電子射束路徑感測器 300:帶電粒子多重子射束產生器 301:帶電粒子源 303:準直透鏡 305:一次多重子射束形成單元 306:主動多重孔板配置 307:第一場透鏡 308:第二場透鏡 309:發散電子射束 311:一次電子子射束的焦點 321:中間像平面 330:多重子射束產生器的緩慢補償器 332:多重子射束產生器的快速補償器 390:射束轉向陣列或偏轉器陣列 400:分射束器單元 420:磁聚焦透鏡 430:分射束單元的緩慢補償器 500:樣品載台 503:樣品電壓供應器 520:載台位置感測器 551:局部晶圓座標系統 601:主動多孔徑陣列 607:導電線 681:電極 685:孔或孔陣列 800:控制單元 810:影像資料擷取單元 812:影像拼接單元 814:影像資料記憶體 818:感測器資料分析系統 820:投影系統控制模組 830:一次射束路徑控制模組 840:控制操作處理器 860:偏轉控制模組 880:載台控制模組 901:誤差振幅臨界 903:誤差振幅梯度 905:誤差振幅臨界窗口 907:誤差振幅模型函數 909:誤差振幅梯度1: Multiple sub-beam charged particle microscopy system 3: Primary charged particle sub-beam, forming a plurality of primary charged particle sub-beams 5: Primary charged particle beam focus 7: Object or Wafer 9: Secondary electron sub-beam, forming a plurality of secondary electron sub-beams 11: Secondary electron beam path 13: Primary beam path 15: Secondary charged particles like spots or foci 17: Image Plaque 19: Overlap area 21: Image patch center position 25: Wafer Surface 27: Scanning Path of Primary Charged Particle Beam 29: Center of image subfield 31: Image subfield 33: The first detection part 35: The second detection part 37: Image subfield after scan rotation 39: Overlap area of subfield 31 41: Raster configuration 51: Image Coordinate System 53: Sight of the Multiple Beam Charged Particle Microscope 55: Displacement vector 59: Rotation vector components 61: Individual displacements like spots 100: Object irradiation unit 101: Object plane 102: Objective lens 103.1, 103.2: First and Second Field Lenses 105: Optical axis of multiple sub-beam charged particle microscopy systems 108: First beam intersection 110: First deflection system 130: Slow Compensator for Object Irradiation Unit 132: Fast Dynamic Compensator for Object Irradiation Unit 138: Object illumination unit sensor 200: Detection unit 205: Projection System 206: Electrostatic Lens 207: Image Sensor 208: Imaging Lens 209: Imaging Lenses 212: Second Intersection 214: Hole 216: Active Components 218: Third deflection system 220: Multi-Aperture Corrector 222: Second deflection system 230: Slow Compensator for Secondary Electron Beam Path 232: Fast compensator for detection unit 238: Secondary Electron Beam Path Sensor 300: Charged Particle Multiplex Beam Generator 301: Charged Particle Source 303: collimating lens 305: Primary Multiple Sub-Beamforming Unit 306: Active Multi-Well Plate Configuration 307: First Field Lens 308: Second Field Lens 309: Divergent Electron Beam 311: Focus of primary electron beam 321: Intermediate Image Plane 330: Slow compensator for multiple beamlet generators 332: Fast Compensator for Multiple Subbeam Generators 390: Beam Steering Array or Deflector Array 400: Beam splitter unit 420: Magnetic focusing lens 430: Slow compensator for beam splitter unit 500: Sample stage 503: Sample voltage supply 520: Stage position sensor 551: Local Wafer Coordinate System 601: Active Multi-Aperture Array 607: Conductive thread 681: Electrodes 685: Hole or Hole Array 800: Control Unit 810: Image data capture unit 812: Image stitching unit 814: Image data memory 818: Sensor Data Analysis System 820: Projection system control module 830: Primary beam path control module 840: Control Operations Processor 860: Deflection Control Module 880: Stage Control Module 901: Error amplitude critical 903: Error Amplitude Gradient 905: Error amplitude critical window 907: Error amplitude model function 909: Error Amplitude Gradient

以下將參考附圖揭露更多細節。從而顯示: 圖1為根據一具體實施例的多重射束帶電粒子顯微鏡系統之圖式。 圖2為包括第一和第二影像斑塊的第一檢測部位及第二檢測部位。 圖3a為相對於局部晶圓坐標系統的已位移和已旋轉影像坐標系統之草圖。 圖3b為相對於局部晶圓坐標系統旋轉影的一已旋轉影像斑塊之草圖。 圖4為根據本發明的補償(a)之前和(b)之後的誤差振幅緩慢變化漂移分量之圖式。 圖5為根據本發明的補償(a)之前和(b)之後的誤差振幅快速變化分量或動態變化之圖式。 圖6為根據本發明具體實施例之包括控制單元800的詳細圖式之多重射束帶電粒子顯微鏡系統方塊圖。 圖7為根據本發明具體實施例之 用於晶圓檢測的多重射束帶電粒子顯微鏡系統之操作方法方塊圖。 圖8為主動多重孔板的圖式。More details will be disclosed below with reference to the accompanying drawings. thus showing: FIG. 1 is a diagram of a multiple beam charged particle microscope system according to an embodiment. FIG. 2 shows a first detection site and a second detection site including first and second image patches. Figure 3a is a sketch of the displaced and rotated image coordinate system relative to the local wafer coordinate system. Figure 3b is a sketch of a rotated image patch relative to the local wafer coordinate system rotation. Figure 4 is a graph of the slowly varying drift component of the error amplitude before (a) and after (b) compensation in accordance with the present invention. Figure 5 is a graph of the rapidly changing component or dynamic of error amplitude before (a) and after (b) compensation in accordance with the present invention. 6 is a block diagram of a multiple beam charged particle microscope system including a detailed view of a control unit 800 according to an embodiment of the present invention. 7 is a block diagram of a method of operation of a multiple beam charged particle microscope system for wafer inspection according to an embodiment of the present invention. Figure 8 is a diagram of an active multi-well plate.

5:一次帶電粒子射束焦點 5: Primary charged particle beam focus

17:影像斑塊,例如第一或第二影像斑塊17.1、17.2 17: Image patches, such as first or second image patches 17.1, 17.2

21:影像斑塊中心位置 21: Image patch center position

27:一次帶電粒子子射束的掃描路徑 27: Scanning Path of Primary Charged Particle Beam

29:影像子場的中心 29: Center of image subfield

31:影像子場 31: Image subfield

37:掃描旋轉之後的影像子場 37: Image subfield after scan rotation

41:光柵組態 41: Raster configuration

Claims (27)

一種具有高通量與高解析度的多重射束帶電粒子顯微鏡(1)之操作方法,其包括 在第一時間間隔Ts1中的一第一影像斑塊17.1的第一影像擷取及 在第二時間間隔Ts2中第二影像斑塊17.2的第二影像擷取;及 用於將一晶圓載台(500)從該第一影像斑塊(17.1)的第一中心位置(21.1)移到該第二影像斑塊17.2的第二中心位置(21.2)之第三時間間隔Tr,使得該第一時間間隔Ts1和該第二時間間隔Ts2之至少一者與該第三時間間隔Tr具有一重疊。A method of operating a multi-beam charged particle microscope (1) with high throughput and high resolution, comprising: A first image capture of a first image patch 17.1 in the first time interval Ts1 and the second image capture of the second image patch 17.2 in the second time interval Ts2; and a third time interval for moving a wafer stage (500) from a first center position (21.1) of the first image patch (17.1) to a second center position (21.2) of the second image patch 17.2 Tr, so that at least one of the first time interval Ts1 and the second time interval Ts2 has an overlap with the third time interval Tr. 如請求項1之多重射束帶電粒子顯微鏡(1)之操作方法,其中在該第三時間間隔Tr結束之前,即當該晶圓載台(500)已經完全停止時之前,開始該第二影像斑塊17.2的第二影像擷取。The method of operation of a multiple beam charged particle microscope (1) as claimed in claim 1, wherein the second image spot is started before the third time interval Tr ends, ie before the wafer stage (500) has come to a complete stop Second image capture of block 17.2. 如請求項1或2之多重射束帶電粒子顯微鏡(1)之操作方法,其中該第三時間間隔Tr在該第一時間間隔Ts1結束之前,即當該第一影像斑塊17.1的一影像擷取完成時之前,開始。The operation method of the multi-beam charged particle microscope (1) of claim 1 or 2, wherein the third time interval Tr is before the end of the first time interval Ts1, that is, when an image of the first image patch 17.1 is captured Take the completion time before starting. 如請求項1至3中任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其更包括計算在該第一影像斑塊17.1的影像擷取之第一時間間隔Ts1期間該第三時間間隔Tr之開始時間,使得該第一影像斑塊17.1的第一中心位置與該多重射束帶電粒子顯微鏡(1)的視線(53)之位置偏差或該晶圓載台(500)的移動速度低於一預定臨界。The method of operation of a multi-beam charged particle microscope (1) according to any one of claims 1 to 3, further comprising calculating the third time interval Ts1 during the first time interval Ts1 of image capture of the first image patch 17.1 The start time of the time interval Tr such that the positional deviation between the first center position of the first image patch 17.1 and the line of sight (53) of the multiple beam charged particle microscope (1) or the moving speed of the wafer stage (500) below a predetermined threshold. 如請求項1至4任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其更包括計算在該第三時間間隔Tr期間該第二時間間隔Ts2之開始時間,使得該第二影像斑塊17.2的第二中心位置21.2與該多重射束帶電粒子顯微鏡(1)的視線(53)之位置偏差或該晶圓載台(500)的移動速度低於一預定臨界。The operation method of the multi-beam charged particle microscope (1) according to any one of claims 1 to 4, further comprising calculating the start time of the second time interval Ts2 during the third time interval Tr, so that the second image The positional deviation of the second center position 21.2 of the patch 17.2 from the line of sight (53) of the multiple beam charged particle microscope (1) or the movement speed of the wafer stage (500) is below a predetermined threshold. 如請求項1至5中任一項之多重射束帶電粒子顯微鏡(1)之操作方法,其更包括下列步驟: 預測在該第三時間間隔Tr期間之一系列晶圓載台位置; 從預測的晶圓載台位置計算至少第一和第二控制信號; 將該第一控制信號提供給該多重射束帶電粒子顯微鏡(1)的一次射束路徑(13)中的第一偏轉系統(110),並將該第二控制信號提供給該多重射束帶電粒子顯微鏡(1)的二次射束路徑(11)中之第二偏轉系統(222)。The operation method of the multi-beam charged particle microscope (1) according to any one of claims 1 to 5, further comprising the following steps: predicting a series of wafer stage positions during the third time interval Tr; calculating at least first and second control signals from the predicted wafer stage position; The first control signal is provided to a first deflection yoke (110) in the primary beam path (13) of the multiple beam charged particle microscope (1), and the second control signal is provided to the multiple beam charged A second deflection system (222) in the secondary beam path (11) of the particle microscope (1). 一種具有高通量和高解析度的多重射束帶電粒子系統(1),其包括 一帶電粒子多重子射束產生器(300),用於產生複數個一次帶電粒子子射束(3); 一物體照射單元(100),其包括第一偏轉系統(110),供使用複數個一次帶電粒子子射束(3)掃描配置在物平面(101)中的晶圓表面(25),以用於在複數個一次帶電粒子子射束(3)的光斑位置(5)處,產生從該晶圓表面(25)發射的複數個二次電子子射束(9); 具有一投影系統(205)、一第二偏轉系統(222)和一影像感測器(207)的一偵測單元(200),用於將複數個二次電子子射束(9)成像在影像感測器(207)上,並在使用期間擷取該晶圓表面(25)的第一影像斑塊(17.1)和第二影像斑塊(17.2)之數位影像; 一晶圓載台(500),其包括一載台運動控制器,其中該載台運動控制器包括構造成獨立控制的複數個馬達,該載台構造成用於在擷取該第一影像斑塊(17.1)和該第二影像斑塊(17.2)的數位影像期間,將晶圓表面(25)定位並維持在該物平面(101)內; 複數個偵測器,其包括該載台位置感測器(520)和該影像感測器(207),該等偵測器構造成在使用期間產生複數個感測器資料,該感測器資料包括該晶圓載台(500)的位置資料; 一控制單元(800),其構造成用於在使用期間,執行在第一時間間隔Ts1中的一第一影像斑塊17.1的第一影像擷取、及在第二時間間隔Ts2中第二影像斑塊17.2的第二影像擷取,並且構造成在第三時間間隔Tr內觸發該晶圓載台(500),將該晶圓載台(500)從該第一影像斑塊(17.1)的第一中心位置(21.1)移到該第二影像斑塊17.2的第二中心位置(21.2),使得該第一時間間隔Ts1和該第二時間間隔Ts2之至少一者與該第三時間間隔Tr具有一重疊。A high-throughput and high-resolution multiple beam charged particle system (1) comprising a charged particle multiple beamlet generator (300) for generating a plurality of primary charged particle beamlets (3); An object irradiation unit (100) comprising a first deflection system (110) for scanning a wafer surface (25) arranged in an object plane (101) with a plurality of primary charged particle beamlets (3) for scanning with a plurality of primary charged particle beamlets (3) generating a plurality of secondary electron beamlets (9) emitted from the wafer surface (25) at spot positions (5) of a plurality of primary charged particle beamlets (3); A detection unit (200) having a projection system (205), a second deflection system (222) and an image sensor (207) for imaging a plurality of secondary electron beamlets (9) on on an image sensor (207) and during use to capture digital images of a first image patch (17.1) and a second image patch (17.2) of the wafer surface (25); A wafer stage (500) including a stage motion controller, wherein the stage motion controller includes a plurality of motors configured to be independently controlled, the stage configured for capturing the first image patch (17.1) and during digital imaging of the second image patch (17.2), positioning and maintaining the wafer surface (25) within the object plane (101); a plurality of detectors including the stage position sensor (520) and the image sensor (207), the detectors configured to generate a plurality of sensor data during use, the sensor The data includes the position data of the wafer stage (500); A control unit (800) configured to perform, during use, a first image capture of a first image patch 17.1 in a first time interval Ts1 and a second image in a second time interval Ts2 second image capture of patch 17.2 and configured to trigger the wafer stage (500) during a third time interval Tr to remove the wafer stage (500) from the first image of the patch (17.1) The center position (21.1) is moved to the second center position (21.2) of the second image patch 17.2, so that at least one of the first time interval Ts1 and the second time interval Ts2 and the third time interval Tr have a overlapping. 如請求項7之系統,其中該控制單元更構造成用於確定在該第一時間間隔Ts1期間,該第三時間間隔Tr之開始時間,使得該第一影像斑塊17.1的第一中心位置與該多重射束帶電粒子顯微鏡(1)的視線(53)之位置偏差或該晶圓載台(500)的移動速度低於一預定臨界。The system of claim 7, wherein the control unit is further configured to determine the start time of the third time interval Tr during the first time interval Ts1 such that the first center position of the first image patch 17.1 is the same as the The positional deviation of the sight line (53) of the multiple beam charged particle microscope (1) or the moving speed of the wafer stage (500) is lower than a predetermined threshold. 如請求項7或8之系統,其中該控制單元更構造成用於確定該第三時間間隔Tr期間,該第二時間間隔Ts2之開始時間,使得該第二影像斑塊17.2的第二中心位置21.2與該多重射束帶電粒子顯微鏡(1)的視線(53)之位置偏差或該晶圓載台(500)的移動速度低於一預定臨界。The system of claim 7 or 8, wherein the control unit is further configured to determine the start time of the second time interval Ts2 during the third time interval Tr such that the second center position of the second image patch 17.2 21.2 The positional deviation from the line of sight (53) of the multiple beam charged particle microscope (1) or the moving speed of the wafer stage (500) is below a predetermined threshold. 如請求項7至9中任一項之系統,其中該控制單元更構造成用於預測在該第三時間間隔Tr期間之一系列晶圓載台位置,及用於從預測的晶圓載台位置計算至少第一和第二控制信號,及用於將該第一控制信號提供給該一次射束路徑(13)中的第一偏轉系統(110)並將該第二控制信號提供給該多重射束帶電粒子顯微鏡(1)的二次射束路徑(11)中之第二偏轉系統(222)。The system of any one of claims 7 to 9, wherein the control unit is further configured for predicting a series of wafer stage positions during the third time interval Tr, and for calculating from the predicted wafer stage positions at least first and second control signals, and for providing the first control signal to the first deflection yoke (110) in the primary beam path (13) and the second control signal to the multiple beams A second deflection yoke (222) in the secondary beam path (11) of the charged particle microscope (1). 一種具有高通量和高解析度的多重射束帶電粒子系統(1)之操作方法,其包括: 一第一影像斑塊17.1的第一影像擷取、一第二影像斑塊17.2的第二影像擷取以及將該晶圓載台(500)從該第一影像斑塊(17.1)的第一中心位置(21.1)移到該第二影像斑塊17.2的第二中心位置(21.2),全部在一時間間隔TG內 其中 第一影像斑塊17.1的該第一影像擷取在第一時間間隔Ts1期間內 ; 第二影像斑塊17.2的該第二影像擷取在第二時間間隔Ts2期間內;及 在該第三時間間隔Tr中,將該晶圓載台(500)從該第一影像斑塊(17.1)的第一中心位置(21.1)移到該第二影像斑塊17.2的第二中心位置(21.2);並且其中 該時間間隔TG小於Ts1、Ts2和Tr的總和:TG < Ts1 + Ts2 + Tr。A method of operation of a multiple beam charged particle system (1) with high flux and high resolution, comprising: A first image capture of a first image patch 17.1, a second image capture of a second image patch 17.2 and the wafer stage (500) from the first center of the first image patch (17.1) The position (21.1) is moved to the second center position (21.2) of the second image patch 17.2, all within a time interval TG in The first image capture of the first image patch 17.1 is during the first time interval Ts1; The second image capture of the second image patch 17.2 is during the second time interval Ts2; and During the third time interval Tr, the wafer stage (500) is moved from a first center position (21.1) of the first image patch (17.1) to a second center position (21.1) of the second image patch 17.2 ( 21.2); and where The time interval TG is less than the sum of Ts1, Ts2 and Tr: TG < Ts1 + Ts2 + Tr. 一種用於晶圓檢測的多重射束帶電粒子顯微鏡(1),其包括: 一帶電粒子多重子射束產生器(300),用於產生複數個一次帶電粒子子射束(3); 一物體照射單元(100),其包括第一偏轉系統(110),供使用複數個一次帶電粒子子射束(3)掃描配置在物平面(101)中的晶圓表面(25),以用於在複數個一次帶電粒子子射束(3)的該掃描光斑位置(5)處,產生從該晶圓表面(25)發射的複數個二次電子子射束(9); 具有一投影系統(205)、一第二偏轉系統(222)和一影像感測器(207)的一偵測單元(200),用於將複數個二次電子子射束(9)成像在影像感測器(207)上,並在使用期間擷取該晶圓表面(25)的第一影像斑塊(17.1)和第二影像斑塊(17.2)之數位影像; 具有載台位置感測器(520)的晶圓載台(500),用於在擷取該第一影像斑塊(17.1)的數位影像期間,將該晶圓表面(25)定位和維持在物平面(101)中,並用於將該晶圓表面從該第一影像斑塊(17.1)移到該第二影像斑塊(17.2); 複數個偵測器,其包括該載台位置感測器(520)和該影像感測器(207),該等偵測器構造成在使用期間產生複數個感測器資料,該感測器資料包括該晶圓載台(500)的位置資料; 該物體照射單元(100)中的第一補償器構造成用於移動或旋轉該晶圓表面(25)上的複數個一次帶電粒子子射束(3)之掃描光斑位置(5), 該投影系統(205)中的第二補償器,其構造成用於補償複數個一次帶電粒子子射束(3)的掃描光斑位置(5)之位移或旋轉,並維持該影像偵測器(207)上的複數個二次電子子射束(9)的光斑位置(15)恆定不變; 一控制單元(800)構造成從複數個感測器資料中產生第一組控制信號Cp,以在擷取該第一影像斑塊(17.1)或該第二影像斑塊(17.2)的數位影像期間,同步控制該物體照射單元(100)中的一第一補償器與該投影系統(205)中第二補償器。A multiple beam charged particle microscope (1) for wafer inspection, comprising: a charged particle multiple beamlet generator (300) for generating a plurality of primary charged particle beamlets (3); An object irradiation unit (100) comprising a first deflection system (110) for scanning a wafer surface (25) arranged in an object plane (101) with a plurality of primary charged particle beamlets (3) for scanning with a plurality of primary charged particle beamlets (3) generating a plurality of secondary electron beamlets (9) emitted from the wafer surface (25) at the scanning spot position (5) of the plurality of primary charged particle beamlets (3); A detection unit (200) having a projection system (205), a second deflection system (222) and an image sensor (207) for imaging a plurality of secondary electron beamlets (9) on on an image sensor (207) and during use to capture digital images of a first image patch (17.1) and a second image patch (17.2) of the wafer surface (25); Wafer stage (500) with stage position sensor (520) for positioning and maintaining the wafer surface (25) in the object during acquisition of digital images of the first image patch (17.1) in plane (101) and for moving the wafer surface from the first image patch (17.1) to the second image patch (17.2); a plurality of detectors including the stage position sensor (520) and the image sensor (207), the detectors configured to generate a plurality of sensor data during use, the sensor The data includes the position data of the wafer stage (500); The first compensator in the object irradiation unit (100) is configured to move or rotate the scanning spot positions (5) of the plurality of primary charged particle beamlets (3) on the wafer surface (25), A second compensator in the projection system (205) configured to compensate for displacement or rotation of the scanning spot positions (5) of the plurality of primary charged particle beamlets (3) and maintain the image detector ( The spot positions (15) of the plurality of secondary electron beamlets (9) on 207) are constant; A control unit (800) is configured to generate a first set of control signals Cp from a plurality of sensor data for capturing digital images of the first image patch (17.1) or the second image patch (17.2) During this period, a first compensator in the object irradiation unit (100) and a second compensator in the projection system (205) are controlled synchronously. 如請求項12之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償該晶圓載台(500)的位置變化或方位變化。The multiple beam charged particle microscope (1) of claim 12, wherein the control unit ( 800 ) is configured to provide the first and The second compensator is used to compensate the position change or orientation change of the wafer stage (500). 如請求項12或13中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償該物體照射單元(100)的視線(53)之位置變化。The multiple-beam charged particle microscope (1) of any one of claims 12 or 13, wherein the control unit (800) is configured by calculating the first set of control signals Cp and converting the first set of control signals Cp The first and second compensators are provided to compensate for positional variations of the line of sight (53) of the object illumination unit (100). 如請求項12至14中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償該晶圓載台(500)的位置變化或方位變化與該物體照射單元(100)的視線(53)之位置變化。The multiple beam charged particle microscope (1) of any one of claims 12 to 14, wherein the control unit (800) is configured by calculating the first set of control signals Cp and converting the first set of control signals Cp The first and second compensators are provided for compensating for positional changes or orientation changes of the wafer stage (500) and positional changes of the line of sight (53) of the object irradiation unit (100). 如請求項12至15中任一項之多重射束帶電粒子顯微鏡(1),其中該控制單元(800)構造成通過計算該第一組控制信號Cp 並將該第一組控制信號Cp 提供給該第一和該第二補償器,以補償在擷取該第一影像斑塊(17.1)或該第二影像斑塊(17.2)的數位影像期間該晶圓載台(500)的移動速度。The multiple beam charged particle microscope ( 1 ) of any one of claims 12 to 15, wherein the control unit ( 800 ) is configured by calculating the first set of control signals C p and converting the first set of control signals C p provided to the first and the second compensator to compensate for the speed of movement of the wafer stage (500) during the capture of the digital image of the first image patch (17.1) or the second image patch (17.2) . 一種使用多重射束帶電粒子顯微鏡檢測晶圓之方法,步驟如下: 在一第一時間間隔Ts1期間第一影像斑塊的第一影像擷取步驟; 在一時間間隔Tr期間該晶圓載台從第一影像斑塊的位置到第二影像斑塊的移動; 以及在一第二時間間隔Ts2期間第二影像斑塊的第二影像擷取步驟,藉此, 在該第一時間間隔Ts1期間,從複數個感測器信號計算至少第一誤差振幅, 在該第一時間間隔Ts1期間,預測第一誤差振幅至少經過該時間間隔Tr和該第二時間間隔Ts2的發展; 以及,至少在該時間間隔Tr期間,將控制信號提供給多重射束帶電粒子顯微鏡的控制單元,用於將該第二時間間隔Ts2期間誤差振幅的預測發展保持低於一預定臨界。A method of inspecting wafers using a multiple beam charged particle microscope, the steps are as follows: a first image capturing step of the first image patch during a first time interval Ts1; movement of the wafer stage from the position of the first image patch to the second image patch during a time interval Tr; and a second image capturing step of the second image patch during a second time interval Ts2, whereby, During the first time interval Ts1 at least a first error amplitude is calculated from the plurality of sensor signals, During the first time interval Ts1, the predicted first error amplitude develops at least through the time interval Tr and the second time interval Ts2; And, at least during this time interval Tr, a control signal is provided to the control unit of the multiple beam charged particle microscope for keeping the predicted development of the error amplitude during this second time interval Ts2 below a predetermined threshold. 如請求項17之方法,其中根據預測模型或外推法,產生對第一誤差振幅發展的預測。The method of claim 17, wherein the prediction of the development of the first error amplitude is generated according to a prediction model or extrapolation. 如請求項17或18之方法,其中該第一誤差振幅代表視線位移、晶圓載台位移、晶圓載台旋轉、視線旋轉、放大誤差、聚焦誤差、像散誤差或失真誤差之至少一者。The method of claim 17 or 18, wherein the first error amplitude represents at least one of line-of-sight displacement, wafer stage displacement, wafer stage rotation, line-of-sight rotation, magnification error, focus error, astigmatism error, or distortion error. 如請求項17至19任一項之方法,其中該控制信號提供給該多重射束帶電粒子顯微鏡的控制單元,用於控制包括晶圓載台、第一偏轉單元、第二偏轉單元、多重子射束產生單元的快速補償器或偵測單元的快速補償器之至少一者的部件。19. The method of any one of claims 17 to 19, wherein the control signal is provided to a control unit of the multiple beam charged particle microscope for controlling a wafer stage, a first deflection unit, a second deflection unit, and multiple beamlets A component of at least one of the fast compensator of the generation unit or the fast compensator of the detection unit. 一種具備控制單元的多重射束帶電粒子顯微鏡之操作方法,該方法包括在包括第一影像斑塊和第二後續影像斑塊的一系列影像斑塊之影像擷取期間的一系列操作步驟,其包括: 將形成複數個感測器資料的資料串流擴展為一組誤差振幅; 擷取一組漂移控制信號和一組動態控制信號,以及 提供該組漂移控制信號給緩慢作用的補償器;及 提供該組漂移控制信號給快速作用的補償器。A method of operating a multiple beam charged particle microscope with a control unit, the method comprising a series of operating steps during image acquisition of a series of image patches including a first image patch and a second subsequent image patch, which include: expanding the data stream forming the plurality of sensor data into a set of error amplitudes; capture a set of drift control signals and a set of dynamic control signals, and providing the set of drift control signals to the slow acting compensator; and The set of drift control signals are provided to the fast acting compensator. 如請求項21之方法,其中擷取該組漂移控制信號和該組動態控制信號的步驟為在第一影像斑塊的影像擷取之一第一時間間隔Ts1期間執行;並將該組漂移控制信號提供給緩慢作用補償器的步驟為在通過使用從該第一影像斑塊到該第二影像斑塊的基材載台移動基材之時間間隔Tr期間執行。The method of claim 21, wherein the step of capturing the set of drift control signals and the set of dynamic control signals is performed during a first time interval Ts1 of image capturing of the first image patch; and the set of drift control signals is controlled The step of providing the signal to the slow acting compensator is performed during the time interval Tr during which the substrate is moved by using the substrate stage from the first image patch to the second image patch. 如請求項21或22之方法,其中將該組動態控制信號提供給快速動作補償器的步驟在該第一時間間隔Ts1內執行。A method as claimed in claim 21 or 22, wherein the step of providing the set of dynamic control signals to the fast motion compensator is performed within the first time interval Ts1. 如請求項22或23之方法,其中將該組動態控制信號提供給快速動作補償器的步驟進一步在該第二影像斑塊的影像掃描時間間隔Ts2內執行。The method of claim 22 or 23, wherein the step of providing the set of dynamic control signals to the fast motion compensator is further performed within the image scanning time interval Ts2 of the second image patch. 如請求項21至24中任一項之方法,其更包括預測至少一誤差振幅的時間發展之步驟。The method of any one of claims 21 to 24, further comprising the step of predicting the temporal development of at least one error amplitude. 如請求項25之方法,其包括預測至少一誤差振幅的緩慢變化漂移和預測至少一誤差振幅的快速變化動態改變。The method of claim 25, comprising predicting at least one slowly varying drift in error amplitude and predicting at least one rapidly varying dynamic change in error amplitude. 一種非暫態電腦可讀取媒體,其包括一指令集,該指令集可由一裝置的一或多個處理器執行,以使該裝置執行一方法,其中該裝置包括一帶電粒子源,以產生複數個一次帶電粒子子射束,且該方法包括: 確定載台的橫向位移,其中該載台可在X-Y軸之至少一者內移動; 確定一物體照射單元的視線之橫向位移;及 指示控制器施加第一信號,以偏轉入射在樣品上的複數個一次帶電粒子子射束,以至少部分補償橫向位移。A non-transitory computer-readable medium including a set of instructions executable by one or more processors of a device to cause the device to perform a method, wherein the device includes a source of charged particles to generate a plurality of primary charged particle electron beams, and the method includes: determining the lateral displacement of the stage, wherein the stage is movable in at least one of the X-Y axes; determining the lateral displacement of the line of sight of an object illuminating unit; and The controller is instructed to apply a first signal to deflect the plurality of primary charged particle beamlets incident on the sample to at least partially compensate for the lateral displacement.
TW110115043A 2020-05-28 2021-04-27 Multi-beam charged particle microscope or system and method of operating the same TWI787794B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020206739 2020-05-28
DE102020206739.2 2020-05-28

Publications (2)

Publication Number Publication Date
TW202211287A true TW202211287A (en) 2022-03-16
TWI787794B TWI787794B (en) 2022-12-21

Family

ID=75769581

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110115043A TWI787794B (en) 2020-05-28 2021-04-27 Multi-beam charged particle microscope or system and method of operating the same
TW112101037A TW202318464A (en) 2020-05-28 2021-04-27 Multi-beam charged particle microscope or system and method of operating the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW112101037A TW202318464A (en) 2020-05-28 2021-04-27 Multi-beam charged particle microscope or system and method of operating the same

Country Status (7)

Country Link
US (1) US20230043036A1 (en)
EP (1) EP4158674A1 (en)
JP (1) JP2023527047A (en)
KR (1) KR20230008882A (en)
CN (1) CN115699245A (en)
TW (2) TWI787794B (en)
WO (1) WO2021239380A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021200799B3 (en) 2021-01-29 2022-03-31 Carl Zeiss Multisem Gmbh Method with improved focus adjustment considering an image plane tilt in a multiple particle beam microscope
US20220349916A1 (en) * 2021-05-03 2022-11-03 Optipro Systems, LLC Nanoscale imaging systems and methods thereof
DE102021205394B4 (en) 2021-05-27 2022-12-08 Carl Zeiss Multisem Gmbh Method for operating a multi-beam microscope with settings adapted to an inspection site
WO2023147941A1 (en) 2022-02-03 2023-08-10 Carl Zeiss Multisem Gmbh Method for determining a distortion-corrected position of a feature in an image imaged with a multi-beam charged particle microscope, corresponding computer program product and multi-beam charged particle microscope
DE102022104535B4 (en) 2022-02-25 2024-03-21 Carl Zeiss Multisem Gmbh Multi-beam particle microscope for reducing particle beam-induced traces on a sample
DE102022114098A1 (en) 2022-06-03 2023-12-14 Carl Zeiss Multisem Gmbh Multi-beam particle microscope with improved adjustment and method for adjusting the multi-beam particle microscope and computer program product
CN116643393B (en) * 2023-07-27 2023-10-27 南京木木西里科技有限公司 Microscopic image deflection-based processing method and system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9536A (en) 1853-01-11 Improvement in manufacturing copying-paper
US702A (en) 1838-04-21 Improved process of dyeing wool
JPH10134757A (en) * 1996-10-31 1998-05-22 Nikon Corp Multi-beam inspection device
US6252412B1 (en) * 1999-01-08 2001-06-26 Schlumberger Technologies, Inc. Method of detecting defects in patterned substrates
EP2579268A1 (en) 2003-09-05 2013-04-10 Carl Zeiss SMT GmbH Particle-optical systems and arrangements and particle-optical components for such systems and arrangements
WO2012112894A2 (en) 2011-02-18 2012-08-23 Applied Materials Israel, Ltd. Focusing a charged particle imaging system
DE102013016113B4 (en) 2013-09-26 2018-11-29 Carl Zeiss Microscopy Gmbh Method for detecting electrons, electron detector and inspection system
DE102014008105B4 (en) 2014-05-30 2021-11-11 Carl Zeiss Multisem Gmbh Multi-beam particle microscope
DE102014008383B9 (en) 2014-06-06 2018-03-22 Carl Zeiss Microscopy Gmbh Particle beam system and method of operating a particle optic
DE102015202172B4 (en) 2015-02-06 2017-01-19 Carl Zeiss Microscopy Gmbh Particle beam system and method for particle-optical examination of an object
JP2017198588A (en) * 2016-04-28 2017-11-02 株式会社ニューフレアテクノロジー Pattern checkup device
WO2018077873A1 (en) * 2016-10-27 2018-05-03 Asml Netherlands B.V. System and method for determining and calibrating a position of a stage
US10347460B2 (en) * 2017-03-01 2019-07-09 Dongfang Jingyuan Electron Limited Patterned substrate imaging using multiple electron beams
KR102520386B1 (en) 2017-03-20 2023-04-11 칼 짜이스 마이크로스카피 게엠베하 Charged Particle Beam Systems and Methods
US10811215B2 (en) 2018-05-21 2020-10-20 Carl Zeiss Multisem Gmbh Charged particle beam system
WO2019238553A1 (en) * 2018-06-12 2019-12-19 Asml Netherlands B.V. System and method for scanning a sample using multi-beam inspection apparatus
WO2020030483A1 (en) * 2018-08-09 2020-02-13 Asml Netherlands B.V. An apparatus for multiple charged-particle beams
KR20230156157A (en) 2018-12-28 2023-11-13 에이에스엠엘 네델란즈 비.브이. Systems and methods for focusing charged-particle beams

Also Published As

Publication number Publication date
TWI787794B (en) 2022-12-21
KR20230008882A (en) 2023-01-16
CN115699245A (en) 2023-02-03
TW202318464A (en) 2023-05-01
JP2023527047A (en) 2023-06-26
EP4158674A1 (en) 2023-04-05
US20230043036A1 (en) 2023-02-09
WO2021239380A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
TWI787794B (en) Multi-beam charged particle microscope or system and method of operating the same
TWI650550B (en) Multi-beam device for high throughput ebi
JP6955325B2 (en) Systems and methods for imaging secondary charged particle beams using adaptive secondary charged particle optics
TW202349430A (en) Charged particle beam system and method
TWI765201B (en) Charged-particle beam system and non-transitory computer readable medium
NL2029294B1 (en) Multiple particle beam microscope and associated method with fast autofocus around an adjustable working distance
WO2015050201A1 (en) Charged particle beam inclination correction method and charged particle beam device
KR20200063982A (en) Electron beam image acquiring apparatus and electron beam image acquiring method
JP2004342341A (en) Mirror electron microscope, and pattern defect inspection device using it
CN109298001B (en) Electron beam imaging module, electron beam detection equipment and image acquisition method thereof
TW202137274A (en) Multi-beam digital scan and image acquisition
JPH1073424A (en) Defect inspection device
US11087950B2 (en) Charge control device for a system with multiple electron beams
TWI818698B (en) Multi-beam charged particle microscope, method of determining a plurality of wave-front aberration amplitudes of a multi-beam charged particle microscope, method of compensating a plurality of wave-front aberrations of a multi-beam charged particle microscope at a setting point, method of calibrating a charged particle optical element of a multi-beam charged particle microscope, and method of determining a wavefront aberration of each beamlet of a plurality of primary charged particle beamlet of a multi-beam charged particle microscope
TWI737146B (en) Device and method for operating a charged particle device with multiple beamlets
KR20230048403A (en) Multi-particle beam system having a mirror operating mode, method for operating a multi-particle beam system having a mirror operating mode, and related computer program products
JP2002245960A (en) Charged particle beam device and device manufacturing method using the same
KR101824587B1 (en) Inspection equipment for vertical alining between electron beams from a multi-electron column and a surface of a specimen
US20240079207A1 (en) Multi-beam charged particle system and method of controlling the working distance in a multi-beam charged particle system
JP5031345B2 (en) Multi-charged particle beam apparatus and device manufacturing method
TW202301399A (en) Distortion optimized multi-beam scanning system
TW202312212A (en) Multi-beam microscope and method for operating a multi-beam microscope using settings adjusted to an inspection site
TW202343518A (en) Multiple charged particle beam system with a mirror mode of operation, method for operating a multi-beam charged particle microscope system with a mirror mode of operation and associated computer program product
JP2021182498A (en) Multi-beam image generation device and multi-beam image generation method
KR20240022597A (en) Distortion-optimized multi-beam scanning system