TW202200375A - 半導體裝置之製造方法及樹脂薄片 - Google Patents

半導體裝置之製造方法及樹脂薄片 Download PDF

Info

Publication number
TW202200375A
TW202200375A TW110106871A TW110106871A TW202200375A TW 202200375 A TW202200375 A TW 202200375A TW 110106871 A TW110106871 A TW 110106871A TW 110106871 A TW110106871 A TW 110106871A TW 202200375 A TW202200375 A TW 202200375A
Authority
TW
Taiwan
Prior art keywords
resin composition
composition layer
support film
resin
mold
Prior art date
Application number
TW110106871A
Other languages
English (en)
Inventor
阪內啓之
Original Assignee
日商味之素股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商味之素股份有限公司 filed Critical 日商味之素股份有限公司
Publication of TW202200375A publication Critical patent/TW202200375A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

一種半導體裝置之製造方法,其係使用具備第一模與第二模之壓縮成型裝置製造半導體裝置之製造方法,且包含:準備基板之步驟;準備具備樹脂組成物層與接觸於樹脂組成物層之一面之第一支撐膜的樹脂薄片之步驟;剝下第一支撐膜,於樹脂組成物層之兩面獲得非被覆狀態之步驟;於第一模與第二模之間,將樹脂組成物層與基板加壓之步驟。

Description

半導體裝置之製造方法及樹脂薄片
本發明有關半導體裝置之製造方法及該製造方法所用之樹脂薄片。
近幾年來,如智慧型手機、平板PC之小型高機能攜帶終端之需要增大。如此之小型高機能攜帶終端所用之半導體裝置被要求更高機能化及小型化。為了對應於此等要求,而以例如內建2個以上半導體晶片之方式密封之多晶片封裝以及將複數個多晶片封裝彼此相互接合而構成之封裝對封裝(package on package)(PoP)備受矚目。作為如此之封裝對封裝之構成,舉例為例如於特定之封裝上進而搭載另一封裝並相互電性連接之形態。
製造如上述之封裝時,作為於安裝基板上搭載半導體晶片之方法,提案有數種方法。例如提案有於半導體晶片之電極朝向與安裝基板側之相反側,以所謂面向上狀態搭載於安裝基板,以接合線連接半導體晶片之電極與安裝基板之電極之打線接合安裝。且例如半導體晶片之電極朝向安裝基板側,以所謂面向下狀態搭載,將半導體晶片之電極與安裝基板之電極直接連接之富晶安裝為已知。覆晶安裝時,通常於半導體晶片側之電極形成稱為凸塊之突起電極,使凸塊與安裝基板側之電極接合。
通常,於搭載有半導體晶片之安裝基板,藉由形成密封層,獲得封裝。密封層係藉由例如使用環氧模製化合物等之樹脂組成物作為密封材之轉注法、將以密封材形成之密封膜壓著之真空熱壓製法等之方法,形成為包含前述樹脂組成物之硬化體的硬化體層。利用使用密封膜之真空壓製法之密封步驟揭示於專利文獻1。且專利文獻2中記載之技術亦為已知。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2014-29958號公報 [專利文獻2] 日本專利第6272690號公報
[發明欲解決之課題]
硬化體層有時藉由例如壓縮成型法( Compression Mold Method)形成。壓縮成型法一般矽使用成型用之模形成硬化體層。然而,使用顆粒及粉末等之固形樹脂組成物時,有產生粉塵,附著於裝置及製造環境之可能性。又,於密封特別大面積之安裝基板時,樹脂組成物對模之供給需要時間,有良率降低之傾向。再者,使用固形之樹脂組成物時,有硬化體層之膜厚面內方向之偏差較差的可能性。所謂面內方向於未特別指明之情況,表示與厚度方向垂直之方向。
又,壓縮成型法中使用液狀樹脂組成物時,容易於形成之硬化體層產生流痕。再者,液狀樹脂組成物通常保存安定性差。且,隨安裝基板之形狀而定,會有樹脂組成物之填充性差的情況。例如若對四角形之安裝基板使用液狀樹脂組成物進行壓縮成型法,則有填充性差的情況。
相對於此,使用膜狀樹脂組成物之壓縮成型法,可使硬化體層之膜厚於面內方向均一,且難以產生流痕。因此,本發明人針對使用膜狀樹脂組成物之壓縮成型法進行檢討。具體而言,嘗試使用具備支撐膜與設於該支撐膜單面全面之樹脂組成物層之樹脂薄片,藉由壓縮成型法於安裝基板上形成硬化體層。
然而,使用前述樹脂薄片時,判知會產生如下課題。 例如使用比模之腔室小的樹脂薄片時,支撐膜會咬入壓縮成型後所得之硬化體層,而於硬化體層之表面形成凹凸。由於包含形成有此等凹凸之硬化體層之製品不適於出貨,故前述凹凸成為良率降低之原因。且支撐膜咬入硬化體層時,支撐膜之剝離變困難。
例如使用比模之腔室大的樹脂薄片時,可抑制支撐膜對硬化體層之咬入。然而,會有樹脂組成物層之一部分流出至模外部而附著於模,並污染裝置之情況。
例如即使使用與模之腔室相同大小的樹脂薄片時,仍會有因樹脂組成物流出而產生裝置污染之情況。又,即使不產生模污染的情況,由於通常亦會產生支撐膜對硬化體層之咬入,故會於硬化體層表面形成凹凸。
前述課題於使用安裝基板以外之基板之製造方法中亦同樣會產生。
本發明係鑑於前述課題而發明者,目的在於提供一種使用壓縮成型法製造具備以樹脂組成物之硬化體形成之硬化體層之半導體裝置之製造方法,係可抑制硬化體層中之凹凸形成,且可抑制因樹脂組成物流出而污染模之製造方法;並且提供該製造方法所用之樹脂薄片。 [用以解決課題之手段]
本發明人等鑒於前述課題而積極檢討。其結果,本發明人等發現自樹脂薄片剝下支撐膜,並單獨將樹脂組成物層供給至壓縮成型時,可解決上述課題。且本發明人等發現於樹脂薄片滿足特定要件時,可改善支撐模剝下容易性且可抑制支撐膜之意外剝下。本發明人係基於前述見解而完成本發明。 亦即本發明包含下述者。
[1] 一種半導體裝置之製造方法,其係使用具備可支撐基板之第一模及與前述第一模對向設置之第二模,且於前述第一模及前述第二模之至少一者形成腔室之壓縮成型裝置製造半導體裝置的半導體裝置之製造方法,前述製造方法包含: 準備前述基板之步驟(I); 準備具備以熱硬化性之樹脂組成物形成之樹脂組成物層與接觸於前述樹脂組成物層之一面之第一支撐膜的樹脂薄片之步驟(II); 剝下前述第一支撐膜,於前述樹脂組成物層之兩面,同時或非同時獲得非被覆狀態之步驟(III);及 將前述樹脂組成物層侷限於前述腔室內,於前述第一模與前述第二模之間,將前述樹脂組成物層與前述基板加壓之步驟(IV)。 [2] 如[1]之半導體裝置之製造方法,其中步驟(II)中準備之前述樹脂薄片具備前述樹脂組成物層、接觸於前述樹脂組成物層之一面之前述第一支撐膜及接觸於前述樹脂組成物層之另一面之第二支撐膜, 前述步驟(III)包含剝下前述第一支撐膜及第二支撐膜。 [3] 如[2]之半導體裝置之製造方法,其中前述第一支撐膜與前述樹脂組成物層之密著力FA [gf/cm]滿足下述式(1), 前述第二支撐膜與前述樹脂組成物層之密著力FB [gf/cm]滿足下述式(2),
Figure 02_image001
。 [4] 如[2]或[3]之半導體裝置之製造方法,其中前述第一支撐膜與前述樹脂組成物層之密著力FA [gf/cm]、前述第二支撐膜與前述樹脂組成物層之密著力FB [gf/cm]及100℃下之前述樹脂組成物之熔融黏度η[泊]滿足式(3),
Figure 02_image003
。 [5] 如[2]至[4]中任一項之半導體裝置之製造方法,其中前述第二支撐膜厚度為10μm~200μm。 [6] 如[2]至[5]中任一項之半導體裝置之製造方法,其中前述第二支撐膜之與前述樹脂組成物層接觸之面係經矽氧系脫模劑予以表面處理。 [7] 如[1]至[6]中任一項之半導體裝置之製造方法,其中前述樹脂組成物層厚度為40μm以上。 [8] 如[1]至[7]中任一項之半導體裝置之製造方法,其中前述第一支撐膜厚度為10μm~200μm。 [9] 如[1]至[8]中任一項之半導體裝置之製造方法,其中前述第一支撐膜之與前述樹脂組成物層接觸之面係經矽氧系脫模劑予以表面處理。 [10] 如[1]至[9]中任一項之半導體裝置之製造方法,其中前述樹脂組成物層具有於步驟(IV)中前述樹脂組成物層被加壓時充滿於前述腔室內之容量。 [11] 一種樹脂薄片,其具備以熱硬化性之樹脂組成物形成之樹脂組成物層、接觸於前述樹脂組成物層之一面之第一支撐膜及接觸於前述樹脂組成物層之另一面之第二支撐膜, 前述樹脂組成物層之厚度為40μm以上, 前述第一支撐膜與前述樹脂組成物層之密著力 FA [gf/cm]、前述第二支撐膜與前述樹脂組成物層之密著力FB [gf/cm]及100℃下之前述樹脂組成物之熔融黏度η[泊]滿足下述式(1)、式(2)及式(3),
Figure 02_image005
。 [發明效果]
依據本發明,可提供一種可抑制硬化體層中之凹凸形成,且可抑制因樹脂組成物流出而污染模之使用壓縮成型法之半導體裝置之製造方法;並且提供該製造方法所用之樹脂薄片。
以下顯示實施形態及例示物針對本發明詳細說明。但,本發明並非限定於以下舉例之實施形態及例示物,在不脫離本發明之申請專利範圍及其均等範圍之範圍內可任意變更而實施。
[1.第一實施形態] 圖1係示意性顯示本發明第一實施形態之半導體裝置之製造方法所用之壓縮成型裝置100之剖面圖。 如圖1所示,本發明第一實施形態之製造方法所用之壓縮成型裝置100具備第一模110與第二模120。該等第一模110與第二模120係設為藉由相互接近而成為閉模,且藉由相互遠離而成為開模。本實施形態中顯示將第一模110及第二模之厚度方向成為與垂直方向平行之方式將第一模110設於下方,將第二模120設為上方之例。
第一模110係設為可支撐基板200。第一模110亦可具備可固定基板200之固定機構(未圖示)。作為固定機構舉例為例如可吸附固定基板200之吸附部、可扣合固定基板200之扣合部等。但,由於亦可使用黏著膠帶等之固定構件(未圖示)將基板200固定於第一模110,故第一模110亦可不具有固定構件。
第二模120係與第一模110對向設置。而且於第一模110及第二模120之至少一者型成作為成型用凹部之腔室130。通常如圖1所示,於第二模120之與第一模110對向之側形成腔室130。該腔室130係形成為於成為閉模之情況,可形成壓縮成型用之空間。本實施形態所示之例中,腔室130係於被第一模110支撐之基板200之表面200U與第二模120之間,形成與腔室130對應之空間,以可於該空間內將樹脂組成物層(圖1中未圖示)壓縮成型之方式形成。
前述第一模110及第二模120係設為可將腔室130內加壓。本實施形態中,為了實現前述加壓,而顯示第二模120具備底部塊體121與包圍該底部塊體121周圍之方式環狀設置之側部塊體122之例加以說明。底部塊體121形成腔室130之底部。且,側部塊體122形成腔室130之側壁部。而且,底部塊體121設為可對於側部塊體122相對移動。因此,該例中,第二模120以藉由將底部塊體121向圖中下方按壓,而可對腔室131內加壓之方式設置。但將腔室130內加壓之方法不限定於此處所示之例。
再者,為了抑制基板200及樹脂組成物層之貼附,第一模110及第二模120亦可具備未圖示之釋離膜。又,第一模110及第二模120為了對腔室130內加熱,亦可具備未圖示之加熱器等之溫度調整裝置。再者,於第一模110及第二模120亦可以與腔室130連通之方式形成供氣體流通之未圖示之排氣路徑,亦可對該排氣路徑連接減壓裝置(未圖示)。
本發明之第一實施形態之製造方法係使用前述壓縮成型裝置100,製造半導體裝置。該製造方法包含: 準備基板100之步驟(I); 準備具備以熱硬化性之樹脂組成物形成之樹脂組成物層與接觸於該樹脂組成物層之一面之第一支撐膜的樹脂薄片之步驟(II); 剝下前述第一支撐膜,於樹脂組成物層之兩面,同時或非同時獲得非被覆狀態之步驟(III);及 將樹脂組成物層侷限於前述腔室130內,於第一模110與第二模120之間,將樹脂組成物層與基板200加壓之步驟(IV)。
[1.1.準備基板之步驟(I)] 本發明第一實施形態之製造方法包含準備基板之步驟(I)。作為基板舉例為例如矽晶圓;玻璃晶圓;玻璃基板;銅、鈦、不鏽鋼、冷壓延鋼板(SPCC)等之金屬基板;FR-4基板等之玻璃環氧基板;聚酯基板;聚醯亞胺基板;BT樹脂基板;熱硬化型聚苯醚基板;等。且基板亦可具備可剝離地暫時固定半導體晶片之暫時固定膜。再者,暫時固定膜本身亦可作為基板使用。作為暫時固定膜之市售品,舉例為例如日本電工公司製「REVALPHA」。且基板亦可於表面具有銅箔等之金屬層作為該基板之一部分。例如,亦可使用於兩個表面具有可剝離之第一金屬層及第二金屬層之基板。使用此等基板時,通常於第二金屬層之與第一金屬層相反側之面形成作為可以電路配線發揮機能的配線層之導體層。作為具有此等金屬層之基板舉例為例如三井金屬礦業公司製之附載體銅箔之極薄銅箔「Micro Thin」。
又,基板亦可具備形成於其一面或兩面之導體層。作為導體層所含之導體材料舉例為例如包含選自由金、鉑、鈀、銀、銅、鋁、鈷、鉻、鋅、鎳、鈦、鎢、鐵、錫及銦所成之群之1種以上之金屬的材料。作為導體材料可使用單金屬,亦可使用合金。作為合金舉例為例如自上述之群選擇之2種以上金屬的合金(例如鎳・鉻合金、銅・鎳合金及銅・鈦合金)。其中,基於導體形成之廣泛利用性、成本、圖型化容易性之觀點,較佳為作為單金屬之鉻、鎳、鈦、鋁、鋅、金、鈀、銀或銅;及作為合金之鎳・鉻合金、銅・鎳合金、銅・鈦合金之合金。其中,更佳為鉻、鎳、鈦、鋁、鋅、金、鈀、銀或銅之單金屬;及鎳・鉻合金,特佳為銅的單金屬。又,導體層為了作為例如配線層發揮機能,亦可經圖型加工。
再者,基板亦可具備安裝於一側或兩側之電子零件。作為電子零件舉例為例如電容器、電感器、電阻等之被動零件;半導體晶片等之主動零件。
基板的面內方向之尺寸可小於、大於、等於腔室之面內方向的尺寸。因此,基板寬度通常可小於、大於、等於腔室寬度。且基板面積可小於、大於、等於腔室之開口面積。所謂基板面積於未特別指明之情況,表示自厚度方向觀察基板時之面積。且,所謂腔室之開口面積於未特別指明之情況,表示自厚度方向觀察腔室時之開口部(以圖1之符號130D表示之部分)的面積。例如比腔室小的基板可被侷限於腔室內,該基板本身可埋入硬化體層。且例如比腔室大的基板由於該基板可蓋住腔室,故可於該基板上形成硬化體層。
圖2係示意性顯示於本發明第一實施形態之半導體裝置之製造方法所用之壓縮成型裝置100設置基板200之狀態的剖面圖。如圖2所示,將準備之基板200設置於第一模110。本實施形態中,如圖2所示,係例示使用可蓋住腔室130之程度的大小之基板200之例加以說明。
[1.2.準備樹脂薄片之步驟(II)] 圖3係示意性顯示本發明第一實施形態之半導體裝置之製造方法所準備之樹脂薄片300於與厚度方向平行之平面切開之剖面的剖面圖。 本發明第一實施形態之製造方法包含圖3所示之準備樹脂薄片300之步驟(II)。樹脂薄片300具備以熱硬化性之樹脂組成物形成之樹脂組成物層310與作為樹脂組成物層310之一面的第一面310U接觸之第一支撐膜320。樹脂組成物310於第一面310U之相反側,具有作為另一面之第二面310D。該第二面310D亦可成為未被其他構件被覆之非被覆狀態。但,基於保護樹脂組成物層310免於傷痕及污物附著之觀點,較佳使第二支撐膜330接觸於樹脂組成物層310之第二面310D。因此,樹脂薄片300較佳具備與樹脂組成物層310之第二面310D接觸之第二支持膜330。
樹脂組成物層310以可將該樹脂組成物層310全體侷限於腔室130內之方式形成較小。藉由將樹脂組成物層310侷限於腔室130內,於成為閉模時,可抑制樹脂組成物向腔室130外部之流出。因此,可抑制因樹脂組成物污染第一模110及第二模120。
又,以可自樹脂組成物層310剝下之方式設置第一支撐膜320及第二支撐膜330。因此,樹脂組成物層310可係剝下第一支撐膜320及第二支撐膜330而以樹脂組成物層310單獨供於壓縮成型。因此,於壓縮成型時,由於第一支撐膜320及第二支撐膜330未被侷限於腔室130內,故不會產生該等支撐膜320及330之咬入。因此,可抑制硬化體層(圖3中未圖示)之凹凸形成。
以下針對樹脂組成物層310之尺寸加以說明。於未特別指明之情況,以下說明之樹脂組成物層310之尺寸表示由步驟(IV)之加壓之前的樹脂組成物層310之尺寸。樹脂組成物層310之面內方向之尺寸,基於將該樹脂組成物層310之全體侷限於腔室130內之觀點,係形成為小於腔室130之面內方向之尺寸。因此,樹脂組成物層310之寬W310 通常小於腔室130之寬W130 (參考圖1)。
樹脂組成物層310之寬W310 相對於腔室130之寬W130 的比(W310 /W130 )較佳為0.99以下,更佳為0.98以下,特佳為0.97以下。比(W310 /W130 )落於前述範圍時,可有效抑制樹脂組成物向腔室130外部之流出。比(W310 /W130 )的下限並未特別限定,但基於樹脂組成物可有效填充至腔室130的角落之觀點,較佳為0.80以上,更佳為0.85以上,特佳為0.90以上。
且樹脂組成物層310之寬W310 與腔室130之寬W130 的差(W130 -W310 )較佳為1mm以上,更佳為1.5mm以上,特佳為2mm以上。差(W130 -W310 )落於前述範圍時,可有效抑制樹脂組成物向腔室130外部之流出。差(W130 -W310 )的上限並未特別限定,但基於樹脂組成物可有效填充至腔室130的角落之觀點,較佳為10mm以下,更佳為8mm以下,又更佳為6mm以下。
再者,基於將該樹脂組成物層310全體侷限於腔室130內之觀點,樹脂組成物層310之面積係形成為小於腔室130之開口面積。所謂樹脂組成物層310之面積,於未特別指明之情況,表示自厚度方向觀察樹脂組成物層310時之面積。相對於腔室130之開口面積100%的樹脂組成物層310之面積較佳為99%以下,更佳為98%以下,特佳為96%以下。樹脂組成物層310之面積落於前述範圍時,可有效抑制樹脂組成物向腔室130外部之流出。樹脂組成物層310之面積的下限並未特別限定,但基於樹脂組成物可有效填充至腔室130的角落之觀點,較佳為50%以上,更佳為70%以上,特佳為80%以上。
樹脂組成物層310之面內方向之尺寸可小於、大於、等於基板200之面內方向之尺寸。因此,樹脂組成物層310之寬W310 通常可小於、大於、等於基板200之寬W200 (參考圖2)。壓縮成型法中,由於多數情況樹脂組成物層310因加壓而擴展,而於基板200之表面200U形成硬化體層,故被加壓前之樹脂組成物層310之寬W310 通常小於基板200之寬W200 。該情況,基於形成大面積之硬化體層使良率提高之觀點,樹脂組成物層310之寬W310 相對於基板200之寬W200 的比(W310 /W200 )較佳為0.50以上,更佳為0.70以上,特佳為0.80以上。且基於同樣觀點,基板200之寬W200 與樹脂組成物層310之寬W310 的差(W200 -W310 ),較佳為100mm以下,更佳為80mm以下,特佳為50mm以下。
再者,樹脂組成物層310之面積可小於、大於、等於基板200之面積。壓縮成型法中,由於多數情況樹脂組成物層310因加壓而擴展,而於基板200之表面200U形成硬化體層,故被加壓前之樹脂組成物層310之面積通常小於基板200之面積。該情況,基於形成大面積之硬化體層使良率提高之觀點,相對於基板200之面積100%的樹脂組成物層310之面積較佳為50%以上,更佳為60%以上,特佳為70%以上。
樹脂組成物層310於步驟(IV)中樹脂組成物層310被加壓時,較佳具有充滿腔室130內之容量。具有此等容量之樹脂組成物層310於步驟(IV)中可無間隙地充滿腔室130內。例如如本實施形態於被第一模110支撐之基板200與第二模120之間腔室130形成壓縮成型用之空間時,於步驟(IV)中被加壓之樹脂組成物層310可無間隙地充滿前述腔室130形成之空間。因此可抑制樹脂組成物層310硬化而形成之硬化體層中之未填充部及孔隙發生。又,可提高使樹脂組成物層310硬化所得之硬化體層之面內方向之膜厚均一性。
樹脂組成物層310之厚度係對應於所製造之半導體裝置適當設定。例如樹脂組成物層310較薄時,由於可容易地形成薄的硬化體層,故可容易實現半導體裝置之薄型化。且例如樹脂組成物層310較厚時,由於可容易地形成厚的硬化體層,故可容易以硬化體層密封基板200所具備之厚零件。但基於藉由增厚樹脂組成物層310而提高機械強度,提高第一支撐膜320及第二支撐膜330之剝下容易性之觀點,樹脂組成物層310之厚度較佳為40μm以上,更佳為60μm以上,特佳為80μm以上。上限並未特別限定,但就半導體裝置之薄型化之觀點,較佳為500μm以下,更佳為400μm以下,特佳為200μm以下。
又,樹脂組成物層310之厚度均一較佳。樹脂組成物層310具有均一厚度時,由於可對腔室130內之全體施加均衡良好的壓力,故樹脂組成物可充分填充至腔室130之端部。因此,可抑制未填充部及孔隙之發生。厚度均一可以厚度之最大值與最小值之差而表示。若顯示具體範圍,則樹脂組成物層310之厚度最大值與最小值之差較佳為10μm以下,更佳為7μm以下,特佳為5μm以下。
樹脂組成物層310所含之樹脂組成物較佳於100℃下具有特定範圍之熔融黏度η。具體而言,前述熔融黏度η較佳為800泊以上,更佳為1000泊以上,特佳為1500泊以上,較佳為120000泊以下,更佳為100000泊以下,特佳為90000泊以下。以具有前述下限值以上之熔融黏度η之樹脂組成物所形成之樹脂組成物層具有高剛性。因此第一支撐膜230及第二支撐膜330之剝下容易性可為良好。又,具有前述上限值以下之熔融黏度η之樹脂組成物,由於壓縮成型時具有高流動性,故樹脂組成物可充分填充至腔室130之端部。因此,可抑制未填充部及孔隙發生。
樹脂組成物之熔融黏度可藉由動態黏彈性法測定。具體之測定條件係採用實施例中說明之條件。
樹脂組成物之熔融黏度例如可藉由調整樹脂組成物之組成的方法而調整。若舉具體例,則藉由調整樹脂組成物所含之溶劑量,而調整熔融黏度。
第一支撐膜320係可剝離地接觸於樹脂組成物層310之第一面310U而設置之膜。作為第一支撐膜320舉例為例如塑膠膜、金屬箔、脫模紙。其中較佳為塑膠膜及金屬箔。
作為塑膠膜所含之塑膠材料舉例為例如聚對苯二甲酸乙二酯(以下有時簡稱為「PET」)、聚萘二甲酸乙二酯(以下有時簡稱為「PEN」)等之聚酯,聚碳酸酯(以下有時簡稱為「PC」)、聚甲基丙烯酸甲酯(PMMA)等之丙烯酸聚合物、環狀聚烯烴、三乙醯基纖維素(TAC)、聚醚硫醚(PES)、聚醚酮、聚醯亞胺、聚丙烯、聚苯乙烯等。其中較佳為聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯,特佳為便宜的聚對苯二甲酸乙二酯。
作為金屬箔,舉例為例如銅箔、鋁箔等,較佳為銅箔。作為銅箔可使用由銅的單金屬所成之箔,亦可使用由銅與其他金屬(例如錫、鉻、銀、鎂、鎳、鋯、矽、鈦等)之合金所成之箔。
第一支撐膜320亦可於與樹脂組成物層310接觸之面實施霧面處理、電暈處理、抗靜電處理、脫模劑處理等之表面處理。尤其較佳實施脫模劑處理。如此之脫模劑處理一般係將由上述塑膠材料、金屬材料等材料形成之處理前的膜部表面藉由脫模劑予以處理。因此,經實施脫模劑處理之第一支撐膜320通常具備前述之膜部與藉由脫模劑形成於該膜部上之脫模層。藉由實施脫模劑處理,可容易自樹脂組成物層310剝下第一支撐膜320。
作為脫模劑舉例為例如選自由醇酸系脫模劑、聚烯烴系脫模劑、胺基甲酸酯系脫模劑及矽氧系脫模劑所成之群之1種以上的脫模劑。脫模劑可單獨使用1種,亦可組合2種以上使用。其中,基於將第一支撐膜320之剝下容易性侷限於適當範圍之觀點,較佳為矽氧系脫模劑。
第一支撐膜320之厚度較佳為10μm以上,更佳為20μm以上,特佳為30μm以上,較佳為200μm以下,更佳為100μm以下,特佳為80μm以下。第一支撐膜320之厚度落於前述範圍時,第一支撐膜320之剝下容易性及樹脂薄片300之處理性為良好。
第一支撐膜320與樹脂組成物層310之密著力FA [gf/cm]較佳滿足下述式(1)。
Figure 02_image007
更詳細而言,密著力FA 較佳大於1.5[gf/cm],更佳大於1.7[gf/cm],特佳大於1.9[gf/cm],且較佳未達20[gf/cm],更佳未達18[gf/cm],特佳未達17[gf/cm]。第一支撐膜320與樹脂組成物層310之密著力FA 大於前述範圍之下限值時,可抑制於第一支撐膜320產生浮起。前述所謂「浮起」係指與樹脂組成物層310接觸之膜(具體為第一支撐膜320或第二支撐膜330)不刻意地產生部分剝下。可抑制浮起可藉由例如將樹脂薄片300之捲筒於23℃保管24小時後,自捲筒拉出樹脂薄片300並觀察而確認。又,第一支撐膜320與樹脂組成物層310之密著力FA 未達前述範圍之上限值時,第一支撐膜320容易自樹脂組成物層310剝下。因此,可順利地剝下第一支撐膜320,可抑制因剝下第一支撐膜320所致之樹脂組成物層310的破損。
第一支撐膜320與樹脂組成物層310之密著力FA 可藉由以下述方法測定。 亦即,可測定將第一支撐膜320於對於樹脂組成物層310垂直方向(90度方向)於23℃剝離時之剝離強度作為密著力FA 。該測定可使用拉伸試驗機進行。
第一支撐膜320與樹脂組成物層310之密著力FA 可藉由例如調整樹脂組成物層310之厚度的方法、調整樹脂組成物層310所含之樹脂組成物的組成之方法、調整第一支撐膜320所具備之脫模層的組成之方法、調整第一支撐膜320之與樹脂組成物層310接觸之面的粗糙度之方法等而調整。
第二支撐膜330係以可剝下之方式接觸於樹脂組成物層310之第二面310D而設置之膜。作為第二支撐膜330例如與第一支撐膜320相同,舉例為塑膠膜、金屬箔、脫模紙。其中較佳為塑膠膜及金屬箔。
第二支撐膜330於與樹脂組成物層310接觸之面亦可實施霧面處理、電暈處理、抗靜電處理、脫模劑處理等之表面處理。尤其較佳實施脫模劑處理。經實施脫模劑處理之第二支撐膜330通常具備由塑膠材料、金屬材料等形成之膜部與藉由脫模劑形成於該膜部上之脫模層。藉由實施脫模劑處理,可容易自樹脂組成物層310剝下第二支撐膜330。作為脫模劑舉例為與第一支撐膜320所用之脫模劑相同之例。其中,基於將第二支撐膜330之剝下容易性侷限於適當範圍之觀點,較佳為矽氧系脫模劑。
第二支撐膜330之厚度,基於獲得與第一支撐膜320相同的優點之觀點,較佳為與第一支撐膜320之厚度相同範圍。第一支撐膜320之厚度與第三支撐膜330之厚度可相同亦可不同。
第二支撐膜330與樹脂組成物層310之密著力FB [gf/cm]較佳滿足下述式(2)。更詳細而言,密著力FB 較佳與第一支撐膜320與樹脂組成物層310之密著力FA 為相同範圍。密著力FA 與密著力FB 可相同亦可不同。
Figure 02_image009
第二支撐膜330與樹脂組成物層310之密著力FB 大於前述範圍之下限值時,可抑制於第二支撐膜330產生浮起。又,第二支撐膜330與樹脂組成物層310之密著力FB 未達前述範圍之上限值時,第二支撐膜330容易自樹脂組成物層310剝下。因此,可順利地剝下第二支撐膜330,可抑制因剝下第二支撐膜330所致之樹脂組成物層310的破損。
第二支撐膜330與樹脂組成物層310之密著力FB 可藉由與第一支撐膜320與樹脂組成物層310之密著力FA 相同之方法測定。
第二支撐膜330與樹脂組成物層310之密著力FB 可藉由例如調整樹脂組成物層310之厚度的方法、調整樹脂組成物層310所含之樹脂組成物的組成之方法、調整第二支撐膜330所具備之脫模層的組成之方法、調整第二支撐膜330之與樹脂組成物層310接觸之面的粗糙度之方法等而調整。
第一支撐膜320與樹脂組成物層310之密著力FA [gf/cm]、第二支撐膜330與前述樹脂組成物層310之密著力FB [gf/cm]及樹脂組成物層310所含之樹脂組成物於100℃之熔融黏度η[泊]較佳滿足式(3)。
Figure 02_image011
詳細而言,前述參數[(FA +FB )/η]較佳大於 0.00005[gf/(cm・泊)],更佳大於0.0001[gf/(cm・泊)],特佳大於0.0002[gf/(cm・泊)],且較佳未達0.030[gf/(cm・泊)],更佳未達0.025[gf/(cm・泊)],特佳未達0.02[gf/(cm・泊)]。參數[(FA +FB )/η]大於前述範圍之下限值時,可抑制第一支撐膜320或第二支撐膜330產生浮起。且參數[(FA +FB )/η]未達前述範圍之上限值時,第一支撐膜320及第二支撐膜330可容易自樹脂組成物層310剝下。
樹脂薄片300亦可進而具備與樹脂組成物層310、第一支撐膜320及第二支撐膜330組合之任意構件。例如樹脂薄片300亦可進而具備保護膜。
上述樹脂薄片300之製造方法並未特別限定。例如樹脂薄片300可藉由包含使用模嘴塗佈等之裝置將樹脂組成物塗佈於第一支撐膜320上之方法而製造。且例如樹脂薄片300亦可藉由包含將包含樹脂組成物及溶劑之樹脂清漆塗佈於第一支撐膜320上之方法而製造。使用樹脂清漆時,通常塗佈後使樹脂清漆乾燥而形成樹脂組成物層310。
作為溶劑舉例為例如丙酮、甲基乙基酮及環己酮等之酮溶劑;乙酸乙酯、乙酸丁酯、溶纖素乙酸酯、丙二醇單甲醚乙酸酯及卡必醇乙酸酯等之乙酸酯溶劑;溶纖素及丁基卡必醇等之卡必醇溶劑;甲苯及二甲苯等芳香族烴溶劑;二甲基乙醯胺(DMAc)及N-甲基吡咯啶酮等之醯胺系溶劑等之有機溶劑。溶劑可單獨使用1種,亦可以組合2種以上使用。
乾燥可藉由加熱、熱風吹拂等之乾燥方法實施。乾燥條件較佳係進行至樹脂組成物層310所含之溶劑量通常為10質量%以下,較佳為5質量%以下。根據樹脂清漆中之溶劑沸點而異,但於例如使用包含30質量%~60質量%之溶劑之樹脂清漆之情況,藉由於50℃~150℃乾燥3分鐘~10分鐘,可形成樹脂組成物層310。
藉由前述乾燥,可獲得具備樹脂組成物層310及與該樹脂組成物層310之第一面310U接觸之第一支撐膜320的薄片。如此所得之薄片可使用作為樹脂薄片,亦可於樹脂組成物層310之第二面310D設置第二支撐膜330,獲得樹脂薄片。例如藉由於樹脂組成物層310之第二面310D貼合第二支撐膜330,可獲得於厚度方向依序具備第二支撐膜330、樹脂組成物層310及第一支撐膜320之樹脂薄片300。
或,亦可於第二支撐膜330塗佈樹脂清漆並乾燥,形成樹脂組成物層310後,以與該樹脂組成物層接觸之方式設置第一支撐膜320,可製造樹脂薄片300。
基於提高製造效率之觀點,樹脂薄片300較佳使用長條之第一支撐膜320或第二支撐膜330製造。所謂「長條」膜表示相對於寬具有通常10倍以上長的膜,較佳表示可捲取為捲筒狀之程度的長膜。使用如此長條之第一支撐膜320或第二支撐膜330時,可獲得長條樹脂薄片300。該長條樹脂薄片300可根據需要切斷為適當尺寸,使用於壓縮成型。
[1.3.剝下支撐膜之步驟(III)] 本發明第一實施形態之製造方法包含剝下所準備之樹脂薄片300之第一支撐膜320,於樹脂組成物層310之兩面(亦即第一面310U及第二面310D)獲得非被覆狀態之步驟(III)。所謂「非被覆狀態」係指面未被第一支撐膜320及第二支撐膜330等之構件覆蓋之狀態。因此,於某面獲得非被覆狀態係指獲得該面未被構件覆蓋之狀態。
步驟(III)中,由於於樹脂組成物層310之第一面310U及第二面310D獲得非被覆狀態,故具備第二支撐膜330之樹脂薄片300不僅可剝下第一支撐膜320亦可剝下第二支撐膜330。因此,於步驟(II)中準備具備樹脂組成物層310、接觸於樹脂組成物層310之第一面310U之第一支撐膜320及接觸於樹脂組成物層310之第二面310D之第二支撐膜330之樹脂薄片300時,步驟(III)包含剝下第一支撐膜320及第二支撐膜330。
步驟(III)中,亦可於樹脂組成物層310之第一面310U及第二面310D同時獲得非被覆狀態。所謂第一面310U及第二面310D「同時」獲得非被覆狀態係指於第一面310U獲得非被覆狀態之期間與於第二面310D獲得非被覆狀態之期間於時間上重疊。又,步驟(III)中,亦可於樹脂組成物層310之第一面310U及第二面310D非同時獲得非被覆狀態。所謂第一面310U及第二面310D「非同時」獲得非被覆狀態係指於第一面310U獲得非被覆狀態之期間與於第二面310D獲得非被覆狀態之期間於時間上不重疊。因此,於步驟(II)中準備樹脂薄片300後,於步驟(IV)實施壓縮成形之前,於某期間於樹脂組成物層310之第一面310U獲得非被覆狀態,且於與前述期間相同或不同之期間,於樹脂組成物層310之第二面310D獲得非被覆狀態之情況,進行步驟(III)。
作為於第一面310U及第二面310D同時獲得非被覆狀態之例舉例為如下述之情況。 例如準備具備樹脂組成物層310、與樹脂組成物層310之第一面310U接觸之第一支撐膜320及與樹脂組成物層310之第二面310D接觸之第二支撐膜330之樹脂薄片300。於某時點,剝下與所準備之樹脂組成物層310之第一面310U接觸之第一支撐膜320,於該第一面310U獲得非被覆狀態。且剝下與樹脂組成物層310之第二面310D接觸之第二支撐膜330,於該第二面310D獲得非被覆狀態。隨後,將於第一面310U及第二面310D之兩面獲得非被覆狀態之樹脂組成物層310,以第一面310U及第二面310D之一者與基板200接觸之方式,設置於基板200上。該情況,於第一面310U獲得非被覆狀態之期間與於第二面310D獲得非被覆狀態之期間,於時間上重疊。因此,可說是進行於第一面310U及第二面310D同時獲得非被覆狀態之步驟(III)。
且,例如準備具備樹脂組成物層310及與樹脂組成物層310之第一面310U接觸之第一支撐膜320之樹脂薄片300。此例之樹脂組成物層310之第二面310D不進行特別操作,亦獲得未以其他構件被覆之非被覆狀態。於某時點,剝下與所準備之樹脂組成物層310之第一面310U接觸之第一支撐膜320,於該第一面310U獲得非被覆狀態。隨後,將於第一面310U及第二面310D之兩面獲得非被覆狀態之樹脂組成物層310,以第一面310U及第二面310D之一者與基板200接觸之方式,設置於基板200上。該情況,於第一面310U獲得非被覆狀態之期間與於第二面310D獲得非被覆狀態之期間,於時間上亦重疊。因此,可說是進行於第一面310U及第二面310D同時獲得非被覆狀態之步驟(III)。
另一方面,作為於第一面310U及第二面310D非同時獲得非被覆狀態之步驟(III)之例,舉例為如下述之情況。 例如準備具備樹脂組成物層310、與樹脂組成物層310之第一面310U接觸之第一支撐膜320及與樹脂組成物層310之第二面310D接觸之第二支撐膜330之樹脂薄片300。於某時點,剝下與所準備之樹脂組成物層310之第二面310D接觸之第二支撐膜330,於該第二面310D獲得非被覆狀態。隨後,以非被覆狀態之第二面310D與基板200接觸之方式,將樹脂組成物層310設置於基板200上。又隨後,剝下與樹脂組成物層310之第一面310U接觸之第一支撐膜320,於該第一面310U獲得非被覆狀態。該情況,於第一面310U獲得非被覆狀態之期間與於第二面310D獲得非被覆狀態之期間,於時間上不重疊。因此,可說是進行於第一面310U及第二面310D非同時獲得非被覆狀態之步驟(III)。
且,例如準備具備樹脂組成物層310及與樹脂組成物層310之第一面310U接觸之第一支撐膜320之樹脂薄片300。此例之樹脂組成物層310之第二面310D不進行特別操作,亦獲得未以其他構件被覆之非被覆狀態。以該非被覆狀態之第二面310D與基板200接觸之方式,將樹脂組成物層310設置於基板200上。隨後,剝下與樹脂組成物層310之第一面310U接觸之第一支撐膜320,於該第一面310U獲得非被覆狀態。該情況,於第一面310U獲得非被覆狀態之期間與於第二面310D獲得非被覆狀態之期間,於時間上亦不重疊。因此,可說是進行於第一面310U及第二面310D非同時獲得非被覆狀態之步驟(III)。
具備第一支撐膜320及第二支撐膜330之樹脂薄片300,剝下第一支撐膜320與剝下第二支撐膜330可同時進行,亦可非同時進行。因此可先剝下第一支撐膜320,亦可先剝下第二支撐膜330,亦可同時剝下第一支撐膜320及第二支撐膜330。基於順利進行步驟(III)之觀點,通常先剝下第一支撐膜320及第二支撐膜330中,與樹脂組成物層310之密著力較小者。
圖4係示意性顯示於本發明第一實施形態之半導體裝置之製造方法所用之壓縮成型裝置100設置基板200及樹脂組成物層310之狀態的剖面圖。如圖4所示,剝下第一支撐膜320及第二支撐膜330所得之樹脂組成物層310以於成為閉模之情況侷限於腔室130之方式,設置於基板200上。本實施形態中,如圖4所示,係顯示於第一模110設置基板200後,於該基板200上設置樹脂組成物層310之例,但於第一模110上設置基板200之前,將樹脂組成物層310設置於基板200上亦無妨。此時,亦可將剝下第一支撐膜320及第二支撐膜330所得之樹脂組成物層310單獨設置於基板200。且亦可為例如剝下第一支撐膜320及第二支撐膜330之一者,於第一面310U及第二面310D之一者獲得非被覆狀態,將其非被覆狀態之面接觸於基板200之方式設置樹脂組成物層310,隨後,剝下第一支撐膜320及第二支撐膜330之另一者。又,亦可於剝下第一支撐膜320及第二支撐膜330之另一者之前,根據需要,將第一支撐膜320及第二支撐膜330之另一者以輥等之按壓工具按壓,使樹脂組成物層310密著於基板200。
[1.4.壓縮成型步驟(IV)] 圖5係示意性顯示使用本發明第一實施形態之半導體裝置之製造方法所用之壓縮成型裝置100,進行壓縮成型之狀態的剖面圖。 本發明之第一實施形態之製造方法,於上述步驟(I)至步驟(III)之後,如圖5所示,包含將樹脂組成物層310侷限於腔室130內,於第一模110與第二模120之間,加壓樹脂組成物層310與基板200之步驟(IV)。藉由該步驟(IV),將樹脂組成物層310壓縮成型,可獲得以樹脂組成物之硬化體形成之硬化體層340。
詳細而言,步驟(IV)係將第一模110及第二模120閉模。藉由閉模,將樹脂組成物層310與基板200配置於第一模110與第二模120之間。此時,基板200堵住腔室130之開口部130D全體。因此,於腔室130內,形成由基板200與第二模120包圍之密閉空間。樹脂組成物層310其全體被侷限於前述密閉空間內。如此以樹脂組成物層310侷限於腔室130內之密閉空間之狀態,藉由押入第二模120之底部塊體121,而加壓樹脂組成物層310與基板200。藉由加壓,使樹脂組成物層310與基板200接合,同時使樹脂組成物層310壓縮成型。
藉由前述加壓,樹脂組成物層310填充於前述密閉空間全體。此時,第二模120及基板200密著。因此,樹脂組成物層310所含之樹脂組成物不會流出至密閉空間外。因此,可抑制樹脂組成物污染第一模110及第二模120。
通常,以如前述之樹脂組成物層310填充於密閉空間之狀態進行加熱。藉由加熱使樹脂組成物層310硬化,形成包含樹脂組成物之硬化體之硬化體層340。因此,可獲得以高精度轉印形成前述密閉空間之腔室130之形狀的硬化體層340。
此時,於步驟(II)中準備之樹脂薄片300所具備之要素中,僅樹脂組成物層310位於腔室130內,於腔室130內並無第一支撐膜320及第二支撐膜330。因此,由於不發生第一支撐膜320及第二支撐膜330對樹脂組成物層310之咬入,故可抑制於硬化體層340之凹凸形成。
上述之壓縮成型條件係隨樹脂組成物之組成而異,可採用能獲得良好硬化體層340之適當條件。 例如成型時之模溫度,較佳為可使樹脂組成物發揮優異壓縮成型性之溫度,較佳為80℃以上,更佳為100℃以上,特佳為120℃以上,較佳為200℃以下,更佳為170℃以下,特佳為150℃以下。 且例如成型時施加之壓力較佳為1MPa以上,更佳為3MPa以上,特佳為5MPa以上,較佳為50MPa以下,更佳為30MPa以下,特佳為20MPa以下。 再者,例如固化時間較佳為1分鐘以上,更佳為2分鐘以上,特佳為5分鐘以上,較佳為60分鐘以下,更佳為30分鐘以下,特佳為20分鐘以下。
[1.5.任意步驟] 本發明第一實施形態之製造方法包含與上述步驟(I)、步驟(II)、步驟(III)及步驟(IV)組合之任意步驟。 通常本實施形態之製造方法於步驟(IV)之後包含開模之步驟。如此藉由開模,可將基板200及硬化體層340自壓縮成型裝置100卸除。如此藉由卸除,可獲得具備基板200及硬化體層340之成型體。
圖6係示意性顯示可以本發明第一實施形態之製造方法製造之成型體350之剖面圖。如圖6所示,依據第一實施形態之製造方法,可獲得具備基板200及於該基板200上由樹脂組成物之硬化體形成之硬化體層340之成型體350。此等成型體350可作為半導體裝置。例如使用於硬化體層340側具備半導體晶片(未圖示)之安裝基板作為基板200時,可以作為半導體裝置之半導體封裝,獲得具備作為該安裝基板之基板200與將該基板200所具備之半導體晶片密封之作為密封層之硬化體層340的成型體350。
且,於上述之成型體350亦可進而設置配線層、絕緣層、阻焊層、半導體晶片等之任意要素。因此,本實施形態之製造方法亦可包含設置該等任意要素之步驟。
再者,本實施形態之製造方法亦可包含自成型體350剝離基板200之步驟。該情況,可獲得具備硬化體層340但不具備基板200之半導體裝置。例如,作為基板200,使用可剝離地暫時固定半導體晶片之暫時固定膜時,可獲得不具備基板200之半導體裝置。
再者,本實施形態之製造方法亦可包含將包含任意要素之成型體350或硬化體層340單片化之切割步驟。
又,本實施形態之製造方法於開模後,亦可包含使所得硬化體層340進而進行熱硬化之步驟。具體而言,開模後,亦可進行進而加熱硬化體層340之步驟。
上述之製造方法中,進行各步驟之順序,在獲得期望之半導體裝置之範圍內並未限制。且亦可同時進行複數步驟。
[1.6.本實施形態之製造方法的主要優點] 依據第一實施形態之製造方法,可抑制硬化體層340中之凹凸形成。以下針對該優點,與其他製造方法對比加以說明。
圖7係示意性顯示使用具備樹脂組成物層310及支撐膜910之樹脂薄片900進行壓縮成型時之壓縮成型裝置920的剖面圖。該圖7中,與上述第一實施形態說明相同之部位標註與圖1~圖6相同符號加以說明。
如圖7所示,假定為使用具備樹脂組成物層310及支撐膜910之樹脂薄片900進行壓縮成型之情況。該情況,不僅樹脂組成物層310而且支撐膜910也被侷限於腔室130內。因此,支撐膜910之端部910E咬入樹脂組成物層310。若如此,則於被支撐膜910之端部910E咬入之樹脂組成物層310之部分930,形成因前述咬入所致之凹凸。且如此若產生端部910E之組入,則難以剝離支撐膜910。
相對於此,第一實施形態之製造方法,如圖5所示,樹脂組成物層310侷限於腔室130內,但於腔室130內並無第一支撐膜320及第二支撐膜330。因此,抑制了第一支撐膜320及第二支撐膜330對樹脂組成物層310之咬入。因此,如圖6所示,可抑制硬化體層340中之凹凸形成。又,由於不需要自硬化體層340剝離第一支撐膜320及第二支撐膜330之操作,故通常可有效率地製造成型體35。
再者,依據第一實施形態之製造方法,可抑制因樹脂組成物流出所致之第一模110及第二模120之污染。以下針對該優點,與其他製造方法對比加以說明。
假定為使用比腔室大的樹脂薄片進行壓縮成型之情況。該情況,由於支撐膜之端部配置於腔室外,故可抑制支撐膜對樹脂組成物層之組入,但樹脂組成物層之一部分露出於腔室外。因此,因該露出之樹脂組成物層接觸於第一模及第二模,而使樹脂組成物附著於第一模及第二模,而產生污染。
相對於此,第一實施形態之製造方法,如圖5所示,以樹脂組成物層310全體被侷限於腔室130內之狀態,可實施壓縮成型。因此,於腔室130外,由於樹脂組成物層310未接觸於第一模110及第二模120,故可抑制因樹脂組成物附著所致之污染。
為了實施上述第一實施形態之半導體裝置之製造方法,於步驟(III)中,較佳順利剝下第一支撐膜320及第二支撐膜330。因此,為了獲得上述第一實施形態之製造方法的優點,較佳使用具備容易自樹脂組成物層310剝下之第一支撐膜320及第二支撐膜330的樹脂薄片300。作為此等樹脂薄片300,特佳為具有上述特定厚度之樹脂組成物層,且第一支撐膜320與樹脂組成物層310之密著力FA [gf/cm]、第二支撐膜330與樹脂組成物層310之密著力FB [gf/cm]及100℃下之樹脂組成物之熔融黏度η[泊]滿足上述式(1)、式(2)及式(3)者。
[2.第二實施形態] 第一實施形態係使用將基板200及樹脂組成物層310之兩者設置於第一模110及第二模120之一者,實施壓縮成型之例,說明半導體裝置之製造方法。但,基板200及樹脂組成物層310之設置態樣不限定於第一實施形態。例如亦可於第一模110設置基板200,於第二模120設置樹脂組成物層310後,實施壓縮成型。以下顯示第二實施形態說明該方法。
圖8係示意性顯示於本發明第二實施形態之半導體裝置之製造方法所用之壓縮成型裝置400設置基板200及樹脂組成物層310之狀態的剖面圖。第二實施形態中,對與第一實施形態說明者相同的部位標註與第一實施形態相同之符號加以說明。
如圖8所示,本發明第二實施形態之製造方法所用之壓縮成型裝置400除了將第一模110設為上方,將第二模120設為下方以外,與第一實施形態說明之壓縮成型裝置100同樣設置。因此,壓縮成型裝置400以使第一模110及第二模120之厚度方向與垂直方向平行的方式具備可支撐基板200之第一模110及與第一模110對向設置之第二模120。
本發明第二實施形態之製造方法中使用前述壓縮成型裝置400製造半導體裝置。該製造方法與第一實施形態相同,包含: 準備基板200之步驟(I); 準備樹脂薄片300(參考圖3)之步驟(II); 剝下第一支撐膜320,於樹脂組成物層310之兩面310U及310D,獲得非被覆狀態之步驟(III);及 將樹脂組成物層310侷限於腔室130內,於第一模110與第二模120之間,將樹脂組成物層310與基板200加壓之步驟(IV)。
步驟(I)準備之基板200與第一實施形態說明者相同。第二實施形態中準備之基板200如圖8所示設置於第一模110。
步驟(II)準備之樹脂薄片300與第一實施形態說明者相同。如此準備之樹脂薄片300與第一實施形態相同,於步驟(III)中剝下第一支撐膜320。且樹脂薄片300具備第二支撐膜330時,亦剝下該第二支撐膜330。接著,於第一面310U及第二面310D同時或非同時獲得非被覆狀態之樹脂組成物層310,以如圖8所示侷限於腔室130之方式設置於第二模120。樹脂組成物層310亦可於將基板200設置於第一模110之後設置於第二模120,亦可於將基板200設置於第一模110之前設置於第二模120。此時,例如亦可將剝下第一支撐膜320及第二支撐膜330所得之樹脂組成物層310單獨設置於第二模120。且亦可例如剝下第一支撐膜320及第二支撐膜330之一者,於第一面310U及第二面310D之一者獲得非被覆狀態,將該非被覆狀態之面接觸於第二模120之方式設置樹脂組成物層310,隨後,剝下第一支撐膜320及第二支撐膜330之另一者。
圖9係示意性顯示使用本發明第二實施形態之半導體裝置之製造方法所用之壓縮成型裝置400,進行壓縮成型之狀態的剖面圖。 本發明之第二實施形態之製造方法,於上述步驟(I)~步驟(III)之後,如圖9所示,包含將樹脂組成物層310侷限於腔室130內,於第一模110與第二模120之間,加壓樹脂組成物層310與基板200之步驟(IV)。該步驟(IV)係與第一實施形態相同地進行。因此,具體而言,於步驟(IV),將第一模110及第二模120閉模,將樹脂組成物層310全體侷限於由基板200與第二模120所包圍之腔室130內之密閉空間。接著以該狀態,加壓樹脂組成物層310與基板200,使樹脂組成物層310與基板200接合,同時使樹脂組成物層310壓縮成型。因此,根據需要加熱使樹脂組成物層310硬化,可獲得硬化體層340。
隨後,通常進行開模,將基板200及硬化體層340自壓縮成型裝置400卸下。如此,與第一實施形態相同,可獲得具備基板200及硬化體層340之成型體350。
依據上述第二實施形態之製造方法,可獲得與第一實施形態之製造方法相同的優點。
第二實施形態之製造方法與第一實施形態之製造方法相同,亦可包含任意步驟。
[3.變化例] 本發明之半導體裝置之製造方法亦可自上述實施形態進而變更而實施。例如可使用具備形成有可收納基板之腔室的模之壓縮成型裝置,進行半導體裝置之製造。以下參考圖式說明該方法之例。
圖10係示意性顯示於本發明第三實施形態之半導體裝置之製造方法所用之壓縮成型裝置500設置基板200及樹脂組成物層310之狀態的剖面圖。第三實施形態中,對與第一實施形態說明者相同之部位標註與第一實施形態相同之符號加以說明。
如圖10所示,本發明第三實施形態之半導體裝置之製造方法所用之壓縮成型裝置500除了形成為於支撐基板200之第一模510中設置腔室530,及腔室530不僅收納樹脂組成物層310亦收納基板200以外,與第一實施形態說明之壓縮成型裝置100相同設置。
本實施形態所示之例中,腔室530形成為可收納基板200及樹脂組成物層310般之大小。因此,該壓縮成型裝置500於第一模510與第二模520之間,形成與腔室530對應之空間,於該空間內可將樹脂組成物層310壓縮成型。
且,基於可加壓腔室530內之觀點,第一模510包含底部塊體511與包圍該底部塊體511周圍而環狀設置之側部塊體512。底部塊體511設為可對於側部塊體512相對地移動。因此,該例中,第一模510係設為藉由使底部塊體511向圖中上方按壓,而可加壓腔室530內。
本發明第三實施形態之製造方法係使用前述壓縮成型裝置500,製造半導體。該製造方法與第一實施形態相同,包含: 準備基板200之步驟(I); 準備樹脂薄片300(參考圖3)之步驟(II); 剝下第一支撐膜320,於樹脂組成物層310之兩面310U及310D,獲得非被覆狀態之步驟(III);及 將樹脂組成物層310侷限於腔室530內,於第一模510與第二模520之間,將樹脂組成物層310與基板200加壓之步驟(IV)。
步驟(I)準備之基板200與第一實施形態說明者相同。第三實施形態中準備之基板200如圖10所示設置於第一模510之腔室530內。
步驟(II)準備之樹脂薄片300與第一實施形態說明者相同。如此準備之樹脂薄片300與第一實施形態相同,於步驟(III)中剝下第一支撐膜320。且樹脂薄片300具備第二支撐膜330時,亦剝下該第二支撐膜330。接著,於第一面310U及第二面310D同時或非同時獲得非被覆狀態之樹脂組成物層310,以如圖10所示侷限於腔室530之方式設置於基板200上。樹脂組成物層310亦可於將基板200設置於第一模510之後設置於基板200上,亦可於將基板200設置於第一模510之前設置於基板200上。此時,例如亦可將剝下第一支撐膜320及第二支撐膜330所得之樹脂組成物層310單獨設置於基板200上。且亦可例如剝下第一支撐膜320及第二支撐膜330之一者,於第一面310U及第二面310D之一者獲得非被覆狀態,將該非被覆狀態之面接觸於基板200之方式設置樹脂組成物層310,隨後,剝下第一支撐膜320及第二支撐膜330之另一者。
圖11係示意性顯示使用本發明第三實施形態之半導體裝置之製造方法所用之壓縮成型裝置500,進行壓縮成型之狀態的剖面圖。 本發明之第三實施形態之製造方法,於上述步驟(I)~步驟(III)之後,如圖11所示,包含將樹脂組成物層310侷限於腔室530內,於第一模510與第二模520之間,加壓樹脂組成物層310與基板200之步驟(IV)。該步驟(IV)係與第一實施形態相同地進行。因此,具體而言,於步驟(IV),將第一模510及第二模520閉模,將樹脂組成物層310全體侷限於由第一模510、基板200及第二模520所包圍之腔室530內之密閉空間。接著以該狀態,加壓樹脂組成物層310與基板200,使樹脂組成物層310與基板200接合,同時使樹脂組成物層310壓縮成型。因此,根據需要加熱使樹脂組成物層310硬化,可獲得硬化體層340。
隨後,通常進行開模,將基板200及硬化體層340自壓縮成型裝置500卸下。如此,與第一實施形態相同,可獲得具備基板200及硬化體層340之成型體350。
依據上述第三實施形態之製造方法,可獲得與第一實施形態之製造方法相同的優點。
第三實施形態之製造方法與第一實施形態之製造方法相同,亦可包含任意步驟。
[4.樹脂組成物層之組成] 樹脂組成物之組成若為該樹脂組成物具有熱硬化性之範圍,則未特別限定。
基於可發揮熱硬化性之觀點,樹脂組成物通常包含熱硬化性樹脂。作為熱硬化性樹脂之例,舉例為環氧樹脂、氰酸酯樹脂、酚樹脂、雙馬來醯亞胺-三嗪樹脂、聚醯亞胺樹脂、丙烯酸樹脂、乙烯基苄基樹脂等。熱硬化性樹脂可單獨使用1種,亦可組合2種以上使用。其中,基於容易獲得具有高密封能力之硬化體層,較佳為環氧樹脂。
作為環氧樹脂舉例為例如聯二甲苯酚型環氧樹脂、雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚S型環氧樹脂、雙酚AF型環氧樹脂、二環戊二烯型環氧樹脂、三酚型環氧樹脂、萘酚酚醛清漆型環氧樹脂、酚酚醛清漆型環氧樹脂、第三丁基兒茶酚型環氧樹脂、萘型環氧樹脂、萘酚型環氧樹脂、蒽型環氧樹脂、縮水甘油胺型環氧樹脂、縮水甘油酯型環氧樹脂、甲酚酚醛清漆型環氧樹脂、聯苯型環氧樹脂、線狀脂肪族環氧樹脂、具有丁二烯構造之環氧樹脂、脂環式環氧樹脂、雜環式環氧樹脂、含螺環之環氧樹脂、環己烷型環氧樹脂、環己烷二甲醇型環氧樹脂、萘醚型環氧樹脂、三羥甲基型環氧樹脂、四苯基乙烷型環氧樹脂等。環氧樹脂可單獨使用1種,亦可組合2種以上使用。
樹脂組成物較佳包含1分子中具有2個以上環氧基之環氧樹脂。相對於全部環氧樹脂之不揮發成分100質量%,1分子中具有2個以上環氧基之環氧樹脂之比例較佳為50質量%以上,更佳為60質量%以上,特佳為70質量%以上。
環氧樹脂有於溫度20℃為液狀之環氧樹脂(以下有時稱為「液狀環氧樹脂」)與於溫度20℃為固體狀之環氧樹脂(以下有時稱為「固體狀環氧樹脂」)。樹脂組成物可包含液狀環氧樹脂,亦可包含固體狀環氧樹脂,亦可組合包含液狀環氧樹脂與固體狀環氧樹脂作為環氧樹脂。
作為液狀環氧樹脂較佳為1分子中具有2個以上環氧基之液狀環氧樹脂。
作為液狀環氧樹脂較佳為雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚AF型環氧樹脂、萘型環氧樹脂;縮水甘油酯型環氧樹脂、縮水甘油胺型環氧樹脂、酚酚醛清漆型環氧樹脂、具有酯骨架之脂環式環氧樹脂等之脂環式環氧樹脂,環己烷型環氧樹脂、環己烷二甲醇型環氧樹脂、縮水甘油胺型環氧樹脂及具有丁二烯構造之環氧樹脂,更佳為雙酚A型環氧樹脂及雙酚F型環氧樹脂。
作為液狀環氧樹脂之具體例舉例為DIC公司製之「HP-4032」、「HP-4032D」、「HP-4032SS」(萘型環氧樹脂);三菱化學公司製之「828US」、「jER828EL」、「825」、「EPICOTE 828EL」(雙酚A型環氧樹脂);三菱化學公司製之「jER807」、「1750」(雙酚F型環氧樹脂);三菱化學公司製之「jER152」(酚酚醛清漆型環氧樹脂);三菱化學公司製之「630」、「630LSD」(縮水甘油胺型環氧樹脂);新日鐵住金化學公司製之「ZX1059」(雙酚A型環氧樹脂與雙酚F型環氧樹脂之混合品);NAGASE CHEMTEX公司製之「EX-721」(縮水甘油酯型環氧樹脂);DAICEL公司製之「CELOXIDE 2021P」(具有酯骨架之脂環式環氧樹脂);DAICEL公司製之「PB-3600」(具有丁二烯構造之環氧樹脂);新日鐵住金化學公司製之「ZX1658」、「ZX1658GS」(液狀1,4-縮水甘油基環己烷型環氧樹脂)、ADEKA公司製之「EP3950L」(縮水甘油胺型環氧樹脂)等。該等可單獨使用1種,亦可組合2種以上使用。
作為固體狀環氧樹脂,較佳為1分子中具有3個以上環氧基之固體狀環氧樹脂,更佳為1分子中具有3個以上環氧基之芳香族系之固體狀環氧樹脂。
作為固體狀環氧樹脂,較佳為聯二甲酚型環氧樹脂、萘型環氧樹脂、萘型4官能環氧樹脂、甲酚酚醛清漆型環氧樹脂、二環戊二烯型環氧樹脂、三酚型環氧樹脂、萘酚型環氧樹脂、聯苯型環氧樹脂、萘醚型環氧樹脂、蒽型環氧樹脂、雙酚A型環氧樹脂、雙酚AF型環氧樹脂、四苯基乙烷型環氧樹脂,更佳為聯苯型環氧樹脂及萘醚型環氧樹脂。
作為固體狀環氧樹脂之具體例列舉為DIC公司製之「HP-4302H」(萘型環氧樹脂);DIC公司製之「HP-4700」、「HP-4710」(萘型4官能環氧樹脂);DIC公司製之「N-690」(甲酚酚醛清漆型環氧樹脂);DIC公司製之「N-695」(甲酚酚醛清漆型環氧樹脂);DIC公司製之「HP-7200」、「HP-7200HH」、「HP-7200H」(二環戊二烯型環氧樹脂);DIC公司製之「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP-6000」、「HP-6000L」(萘醚型環氧樹脂);日本化藥公司製之「EPPN-502H」(三酚型環氧樹脂);日本化藥公司製之「NC7000L」(萘酚酚醛清漆環氧樹脂);日本化藥公司製之「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(聯苯型環氧樹脂);新日鐵住金化學公司製之「ESN475V」(萘酚型環氧樹脂);新日鐵住金化學公司製之「ESN485」(萘酚酚醛清漆型環氧樹脂);三菱化學公司製之「YX4000H」、「YX4000」、「YL6121」(聯苯型環氧樹脂);三菱化學公司製之「YX4000HK」(聯二甲酚型環氧樹脂);三菱化學公司製之「YX8800」(蒽型環氧樹脂);大阪氣體化學公司製之「PG-100」、「CG-500」;三菱化學公司製之「YL7760」(雙酚AF型環氧樹脂);三菱化學公司製之「YL7800」(茀型環氧樹脂);三菱化學公司製之「jER1010」(固體狀雙酚A型環氧樹脂);三菱化學公司製之「jER1031S」(四苯基乙烷型環氧樹脂)等。該等可單獨使用1種,亦可組合2種以上使用。
組合使用液狀環氧樹脂與固體狀環氧樹脂時,該等之量比(液狀環氧樹脂:固體狀環氧樹脂)以質量比計,較佳為1:0.01~1:20,更佳為1:0.05~1:10,特佳為1:0.1~1:2。液狀環氧樹脂與固體狀環氧樹脂之量比落於前述範圍之情況,通常可獲得適度黏著性。且通常可獲得充分之可撓性,提高處理性。再者,通常可獲得具有充分斷裂強度之硬化體。
環氧樹脂之環氧當量較佳為50g/eq.~5000 g/eq.,更佳為50g/eq.~ 3000g/eq.,又更佳為80g/eq.~ 2000 g/eq.,再更佳為110g/eq.~1000 g/eq.。藉由環氧當量為該範圍,可提高樹脂組成物之硬化體的交聯密度。環氧當量係含1當量環氧基之樹脂質量。該環氧當量可根據JIS K7236測定。
環氧樹脂之重量平均分子量(Mw),較佳為100~5000,更佳為250~3000,又更佳為400~1500。樹脂之重量平均分子量可藉凝膠滲透層析(GPC)法作為聚苯乙烯換算之值而測定。
環氧樹脂之量,基於獲得顯示良好機械強度及絕緣信賴性之硬化體層之觀點,相對於樹脂組成物中之不揮發成分100質量%,較佳為1質量%以上,更佳為3質量%以上,又更佳為5質量%以上,較佳為20質量%以下,更佳為15質量%以下,特佳為12質量%以下。又本說明書中之各成分之量,於未另外明示之情況,表示將樹脂組成物中之不揮發成分設為100質量%時之值。
環氧樹脂之量,基於獲得顯示良好機械強度及絕緣信賴性之硬化體層之觀點,相對於樹脂組成物中之樹脂成分100質量%,較佳為10質量%以上,更佳為13質量%以上,又更佳為15質量%以上,較佳為90質量%以下,更佳為85質量%以下,特佳為80質量%以下。所謂「樹脂成分」係指將樹脂組成物所含之不揮發成分中無機填充材除外之成分。
樹脂組成物包含環氧樹脂時,該樹脂組成物較佳包含硬化劑。硬化劑具有與環氧樹脂反應,使樹脂組成物硬化之機能。作為硬化劑舉例為例如活性酯系硬化劑、酚系硬化劑、萘酚系硬化劑、酸酐系硬化劑、苯并噁嗪系硬化劑、氰酸酯系硬化劑、碳二醯亞胺系硬化劑、胺系硬化劑等。其中,基於容易獲得具有高的密封性能之硬化體層,較佳為活性酯系硬化劑及酚系硬化劑,特佳為酚系硬化劑。且硬化劑可單獨使用1種,亦可併用2種以上。
作為活性酯系硬化劑可使用1分子中具有1個以上活性酯基的化合物。其中,作為活性酯系硬化劑較佳為酚酯類、硫酚酯類、N-羥基胺酯類、雜環羥基化合物之酯類等之1分子中具有2個以上反應活性高之酯基的化合物。該活性酯系硬化劑較佳藉由羧酸化合物及/或硫代羧酸化合物與羥基化合物及/或硫醇化合物之縮合反應而獲得者。尤其基於提高耐熱性之觀點,較佳為由羧酸化合物與羥基化合物獲得之活性酯系硬化劑,更佳為由羧酸化合物與酚化合物及/或萘酚化合物所得之活性酯系硬化劑。
作為羧酸化合物舉例為例如苯甲酸、乙酸、琥珀酸、馬來酸、衣康酸、鄰苯二甲酸、間苯二甲酸、對苯二甲酸、均苯四酸等。
作為酚化合或萘酚化合物舉例為例如氫醌、間苯二酚、雙酚A、雙酚F、雙酚S、酚酞、甲基化雙酚A、甲基化雙酚F、甲基化雙酚S、苯酚、鄰-甲酚、間-甲酚、對-甲酚、兒茶酚、α-萘酚、β-萘酚、1,5-二羥基萘、1,6-二羥基萘、2,6-二羥基萘、二羥基二苯甲酮、三羥基二苯甲酮、四羥基二苯甲酮、均苯三酚(phloroglucin)、苯三酚、二環戊二烯型二酚化合物、酚酚醛清漆等。此處,所謂「二環戊二烯型二酚化合物」係指二環戊二烯1分子中縮合有酚2分子而得之二酚化合物。
作為活性酯系硬化劑之較佳具體例,舉例為含二環戊二烯型二酚構造之活性酯系硬化劑、含萘構造之活性酯系硬化劑、含酚酚醛清漆之乙醯化物之活性酯系硬化劑、含酚酚醛清漆之苯甲醯化物之活性酯系硬化劑。其中更佳為含萘構造之活性酯系硬化劑、含二環戊二烯型二酚構造之活性酯系硬化劑。所謂「二環戊二烯型二酚構造」係表示由伸苯基-二伸環戊基-伸苯基所成之2價之構造單位。
作為活性酯系硬化劑之市售品,例如作為含二環戊二烯型二酚構造之活性酯系硬化劑舉例為「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000-65TM」、「EXB-8000L」、「EXB-8000L-65TM」(DIC公司製);作為含萘構造之活性酯系硬化劑舉例為「EXB-9416-70BK」、「EXB-8150-65T」、「EXB-8100L-65T」、「EXB-8150L-65T」(DIC公司製);作為含酚酚醛清漆之乙醯化物之活性酯系硬化劑舉例為「DC808」(三菱化學公司製);作為含酚酚醛清漆之苯甲醯化物之活性酯系硬化劑列舉為「YLH1026」(三菱化學公司製);作為酚酚醛清漆之乙醯化物之活性酯系硬化劑舉例為「DC808」(三菱化學公司製);作為酚酚醛清漆之苯甲醯化物之活性酯系硬化劑列舉為「YLH1026」(三菱化學公司製)、「YLH1030」(三菱化學公司製)、「YLH1048」(三菱化學公司製)等。
基於耐熱性及耐水性之觀點,作為酚系硬化劑及萘酚系硬化劑較佳為具有酚醛清漆構造者。且,基於硬化體層與導體層之密著性之觀點,較佳為含氮酚系硬化劑,更佳為含三嗪骨架之酚系硬化劑。
作為酚系硬化劑及萘酚系硬化劑之具體例舉例為例如明和化成公司製之「MEH-7700」、「MEH-7810」、「MEH-7851」、「MEH-8000H」;日本化藥公司製之「NHN」、「CBN」、「GPH」;新日鐵住金化學公司製之「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-495V」、「SN-375」、「SN-395」;DIC公司製之「TD-2090」、「TD-2090-60M」、「LA-7052」、「LA-7054」、「LA-1356」、「LA-3018」、「LA-3018-50P」、「EXB-9500」、「HPC-9500」、「KA-1160」、「KA-1163」、「KA-1165」;群榮化學公司製之「GDP-6115L」、「GDP-6115H」、「ELPC75」等。
作為酸酐系硬化劑,舉例為1分子內具有1個以上酸酐基之硬化劑。作為酸酐系硬化劑之具體例舉例為鄰苯二甲酸酐、四氫鄰苯二甲酸酐、六氫鄰苯二甲酸酐、甲基四氫鄰苯二甲酸酐、甲基六氫鄰苯二甲酸酐、甲基耐地酸酐、氫化甲基耐地酸酐、三烷基四氫鄰苯二甲酸酐、十二烷基琥珀酸酐、5-(2,5-二氧代四氫-3-呋喃基)-3-甲基-3-環己烯-1,2-二羧酸酐、苯偏三酸酐、均苯四酸酐、二苯甲酮四羧酸二酐、聯苯四羧酸二酐、萘四羧酸二酐、氧基二鄰苯二甲酸二酐、3,3’-4,4’-二苯基碸四羧酸二酐、1,3,3a,4,5,9b-六氫-5-(四氫-2,5-二氧代-3-呋喃基)-萘并[1,2-C]-呋喃-1,3-二酮、乙二醇雙(苯偏三酸酐)、苯乙烯與馬來酸共聚合之苯乙烯・馬來酸樹脂等之聚合型之酸酐等。
作為酸酐系硬化劑之市售品,舉例為新日本理化公司製之「MH-700」等。
作為苯并噁嗪系硬化劑之具體例列舉為JEF化學公司製之「JBZ-OD100」(苯并噁嗪環氧當量218 g/eq)、「JBZ-OP100D」(苯并噁嗪環氧當量218g/eq)、「ODA-BOZ」(苯并噁嗪環氧當量218g/eq);四國化成工業公司製之「P-d」(苯并噁嗪環氧當量217g/eq)、「F-a」(苯并噁嗪環氧當量217g/eq);昭和高分子公司製之「HFB2006M」(苯并噁嗪環氧當量432g/eq)等。
作為氰酸酯系硬化劑,舉例為例如雙酚A二氰酸酯、多酚氰酸酯、寡聚(3-亞甲基-1,5-伸苯基氰酸酯)、4,4’-亞甲基雙(2,6-二甲基苯基氰酸酯)、4,4’-亞乙基二苯基二氰酸酯、六氟雙酚A二氰酸酯、2,2-雙(4-氰酸酯基)苯基丙烷、1,1-雙(4-氰酸酯基苯基甲烷)、雙(4-氰酸酯基-3,5-二甲基苯基)甲烷、1,3-雙(4-氰酸酯基苯基-1-(甲基亞乙基))苯、雙(4-氰酸酯基苯基)硫醚、及雙(4-氰酸酯基苯基)醚等之2官能氰酸酯樹脂;由酚酚醛清漆及甲酚酚醛清漆等衍生之多官能氰酸酯樹脂;該等氰酸酯樹脂經一部分三嗪化而成之預聚物;等。作為氰酸酯系硬化劑之具體例舉例為日本LONZA公司製之「PT30」及「PT60」(酚酚醛清漆型多官能氰酸酯樹脂)、「ULL-950S」(多官能氰酸酯樹脂)、「BA230」、「BA230S75」(雙酚A二氰酸酯之一部分或全部經三嗪化之三聚物的預聚物)等。
作為碳二醯亞胺系硬化劑之具體例舉例為日清紡化學公司製之CARBODILITE(註冊商標)V-03(碳二醯亞胺基當量:216g/eq.)、V-05(碳二醯亞胺基當量:262g/eq.)、V-07(碳二醯亞胺基當量:200 g/eq.);V-09(碳二醯亞胺基當量:200g/eq.);LANCHEM公司製之STABAXOL(註冊商標)P(碳二醯亞胺基當量:302g/eq.)。
作為胺系硬化劑舉例為例如舉例為1分子內具有1個以上胺基之硬化劑,舉例為例如脂肪族胺類、聚醚胺類、脂環式胺類、芳香族胺類等,其中,基於發揮本發明期望效果之觀點,較佳為芳香族胺類。胺系硬化劑較佳為1級胺或2級胺,更佳為1級胺。作為胺系硬化劑之具體例舉例為4,4’-亞甲基雙(2.6-二甲基苯胺)、二苯基二胺基碸、4,4’-二胺基二苯基甲烷、4,4’-二胺基二苯基碸、3,3’-二胺基二苯基碸、間-苯基二胺、間-二甲苯基二胺、二乙基甲苯二胺、4,4’-二胺基二苯基醚、3,3’-二甲基-4,4’-二胺基聯苯、2,2’-二甲基-4,4’-二胺基聯苯、3,3’-二羥基聯苯胺、2,2-雙(3-胺基-4-羥基苯基)丙烷、3,3’-二甲基-5,5’-二乙基-4,4’-二苯基甲烷二胺、2,2-雙(4-胺基苯基)丙烷、2,2-雙(4-(4-胺基苯氧基)苯基)丙烷、1,3-雙(3-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、1,4-雙(4-胺基苯氧基)苯、4,4’-雙(4-胺基苯氧基)聯苯、雙(4-(4-胺基苯氧基)苯基)碸、雙(4-(3-胺基苯氧基)苯基)碸等。胺系硬化劑亦可使用市售品,舉例為例如日本化藥公司製之「KAYABOND C-200S」、「KAYABOND C-100」、「KAYAHARD A-A」、「KAYAHARD A-B」、「KAYAHARD A-S」、三菱化學公司製之「EPICURE W」等。
環氧樹脂與硬化劑之量比,以[環氧樹脂之環氧基合計數]:[硬化劑之反應基合計數]之比率計,較佳為1:0.01~1:10之範圍,更佳為1:0.05~1:5,又更佳為1:0.1~1:3。此處,硬化劑之反應基係活性羥基等,係根據硬化劑種類而異。且,所謂環氧樹脂之環氧基之合計數係各環氧樹脂之固形分質量除以環氧當量之值針對全部環氧樹脂予以合計之值,所謂硬化劑之反應基之合計數係將各硬化劑之固形分質量除以反應基當量之值針對全部硬化劑全部予以合計之值。藉由將環氧樹脂與硬化劑之量比為該範圍,可更提高樹脂組成物之硬化體的耐熱性。
硬化劑之量,相對於樹脂組成物中之不揮發成分100質量%,較佳為0.1質量%以上,更佳為0.5質量%以上,又更佳為1.0質量%以上,較佳為10質量%以下,更佳為8質量%以下,又更佳為5質量%以下。
樹脂組成物根據需要可含有無機填充材。作為無機填充材脂材料使用無機化合物。作為無機填充材之材料舉例為例如氧化矽、氧化鋁、玻璃、堇青石、矽氧化物、硫酸鋇、碳酸鋇、滑石、黏土、雲母粉、氧化鋅、水滑石、勃姆石(Boehmite)、氫氧化鋁、氫氧化鎂、碳酸鈣、碳酸鎂、氧化鎂、氮化硼、氮化鋁、氮化錳、硼酸鋁、碳酸鍶、鈦酸鍶、鈦酸鈣、鈦酸鎂、鈦酸鉍、氧化鈦、氧化鋯、鈦酸鋇、鈦酸鋯酸鋇、鋯酸鋇、鋯酸鈣、磷酸鋯及磷酸鎢酸鋯等。該等中適宜為氧化矽,氧化鋁,特佳為氧化矽。作為氧化矽舉例為例如無定形氧化矽、熔融氧化矽、結晶氧化矽、合成氧化矽、中空氧化矽等。且作為氧化矽較好為球狀氧化矽。無機填充材可單獨使用1種,亦可組合2種以上使用。
作為無機填充材之市售品舉例為例如DENKA公司製之「UFP-30」;新日鐵住金材料公司製之「SP60-05」、「SP507-05」;ADMATECHS公司製之「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」;德山公司製之「SILFIL NSS-3N」、「SILFIL NSS-4N」、「SILFIL NSS-5N」;ADMATECHS公司製之「SC2500SQ」、「SO-C4」、「SO-C2」、「SO-C1」等。
作為無機填充材之比表面積,較佳為1m2 /g以上,更佳為2m2 /g以上,特佳為3m2 /g以上。上限並未特別限定,但較佳為60m2 /g以下、50m2 /g以下或40m2 /g以下。比表面積可使用BET全自動比表面積測定裝置(MOUNTECH公司製Macsorb HM-1210),於試料表面吸附氮氣,使用BET多點法測定。
無機填充材之平均粒徑較佳為0.01μm以上,更佳為0.05μm以上,特佳為0.1μm以上,較佳為5μm以下,更佳為2μm以下,又更佳為1μm以下。
無機填充材之平均粒徑可基於Mie散射理論,以雷射繞射・散射法測定。具體而言,可利用雷射繞射式粒度分佈測定裝置,以體積基準作成無機填充材之粒徑分佈,以其中值徑作為平均粒徑而測定。測定樣品可較佳地使用將無機填充材100mg、甲基乙基酮10g量取於安瓿中以超音波分散10分鐘而成者。測定樣品係使用雷射繞射式粒徑分佈測定裝置,將使用光源波長設為藍色及紅色,以流動胞(flow cell)方式測定無機填充材之體積基準之粒徑分佈,自所得粒徑分佈算出平均粒徑作為中值徑。作為雷射繞射式粒度分佈測定裝置舉例為例如堀場製作所公司製之「LA-960」等。
基於提高耐濕性及分散性之觀點,無機填充材較佳以表面處理劑處理。作為表面處理劑舉例為例如乙烯基矽烷系偶合劑、(甲基)丙烯酸系偶合劑、含氟矽烷偶合劑、胺基矽烷系偶合劑、環氧矽烷系偶合劑、巰基矽烷系偶合劑、矽烷系偶合劑、烷氧基矽烷、有機矽氮烷化合物、鈦酸酯系偶合劑等。表面處理劑可單獨使用1種,亦可任意組合2種以上使用。
作為表面處理劑之市售品列舉為例如信越化學工業公司製「KBM1003」(乙烯基三乙氧基矽烷)、信越化學工業公司製「KBM503」(3-甲基丙烯醯氧基丙基三乙氧基矽烷)、信越化學工業公司製「KBM403」(3-縮水甘油氧基丙基三甲氧基矽烷)、信越化學工業公司製「KBM803」(3-巰基丙基三甲氧基矽烷)、信越化學工業公司製「KBE903」(3-胺基丙基三乙氧基矽烷)、信越化學工業公司製「KBM573」(N-苯基-3-胺基丙基三甲氧基矽烷)、信越化學工業公司製「SZ-31」(六甲基二矽氮烷)、信越化學工業公司製「KBM103」(苯基三甲氧基矽烷)、信越化學工業公司製「KBM-4803」(長鏈環氧型矽烷偶合劑)、信越化學工業公司製「KBM-7103」(3,3,3-三氟丙基三甲氧基矽烷)等。
利用表面處理劑進行表面處理之程度,基於提高無機填充材之分散性之觀點,較佳侷限於特定範圍。具體而言,無機填充材100質量份較佳以0.2質量份~5質量份之表面處理劑表面處理,更佳以0.2質量份~3質量份表面處理,又較佳以0.3質量份~2質量份表面處理。
利用表面處理劑進行表面處理之程度可藉由無機填充材之每單位表面積之碳量而評價。無機填充材之每單位表面積之碳量,基於提高無機填充材之分散性之觀點,較佳為0.02mg/m2 以上,更佳為0.1mg/m2 以上,又更佳為0.2mg/m2 以上。另一方面,基於抑制樹脂清漆之熔融黏度及薄片形態之熔融黏度上升之觀點,較佳為1mg/m2 以下,更佳為0.8mg/m2 以下,又更佳為0.5mg/m2 以下。
無機填充材之每單位表面積之碳量可藉由將表面處理後之無機填充材以溶劑(例如甲基乙基酮(MEK))進行洗淨處理後測定。具體而言,將作為溶劑之充分量之MEK添加於以表面處理劑表面處理之無機填充材中,於25℃進行超音波洗淨5分鐘。去除上澄液,使固形分乾燥後,使用碳分析計測定無機填充材之每單位表面積之碳量。至於碳分析計可使用例如堀場製作所公司製之「EMIA-320V」等。
基於減低樹脂組成物之硬化體的介電正切脂觀點,無機填充材之量(體積%),相對於樹脂組成物中之不揮發成分100體積%,較佳為30體積%以上,更佳為40體積%以上,又更佳為50體積%以上。且較佳為80體積%以下,更佳為70體積%以下,又更佳為60體積%以下。
基於減低樹脂組成物之硬化體的介電正切脂觀點,無機填充材之量(質量%),相對於樹脂組成物中之不揮發成分100質量%,較佳為50質量%以上,更佳為60質量%以上,又更佳為65質量%以上,較佳為95質量%以下,更佳為90質量%以下,又更佳為86質量%以下。
樹脂組成物根據需要亦可含有硬化促進劑。作為硬化促進劑舉例為例如磷系硬化促進劑、胺系硬化促進劑、咪唑系硬化促進劑、胍系硬化促進劑、金屬系硬化促進劑。硬化促進劑可單獨使用1種,亦可組合2種以上使用。
作為磷系硬化促進劑舉例為例如三苯膦、硼酸鏻化合物、四苯基鏻四苯基硼酸鹽、正丁基鏻四苯基硼酸鹽、四丁基鏻癸酸鹽、(4-甲基苯基)三苯基鏻硫代氰酸鹽、四苯基鏻硫代氰酸鹽、丁基三苯基鏻硫代氰酸鹽等,較佳為三苯膦、四丁基鏻癸酸鹽。
作為胺系硬化促進劑舉例為例如三乙胺、三丁胺等三烷胺,4-二甲胺基吡啶、苄基二甲胺、2,4,6-參(二甲胺基甲基)酚、1,8-二氮雜雙環(5,4,0)-十一碳烯等,較好為4-二甲胺基吡啶、1,8-二氮雜雙環(5,4,0)-十一碳烯。
作為咪唑系硬化促進劑舉例為例如2-甲基咪唑、2-十一烷基咪唑、2-十七烷基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯基咪唑、1-氰乙基-2-甲基咪唑、1-氰乙基-2-十一烷基咪唑、1-氰乙基-2-乙基-4-甲基咪唑、1-氰乙基-2-苯基咪唑、1-氰乙基-2-十一烷基咪唑鎓偏苯三酸鹽、1-氰乙基-2-苯基咪唑鎓偏苯三酸鹽、2,4-二胺基-6-[2’-甲基咪唑基-(1’)]-乙基-s-三嗪、2,4-二胺基-6-[2’-十一烷基咪唑基-(1’)]-乙基-s-三嗪、2,4-二胺基-6-[2’-乙基-4’-甲基咪唑基-(1’)]-乙基-s-三嗪、2,4-二胺基-6-[2’-甲基咪唑基-(1’)]-乙基-s-三嗪異氰脲酸加成物、2-苯基咪唑異氰脲酸加成物、2-苯基-4,5-二羥基甲基咪唑、2-苯基-4-甲基-5-羥基甲基咪唑、2,3-二氫-1H-吡咯并[1,2-a]苯并咪唑、1-十二烷基-2-甲基-3-苄基咪唑鎓氯化物、2-甲基咪唑啉、2-苯基咪唑啉等咪唑化合物及咪唑化合物與環氧樹脂之加成物,較佳為2-乙基-4-甲基咪唑、1-苄基-2-苯基咪唑。
作為咪唑系硬化促進劑亦可使用市售品,舉例為例如三菱化學公司製之「P200-H50」、四國化成工業公司製之1B2PZ(1-苄基-2-苯基咪唑)等。
作為胍系硬化促進劑舉例為例如二氰二醯胺、1-甲基胍、1-乙基胍、1-環己基胍、1-苯基胍、1-(鄰-甲苯基)胍、二甲基胍、二苯基胍、三甲基胍、四甲基胍、五甲基胍、1,5,7-三氮雜雙環[4.4.0]癸-5-烯、7-甲基-1,5,7-三氮雜雙環[4.4.0]癸-5-烯、1-甲基雙胍、1-乙基雙胍、1-正丁基雙胍、1-正十八烷基雙胍、1,1-二甲基雙胍、1,1-二乙基雙胍、1-環己基雙胍、1-烯丙基雙胍、1-苯基雙胍、1-(鄰-甲苯基)雙胍等,較佳為二氰二醯胺、1,5,7-三氮雜雙環[4.4.0]癸-5-烯。
作為金屬系硬化促進劑,列舉為例如鈷、銅、鋅、鐵、鎳、錳、錫等之金屬之有機金屬錯合物或有機金屬鹽。作為有機金屬錯合物之具體例舉例為乙醯基丙酮酸鈷(II)、乙醯基丙酮酸鈷(III)等有機鈷錯合物、乙醯基丙酮酸銅(II)等之有機銅錯合物、乙醯基丙酮酸鋅(II)等有機鋅錯合物、乙醯基丙酮酸鐵(III)等有機鐵錯合物、乙醯基丙酮酸鎳(II)等有機鎳錯合物、乙醯基丙酮酸錳(II)等有機錳錯合物等。作為有機金屬鹽舉例為例如辛酸鋅、辛酸錫、環烷酸鋅(zinc naphthenate)、環烷酸鈷、硬脂酸錫、硬脂酸鋅等。
硬化促進劑之量,相對於樹脂組成物中之不揮發成分100質量%,較佳為0.001質量%以上,更佳為0.005質量%以上,又更佳為0.01質量%以上,較佳為0.5質量%以下,更佳為0.3質量%以下,又更佳為0.1質量%以下。
樹脂組成物根據需要亦可含有熱塑性樹脂。作為熱塑性樹脂舉例為例如苯氧樹脂、聚乙烯縮醛樹脂、聚烯烴樹脂、聚醯亞胺樹脂、聚醯胺醯亞胺樹脂、聚醚醯亞胺樹脂、聚碸樹脂、聚醚碸樹脂、聚伸苯基醚樹脂、聚醚醚酮樹脂、聚酯樹脂等,較佳為苯氧樹脂。熱塑性樹脂可單獨使用1種,亦可組合2種以上使用。
熱塑性樹脂之聚苯乙烯換算之重量平均分子量,較佳為38000以上,更佳為40000以上,又更佳為42000以上。上限較佳為100000以下,更佳為70000以下,又更佳為60000以下。熱塑性樹脂之聚苯乙烯換算之重量平均分子量係藉凝膠滲透層析(GPC)法測定。具體而言,重量平均分子量可使用島津製作所公司製LC-9A/RID-6A作為測定裝置,使用昭和電工公司製Shodex K-800P/K-804L/K-804L作為管柱,使用氯仿等作為移動相,管柱溫度設為40℃而測定,並使用標準聚苯乙烯之校正線算出。
作為苯氧樹脂舉例為例如具有由雙酚A骨架、雙酚F骨架、雙酚S骨架、雙酚苯乙酮骨架、酚醛清漆骨架、聯苯骨架、茀骨架、二環戊二烯骨架、降冰片烯骨架、萘骨架、蒽骨架、金剛烷骨架、萜烯骨架及三甲基環己烷骨架所組成之群中選出之1種以上之骨架的苯氧樹脂。苯氧樹脂之末端亦可為酚性羥基、環氧基等之任一官能基。苯氧樹脂可單獨使用1種,亦可組合2種以上使用。作為苯氧樹脂之具體例舉例為三菱化學公司製之「1256」及「4250」(均為含雙酚A骨架之苯氧樹脂)、「YX8100」(含雙酚S骨架之苯氧樹脂)及「YX6954」(含雙酚苯乙酮骨架之苯氧樹脂),此外舉例為日鐵化學材料公司製之「FX280」及「FX293」、三菱化學公司製之「YL7500BH30」、「YX6954BH30」、「YX7553」、「YX7553BH30」、「YL7769BH30」、「YL6794」、「YL7213」、「YL7290」及「YL7482」等。
作為聚乙烯縮醛樹脂舉例為例如聚乙烯甲縮醛樹脂、聚乙烯丁縮醛樹脂,較佳為聚乙烯丁縮醛樹脂。作為聚乙烯縮醛樹脂之具體例舉例為電氣化學工業公司製之「電化丁醛4000-2」、「電化丁醛5000-A」、「電化丁醛6000-C」、「電化丁醛6000-EP」、積水化學工業公司製之S-LEC BH系列、BX系列(例如BX-5Z)、KS系列(例如KS-1)、BL系列、BM系列等。
作為聚醯亞胺樹脂之具體例舉例為新日本理化公司製之「RIKACOAT SN20」及「RIKACOAT PN20」。
作為聚醯胺醯亞胺樹脂之具體例舉例東洋紡公司製之「VYLOMAX HR11NN」及「VYLOMAX HR16NN」。作為聚醯胺醯亞胺樹脂之具體例另舉例為日立化成公司製之「KS9100」、「KS9300」(含聚矽氧烷骨架之聚醯胺醯亞胺)等之改質聚醯胺醯亞胺。
作為聚醚碸樹脂之具體例舉例為住友化學公司製之「PES5003P」等。作為聚苯醚樹脂之具體例舉例為三菱氣體化學公司製之寡聚苯醚・苯乙烯樹脂「OPE-2St 1200」等。作為聚醚醚酮樹脂之具體例舉例為住友化學公司製之「SUMIPLOY K」等。作為聚醚醯亞胺樹脂之具體例舉例為GE公司製之「ULTEM」等。
作為聚碸樹脂之具體例舉例為Solvay Advanced Polymers公司製之聚碸「P1700」、「P3500」等。
作為聚烯烴樹脂舉例為例如低密度聚乙烯、超低密度聚乙烯、高密度聚乙烯、乙烯-乙酸乙烯酯共聚物、乙烯-丙烯酸乙酯共聚物、乙烯-丙烯酸甲酯共聚物等之乙烯系共聚合樹脂;聚丙烯、乙烯-丙烯嵌段共聚物等之聚烯烴系彈性體等。
作為聚酯樹脂舉例為例如聚對苯二甲酸乙二酯樹脂、聚萘二甲酸乙二酯樹脂、聚對苯二甲酸丁二酯樹脂、聚萘二甲酸丁二酯樹脂、聚對苯二甲酸丙二酯樹脂、聚萘二甲酸丙二酯樹脂、聚對苯二甲酸環己烷二甲酯樹脂等。
熱塑性樹脂之含量,於將樹脂組成物中之不揮發成分設為100質量%時,較佳為0.1質量%以上,更佳為0.3質量%以上,又更佳為0.5質量%以上。上限較佳為5質量%以下,更佳為4質量%以下,又更佳為3質量%以下。
樹脂組成物根據需要亦可包含彈性體。使用包含彈性體之樹脂組成物時,可抑制硬化體層之翹曲。彈性體可單獨使用1種,亦可組合2種以上使用。
作為彈性體較佳為分子內具有選自聚丁二烯構造、聚矽氧烷構造、聚(甲基)丙烯酸酯構造、聚伸烷基構造、聚伸烷氧基構造、聚異戊二烯構造、聚異丁烯構造及聚碳酸酯構造之1種以上構造之樹脂。其中更佳為具有選自聚丁二烯構造、聚(甲基)丙烯酸酯構造、聚伸烷氧基構造、聚異戊二烯構造、聚異丁烯構造或聚碳酸酯構造之1種或2種以上構造之樹脂。進而更佳為具有選自聚丁二烯構造及聚伸烷氧基構造之1種以上構造之樹脂,特佳為具有聚丁二烯構造之樹脂。所謂「(甲基)丙烯酸酯」係包含甲基丙烯酸酯及丙烯酸酯以及該等之組合之用語。該等構造可包含於主鏈亦可包含於側鏈。
基於降低硬化體層之翹曲之觀點,彈性體較佳為高分子量。彈性體之數平均分子量(Mn)較佳為1,000以上,更佳為1500以上,又更佳為3000以上、5000以上。上限較佳為1,000,000以下,更佳為900,000以下。數平均分子量(Mn)係使用GPC(凝膠滲透層析儀)測定之聚苯乙烯換算之數平均分子量。
基於與環氧樹脂反應使樹脂組成物硬化而提高剝離強度之觀點,彈性體較佳具有可與環氧樹脂反應之官能基。可與環氧樹脂反應之官能基包含藉由加熱而顯現之官能基。
於適當之一實施形態中,可與環氧樹脂反應之官能基為選自由羥基、羧基、酸酐基、酚性羥基、環氧基、異氰酸酯基及胺基甲酸酯基所成之群之1種以上之官能基。其中,作為該官能基較佳為羥基、酸酐基、酚性羥基、環氧基、異氰酸酯基及胺基甲酸酯基,更佳為羥基、酸酐基、酚性羥基、環氧基,特佳為酚性羥基。惟包含環氧基作為官能基時,數平均分子量(Mn)較佳為5,000以上。
彈性體之適當實施形態為含有聚丁二烯構造之樹脂,聚丁二烯構造可包含於主鏈亦可包含於側鏈。又,聚丁二烯構造可一部分或全部經氫化。含有聚丁二烯構造之樹脂係指聚丁二烯樹脂。
作為聚丁二烯樹脂之具體例舉例為CRAY VALLEY公司製之「Ricon 130MA8」、「Ricon 130MA13」、「Ricon 130MA20」、「Ricon 131MA5」、「Ricon 131MA10」、「Ricon 131MA17」、「Ricon 131MA20」、「Ricon 184MA6」(含酸酐基之聚丁二烯)、日本曹達公司製之「GQ-1000」(導入羥基、羧基之聚丁二烯)、「G-1000」、「G-2000」、「G-3000」(兩末端羥基之聚丁二烯)、「GI-1000」、「GI-2000」、「GI-3000」(兩末端羥基氫化之聚丁二烯)、NAGASE CHEM TEX公司製之「FCA-061L」(氫化聚丁二烯骨架環氧樹脂)等。作為一實施形態,舉例為以羥基末端聚丁二烯、二異氰酸酯化合物及四元酸酐為原料之線狀聚醯亞胺(日本特開 2006-37083號公報、國際公開第2008/153208號公報中記載之聚醯亞胺)、含酚性羥基之丁二烯等。該聚醯亞胺樹脂之丁二烯構造含有率較佳為60質量%~95質量%,更佳為75質量%~85質量%。該聚醯亞胺樹脂之細節可參考日本特開2006-37083號公報、國際公開第2008/153208號公報之記載,其內容併入本說明書中。
彈性體之適當實施形態係含有聚(甲基)丙烯酸酯構造之樹脂。含有聚(甲基)丙烯酸酯構造之樹脂係指聚(甲基)丙烯酸樹脂。作為聚(甲基)丙烯酸樹脂舉例為NAGASE CHEM TEX公司製之TEISAN RESIN、根上工業公司製之「ME-2000」、「W-116.3」、「W-197C」、「KG-25」、「KG-3000」等。
彈性體之適當實施形態係含有碳酸酯構造之樹脂。含有聚碳酸酯構造之樹脂係指聚碳酸酯樹脂。作為聚碳酸酯樹脂舉例為旭化成化學公司製之「T6002」、「T6001」(聚碳酸酯二醇)、KURARAY公司製之「C-1090」、「C-2090」、「C-3090」(聚碳酸酯二醇)等。且亦可使用以羥基末端聚碳酸酯、二異氰酸酯化合物及四元酸酐為原料之線狀聚醯亞胺。該聚醯亞胺樹脂之碳酸酯烯構造含有率較佳為60質量%~95質量%,更佳為75質量% ~85質量%。該聚醯亞胺樹脂之細節可參考國際公開第2016/129541號之記載,其內容併入本說明書中。
又,作為彈性體之其他實施形態為含有矽氧烷構造之樹脂。含有矽氧烷構造之樹脂係指矽氧烷樹脂。作為矽氧烷樹脂舉例為例如信越聚矽氧公司製之「SMP-2006」、「SMP-2003PGMEA」、「SMP-5005PGMEA」、胺基末端聚矽氧烷及以四元酸酐為原料之線狀聚醯亞胺(國際公開第2010/053185號、日本特開2002-12667號公報及日本特開2000-319386號公報等)等。
作為彈性體之其他實施形態為含有伸烷基構造、伸烷氧基構造之樹脂。含有伸烷基構造之樹脂係指伸烷基樹脂,含有伸烷氧基構造之樹脂係指伸烷氧基樹脂。聚伸烷氧基構造較佳為碳原子數2~15之聚伸烷氧基構造,更佳為碳原子數3~10之聚伸烷氧基構造,又更佳為碳原子數5~6之聚伸烷氧基構造。作為伸烷基樹脂、伸烷氧基樹脂之具體例舉例為旭化成纖維公司製之「PTXG-1000」、「PTXG-1800」等。
作為彈性體之其他實施形態係含有異戊二烯構造之樹脂。含有異戊二烯構造之樹脂係指異戊二烯樹脂。作為異戊二烯樹脂之具體例舉例為KURARAY公司製之「KL-610」、「KL613」等。
作為彈性體之其他實施形態係含有異丁烯構造之樹脂。含有異丁烯構造之樹脂係指異丁烯樹脂。作為異丁烯樹脂之具體例舉例為KANEKA公司製之「SIBSTAR-073T」(苯乙烯-異丁烯-苯乙烯三嵌段共聚物)、「SIBSTAR-042D」(苯乙烯-異丁烯二嵌段共聚物)等。
彈性體之量,基於獲得最低熔融黏度較低之樹脂組成物之觀點,相對於樹脂組成物中之不揮發成分100質量%,較佳為1質量%以上,更佳為3質量%以上,又更佳為5質量%以上,較佳為30質量%以下,更佳為25質量%以下,再更佳為21質量%以下。且彈性體之量落於前述範圍時,通常獲得介電正切及對於導體層之密著性優異,可抑制翹曲之硬化體層。
彈性體之量,基於獲得最低熔融黏度較低之樹脂組成物之觀點,相對於樹脂組成物中之樹脂成分100質量%,較佳為20質量%以上,更佳為30質量%以上,又更佳為40質量%以上,較佳為70質量%以下,更佳為65質量%以下,再更佳為62質量%以下。且彈性體之量落於前述範圍時,通常獲得介電正切及對於導體層之密著性優異,可抑制翹曲之硬化體層。
樹脂組成物除上述成分以外,可進而含有任意成分。作為任意成分舉例為例如難燃劑;橡膠粒子等之有機填充材;有機銅化合物、有機鋅化合物及有機鈷化合物等有機金屬化合物;增黏劑;消泡劑;調平劑;密著性賦予劑;顏料等之著色劑;日本特開2019-044128號公報中記載之馬來醯亞胺化合物;日本特開2018-168354號公報中記載之兩親媒性聚醚嵌段共聚物。任意成分可單獨使用1種,亦可組合2種以上使用。
樹脂組成物亦可包含溶劑,但其量較少較佳。樹脂組成物中所含之溶劑量,相對於樹脂組成物中之樹脂成分100質量%,較佳為0.5質量%以下,更佳為0.1質量%以下,又更佳為0.01質量%以下。其中樹脂組成物特佳不含溶劑。
[5.半導體裝置之用途] 依據上述製造方法,可製造包含硬化體層之半導體裝置。作為包含如此硬化體層之半導體裝置舉例為例如印刷配線板、半導體晶片封裝、多晶片封裝、封裝對封裝、晶圓等級封裝、面板等級封裝、內建系統封裝等。該等半導體裝置中,硬化體層可作為例如絕緣層或密封層發揮機能。
如此製造之半導體裝置適合使用於例如電氣製品(例如電腦、行動電話、數位相機及電視等)及交通工具(例如機車、汽車、電車、船舶及飛機等)等之用途。 [實施例]
以下顯示實施例針對本發明具體說明。但,本發明並不限於以下實施例。又,以下說明中,表示量之「份」及「%」只要未另外指明,則分別意指「質量份」及「質量%」。且以下說明之操作,只要未另外指明,則於常溫常壓之環境進行。
[評價方法] (樹脂組成物層之熔融黏度之測定方法) 樹脂組成物之熔融黏度係使用動態黏彈性測定裝置(UBM公司製Rheosol-G3000)測定。具體而言,針對試料的樹脂組成物1g,使用直徑18mm之圓形之平行板,以升溫速度5℃/min自開始溫度60℃升溫至200℃,以測定溫度間隔2.5℃、振動頻率1Hz、變形5度之測定條件,測定熔融黏度。由如此所得之測定結果,讀取目的之測定溫度(100℃)下之熔融黏度。
(支撐膜之密著力FA 及FB 之測定方法) 實施例及比較例所製造之樹脂薄片之樹脂組成物層與第一支撐膜之間的密著力FA 以下述方法測定。 自實施例及比較例所製造之樹脂薄片剝下第二支撐膜,獲得具備第一支撐膜及樹脂組成物層之複層膜。 自FR4貼銅積層板去除銅箔,準備基材(厚0.8mm,和伸印刷工業公司製)。於該基材之單面全面,貼附雙面膠帶(NICHIBAN公司製「NICETACK」)。以無孔隙地以均一壓力將該雙面膠帶與複層膜之樹脂組成物層予以接著,獲得積層基材。所得積層基材切割為寬27mm、長100 mm,獲得測定試料。剝下第一支撐膜之一端,以夾具捏住。接著,測定以室溫(23℃)下,50mm/分鐘之速度,以夾具向垂直方向拉起,將支撐體剝起30mm時之平均荷重,求出密著力FA 。測定係使用拉伸試驗機(TSE公司製「AC-50C-SL」)。
實施例及比較例所製造之樹脂薄之樹脂組成物層與第二支撐膜之間的密著力FB ,除了將第一支撐膜與第二支撐膜互換以外,藉由與上述樹脂組成物層與第一支撐膜之間的密著力FA 之測定方法相同方法測定。
(保管後之支撐膜的浮起之評價方法) 將實施例及比較例所製造之長條樹脂薄片捲取成捲筒狀,於23℃保管24小時。保管後自捲筒拉出樹脂薄片33cm,切斷,準備正方形(長33cm×寬33cm)之評價用薄片。觀察評價用薄片,藉下述基準評價是否因前述切割產生第一支撐膜或第二支撐膜自樹脂組成物層離開而浮起。
「A」:未產生浮起 「B」:僅於評價用薄片之端部,稍微發生第一支撐膜或第二支撐膜之浮起。 「C」:於評價用薄片全體,顯著發生第一支撐膜或第二支撐膜之浮起。
(支撐膜之剝下容易性之評價方法) 切割實施例及比較例所製造之長條樹脂薄片,獲得正方形(長33cm×寬33cm)之評價用薄片。嘗試剝下該評價用薄片之第一支撐膜及第二支撐膜,獲得僅樹脂組成物層之薄片。此時,以下述基準評價第一支撐膜及第二支撐膜之剝下容易性。
「良」:自樹脂組成物層剝下第一支撐膜及第二支撐膜兩者。 「不良」:第一支撐膜及第二支撐膜之一者無法剝下。
(硬化體層之凹凸評價) 觀察實施例及比較例所得之成型體(亦即具備評價基板及以樹脂組成物之硬化體形成之硬化體層的成型體)之硬化體層之表面,調查有無凹凸。無凹凸時判定為「良」,有凹凸時判定為「不良」。
(模具之污染評價) 壓縮成型後,觀察模具,調查於腔室外之部分有無樹脂組成物附著。無樹脂組成物附著時判定為「良」,有樹脂組成物附著時判定為「不良」。
[製造例1.彈性體A之製造] 於反應容器中放入2官能性羥基末端聚丁二烯(日本曹達公司製「G-3000」,數平均分子量=3000,羥基當量=1800g/eq.)69g、芳香族烴系混合溶劑(出光石油化學公司製「IPZOLE 150」)40g及二丁基錫月桂酸鹽0.005g,混合均一溶解。於成為均一後升溫至60℃,進而邊攪拌邊添加異佛爾酮二異氰酸酯(日本EVONIK公司製「IPDI」,異氰酸酯當量=113g/eq.)8g,進行約3小時反應。
其次於反應物中,添加甲酚酚醛清漆樹脂(DIC公司製「KA-1160」,羥基當量=117g/eq.)23g及乙基二甘醇乙酸酯(DAICEL公司製)60g,邊攪拌邊升溫至150℃,進行約10小時反應。藉由FT-IR進行2250cm-1 之NCO峰消失之確認。見到NCO峰消失之確認視為反應終點,將反應物降溫至室溫。接著將反應物以100網眼濾布過濾,獲得具有丁二烯構造及酚性羥基之彈性體(含有酚性羥基之丁二烯樹脂:不揮發成分50質量%)。彈性體A之數平均分子量為5900,玻璃轉移溫度為-7℃。
[實施例1] (1-1.樹脂清漆之製造) 將環氧樹脂(新日鐵住金化學公司製「ZX1059」,雙酚A型環氧樹脂與雙酚F型環氧樹脂之1:1混合品(質量比),環氧當量:169g/eq.)21份、萘醚型環氧樹脂(DIC公司製「HP-6000L」,環氧當量:215 g/eq.)30份、兩親媒性聚醚嵌段共聚物(Dow Chemical Co.製「Fortegra 100」)3份、以苯基胺基矽烷系偶合劑(信越化學工業公司製「KBM573」)表面處理之球形氧化矽(平均粒徑0.5μm,比表面積5.8m2 /g,ADMATECHS公司製「SO-C21」)380份、酚酚醛清漆樹脂(酚性羥基當量105g/eq.,DIC公司製「TD2090-60M」,固形分60質量%之MEK溶液)8.3份、苯氧樹脂(三菱化學公司製「YX7553BH30」,固形分30質量%之環己酮:甲基乙基酮(MEK)之1:1溶液)16.6份、甲基乙基酮30份、咪唑系硬化促進劑(四國化成公司製「1B2PZ」)0.3份予以混合,以高速旋轉混合機均一分散調製樹脂清漆1。
(1-2.樹脂薄片之製造及評價) 準備於表面具備脫模層之長條聚對苯二甲酸乙二酯(LINTEC公司製「AL5」,厚38μm)作為第一支撐膜。於該第一支撐膜之脫模層上,以乾燥後之樹脂組成物層厚度成為200μm之方式均一塗佈前述樹脂清漆1。隨後,將樹脂清漆於80℃~120℃(平均100℃)乾燥,於第一支撐膜上獲得樹脂組成物層。前述乾燥係以所得樹脂組成物層所含之樹脂組成物之100℃下的熔融黏度成為10000泊之方式進行。具體而言,藉由調整乾燥程度,調整乾燥後之樹脂組成物層中殘留之溶劑量,調整該樹脂組成物層所含之樹脂組成物之熔融黏度。之後說明之實施例及比較例亦同樣。
對所得樹脂組成物層貼合於表面具備脫模層之長條聚對苯二甲酸乙二酯(東洋紡公司製「E7007」,厚50μm)作為第二支撐膜,獲得依序具備第一支撐膜、樹脂組成物層及第二支撐膜之長條樹脂薄片。針對該樹脂薄片,藉由上述方法,評價支撐膜之密著力、支撐膜之保管後浮起及支撐膜剝下容易性。
(1-3.壓縮成型) 準備具有長320mm、寬320mm之主面之厚1.1mm的玻璃板。於該玻璃板主面全體貼合與前述主面相同大小之熱剝離薄片(日東電工公司製「REVALPHA No.3195V」)作為暫時固定材。隨後於熱剝離薄片上,搭載長20mm×寬20mm之矽晶片,獲得評價基板(步驟(I))。
將前述樹脂薄片切出為四角形(步驟(II))。剝下所切出之樹脂薄片之第二支撐膜,於樹脂組成物層之單面獲得非被覆狀態。將該樹脂組成物層配置於評價基板上,獲得依序具備評價基板、樹脂組成物層及第一支撐膜之積層體。前述配置係以樹脂組成物層之非被覆狀態的面與評價基板之搭載矽晶片之面接觸之方式進行。隨後以手動輥按壓積層體之第一支撐膜側之面,將樹脂組成物層與評價基板暫時黏附。剝離第一支撐膜,於樹脂組成物層之另一單面獲得非被覆狀態。藉此,於評價基板上設置四角形之樹脂組成物層(長292mm×寬292mm)(步驟(III))。
如圖1所示,準備作為模具之具備第一模110及第二模120之壓縮成型裝置100。第二模120之與第一模110對向之側,形成具有正方形開口部(長300mm、寬300mm,面積90000mm2 )之腔室130。如圖4所示,配置有樹脂組成物層310之評價基板200以閉模之情況樹脂組成物層310被侷限於腔室130之方式設置於第一模110。隨後,將第一模110及第二模120閉模,將腔室130內加壓,實施壓縮成型。前述壓縮成型以模具溫度120℃、壓力8MPa、固化時間8分鐘之條件進行。
壓縮成型後開模,獲得具備評價基板及以樹脂組成物之硬化體型成之硬化體層之成型體。藉由上述方法評價所得成型體之硬化體層之凹凸及模具之污染。
[實施例2] 將聯苯型環氧樹脂(日本化藥公司製「NC3000」,環氧當量276 g/eq.)1份、環氧樹脂(新日鐵住金化學公司製「ZX1059」,雙酚A型環氧樹脂與雙酚F型環氧樹脂之1:1混合品(質量比),環氧當量169 g/eq.)5份、以胺基矽烷系偶合劑(信越化學工業公司製「KBM573」)表面處理之球形氧化矽(平均粒徑0.5μm,比表面積5.8m2 /g, ADMATECHS公司製「SO-C21」)65份、彈性體A 20份、馬來醯亞胺化合物(Designer Molecules公司製「BMI-689」)4份、甲酚酚醛清漆樹脂(DIC公司製「KA-1160」,酚性羥基當量:117g/eq.)3份、硬化促進劑(四國化成公司製「1B2PZ」)0.05份及甲基乙基酮15份予以混合,以高速旋轉混合機均一分散調製樹脂清漆2。
使用如此所得之樹脂清漆2替代樹脂清漆1。 又,塗佈於第一支撐膜上之樹脂清漆2之乾燥程度,變更為所得樹脂組成物層所含之樹脂組成物於100℃下之熔融黏度成為80000泊。 除以上事項以外,藉由與實施例1相同方法,進行樹脂薄片之製造及評價,以及利用壓縮成型之成型體的製造及評價。
[實施例3] 塗佈於第一支撐膜上之樹脂清漆1之乾燥程度,變更為所得樹脂組成物層所含之樹脂組成物於100℃下之熔融黏度成為3000泊。 且第二支撐膜變更為具有經實施粗化處理之粗面與未實施粗化處理之平滑面之長條聚丙烯覆蓋膜(OJIF TEX公司製「ARUFAN MA-411」,厚15μm)。實施例3中,以樹脂組成物與前述平滑面接觸之方式,進行樹脂組成物層與前述聚丙烯覆蓋膜之貼合。 除上述事項以外,藉由與實施例1相同方法,進行樹脂薄片之製造及評價,並且進行利用壓縮成型之成型體之製造及評價。
[實施例4] 第一支撐膜變更為具有經實施粗化處理之粗面與未實施粗化處理之平滑面之長條聚丙烯覆蓋膜(OJIF TEX公司製「ARUFAN MA-411」,厚15μm)。實施例4中,進行於前述聚丙烯覆蓋膜之粗面上塗佈樹脂清漆1。 又,塗佈於第一支撐膜上之樹脂清漆1之乾燥程度,變更為所得樹脂組成物層所含之樹脂組成物於100℃下之熔融黏度成為2000泊。 再者,第二支撐膜變更為於表面具備矽氧系脫模層之長條聚對苯二甲酸乙二酯膜(東洋紡公司製「E7007」,厚50μm)。 除上述事項以外,藉由與實施例1相同方法,進行樹脂薄片之製造及評價,並且進行利用壓縮成型之成型體之製造及評價。
[實施例5] 塗佈於第一支撐膜上之樹脂清漆1之乾燥程度,變更為所得樹脂組成物層所含之樹脂組成物於100℃下之熔融黏度成為2000泊。 且,第二支撐膜變更為於表面具備脫模層之長條聚對苯二甲酸乙二酯膜(LINTEC公司製「AL5」,厚38μm)。 除上述事項以外,藉由與實施例1相同方法,進行樹脂薄片之製造及評價,並且進行利用壓縮成型之成型體之製造及評價。
[實施例6] 第一支撐膜變更為於表面具備矽氧系脫模層之長條聚對苯二甲酸乙二酯膜(東洋紡公司製「E7007」,厚50μm)。 且,第二支撐膜變更為於表面具備脫模層之聚對苯二甲酸乙二酯膜(藤森工業公司製「FILMBYNA KF」,厚38μm)。 除上述事項以外,藉由與實施例2相同方法,進行樹脂薄片之製造及評價,並且進行利用壓縮成型之成型體之製造及評價。
[比較例1] 第一支撐膜變更為聚對苯二甲酸乙二酯膜(東麗公司製「LUMIRROR R80」,厚38μm)。 且塗佈於第一支撐膜上之樹脂清漆2之乾燥程度,變更為所得樹脂組成物層所含之樹脂組成物於100℃下之熔融黏度成為50000泊。 再者,第二支撐膜變更為於表面具備矽氧系脫模層之聚對苯二甲酸乙二酯膜(東洋紡公司製「E7007」,厚50μm)。 除上述事項以外,藉由與實施例2相同方法,進行樹脂薄片之製造及評價。進而使用所製造之樹脂薄片,進行利用壓縮成型之成型體之製造,但由於剝下第一支撐膜時樹脂組成物層破損,故無法實施壓縮成型。
[比較例2] 塗佈於第一支撐膜上之樹脂清漆1之乾燥程度,變更為所得樹脂組成物層所含之樹脂組成物於100℃下之熔融黏度成為500泊。 除上述事項以外,藉由與實施例1相同方法,進行樹脂薄片之製造及評價。進而使用所製造之樹脂薄片,進行利用壓縮成型之成型體之製造,但由於剝下第一支撐膜時樹脂組成物層破損,故無法實施壓縮成型。
[結果] 前述實施例及比較例之結果示於下述表。
Figure 02_image013
[檢討] 比較例1中,第一支撐膜與樹脂組成物層之密著力FA 過強。因此,剝下第一支撐膜時,樹脂組成物層之一部分附著於剝下之第一支撐膜,使樹脂組成物破損。因此,無法進行利用壓縮成型法之成型體製造。
比較例2中,樹脂組成物層柔軟,強度弱。亦即樹脂組成物層之剛性不足。因此由於樹脂組成物之機械強度低,故剝下第一支撐膜時,樹脂組成物層之一部分附著於剝下之第一支撐膜,使樹脂組成物破損。因此,無法進行利用壓縮成型法之成型體製造。
相對於此,實施例中均由於自樹脂薄片剝下第一支撐膜及第二支撐膜獲得樹脂組成物層,故可利用使用該樹脂組成物層之壓縮成型法製造成型體。由於不產生第一支撐膜及第二支撐膜咬入所得成型體之硬化體層,故未形成凹凸。且前述壓縮成型中,由於樹脂組成物層不接觸於模具之腔室外,故不產生因樹脂組成物層附著所致之模具污染。因此,確認依據本發明之半導體裝置之製造方法,可抑制硬化體層中之凹凸形成,且可抑制因樹脂組成物流出所致之模具污染。
但,實施例6中,保存樹脂薄片時,於樹脂薄片全體觀察到發生二支撐膜與樹脂組成物層部分分離而浮起。因此由實施例6之結果,可確認為了適用於本發明之製造方法的樹脂薄片,支撐膜與樹脂組成物層之密著力、及該等密著力與樹脂組成物層之熔融黏度之關係存在滿足式(1)~式(3)所示之適當條件。
100:壓縮成型裝置 110:第一模 120:第二模 121:底部塊體 122:側部塊體 130:腔室 130D:腔室之開口部 200:基板 200U:基板之表面 300:樹脂薄片 310:樹脂組成物層 310U:樹脂組成物層之第一面 310D:樹脂組成物層之第二面 320:第一支撐膜 330:第二支撐膜 340:硬化體層 350:成型體 400:壓縮成型裝置 500:壓縮成型裝置 510:第一模 511:底部塊體 512:側部塊體 520:第二模 530:腔室 W130 :腔室的寬 W200 :基板的寬 W310 :樹脂組成物層的寬
[圖1]係示意性顯示本發明第一實施形態之半導體裝置之製造方法所用之壓縮成型裝置之剖面圖。 [圖2]係示意性顯示於本發明第一實施形態之半導體裝置之製造方法所用之壓縮成型裝置設置基板之狀態的剖面圖。 [圖3]係示意性顯示本發明第一實施形態之半導體裝置之製造方法所準備之樹脂薄片於與厚度方向平行之平面切開之剖面的剖面圖。 [圖4]係示意性顯示於本發明第一實施形態之半導體裝置之製造方法所用之壓縮成型裝置設置基板及樹脂組成物層之狀態的剖面圖。 [圖5]係示意性顯示使用本發明第一實施形態之半導體裝置之製造方法所用之壓縮成型裝置,進行壓縮成型之狀態的剖面圖。 [圖6]係示意性顯示可以本發明第一實施形態之製造方法製造之成型體之剖面圖。 [圖7]係示意性顯示使用具備樹脂組成物層及支撐膜之樹脂薄片進行壓縮成型時之壓縮成型裝置的剖面圖。 [圖8]係示意性顯示於本發明第二實施形態之半導體裝置之製造方法所用之壓縮成型裝置設置基板及樹脂組成物層之狀態的剖面圖。 [圖9]係示意性顯示使用本發明第二實施形態之半導體裝置之製造方法所用之壓縮成型裝置,進行壓縮成型之狀態的剖面圖。 [圖10]係示意性顯示於本發明第三實施形態之半導體裝置之製造方法所用之壓縮成型裝置設置基板及樹脂組成物層之狀態的剖面圖。 [圖11]係示意性顯示使用本發明第三實施形態之半導體裝置之製造方法所用之壓縮成型裝置,進行壓縮成型之狀態的剖面圖。

Claims (11)

  1. 一種半導體裝置之製造方法,其係使用具備可支撐基板之第一模及與前述第一模對向設置之第二模,且於前述第一模及前述第二模之至少一者形成腔室之壓縮成型裝置製造半導體裝置的半導體裝置之製造方法,前述製造方法包含: 準備前述基板之步驟(I); 準備具備以熱硬化性之樹脂組成物形成之樹脂組成物層與接觸於前述樹脂組成物層之一面之第一支撐膜的樹脂薄片之步驟(II); 剝下前述第一支撐膜,於前述樹脂組成物層之兩面,同時或非同時獲得非被覆狀態之步驟(III);及 將前述樹脂組成物層侷限於前述腔室內,於前述第一模與前述第二模之間,將前述樹脂組成物層與前述基板加壓之步驟(IV)。
  2. 如請求項1之半導體裝置之製造方法,其中步驟(II)中準備之前述樹脂薄片具備前述樹脂組成物層、接觸於前述樹脂組成物層之一面之前述第一支撐膜及接觸於前述樹脂組成物層之另一面之第二支撐膜, 前述步驟(III)包含剝下前述第一支撐膜及第二支撐膜。
  3. 如請求項2之半導體裝置之製造方法,其中前述第一支撐膜與前述樹脂組成物層之密著力FA [gf/cm]滿足下述式(1), 前述第二支撐膜與前述樹脂組成物層之密著力FB [gf/cm]滿足下述式(2),
    Figure 03_image001
  4. 如請求項2之半導體裝置之製造方法,其中前述第一支撐膜與前述樹脂組成物層之密著力FA [gf/cm]、前述第二支撐膜與前述樹脂組成物層之密著力FB [gf/cm]及100℃下之前述樹脂組成物之熔融黏度η[泊]滿足式(3),
    Figure 03_image003
  5. 如請求項2之半導體裝置之製造方法,其中前述第二支撐膜厚度為10μm~200μm。
  6. 如請求項2之半導體裝置之製造方法,其中前述第二支撐膜之與前述樹脂組成物層接觸之面係經矽氧系脫模劑予以表面處理。
  7. 如請求項1之半導體裝置之製造方法,其中前述樹脂組成物層厚度為40μm以上。
  8. 如請求項1之半導體裝置之製造方法,其中前述第一支撐膜厚度為10μm~200μm。
  9. 如請求項1之半導體裝置之製造方法,其中前述第一支撐膜之與前述樹脂組成物層接觸之面係經矽氧系脫模劑予以表面處理。
  10. 如請求項1之半導體裝置之製造方法,其中前述樹脂組成物層具有於步驟(IV)中前述樹脂組成物層被加壓時充滿於前述腔室內之容量。
  11. 一種樹脂薄片,其具備以熱硬化性之樹脂組成物形成之樹脂組成物層、接觸於前述樹脂組成物層之一面之第一支撐膜及接觸於前述樹脂組成物層之另一面之第二支撐膜, 前述樹脂組成物層之厚度為40μm以上, 前述第一支撐膜與前述樹脂組成物層之密著力 FA [gf/cm]、前述第二支撐膜與前述樹脂組成物層之密著力FB [gf/cm]及100℃下之前述樹脂組成物之熔融黏度η[泊]滿足下述式(1)、式(2)及式(3),
    Figure 03_image005
TW110106871A 2020-03-06 2021-02-26 半導體裝置之製造方法及樹脂薄片 TW202200375A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020038875A JP7200961B2 (ja) 2020-03-06 2020-03-06 半導体装置の製造方法、及び、樹脂シート
JP2020-038875 2020-03-06

Publications (1)

Publication Number Publication Date
TW202200375A true TW202200375A (zh) 2022-01-01

Family

ID=77524875

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106871A TW202200375A (zh) 2020-03-06 2021-02-26 半導體裝置之製造方法及樹脂薄片

Country Status (4)

Country Link
JP (2) JP7200961B2 (zh)
KR (1) KR20210113069A (zh)
CN (1) CN113363167A (zh)
TW (1) TW202200375A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102551425B1 (ko) * 2022-08-26 2023-07-06 주식회사 셈앤텍 발열체 부착용 키트 및 그 제조 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146556A (ja) * 2002-10-24 2004-05-20 Towa Corp 樹脂封止方法、樹脂封止装置、及び樹脂シート
JP3859654B2 (ja) * 2003-07-31 2006-12-20 沖電気工業株式会社 半導体装置の製造方法
JP2006237275A (ja) * 2005-02-25 2006-09-07 Nippon Steel Chem Co Ltd 半導体装置の製造方法および半導体装置
JP5468574B2 (ja) * 2011-06-29 2014-04-09 Towa株式会社 電子部品の樹脂封止成形方法及び装置
JP6171280B2 (ja) 2012-07-31 2017-08-02 味の素株式会社 半導体装置の製造方法
JP2014229791A (ja) * 2013-05-23 2014-12-08 日東電工株式会社 封止シート貼付け方法
JP2015106698A (ja) * 2013-12-02 2015-06-08 味の素株式会社 半導体装置の製造方法
JP6272690B2 (ja) 2013-12-26 2018-01-31 日東電工株式会社 両面セパレータ付き封止用シート、及び、半導体装置の製造方法
JP6430143B2 (ja) * 2014-04-30 2018-11-28 Towa株式会社 樹脂成形装置及び樹脂成形方法並びに成形製品の製造方法
JP6384118B2 (ja) * 2014-05-13 2018-09-05 日立化成株式会社 半導体装置の製造方法、半導体装置及び半導体装置製造用部材
WO2017038922A1 (ja) * 2015-09-01 2017-03-09 リンテック株式会社 粘着シート
US20190109021A1 (en) * 2016-11-11 2019-04-11 Shin-Etsu Engineering Co., Ltd. Resin-sealing device and resin-sealing method
JP7163654B2 (ja) * 2018-07-27 2022-11-01 味の素株式会社 樹脂組成物、シート状積層材料、プリント配線板、半導体チップパッケージ、及び半導体装置

Also Published As

Publication number Publication date
JP7200961B2 (ja) 2023-01-10
JP2023021385A (ja) 2023-02-10
KR20210113069A (ko) 2021-09-15
CN113363167A (zh) 2021-09-07
JP2021141243A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
TWI804489B (zh) 樹脂組成物
TWI835277B (zh) 樹脂組成物
TWI811223B (zh) 樹脂組成物、樹脂薄片、電路基板、及半導體晶片封裝體
TW201826450A (zh) 樹脂組成物
TWI822828B (zh) 樹脂組成物
JP2017179279A (ja) 樹脂組成物
JP7444212B2 (ja) 樹脂組成物
CN113462276B (zh) 树脂组合物、树脂组合物的固化物、树脂片材、印刷配线板、半导体芯片封装和半导体装置
JP7192674B2 (ja) 樹脂シート
JP2023021385A (ja) 半導体装置の製造方法、及び、樹脂シート
JP7131593B2 (ja) 樹脂組成物
TW202206541A (zh) 樹脂組成物
TW202045614A (zh) 樹脂組成物
TWI851739B (zh) 樹脂薄片、電路基板及半導體晶片封裝
JP7439575B2 (ja) 半導体装置の製造方法、及び、樹脂シート
JP7533670B2 (ja) 樹脂組成物
JP7156335B2 (ja) 樹脂組成物、接着フィルム、部品内蔵回路基板、半導体装置、及びシート状樹脂組成物の製造方法
TW202222971A (zh) 樹脂組成物
KR20230049037A (ko) 수지 조성물
TW202216833A (zh) 樹脂組成物