TW202015909A - Glasses having non-frangible stress profiles - Google Patents

Glasses having non-frangible stress profiles Download PDF

Info

Publication number
TW202015909A
TW202015909A TW109100456A TW109100456A TW202015909A TW 202015909 A TW202015909 A TW 202015909A TW 109100456 A TW109100456 A TW 109100456A TW 109100456 A TW109100456 A TW 109100456A TW 202015909 A TW202015909 A TW 202015909A
Authority
TW
Taiwan
Prior art keywords
glass
mol
mpa
dol
thickness
Prior art date
Application number
TW109100456A
Other languages
Chinese (zh)
Other versions
TWI705889B (en
Inventor
迪琳娜露辛達傑斯堤斯 杜菲
羅斯提斯拉夫費契夫 路瑟夫
維特馬利諾 施耐德
克里斯堤琳 史密斯
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201462014372P priority Critical
Priority to US62/014,372 priority
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW202015909A publication Critical patent/TW202015909A/en
Application granted granted Critical
Publication of TWI705889B publication Critical patent/TWI705889B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Abstract

A glass exhibiting non-frangible behavior in a region where substantially higher central tension is possible without reaching frangibility is provided. This region allows greater extension of the depth of compression in which fracture-causing flaws are arrested, without rendering the glass frangible despite the presence of high central tension region in the sample.

Description

無易碎應力分布曲線的玻璃Glass without fragile stress distribution curve

本專利申請案依據專利法主張於2014年6月19日提出申請的美國臨時專利申請案序號第62/014372號的優先權權益,該申請案之內容為本案所依據且該申請案之內容以引用方式全部併入本文中。 This patent application claims the priority right of the US Provisional Patent Application No. 62/014372 filed on June 19, 2014 under the Patent Law. The content of the application is the basis of the case and the content of the application is All references are incorporated herein.

本揭示係關於強化玻璃。更特定言之,本揭示係關於不會表現出易碎行為的強化玻璃。This disclosure is about strengthened glass. More specifically, this disclosure is about strengthened glass that does not exhibit fragile behavior.

化學強化玻璃被廣泛用作行動裝置、觸控功能顯示器、及類似物的防護玻璃。一般來說,非易碎的離子交換玻璃作為觸控螢幕裝置的防護玻璃是較佳的,以降低由於自加速高度碎裂的裂縫所造成的來自小玻璃片的傷害風險,高度碎裂的裂縫是高度易碎應力狀態的特性。這種狀態時常是由於樣品中的過度壓縮應力和中心張力組合所產生的。近日揭示的、基於厚度相依最大中心張力(CT)的非易碎標準只有在藉由化學強化所實現的壓縮層深度(DOL)比樣品厚度小相當多的狀態下才適用於相對較小的厚度(即> 0.8 mm)。對於較厚度大相當多的層深度來說。Chemically strengthened glass is widely used as protective glass for mobile devices, touch function displays, and the like. In general, non-fragile ion exchange glass is preferred as the protective glass for touch screen devices to reduce the risk of injury from small glass sheets due to self-accelerating highly fragmented cracks, highly fragmented cracks It is a characteristic of highly fragile stress state. This state is often caused by a combination of excessive compressive stress and central tension in the sample. The recently disclosed non-fragile standard based on the thickness-dependent maximum central tension (CT) is only applicable to relatively small thicknesses when the depth of compression layer (DOL) achieved by chemical strengthening is considerably smaller than the sample thickness. (Ie> 0.8 mm). For a relatively large layer depth that is thicker.

提供在可能有大相當多的中心張力而沒有達到易碎度的區域中展現非易碎行為的玻璃。該區域允許壓縮深度延伸更長,其中導致碎裂的缺陷被遏止,儘管樣品中存在高中心張力區域也不會使玻璃易碎。Provide glass that exhibits non-fragile behavior in areas where there may be a significant amount of central tension without reaching friability. This area allows the compression depth to extend longer, where defects that cause chipping are contained, although the presence of high center tension areas in the sample does not make the glass brittle.

提供了具有深壓縮層並且沒有表現易碎行為的強化玻璃(即玻璃是非易碎的)。該玻璃具有從表面延伸到該玻璃總厚度之至少約0.08 %的壓縮深度DOC的表面壓縮層及壓縮應力CS和物理中心張力CT,其中CT-CS≦ 350 MPa。Tempered glass with a deep compression layer and no frangible behavior (ie glass is not frangible) is provided. The glass has a surface compression layer extending from the surface to a compression depth DOC of at least about 0.08% of the total thickness of the glass, and a compression stress CS and a physical center tension CT, where CT-CS≦350 MPa.

因此,本揭示的一個態樣是提供一種玻璃,該玻璃具有壓縮層、中心區域、及厚度t,該壓縮層從該玻璃之表面延伸至壓縮深度DOC並處於最大壓縮應力CS之下,該中心區域在該玻璃之中心具有最大物理中心張力CT,該中心區域從該中心向外延伸到該壓縮深度,該厚度t在從約0.3 mm至約1.0 mm的範圍中,其中DOC≧ 0.08・t並且CT-CS≦ 350 MPa。Therefore, one aspect of the present disclosure is to provide a glass having a compression layer, a central region, and a thickness t, the compression layer extending from the surface of the glass to a compression depth DOC and under the maximum compression stress CS, the center The area has the maximum physical center tension CT at the center of the glass, the center area extends outward from the center to the compression depth, and the thickness t is in the range from about 0.3 mm to about 1.0 mm, where DOC≧0.08・t and CT-CS≦ 350 MPa.

本揭示的第二態樣是提供一種玻璃,該玻璃具有壓縮層、中心區域、及厚度t,該壓縮層從該玻璃之表面延伸至壓縮深度DOC並處於最大壓縮應力CS之下,該中心區域在該玻璃之中心具有最大物理中心張力CT,該中心區域從該中心向外延伸到該壓縮深度進入該玻璃,該厚度t在從約0.3 mm至約1.0 mm的範圍中。該壓縮深度DOC大於或等於0.08・t,而且該玻璃具有小於約200 J/m2 ・mm的平均彈性能密度。The second aspect of the present disclosure is to provide a glass having a compression layer, a central region, and a thickness t, the compression layer extending from the surface of the glass to a compression depth DOC and under a maximum compressive stress CS, the central region At the center of the glass there is the maximum physical center tension CT, the center region extends outward from the center to the compression depth into the glass, and the thickness t is in the range from about 0.3 mm to about 1.0 mm. The compression depth DOC is greater than or equal to 0.08・t, and the glass has an average elastic energy density of less than about 200 J/m 2 ・mm.

本揭示的第三態樣是提供一種玻璃,該玻璃包含:從該玻璃之表面延伸至壓縮深度DOC的壓縮層,該壓縮表面層具有最大壓縮應力CS;在該玻璃之中心具有最大物理中心張力CT的中心區域。該中心區域從該玻璃之中心向外延伸到該壓縮深度。該玻璃具有在從約0.3 mm至約1.0 mm範圍中的厚度t,其中DOC≧ 0.08・t並且CT-CS≦ 350 MPa。當0.3 mm≦ t≦ 0.5 mm時,該物理中心張力CT大於

Figure 02_image001
。當0.5 mm≦ t≦  0.7 mm時,該物理中心張力CT大於
Figure 02_image003
。當0.7 mm>t≦ 1.0 mm時,該物理中心張力CT大於
Figure 02_image005
. A third aspect of the present disclosure is to provide a glass including: a compression layer extending from a surface of the glass to a compression depth DOC, the compression surface layer having a maximum compression stress CS; and a maximum physical center tension at the center of the glass The central area of CT. The central area extends outward from the center of the glass to the compression depth. The glass has a thickness t in the range from about 0.3 mm to about 1.0 mm, where DOC≧0.08・t and CT-CS≦350 MPa. When 0.3 mm≦t≦0.5 mm, the physical center tension CT is greater than A third aspect of the present disclosure is to provide a glass including: a compression layer extending from a surface of the glass to a compression depth DOC, the compression surface layer having a maximum compression stress CS; and a maximum physical center tension at the center of the glass The central area of ​​CT. The central area extends outward from the center of the glass to the compression depth. The glass has a thickness t in the range from about 0.3 mm to about 1.0 mm, where DOC≧0.08・t and CT-CS≦350 MPa. When 0.3 mm≦t≦0.5 mm, the physical center tension CT is greater than
Figure 02_image001
. When 0.5 mm≦t≦0.7 mm, the physical center tension CT is greater than . When 0.5 mm≦t≦0.7 mm, the physical center tension CT is greater than
Figure 02_image003
. When 0.7 mm>t≦ 1.0 mm, the physical center tension CT is greater than . When 0.7 mm>t≦ 1.0 mm, the physical center tension CT is greater than
Figure 02_image005
. .

本揭示的第四態樣是提供一種玻璃,該玻璃包含:從該玻璃之表面延伸至壓縮深度DOC的壓縮層,該壓縮表面層具有最大壓縮應力CS;在該玻璃之中心具有最大物理中心張力CT的中心區域,該中心區域從該玻璃之中心向外延伸到該壓縮深度,其中該玻璃具有小於200 J/m2 ・mm的平均彈性能密度;及在從約0.3 mm至約1.0 mm範圍中的厚度t,其中DOC≧ 0.08・t。當0.3 mm≦ t≦ 0.5 mm時,該物理中心張力CT大於

Figure 02_image001
。當0.5 mm≦ t≦  0.7 mm時,該物理中心張力CT大於
Figure 02_image003
,而且當0.7 mm>t≦ 1.0 mm,該物理中心張力CT大於
Figure 02_image005
. A fourth aspect of the present disclosure is to provide a glass including: a compression layer extending from the surface of the glass to a compression depth DOC, the compression surface layer having a maximum compression stress CS; and a maximum physical center tension at the center of the glass The central area of the CT, which extends outward from the center of the glass to the compression depth, where the glass has an average elastic energy density of less than 200 J/m 2 ・mm; and in the range from about 0.3 mm to about 1.0 mm The thickness t in DOC, where DOC≧0.08・t. When 0.3 mm≦t≦0.5 mm, the physical center tension CT is greater than A fourth aspect of the present disclosure is to provide a glass including: a compression layer extending from the surface of the glass to a compression depth DOC, the compression surface layer having a maximum compression stress CS; and a maximum physical center tension at the center of the glass The central area of ​​the CT, which extends outward from the center of the glass to the compression depth, where the glass has an average elastic energy density of less than 200 J/m 2 ・mm; and in the range from about 0.3 mm to about 1.0 mm The thickness t in DOC, where DOC≧0.08・t. When 0.3 mm≦t≦0.5 mm, the physical center tension CT is greater than
Figure 02_image001
. When 0.5 mm≦t≦0.7 mm, the physical center tension CT is greater than . When 0.5 mm≦t≦0.7 mm, the physical center tension CT is greater than
Figure 02_image003
, And when 0.7 mm>t≦1.0 mm, the physical center tension CT is greater than , And when 0.7 mm>t≦1.0 mm, the physical center tension CT is greater than
Figure 02_image005
. .

從以下的實施方式、附圖、及附加的申請專利範圍,這些和其他的態樣、優點、及顯著特徵將變得顯而易見。These and other aspects, advantages, and distinctive features will become apparent from the following embodiments, drawings, and additional patent application scope.

在下面的描述中,在圖式中所顯示的幾個視圖從頭至尾,相同的參照符號表示相同或相應的部件。還應該瞭解的是,除非另有指明,否則用語如「頂部」、「底部」、「向外」、「向內」及類似者是方便的用詞,並且不被解釋為限制性的用語。此外,只要一個群組被描述為包含一組元素及上述元素之組合中之至少一者,則瞭解的是,該群組可以包含任何數量的這些列舉元素、或基本上由或由任何數量的這些列舉元素所組成,無論是個別地或是相互組合。同樣地,當一群組被描述為由一組元素及上述元素之組合中之至少一者所組成時,則瞭解的是,該群組可以由任何數量的這些列舉元素所組成,無論是個別地或是相互組合。除非另有指明,否則當敘述值的範圍時,該值的範圍包括範圍的上限和下限兩者以及中間的任何範圍。本文所用的不定冠詞「一」及相應的定冠詞「該」意指「至少一」或「一或多個」,除非另有指明。還瞭解的是,本說明書和圖示中揭示的各種特徵可被用於任何及所有的組合。In the following description, the several views shown in the drawings are from beginning to end, and the same reference symbols indicate the same or corresponding parts. It should also be understood that, unless otherwise specified, terms such as "top", "bottom", "outward", "inward", and the like are convenient terms and are not to be interpreted as restrictive terms. Furthermore, as long as a group is described as containing at least one of a group of elements and a combination of the above elements, it is understood that the group may contain any number of these enumerated elements, or consist essentially of or consist of any number of These enumerated elements are composed individually or in combination with each other. Similarly, when a group is described as composed of at least one of a group of elements and a combination of the above elements, it is understood that the group can be composed of any number of these enumerated elements, whether individually Ground or combined with each other. Unless otherwise specified, when a range of values is stated, the range of values includes both the upper and lower limits of the range and any range in between. The indefinite article "a" and the corresponding definite article "the" as used herein mean "at least one" or "one or more" unless otherwise specified. It is also understood that the various features disclosed in this specification and illustrations can be used in any and all combinations.

本文中使用的術語「玻璃製品」係以最廣泛的意義使用,以包括全部或部分由玻璃製成的任何物體。除非另有指明,否則所有的成分皆以莫耳百分比(莫耳%)表示。The term "glass product" as used herein is used in the broadest sense to include any object made wholly or partially of glass. Unless otherwise specified, all ingredients are expressed in mole percent (mol%).

值得注意的是,本文中可以使用術語「大體上」或「約」來表達可能歸因於任何定量比較、值、量測、或其他表示的固有不確定度。本文中還可以使用這些術語來表示表達的量與所述參考物之間可能的差異程度不會造成所討論標的物之基本功能產生變化。因此,「大體上不含MgO」的玻璃為其中MgO未被主動或分批加入玻璃中、但可以作為雜質以非常少量存在的玻璃。It is worth noting that the term "substantially" or "approximately" may be used herein to express the inherent uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. These terms can also be used herein to indicate that the degree of possible difference between the amount expressed and the reference does not cause a change in the basic function of the subject matter in question. Therefore, glasses that are "substantially free of MgO" are glasses in which MgO is not actively or batch-wise added to the glass, but can exist as impurities in very small amounts.

一般性地參照圖式,尤其是第1圖,將瞭解到的是,該等圖示係用於描述特定實施例的目的,並非意圖限制該揭示或所附申請專利範圍。該等圖式不一定依照比例繪製,而且為了清楚和簡明的益處,可將該等圖式中的某些特徵和某些視圖以誇大的比例或示意的方式圖示。Referring generally to the drawings, and particularly Figure 1, it will be understood that these drawings are for the purpose of describing particular embodiments and are not intended to limit the scope of the disclosure or the accompanying patent applications. The drawings are not necessarily drawn to scale, and for the sake of clarity and conciseness, certain features and certain views in the drawings may be illustrated in exaggerated scale or schematic manner.

本文中使用的術語「層深度」和「DOL」係指使用諸如FSM-6000的市售儀器藉由表面應力(FSM)量測所測得的壓縮層深度。The terms "layer depth" and "DOL" as used herein refer to the compressed layer depth measured by surface stress (FSM) measurement using a commercially available instrument such as FSM-6000.

本文中使用的術語「壓縮深度」和「DOC」係指玻璃內的應力從壓縮改變到拉伸應力的深度。在DOC,應力從正(壓縮)應力過渡到負(拉伸)應力,因此具有零值。As used herein, the terms "depth of compression" and "DOC" refer to the depth at which the stress in the glass changes from compression to tensile stress. In DOC, the stress transitions from positive (compressive) stress to negative (tensile) stress, and therefore has a value of zero.

依據所屬技術領域中通常使用的慣例,壓縮被表示為負(>0)應力,而張力被表示為正(> 0)應力。然而,除非另有指明,否則本說明書從頭至尾將壓縮應力CS表示為正的或絕對值-即如本文所述CS=∣CS∣,並將中心張力或拉伸應力表示為負值,以更好地顯現本文所述的壓縮應力分布曲線。According to conventions commonly used in the art, compression is expressed as negative (>0) stress, and tension is expressed as positive (>0) stress. However, unless otherwise specified, this specification expresses the compressive stress CS as a positive or absolute value-that is, CS=∣CS∣ as described herein, and the central tension or tensile stress as a negative value, to To better show the compressive stress distribution curve described in this article.

離子交換常被用來化學強化玻璃。在一個特定的實例中,這種陽離子源(例如熔融鹽或「離子交換」浴)中的鹼金屬陽離子被與玻璃中的較小鹼金屬陽離子交換,以在玻璃表面附近實現處於壓縮應力(CS)的層。例如,來自陽離子源的鉀離子時常被與玻璃中的鈉離子交換。壓縮層從表面延伸到玻璃中一個深度,而且典型是從在表面的最大值降低到在壓縮深度DOC的0。Ion exchange is often used to chemically strengthen glass. In a particular example, the alkali metal cations in this source of cations (such as molten salts or "ion exchange" baths) are exchanged with the smaller alkali metal cations in the glass to achieve compressive stress (CS) near the glass surface ) Layer. For example, potassium ions from a cation source are often exchanged with sodium ions in glass. The compression layer extends from the surface to a depth in the glass, and typically decreases from the maximum value at the surface to zero at the compression depth DOC.

在一個實施例中,本文所述的強化玻璃具有至少約150 MPa、而且在一些實施例中至少約200MPa的最大壓縮應力。在某些實施例中,該壓縮應力為小於約250 MPa。In one embodiment, the strengthened glass described herein has a maximum compressive stress of at least about 150 MPa, and in some embodiments at least about 200 MPa. In certain embodiments, the compressive stress is less than about 250 MPa.

平面離子交換玻璃製品之剖面示意圖圖示於第1圖中。玻璃製品100具有厚度t、第一表面110、及第二表面112。雖然第1圖中圖示的實施例繪示玻璃製品100為平面的片或板,然而玻璃製品也可具有其他的構形,如三維形狀或非平面構形。玻璃製品100具有第一壓縮區域120,第一壓縮區域120從第一表面110延伸壓縮深度(DOC)d1 進入玻璃製品100的主體。在第1圖圖示的實施例中,玻璃製品100還具有第二壓縮區域122,第二壓縮區域122從第二表面112延伸第二壓縮深度(DOC)d2 。玻璃製品100還具有中央區域130,中央區域130從d1 延伸至d2 。中央區域130係處於拉伸應力或物理中心張力(CT)下,該拉伸應力或物理中心張力(CT)平衡或抗衡區域120與122的壓縮應力。第一與第二壓縮區域120、122的深度d1 、d2 可保護玻璃製品100免於遭受對玻璃製品100的第一與第二表面110、112之急遽撞擊所造成的裂縫波及,同時該壓縮應力最小化裂縫穿過第一與第二壓縮區域120、122的深度d1 、d2 之可能性。The schematic cross-sectional diagram of the planar ion exchange glass product is shown in the first figure. The glass product 100 has a thickness t, a first surface 110, and a second surface 112. Although the embodiment illustrated in FIG. 1 illustrates the glass product 100 as a flat sheet or plate, the glass product may have other configurations, such as a three-dimensional shape or a non-planar configuration. The glass product 100 has a first compression region 120 that extends a compression depth (DOC) d 1 from the first surface 110 into the body of the glass product 100. In the embodiment illustrated in FIG. 1, the glass product 100 further has a second compression region 122 that extends from the second surface 112 by a second compression depth (DOC) d 2 . The glass product 100 also has a central region 130 that extends from d 1 to d 2 . The central region 130 is under tensile stress or physical central tension (CT), which balances or counteracts the compressive stress of the regions 120 and 122. The depths d 1 and d 2 of the first and second compressed regions 120 and 122 can protect the glass product 100 from being affected by cracks caused by the sudden impact on the first and second surfaces 110 and 112 of the glass product 100, and the The compressive stress minimizes the possibility of cracks passing through the depths d 1 , d 2 of the first and second compressed regions 120, 122.

在一些實施例中,壓縮深度DOC為玻璃製品總厚度t的至少約8%–即DOC≧ 0.8t–而且在某些實施例中,當厚度t大於0.75 mm時DOC≧ 0.8t。在其他實施例中,壓縮深度DOC為厚度t的至少約9%(DOC≧ 0.8t),而且在某些實施例中,當厚度t大於0.5 mm時DOC≧ 0.9t。In some embodiments, the compressed depth DOC is at least about 8% of the total thickness t of the glass product—ie, DOC≧0.8t—and in some embodiments, DOC≧0.8t when the thickness t is greater than 0.75 mm. In other embodiments, the compressed depth DOC is at least about 9% of the thickness t (DOC≧0.8t), and in some embodiments, when the thickness t is greater than 0.5 mm, DOC≧0.9t.

壓縮應力CS和層深度DOL係使用本技術領域中習知的工具進行量測。這樣的工具包括、但不限於使用市購由Luceo Co., Ltd. (Tokyo, Japan)製造的儀器例如FSM-6000或類似者進行的表面應力量測(FSM)、以及標題為「化學強化平板玻璃之標準規範(Standard Specification for Chemically Strengthened Flat Glass)」的ASTM 1422C-99和ASTM 1279.19779「在退火、熱強化、及完全回火平板玻璃中邊緣和表面應力的非破壞性光彈性量測之標準測試方法(Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully-Tempered Flat Glass)」中描述的量測壓縮應力和層深度之方法,將上述方法之內容以引用方式全部併入本文中。表面應力量測仰賴於應力光學係數(SOC)的精確測量,應力光學係數與玻璃的雙折射率有關。SOC進而藉由本技術領域中習知的那些方法量測,例如纖維和四點彎曲法,這兩種方法都被描述在標題為「玻璃應力-光學係數量測之標準測試方法(Standard Test Method for Measurement of Glass Stress-Optical Coefficient)」的ASTM標準C770-98 (2008)中,將上述方法之內容以引用方式全部併入本文中,以及整體汽缸法(bulk cylinder method)。Compression stress CS and layer depth DOL are measured using tools known in the art. Such tools include, but are not limited to, surface stress measurements (FSM) performed using commercially available instruments manufactured by Luceo Co., Ltd. (Tokyo, Japan) such as FSM-6000 or the like, and the title "Chemical Strengthened Flatbed" Standard Specification for Chemically Strengthened Flat Glass" ASTM 1422C-99 and ASTM 1279.19779 "Standard for non-destructive photoelasticity measurement of edge and surface stress in annealed, thermally strengthened, and fully tempered flat glass The method of measuring compressive stress and layer depth described in "Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully-Tempered Flat Glass" All are incorporated herein by reference. Surface stress measurement depends on the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of glass. The SOC is further measured by methods known in the art, such as the fiber and four-point bending methods, both of which are described in the title "Standard Test Method for Glass Stress-Optical Coefficient Measurement (Standard Test Method for "Measurement of Glass Stress-Optical Coefficient" in ASTM Standard C770-98 (2008), the contents of the above methods are incorporated by reference in this article, and the bulk cylinder method (bulk cylinder method).

在一些實施例中,CS和物理中心張力CT之間的關係可以由以下表示式近似: CT=(CS•DOL)/(t–2 DOL)   (1), 其中t為玻璃製品的厚度,單位為微米(µm)。在本揭示的各個部分中,中心張力CT和壓縮應力CS在本文中單位為兆帕(MPa),厚度t單位為微米(µm)或毫米(mm)任一者,而且層深度DOL單位為微米(µm)。In some embodiments, the relationship between CS and physical center tension CT can be approximated by the following expression: CT=(CS•DOL)/(t–2 DOL) (1), Where t is the thickness of the glass product in micrometers (µm). In each part of this disclosure, the unit of central tension CT and compressive stress CS is megapascals (MPa), the thickness t is either micron (µm) or millimeter (mm), and the layer depth DOL is in microns (Μm).

對於其中壓縮應力層延伸到玻璃中更深的深度的強化玻璃製品來說,FSM技術可能會遭遇影響觀察到的DOL值的對比問題。在較深的DOL值處,TE和TM光譜之間的對比可能有所不足,從而使TE和TM光譜之間的差異計算–及DOL的測定-更加困難。另外,FSM技術無法測得壓縮應力分布曲線(即壓縮應力作為玻璃中深度的函數之變化)。此外,FSM技術無法測得從某些元素(例如鋰)的離子交換所產生的層深度。For tempered glass products where the compressive stress layer extends to a deeper depth in the glass, FSM technology may encounter contrast issues that affect the observed DOL values. At deeper DOL values, the comparison between the TE and TM spectra may be insufficient, making the calculation of the difference between the TE and TM spectra – and the determination of DOL – more difficult. In addition, FSM technology cannot measure the compressive stress distribution curve (that is, the change of compressive stress as a function of depth in glass). In addition, FSM technology cannot measure the depth of layers resulting from the ion exchange of certain elements (such as lithium).

已開發下述的技術來產出更精確測定的強化玻璃製品壓縮深度(DOC)和壓縮應力分布曲線。The following techniques have been developed to produce more accurately measured depth of compression (DOC) and compressive stress distribution curves of strengthened glass products.

在Rostislav V. Roussev等人於2012年5月3日提出申請、標題為「用於量測離子交換玻璃之應力分布曲線的系統與方法(Systems And Methods for Measuring the Stress Profile of Ion-Exchanged Glass)」、並主張於2011年5月25日提出申請且具有相同標題的美國臨時專利申請案第61/489,800號之優先權的美國專利申請案第13/463,322號(下文稱為「Roussev I」)中,揭示了兩種用於擷取回火或化學強化玻璃之詳細和精確應力分布曲線(應力作為深度的函數)的方法。TM和TE偏振的結合光學模譜係經由稜鏡耦合技術收集,並全部被用來獲得詳細和精確的TM和TE折射率分布曲線n TM (z) 和n TE (z)。將上述申請案的內容以引用方式全部併入本文中。Rostislav V. Roussev et al. submitted an application on May 3, 2012, entitled "Systems and Methods for Measuring the Stress Profile of Ion-Exchanged Glass" ”, and advocated the US Patent Application No. 13/463,322 with priority of US Provisional Patent Application No. 61/489,800 with the same title and filed on May 25, 2011 (hereinafter referred to as “Roussev I”) In, two methods are disclosed for capturing detailed and precise stress distribution curves (stress as a function of depth) of tempered or chemically strengthened glass. The combined optical mode spectrums of TM and TE polarization are collected through 珜鏡coupling technology, and all are used to obtain detailed and accurate TM and TE refractive index distribution curves n TM (z) and n TE (z). The content of the above application is incorporated herein by reference.

在一個實施例中,詳細折射率分布曲線是使用逆溫策爾-克拉默斯-布里淵(IWKB)法從模譜獲得。In one embodiment, the detailed refractive index distribution curve is obtained from the model spectrum using the inverse Wenzel-Cramers-Brillouin (IWKB) method.

在另一個實施例中,詳細折射率分布曲線是藉由將量測到的模譜適配於描述折射率分布曲線形狀的預定義函數形式之數值計算光譜並從最佳適配中獲得該函數形式的參數來獲得。詳細的應力分布曲線S(z)是使用已知的應力-光學係數(SOC)值從取得的TM和TE折射率分布曲線差計算: S(z)=[nTM (z)-nTE (z)]/SOC  (2)。In another embodiment, the detailed refractive index distribution curve is calculated by fitting the measured modulus spectrum to a value of a predefined function form describing the shape of the refractive index distribution curve and obtaining the function from the best fit The parameters of the form are obtained. The detailed stress distribution curve S(z) is calculated from the difference between the obtained TM and TE refractive index distribution curves using known stress-optical coefficient (SOC) values: S(z)=[n TM (z)-n TE ( z)]/SOC (2).

由於小的SOC值,在任何深度z的雙折射率nTM (z)-nTE (z)是折射率nTM (z)和nTE (z) 任一者的一小部分(通常在1 %的等級)。獲得未由於在量測模譜中的雜訊而明顯失真的應力分布曲線要求模有效折射率的測定具有0.00001 RIU等級的精確度。儘管收集的TE和TM模譜或模譜影像中有雜訊及/或不良對比,Roussev I揭示的方法進一步包括應用於原始數據以確保量測的模折射率具有這種高精確度的技術。這種技術包括雜訊平均化、濾波、及曲線適配,以找出對應於具有子像素解析度的模式的極值位置。Due to the small SOC value, the birefringence n TM (z)-n TE (z) at any depth z is a fraction of either the refractive index n TM (z) or n TE (z) (usually at 1 % Level). Obtaining a stress distribution curve that is not significantly distorted by noise in the measurement mode spectrum requires that the determination of the effective refractive index of the mode has an accuracy of 0.00001 RIU level. Despite the noise and/or poor contrast in the collected TE and TM mode spectra or mode spectrum images, the method disclosed by Roussev I further includes techniques applied to the raw data to ensure that the measured mode refractive index has such high accuracy. This technique includes noise averaging, filtering, and curve adaptation to find the extreme position corresponding to the mode with sub-pixel resolution.

類似地,Rostislav V. Roussev等人於2013年9月23日提出申請、標題為「用於量測玻璃和玻璃陶瓷中的雙折射率之系統與方法(Systems and Methods for Measuring Birefringence in Glass and Glass-Ceramics)」、並主張於2012年9月28日提出申請且具有相同標題的美國臨時專利申請案序號第61/706,891號之優先權的美國專利申請案第14/033,954號(下文稱為「Roussev II」)揭示用於在玻璃和玻璃陶瓷(包括不透明玻璃和玻璃陶瓷)的表面上光學量測雙折射率的設備和方法。不像辨識個別模譜的Roussev I,Roussev II揭示的方法仰賴於仔細分析在稜鏡耦合量測架構中由稜鏡樣品界面反射的TM和TE光之角強度分布。將上述申請案之內容以引用方式全部併入本文中。Similarly, Rostislav V. Roussev et al. filed an application on September 23, 2013, entitled "Systems and Methods for Measuring Birefringence in Glass and Glass" -Ceramics), and the US Patent Application No. 14/033,954, which claims priority on the US Provisional Patent Application No. 61/706,891 with the same title and filed on September 28, 2012 (hereinafter referred to as " "Roussev II") discloses an apparatus and method for optically measuring birefringence on the surface of glass and glass ceramics (including opaque glass and glass ceramics). Unlike Roussev I, which recognizes individual modes, the method disclosed by Roussev II relies on careful analysis of the angular intensity distribution of TM and TE light reflected by the interface of the Lu sample in the Lu coupled measurement framework. The content of the above application is incorporated herein by reference.

因此,正確的反射光強度分布對比角度遠比在僅尋求個別模式位置的傳統稜鏡耦合應力量測中更為重要。為此目的,Roussev 1和Roussev II揭示的方法包含用於標準化強度光譜的技術,包括標準化到參考影像或訊號、校正檢測器的非線性、平均多個影像以減少影像雜訊和斑點、以及應用數位濾波來進一步使強度角譜平滑。此外,一種方法包括形成對比訊號,該對比訊號被另外標準化來校正TM和TE訊號之間在形狀上的基本差異。上述方法仰賴於實現兩個幾乎相同的訊號,並藉由比較含有最陡區域的訊號部分以子像素解析度測定相互位移。使用由設備的設計所決定的係數,包括稜鏡幾何形狀和折射率、透鏡的焦距、及感測器上的像素間距,雙折射率會正比於相互位移。應力是藉由將測得的雙折射率乘以已知的應力-光學係數來決定。Therefore, the correct contrast angle of the reflected light intensity distribution is far more important than in the traditional 珜鏡coupling stress measurement that only seeks the position of individual modes. For this purpose, the methods disclosed by Roussev 1 and Roussev II include techniques for normalizing intensity spectra, including normalizing to reference images or signals, correcting the nonlinearity of the detector, averaging multiple images to reduce image noise and speckle, and applications Digital filtering to further smooth the intensity angular spectrum. In addition, one method includes forming a contrast signal, which is additionally standardized to correct the basic difference in shape between the TM and TE signals. The above method relies on the realization of two almost identical signals, and the mutual displacement is measured at the sub-pixel resolution by comparing the signal parts containing the steepest region. Using coefficients determined by the design of the device, including the geometry and refractive index of the lens, the focal length of the lens, and the pixel pitch on the sensor, the birefringence will be proportional to the mutual displacement. Stress is determined by multiplying the measured birefringence by a known stress-optical coefficient.

在另一個揭示的方法中,在應用一些前述訊號調整技術的組合之後決定TM和TE訊號的導數。TM和TE訊號的最大導數位置係使用子像素解析度獲得,而且雙折射率正比於上述兩個最大值的間距,且在之前藉由設備參數決定係數。In another disclosed method, the derivative of the TM and TE signals is determined after applying some combination of the aforementioned signal adjustment techniques. The maximum derivative positions of the TM and TE signals are obtained using sub-pixel resolution, and the birefringence is proportional to the distance between the two maximum values, and the coefficients were previously determined by device parameters.

與正確強度提取的要求相關聯的是,該設備包含幾種提升,例如使用緊靠稜鏡入射面或在稜鏡入射面上的光散射表面(靜態擴散器)來提高照明的角均勻性,當光源為相干或部分相干時使用減少斑點的移動擴散器,以及在稜鏡的部分輸入和輸出面上及在稜鏡的側面上使用光吸收塗層來減少傾向於扭曲強度訊號的寄生背景。此外,該設備可以包括紅外光源,以致能不透明材料的量測。Associated with the requirement for correct intensity extraction, the device contains several enhancements, such as the use of light scattering surfaces (static diffusers) that are close to or on the incident surface of the prism to increase the angular uniformity of the illumination, Use a speckle-reducing moving diffuser when the light source is coherent or partially coherent, and use light-absorbing coatings on the part of the input and output surfaces of the prism and on the sides of the prism to reduce the parasitic background that tends to distort the intensity signal. In addition, the device may include an infrared light source to enable measurement of opaque materials.

此外,Roussev II揭示所研究樣品的波長範圍和衰減係數,其中量測是藉由描述的方法和設備提升致能的。該範圍是由αs λ > 250πσs 界定,其中αs 為在量測波長λ的光衰減係數,並且σs 為將使用實際應用中典型要求的精密度量測的預期應力值。這個寬範圍允許在大的光衰減使得先前存在的量測方法不適用的波長獲得實際重要性量測。例如,Roussev II揭示在衰減大於約30 dB/mm的1550 nm波長成功量測不透明白色玻璃-陶瓷的應力引發雙折射。In addition, Roussev II reveals the wavelength range and attenuation coefficient of the sample under study, where the measurement is enabled by the described method and equipment. This range is defined by α s λ> 250πσ s , where α s is the optical attenuation coefficient at the measurement wavelength λ, and σ s is the expected stress value that will be measured using the precision measurements typically required in practical applications. This wide range allows measurement of practical importance at wavelengths where large light attenuation makes previously existing measurement methods unsuitable. For example, Roussev II revealed successful measurement of stress-induced birefringence of opaque white glass-ceramics at a wavelength of 1550 nm with attenuation greater than about 30 dB/mm.

雖然以上注意到FSM技術在較深的DOL值時有一些問題,但FSM仍是在瞭解到在較深的DOL值時可能有高達+/-20%的誤差範圍下可以利用的有益傳統技術。本文中使用的術語「層深度」和「DOL」是指使用FSM技術計算的DOL值,而術語「壓縮深度」和「DOC」是指藉由Roussev I & II中描述的方法測得的壓縮層深度。Although the above notes that the FSM technology has some problems with deeper DOL values, FSM is still learning useful traditional techniques that can be used at a deeper DOL value with an error range of up to +/-20%. The terms "layer depth" and "DOL" used in this article refer to the DOL value calculated using FSM technology, and the terms "compressed depth" and "DOC" refer to the compressed layer measured by the method described in Roussev I & II depth.

如上所述,玻璃製品可以藉由離子交換進行化學強化。在這個製程中,在玻璃表面或附近的離子被具有相同價態或氧化態的較大離子取代(或交換)。在玻璃製品包含鹼金屬鋁矽酸鹽玻璃、基本上由鹼金屬鋁矽酸鹽玻璃組成、或由鹼金屬鋁矽酸鹽玻璃組成的那些實施例中,在玻璃表面層中的離子和較大離子是一價鹼金屬陽離子,例如Li+ (當存在於玻璃中)、Na+ 、K+ 、Rb+ 、及Cs+ 。或者,在表面層中的一價陽離子可以被鹼金屬陽離子以外的一價陽離子取代,例如Ag+ 或類似物。As mentioned above, glass products can be chemically strengthened by ion exchange. In this process, ions on or near the glass surface are replaced (or exchanged) by larger ions with the same valence or oxidation state. In those embodiments where the glass product contains alkali metal aluminosilicate glass, consists essentially of alkali metal aluminosilicate glass, or consists of alkali metal aluminosilicate glass, the ions and the larger in the glass surface layer The ions are monovalent alkali metal cations, such as Li + (when present in the glass), Na + , K + , Rb + , and Cs + . Alternatively, the monovalent cations in the surface layer may be replaced by monovalent cations other than alkali metal cations, such as Ag + or the like.

離子交換製程通常是藉由將玻璃製品沉浸在含有將與玻璃中的較小離子交換的較大離子的熔融鹽浴中來進行。所屬技術領域中具有通常知識者將理解的是,用於離子交換製程的參數,包括、但不限於浴的成分和溫度、沉浸時間、玻璃在鹽浴(或多種浴)中的沉浸次數、多種鹽浴的使用、附加步驟例如退火、洗滌、及類似者,通常是由玻璃的成分及從強化操作產生的期望層深度和玻璃壓縮應力來決定。舉例來說,含鹼金屬玻璃的離子交換可以藉由沉浸在至少一種含鹽的熔融浴中來實現,該鹽例如、但不限於較大鹼金屬離子的硝酸鹽、硫酸鹽、及氯化物。熔融鹽浴的溫度通常是在從約380 ℃至高達約450 ℃的範圍中,而沉浸時間範圍從約15分鐘至長達約40小時。然而,也可以使用與上述那些不同的溫度和沉浸時間。The ion exchange process is generally performed by immersing the glass product in a molten salt bath containing larger ions that will exchange with smaller ions in the glass. Those of ordinary skill in the art will understand that the parameters used in the ion exchange process include, but are not limited to, the composition and temperature of the bath, the immersion time, the number of times the glass is immersed in the salt bath (or multiple baths), various The use of salt baths, additional steps such as annealing, washing, and the like are usually determined by the composition of the glass and the desired layer depth and glass compressive stress resulting from the strengthening operation. For example, ion exchange of alkali metal-containing glass can be achieved by immersion in at least one molten bath containing salts such as, but not limited to, nitrates, sulfates, and chlorides of larger alkali metal ions. The temperature of the molten salt bath is usually in the range from about 380°C up to about 450°C, and the immersion time ranges from about 15 minutes to up to about 40 hours. However, temperatures and immersion times different from those described above can also be used.

此外,將玻璃沉浸於多種離子交換浴且沉浸之間具有洗滌及/或退火步驟的離子交換製程之非限制性實例被描述在Douglas C. Allan等人於2013年10月22日獲證、標題為「具有壓縮表面用於消費性應用的玻璃(Glass with Compressive Surface for Consumer Applications)」、並主張於2008年7月11日提出申請的美國臨時專利申請案第61/079,995號之優先權的美國專利第8,561,429號中,其中玻璃是藉由沉浸在不同濃度的鹽浴中的多個連續離子交換處理來強化;以及Christopher M. Lee等人於2012年11月20日獲證、標題為「用於化學強化玻璃的雙階段離子交換(Dual Stage Ion Exchange for Chemical Strengthening of Glass)」、並主張於2008年7月29日提出申請的美國臨時專利申請案第61/084,398號之優先權的美國專利第8,312,739號中,其中玻璃是藉由在使用流出物離子稀釋的第一浴中進行離子交換、之後沉浸在流出物離子濃度比第一浴更低的第二浴中來進行強化。將美國專利8,561,429和8,312,739的內容以引用方式全部併入本文中。In addition, a non-limiting example of an ion exchange process in which glass is immersed in various ion exchange baths with washing and/or annealing steps between immersion is described in Douglas C. Allan et al., certified on October 22, 2013, title The United States is "Glass with Compressive Surface for Consumer Applications" and claims priority on U.S. Provisional Patent Application No. 61/079,995 filed on July 11, 2008 Patent No. 8,561,429, in which the glass is strengthened by multiple successive ion exchange treatments immersed in salt baths of different concentrations; and Christopher M. Lee et al. were certified on November 20, 2012 with the title "Use "Dual Stage Ion Exchange for Chemical Strengthening of Glass" and the priority of US Provisional Patent Application No. 61/084,398 filed on July 29, 2008 In No. 8,312,739, the glass is strengthened by ion exchange in a first bath diluted with effluent ions and then immersed in a second bath having a lower effluent ion concentration than the first bath. The contents of US Patents 8,561,429 and 8,312,739 are incorporated herein by reference in their entirety.

壓縮應力是藉由化學強化玻璃製品產生的,例如藉由前文所述的離子交換製程,其中使用複數個第二金屬離子交換在玻璃製品外部區域中的複數個第一金屬離子,使得外部區域包含該複數個第二金屬離子。每個第一金屬離子皆具有第一離子半徑,並且每個第二鹼金屬離子皆具有第二離子半徑。第二離子半徑大於第一離子半徑,而且外部區域中較大的第二鹼金屬離子的存在在外部區域中產生了壓縮應力。The compressive stress is generated by chemically strengthening the glass product, for example, by the ion exchange process described above, in which a plurality of second metal ions are used to exchange a plurality of first metal ions in the outer region of the glass product so that the outer region contains The plurality of second metal ions. Each first metal ion has a first ion radius, and each second alkali metal ion has a second ion radius. The second ion radius is greater than the first ion radius, and the presence of a larger second alkali metal ion in the outer region creates a compressive stress in the outer region.

第一金屬離子和第二金屬離子中之至少一者為鹼金屬離子。第一離子可以是鋰、鈉、鉀、及銣的離子。第二金屬離子可以是鈉、鉀、銣、及銫中之一者的離子,前提是第二鹼金屬離子具有的離子半徑大於第一鹼金屬離子的離子半徑。At least one of the first metal ion and the second metal ion is an alkali metal ion. The first ion may be ions of lithium, sodium, potassium, and rubidium. The second metal ion may be one of sodium, potassium, rubidium, and cesium, provided that the second alkali metal ion has an ion radius greater than that of the first alkali metal ion.

本文所述的是化學強化玻璃,例如Corning Gorilla®玻璃,該玻璃被用作行動電子裝置和觸控功能顯示器的防護玻璃。特別是,化學強化玻璃的開發著重於具有較大壓縮層深度的應力分布曲線,該應力分布曲線有助於在裝置掉落到堅硬、粗糙的表面上時降低爆破或易碎玻璃碎裂的可能性。由於自加速高度碎裂的裂縫,這種裂縫噴出具有大量動能的玻璃碎片,高度碎裂的裂縫是由於玻璃中的過度壓縮應力和中心張力組合所產生的高度易碎應力狀態的特性。This article describes chemically strengthened glass, such as Corning Gorilla® glass, which is used as protective glass for mobile electronic devices and touch-enabled displays. In particular, the development of chemically strengthened glass focuses on the stress distribution curve with a greater compression layer depth, which helps reduce the possibility of blasting or breakage of frangible glass when the device is dropped on a hard, rough surface Sex. Due to self-accelerating highly fragmented cracks, this fracture ejects glass fragments with a large amount of kinetic energy. The highly fragmented cracks are due to the characteristics of highly brittle stress states generated by the combination of excessive compressive stress and central tension in the glass.

易碎行為之特徵在於以下至少一者:強化玻璃製品(例如板或片)破碎成多個小片(例如≦ 1 mm);每單位面積的玻璃製品上形成的碎片數量;從玻璃製品中的初始裂紋分支出多個裂紋;在與原始位置相距指定距離處猛烈噴出至少一個碎片(例如約5 cm或約2英吋);以及任何前述破碎(大小和密度)、裂開及噴出行為的組合。本文中使用的術語「易碎行為」和「易碎性」是指在沒有任何外部抑制(例如塗層、黏著層、或類似物)之下強化玻璃製品的那些猛烈或高能碎裂模式。雖然塗層、黏著層、及類似物可與本文所述的強化玻璃製品結合使用,但這些外部抑制並不用於決定玻璃製品的易碎性或易碎行為。The fragile behavior is characterized by at least one of the following: strengthened glass products (such as plates or sheets) are broken into multiple small pieces (such as ≦ 1 mm); the number of fragments formed on the glass product per unit area; from the initial The crack branches out multiple cracks; violently ejects at least one fragment (for example, about 5 cm or about 2 inches) at a specified distance from the original location; and any combination of the foregoing fragmentation (size and density), cracking, and ejection behavior. The terms "fragile behavior" and "fragility" as used herein refer to those violent or high-energy fracture modes that strengthen glass products without any external inhibition (such as coatings, adhesive layers, or the like). Although coatings, adhesive layers, and the like can be used in combination with the strengthened glass products described herein, these external restraints are not used to determine the frangibility or the fragile behavior of the glass products.

將強化玻璃製品被使用鋒利壓頭點撞擊時的易碎行為和不易碎行為之實例圖示於第10a圖和第10b圖。用於測定易碎行為的點撞擊測試包括被遞送到玻璃製品表面的設備,該設備使用剛好足以釋放存在於強化玻璃製品內的內部儲存能量的力。也就是說,點撞擊力足以在強化玻璃片的表面產生至少一個新的裂紋,並使該裂紋延伸通過壓縮應力CS區域(即層深度)而進入處於中心張力CT下的區域。在強化玻璃片中產生或形成裂紋所需的撞擊能量取決於製品的壓縮應力CS和層深度DOL,從而取決於玻璃片進行強化的條件(即用以藉由離子交換強化玻璃的條件)。除此之外,使第10a圖和第10b圖中圖示的每個離子交換玻璃板接受足以使裂紋延伸進入玻璃板的內部區域的銳利鏢壓頭(例如SiC壓頭)接觸,該內部區域係處於拉伸應力下。被施加於玻璃板的力剛好足以到達內部區域的起點,從而允許能量驅使裂紋來自內部區域的拉伸應力,而不是來自鏢撞擊在外表面上的力。噴出的程度可以例如藉由將玻璃樣品放在格網中央、撞擊樣品、及使用格網量測各個片的噴出距離來決定。Examples of the fragile behavior and the fragile behavior when the strengthened glass product is hit by a sharp indenter are shown in Fig. 10a and Fig. 10b. The point impact test used to determine the fragile behavior includes a device that is delivered to the surface of the glass article, which uses just enough force to release the internal stored energy present within the strengthened glass article. That is, the point impact force is sufficient to generate at least one new crack on the surface of the strengthened glass sheet, and to extend the crack through the compressive stress CS area (ie, the layer depth) into the area under the central tension CT. The impact energy required to generate or form cracks in the strengthened glass sheet depends on the compressive stress CS and the layer depth DOL of the product, and thus depends on the conditions for strengthening the glass sheet (that is, the conditions for strengthening the glass by ion exchange). In addition to this, each ion-exchange glass plate illustrated in Figures 10a and 10b is brought into contact with a sharp dart indenter (such as an SiC indenter) sufficient to extend the crack into the inner area of the glass plate, the inner area It is under tensile stress. The force applied to the glass sheet is just enough to reach the starting point of the inner region, allowing the energy to drive the cracks from the tensile stress of the inner region rather than the force of the dart impinging on the outer surface. The degree of ejection can be determined, for example, by placing a glass sample in the center of the grid, striking the sample, and measuring the ejection distance of each piece using the grid.

參照第10a圖,玻璃板a可以被歸類為易碎的。特別是,玻璃板a碎裂成多個被噴出的小片,並表現出從初始裂紋分支出的高度破裂,從而產生該等小片。約50 %的碎片尺寸小於1 mm,而且據估計,約有8至10個裂紋從初始裂紋分支出。玻璃片還被從原始玻璃板a噴出約5 cm,如第10a圖所示。表現出上文所述三個標準(即多裂紋分支、噴出及極端碎裂)中的任意標準的玻璃製品被歸類為易碎的。例如,假使玻璃只有表現出過度分支,但未表現出上述的噴出或極端碎裂,則玻璃仍被表徵為易碎的。Referring to FIG. 10a, the glass plate a may be classified as fragile. In particular, the glass plate a shatters into a plurality of ejected pieces, and shows a high degree of rupture branching from the initial crack, thereby generating the pieces. About 50% of the fragments are less than 1 mm in size, and it is estimated that about 8 to 10 cracks branch from the initial crack. The glass sheet was also ejected from the original glass plate a by about 5 cm, as shown in Figure 10a. Glass products that exhibit any of the three criteria described above (ie, multi-crack branching, spouting, and extreme chipping) are classified as fragile. For example, if the glass only exhibits excessive branching, but does not exhibit the above-mentioned spray or extreme cracking, the glass is still characterized as fragile.

玻璃板b、c(第10b圖)和d(第10a圖)被歸類為不易碎。在這些樣品的每個樣品中,玻璃片破成少量的大片。例如,玻璃板b(第10b圖)破成兩大片且無裂紋分支;玻璃板c(第10b圖)破成四片,且兩個裂紋從初始裂紋分支;而且玻璃板d(第10a圖)破成四片,且兩個裂紋從初始裂紋分支。基於不存在噴出的碎片(即沒有從原始位置被強制噴出超過2英吋的玻璃片)、沒有尺寸≦ 1mm的肉眼可見碎片、及觀察到最少量的裂紋分支,樣品b、c、及d被歸類為不易碎或大體上不易碎的。The glass plates b, c (Figure 10b) and d (Figure 10a) are classified as not brittle. In each of these samples, the glass piece broke into a few large pieces. For example, glass plate b (Figure 10b) broke into two large pieces without cracking branches; glass plate c (Figure 10b) broke into four pieces, and two cracks branched from the initial crack; and glass plate d (Figure 10a) It broke into four pieces, and two cracks branched from the initial crack. Samples b, c, and d were subject to the absence of ejected fragments (that is, no glass pieces forced to be ejected more than 2 inches from the original position), no visible fragments with a size ≦ 1 mm, and the smallest amount of crack branches observed. It is classified as non-fragile or generally non-fragile.

基於前述內容,可以建構易碎性指數(表1)來量化玻璃、玻璃陶瓷、及/或陶瓷製品在被另一個物體撞擊時的易碎或不易碎行為之程度。已經指定範圍從1的不易碎行為到5的高度易碎行為的指數數字來描述不同等級的易碎性或不易碎性。使用指數,易碎性可被以許多參數表徵:1)直徑(即最大尺寸)小於1 mm(表1中的「碎片尺寸」)的碎片總數之百分比;2)每單位面積(在本實例中為cm2 )的樣品中形成的碎片數量(表1中的「碎片密度」);3)從撞擊時形成的初始裂紋分支出的裂紋數量(表1中的「裂紋分支」);及4)撞擊時被從原始位置噴出超過約5 cm(或約2英吋)的碎片總數之百分比(表1中的「噴出」)。Based on the foregoing, a fragility index (Table 1) can be constructed to quantify the degree of fragile or unbreakable behavior of glass, glass ceramic, and/or ceramic products when impacted by another object. An exponential number ranging from 1 frangible behavior to 1 to a highly frangible behavior of 5 has been specified to describe different levels of frangibility or frangibility. Using the index, the fragility can be characterized by many parameters: 1) the percentage of the total number of fragments with a diameter (ie, the maximum size) less than 1 mm ("fragment size" in Table 1); 2) per unit area (in this example Is cm 2 ) the number of fragments formed in the sample (“fragment density” in Table 1); 3) the number of cracks branching from the initial crack formed during impact (“crack branch” in Table 1); and 4) The percentage of the total number of debris that was ejected from its original position by more than approximately 5 cm (or approximately 2 inches) during impact ("Ejection" in Table 1).

表1. 用於判斷易碎度和易碎性指數的標準。

Figure 109100456-A0304-0001
Table 1. Criteria used to judge the friability and friability index.
Figure 109100456-A0304-0001
表1. 用於判斷易碎度和易碎性指數的標準。
Figure 109100456-A0304-0001
Table 1. Criteria used to judge the friability and friability index.
Figure 109100456-A0304-0001
表1. 用於判斷易碎度和易碎性指數的標準。
Figure 109100456-A0304-0001
Table 1. Criteria used to judge the friability and friability index.
Figure 109100456-A0304-0001
表1. 用於判斷易碎度和易碎性指數的標準。
Figure 109100456-A0304-0001
Table 1. Criteria used to judge the friability and friability index.
Figure 109100456-A0304-0001

假使玻璃製品滿足至少一個與特定指數值相關的標準,則指定易碎性指數給該製品。或者,假使玻璃製品滿足兩個特定易碎性水平之間的標準,則可以指定易碎性指數範圍(例如2-3的易碎性指數)給該製品。玻璃製品可以被指定最高的易碎性指數值,如從表1所列的各個標準決定。在許多情況下,確定表1所列的每個標準值(例如破碎密度或被從原始位置噴出超過5 cm的碎片之百分比)是不可能的。因此,將不同的標準視為易碎行為和易碎性指數的個別、替代度量,使得落在一個標準水平內的玻璃製品將被指定相應的易碎度和易碎性指數。假使基於表1所列的四個標準中的任何標準的易碎性指數為3或更大,則將玻璃製品歸類為易碎的。If the glass product satisfies at least one criterion related to a specific index value, the frangibility index is assigned to the product. Alternatively, if the glass product meets the criteria between two specific levels of friability, a frangibility index range (eg, a frangibility index of 2-3) can be assigned to the product. Glass products can be assigned the highest frangibility index value, as determined from the standards listed in Table 1. In many cases, it is not possible to determine each standard value listed in Table 1 (such as the breaking density or the percentage of debris that is ejected more than 5 cm from the original position). Therefore, different standards are regarded as individual and alternative measures of frangible behavior and frangibility index, so that glass products falling within a standard level will be assigned the corresponding frangibility and frangibility index. If the frangibility index based on any of the four standards listed in Table 1 is 3 or greater, the glass product is classified as frangible.

將前述易碎性指數應用於第10a圖和第10b圖中圖示的樣品,玻璃板a碎裂成多個噴出小片,並表現出從初始裂紋分支而產生小片的大破裂度。大約50%的碎片尺寸小於1 mm,而且據估計,約有8至10個裂紋分支自初始裂紋。基於表1所列的標準,玻璃板a具有介於約4-5的易碎性指數,並被歸類為具有中高易碎度。Applying the aforementioned frangibility index to the samples illustrated in Figures 10a and 10b, the glass plate a was broken into a plurality of ejected small pieces, and showed a large degree of breakage due to the branching from the initial crack. About 50% of the fragments are less than 1 mm in size, and it is estimated that about 8 to 10 crack branches branch from the initial crack. Based on the criteria listed in Table 1, the glass plate a has a friability index between about 4-5 and is classified as having a medium to high friability.

易碎性指數小於3(低易碎性)的玻璃製品可被視為不易碎的或大體上不易碎的。玻璃板b、c、及d各自缺乏直徑小於1 mm的碎片、多個受到撞擊時形成的來自初始裂紋的分支、以及被從原始位置噴出超過5 cm的碎片。玻璃板b、c、及d是不易碎的,從而具有1的易碎性指數(不易碎的)。Glass products with a friability index of less than 3 (low friability) may be considered unbreakable or substantially unbreakable. The glass plates b, c, and d each lack debris with a diameter of less than 1 mm, multiple branches from the initial crack formed upon impact, and debris that was ejected by more than 5 cm from its original location. The glass plates b, c, and d are not fragile, and thus have a fragility index of 1 (not fragile).

如先前所討論的,在第10a圖和第10b圖觀察到的在玻璃板a(表現出易碎行為)與玻璃板b、c、及d(表現出不易碎行為)之間的行為差異可以歸因於測試樣品間在中心張力CT上的差異。這種易碎行為的可能性在設計各種玻璃產品上是一種考量,該玻璃產品例如用於可攜或行動電子裝置的防護板或窗、以及用於資訊終端(IT)裝置的顯示器,該可攜或行動電子裝置例如行動電話、娛樂裝置、及類似物,該資訊終端(IT)裝置例如筆記型電腦。另外,可被設計於或提供到玻璃製品的壓縮層深度DOL和壓縮應力CS最大值都受到這種易碎行為限制。As previously discussed, the behavioral differences observed between Figures 10a and 10b between glass plate a (exhibiting fragile behavior) and glass plates b, c, and d (exhibiting unbreakable behavior) can be This is due to the difference in central tension CT between the test samples. The possibility of this fragile behavior is a consideration in the design of various glass products, such as protective plates or windows for portable or mobile electronic devices, and displays for information terminal (IT) devices. Portable or mobile electronic devices such as mobile phones, entertainment devices, and the like, and information terminal (IT) devices such as notebook computers. In addition, the depth of the compressed layer DOL and the maximum value of the compressive stress CS that can be designed or provided to the glass product are limited by this brittle behavior.

因此,在一些實施例中,本文所述的強化玻璃製品在遭受足以打破該強化玻璃製品的點撞擊時表現出小於3的易碎性指數。在其他實施例中,不易碎強化玻璃製品可以實現小於2或小於1的易碎性指數。Therefore, in some embodiments, the strengthened glass article described herein exhibits a friability index of less than 3 when subjected to a point impact sufficient to break the strengthened glass article. In other embodiments, the unbreakable strengthened glass article may achieve a friability index of less than 2 or less than 1.

近期揭示的、基於厚度相依最大物理中心張力CT的不易碎標準只有在化學強化的層深度(DOL)比樣品厚度t小相當多的狀態下(即DOL> 0.1t)才適用於相對較小的厚度(即> 0.8 mm)。如本文所述,當DOL包含較大比例的整體厚度t時,中心張力比先前揭示的大相當多、但沒有達到易碎性限值的玻璃是可能的。這個附加的不易碎區域允許壓縮深度進一步延伸而不會使玻璃易碎,儘管樣品內發展出了高的中心張力。增加的壓縮層深度使得導致更深碎裂的缺陷可被遏止。The recently disclosed unbreakable standard based on the thickness-dependent maximum physical center tension CT is only applicable to relatively small ones when the chemically strengthened layer depth (DOL) is considerably smaller than the sample thickness t (ie, DOL>0.1t) Thickness (ie> 0.8 mm). As described herein, when DOL contains a larger proportion of the overall thickness t, it is possible that the central tension is considerably greater than previously disclosed, but does not reach the frangibility limit. This additional unbreakable area allows the depth of compression to extend further without making the glass brittle, despite the high central tension developed within the sample. The increased depth of the compressed layer allows defects that cause deeper fractures to be contained.

在本發明的一個態樣中,揭示了允許DOL無限增加而不曾達到易弱性的CS和CT總和上限,包括其中中心張力CT增加到比最近習知的CT易碎性限值高非常多的情況,該情況被揭示於Kristen Barefoot等人於2013年4月9日獲證的、標題為「強化玻璃製品及製造方法(Strengthened Glass Articles and Methods of Making)」的近期專利申請美國專利第8,415,013號(以下稱為「Barefoot I」)中。In one aspect of the present invention, the upper limit of the sum of CS and CT that allows DOL to increase indefinitely without ever reaching vulnerability is revealed, including where the central tension CT is increased to a much higher than the recently known CT fragility limit The situation was revealed in the recent patent application entitled "Strengthened Glass Articles and Methods of Making" certified by Kristen Barefoot et al. on April 9, 2013, US Patent No. 8,415,013 (Hereinafter referred to as "Barefoot I").

在一個態樣中,這個CS和CT總和的上限與樣品中K+ 濃度的最大空間變化上限相關。該空間變化是藉由在玻璃基板中以K+ 單一步驟離子交換Na+ 所獲得的,其中Na+ 或Na+ 和K+ 是玻璃中唯有的鹼金屬離子。In one aspect, the upper limit of the sum of CS and CT is related to the upper limit of the maximum spatial variation of K + concentration in the sample. The spatial variation is by a single step in a K + ion-exchanged Na + in the glass substrate obtained, wherein the Na + or K + and Na + in the glass are the only alkali metal ions.

在另一個態樣中,引入基於總儲存彈性能量的附加易碎性標準,從而允許在DOL佔樣品厚度t的相當大部分的情況下預測易碎性應力條件。在一個實施例中,DOL > 0.1t,而且在其他實施例中DOL > 0.15t。在這些條件下,藉由單一步驟或二步驟離子交換來獲得為了應力分布曲線所控制的易碎性條件。此外,總儲存彈性能量標準允許對藉由涉及超過兩種離子之相對擴散的同時或多步驟離子交換所獲得的應力分布曲線正確地控制易碎性。In another aspect, an additional friability criterion based on total stored elastic energy is introduced, allowing the prediction of frangible stress conditions where DOL accounts for a substantial portion of the sample thickness t. In one embodiment, DOL>0.1t, and in other embodiments DOL>0.15t. Under these conditions, the fragility conditions controlled by the stress distribution curve are obtained by single-step or two-step ion exchange. In addition, the total stored elastic energy standard allows the fragility to be correctly controlled for the stress distribution curve obtained by simultaneous or multi-step ion exchange involving the relative diffusion of more than two ions.

總彈性能量標準允許基於應力量測來對易碎性進行快速、非破壞性的品質控制,例如稜鏡耦合具有大的層深度的單和雙離子交換壓縮應力分佈。The total elastic energy standard allows for quick, non-destructive quality control of fragility based on stress measurements, such as 珜鏡 coupling single and dual ion exchange compressive stress distributions with large layer depths.

Barefoot I描述厚度小於約0.75 mm的玻璃之易碎性限值,其中發現到,將為較大厚度找出的、較早知悉的線性關係外推會低估不易碎設計空間的上限。「非線性臨界中心張力CT1」係藉由經驗式給出。 CT1 (MPa) ≦ -38.7(MPa/mm)×ln(t)(mm) + 48.2 (MPa)    (3), 其中t為樣品厚度。與上式相比的CT量測值係藉由以下公式計算 CTA (CS, DOL, t) = (CS×DOL)/(t-2DOL)  (4)。Barefoot I describes the frangibility limit of glass with a thickness of less than about 0.75 mm. It was found that the extrapolation of the linear relationship that was found for larger thicknesses and known earlier will underestimate the upper limit of the unbreakable design space. "Non-linear critical central tension CT1" is given by the empirical formula. CT 1 (MPa) ≦ -38.7(MPa/mm)×ln(t)(mm) + 48.2 (MPa) (3), where t is the sample thickness. The CT measurement value compared with the above formula is calculated by the following formula CT A (CS, DOL, t) = (CS×DOL)/(t-2DOL) (4).

將CT加上下標「A」以表示以上用於查找CT的近似式在化學強化玻璃的領域中已被接受並廣泛用於製程和品質控制。依據Barefoot等人,易碎性限值CT1 的範圍從1 mm基板厚度的48.2 MPa到厚度0.3 mm的94.8 MPa。Adding the subscript "A" to CT to indicate that the above approximate formula for finding CT has been accepted in the field of chemically strengthened glass and is widely used in process and quality control. According to Barefoot et al., the fragility limit CT 1 ranges from 48.2 MPa at a substrate thickness of 1 mm to 94.8 MPa at a thickness of 0.3 mm.

在Kristen Barefoot等人於2012年6月8日提出申請、標題為「強化玻璃製品及製造方法(Strengthened Glass Articles and Methods of Making)」的美國臨時專利申請案第61/657,279號(以下稱為「Barefoot II」)中揭示了更加高的非線性易碎性CTA 限值。對於0.1 mm-0.75 mm的厚度範圍,易碎性限值CT3 被公式表示為厚度的函數 CT3 (MPa) = 57(MPa) – 9.0(MPa/mm)・ln( t) (mm) + 49.3(MPa/mm)・ln2 ( t) (mm)   (5)。U.S. Provisional Patent Application No. 61/657,279 (hereinafter referred to as "Strengthened Glass Articles and Methods of Making") filed on June 8, 2012 with Kristen Barefoot et al. Barefoot II") reveals a higher nonlinear fragility CT A limit. For the thickness range of 0.1 mm-0.75 mm, the fragility limit CT 3 is formulated as a function of thickness CT 3 (MPa) = 57(MPa) – 9.0(MPa/mm)・ln ( t ) (mm) + 49.3(MPa/mm)・ln 2 ( t ) (mm) (5).

將在0.3 mm至1 mm(在CT3 的情況下為0.3 mm至0.75 mm)範圍中的幾種厚度之非線性易碎性限值CT1 和CT3 總結於表2。因此,依據Barefoot I和Barefoot II,對於小於0.75 mm的厚度,CTA 大於CT3 的玻璃構成易碎的不可接受風險(>5%)。同樣地,對於0.75 mm以上的厚度,CTA 大於CT1 的玻璃呈現易碎的不可接受風險(>5%)。Will be between 0.3 mm and 1 mm (in the case of CT 3 is 0.3 mm and 0.75 mm) Nonlinear friability limit thickness in the range of several CT 1 and CT 3 are summarized in Table 2. Therefore, according to Barefoot I and Barefoot II, for thicknesses less than 0.75 mm, glass with CT A greater than CT 3 poses an unacceptable risk of fragility (>5%). Similarly, for thicknesses above 0.75 mm, glass with CT A greater than CT 1 presents an unacceptable risk of fragility (>5%).

對於Barefoot I和Barefoot II使用的、厚度在0.3 mm至0.5 mm範圍中的玻璃來說,當DOL範圍介於約0.085t和0.126t之間時,在名義上純KNO3 的離子交換期間開始觀察到易碎性。如從第2圖可以看出的,在該範圍的DOL/t間,CTA 對物理CT(在下式中標示為CTphys )的比率範圍從約1.373至約1.469,平均約1.421。因此,CT/CTA 比的範圍從約0.681至約0.728,具有約0.704的平均值。因此,對於0.3-0.5 mm(CT3 )的厚度,對應先前技術的CTA 限值的物理CT限值為

Figure 02_image007
(6)。 (6). For the glass used in Barefoot I and Barefoot II with a thickness in the range of 0.3 mm to 0.5 mm, when the DOL range is between about 0.085t and 0.126t, observations begin during the ion exchange of nominally pure KNO 3 To fragility. As can be seen from Figure 2, between DOL/t in this range, the ratio of CT A to physical CT (labeled CT phys in the following formula) ranges from about 1.373 to about 1.469, with an average of about 1.421. Therefore, the CT/CT A ratio ranges from about 0.681 to about 0.728, with an average value of about 0.704. Therefore, for a thickness of 0.3-0.5 mm (CT 3 ), the physical CT limit corresponding to the CT A limit of the prior art is For the glass used in Barefoot I and Barefoot II with a thickness in the range of 0.3 mm to 0.5 mm, when the DOL range is between about 0.085t and 0.126t, observations begin during the ion exchange of nominally pure KNO 3 To fragility. As can be seen from Figure 2, between DOL/t in this range, the ratio of CT A to physical CT (labeled CT phys in the following formula) ranges from about 1.373 to about 1.469, with an average of about 1.421. Therefore, the CT/CT A ratio ranges from about 0.681 to about 0.728, with an average value of about 0.704. Therefore, for a thickness of 0.3-0.5 mm (CT 3 ), the physical CT limit corresponding to the CT A limit of the prior art is
Figure 02_image007
(6). (6).

對於介於約0.5 mm至約0.75 mm的厚度來說,在實例中出現易碎性的DOL/t比是在0.064-0.085的範圍中,其中CTA /CTphys 比為約1.332至約1.374。因此,CTphys /CTA 比的範圍從約0.728至約0.751,而且以物理中心張力表示的易碎性限值可以通過與Barefoot II的CT3 限值之關係而被定義為

Figure 02_image008
(7)。For thicknesses between about 0.5 mm and about 0.75 mm, the DOL/t ratio where brittleness occurs in the example is in the range of 0.064-0.085, where the CT A /CT phys ratio is about 1.332 to about 1.374. Therefore, the CT phys /CT A ratio ranges from about 0.728 to about 0.751, and the fragility limit expressed in physical center tension can be defined as the relationship with the CT 3 limit of Barefoot II as
Figure 02_image008
(7).

對於厚度大於0.75 mm並且不大於1.0 mm的樣品來說,Barefoot I中描述的相關CT限值為CT1 。在Barefoot I的實例中出現易碎性的DOL/t比通常是在0.048至0.060的範圍中,而CTA /CTphys 比的範圍從約1.302至約1.324,CTA /CTphys 的倒數範圍是從0.755至0.768。For samples with a thickness greater than 0.75 mm and no greater than 1.0 mm, the relevant CT limit described in Barefoot I is CT 1 . In the case of Barefoot I, the fragility DOL/t ratio is usually in the range of 0.048 to 0.060, while the CT A /CT phys ratio ranges from about 1.302 to about 1.324, and the reciprocal range of CT A /CT phys is From 0.755 to 0.768.

因此,對於厚度範圍0.75 mm > t ≦ 1.0 mm來說,物理CT易碎性限值可以從Barefoot II經驗易碎性限值導出:

Figure 02_image009
(8)。 表2. Barefoot I和Barefoot II所揭示對於介於0.3 mm和1 mm之間的厚度以CT A表示的易碎性CT限值。
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
Therefore, for a thickness range of 0.75 mm> t ≦ 1.0 mm, the physical CT frangibility limit can be derived from the Barefoot II empirical frangibility limit:
Figure 02_image009
(8). Table 2. Barefoot I and Barefoot II reveal the fragility CT limits expressed in CT A for thicknesses between 0.3 mm and 1 mm.
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
因此,對於厚度範圍0.75 mm > t ≦ 1.0 mm來說,物理CT易碎性限值可以從Barefoot II經驗易碎性限值導出:
Figure 02_image009
(8)。 表2. Barefoot I和Barefoot II所揭示對於介於0.3 mm和1 mm之間的厚度以CT A表示的易碎性CT限值。
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
Therefore, for a thickness range of 0.75 mm> t ≦ 1.0 mm, the physical CT frangibility limit can be derived from the Barefoot II empirical frangibility limit:
Figure 02_image009
(8). Table 2. Barefoot I and Barefoot II reveal the fragility CT limits expressed in CT A for thicknesses between 0.3 mm and 1 mm.
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
因此,對於厚度範圍0.75 mm > t ≦ 1.0 mm來說,物理CT易碎性限值可以從Barefoot II經驗易碎性限值導出:
Figure 02_image009
(8)。 表2. Barefoot I和Barefoot II所揭示對於介於0.3 mm和1 mm之間的厚度以CT A表示的易碎性CT限值。
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
Therefore, for a thickness range of 0.75 mm> t ≦ 1.0 mm, the physical CT frangibility limit can be derived from the Barefoot II empirical frangibility limit:
Figure 02_image009
(8). Table 2. Barefoot I and Barefoot II reveal the fragility CT limits expressed in CT A for thicknesses between 0.3 mm and 1 mm.
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
因此,對於厚度範圍0.75 mm > t ≦ 1.0 mm來說,物理CT易碎性限值可以從Barefoot II經驗易碎性限值導出:
Figure 02_image009
(8)。 表2. Barefoot I和Barefoot II所揭示對於介於0.3 mm和1 mm之間的厚度以CT A表示的易碎性CT限值。
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
Therefore, for a thickness range of 0.75 mm> t ≦ 1.0 mm, the physical CT frangibility limit can be derived from the Barefoot II empirical frangibility limit:
Figure 02_image009
(8). Table 2. Barefoot I and Barefoot II reveal the fragility CT limits expressed in CT A for thicknesses between 0.3 mm and 1 mm.
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
因此,對於厚度範圍0.75 mm > t ≦ 1.0 mm來說,物理CT易碎性限值可以從Barefoot II經驗易碎性限值導出:
Figure 02_image009
(8)。 表2. Barefoot I和Barefoot II所揭示對於介於0.3 mm和1 mm之間的厚度以CT A表示的易碎性CT限值。
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
Therefore, for a thickness range of 0.75 mm> t ≦ 1.0 mm, the physical CT frangibility limit can be derived from the Barefoot II empirical frangibility limit:
Figure 02_image009
(8). Table 2. Barefoot I and Barefoot II reveal the fragility CT limits expressed in CT A for thicknesses between 0.3 mm and 1 mm.
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
因此,對於厚度範圍0.75 mm > t ≦ 1.0 mm來說,物理CT易碎性限值可以從Barefoot II經驗易碎性限值導出:
Figure 02_image009
(8)。 表2. Barefoot I和Barefoot II所揭示對於介於0.3 mm和1 mm之間的厚度以CT A表示的易碎性CT限值。
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003
Therefore, for a thickness range of 0.75 mm> t ≦ 1.0 mm, the physical CT frangibility limit can be derived from the Barefoot II empirical frangibility limit:
Figure 02_image009
(8). Table 2. Barefoot I and Barefoot II reveal the fragility CT limits expressed in CT A for thicknesses between 0.3 mm and 1 mm.
Figure 109100456-A0304-0002
Figure 109100456-A0304-0003

如本文所述,假使玻璃中的最大CS和DOL與Barefoot等人所描述的相當不同,則對於具有相同整體成分和厚度的玻璃來說,可能在相當不同的CTA 值開始出現易碎性。在含有約16莫耳% Na2 O和幾乎沒有K2 O的鋁矽酸鹽玻璃中,當在390 ℃下在基本上含有純KNO3 的浴中離子交換到藉由FSM-6000表面應力計量測約36 μm的層深度時,0.4 mm厚的玻璃基板變得易碎。在量測過程中由相同的表面應力計產生的壓縮應力為約920 MPa,而CTA 為約101 MPa。然而,當在440 ℃下在含有37 wt% NaNO3 和63 wt% KNO3 的浴中離子交換11.7小時時,相同類型的玻璃並沒有表現出易碎行為。在這些離子交換條件下,玻璃發展出301 MPa的CS、由FSM-6000量測為114.7 μm的DOL、及202 MPa的CTA ,幾乎是厚度0.4 mm的CT3 易碎性限值(106.6 MPa,表2)的兩倍大。在另一個實例中發現到,相同類型的玻璃在相同浴中和相同溫度下離子交換13.7小時之後是易碎的,且產生279 MPa的壓縮應力與120.6 μm的層深度DOL及CTA =212 MPa。與層深度只有厚度的9%的純浴情況相比,這些實驗顯示藉由Barefoot等人使用的公式所決定的CT如何可以具有DOL為厚度的30%(0.3t)時的兩倍大易碎性限值。As described herein, if the maximum CS and DOL in the glass are quite different from those described by Barefoot et al., for glass with the same overall composition and thickness, fragility may begin to appear at quite different CT A values. In an aluminosilicate glass containing approximately 16 mol% Na 2 O and almost no K 2 O, when ion-exchanged at 390 ℃ in a bath containing essentially pure KNO 3 to the surface stress gauge by FSM-6000 When measuring a layer depth of approximately 36 μm, a 0.4 mm thick glass substrate becomes brittle. The compressive stress generated by the same surface stress gauge during the measurement is about 920 MPa, while CT A is about 101 MPa. However, when ion exchanged in a bath containing 37 wt% NaNO 3 and 63 wt% KNO 3 at 440 ℃ for 11.7 hours, the same type of glass did not exhibit brittle behavior. Under these ion exchange conditions, the glass developed a CS of 301 MPa, a DOL measured by FSM-6000 of 114.7 μm, and a CT A of 202 MPa, which is almost the fragility limit of CT 3 with a thickness of 0.4 mm (106.6 MPa , Table 2) is twice as large. In another example, it was found that the same type of glass is fragile after ion exchange in the same bath and at the same temperature for 13.7 hours, and produces a compressive stress of 279 MPa and a layer depth of 120.6 μm DOL and CT A = 212 MPa . Compared with a pure bath with a layer depth of only 9% of the thickness, these experiments show how the CT determined by the formula used by Barefoot et al. can have a DOL that is twice as large as 30% of the thickness (0.3t). Sexual limits.

在相關的實驗中,厚度0.50 mm的樣品在440℃下在依重量計含有37% NaNO3 和63% KNO3 的離子交換浴中離子交換15.3小時之後表現出不易碎行為。離子交換樣品具有304 MPa的CS、120.8 μm的DOL、及142 MPa的CTA ,比0.5 mm厚的玻璃的Barefoot II CT3 限值86.9 MPa(表2)高相當多。In related experiments, a 0.50 mm thick sample exhibited unbreakable behavior after ion exchange in an ion exchange bath containing 37% NaNO 3 and 63% KNO 3 by weight at 440°C for 15.3 hours. The ion-exchange sample has a CS of 304 MPa, a DOL of 120.8 μm, and a CT A of 142 MPa, which is considerably higher than the Barefoot II CT 3 limit of 86.9 MPa (Table 2) for 0.5 mm thick glass.

此外,在440℃下在含45 wt% NaNO3 和55% KNO3 的浴中離子交換時間超過25小時的樣品上未觀察到易碎性,且離子交換樣品的DOL超過150 um。一個實例中,在440℃下離子交換21小時之後,0.4 mm厚的樣品得到213 MPa的CS、至少149.3 μm的DOL、及至少314 MPa的CTA 。在另一個實例中,在440℃下離子交換25.25小時之後,0.5 mm厚的基板得到221 MPa的CS、至少147 μm的DOL、及至少172 MPa的CTA 。在440 ℃下離子交換25.25小時之後,厚度0.6 mm的基板得到254 MPa的CS、至少148 μm的DOL、及至少124 MPa的CTA ,這比在0.6 mm厚的玻璃上觀察到的74.5 MPa CT3 大相當多。厚度0.8 mm的基板在相同條件下離子交換之後得到272 MPa的CS、至少144 μm的DOL、及至少76 MPa的CTA 。這比在相同厚度和CT3上觀察到的56.8 MPa CT1 值大相當多。在0.75 mm的厚度觀察到59.3 MPa的值。1.0 mm厚的基板具有278 MPa的CS(這比相同厚度獲得的48.2 MPa CT1 值大相當多)、至少142 μm的DOL、及至少55 MPa的CTAIn addition, no brittleness was observed on samples containing ion exchange time of more than 25 hours in a bath containing 45 wt% NaNO 3 and 55% KNO 3 at 440°C, and the DOL of ion exchange samples exceeded 150 um. In one example, after ion exchange at 440°C for 21 hours, a 0.4 mm thick sample obtained a CS of 213 MPa, a DOL of at least 149.3 μm, and a CT A of at least 314 MPa. In another example, after ion exchange at 440°C for 25.25 hours, a 0.5 mm thick substrate obtained a CS of 221 MPa, a DOL of at least 147 μm, and a CT A of at least 172 MPa. After ion exchange at 440 ℃ for 25.25 hours, the substrate with a thickness of 0.6 mm obtained a CS of 254 MPa, DOL of at least 148 μm, and CT A of at least 124 MPa, which is higher than the 74.5 MPa CT observed on 0.6 mm thick glass 3 big quite a lot. A substrate with a thickness of 0.8 mm obtained CS of 272 MPa, DOL of at least 144 μm, and CT A of at least 76 MPa after ion exchange under the same conditions. This is considerably larger than the 56.8 MPa CT 1 value observed on the same thickness and CT3. A value of 59.3 MPa was observed at a thickness of 0.75 mm. The 1.0 mm thick substrate has a CS of 278 MPa (which is considerably larger than the CT 1 value of 48.2 MPa obtained at the same thickness), a DOL of at least 142 μm, and a CT A of at least 55 MPa.

在440℃下在含有50 wt% NaNO3 和50 wt% KNO3 的浴中離子交換超過30小時的時間之後,未觀察到0.4 mm厚的基板有易碎性,而且實現了超過170 um的層深度。在相同浴中離子交換14小時20分鐘的時間得到了235 MPa的壓縮應力、至少111 μm的DOL、及至少150 MPa的CTA 。在440℃下在50 wt% NaNO3 /50 wt% KNO3 浴中離子交換16.7小時之後,測得227 MPa的壓縮應力和至少131 μm的DOL,且CTA 為至少215 MPa。對於17.7至20.7小時、25小時、及30小時的離子交換時間,FSM-6000無法估計DOL和CTA ,但DOL將可大於131 μm,並且CTA 將可大於約215 MPa。After ion exchange in a bath containing 50 wt% NaNO 3 and 50 wt% KNO 3 at 440°C for more than 30 hours, no fragility of the 0.4 mm thick substrate was observed, and a layer exceeding 170 um was realized depth. Ion exchange in the same bath for 14 hours and 20 minutes yielded a compressive stress of 235 MPa, a DOL of at least 111 μm, and a CT A of at least 150 MPa. After ion exchange in a 50 wt% NaNO 3 /50 wt% KNO 3 bath at 440° C. for 16.7 hours, a compressive stress of 227 MPa and a DOL of at least 131 μm were measured, and the CT A was at least 215 MPa. For ion exchange times of 17.7 to 20.7 hours, 25 hours, and 30 hours, FSM-6000 cannot estimate DOL and CT A , but DOL will be greater than 131 μm, and CT A will be greater than approximately 215 MPa.

由於DOL超過100 μm時、尤其是DOL超過約130 μm時量測DOL的能力十分有限,FSM-6000儀器無法估計層深度和最深分布曲線的CTA。當DOL大於約100 μm時 - 而且特別是當DOL大於130 μm時 - 由於儀器解析模譜暗線的能力有限(當DOL非常大時模譜暗線變得非常密集),FSM-6000通常會低估DOL。Because the ability to measure DOL is very limited when the DOL exceeds 100 μm, especially when the DOL exceeds about 130 μm, the FSM-6000 instrument cannot estimate the layer depth and the CTA of the deepest distribution curve. When the DOL is greater than about 100 μm-and especially when the DOL is greater than 130 μm-due to the limited ability of the instrument to interpret the dark lines of the mode spectrum (the dark lines of the mode spectrum become very dense when the DOL is very large), the FSM-6000 usually underestimates DOL.

在相關的實驗中,相同玻璃並具有0.5、0.6、0.8、及1.0 mm較大厚度的樣品在440℃下在含有50 wt% NaNO3 和50 wt% KNO3 的浴中離子交換總共26小時和43小時。所有的樣品都是不易碎的。因為這些樣品的層深度超過150 μm,故無法在FSM-6000儀器上量測DOL和CTAIn related experiments, samples of the same glass with larger thicknesses of 0.5, 0.6, 0.8, and 1.0 mm were ion-exchanged in a bath containing 50 wt% NaNO 3 and 50 wt% KNO 3 at 440°C for a total of 26 hours and 43 hours. All samples are not fragile. Because the layer depth of these samples exceeds 150 μm, DOL and CT A cannot be measured on the FSM-6000 instrument.

在上述實例中,由FSM-6000測得的DOL超過0.1t,而且首次觀察到易碎性的CTA 值明顯高於藉由Barefoot I和Barefoot II的經驗式決定的CT1 易碎性值。In the above example, the DOL measured by FSM-6000 exceeds 0.1t, and the CT A value of the friability observed for the first time is significantly higher than the CT 1 frangibility value determined by the empirical formulas of Barefoot I and Barefoot II.

如藉由上述實例展現的,當DOL > 0.1t時,由於允許的物理CT超過先前規定的CT1 和CT3 易碎性限值,故相對高的CS和大DOL之組合可被用於獲得更強的玻璃。As demonstrated by the above example, when DOL> 0.1t, since the allowable physical CT exceeds the previously specified fragility limits of CT 1 and CT 3 , a relatively high combination of CS and large DOL can be used to obtain Stronger glass.

樣品的中間平面內的實際物理中心張力通常不同於近似值CTA ,由於基於已知厚度和CS及通常由FSM-6000報導的DOL可輕易計算出CTA ,CTA 已被廣泛採用。假設相關的折射率分布曲線為線性截斷的分布曲線,FSM-6000在離子交換層中從導引光模的量測數估計DOL。然而,在實施中,折射率分布曲線不同於線性截斷的分布曲線,特別是在分布曲線的深端。The actual physical central tension in the intermediate plane of the sample are often different approximations CT A, can be easily calculated since the CT A and CS based on a known thickness and generally reported by FSM-6000 DOL, CT A has been widely adopted. Assuming that the relevant refractive index distribution curve is a linear truncated distribution curve, FSM-6000 estimates DOL in the ion exchange layer from the measurement of the guided optical mode. However, in practice, the refractive index distribution curve is different from the linearly truncated distribution curve, especially at the deep end of the distribution curve.

在許多情況下,分布曲線可以被互補誤差函數(erfc)緊密近似。這通常是離子交換的有效擴散係數(相互擴散係數)在擴散劑的濃度分布曲線橫跨的濃度範圍間變化相對小的情況。這種是在Barefoot I和Barefoot II描述的玻璃中用K+ 交換Na+ 的情況,Barefoot I和Barefoot II揭示在那些玻璃上觀察到的CT1 和CT3 易碎性限值。K+ 濃度的erfc形分布之中心張力CT可以藉由考量到特定體積的局部變化正比於局部K+ 濃度及藉由施加所需的平衡力來計算,施加所需的平衡力要求的是在基板的壓縮區域中的應力之空間積分等於且符號相反於在張力區域間的應力積分。In many cases, the distribution curve can be closely approximated by the complementary error function (erfc). This is usually the case where the effective diffusion coefficient (interdiffusion coefficient) of ion exchange changes relatively little between the concentration ranges spanned by the concentration distribution curve of the diffusing agent. This is the case where K + is exchanged for Na + in the glasses described by Barefoot I and Barefoot II, which reveals the fragility limits of CT 1 and CT 3 observed on those glasses. The central tension CT of the erfc-shaped distribution of K + concentration can be calculated by considering the local change to a specific volume and proportional to the local K + concentration and by applying the required balancing force, which is required on the substrate The spatial integration of the stress in the compression zone is equal to and opposite to the stress integration between the tension zones.

將近似採用的CT A與線性擴散的erfc分布曲線特徵之計算真實物理CT(CT(erfc))的比率作為層深度DOL對層厚度的比率之函數圖示於第2圖,其中DOL是藉由FSM-6000計算相同的erfc形折射率分布曲線,且FSM-6000將DOL視為線性截斷分布曲線。 The ratio of the calculated CT A and the linearly diffused erfc distribution curve characteristics to the actual physical CT (CT(erfc)) is shown in Figure 2 as a function of the ratio of layer depth DOL to layer thickness, where DOL is obtained by FSM-6000 calculates the same erfc-shaped refractive index distribution curve, and FSM-6000 regards DOL as a linear truncated distribution curve.

假使化學強化離子的濃度分布曲線遵循線性擴散情況的函數形式:

Figure 02_image010
(9), 其中x 0為有效的穿透深度。 (9), where x 0 is the effective penetration depth. x 0藉由以下方程式與FSM量測的DOL相關x 0 is related to the DOL measured by FSM by the following equation
Figure 02_image012
(10)。 (10). If the concentration distribution curve of chemically strengthened ions follows a functional form of linear diffusion: If the concentration distribution curve of chemically strengthened ions follows a functional form of linear diffusion:
Figure 02_image010
(9), where x 0 is the effective penetration depth. x 0 is related to the DOL measured by FSM by the following equation (9), where x 0 is the effective penetration depth. x 0 is related to the DOL measured by FSM by the following equation
Figure 02_image012
(10). (10).

然後從力平衡從CS決定CT:

Figure 02_image014
(11)。 Then determine CT from the force balance from CS:
Figure 02_image014
(11).

物理CT對CS的比率則以下面的方式取決於DOL:

Figure 02_image016
(12)。 The ratio of physical CT to CS depends on DOL in the following way:
Figure 02_image016
(12).

另一方面, CT A的FSM公式為

Figure 02_image017
(13), 因此,傳統採用的近似CT A對線性擴散情況(erfc分布曲線)的物理CT之比為: (13). Therefore, the ratio of the traditional approximate CT A to the physical CT of the linear diffusion (erfc distribution curve) is:
Figure 02_image019
(14)。 (14). On the other hand, the FSM formula of CT A is On the other hand, the FSM formula of CT A is
Figure 02_image017
(13) Therefore, the ratio of the approximate CT A used to the physical CT of the linear diffusion (erfc distribution curve) is: (13) Therefore, the ratio of the approximate CT A used to the physical CT of the linear diffusion (erfc distribution curve) is:
Figure 02_image019
(14). (14).

以CTA 表示的易碎性限值CT1 和相應的物理CT限值係從CT1 計算,並假設DOL為表面應力計FSM-6000一般量測的0.03、0.04、及0.05 mm。對於厚度範圍> 0.3mm,並且US Barefoot等人描述的玻璃組成物在名義上純的KNO3 中進行離子交換,CS介於約700和900 MPa之間,並且開始有易碎性時DOL大於約0.03 mm。就CTA 來說,依據先前技術CT1 曲線上方的區域是易碎的。這意味著就物理CT來說,對於DOL = 0.03 mm,表示CTerfc 的連續線上方的整個區域被先前技術認為是易碎的。The fragility limit CT 1 expressed in CT A and the corresponding physical CT limit are calculated from CT 1 , and it is assumed that DOL is 0.03, 0.04, and 0.05 mm which are generally measured by the surface stress gauge FSM-6000. For thickness ranges> 0.3mm, and the glass composition described by US Barefoot et al. is ion exchanged in nominally pure KNO 3 , CS is between about 700 and 900 MPa, and DOL is greater than about when fragility begins 0.03 mm. As far as CT A is concerned, the area above the CT 1 curve according to the prior art is fragile. This means that for physical CT, for DOL = 0.03 mm, the entire area above the continuous line representing CT erfc is considered fragile by the prior art.

將在厚度和CT的二維空間中分離易碎和不易碎玻璃區域的界線圖示於第3圖。第3圖包括依據Barefoot II以CTA 定義的分離線(第3圖的(a)),並圖示出三條以物理CT表示並計算用於具有與Barefoot I相同的CTA 的erfc形分布曲線的其他線。這些線被計算用於FSM-6000測得的不同DOL,並表示Barefoot II揭示的玻璃在公稱純的KNO3 中離子交換之後出現易碎性的典型DOL範圍。在這些線中,描繪以物理CT表示的CTA 曲線的最高CT限值係對應於最小DOL(0.03 mm;第3圖的線b)者。Fig. 3 shows the boundary line separating the fragile and unbreakable glass regions in the two-dimensional space of thickness and CT. Figure 3 includes the separation line defined by CT A according to Barefoot II ((a) in Figure 3), and illustrates three erfc-shaped distribution curves represented by physical CT and calculated for the same CT A as Barefoot I Other lines. These lines are calculated for different DOLs measured by FSM-6000 and represent the typical DOL range where the glass disclosed by Barefoot II exhibits brittleness after ion exchange in nominally pure KNO 3 . Among these lines, the highest CT limit of the CT A curve expressed in physical CT corresponds to the minimum DOL (0.03 mm; line b in Figure 3).

對於小於0.75 mm的厚度,以下描述更高的CT限值。對於大於0.75 mm的厚度,曲線上方的空間表示以CTA 或物理CT表示的易碎玻璃條件,視該曲線而定。For thicknesses less than 0.75 mm, higher CT limits are described below. For thicknesses greater than 0.75 mm, the space above the curve represents the condition of fragile glass expressed in CT A or physical CT, depending on the curve.

在公稱純的KNO3 中離子交換之後,基於CT3 表示的標準,將在厚度和CT的二維空間中分離易碎和不易碎玻璃區域的界線圖示於第4圖。第4圖包括以CTA 定義的分離線(第3圖的(a))以及三條其他以物理CT表示的erfc形分布曲線。這些分布曲線具有與線a相同的CTA ,並被計算用於FSM-6000測得的不同DOL。這些分布曲線表示在Barefoot II揭示的玻璃中出現易碎性的典型DOL範圍。在第4圖圖示的這些線中,描繪以物理CT表示的CTA 曲線的最高物理CT限值係對應於最小DOL者。After the ion exchange in the nominally pure KNO 3 , based on the standard expressed by CT 3 , the boundary line separating the fragile and unbreakable glass regions in the two-dimensional space of thickness and CT is shown in FIG. 4. Figure 4 includes the separation line defined by CT A (Figure 3 (a)) and three other erfc-shaped distribution curves expressed by physical CT. These distribution curves have the same CT A as line a and are calculated for different DOLs measured by FSM-6000. These distribution curves represent typical DOL ranges where friability occurs in the glass revealed by Barefoot II. In these lines illustrated in FIG. 4, the highest physical CT limit value of the CT A curve expressed in physical CT corresponds to the smallest DOL.

由於純KNO3 離子交換浴和厚度t > 0.3 mm的易碎性通常出現在DOL > 0.03 mm,故對應於DOL= 0.03 mm的曲線(曲線b)上方的整個區域是依據Barefoot等人的易碎性區域。Since the pure KNO 3 ion exchange bath and the fragility of thickness t> 0.3 mm usually appear at DOL> 0.03 mm, the entire area above the curve (curve b) corresponding to DOL = 0.03 mm is based on the fragility of Barefoot et al. Sexual area.

用於說明本揭示之實施例的特定玻璃組成物被描述於Timothy M. Gross於2012年11月15日提出申請、標題為「具有高裂紋起始臨界值的離子交換玻璃(Ion Exchangeable Glass with High Crack Initiation Threshold)」的美國專利申請案第13/678,013號、及Timothy M. Gross於2012年11月15日提出申請、標題為「具有高裂紋起始臨界值的離子交換玻璃(Ion Exchangeable Glass with High Crack Initiation Threshold)」的美國專利申請案第13/677,805號中,上述二專利案皆主張於2011年11月16日提出申請的美國臨時專利申請案第61/560,434號的優先權。此玻璃含有Na2 O作為主要的鹼金屬氧化物,而且由於未從起始原料完全去除K2 O,基板中具有可忽略量的K2 O。在這種情況下,在用K+ 離子交換Na+ 的過程中發生大體上非線性的擴散,其中在具有低K+ 濃度的區域中相互擴散係數是低的,而在K+ 濃度佔K+ 和Na+ 總濃度的大部分(>25%)的那些區域中相互擴散係數高相當多。在這種情況下,erfc函數的形狀確實準確表示折射率的形狀及應力分布曲線,而且需要詳細的非線性擴散模型來準確地描述分布曲線及該等分布曲線與離子交換條件的關係。使用基於IWKB的演算法擷取詳細的應力分布曲線被描述於Rostislav V. Roussev等人於2012年5月3日提出申請的、標題為「量測離子交換玻璃之應力分布曲線的系統和方法(Systems And Methods for Measuring the Stress Profile of Ion-Exchanged Glass)」、並主張於2011年5月25日提出申請的、具有相同標題的美國臨時專利申請案第61/489,800號之優先權的美國專利申請案第13/463,322號(下文稱為「Roussev I」)中,將上述專利案之內容以引用方式全部併入本文中,以決定應力分布曲線。將實際基板的非erfc擷取折射率分布曲線之實例圖示於第5圖,第5圖為藉由基於IWKB的演算法經由稜鏡耦合量測擷取至高達最後擷取的光模之轉折點的橫向磁場(TM)和橫向電場(TE)折射率分布曲線圖。玻璃基板為在440℃下在依重量計含有50% NaNO3 和50% KNO3 的浴中離子交換17.7小時的0.4 mm厚玻璃。玻璃基板成分被描述於美國專利申請案第13/678,013號中。折射率分布曲線的形狀與erfc形狀相當不同。第6圖為在440℃下在依重量計含有50% NaNO3 和50% KNO3 的浴中離子交換17.7小時的0.4 mm厚玻璃之應力分布曲線圖。玻璃樣品的成分被描述於美國專利申請案第13/678,013號中。應力分布曲線具有在表面(深度 = 0 μm)為219 MPa的壓縮應力、78 μm 的壓縮深度DOC、及86 MPa的中心張力CT。對於厚度為0.4 mm的玻璃來說,此物理CT比Barefoot等人教示的62 MPa物理CT限值高相當多。差CT-CS為約86- (-219)=305 MPa。The specific glass composition used to illustrate the embodiments of the present disclosure is described by Timothy M. Gross on November 15, 2012, entitled "Ion Exchangeable Glass with High Crack Initiation Critical Value (Ion Exchangeable Glass with High Crack Initiation Threshold” in US Patent Application No. 13/678,013, and Timothy M. Gross applied on November 15, 2012, titled “Ion Exchangeable Glass with High Crack Initiation Critical Value (Ion Exchangeable Glass with High Crack Initiation Threshold” in US Patent Application No. 13/677,805, both of the above two patent cases claim priority in US Provisional Patent Application No. 61/560,434 filed on November 16, 2011. This glass contains Na 2 O as the main alkali metal oxide, and since K 2 O is not completely removed from the starting material, there is a negligible amount of K 2 O in the substrate. In this case, a substantially nonlinear diffusion occurs during the exchange of Na + with K + ions, where the mutual diffusion coefficient is low in the region with a low K + concentration, and the K + concentration accounts for K + The interdiffusion coefficient is quite high in those areas where most of the total Na + concentration (>25%) is. In this case, the shape of the erfc function does accurately represent the shape of the refractive index and the stress distribution curve, and a detailed nonlinear diffusion model is needed to accurately describe the distribution curve and the relationship between the distribution curve and the ion exchange conditions. The use of an algorithm based on IWKB to extract detailed stress distribution curves is described in the system and method titled "Measurement of Stress Distribution Curves of Ion Exchange Glass" filed by Rostislav V. Roussev et al. on May 3, 2012 ( Systems And Methods for Measuring the Stress Profile of Ion-Exchanged Glass)” and claiming priority on US Provisional Patent Application No. 61/489,800 with the same title filed on May 25, 2011 In case No. 13/463,322 (hereinafter referred to as "Roussev I"), the contents of the above patent case are incorporated herein by reference to determine the stress distribution curve. An example of a non-erfc extracted refractive index distribution curve of an actual substrate is shown in Fig. 5. Fig. 5 shows the turning point up to the last optical mode captured by the IWKB-based algorithm through 珜鏡coupling measurement The refractive index distribution curve of the transverse magnetic field (TM) and transverse electric field (TE). The glass substrate is a 0.4 mm thick glass ion-exchanged at 440° C. for 17.7 hours in a bath containing 50% NaNO 3 and 50% KNO 3 by weight. The glass substrate composition is described in US Patent Application No. 13/678,013. The shape of the refractive index profile is quite different from the erfc shape. Figure 6 is a graph of the stress distribution of 0.4 mm thick glass ion exchanged in a bath containing 50% NaNO 3 and 50% KNO 3 by weight for 17.7 hours at 440°C. The composition of the glass sample is described in US Patent Application No. 13/678,013. The stress distribution curve has a compressive stress of 219 MPa on the surface (depth = 0 μm), a compression depth of 78 μm DOC, and a central tension CT of 86 MPa. For glass with a thickness of 0.4 mm, this physical CT is considerably higher than the 62 MPa physical CT limit taught by Barefoot et al. The difference CT-CS is about 86- (-219)=305 MPa.

沿著深度尺寸積分,在壓縮區域中單位面積的彈性能據估計為約13.4 J/m2 ,而且在張力區域中為約15.7 J/m2 。因此,總彈性能為約29.1 J/m2 。考量0.4 mm的厚度,每單位厚度的總彈性能為72.8 J/(m2 ・mm)。Integrating along the depth dimension, the elastic energy per unit area in the compression area is estimated to be about 13.4 J/m 2 and about 15.7 J/m 2 in the tension area. Therefore, the total elastic energy is about 29.1 J/m 2 . Considering the thickness of 0.4 mm, the total elastic energy per unit thickness is 72.8 J/(m 2 ・mm).

藉由在壓縮區域的應力深度積分和在張力區域的應力深度積分之間應用力平衡的條件,可以決定實際物理中心張力CT的準確值。在一般情況下,這種物理CT應該對應於基於erfc的物理CT,基於erfc的物理CT可以在先前所提基本上線性擴散的情況下被計算出。藉由IWKB法找到的應力分布曲線通常會受限於波導區域的TM和TE光模之最深轉折點的較小深度。當DOL非常大時,在接近這些最大深度的深度處的應力分布曲線有時會受到明顯的雜訊干擾。因此,採用拋物線近似壓縮深度DOC間的應力分布曲線形狀,而且分布曲線在化學穿透的深度變成基本上平的的較大深度具有的應力大致上等於從該深度到基板中心的中心張力。將使用IWKB法擷取的應力分布曲線之實例圖示於第7圖。第7圖的實線(線a)表示用於模仿張力區的分布曲線形狀的二次近似,用於準確估計張力區的應力積分。張力區的應力分布曲線之可變部分是由延伸於壓縮深度(DOC)之間的拋物線(第7圖的虛線(b))表示,而且該深度等於1.15・DOL。對於上文描述的特定玻璃來說,分布曲線變平坦的深度約為1.15・DOL,其中由FSM-6000儀器測定相同離子交換玻璃的DOL。在那些應力分布曲線可以以非常低的雜訊擷取的情況下,應力分布曲線的最深部分具有接近中心張力的應力,該中心張力可藉由上述張力和壓縮力之間的力平衡方法找到。力平衡條件表示的事實是,在沒有外力的情況下,樣品形狀隨著時間保持不變。By applying the condition of force balance between the stress depth integral in the compression zone and the stress depth integral in the tension zone, the exact value of the actual physical center tension CT can be determined. In general, this physical CT should correspond to the erfc-based physical CT. The erfc-based physical CT can be calculated in the case of the substantially linear diffusion mentioned previously. The stress distribution curve found by the IWKB method is usually limited to the smaller depth of the deepest turning point of the TM and TE optical modes in the waveguide region. When DOL is very large, the stress distribution curve at depths close to these maximum depths is sometimes subject to significant noise interference. Therefore, a parabola is used to approximate the shape of the stress distribution curve between the compression depths DOC, and the distribution curve has a stress that is substantially equal to the central tension from the depth to the center of the substrate at a larger depth where the depth of chemical penetration becomes substantially flat. An example of the stress distribution curve acquired by the IWKB method is shown in FIG. 7. The solid line (line a) in Figure 7 represents a quadratic approximation used to imitate the shape of the distribution curve of the tension zone, and is used to accurately estimate the stress integral of the tension zone. The variable part of the stress distribution curve in the tension zone is represented by a parabola (dotted line (b) in Figure 7) extending between the compression depth (DOC), and the depth is equal to 1.15・DOL. For the specific glass described above, the depth at which the distribution curve flattens is about 1.15・DOL, where the DSM of the same ion exchange glass is measured by the FSM-6000 instrument. In those cases where the stress distribution curve can be captured with very low noise, the deepest part of the stress distribution curve has a stress close to the central tension, which can be found by the aforementioned force balance method between tension and compression force. The force balance condition indicates the fact that in the absence of external force, the shape of the sample remains unchanged over time.

對於第4圖和第5圖圖示的特定實例來說,差CT-CS為約305 MPa,其中藉由傳統的物理慣例,拉伸應力為正而壓縮應力為負。厚度0.4 mm的玻璃在含有50 wt% NaNO3 和50 wt% KNO3 的浴中進行離子交換的過程中從未出現易碎性,即使當離子交換時間超過30小時並且應力分布曲線(在應力量測訊號大約等於雜訊水平的水平)從基板的兩側接近到非常靠近中心亦然。For the specific examples illustrated in Figures 4 and 5, the difference CT-CS is about 305 MPa, where by conventional physical conventions, the tensile stress is positive and the compressive stress is negative. The 0.4 mm thick glass never undergoes fragility during ion exchange in a bath containing 50 wt% NaNO 3 and 50 wt% KNO 3 , even when the ion exchange time exceeds 30 hours and the stress distribution curve (in the amount of stress The measured signal is approximately equal to the noise level) from both sides of the substrate to very close to the center.

在離子交換期間和之後沒有應力鬆弛之下,在最大擴散劑(K+ )濃度與在中心的最小擴散劑濃度之間的濃度差CT-CS=∣CT∣+∣CS∣與離子交換浴的成分和離子交換溫度直接相關。這種差在很大程度上仍取決於離子交換時間,直到最終從基板兩端的分布曲線在中間相遇,並且在中心出現可量測的擴散劑(K+ 或K2 O)濃度增加。在此點最大濃度和最小濃度之間的濃度差減少,差CT-CS從而開始減小到超出該點,即使在沒有應力鬆弛下亦然。在低於450℃的溫度下並且在NaNO3 + KNO3 離子交換浴中NaNO3 分率 > 30 wt%的離子交換鹽混合物組成物中,應力鬆弛相對較小。此外,隨著離子交換時間和FSM DOL(由於小的應力鬆弛)增加,差CT-CS非常緩慢地減小,而且可以被近似為常數。因此,已經發現的是,對於CT-CS≦ 305 MPa來說,即使物理CT大致上大於任何對應於先前揭示的CT限值的CT,離子交換基板仍不會變成易碎,而且事實上只要觀察上述不等式,基板可以永遠不會變成易碎。這種情況適用於所有大於或等於本文所述0.4 mm厚度的基板厚度。Without stress relaxation during and after ion exchange, the concentration difference between the maximum diffusant (K + ) concentration and the minimum diffusant concentration in the center CT-CS=∣CT∣+∣CS∣ and ion exchange bath The composition is directly related to the ion exchange temperature. This difference is still largely dependent on the ion exchange time until the distribution curves from the two ends of the substrate meet in the middle and a measurable increase in the concentration of the diffusing agent (K + or K 2 O) appears in the center. At this point, the concentration difference between the maximum concentration and the minimum concentration decreases, and the difference CT-CS thus begins to decrease beyond this point, even without stress relaxation. At a temperature lower than 450°C and in an ion exchange salt mixture composition having a NaNO 3 fraction> 30 wt% in the NaNO 3 + KNO 3 ion exchange bath, the stress relaxation is relatively small. In addition, as the ion exchange time and FSM DOL (due to small stress relaxation) increase, the difference CT-CS decreases very slowly and can be approximated as a constant. Therefore, it has been found that for CT-CS≦305 MPa, even if the physical CT is substantially larger than any CT corresponding to the CT limit previously disclosed, the ion exchange substrate will not become brittle, and in fact, as long as the observation With the above inequality, the substrate can never become brittle. This situation applies to all substrate thicknesses greater than or equal to the 0.4 mm thickness described herein.

此外,對於在440℃下在含有45 wt% NaNO3 和55 wt% KNO3 的混合物中離子交換長達約42小時並具有取決於厚度範圍從約311 MPa至約324 MPa的CT-CS差的基板,沒有觀察到易碎性。In addition, for ion exchange at 440°C in a mixture containing 45 wt% NaNO 3 and 55 wt% KNO 3 for up to about 42 hours and having a CT-CS difference depending on the thickness ranging from about 311 MPa to about 324 MPa For the substrate, no fragility was observed.

在一個態樣中,不管層深度為何,具有大於先前已知的易碎性CT限值(第3圖的曲線a)的物理CT、DOL > 0.1t、及CT-CS小於或等於約350 MPa(而且在一些實施例中小於或等於約340 MPa)的強化玻璃未表現出易碎行為。短離子交換時間的差CS-CT(即10 μm≦  DOL ≦ 40 μm)說明有適量的應力鬆弛。In one aspect, regardless of the depth of the layer, a physical CT with a fragility CT limit previously known (curve a in Figure 3), DOL> 0.1t, and CT-CS less than or equal to about 350 MPa (And in some embodiments less than or equal to about 340 MPa) The strengthened glass does not exhibit brittle behavior. The difference CS-CT of short ion exchange time (that is, 10 μm≦DOL short ≦40 μm) indicates that there is an appropriate amount of stress relaxation.

在另一個態樣中,可以不藉由實現使缺陷快速延伸通過玻璃的拉伸中心區域所需的CT、而是在DOL大時(通常DOL > 0.1t)藉由儲存彈性能的量來獲得可限制易碎性出現的狀態。具體言之,可以獲得當DOL大於約0.15t時CT可能超過先前揭示的易碎性CT限值的狀態。假使在壓縮和張力區域中的儲存彈性能之量不足以在裂紋延伸和分叉的過程中形成大的、新的自由表面,則易碎性即被防止了。In another aspect, it can be obtained by storing the amount of elastic energy when the DOL is large (usually DOL> 0.1t) not by realizing the CT required to quickly extend the defect through the stretching center region of the glass Can limit the state of fragility. Specifically, a state where CT may exceed the previously disclosed fragile CT limit when DOL is greater than about 0.15t can be obtained. If the amount of stored elastic energy in the compression and tension zone is not enough to form a large, new free surface during crack extension and bifurcation, then frangibility is prevented.

藉由應力分布曲線儲存的彈性能係依據以下方程式計算

Figure 02_image020
(15), 其中ν為泊松比(對上文描述的例示性玻璃組成物來說為0.22),E為楊氏模數(對我們的實例玻璃5318來說為約68 GPa),以及σ為應力。 The elastic energy stored by the stress distribution curve is calculated according to the following equation
Figure 02_image020
(15), where ν is Poisson's ratio (0.22 for the exemplary glass composition described above), E is Young's modulus (about 68 GPa for our example glass 5318), and σ For stress.

在各壓縮區域(在基板的各主要外表面上的區域)中每單位面積的玻璃之彈性能為:

Figure 02_image022
(16)。 The elastic energy per unit area of glass in each compressed area (area on each major outer surface of the substrate) is:
Figure 02_image022
(16).

在從壓縮深度到玻璃基板中心的張力區域中的彈性能為:

Figure 02_image024
W (17)。 The elastic energy in the tension region from the compression depth to the center of the glass substrate is:
Figure 02_image024
W (17).

基板中儲存的總彈性能是單一壓縮和張力區域的彈性能之總和的兩倍,乘以2以計算化學強化基板中出現的兩個壓縮區域和一半的中心張力區域。以上方程式中不同變數的單位如下: 對於應力:

Figure 02_image026
(18); 對於深度:
Figure 02_image028
(19); 每單位基板面積的彈性能:
Figure 02_image030
(20);以及每單位基板面積每單位厚度的彈性能:J/m 2 ・mm。 (20); and the elastic energy per unit area per unit thickness: J/m 2 ・mm. The total elastic energy stored in the substrate is twice the sum of the elastic energy of a single compression and tension zone, multiplied by 2 to calculate the two compression zones and half of the central tension zone that appear in the chemically strengthened substrate. The units of different variables in the above equation are as follows: For stress: The total elastic energy stored in the substrate is twice the sum of the elastic energy of a single compression and tension zone, multiplied by 2 to calculate the two compression zones and half of the central tension zone that appear in the chemically strengthened substrate. The units of different variables in the above equation are as follows: For stress:
Figure 02_image026
(18); For depth: (18); For depth:
Figure 02_image028
(19); Elastic energy per unit substrate area: (19); Elastic energy per unit substrate area:
Figure 02_image030
(20); And the elastic energy per unit substrate area per unit thickness: J/m 2 ・mm. (20); And the elastic energy per unit substrate area per unit thickness: J/m 2 ・mm.

使用張力區域中的應力之可變部分的二次近似,且化學深度d chem =1.15・DOL FSM ,應用力平衡條件產生以下具體公式用於決定考量的特定玻璃組成物和分布曲線之物理CT:

Figure 02_image032
(21), 此係藉由在分布曲線的壓縮區域間積分應力來找出,如藉由基於IWKB的演算法擷取(21), this is found by integrating the stresses between the compression regions of the distribution curve, such as by the IWKB-based algorithm
Figure 02_image034
(22)。 (twenty two). Using the quadratic approximation of the variable part of the stress in the tension zone, and the chemical depth d chem =1.15・DOL FSM , applying the force balance conditions produces the following specific formula for determining the physical CT of the specific glass composition and distribution curve under consideration: Using the quadratic approximation of the variable part of the stress in the tension zone, and the chemical depth d chem =1.15・DOL FSM , applying the force balance conditions produces the following specific formula for determining the physical CT of the specific glass composition and distribution curve under consideration:
Figure 02_image032
(21), this is found by integrating the stress between the compression regions of the distribution curve, such as by an algorithm based on IWKB (21), this is found by integrating the stress between the compression regions of the distribution curve, such as by an algorithm based on IWKB
Figure 02_image034
(twenty two). (twenty two).

壓縮區域中的能量係通過先前描述的壓縮區域中能量的定義式(方程式7)藉由積分應力的平方直接找出。在二次近似張力區中的分布曲線之可變部分的特定情況下有效的張力區域能量表示為:

Figure 02_image036
(23)。 (twenty three). The energy in the compression area is directly found by the square of the integrated stress through the previously described definition of energy in the compression area (Equation 7). In the specific case of the variable part of the distribution curve in the quadratic approximate tension zone, the effective tension zone energy is expressed as: The energy in the compression area is directly found by the square of the integrated stress through the previously described definition of energy in the compression area (Equation 7). In the specific case of the variable part of the distribution curve in the quadratic approximate tension zone , the effective tension zone energy is expressed as:
Figure 02_image036
(twenty three). (twenty three).

將厚度範圍從0.4至1.0 mm的玻璃獲得的結果總結在表3中。玻璃在440℃下在含有約45 wt% NaNO3 和約55 wt% KNO3 的浴中進行不同時間的離子交換。在這些實例中,由FSM-6000測定的DOL範圍從約0.14t至約0.39t。如先前提到的,CT-CS差的範圍從約311 MPa至至少324 MPa。取決於厚度和DOL,CS的範圍從約222 MPa至約270 MPa。發現表3所列的所有玻璃樣品都是不易碎的。對於所有的厚度來說,物理CT皆超過對應於先前技術限值的物理CT易碎性限值,而且CTA 超過先前技術的CTA 限值。The results obtained for glass with a thickness ranging from 0.4 to 1.0 mm are summarized in Table 3. The glass was subjected to ion exchange at 440°C in a bath containing about 45 wt% NaNO 3 and about 55 wt% KNO 3 for different times. In these examples, the DOL measured by FSM-6000 ranges from about 0.14t to about 0.39t. As mentioned previously, the CT-CS difference ranges from about 311 MPa to at least 324 MPa. Depending on the thickness and DOL, CS ranges from about 222 MPa to about 270 MPa. It was found that all the glass samples listed in Table 3 were not fragile. For all thicknesses, the physical CT exceeds the fragility limit of the physical CT corresponding to the prior art limit, and the CT A exceeds the CT A limit of the prior art.

表3.DOL>0.1t的不易碎離子交換玻璃之實例。

Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
Table 3. Examples of non-breakable ion exchange glass with DOL>0.1t.
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
表3.DOL>0.1t的不易碎離子交換玻璃之實例。
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
Table 3. Examples of non-breakable ion exchange glass with DOL>0.1t.
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
表3.DOL>0.1t的不易碎離子交換玻璃之實例。
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
Table 3. Examples of non-breakable ion exchange glass with DOL>0.1t.
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
表3.DOL>0.1t的不易碎離子交換玻璃之實例。
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
Table 3. Examples of non-breakable ion exchange glass with DOL>0.1t.
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
表3.DOL>0.1t的不易碎離子交換玻璃之實例。
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
Table 3. Examples of non-breakable ion exchange glass with DOL>0.1t.
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
表3.DOL>0.1t的不易碎離子交換玻璃之實例。
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005
Table 3. Examples of non-breakable ion exchange glass with DOL>0.1t.
Figure 109100456-A0304-0004
Figure 109100456-A0304-0005

在440℃下在含有約45 wt% NaNO3 和約55 wt% KNO3 的浴中離子交換21小時之後,厚度0.4 mm的樣品表現出81.6 μm的壓縮深度DOC、至少102.7 MPa的物理CT、在壓縮區域中15.1 J/m2 的儲存彈性能、及在一半的張力區域中至少8.9 J/m2 的儲存彈性能。總彈性能為至少48 J/m2 ,當標準化為厚度時該總彈性能為至少120 J/m2 ・mm。在本實施例中,對於0.4 mm的厚度發現了DOL大於約0.1t的新不易碎區域。物理CT大於與先前揭示一致的約63 MPa值,對於Barefoot I和Barefoot II的0.4 mm樣品厚度,物理CT大於76 MPa值係與CTA =CT3 =106.6一致。After ion exchange in a bath containing about 45 wt% NaNO 3 and about 55 wt% KNO 3 at 440°C for 21 hours, the 0.4 mm thick sample showed a compression depth of 81.6 μm DOC, a physical CT of at least 102.7 MPa, The storage elastic energy of 15.1 J/m 2 in the compression zone and at least 8.9 J/m 2 of the storage elastic energy in the half-tension zone. The total elastic energy is at least 48 J/m 2 , which is at least 120 J/m 2 ・mm when normalized to thickness. In this embodiment, a new unbreakable region with a DOL greater than about 0.1 t was found for a thickness of 0.4 mm. Physical CT is greater than the value of about 63 MPa consistent with the previous disclosure. For the 0.4 mm sample thickness of Barefoot I and Barefoot II, the value of physical CT greater than 76 MPa is consistent with CT A = CT 3 = 106.6.

在另一個實例中,對於0.4 mm的厚度,在440 ℃下在包含約50 wt% NaNO3 和50 wt% KNO3 的浴中離子交換26.5小時的時間產生的不易碎玻璃具有約191 MPa的CS、至少94 MPa的CT、及約85微米的DOC。In another example, for a thickness of 0.4 mm, the unbreakable glass produced by ion exchange in a bath containing about 50 wt% NaNO 3 and 50 wt% KNO 3 at 440° C. for 26.5 hours has a CS of about 191 MPa , CT of at least 94 MPa, and DOC of about 85 microns.

在另一個實例中,在440℃下在包含約50 wt% NaNO3 和50 wt% KNO3 的浴中離子交換26.5小時的0.4 mm厚樣品是不易碎的,並具有約191 MPa的CS、至少94 MPa的CT、及約85 μm的DOC。物理CT比76 MPa的物理值高相當多,對於相同的厚度來說,該物理CT對應於先前揭示的值CTA =CT3 =106.6 MPa。In another example, a 0.4 mm thick sample that was ion exchanged at 440°C for 26.5 hours in a bath containing about 50 wt% NaNO 3 and 50 wt% KNO 3 was not fragile and had a CS of about 191 MPa, at least 94 MPa CT, and about 85 μm DOC. The physical CT is considerably higher than the physical value of 76 MPa, and for the same thickness, the physical CT corresponds to the previously disclosed value CT A =CT 3 =106.6 MPa.

將在440℃下在含有約40 wt% NaNO3 和60 wt% KNO3 的浴中離子交換之後具有DOL > 0.1t和各種厚度的不易碎和易碎玻璃之實例總結在表4中。離子交換42.6小時的實例具有大致上高於150 μm的FSM型DOL,而且由於難以解析這些間隔密集的模式,一些高階模式可能沒有被檢測到。因此,DOL的計算值、物理CT、張力能、及總彈性能是下限估計值。不易碎的實例表現出高達334 MPa的CT-CS值。在三個不易碎的實例中,對於厚度0.6 mm(CT > 52 MPa)、0.8 mm(CT > 44.3 MPa)、及1.0 mm(CT > 38 MPa),物理CT大致上分別超過先前報導的相應CT限值。 表4. 在440℃下在含有約40 wt% NaNO3 和60 wt% KNO3 的浴中離子交換之後具有DOL > 0.1t和各種厚度的不易碎和易碎玻璃之實例。

Figure 109100456-A0304-0006
Figure 109100456-A0304-0007
Examples of unbreakable and breakable glass with DOL> 0.1t and various thicknesses after ion exchange at 440°C in a bath containing about 40 wt% NaNO 3 and 60 wt% KNO 3 are summarized in Table 4. The 42.6-hour ion exchange example has an FSM-type DOL that is roughly higher than 150 μm, and because it is difficult to resolve these closely spaced patterns, some higher-order patterns may not be detected. Therefore, the calculated value of DOL, physical CT, tension energy, and total elastic energy are the lower limit estimates. The unbreakable example shows a CT-CS value of up to 334 MPa. Among the three unbreakable examples, for thicknesses of 0.6 mm (CT> 52 MPa), 0.8 mm (CT> 44.3 MPa), and 1.0 mm (CT> 38 MPa), the physical CT generally exceeded the corresponding CT reported previously. Limit. Table 4. Examples of unbreakable and breakable glass with DOL> 0.1t and various thicknesses after ion exchange at 440°C in a bath containing approximately 40 wt% NaNO 3 and 60 wt% KNO 3 . Examples of unbreakable and breakable glass with DOL> 0.1t and various thicknesses after ion exchange at 440°C in a bath containing about 40 wt% NaNO 3 and 60 wt% KNO 3 are summarized in Table 4. The 42.6-hour ion exchange example has an FSM-type DOL that is roughly higher than 150 μm, and because it is difficult to resolve these closely spaced patterns, some higher-order patterns may not be detected. Therefore, the calculated value of DOL, physical CT, tension energy, and total elastic energy are the lower limit estimates. The unbreakable example shows a CT-CS value of up to 334 MPa. Among the three unbreakable examples, for thicknesses of 0.6 mm (CT> 52 MPa), 0.8 mm (CT> 44.3 MPa ), and 1.0 mm (CT> 38 MPa), the physical CT generally exceeded the corresponding CT reported previously. Limit. Table 4. Examples of unbreakable and breakable glass with DOL> 0.1t and various thicknesses after ion exchange at 440°C in a bath containing approximately 40 wt% NaNO 3 and 60 wt% KNO 3 .
Figure 109100456-A0304-0006
Figure 109100456-A0304-0007

在表4所列的另一個實例中,發現在包含40 wt% NaNO3 和60 wt% KNO3 的浴中離子交換21.5小時的0.4 mm厚玻璃樣品是易碎的,具有約56.2 J/m2 的總儲存彈性能,當對厚度標準化時,該總儲存彈性能相當於約140.4 J/m2 mm。因此,新發現的不易碎區域被表徵為對於0.4 mm的玻璃樣品厚度具有小於56.2 46.6 J/mm2 的儲存彈性能,而且對於所有厚度,特別是對於大於或等於0.4 mm的厚度,被標準化於厚度的彈性能小於140.4 J/m2 mm。In another example listed in Table 4, a 0.4 mm thick glass sample that was ion exchanged for 21.5 hours in a bath containing 40 wt% NaNO 3 and 60 wt% KNO 3 was found to be fragile, with about 56.2 J/m 2 When the thickness is normalized, the total storage elastic energy is equivalent to about 140.4 J/m 2 mm. Therefore, the newly discovered unbreakable region is characterized as having a storage elasticity of less than 56.2 46.6 J/mm 2 for a 0.4 mm glass sample thickness, and is standardized for all thicknesses, especially for thicknesses greater than or equal to 0.4 mm The elastic energy of the thickness is less than 140.4 J/m 2 mm.

在表3所列的另一個實例中,得到了在440℃下在45 wt% NaNO3 /55 wt% KNO3 離子交換浴中離子交換25.25小時的0.5 mm厚玻璃樣品,是具有9.6 MPa CT的不易碎玻璃。對於0.5 mm的樣品厚度和0.04 mm的DOL來說,此CT明顯大於Barefoot I報導的值約56 MPa。此列出樣品的CTA據估計為183 MPa,遠大於86.9 MPa的CT3 (0.5 mm)。樣品的DOC高達91.6 μm,在壓縮區域的能量為18.7 J/m2 ,而在張力半區域的能量為至少8.7 J/m2 。總儲存彈性能為至少54.8 J/m2 ,當對厚度標準化時,該總儲存彈性能為至少109.7 J/m2 ・mm。CT-CS差為約316 MPa。In another example listed in Table 3, a 0.5 mm thick glass sample with 9.6 MPa CT was obtained by ion exchange in a 45 wt% NaNO 3 /55 wt% KNO 3 ion exchange bath at 440°C for 25.25 hours Unbreakable glass. For a sample thickness of 0.5 mm and a DOL of 0.04 mm, this CT is significantly greater than the value reported by Barefoot I by about 56 MPa. The CTA of this listed sample is estimated to be 183 MPa, which is much greater than the CT 3 (0.5 mm) of 86.9 MPa. The DOC of the sample is as high as 91.6 μm, the energy in the compression area is 18.7 J/m 2 , and the energy in the tension half area is at least 8.7 J/m 2 . The total storage elastic energy is at least 54.8 J/m 2. When the thickness is normalized, the total storage elastic energy is at least 109.7 J/m 2 ・mm. The CT-CS difference is about 316 MPa.

表3所列在440℃下、在包含約45% NaNO3 和55% KNO3 的浴中離子交換25.25小時的0.6 mm厚樣品經發現為不易碎的。經離子交換的樣品具有約248 MPa的CS、約153 μm的DOL、98.6 μm的DOC、及至少65.6 MPa的物理CT,後者比Barefoot等人報導以物理CT表示、DOL約40 μm的約51 MPa限值大相當多。CTA 據估計為130 MPa,比先前報導的75.5 MPa CT3 大相當多。估計彈性能在壓縮區域為21.5 J/m2 ,而在張力區域為約8.1 J/m2 。總彈性能為約59.4 J/m2 ,而且單位面積和單位厚度的彈性能為約98.9 J/m2 mm。Table 3 lists a 0.6 mm thick sample that was ion exchanged at 440° C. for 25.25 hours in a bath containing approximately 45% NaNO 3 and 55% KNO 3 and was found to be unbreakable. The ion-exchanged sample has a CS of about 248 MPa, a DOL of about 153 μm, a DOC of 98.6 μm, and a physical CT of at least 65.6 MPa, which is about 51 MPa as reported by Barefoot et al. in physical CT and a DOL of about 40 μm. The limit is quite large. CT A is estimated to be 130 MPa, which is considerably larger than the previously reported 75.5 MPa CT 3 . The elastic energy is estimated to be 21.5 J/m 2 in the compression region and about 8.1 J/m 2 in the tension region. The total elastic energy is about 59.4 J/m 2 , and the elastic energy per unit area and unit thickness is about 98.9 J/m 2 mm.

表4所列的0.6 mm厚樣品在440℃下、在包含約40 wt% NaNO3 和約60 wt% KNO3 的浴中離子交換25.7小時經發現為不易碎的。經離子交換的樣品具有約255 MPa的CS、接近150 μm的DOL、100 μm的DOC、及甚至更高約70.2 MPa的物理CT,這比先前報導的值約56 MPa高相當多。類似地,不易碎樣品表現出129.8 MPa的CTA ,這比先前報導的易碎性限值CTA = CT3 (0.6mm) = 74.5 MPa大相當多。彈性能在壓縮區域為約24.2 J/m2 ,而在張力半區域為至少39.4 J/m2 。總彈性能據估計為至少67.3 J/m2 ,而且單位面積和單位厚度的彈性能為至少112 J/m2 mm。The 0.6 mm thick samples listed in Table 4 were found to be unbreakable at 440° C. for 25.7 hours of ion exchange in a bath containing about 40 wt% NaNO 3 and about 60 wt% KNO 3 for 25.7 hours. The ion-exchanged sample has a CS of about 255 MPa, a DOL close to 150 μm, a DOC of 100 μm, and an even higher physical CT of about 70.2 MPa, which is considerably higher than the previously reported value of about 56 MPa. Similarly, the non-fragile sample exhibited a CT A of 129.8 MPa, which is considerably larger than the previously reported fragility limit CT A = CT 3 (0.6 mm) = 74.5 MPa. The elastic energy is about 24.2 J/m 2 in the compression region and at least 39.4 J/m 2 in the tension half region. The total elastic energy is estimated to be at least 67.3 J/m 2 , and the elastic energy per unit area and unit thickness is at least 112 J/m 2 mm.

將樣品厚度為0.8 mm(表3)的實例在440 ℃下、在包含45 wt% NaNO3 和約55 wt% KNO3 的浴中離子交換25.25小時經發現為不易碎的,並具有約268 MPa的CS、約153微米的DOL、約107 μm的DOC、及約49 MPa的物理CT。對於0.8 mm的厚度來說,物理CT比對應於CTA =CT1 的物理CT之43.5 MPa易碎性限值更高。在壓縮區域的彈性能為26.7 J/m2 ,而張力半區域具有7.2 J/m2 的彈性能。總彈性能為約67.7 J/m2 ,對厚度標準化時為約84.6 J/m2 mm。An example of a sample with a thickness of 0.8 mm (Table 3) was found to be non-brittleable at 440°C, ion exchanged in a bath containing 45 wt% NaNO 3 and about 55 wt% KNO 3 for 25.25 hours, and had about 268 MPa CS, DOL of about 153 microns, DOC of about 107 μm, and physical CT of about 49 MPa. For a thickness of 0.8 mm, the physical CT has a higher fragility limit of 43.5 MPa than the physical CT corresponding to CT A = CT 1 . The elastic energy in the compression region is 26.7 J/m 2 , while the tension half region has an elastic energy of 7.2 J/m 2 . The total elastic energy is about 67.7 J/m 2 and about 84.6 J/m 2 mm when normalized to thickness.

列於表4並具有相同0.8 mm厚度的另一個樣品在440℃下在含有40 wt% NaNO3 和約60 wt% KNO3 的浴中離子交換25.5小時之後表現出不易碎行為。樣品具有約281 MPa的CS、約146 μm的DOL、約109 μm的DOC、及約45 MPa的物理CT,後者比以物理CT(43.5 MPa)表示、厚度0.8 mm的先前技術限值大相當多。在壓縮區域的彈性能為約30.2 J/m2 ,而張力半區域為約10.6 J/m2 ,產生總共約77.1 J/m2 。彈性能密度,即每單位面積和單位厚度的彈性能為約96.4 J/m2 mm。此不易碎玻璃的差CT-CS為至少約334 MPa。Another sample listed in Table 4 and having the same thickness of 0.8 mm showed unbreakable behavior after ion exchange in a bath containing 40 wt% NaNO 3 and about 60 wt% KNO 3 at 440°C for 25.5 hours. The sample has a CS of about 281 MPa, a DOL of about 146 μm, a DOC of about 109 μm, and a physical CT of about 45 MPa, which is considerably larger than the previous technical limit expressed in physical CT (43.5 MPa) and a thickness of 0.8 mm . The elastic energy in the compression zone is about 30.2 J/m 2 and the tension half zone is about 10.6 J/m 2 , resulting in a total of about 77.1 J/m 2 . The elastic energy density, that is, the elastic energy per unit area and unit thickness is about 96.4 J/m 2 mm. The poor CT-CS of this unbreakable glass is at least about 334 MPa.

還將四個在1 mm厚的基板上深離子交換的實例列於表3。離子交換是在440℃下、在包含約45 wt% NaNO3 和約55 wt% KNO3 的浴中進行。離子交換時間為25.25、30、36、及42小時,產生的物理CT值據估計分別為39.3 MPa、42.5 MPa、至少44.9 MPa、及48.4 MPa。值可能被稍微低估,特別是36小時的離子交換,因為DOL超過160 μm而對高階模式的精確解析造成挑戰。CTA 值範圍從約58.6至約76.2 MPa,並皆明顯高於先前技術的限值CT1 =48.2 MPa。DOL範圍從約143 μm 至高於170 μm,而DOC範圍從約115 μm至約136 μm。差CT-CS的範圍從約313 MPa至約325 MPa。總儲存彈性能範圍從約73.4 J/m2 至至少約81.7 J/m2 ,平均能量密度為81.7 J/(m2 ・mm)。Four examples of deep ion exchange on a 1 mm thick substrate are also listed in Table 3. Ion exchange was performed at 440°C in a bath containing about 45 wt% NaNO 3 and about 55 wt% KNO 3 . The ion exchange time is 25.25, 30, 36, and 42 hours, and the resulting physical CT values are estimated to be 39.3 MPa, 42.5 MPa, at least 44.9 MPa, and 48.4 MPa, respectively. The value may be slightly underestimated, especially for the 36-hour ion exchange, because DOL exceeds 160 μm, which challenges the precise resolution of higher-order modes. The CT A value ranges from about 58.6 to about 76.2 MPa, and all are significantly higher than the prior art limit CT 1 = 48.2 MPa. The DOL ranges from about 143 μm to above 170 μm, while the DOC ranges from about 115 μm to about 136 μm. The difference CT-CS ranges from about 313 MPa to about 325 MPa. The total storage elastic energy ranges from about 73.4 J/m 2 to at least about 81.7 J/m 2 , and the average energy density is 81.7 J/(m 2 ・mm).

將表4中厚度1.0 mm的樣品在440℃下在包含約40 wt% NaNO3 和約60 wt% KNO3 的浴中離子交換42.6小時。生成的強化玻璃是不易碎的,並具有約272 MPa的CS、及至少約52.8 MPa的物理CT,這比DOL約50 μm的1 mm厚玻璃之物理CT易碎性估計限值37 MPa大相當多。不易碎樣品的CTA 為約80.2 MPa,這比Barefoot I易碎性限值CTA =CT1 (1mm)=48.2 MPa高相當多。DOL經估計為約185 μm或更大,DOC為約139 μm,而且在壓縮區域的彈性能為約36.6 J/m2 ,在張力半區域大於約10.4 J/m2 。總彈性能為至少49.9 J/m2 mm,並表示平均彈性能密度至少49.9 J/m2 mm。The sample with a thickness of 1.0 mm in Table 4 was ion-exchanged in a bath containing about 40 wt% NaNO 3 and about 60 wt% KNO 3 at 440° C. for 42.6 hours. The resulting strengthened glass is not fragile, and has a CS of about 272 MPa and a physical CT of at least about 52.8 MPa, which is much larger than the estimated limit of physical CT fragility of a 1 mm thick glass with a DOL of about 50 μm of 37 MPa many. The CT A of unbreakable samples is about 80.2 MPa, which is considerably higher than the Barefoot I fragility limit CT A = CT 1 (1mm) = 48.2 MPa. DOL is estimated to be about 185 μm or more, DOC is about 139 μm, and the elastic energy in the compression region is about 36.6 J/m 2 , and it is greater than about 10.4 J/m 2 in the tension half region. The total elastic energy is at least 49.9 J/m 2 mm and represents an average elastic energy density of at least 49.9 J/m 2 mm.

實例顯示,當DOL佔玻璃厚度的可觀部分時,出現易碎性的CT值會隨著DOL改變,視儲存總彈性能而定。在具有中度壓縮的深區域和高壓縮的淺區域(其中應力隨著深度強烈變化)的雙離子交換玻璃的情況下,總彈性能變得甚至更為重要(第7圖和第8圖)。第7圖和第8圖描繪的樣品是經雙離子交換的0.55 mm厚玻璃。第一離子交換步驟涉及在450℃下、在40 wt% NaNO3 /60 wt% KNO3 的熔融混合物中浸泡7.75小時。第一離子交換步驟產生應力分布曲線的深、緩變化部分A。在第二步驟中,玻璃在390℃下、在含有約99.5 wt% KNO3 和0.5 wt% NaNO3 的浴中離子交換12分鐘,從而產生應力分布曲線的淺陡區域B。具有此應力分布曲線的樣品不太可能是易碎的,但任何明顯甚至輕微的額外離子交換以增加第一或第二區域的深度將產生易碎的玻璃。IWKB分析顯示約891 MPa的CS、約70.6微米的DOC、及約61 MPa的物理CT,這類似於對應CTA =CT3 (0.55 mm)的物理CT限值之易碎性限值。彈性能在壓縮區域為約44.7J/m2 ,而在張力半區域為約7.8 MJ/m2 。總彈性能為約105 J/m2 ,表示平均能量密度約191 J/m2 mm。這是在具有大於約0.12t的大化學穿透深度的不易碎樣品中觀察到的最高平均彈性能密度,而且CTA 比CT3 先前技術易碎性限值大相當多。Examples show that when DOL accounts for an appreciable portion of the glass thickness, the CT value of the fragility will change with DOL, depending on the total elastic energy stored. In the case of dual ion exchange glass with a deep region of moderate compression and a shallow region of high compression (where stress changes strongly with depth), the total elastic energy becomes even more important (Figures 7 and 8) . The samples depicted in Figures 7 and 8 are 0.55 mm thick glass after double ion exchange. The first ion exchange step involved soaking in a molten mixture of 40 wt% NaNO 3 /60 wt% KNO 3 at 450° C. for 7.75 hours. The first ion exchange step produces a deep, gently varying portion A of the stress distribution curve. In the second step, the glass was ion-exchanged at 390°C for 12 minutes in a bath containing approximately 99.5 wt% KNO 3 and 0.5 wt% NaNO 3 , thereby producing a shallow region B of the stress distribution curve. Samples with this stress distribution curve are unlikely to be fragile, but any significant or even slight additional ion exchange to increase the depth of the first or second region will produce fragile glass. IWKB analysis showed a CS of about 891 MPa, a DOC of about 70.6 microns, and a physical CT of about 61 MPa, which is similar to the fragility limit corresponding to the physical CT limit of CT A = CT 3 (0.55 mm). The elastic energy is about 44.7 J/m 2 in the compression region, and about 7.8 MJ/m 2 in the tension half region. The total elastic energy is about 105 J/m 2 , indicating an average energy density of about 191 J/m 2 mm. This is the highest average elastic energy density observed in unbreakable samples with a large chemical penetration depth greater than about 0.12t, and CT A is considerably larger than the CT 3 prior art fragility limit.

如本文所述,當DOL佔玻璃厚度的可觀(即≧ 10%)部分時,出現易碎性的CT值可隨著DOL改變,視儲存總彈性能而定。當玻璃藉由二步驟(或雙)離子交換製程強化時,總彈性能扮演甚至更重要的角色,其中玻璃具有中等壓縮的深區域及高壓縮的淺表面區域,在淺表面區域應力隨深度變化非常快速(第8圖)。第8圖為經雙離子交換的0.55 mm厚玻璃之應力分布曲線圖。第一步驟涉及在450℃下、在40 wt% NaNO3 和60 wt% KNO3 的熔融混合物中離子交換7.75小時。第一步驟產生應力分布曲線的深緩變化部分(A)。在第二步驟中,玻璃在390 ℃下、在含有約99.5 wt% KNO3 和0.5 wt% NaNO3 的浴中離子交換12分鐘,從而產生應力分布曲線的淺陡區域(B)。As described in this article, when DOL accounts for an appreciable (i.e. ≧10%) portion of the glass thickness, the CT value that appears to be brittle may change with DOL, depending on the total elastic energy stored. When the glass is strengthened by a two-step (or double) ion exchange process, the total elasticity plays an even more important role, in which the glass has moderately compressed deep areas and highly compressed shallow surface areas, in which the stress varies with depth Very fast (Figure 8). Figure 8 is the stress distribution curve of 0.55 mm thick glass after double ion exchange. The first step involved ion exchange for 7.75 hours at 450° C. in a molten mixture of 40 wt% NaNO 3 and 60 wt% KNO 3 . The first step produces a deep and slowly varying portion of the stress distribution curve (A). In the second step, the glass was ion-exchanged at 390°C for 12 minutes in a bath containing approximately 99.5 wt% KNO 3 and 0.5 wt% NaNO 3 , resulting in a shallow and steep region of the stress distribution curve (B).

具有第8圖圖示的應力分布曲線的樣品經發現是不易碎的,但任何明顯的額外離子交換以增加第一或第二區域的深度將會產生易碎的玻璃。玻璃的IWKB分析顯示約891 MPa的CS、約70.6 μm 的DOC、及約61 MPa的物理CT,後者比基於先前準則為厚度0.55 mm和DOL 40 μm的強化玻璃估計的物理CT之易碎性限值大相當多。The sample with the stress distribution curve shown in Figure 8 was found to be unbreakable, but any significant additional ion exchange to increase the depth of the first or second area will produce a fragile glass. IWKB analysis of the glass shows a CS of about 891 MPa, a DOC of about 70.6 μm, and a physical CT of about 61 MPa, the latter being more fragile than the estimated physical CT fragility limit based on the previous criteria for strengthened glass with a thickness of 0.55 mm and DOL 40 μm The value is quite large.

第6圖圖示的樣品之彈性能在壓縮區域中為約44.7 J/m2 ,而在處於張力的區域中為約9.5 MJ/m2 。總彈性能為約54.1 J/m2 ,表示約98.4 J/m2 ・mm的平均能量密度。這是在不易碎樣品中觀察到的最高平均彈性能密度。據估計,厚度範圍從0.4 mm至1 mm的不易碎玻璃之最大平均彈性能密度介於約98 J/m2 mm和116.5 J/m2 mm之間,後者的值是觀察到具有大DOL的0.4 mm厚玻璃為易碎的最低值。The elastic energy of the sample illustrated in Fig. 6 is about 44.7 J/m 2 in the compression region and about 9.5 MJ/m 2 in the region under tension. The total elastic energy is about 54.1 J/m 2 , representing an average energy density of about 98.4 J/m 2 ・mm. This is the highest average elastic energy density observed in unbreakable samples. It is estimated that the maximum average elastic energy density of unbreakable glass with a thickness ranging from 0.4 mm to 1 mm is between about 98 J/m 2 mm and 116.5 J/m 2 mm, the latter value is observed with a large DOL 0.4 mm thick glass is the lowest fragile value.

在一些實施例中,彈性能密度小於約200 J/m2 ・mm。在其他實施例中,彈性能密度小於約140 J/m2 ・mm,而且在又其他的實施例中,彈性能小於約120 J/m2 ・mm。In some embodiments, the elastic energy density is less than about 200 J/m 2 ・mm. In other embodiments, the elastic energy density is less than about 140 J/m 2 ・mm, and in yet other embodiments, the elastic energy density is less than about 120 J/m 2 ・mm.

第9圖表示應力分布曲線被圖示於第8圖的樣品之TE和TM折射率分布曲線。對於用K+ 離子交換Na+ 來說,折射率由於離子交換而提高,而且折射率分布曲線是深度的單調函數,使得使用IWKB分析來擷取和評估應力分布曲線是方便的。第9圖的折射率分布曲線顯示,除了近似表面壓縮應力,DOL、FSM-6000將明顯低估深區域的化學穿透深度,而且在雙離子交換(DIOX)分布曲線的情況下將不提供有關陡淺區域的直接資訊。這是因為廣泛使用的、由FSM-6000報導的DOL是假設折射率分布曲線可由具有單一固定斜率和單一穿透深度的單一線性區段良好表示所計算出的。廣泛使用的、基於使用FSM-6000獲得的DOL和表面CS所計算出的CTA 往往比DIOX分布曲線的物理CT大2至3倍,因此不方便用來預測易碎性。應當清楚的是,本揭示就物理CT和儲存彈性能方面揭露的分析具有遠比基於CTA 的標準更廣泛的應用範圍。Figure 9 shows the TE and TM refractive index profiles of the sample shown in Figure 8 for the stress distribution curve. For K + ion exchange Na + , the refractive index increases due to ion exchange, and the refractive index distribution curve is a monotonic function of depth, making it convenient to use IWKB analysis to capture and evaluate the stress distribution curve. The refractive index distribution curve in Figure 9 shows that, in addition to approximate surface compressive stress, DOL and FSM-6000 will significantly underestimate the chemical penetration depth of deep regions, and will not provide relevant steepness in the case of the double ion exchange (DIOX) distribution curve. Direct information in shallow areas. This is because the widely used DOL reported by FSM-6000 is calculated assuming that the refractive index profile can be well represented by a single linear segment with a single fixed slope and a single penetration depth. The widely used CT A calculated based on the DOL obtained with FSM-6000 and the surface CS tend to be 2 to 3 times larger than the physical CT of the DIOX distribution curve, so it is not convenient to predict fragility. It should be clear that the analysis disclosed in this disclosure in terms of physical CT and storage elasticity has a much broader range of applications than CT A- based standards.

此外,在某些情況下可以使用不導致折射率提高的離子交換(例如在富含Li2 O的玻璃基板上用Na+ 交換Li+ 的過程中)來獲得具有大壓縮深度的應力分布曲線。雖然在這些情況下不提供傳統使用的、基於導引光模數量量測的DOL,但壓縮深度DOC仍是可以藉由各種旋光技術量測並表示化學強化深度的物理量。如下表1和表2可見的,對於所有物理CT超過先前技術的易碎性限值的非易碎玻璃實例來說,DOC大於0.1t,通常超過0.12t,而且最常超過0.15t。In addition, in some cases, ion exchange that does not lead to an increase in refractive index (for example, in the process of exchanging Li + with Na + on a glass substrate rich in Li 2 O) can be used to obtain a stress distribution curve with a large compression depth. Although the traditionally used DOL based on the number of guided optical modules is not provided in these cases, the compressed depth DOC can still be measured by various optical rotation techniques and represents the physical quantity of the chemical strengthening depth. As can be seen in Tables 1 and 2 below, for all non-fragile glass examples where the physical CT exceeds the frangibility limit of the prior art, the DOC is greater than 0.1t, usually exceeds 0.12t, and most often exceeds 0.15t.

當使用鹽組成物及允許在10 μm≦ DOL ≦ 40 μm時實現CT-CS≦ 350 MPa的溫度時,不管DOL為何,基於差CT-CS的非易碎性標準可以被等同地重述為CT-CS>330 MPa的非易碎區域。這允許DOC無限增加而無易碎性的風險。同樣地,儲存彈性能的易碎性標準應該小於約233 J/m2 ・mm,而且在一些實施例中小於約197 J/m2 ・mm可以適用於各式各樣DOC > 0.1t的玻璃,包括可能有用Na+ 離子交換Li+ 、而且還有用Na+ 和K+ 離子交換Li+ 的富含Li2 O玻璃。在這種情況下,標準10 μm≦ DOL ≦ 40 μm可被標準10 μm ≦ DOL ≦ 40 μm取代,因為DOL可不以FSM-6000用語定義。When using a salt composition and allowing a temperature of CT-CS≦350 MPa at 10 μm≦DOL short ≦40 μm, regardless of DOL, the non-fragile standard based on poor CT-CS can be restated equally as Non-fragile area with CT-CS>330 MPa. This allows the DOC to increase indefinitely without the risk of fragility. Similarly, the fragility criterion for storing elastic energy should be less than about 233 J/m 2 ・mm, and in some embodiments, less than about 197 J/m 2 ・mm can be applied to all kinds of glass with DOC> 0.1t , Including Li 2 O-rich glass that may be useful for Na + ion exchange Li + , but also Na + and K + ion exchange Li + . In this case, the standard 10 μm≦DOL short ≦40 μm can be replaced by the standard 10 μm≦DOL short ≦40 μm because DOL can not be defined in terms of FSM-6000.

第9圖為第8圖圖示的雙離子交換0.55 mm厚玻璃樣品之TE和TM折射率分布曲線圖。對於用K+ 離子交換Na+ ,折射率隨著離子交換的結果而降低。折射率分布曲線是深度的單調函數,使得使用IWKB分析來擷取和評估應力分布曲線是方便的。第9圖的折射率分布曲線顯示,在雙離子交換(DIOX)分布曲線的情況下,由FSM-6000估計的DOL將明顯低估深壓縮層區域的化學穿透深度,而且將不提供有關陡淺區域的直接資訊,只能大致估計表面壓縮應力。這是因為廣泛使用的、由FSM-6000報導的DOL是假設折射率分布曲線係由具有單一固定斜率和單一穿透深度的單一線性區段良好表示所計算出的。廣泛使用的、基於DOL和表面CS所計算出的CTA往往比DIOX分布曲線的物理CT大2至3倍,因此不方便用來預測易碎性。因此,本揭示就物理CT和儲存彈性能方面描述的分析具有遠比基於CTA 的先前技術標準更廣泛的應用範圍。用於本DIOX實例的層深度DOLFSM 為75 μm,而CTA為約167 MPa,此比先前技術限值CTA =CT3 (0.55)=80 MPa大兩倍以上。Figure 9 is the TE and TM refractive index profiles of the double ion exchange 0.55 mm thick glass sample shown in Figure 8. For Na + exchange with K + ion, the refractive index decreases with the result of ion exchange. The refractive index profile is a monotonic function of depth, making it convenient to use IWKB analysis to capture and evaluate the stress profile. The refractive index distribution curve of Figure 9 shows that in the case of the double ion exchange (DIOX) distribution curve, the DOL estimated by FSM-6000 will significantly underestimate the chemical penetration depth of the deep compression layer area, and will not provide the steepness. The direct information of the area can only roughly estimate the surface compressive stress. This is because the widely used DOL reported by FSM-6000 is calculated assuming that the refractive index profile is a good representation of a single linear segment with a single fixed slope and a single penetration depth. The widely used CTA calculated based on DOL and surface CS is often 2 to 3 times larger than the physical CT of the DIOX distribution curve, so it is not convenient for predicting fragility. Therefore, the analysis described in terms of physical CT and storage elasticity in the present disclosure has a much broader range of applications than previous technical standards based on CT A. The layer depth DOL FSM used in this DIOX example is 75 μm, while the CTA is about 167 MPa, which is more than twice the previous technical limit CT A = CT 3 (0.55) = 80 MPa.

在一些情況下,可以使用離子交換(例如在富含Li2 O的玻璃上用Na+ 交換Li+ 的過程中)獲得具有大壓縮深度DOC的應力分布曲線,不會導致增加。在這些情況下不提供基於導引光模數量量測的DOL。然而,壓縮深度DOC是表示化學強化深度的物理量,可以藉由各種旋光和折射近場(RNF)技術量測。如在表3和表4中可以看出的,對於所有物理CT超過先前技術易碎性限值的不易碎玻璃實例來說,對於較小的厚度,DOC大於0.09t,通常超過0.12t,而且最常超過0.15t(t為厚度)。In some cases, an ion-exchange (e.g. on-rich glass of Li 2 O Li + Na + in exchange process) is obtained having a large compressive stress profile depth of the DOC, no increase. In these cases, DOL based on the number of guided optical modules is not provided. However, the compressed depth DOC is a physical quantity that represents the depth of chemical strengthening and can be measured by various optical rotation and refraction near field (RNF) techniques. As can be seen in Tables 3 and 4, for all non-breakable glass examples where the physical CT exceeds the fragility limit of the prior art, for smaller thicknesses, the DOC is greater than 0.09t, usually more than 0.12t, and It most often exceeds 0.15t (t is the thickness).

使用鹽組成物及在10 μm≦ DOL ≦ 40 μm時可允許CT-CS值高達350 MPa的溫度,不管DOL為何,基於差CT-CS的非易碎性標準可以被等同地重述為CT-CS>330 MPa的非易碎區域,從而允許DOC無限增加而無易碎性的風險。同樣地,儲存彈性能的易碎性標準應為> 233 J/m2 ・mm,而且在一些實施例中小於約197 J/m2 ・mm可以適用於各式各樣DOC > 0.1t的玻璃,包括可能有用Na+ 離子交換Li+ 、而且還有用Na+ 和K+ 離子交換Li+ 的富含Li2 O玻璃。在這種情況下,標準10 μm≦ DOL ≦ 40 μm可被標準10 μm≦ DOL ≦ 40 μm取代,因為DOL可不以FSM-6000數據定義。Using a salt composition and a temperature that allows a CT-CS value of up to 350 MPa at 10 μm≦DOL short ≦40 μm, regardless of DOL, the non-fragile standard based on poor CT-CS can be equivalently restated as CT -Non-fragile areas with CS>330 MPa, allowing DOC to increase indefinitely without the risk of fragility. Similarly, the fragility criterion for storing elastic energy should be> 233 J/m 2 ・mm, and in some embodiments less than about 197 J/m 2 ・mm can be applied to all kinds of glass with DOC> 0.1t , Including Li 2 O-rich glass that may be useful for Na + ion exchange Li + , but also Na + and K + ion exchange Li + . In this case, the standard 10 μm≦DOL short ≦40 μm can be replaced by the standard 10 μm≦DOL short ≦40 μm, because DOL can not be defined by FSM-6000 data.

在另一個實施例中,提供處於標準化總能量形式的易碎性標準。標準化總能量被定義為:

Figure 02_image038
(24)。In another embodiment, a friability criterion in the form of standardized total energy is provided. The standardized total energy is defined as:
Figure 02_image038
(twenty four).

在上述的許多實例中,當DOL > 0.1t時,尤其是當厚度為0.4 mm時,基於固定CT限值所預測的易碎性開始變得不準確。在這些情況下,總標準化能量提供更好的易碎行為預測。雖然總標準化能量值會隨著玻璃基板的機械參數(也就是泊松比 和楊氏模數E)改變,但假設這些值落在相對小的範圍中是合理的。In many of the above examples, when DOL> 0.1t, especially when the thickness is 0.4 mm, the fragility predicted based on fixed CT limits starts to become inaccurate. In these cases, the total normalized energy provides better prediction of fragile behavior. Although the total normalized energy value will change with the mechanical parameters of the glass substrate (that is, Poisson's ratio and Young's modulus E), it is reasonable to assume that these values fall within a relatively small range.

因此,在一個實施例中,中心張力CT高於限值CT3 (對於小於或等於0.75 mm的厚度)或高於限值CT1 (對於大於0.75 mm的厚度)的離子交換玻璃製品具有每單位厚度小於或等於37.5 x 103 MPa2 μm的總標準化彈性能。對於0.4 mm的厚度,CTA大於106.6 MPa的基板應儲存小於或等於15 x106 MPa2 μm的標準化彈性能。Therefore, in one embodiment, ion exchange glass products having a central tension CT above the limit CT 3 (for thickness less than or equal to 0.75 mm) or above the limit CT 1 (for thickness greater than 0.75 mm) have a unit per unit The total normalized elastic energy with a thickness less than or equal to 37.5 x 10 3 MPa 2 μm. For a thickness of 0.4 mm, substrates with a CTA greater than 106.6 MPa should store standardized elastic energy less than or equal to 15 x 10 6 MPa 2 μm.

取決於玻璃成分和玻璃的機械性質,總標準化能量的限值可以改變。然而,這些值填補大部分感興趣的玻璃之範圍,而且涵括避免易碎性的實際可行限制。Depending on the glass composition and the mechanical properties of the glass, the limit of the total standardized energy can be changed. However, these values fill most of the glass of interest and include practical limits to avoid fragility.

在另一個實施例中,對於0.4 mm厚的基板,總標準化能小於7.5 x 106 MPa2 μm。對於其他的厚度,每單位厚度的標準化儲存彈性能小於約19 x 103 MPa2 μm。In another embodiment, for a 0.4 mm thick substrate, the total normalized energy is less than 7.5 x 10 6 MPa 2 μm. For other thicknesses, the standardized storage elastic energy per unit thickness is less than about 19 x 10 3 MPa 2 μm.

本文所述的玻璃製品可以包含任何藉由離子交換化學強化的玻璃或由任何藉由離子交換化學強化的玻璃所組成。在一些實施例中,該玻璃為鹼金屬鋁矽酸鹽玻璃。The glass article described herein may comprise any glass chemically strengthened by ion exchange or consist of any glass chemically strengthened by ion exchange. In some embodiments, the glass is alkali metal aluminosilicate glass.

在一個實施例中,鹼金屬鋁矽酸鹽玻璃包含或基本上由以下組成:氧化鋁和氧化硼中之至少一者、及鹼金屬氧化物和鹼土金屬氧化物中之至少一者,其中–15莫耳%≦ (R2 O+R’O–Al2 O3 –ZrO2 )–B2 O3 ≦ 4莫耳%,其中R為Li、Na、K、Rb及Cs中之一者,並且R’為Mg、Ca、Sr及Ba中之至少一者。在一些實施例中,鹼金屬鋁矽酸鹽玻璃包含或基本上由以下組成:從約62莫耳%至約70莫耳%的SiO2 ;從0莫耳%至約18莫耳%的Al2 O3 ;從0莫耳%至約10莫耳%的B2 O3 ;從0莫耳%至約15莫耳%的Li2 O;從0莫耳%至約20莫耳%的Na2 O;從0莫耳%至約18莫耳%的K2 O;從0莫耳%至約17莫耳%的MgO;從0莫耳%至約18莫耳%的CaO;及從0莫耳%至約5莫耳%的ZrO2 。在一些實施例中,該玻璃包含氧化鋁和氧化硼及至少一種鹼金屬氧化物,其中–15莫耳%≦ (R2 O+R’O–Al2 O3 –ZrO2 )–B2 O3 ≦ 4莫耳%,其中R為Li、Na、K、Rb及Cs中之至少一者,並且R’為Mg、Ca、Sr及Ba中之至少一者;其中10≦ Al2 O3 +B2 O3 +ZrO2 ≦30並且14≦R2 O+R’O≦25;其中該矽酸鹽玻璃包含或基本上由以下組成:62-70莫耳%的SiO2 ;0-18莫耳%的Al2 O3 ;0-10莫耳%的B2 O3 ;0-15莫耳%的Li2 O;6-14莫耳%的Na2 O;0-18莫耳%的K2 O;0-17莫耳%的MgO;0-18莫耳%的CaO;及0-5莫耳%的ZrO2 。該玻璃被描述於Matthew J. Dejneka等人於2008年11月25日提出申請的、標題為「具有改良韌性和防刮性的玻璃(Glasses Having Improved Toughness And Scratch Resistance)」的美國專利申請案第12/277,573號、及Matthew J. Dejneka等人於2012年8月17日提出申請的、標題為「具有改良韌性和防刮性的玻璃(Glasses Having Improved Toughness And Scratch Resistance)」的美國專利第8,652,978號中,上述二專利案皆主張於2008年11月29日提出申請的美國臨時專利申請案第61/004,677號的優先權。將上述所有專利案之內容以引用方式全部併入本文中。In one embodiment, the alkali metal aluminosilicate glass comprises or consists essentially of at least one of alumina and boron oxide, and at least one of alkali metal oxide and alkaline earth metal oxide, wherein- 15 mole %≦ (R 2 O+R'O–Al 2 O 3 –ZrO 2 )–B 2 O 3 ≦ 4 mole %, where R is one of Li, Na, K, Rb and Cs, And R'is at least one of Mg, Ca, Sr, and Ba. In some embodiments, the alkali metal aluminosilicate glass comprises or consists essentially of: from about 62 mol% to about 70 mol% SiO 2 ; from 0 mol% to about 18 mol% Al 2 O 3 ; from 0 mol% to about 10 mol% B 2 O 3 ; from 0 mol% to about 15 mol% Li 2 O; from 0 mol% to about 20 mol% Na 2 O; from 0 mol% to about 18 mol% K 2 O; from 0 mol% to about 17 mol% MgO; from 0 mol% to about 18 mol% CaO; and from 0 ZrO 2 in mole% to about 5 mole %. In some embodiments, the glass includes alumina and boron oxide and at least one alkali metal oxide, where -15 mole %≦(R 2 O+R′O—Al 2 O 3 —ZrO 2 )—B 2 O 3 ≦ 4 mol %, where R is at least one of Li, Na, K, Rb and Cs, and R′ is at least one of Mg, Ca, Sr and Ba; where 10≦ Al 2 O3 +B 2 O 3 +ZrO 2 ≦30 and 14≦R 2 O+R′O≦25; wherein the silicate glass contains or consists essentially of: 62-70 mole% SiO 2 ; 0-18 mole % Al 2 O 3 ; 0-10 mol% B 2 O 3 ; 0-15 mol% Li 2 O; 6-14 mol% Na 2 O; 0-18 mol% K 2 O; 0-17 mol% MgO; 0-18 mol% CaO; and 0-5 mol% ZrO 2 . The glass was described in the US Patent Application No. 1981 titled "Glasses Having Improved Toughness And Scratch Resistance" filed by Matthew J. Dejneka et al. on November 25, 2008. U.S. Patent No. 8,652,978, entitled "Glasses Having Improved Toughness And Scratch Resistance", filed on August 17, 2012 and filed with Matthew J. Dejneka et al. on August 17, 2012 In the No., the two patent cases mentioned above all claim the priority of US Provisional Patent Application No. 61/004,677 filed on November 29, 2008. The contents of all the above patent cases are incorporated herein by reference.

在另一個實施例中,鹼金屬鋁矽酸鹽玻璃包含或基本上由以下組成:從約60莫耳%至約70莫耳%的SiO2 ;從6莫耳%至約14莫耳%的Al2 O3 ;從0莫耳%至約15莫耳%的B2 O3 ;從0莫耳%至約15莫耳%的Li2 O;從0莫耳%至約20莫耳%的Na2 O;從0莫耳%至約10莫耳%的K2 O;從0莫耳%至約8莫耳%的MgO;從0莫耳%至約10莫耳%的CaO;從0莫耳%至約5莫耳%的ZrO2 ;從0莫耳%至約1莫耳%的SnO2 ;從0莫耳%至約1莫耳%的CeO2 ;少於約50 ppm的As2 O3 ;及少於約50 ppm的Sb2 O3 ;其中12莫耳%≦ Li2 O+Na2 O+K2 O≦ 20莫耳%並且0莫耳%≦ MgO+CaO≦ 10莫耳%。在一些實施例中,鹼金屬鋁矽酸鹽玻璃包含或基本上由以下組成:60-70莫耳%的SiO2 ;6-14莫耳%的Al2 O3 ;0-3莫耳%的B2 O3 ;0-1莫耳%的Li2 O;8-18莫耳%的Na2 O;0-5莫耳%的K2 O;0-2.5莫耳%的CaO;大於0至3莫耳%的ZrO2 ;0-1莫耳%的SnO2 ;及0-1莫耳%的CeO2 ,其中12莫耳%>Li2 O+Na2 O+K2 O≦ 20莫耳%,以及其中矽酸鹽玻璃包含少於50 ppm的As2 O3 。在一些實施例中,鹼金屬鋁矽酸鹽玻璃包含或基本上由以下組成:60-72莫耳%的SiO2 ;6-14莫耳%的Al2 O3 ;0-3莫耳%的B2 O3 ; 0-1莫耳%的Li2 O;0-20莫耳%的Na2 O;0-10莫耳%的K2 O;0-2.5莫耳%的CaO;0-5莫耳%的ZrO2 ;0-1莫耳%的SnO2 ;及0-1莫耳%的CeO2 ,其中12莫耳%>Li2 O+Na2 O+K2 O≦ 20莫耳%,以及其中矽酸鹽玻璃包含少於50 ppm的As2 O3 和少於50 ppm的Sb2 O3 。該玻璃被描述於Sinue Gomez等人於2009年2月25日提出申請的、標題為「用於矽酸鹽玻璃的澄清劑(Fining Agents for Silicate Glasses)」的美國專利第8,158,543號;Sinue Gomez等人於2012年6月13日提出申請的、標題為「具有低晶種濃度的矽酸鹽玻璃(Silicate Glasses Having Low Seed Concentration)」的美國專利第8,431,502號;及Sinue Gomez等人於2013年6月19日提出申請的、標題為「具有低晶種濃度的矽酸鹽玻璃(Silicate Glasses Having Low Seed Concentration)」的美國專利第8,623,776號中,上述專利案皆主張於2008年2月26日提出申請的美國臨時專利申請案第61/067,130號的優先權。將上述所有專利案之內容以引用方式全部併入本文中。In another embodiment, the alkali metal aluminosilicate glass comprises or consists essentially of: from about 60 mol% to about 70 mol% SiO 2 ; from 6 mol% to about 14 mol% Al 2 O 3 ; from 0 mol% to about 15 mol% B 2 O 3 ; from 0 mol% to about 15 mol% Li 2 O; from 0 mol% to about 20 mol% Na 2 O; from 0 mol% to about 10 mol% K 2 O; from 0 mol% to about 8 mol% MgO; from 0 mol% to about 10 mol% CaO; from 0 ZrO 2 from mole% to about 5 mole %; SnO 2 from 0 mole% to about 1 mole %; CeO 2 from 0 mole% to about 1 mole %; As less than about 50 ppm 2 O 3 ; and Sb 2 O 3 less than about 50 ppm; of which 12 mole %≦Li 2 O+Na 2 O+K 2 O≦20 mole% and 0 mole %≦MgO+CaO≦10 Mo ear%. In some embodiments, the alkali metal aluminosilicate glass comprises or consists essentially of: 60-70 mol% SiO 2 ; 6-14 mol% Al 2 O 3 ; 0-3 mol% B 2 O 3 ; 0-1 mol% Li 2 O; 8-18 mol% Na 2 O; 0-5 mol% K 2 O; 0-2.5 mol% CaO; greater than 0 to 3 mol% ZrO 2 ; 0-1 mol% SnO 2 ; and 0-1 mol% CeO 2 , of which 12 mol%>Li 2 O+Na 2 O+K 2 O≦20 mol %, and where the silicate glass contains less than 50 ppm As 2 O 3 . In some embodiments, the alkali metal aluminosilicate glass comprises or consists essentially of: 60-72 mol% SiO 2 ; 6-14 mol% Al 2 O 3 ; 0-3 mol% B 2 O 3 ; 0-1 mol% Li 2 O; 0-20 mol% Na 2 O; 0-10 mol% K 2 O; 0-2.5 mol% CaO; 0-5 ZrO 2 in mol %; SnO 2 in 0-1 mol %; and CeO 2 in 0-1 mol %, of which 12 mol %>Li 2 O+Na 2 O+K 2 O≦20 mol% , And where silicate glass contains less than 50 ppm As 2 O 3 and less than 50 ppm Sb 2 O 3 . The glass is described in US Patent No. 8,158,543 titled "Fining Agents for Silicate Glasses" filed by Sinue Gomez et al. on February 25, 2009; Sinue Gomez et al. US Patent No. 8,431,502 titled "Silicate Glasses Having Low Seed Concentration" filed on June 13, 2012; and Sinue Gomez et al. in June 2013 In US Patent No. 8,623,776, titled "Silicate Glasses Having Low Seed Concentration", filed on January 19, all of the above patent cases were claimed to be filed on February 26, 2008 Priority of US Provisional Patent Application No. 61/067,130. The contents of all the above patent cases are incorporated herein by reference.

在另一個實施例中,鹼金屬鋁矽酸鹽玻璃包含SiO2 和Na2 O,其中玻璃在溫度T35kp 下具有35千泊(kpoise)的黏度,其中鋯石分解形成ZrO2 和SiO2 的溫度T分解 大於T35kp 。在一些實施例中,鹼金屬鋁矽酸鹽玻璃包含或基本上由以下組成:從約61莫耳%至約75莫耳%的SiO2 ;從約7莫耳%至約15莫耳%的Al2 O3 ;從0莫耳%至約12莫耳%的B2 O3 ;從約9莫耳%至約21莫耳%的Na2 O;從0莫耳%至約4莫耳%的K2 O;從0莫耳%至約7莫耳%的MgO;及0莫耳%至約3莫耳%的CaO。該玻璃被描述於Matthew J. Dejneka等人於2010年8月10日提出申請的、標題為「用於下拉的鋯石相容玻璃(Zircon Compatible Glasses for Down Draw)」、並主張於2009年8月29日提出申請的美國臨時專利申請案第61/235,762號的優先權的美國專利申請案第12/856,840號中。將上述專利案之內容以引用方式全部併入本文中。In another embodiment, the alkali metal aluminosilicate glass contains SiO 2 and Na 2 O, wherein the glass has a viscosity of 35 kpoise at a temperature T 35 kp, where zircon decomposes to form ZrO 2 and SiO 2 The temperature T decomposition is greater than T 35kp . In some embodiments, the alkali aluminosilicate glass comprises, or consists essentially of: from about 61 mole% to about 75 mole% of SiO 2; from about 7 mole% to about 15 mole% of Al 2 O 3 ; from 0 mol% to about 12 mol% B 2 O 3 ; from about 9 mol% to about 21 mol% Na 2 O; from 0 mol% to about 4 mol% K 2 O; from 0 mol% to about 7 mol% MgO; and 0 mol% to about 3 mol% CaO. The glass was described by Matthew J. Dejneka et al. on August 10, 2010, with the title "Zircon Compatible Glasses for Down Draw" and claimed on August 29, 2009 The priority of US provisional patent application No. 61/235,762 filed in Japan is in US Patent Application No. 12/856,840. The contents of the above patent cases are all incorporated herein by reference.

在另一個實施例中,鹼金屬鋁矽酸鹽玻璃包含至少50莫耳%的SiO2 及至少一選自由鹼金屬氧化物和鹼土金屬氧化物所組成之群組的修飾劑,其中[(Al2 O3 (莫耳%) + B2 O3 (莫耳%))/(∑鹼金屬修飾劑(莫耳%))] > 1。在一些實施例中,鹼金屬鋁矽酸鹽玻璃包含或基本上由以下組成:從50莫耳%至約72莫耳%的SiO2 ;從約9莫耳%至約17莫耳%的Al2 O3 ;從約2莫耳%至約12莫耳%的B2 O3 ;從約8莫耳%至約16莫耳%的Na2 O;及從0莫耳%至約4莫耳%的K2 O。在一些實施例中,該玻璃包含或基本上由以下組成:至少58莫耳%的SiO2 ;至少8莫耳%的Na2 O;從5.5至12莫耳%的B2 O3 ;及Al2 O3 ;其中[(Al2 O3 (莫耳%) + B2 O3 (莫耳%))/(∑鹼金屬修飾劑(莫耳%))] > 1, Al2 O3 (莫耳%) > B2 O3 (莫耳%), 0.9 > R2 O/Al2 O3 > 1.3。該玻璃被描述於Kristen L. Barefoot等人於2010年8月18日提出申請的、標題為「防裂和防刮玻璃及由該玻璃製造的外殼(Crack And Scratch Resistant Glass and Enclosures Made Therefrom)」的美國專利第8,586,492號、Kristen L. Barefoot等人於2013年11月18日提出申請的、標題為「防裂和防刮玻璃及由該玻璃製造的外殼(Crack And Scratch Resistant Glass and Enclosures Made Therefrom)」的美國專利申請案第14/082,847號中,上述二專利案皆主張於2009年8月21日提出申請的美國臨時專利申請案第61/235,767號的優先權。將上述所有專利案之內容以引用方式全部併入本文中。In another embodiment, the alkali metal aluminosilicate glass contains at least 50 mol% SiO 2 and at least one modifier selected from the group consisting of alkali metal oxides and alkaline earth metal oxides, where [(Al 2 O 3 (mol%) + B 2 O 3 (mol%))/(∑Alkali metal modifier (mol%))]> 1. In some embodiments, the alkali metal aluminosilicate glass comprises or consists essentially of: from 50 mol% to about 72 mol% SiO 2 ; from about 9 mol% to about 17 mol% Al 2 O 3 ; from about 2 mol% to about 12 mol% B 2 O 3 ; from about 8 mol% to about 16 mol% Na 2 O; and from 0 mol% to about 4 mol % K 2 O. In some embodiments, the glass comprises or consists essentially of: at least 58 mol% SiO 2 ; at least 8 mol% Na 2 O; from 5.5 to 12 mol% B 2 O 3 ; and Al 2 O 3 ; where [(Al 2 O 3 (mol%) + B 2 O 3 (mol%))/(∑Alkali metal modifier (mol%))]> 1, Al 2 O 3 (Mo Ear %)> B 2 O 3 (mol %), 0.9> R 2 O/Al 2 O 3 > 1.3. The glass was described in Kristen L. Barefoot et al.'s application on August 18, 2010, entitled "Crack And Scratch Resistant Glass and Enclosures Made Therefrom." US Patent No. 8,586,492, Kristen L. Barefoot et al. applied on November 18, 2013, entitled "Crack And Scratch Resistant Glass and Enclosures Made Therefrom" )” in US Patent Application No. 14/082,847, both of the above two patent cases claim priority in US Provisional Patent Application No. 61/235,767 filed on August 21, 2009. The contents of all the above patent cases are incorporated herein by reference.

在另一個實施例中,鹼金屬鋁矽酸鹽玻璃包含SiO2 、Al2 O3 、P2 O5 、及至少一種鹼金屬氧化物(R2 O),其中0.75≦[(P2 O5 (莫耳%)+R2 O(莫耳%))/M2 O3 (莫耳%)]≦1.2,其中M2 O3 =Al2 O3 +B2 O3 。在一些實施例中,鹼金屬鋁矽酸鹽玻璃包含或基本上由以下組成:從約40莫耳%至約70莫耳%的SiO2 ;從0莫耳%至約28莫耳%的B2 O3 ;從0莫耳%至約28莫耳%的Al2 O3 ;從約1莫耳%至約14莫耳%的P2 O5 ;及從約12莫耳%至約16莫耳%的R2 O;而且,在某些實施例中,從約40莫耳%至約64莫耳%的SiO2 ;從0莫耳%至約8莫耳%的B2 O3 ;從約16莫耳%至約28莫耳%的Al2 O3 ;從約2莫耳%至約12莫耳%的P2 O5 ;及從約12莫耳%至約16莫耳%的R2 O。該玻璃被描述於Dana C. Bookbinder等人於2011年11月28日提出申請的、標題為「具有深壓縮層和高損傷臨界值的離子交換玻璃(Ion Exchangeable Glass with Deep Compressive Layer and High Damage Threshold)」、並主張於2010年11月30日提出申請的美國臨時專利申請案第61/417,941號的優先權的美國專利申請案第13/305,271號中。將上述所有專利案之內容以引用方式全部併入本文中。In another embodiment, the alkali metal aluminosilicate glass includes SiO 2 , Al 2 O 3 , P 2 O 5 , and at least one alkali metal oxide (R 2 O), where 0.75≦[(P 2 O 5 (Mol%)+R 2 O(mol%))/M 2 O 3 (mol%)]≦1.2, where M 2 O 3 =Al 2 O 3 +B 2 O 3 . In some embodiments, the alkali metal aluminosilicate glass comprises or consists essentially of: from about 40 mol% to about 70 mol% SiO 2 ; from 0 mol% to about 28 mol% B 2 O 3 ; from 0 mol% to about 28 mol% Al 2 O 3 ; from about 1 mol% to about 14 mol% P 2 O 5 ; and from about 12 mol% to about 16 mol 10% R 2 O; and, in certain embodiments, from about 40 mol% to about 64 mol% SiO 2 ; from 0 mol% to about 8 mol% B 2 O 3 ; from Al 2 O 3 from about 16 mol% to about 28 mol%; P 2 O 5 from about 2 mol% to about 12 mol%; and R from about 12 mol% to about 16 mol% 2 O. The glass was described by Dana C. Bookbinder et al. on November 28, 2011, with the title "Ion Exchangeable Glass with Deep Compressive Layer and High Damage Threshold" )” and claims priority in US Provisional Patent Application No. 61/417,941 filed on November 30, 2010 in US Patent Application No. 13/305,271. The contents of all the above patent cases are incorporated herein by reference.

在又另一個實施例中,鹼金屬鋁矽酸鹽玻璃包含至少約50莫耳%的SiO2 和至少約11莫耳%的Na2 O,並且壓縮應力為至少約900 MPa。在一些實施例中,該玻璃進一步包含Al2 O3 和B2 O3 、K2 O、MgO及ZnO中之至少一者,其中-340+27.1・Al2 O3 –28.7・B2 O3 + 15.6・Na2 O–61.4・K2 O+8.1・(MgO+ZnO)≥0莫耳%。在特定的實施例中,該玻璃包含或基本上由以下組成:從約7莫耳%至約26莫耳%的Al2 O3 ;從0莫耳%至約9莫耳%的B2 O3 ;從約11莫耳%至約25莫耳%的Na2 O;從0莫耳%至約2.5莫耳%的K2 O;從0莫耳%至約8.5莫耳%的MgO;及從0莫耳%至約1.5莫耳%的CaO。該玻璃被描述於Matthew J. Dejneka等人於2012年6月26日提出申請的、標題為「具有高壓縮應力的離子交換玻璃(Ion Exchangeable Glass with High Compressive Stress)」、並主張於2011年7月1日提出申請的美國臨時專利申請案第61/503,734號的優先權的美國專利申請案第13/533,298號中。將上述所有專利案之內容以引用方式全部併入本文中。In yet another embodiment, the alkali metal aluminosilicate glass contains at least about 50 mole% SiO 2 and at least about 11 mole% Na 2 O, and the compressive stress is at least about 900 MPa. In some embodiments, the glass further includes Al 2 O 3 and at least one of B 2 O 3 , K 2 O, MgO, and ZnO, where -340+27.1・Al 2 O 3 −28.7・B 2 O 3 + 15.6・Na 2 O–61.4・K 2 O+8.1・(MgO+ZnO)≥0 mole %. In particular embodiments, the glass comprises or consists essentially of: from about 7 mol% to about 26 mol% Al 2 O 3 ; from 0 mol% to about 9 mol% B 2 O 3 ; from about 11 mol% to about 25 mol% Na 2 O; from 0 mol% to about 2.5 mol% K 2 O; from 0 mol% to about 8.5 mol% MgO; and CaO from 0 mol% to about 1.5 mol%. The glass was described by Matthew J. Dejneka et al. on June 26, 2012, with the title "Ion Exchangeable Glass with High Compressive Stress" and advocated in July 2011 The priority of US provisional patent application No. 61/503,734 filed on January 1 is in US patent application No. 13/533,298. The contents of all the above patent cases are incorporated herein by reference.

在其他實施例中,鹼金屬鋁矽酸鹽玻璃為可離子交換的並包含:至少約50莫耳%的SiO2 ;至少約10莫耳%的R2 O,其中R2 O包含Na2 O;Al2 O3 ;及B2 O3 ,其中B2 O3 –(R2 O–Al2 O3 )≧ 3莫耳%。在一些實施例中,該玻璃包含:至少約50莫耳%的SiO2 ;至少約10莫耳%的R2 O,其中R2 O包含Na2 O;Al2 O3 ,其中Al2 O3 (莫耳%)>R2 O(莫耳%);及3-4.5莫耳%的B2 O3 ,其中B2 O3 (莫耳%)–(R2 O(莫耳%)– Al2 O3 (莫耳%))≧ 3莫耳%。在某些實施例中,該玻璃包含或基本上由以下組成:至少約50莫耳%的SiO2 ;從約9莫耳%至約22莫耳%的Al2 O3 ;從約3莫耳%至約10莫耳%的B2 O3 ;從約9莫耳%至約20莫耳%的Na2 O;從0莫耳%至約5莫耳%的K2 O;至少約0.1莫耳%的MgO、ZnO、或MgO和ZnO之組合,其中0 ≦ MgO ≦ 6並且0 ≦ ZnO ≦ 6莫耳%;以及可選的、CaO、BaO、及SrO中之至少一者,其中0莫耳% ≦ CaO + SrO + BaO ≦ 2莫耳%。在一些實施例中,該玻璃經過離子交換後具有至少約10 kgf的維氏裂紋引發臨界值(Vickers crack initiation threshold)。這樣的玻璃被描述於Matthew J. Dejneka等人於2013年5月28日提出申請的、標題為「具有高耐損傷性的鋯石相容離子交換玻璃(Zircon Compatible, Ion Exchangeable Glass with High Damage Resistance)」的美國專利申請案第14/197,658號中,第14/197,658號申請案為Matthew J. Dejneka等人於2013年5月28日提出申請的、標題為「具有高耐損傷性的鋯石相容離子交換玻璃(Zircon Compatible, Ion Exchangeable Glass with High Damage Resistance)」的美國專利申請案第13/903,433號之連續案,上述二專利案皆主張於2012年5月31日提出申請的臨時專利申請案第61/653,489號的優先權。將這些申請案的內容以引用方式全部併入本文中。In other embodiments, the alkali metal aluminosilicate glass is ion-exchangeable and includes: at least about 50 mol% SiO 2 ; at least about 10 mol% R 2 O, where R 2 O includes Na 2 O ; Al 2 O 3 ; and B 2 O 3 , where B 2 O 3 -(R 2 O-Al 2 O 3 )≧3 mol %. In some embodiments, the glass comprises: at least about 50 mol% SiO 2 ; at least about 10 mol% R 2 O, where R 2 O comprises Na 2 O; Al 2 O 3 , where Al 2 O 3 (Mol%)> R 2 O (mol%); and 3-4.5 mol% of B 2 O 3 , where B 2 O 3 (mol%)-(R 2 O (mol%)-Al 2 O 3 (mol%))≧ 3 mol%. In certain embodiments, the glass comprises or consists essentially of: at least about 50 mol% SiO 2 ; from about 9 mol% to about 22 mol% Al 2 O 3 ; from about 3 mol % To about 10 mol% of B 2 O 3 ; from about 9 mol% to about 20 mol% Na 2 O; from 0 mol% to about 5 mol% K 2 O; at least about 0.1 mol % Of MgO, ZnO, or a combination of MgO and ZnO, where 0 ≦ MgO ≦ 6 and 0 ≦ ZnO ≦ 6 mol %; and optionally, at least one of CaO, BaO, and SrO, where 0 Ear% ≦ CaO + SrO + BaO ≦ 2 mol%. In some embodiments, the glass has a Vickers crack initiation threshold of at least about 10 kgf after ion exchange. Such glass is described in the application of Matthew J. Dejneka et al. on May 28, 2013, entitled "Zircon Compatible, Ion Exchangeable Glass with High Damage Resistance" Of US Patent Application No. 14/197,658, application No. 14/197,658 was filed on May 28, 2013 by Matthew J. Dejneka et al., entitled "Zircon Compatible Ion Exchange with High Damage Resistance Glass (Zircon Compatible, Ion Exchangeable Glass with High Damage Resistance)” is a consecutive case of U.S. Patent Application No. 13/903,433. Both of the above two patent cases advocate the provisional patent application No. 61 filed on May 31, 2012 /653,489 priority. The contents of these applications are incorporated herein by reference.

在一些實施例中,該玻璃包含:至少約50莫耳%的SiO2 ;至少約10莫耳%的R2 O,其中R2 O包含Na2 O;Al2 O3 ,其中-0.5莫耳%≦ Al2 O3 (莫耳%)– R2 O(莫耳%) ≦ 2莫耳%;及B2 O3 ,而且其中B2 O3 (莫耳%)–(R2 O(莫耳%)–Al2 O3 (莫耳%))≧ 4.5莫耳%。在其他實施例中,該玻璃具有的鋯石分解溫度等於該玻璃黏度大於約40 kPoise時的溫度,而且該玻璃包含:至少約50莫耳%的SiO2 ;至少約10莫耳%的R2 O,其中R2 O包含Na2 O;Al2 O3 ;及B2 O3 ,其中B2 O3 (莫耳%) –(R2 O(莫耳%)–Al2 O3 (莫耳%))≧ 4.5莫耳%。在又其他的實施例中,該玻璃經過離子交換、具有至少約30 kgf的維氏裂紋引發臨界值、及包含:至少約50莫耳%的SiO2 ;至少約10莫耳%的R2 O,其中R2 O包含Na2 O;Al2 O3 ,其中-0.5莫耳%≦ Al2 O3 (莫耳%)–R2 O(莫耳%)≦ 2莫耳%;及B2 O3 ,其中B2 O3 (莫耳%)–(R2 O(莫耳%)–Al2 O3 (莫耳%))≧ 4.5莫耳%。這樣的玻璃被描述於Matthew J. Dejneka等人於2013年5月28日提出申請的、標題為「具有高耐損傷性的離子交換玻璃(Ion Exchangeable Glass with High Damage Resistance)」的美國專利申請案第903,398號中,第903,398號申請案主張於2012年5月31日提出申請的美國臨時專利申請案第61/653,485號之優先權。將這些申請案的內容以引用方式全部併入本文中。In some embodiments, the glass comprises: at least about 50 mol% SiO 2 ; at least about 10 mol% R 2 O, where R 2 O comprises Na 2 O; Al 2 O 3 , wherein -0.5 mol %≦ Al 2 O 3 (mol%)– R 2 O(mol%) ≦ 2 mol%; and B 2 O 3 , and among them B 2 O 3 (mol%)–(R 2 O(Mo Ear%)–Al 2 O 3 (Molar%)) ≧ 4.5 Molar%. In other embodiments, the glass has a zircon decomposition temperature equal to the temperature at which the glass viscosity is greater than about 40 kPoise, and the glass includes: at least about 50 mol% SiO 2 ; at least about 10 mol% R 2 O, where R 2 O contains Na 2 O; Al 2 O 3 ; and B 2 O 3 , where B 2 O 3 (mol %) – (R 2 O (mol %) – Al 2 O 3 (mol %)) ≧ 4.5 mole %. In yet other embodiments, the glass undergoes ion exchange, has a Vickers crack initiation threshold of at least about 30 kgf, and includes: at least about 50 mol% SiO 2 ; at least about 10 mol% R 2 O , Where R 2 O contains Na 2 O; Al 2 O 3 , where -0.5 mol%≦Al 2 O 3 (mol%)—R 2 O(mol%)≦2 mol%; and B 2 O 3 , where B 2 O 3 (mol%)–(R 2 O(mol%)–Al 2 O 3 (mol%)) ≧ 4.5 mol%. Such glass is described in the US patent application titled "Ion Exchangeable Glass with High Damage Resistance" filed on May 28, 2013 by Matthew J. Dejneka et al. Among the 903,398 applications, the 903,398 application claims the priority of the US Provisional Patent Application No. 61/653,485 filed on May 31, 2012. The contents of these applications are incorporated herein by reference.

在某些實施例中,鹼金屬鋁矽酸鹽玻璃包含至少約4莫耳%的P2 O5 ,其中(M2 O3 (莫耳%)/Rx O(莫耳%))>1,其中M2 O3 =Al2 O3 +B2 O3 ,及其中Rx O為存在鹼金屬鋁矽酸鹽玻璃中的單價和雙價陽離子氧化物之總和。在一些實施例中,單價和雙價陽離子氧化物係選自由Li2 O、Na2 O、K2 O、Rb2 O、Cs2 O、MgO、CaO、SrO、BaO及ZnO所組成之群組。在一些實施例中,該玻璃包含0莫耳%的B2 O3 。在一些實施例中,該玻璃被離子交換到至少約10 μm的層深度並包含至少約4莫耳%的P2 O5 ,其中0.6 > [M2 O3 (莫耳%)/Rx O(莫耳%)] > 1.4;或1.3> [(P2 O5 +R2 O)/M2 O3 ] ≦ 2.3;其中M2 O3 = Al2 O3 +B2 O3 ,Rx O為存在鹼金屬鋁矽酸鹽玻璃中的單價和雙價陽離子氧化物之總和,而且R2 O為存在鹼金屬鋁矽酸鹽玻璃中的雙價陽離子氧化物之總和。該玻璃被描述於Timothy M. Gross於2012年11月15日提出申請的、標題為「具有高裂紋引發臨界值的離子交換玻璃(Ion Exchangeable Glass with High Crack Initiation Threshold)」的美國專利申請案第13/678,013號及Timothy M. Gross於2012年11月15日提出申請的、標題為「具有高裂紋引發臨界值的離子交換玻璃(Ion Exchangeable Glass with High Crack Initiation Threshold)」的美國專利申請案第13/677,805號中,上述二申請案皆主張於2011年11月16日提出申請的美國臨時專利申請案第61/560,434號之優先權。將這些申請案的內容以引用方式全部併入本文中。In certain embodiments, the alkali metal aluminosilicate glass contains at least about 4 mol% P 2 O 5 , where (M 2 O 3 (mol %)/R x O (mol %))>1 , Where M 2 O 3 =Al 2 O 3 +B 2 O 3 , and R x O is the sum of monovalent and divalent cation oxides present in alkali metal aluminosilicate glass. In some embodiments, the monovalent and divalent cation oxides are selected from the group consisting of Li 2 O, Na 2 O, K 2 O, Rb 2 O, Cs 2 O, MgO, CaO, SrO, BaO, and ZnO . In some embodiments, the glass contains 0 mol% B 2 O 3 . In some embodiments, the glass is ion-exchanged to a layer depth of at least about 10 μm and contains at least about 4 mol% P 2 O 5 , where 0.6> [M 2 O 3 (mol %)/R x O (Mol%)]>1.4; or 1.3> [(P 2 O 5 +R 2 O)/M 2 O 3 ] ≦ 2.3; where M 2 O 3 = Al 2 O 3 +B 2 O 3 , R x O is the sum of monovalent and divalent cation oxides present in alkali metal aluminosilicate glass, and R 2 O is the sum of divalent cation oxides present in alkali metal aluminosilicate glass. The glass was described in the US patent application titled "Ion Exchangeable Glass with High Crack Initiation Threshold" filed by Timothy M. Gross on November 15, 2012. U.S. Patent Application No. 13/678,013 and Timothy M. Gross on November 15, 2012, titled "Ion Exchangeable Glass with High Crack Initiation Threshold" In No. 13/677,805, both of the above-mentioned applications claimed the priority of US Provisional Patent Application No. 61/560,434 filed on November 16, 2011. The contents of these applications are incorporated herein by reference.

在其他實施例中,鹼金屬鋁矽酸鹽玻璃包含:從約50莫耳%至約72莫耳%的SiO2 ;從約12莫耳%至約22莫耳%的Al2 O3 ;多達約15莫耳%的B2 O3 ;多達約1莫耳%的P2 O5;從約11莫耳%至約21莫耳%的Na2 O;多達約5莫耳%的K2 O;多達約4莫耳%的MgO;多達約5莫耳%的ZnO;及多達約2莫耳%的CaO。在一些實施例中,該玻璃包含:從約55莫耳%至約62莫耳%的SiO2 ;從約16莫耳%至約20莫耳%的Al2 O3 ;從約4莫耳%至約10莫耳%的B2 O3 ;從約14莫耳%至約18莫耳%的Na2 O;從約0.2莫耳%至約4莫耳%的K2 O;多達約0.5莫耳%的MgO;多達約0.5莫耳%的ZnO;及多達約0.5莫耳%的CaO,其中該玻璃大體上不含P2 O5 。在一些實施例中,Na2 O+K2 O-Al2 O3 ≦ 2.0莫耳%,而且在某些實施例中,Na2 O+K2 O-Al2 O3 ≦ 0.5莫耳%。在一些實施例中,B2 O3 -(Na2 O+K2 O-Al2 O3 )>4莫耳%,而且在某些實施例中,B2 O3 -(Na2 O+K2 O-Al2 O3 )>1莫耳%。在一些實施例中,24莫耳% ≦ RAlO4 ≦ 45莫耳%,而且在其他實施例中,28莫耳% ≦ RAlO4 ≦ 45莫耳%,其中R為Na、K、及Ag中之至少一者。該玻璃被描述於Matthew J. Dejneka等人於2013年11月26日提出申請的、標題為「具有高壓痕臨界值的快速離子交換玻璃(Fast Ion Exchangeable Glasses with High Indentation Threshold)」的美國專利申請案第61/909,049號中,將上述申請案的內容以引用方式全部併入本文中。In other embodiments, the alkali metal aluminosilicate glass comprises: from about 50 mol% to about 72 mol% SiO 2 ; from about 12 mol% to about 22 mol% Al 2 O 3 ; more Up to about 15 mol% B 2 O 3 ; up to about 1 mol% P 2 O5; from about 11 mol% to about 21 mol% Na 2 O; up to about 5 mol% K 2 O; up to about 4 mol% MgO; up to about 5 mol% ZnO; and up to about 2 mol% CaO. In some embodiments, the glass comprises: from about 55 mol% to about 62 mol% SiO 2 ; from about 16 mol% to about 20 mol% Al 2 O 3 ; from about 4 mol% Up to about 10 mol% B 2 O 3 ; from about 14 mol% to about 18 mol% Na 2 O; from about 0.2 mol% to about 4 mol% K 2 O; up to about 0.5 Molar% MgO; up to about 0.5 Molar% ZnO; and up to about 0.5 Molar% CaO, where the glass is substantially free of P 2 O 5 . In some embodiments, Na 2 O+K 2 O-Al 2 O 3 ≦2.0 mol%, and in some embodiments, Na 2 O+K 2 O-Al 2 O 3 ≦0.5 mol%. In some embodiments, B 2 O 3 -(Na 2 O+K 2 O-Al 2 O 3 )>4 mol %, and in some embodiments, B 2 O 3 -(Na 2 O+K 2 O-Al 2 O 3 )>1 mole %. In some embodiments, 24 mol% ≦ RAlO 4 ≦ 45 mol%, and in other embodiments, 28 mol% ≦ RAlO 4 ≦ 45 mol%, where R is one of Na, K, and Ag At least one. The glass was described in the US patent application titled "Fast Ion Exchangeable Glasses with High Indentation Threshold" filed on November 26, 2013 by Matthew J. Dejneka et al. In case No. 61/909,049, the content of the above application is incorporated herein by reference.

在一些實施例中,本文所述的玻璃大體上不含砷、銻、鋇、鍶、鉍、鋰、及上述之化合物中之至少一者。在其他實施例中,該玻璃可以包括多達約5莫耳%的Li2 O,而且在一些實施例中,該玻璃可以包括多達約10莫耳%的Li2 O。In some embodiments, the glass described herein is substantially free of at least one of arsenic, antimony, barium, strontium, bismuth, lithium, and compounds of the foregoing. In other embodiments, the glass may include up to about 5 mol% Li 2 O, and in some embodiments, the glass may include up to about 10 mol% Li 2 O.

在一些實施例中,本文所述的玻璃在經過離子交換後可抵抗由急劇或突然撞擊所引入的缺陷。因此,這些離子交換玻璃表現出至少約10千克力(kgf)的維氏裂紋引發臨界值。在某些實施例中,這些玻璃表現出至少約20 kgf的維氏裂紋引發臨界值,而且在一些實施例中,這些玻璃表現出至少約30 kgf的維氏裂紋引發臨界值。In some embodiments, the glasses described herein are resistant to defects introduced by sharp or sudden impact after ion exchange. Therefore, these ion exchange glasses exhibit a Vickers crack initiation critical value of at least about 10 kilogram-force (kgf). In some embodiments, the glasses exhibit a Vickers crack initiation threshold of at least about 20 kgf, and in some embodiments, the glasses exhibit a Vickers crack initiation threshold of at least about 30 kgf.

在一些實施例中,本文所述的玻璃可以藉由所屬技術領域中習知的製程下拉,例如狹縫拉製、融合拉製、再拉製、及類似製程,並具有至少130千泊的液相線黏度。除了上文所列的那些組成物之外,也可以使用各種其他的離子交換鹼金屬鋁矽酸鹽玻璃組成物。In some embodiments, the glass described herein may be drawn down by processes known in the art, such as slit drawing, fusion drawing, redrawing, and the like, and have a liquid of at least 130 kpoise Phase viscosity. In addition to those listed above, various other ion exchange alkali metal aluminosilicate glass compositions can also be used.

雖然已經為了說明的目的闡述典型的實施例,但不應將前面的描述視為是對本揭示或所附申請專利範圍之範圍的限制。因此,本技術領域中具有通常知識之人士可以在不脫離本揭示或所附申請專利範圍之精神和範圍下進行各種修改、適變和替換。Although typical embodiments have been described for illustrative purposes, the foregoing description should not be taken as limiting the scope of the disclosure or the appended patent applications. Therefore, persons with ordinary knowledge in the technical field can make various modifications, adaptations and replacements without departing from the spirit and scope of the scope of the disclosure or the attached patent application.

100:玻璃製品110:第一表面112:第二表面120:第一壓縮區域122:第二壓縮區域130:中央區域d 1 :壓縮深度(DOC) d 2 :第二壓縮深度(DOC) t:厚度100: glass product 110: first surface 112: second surface 120: first compression area 122: second compression area 130: central area d 1 : compression depth (DOC) d 2 : second compression depth (DOC) t: thickness

第1圖為化學強化玻璃製品之示意性剖視圖; Figure 1 is a schematic cross-sectional view of chemically strengthened glass products;

第2圖為線性擴散的erfc分布曲線特徵之近似採用的CT A和計算的物理中心張力CT(CT(erfc))之比率圖; Figure 2 is the ratio of the linearly diffused erfc distribution curve to the approximate CT A and the calculated physical center tension CT (CT(erfc));

第3圖為以CT 1表示的易碎性限值CT之圖; Figure 3 is a diagram of the fragility limit CT expressed in CT 1 ;

第4圖為以CT 3表示的易碎性限值CT之圖; Figure 4 is a diagram of the fragility limit CT expressed in CT 3 ;

第5圖為藉由基於IWKB的演算法經由稜鏡耦合量測擷取的橫向磁場(TM)和橫向電場(TE)折射率分布曲線圖; Figure 5 is a graph of the refractive index distribution curve of the transverse magnetic field (TM) and transverse electric field (TE) acquired by the IWKB-based algorithm through the 珜鏡coupling measurement;

第6圖為在440℃下、在含有依重量計50% NaNO 3和50% KNO 3的浴中交換17.7小時的0.4 mm厚玻璃之應力分布曲線圖; Figure 6 is the stress distribution curve of 0.4 mm thick glass exchanged for 17.7 hours in a bath containing 50% NaNO 3 and 50% KNO 3 by weight at 440°C;

第7圖為使用IWKB法擷取的應力分布曲線之實例圖; Figure 7 is an example diagram of the stress distribution curve acquired by the IWKB method;

第8圖為經雙離子交換的0.55 mm厚玻璃之應力分布曲線圖; Figure 8 is the stress distribution curve of 0.55 mm thick glass after double ion exchange;

第9圖為第8圖的雙離子交換玻璃樣品之TE和TM折射率分布曲線圖; Figure 9 is the TE and TM refractive index profile of the dual ion exchange glass sample in Figure 8;

第10a圖為顯示強化玻璃製品的照片1)在碎裂時表現出易碎行為;及2)在碎裂時表現出不易碎行為;以及Figure 10a is a photograph showing strengthened glass products 1) exhibits brittle behavior when broken; and 2) exhibits unbreakable behavior when broken; and

第10b圖為顯示在碎裂時表現出不易碎行為的強化玻璃片之照片。 Fig. 10b is a photograph showing a strengthened glass sheet showing unbreakable behavior when broken.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in order of storage institution, date, number) no

國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無Overseas hosting information (please note in order of hosting country, institution, date, number) no

100:玻璃製品100: glass products

110:第一表面110: first surface

112:第二表面112: Second surface

120:第一壓縮區域120: first compressed area

122:第二壓縮區域122: second compressed area

130:中央區域130: Central area

d 1 :壓縮深度(DOC) d 1 : depth of compression (DOC)

d 2 :第二壓縮深度(DOC) d 2 : second compression depth (DOC)

t:厚度t: thickness

Claims (20)

  1. 一種玻璃,具有一壓縮層、一中心區域、及一厚度t,該壓縮層從該玻璃之一表面延伸至一壓縮深度DOC並處於一至少約150 MPa的最大壓縮應力CS之下,該中心區域在該玻璃之一中心具有一最大物理中心張力CT,該中心區域從該中心向外延伸到該壓縮深度,該厚度t在一從約0.3 mm至約1.0 mm的範圍中,其中DOC ≧ 0.08・t且每單位厚度的總彈性能為大於50 J/m2 ・mm至小於200 J/m2 ・mm。A glass having a compression layer, a central region, and a thickness t, the compression layer extending from a surface of the glass to a compression depth DOC and under a maximum compressive stress CS of at least about 150 MPa, the central region At the center of one of the glasses, there is a maximum physical center tension CT, the center region extends outward from the center to the compression depth, the thickness t is in a range from about 0.3 mm to about 1.0 mm, where DOC ≧ 0.08・ t and the total elastic energy per unit thickness is greater than 50 J/m 2 ・mm to less than 200 J/m 2 ・mm.
  2. 如請求項1所述之玻璃,進一步包含大於6 J/m 2至小於11 J/m 2之張力能量。 The glass according to claim 1, further comprising a tensile energy greater than 6 J/m 2 to less than 11 J/m 2 .
  3. 如請求項2所述之玻璃,其中該張力能量為大於或等於6.4 J/m 2至小於10.9 J/m 2 The glass according to claim 2, wherein the tension energy is greater than or equal to 6.4 J/m 2 to less than 10.9 J/m 2 .
  4. 如請求項3所述之玻璃,其中該張力能量為大於或等於6.4 J/m 2至小於或等於10.4 J/m 2 The glass according to claim 3, wherein the tension energy is greater than or equal to 6.4 J/m 2 to less than or equal to 10.4 J/m 2 .
  5. 如請求項1所述之玻璃,進一步包含48 J/m 2至105 J/m 2之總彈性能。 The glass according to claim 1, further comprising a total elastic energy of 48 J/m 2 to 105 J/m 2 .
  6. 如請求項5所述之玻璃,其中該總彈性能為48 J/m 2至105 J/m 2 The glass according to claim 5, wherein the total elastic energy is 48 J/m 2 to 105 J/m 2 .
  7. 如請求項6所述之玻璃,其中該總彈性能為48 J/m2 至94.6 J/m2The glass according to claim 6, wherein the total elastic energy is 48 J/m 2 to 94.6 J/m 2 .
  8. 如請求項1至7之任一項所述之玻璃,其中當具有該壓縮層之該表面受到一點撞擊力時,該玻璃表現出不易碎行為,該點撞擊力足以在該表面產生至少一個新的裂紋,並使該裂紋延伸通過該壓縮層至該中心區域。The glass according to any one of claims 1 to 7, wherein when the surface having the compression layer is subjected to a little impact force, the glass exhibits unbreakable behavior, and the point impact force is sufficient to generate at least one new Crack, and extend the crack through the compression layer to the central region.
  9. 如請求項8所述之玻璃,其中CTA (MPa)≧ 57(MPa)–9.0(MPa/mm)・ln(t)(mm)+49.3 (MPa/mm)・ln2 (t)(mm),其中CTA 為FSM測得的中心張力CT,其中當厚度t小於或等於0.75 mm時CTA=一易碎性限值CT3 ,且其中CTA ≧ -38.7 (MPa/mm)×ln(t)(mm) + 48.2 (MPa)。The glass according to claim 8, wherein CT A (MPa)≧ 57(MPa)–9.0(MPa/mm)・ln(t)(mm)+49.3 (MPa/mm)・ln 2 (t)(mm ), where CT A is the central tension CT measured by FSM, where CTA=a fragility limit CT 3 when the thickness t is less than or equal to 0.75 mm, and where CT A ≧ -38.7 (MPa/mm)×ln( t)(mm) + 48.2 (MPa).
  10. 如請求項1至7之任一項所述之玻璃,其中該厚度為0.4 mm至1.0 mm。The glass according to any one of claims 1 to 7, wherein the thickness is 0.4 mm to 1.0 mm.
  11. 如請求項1至7之任一項所述之玻璃,其中該玻璃為一鹼金屬鋁矽酸鹽玻璃,該鹼金屬鋁矽酸鹽玻璃包含至少約4莫耳%的P2 O5 及從0莫耳%至約4莫耳%的B2 O3 ,且其中1.3 > [(P2 O5 + R2 O) /M2 O3 ] ≦ 2.3,其中M2 O3 = Al2 O3 + B2 O3 ,且R2 O為存在於該鹼金屬鋁矽酸鹽玻璃中的一價陽離子氧化物之總和。The glass according to any one of claims 1 to 7, wherein the glass is an alkali metal aluminosilicate glass, the alkali metal aluminosilicate glass contains at least about 4 mole% of P 2 O 5 and from 0 mol% to about 4 mol% of B 2 O 3 , where 1.3> [(P 2 O 5 + R 2 O) /M 2 O 3 ] ≦ 2.3, where M 2 O 3 = Al 2 O 3 + B 2 O 3 , and R 2 O is the sum of monovalent cation oxides present in the alkali metal aluminosilicate glass.
  12. 如請求項1至7之任一項所述之玻璃,其中該玻璃為一鹼金屬鋁矽酸鹽玻璃,該鹼金屬鋁矽酸鹽玻璃包含:從約50莫耳%至約72莫耳%的SiO2 ;從約12莫耳%至約22莫耳%的Al2 O3 ;多達約15莫耳%的B2 O3 ;多達約1莫耳%的P2 O5 ;從約11莫耳%至約21莫耳%的Na2 O;多達約5莫耳%的K2 O;多達約4莫耳%的MgO;多達約5莫耳%的ZnO;及多達約2莫耳%的CaO,其中Na2 O + K2 O - Al2 O3 ≦ 2.0莫耳%,B2 O3 - (Na2 O + K2 O - Al2 O3 ) > 4莫耳%,且24莫耳% ≦ RAlO4 ≦ 45莫耳%。The glass according to any one of claims 1 to 7, wherein the glass is an alkali metal aluminosilicate glass, the alkali metal aluminosilicate glass comprises: from about 50 mol% to about 72 mol% SiO 2 ; from about 12 mol% to about 22 mol% Al 2 O 3 ; up to about 15 mol% B 2 O 3 ; up to about 1 mol% P 2 O 5 ; from about 11 mol% to about 21 mol% Na 2 O; up to about 5 mol% K 2 O; up to about 4 mol% MgO; up to about 5 mol% ZnO; and up to CaO of about 2 mol %, of which Na 2 O + K 2 O-Al 2 O 3 ≦ 2.0 mol %, B 2 O 3- (Na 2 O + K 2 O-Al 2 O 3 )> 4 mol %, and 24 mole% ≦ RAlO 4 ≦ 45 mole %.
  13. 如請求項1至7之任一項所述之玻璃,其中該鹼金屬鋁矽酸鹽玻璃進一步包含多達約10莫耳%的Li 2 O。 The glass according to any one of claims 1 to 7, wherein the alkali metal aluminosilicate glass further contains up to about 10 mol% Li 2 O.
  14. 如請求項1至7之任一項所述之玻璃,其中: a. 當0.3 mm ≦ t ≦ 0.5 mm時,該物理中心張力CT大於
    Figure 03_image040
    ; b. 當0.5 mm ≦ t ≦ 0.7 mm時,該物理中心張力CT大於
    Figure 03_image041
    ;以及c. 當0.7 mm > t ≦ 1.0 mm時,該物理中心張力CT大於
    Figure 03_image042
    The glass according to any one of claims 1 to 7, wherein: a. When 0.3 mm ≦ t ≦ 0.5 mm, the physical center tension CT is greater than
    Figure 03_image040
    ; B. When 0.5 mm ≦ t ≦ 0.7 mm, the physical center tension CT is greater than
    Figure 03_image041
    ; And c. When 0.7 mm> t ≦ 1.0 mm, the physical center tension CT is greater than ; And c. When 0.7 mm> t ≦ 1.0 mm, the physical center tension CT is greater than
    Figure 03_image042
    . .
  15. 如請求項1所述之玻璃,其中每單位厚度的總彈性能為大於80 J/m 2 ・mm至小於140 J/m 2 ・mm。 The glass according to claim 1, wherein the total elastic energy per unit thickness is greater than 80 J/m 2 ・mm to less than 140 J/m 2 ・mm.
  16. 如請求項15所述之玻璃,其中每單位厚度的總彈性能為大於80 J/m 2 ・mm至小於120 J/m 2 ・mm。 The glass according to claim 15, wherein the total elastic energy per unit thickness is greater than 80 J/m 2 ・mm to less than 120 J/m 2 ・mm.
  17. 如請求項16所述之玻璃,其中每單位厚度的總彈性能為大於90 J/m 2 ・mm至小於120 J/m 2 ・mm。 The glass according to claim 16, wherein the total elastic energy per unit thickness is greater than 90 J/m 2 ・mm to less than 120 J/m 2 ・mm.
  18. 如請求項1所述之玻璃,其中0.2・t ≧ DOC ≧ 0.1・t。 The glass according to claim 1, wherein 0.2・t ≧ DOC ≧ 0.1・t.
  19. 如請求項18所述之玻璃,其中0.2・t ≧ DOC ≧ 0.12・t。 The glass according to claim 18, wherein 0.2・t ≧ DOC ≧ 0.12・t.
  20. 如請求項19所述之玻璃,其中0.2・t ≧ DOC ≧ 0.15・t。The glass according to claim 19, wherein 0.2・t ≧ DOC ≧ 0.15・t.
TW109100456A 2014-06-19 2015-06-11 Glasses having non-frangible stress profiles TWI705889B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201462014372P true 2014-06-19 2014-06-19
US62/014,372 2014-06-19

Publications (2)

Publication Number Publication Date
TW202015909A true TW202015909A (en) 2020-05-01
TWI705889B TWI705889B (en) 2020-10-01

Family

ID=

Also Published As

Publication number Publication date
EP3157881A1 (en) 2017-04-26
CN106604901A (en) 2017-04-26
WO2015195465A1 (en) 2015-12-23
TW201605614A (en) 2016-02-16
CN111253069A (en) 2020-06-09
JP2017523110A (en) 2017-08-17
TWI697403B (en) 2020-07-01
CN106604901B (en) 2020-02-11
KR20170018959A (en) 2017-02-20
US20150368148A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
US10575422B2 (en) Cover glass article
JP6657173B2 (en) Tempered glass with deep compression depth
KR102005785B1 (en) Glasses and glass ceramics including a metal oxide concentration gradient
JP5418995B1 (en) Tempered glass substrate and manufacturing method thereof
JP6371396B2 (en) Multilayer substrate having fracture resistance and article comprising multilayer substrate having fracture resistance
US9718727B2 (en) Ion exchanged glasses via non-error function compressive stress profiles
US10173923B2 (en) Tempered glass, tempered glass plate, and glass for tempering
US8835007B2 (en) Tempered glass and tempered glass sheet
TWI628151B (en) Ultra-thin strengthened glasses
US9567254B2 (en) Strengthened glass with deep depth of compression
JP2018520082A (en) Glass with high surface strength
JP2020040881A (en) Scratch-resistant boroaluminosilicate glass
US20160250982A1 (en) Thin laminate structures with enhanced acoustic performance
KR101460624B1 (en) Aluminosilicate glass for touch screen
US10472272B2 (en) Chemically strengthened glass, and glass for chemical strengthening
US9487440B2 (en) Process for producing chemically strengthened glass
US20170022092A1 (en) Glass articles exhibiting improved fracture performance
US10442730B2 (en) Method for achieving a stress profile in a glass
TWI639572B (en) Damage resistant glass with high coefficient of thermal expansion
US9957190B2 (en) Thin thermally and chemically strengthened glass-based articles
TWI699341B (en) Fictivated glass and method of making
TWI666190B (en) Glass-based articles including a stress profile comprising two regions, and methods of making
US10745315B2 (en) Ion exchangeable glass containing boron and phosphorous
US20180265400A1 (en) Fast ion exchangeable glasses with high indentation threshold
TWI666189B (en) Deep non-frangible stress profiles and methods of making