TW202014856A - Method for processing touch signal and signal processing system using same - Google Patents

Method for processing touch signal and signal processing system using same Download PDF

Info

Publication number
TW202014856A
TW202014856A TW107135251A TW107135251A TW202014856A TW 202014856 A TW202014856 A TW 202014856A TW 107135251 A TW107135251 A TW 107135251A TW 107135251 A TW107135251 A TW 107135251A TW 202014856 A TW202014856 A TW 202014856A
Authority
TW
Taiwan
Prior art keywords
touch
signal
detection circuit
point
response
Prior art date
Application number
TW107135251A
Other languages
Chinese (zh)
Other versions
TWI698779B (en
Inventor
李尚禮
Original Assignee
李尚禮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李尚禮 filed Critical 李尚禮
Priority to TW107135251A priority Critical patent/TWI698779B/en
Priority claimed from CN201910420893.8A external-priority patent/CN111007964A/en
Publication of TW202014856A publication Critical patent/TW202014856A/en
Application granted granted Critical
Publication of TWI698779B publication Critical patent/TWI698779B/en

Links

Images

Abstract

A method for processing touch signal and a signal processing system using the same are provided. First in the method, a touch panel having multiple touch points for generating touch signals and a detecting circuit including a virtual touch element are provided. When the detecting circuit is connected to the touch point in a way of bypassing the virtual touch element, a baseline signal can be acquired by the detecting circuit. When the detecting circuit is connected to the touch point via the virtual touch element, a reaction signal can be acquired by the detecting circuit. A reaction interval can be acquired based on the baseline and the reaction signals. The touch signal can be compensated according to the reaction interval. The signal deviation of touch detection caused by manufacturing factors or by operating in a different environment can be alleviated, and the accuracy of touch detection can be improved.

Description

觸控訊號之訊號處理方法及應用其之訊號處理系統 Signal processing method of touch signal and signal processing system using the same
本發明是有關於一種觸控訊號之訊號處理方法及應用其之訊號處理系統,且特別是有關於一種提高觸控面板觸控精確度之觸控訊號處理方法及應用其之訊號處理系統。 The invention relates to a signal processing method of a touch signal and a signal processing system using the same, and particularly relates to a touch signal processing method and a signal processing system using the same to improve touch accuracy of a touch panel.
隨著觸控技術的發展,市場上對於觸控面板的品質有著極高的要求,無論是在外型、厚度、觸控靈敏度以及與顯示裝置的整合度等各層面,無不是相關業界努力發展的方向。也因為市場對於高品質觸控面板的期待,讓相關領域的製造商,從電路設計、製程改良、訊號處理等各個階段的技術能力,都備受考驗。 With the development of touch technology, the market has extremely high requirements for the quality of touch panels, whether in terms of appearance, thickness, touch sensitivity, and integration with display devices. direction. It is also because of the market's expectation of high-quality touch panels that manufacturers in related fields have been tested for their technical capabilities in various stages such as circuit design, process improvement, and signal processing.
在觸控面板的生產過程中,即便是在相同的廠房、相同的產線中,同一批次的觸控面板之間,仍會無可避免的存在有差異,可能的原因包括材料性質變異、製程參數偏移、環境因素改變、設備誤差等等,會隨著時間的推移讓觸控面板之間發生差異。而這樣的差異會導致觸控面板在出廠後,具有特性不一致的問題。此外,當觸控面板在離開產線進入操 作環境後,會因為操作環境的溫度、濕度、潔淨度、多種環境雜訊等因素差異較大,原先在出廠時設定的觸控偵測設定值會發生不適用在操作環境的問題。例如偵測觸控訊號強度時會產生差異,從而影響到觸控面板偵測觸控訊號的精準度,嚴重時更會導致誤判的狀況,影響電子產品的觸控品質。 In the production process of touch panels, even in the same factory building and the same production line, there will still be unavoidable differences between the same batch of touch panels. Possible reasons include variations in material properties, Process parameter shifts, changes in environmental factors, equipment errors, etc., can cause differences between touch panels over time. This difference will cause the touch panel to have inconsistent characteristics after leaving the factory. In addition, when the touch panel leaves the production line and enters the operation After the operating environment, the operating environment temperature, humidity, cleanliness, various environmental noise and other factors vary greatly. The touch detection settings originally set at the factory will not be applicable to the operating environment. For example, when detecting the intensity of the touch signal, there will be a difference, which affects the accuracy of the touch panel in detecting the touch signal. In severe cases, it may cause a misjudgment and affect the touch quality of electronic products.
目前的作法是可以在一定的週期重設製程參數,或是定期將機台、製程設備重新設定以新的參數。以此方式,雖可將出廠觸控面板的特性差異維持在一定的程度以內,但是不時調整參數以及重設設備,除會造成品管上的難度,同時亦會增加人力工時成本。出廠的觸控面板之間,仍舊存在著一定的特性差異,同時面板對於不同的操作環境亦具有較低的適應性。 The current practice is to reset the process parameters in a certain period, or periodically reset the machine and process equipment to new parameters. In this way, although the differences in the characteristics of the factory touch panel can be maintained to a certain extent, adjusting the parameters and resetting the equipment from time to time will not only cause difficulties in quality control, but also increase the cost of man-hours. There are still some differences in characteristics between the factory-made touch panels, and at the same time, the panels have low adaptability to different operating environments.
因此,目前仍存在一種如何克服觸控訊號失準的需求,讓觸控面板的觸控訊號輸出可以達到品質一致性。 Therefore, there is still a need to overcome the misalignment of the touch signal, so that the touch signal output of the touch panel can achieve consistent quality.
有鑒於此,本發明之觸控訊號之訊號處理方法及應用其之訊號處理系統,利用虛擬觸控元件連接於觸控面板之觸控點,取得觸控點的反應訊號,進而利用此反應訊號來補償觸控點的觸控輸出訊號可以使觸控訊號偏移的狀況得到改善,提升觸控面板偵測觸控訊號的準確性,進而提昇觸控產品的品質。 In view of this, the signal processing method of the touch signal and the signal processing system applying the same of the present invention utilize the virtual touch element to connect to the touch point of the touch panel to obtain the response signal of the touch point, and then use the response signal The touch output signal to compensate for the touch point can improve the state of the touch signal deviation, improve the accuracy of the touch panel to detect the touch signal, and thus improve the quality of the touch product.
依據本發明之一方面,提出一種觸控訊號之訊號處理方法。首先提供一觸控面板及一檢測電路,觸控面板包括至少一觸控點,用於產 生觸控訊號,檢測電路包括一虛擬觸控元件。當檢測電路以不通過虛擬觸控元件之方式連接於觸控點時,由檢測電路取得一基準訊號。當檢測電路以通過虛擬觸控元件之方式連接於觸控點時,由檢測電路取得一反應訊號。接著,依據反應訊號與基準訊號計算取得一反應區間。 According to one aspect of the invention, a signal processing method for touch signals is proposed. Firstly, a touch panel and a detection circuit are provided. The touch panel includes at least one touch point for producing To generate a touch signal, the detection circuit includes a virtual touch element. When the detection circuit is connected to the touch point without passing through the virtual touch element, the detection circuit obtains a reference signal. When the detection circuit is connected to the touch point by means of a virtual touch element, a response signal is obtained by the detection circuit. Then, a response interval is calculated according to the response signal and the reference signal.
依據本發明之另一方面,提出一種訊號處理系統,用以處理一觸控訊號。訊號處理系統包括一觸控面板以及一檢測裝置。觸控面板包括至少一觸控點,用以產生觸控訊號。檢測裝置用於檢測觸控面板,並且包括一虛擬觸控元件、一檢測電路及一處理單元。虛擬觸控元件用於選擇性地連接於觸控點。當檢測電路以通過虛擬觸控元件之方式連接於觸控點時,檢測電路用以取得一反應訊號;當檢測電路以不通過虛擬觸控元件之方式連接於觸控點時,檢測電路用以取得一基準訊號。處理單元連接於檢測電路,取得基準訊號及反應訊號,並依據反應訊號與基準訊號計算取得一反應區間。 According to another aspect of the present invention, a signal processing system is proposed for processing a touch signal. The signal processing system includes a touch panel and a detection device. The touch panel includes at least one touch point for generating touch signals. The detection device is used to detect the touch panel, and includes a virtual touch element, a detection circuit, and a processing unit. The virtual touch element is used to selectively connect to the touch point. When the detection circuit is connected to the touch point through the virtual touch element, the detection circuit is used to obtain a response signal; when the detection circuit is connected to the touch point without the virtual touch element, the detection circuit is used Obtain a reference signal. The processing unit is connected to the detection circuit, obtains the reference signal and the response signal, and calculates and obtains a reaction interval according to the reaction signal and the reference signal.
依據本發明之又一方面,提出一種觸控訊號之訊號處理方法,首先提供一觸控面板及一檢測電路,觸控面板包括多個觸控點,用於產生觸控訊號,檢測電路包括一虛擬觸控元件。在一控制環境中設定檢測電路於多個量測模式。當檢測電路連接於各觸控點時,由檢測電路依序取得各觸控點對應於量測模式時之多個反應訊號,其中虛擬觸控元件於接地電壓時的訊號係設定為一參考訊號。其次形成一數據表,數據表包含反應訊號及各反應訊號之一可調整範圍。接著在一操作環境中,讀取一現場量測值,利用現場量測值與參考訊號的關係從量測模式中選出一選定模式,並且從數據表中決定出對應選定模式之反應訊號之可調整範圍。 According to yet another aspect of the present invention, a signal processing method for touch signals is provided. First, a touch panel and a detection circuit are provided. The touch panel includes a plurality of touch points for generating touch signals, and the detection circuit includes a Virtual touch element. Set the detection circuit in multiple measurement modes in a control environment. When the detection circuit is connected to each touch point, the detection circuit sequentially obtains a plurality of response signals corresponding to each measurement point in the measurement mode, wherein the signal of the virtual touch element at the ground voltage is set as a reference signal . Secondly, a data table is formed. The data table contains the response signal and one of the adjustable ranges of each response signal. Then in an operating environment, read a field measurement value, use the relationship between the field measurement value and the reference signal to select a selected mode from the measurement mode, and determine the response signal corresponding to the selected mode from the data table. Adjust the range.
依據本發明之再一方面,提出一種訊號處理系統,用以處理一觸控訊號。訊號處理系統包括一觸控面板以及一檢測裝置。觸控面板包括多個觸控點,觸控點用以產生觸控訊號。檢測裝置用於檢測觸控面板,並包括一虛擬觸控元件、一檢測電路及一處理單元。虛擬觸控元件於接地電壓時的訊號係設定為一參考訊號。檢測電路用以在一控制環境中,依序被設定於多個量測模式。當檢測電路連接於觸控點時,檢測電路用以依序取得各觸控點對應於量測模式之多個反應訊號。處理單元連接於檢測電路,用以根據反應訊號形成一數據表。處理單元用以在一操作環境中,讀取一現場量測值,利用現場量測值與參考訊號的關係從量測模式中選出一選定模式,並且從數據表中決定出對應選定模式之多個反應訊號之多個可調整範圍。 According to yet another aspect of the present invention, a signal processing system is provided for processing a touch signal. The signal processing system includes a touch panel and a detection device. The touch panel includes multiple touch points, and the touch points are used to generate touch signals. The detection device is used for detecting the touch panel, and includes a virtual touch element, a detection circuit and a processing unit. The signal of the virtual touch element at the ground voltage is set as a reference signal. The detection circuit is used to sequentially set in multiple measurement modes in a control environment. When the detection circuit is connected to the touch point, the detection circuit is used to sequentially obtain a plurality of response signals corresponding to the measurement mode of each touch point. The processing unit is connected to the detection circuit to form a data table according to the response signal. The processing unit is used to read a field measurement value in an operating environment, use the relationship between the field measurement value and the reference signal to select a selected mode from the measurement modes, and determine the corresponding selected mode from the data table. Multiple adjustable ranges of each response signal.
依據本發明之另一方面,提出一種觸控訊號之訊號處理方法,首先提供一觸控面板及一檢測電路,觸控面板包括至少一觸控點,用於產生觸控訊號,檢測電路包括一虛擬觸控元件。當檢測電路以不通過虛擬觸控元件之方式連接於觸控點時,由檢測電路取得一基準訊號。當檢測電路以通過虛擬觸控元件之方式連接於觸控點時,由檢測電路取得一反應訊號。然後,依據該基準訊號及該反應訊號補償該觸控訊號。 According to another aspect of the present invention, a signal processing method for touch signals is provided. First, a touch panel and a detection circuit are provided. The touch panel includes at least one touch point for generating a touch signal, and the detection circuit includes a Virtual touch element. When the detection circuit is connected to the touch point without passing through the virtual touch element, the detection circuit obtains a reference signal. When the detection circuit is connected to the touch point by means of a virtual touch element, a response signal is obtained by the detection circuit. Then, the touch signal is compensated according to the reference signal and the response signal.
依據本發明之又一方面,提出一種訊號處理系統,用以處理一觸控訊號。訊號處理系統包括一觸控面板以及一檢測裝置。觸控面板包括至少一觸控點,用以產生觸控訊號。檢測裝置用於檢測觸控面板,並且包括一虛擬觸控元件、一檢測電路及一處理單元。虛擬觸控元件用於選擇性地連接於觸控點。當檢測電路以通過虛擬觸控元件之方式連接於觸控點 時,檢測電路用以取得一反應訊號。當以不通過虛擬觸控元件之方式連接於觸控點時,檢測電路用以取得一基準訊號。處理單元連接於檢測電路,用以取得基準訊號及反應訊號,並依據反應訊號與基準訊號補償觸控訊號。 According to yet another aspect of the present invention, a signal processing system is provided for processing a touch signal. The signal processing system includes a touch panel and a detection device. The touch panel includes at least one touch point for generating touch signals. The detection device is used to detect the touch panel, and includes a virtual touch element, a detection circuit, and a processing unit. The virtual touch element is used to selectively connect to the touch point. When the detection circuit is connected to the touch point through the virtual touch element At this time, the detection circuit is used to obtain a response signal. When it is connected to the touch point without passing through the virtual touch element, the detection circuit is used to obtain a reference signal. The processing unit is connected to the detection circuit for obtaining the reference signal and the response signal, and compensates the touch signal according to the response signal and the reference signal.
本發明之觸控訊號之訊號處理方法及應用其之訊號處理系統,利用檢測裝置之虛擬觸控元件選擇性地連接於觸控面板之觸控點,從而取得觸控點的反應訊號,並且據此反應訊號來補償觸控點的觸控輸出訊號。以此方式可以改善觸控訊號偏移的狀況,提升偵測觸控訊號的準確性,進而提昇觸控產品品質。 The signal processing method of the touch signal of the present invention and the signal processing system applying the same utilize the virtual touch element of the detection device to be selectively connected to the touch point of the touch panel, so as to obtain the response signal of the touch point, and according to This response signal compensates the touch output signal of the touch point. In this way, the state of the touch signal deviation can be improved, the accuracy of detecting the touch signal can be improved, and the quality of the touch product can be improved.
100‧‧‧訊號處理系統 100‧‧‧Signal processing system
110‧‧‧觸控面板 110‧‧‧Touch panel
150‧‧‧檢測裝置 150‧‧‧Detection device
151‧‧‧虛擬觸控元件 151‧‧‧Virtual touch element
153‧‧‧檢測電路 153‧‧‧ detection circuit
155‧‧‧處理單元 155‧‧‧ processing unit
D1~Dn‧‧‧驅動線 D1~Dn‧‧‧Drive line
S1~Sm‧‧‧感測線 S1~Sm‧‧‧sensing line
S11~S15‧‧‧步驟 S11~S15‧‧‧Step
S101~S105‧‧‧步驟 S101~S105‧‧‧Step
S201~S209‧‧‧步驟 S201~S209‧‧‧Step
S301~S311‧‧‧步驟 S301~S311‧‧‧Step
T‧‧‧觸控點 T‧‧‧Touch point
Vb‧‧‧基準訊號 Vb‧‧‧ benchmark signal
Vr‧‧‧反應訊號 Vr‧‧‧Response signal
為讓本發明之上述以及其他特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖繪示依照本發明一實施例之觸控訊號之訊號處理方法之流程圖;第2圖繪示依照本發明另一實施例之觸控訊號之訊號處理方法之流程圖;第3圖繪示依照本發明又一實施例之觸控訊號之訊號處理方法之流程圖;第4圖繪示第3圖中步驟S205之詳細流程圖;第5圖繪示依照本發明又一實施例之訊號處理系統之示意圖;第6圖繪示第5圖中虛擬觸控元件連接於觸控點時之示意圖;以及第7圖繪示依照本發明再一實施例之觸控訊號之訊號處理方法之流程圖。 In order to make the above-mentioned and other features, advantages and embodiments of the present invention more obvious and understandable, the drawings are described as follows: FIG. 1 is a flow chart of a signal processing method of a touch signal according to an embodiment of the present invention Figure 2 shows a flowchart of a signal processing method of a touch signal according to another embodiment of the present invention; Figure 3 shows a flowchart of a signal processing method of a touch signal according to another embodiment of the present invention; 4 is a detailed flowchart of step S205 in FIG. 3; FIG. 5 is a schematic diagram of a signal processing system according to another embodiment of the present invention; FIG. 6 is a diagram illustrating that a virtual touch element in FIG. 5 is connected to a touch Schematic diagram of the control point; and FIG. 7 is a flowchart showing a signal processing method of a touch signal according to yet another embodiment of the present invention.
本發明之觸控訊號之訊號處理方法及應用其之訊號處理系統,利用檢測電路中的虛擬觸控元件連接於觸控面板之觸控點之方式,取得觸控點的反應訊號,並且依據反應訊號進一步取得反應區間。根據反應區間可以進行多種觸控訊號的處理。例如判斷觸控點是否不良,或根據此反應區間來補償觸控點的觸控輸出訊號。以此方式,不論是因為製程因素導致觸控訊號偏移,或是在不同操作環境中導致觸控訊號偏移的狀況,均可以得到改善,進而提升觸控面板偵測觸控訊號的準確性,提昇產品品質。 The signal processing method of the touch signal and the signal processing system applying the same of the present invention use the method of connecting the virtual touch element in the detection circuit to the touch point of the touch panel to obtain the response signal of the touch point, and according to the response The signal further obtains a response interval. Various touch signals can be processed according to the reaction interval. For example, to determine whether the touch point is bad, or to compensate the touch output signal of the touch point according to the reaction interval. In this way, whether the shift of the touch signal due to process factors or the shift of the touch signal in different operating environments can be improved, thereby improving the accuracy of the touch panel to detect the touch signal To improve product quality.
請參照第1圖,其繪示依照本發明一實施例之觸控訊號之訊號處理方法之流程圖。首先執行步驟S11,提供一觸控面板及一檢測電路。觸控面板包括一或多個觸控點,用於產生觸控訊號。檢測電路包括一虛擬觸控元件。接著進行步驟S13,當檢測電路以通過虛擬觸控元件之方式連接於各觸控點時,由檢測電路依序取得各觸控點之反應訊號。當檢測電路以不通過虛擬觸控元件之方式連接於觸控點時,由檢測電路取得一基準訊號。然後在步驟S15中,依據反應訊號與基準訊號計算取得一反應區間。根據取得的反應區間,可以進行多種觸控訊號的不同處理,舉例來說,可以利用反應區間判斷觸控點是否不良,或者依據反應區間來進行觸控訊號補償。 Please refer to FIG. 1, which illustrates a flowchart of a signal processing method of a touch signal according to an embodiment of the present invention. First, step S11 is executed to provide a touch panel and a detection circuit. The touch panel includes one or more touch points for generating touch signals. The detection circuit includes a virtual touch element. Next, step S13 is performed. When the detection circuit is connected to each touch point by means of a virtual touch element, the detection circuit sequentially obtains the response signals of each touch point. When the detection circuit is connected to the touch point without passing through the virtual touch element, the detection circuit obtains a reference signal. Then in step S15, a response interval is calculated according to the response signal and the reference signal. According to the obtained reaction interval, different processing of various touch signals can be performed. For example, the reaction interval can be used to determine whether the touch point is bad, or the touch signal can be compensated according to the reaction interval.
於一實施例中,觸控面板上包括多個觸控點,觸控訊號之訊號處理方法更可以包括一決定補償係數之步驟。經由比較多個觸控點的多個基準訊號,藉以決定多個觸控點的多個補償係數,並將補償係數依各個感測點在觸控面板上的相對位置矩陣排列。此外,本實施例中係可選擇地 先將各個觸控點的基準訊號進行補償後,再進行各觸控點的反應訊號量測(步驟S13)。 In an embodiment, the touch panel includes multiple touch points, and the signal processing method of the touch signal may further include a step of determining the compensation coefficient. By comparing multiple reference signals of multiple touch points, multiple compensation coefficients of multiple touch points are determined, and the compensation coefficients are arranged in a matrix according to the relative positions of the respective sensing points on the touch panel. In addition, in this embodiment, it is optional After the reference signal of each touch point is compensated, the response signal of each touch point is measured (step S13).
在另一實施例中,係可經由比較多個觸控點的多個反應訊號,藉以決定多個觸控點的多個補償係數,並將補償係數依各個感測點在觸控面板上的相對位置矩陣排列。 In another embodiment, by comparing multiple response signals of multiple touch points, multiple compensation coefficients of multiple touch points can be determined, and the compensation coefficients can be determined according to the respective sensing points on the touch panel. The relative position is arranged in a matrix.
請參照第2圖,其繪示依照本發明另一實施例之觸控訊號之訊號處理方法之流程圖。首先執行步驟S101,提供一觸控面板及一檢測電路。觸控面板包括一或多個觸控點,用於產生觸控訊號。檢測電路包括一虛擬觸控元件。接著進行步驟S103,當檢測電路以通過虛擬觸控元件之方式連接於各觸控點時,由檢測電路依序取得各觸控點之反應訊號。然後,本實施例之訊號處理方法執行步驟S105,以反應訊號為基礎,補償觸控點之觸控訊號。本實施例之觸控訊號處理方法,利用虛擬觸控元件來取得觸控面板上一或多個觸控點的反應訊號,並且據以補償觸控點的觸控輸出訊號,不需人工逐點進行檢測,可以提升效率及便利性,同時藉由補償觸控訊號來提升觸控面板的觸控準確度。 Please refer to FIG. 2, which illustrates a flowchart of a signal processing method of a touch signal according to another embodiment of the present invention. First, step S101 is executed to provide a touch panel and a detection circuit. The touch panel includes one or more touch points for generating touch signals. The detection circuit includes a virtual touch element. Next, step S103 is performed. When the detection circuit is connected to each touch point by a virtual touch element, the detection circuit sequentially obtains the response signals of each touch point. Then, the signal processing method of this embodiment executes step S105 to compensate the touch signal of the touch point based on the response signal. The touch signal processing method of this embodiment uses a virtual touch element to obtain the response signals of one or more touch points on the touch panel, and compensates the touch output signals of the touch points without manual point-by-point The detection can improve the efficiency and convenience, and at the same time improve the touch accuracy of the touch panel by compensating the touch signal.
請參照第3圖,其繪示依照本發明又一實施例之觸控訊號之訊號處理方法之流程圖。首先如步驟S201所示,提供一觸控面板及一檢測電路。觸控面板包括至少一觸控點。實際應用上,觸控面板中包含以矩陣方式排列的多個觸控點,觸控點是由平行的多條驅動線及平行的多條感測線相互交錯而形成,用來產生觸控訊號。檢測電路包括一虛擬觸控元件,用以選擇性地連接於觸控點。於一實施例中,虛擬觸控元件為一個電容可調整之觸控電路。 Please refer to FIG. 3, which illustrates a flowchart of a signal processing method of a touch signal according to another embodiment of the present invention. First, as shown in step S201, a touch panel and a detection circuit are provided. The touch panel includes at least one touch point. In practical applications, the touch panel includes a plurality of touch points arranged in a matrix manner. The touch points are formed by interlacing multiple parallel driving lines and multiple parallel sensing lines to generate touch signals. The detection circuit includes a virtual touch element for selectively connecting to the touch point. In one embodiment, the virtual touch element is a touch circuit with adjustable capacitance.
接著,本實施例之訊號處理方法執行步驟S203,當檢測電路以不通過虛擬觸控元件之方式連接於一個觸控點時,由檢測電路取得一基準訊號。於此步驟中,虛擬觸控元件並不存在於檢測電路連結到觸控點之線路當中,因此可以由檢測電路取得所述觸控點在沒有被觸摸(此處係指為沒有連接到虛擬觸控元件的情況)時的基準訊號。 Next, the signal processing method of this embodiment executes step S203. When the detection circuit is connected to a touch point without passing through a virtual touch element, the detection circuit obtains a reference signal. In this step, the virtual touch element does not exist in the circuit connecting the detection circuit to the touch point, so it can be obtained by the detection circuit whether the touch point is not touched (in this case, it is not connected to the virtual touch Control signal).
當取得多個觸控點的基準訊號後,可以計算觸控點不通過虛擬觸控元件時的基準訊號(相當於觸控點的背景感測值)之間的差異,並且可以得到一背景補償係數,可以據以補償觸控點的觸控訊號。另可將多個觸控點的基準訊號或者多個前述之背景補償係數,依照其在觸控面板上的位置做成矩陣排列,抑或做成表格,方便後續取得、計算及進一步應用。 When the reference signals of multiple touch points are obtained, the difference between the reference signals (equivalent to the background sensing value of the touch point) when the touch point does not pass the virtual touch element can be calculated, and a background compensation can be obtained The coefficient can be used to compensate the touch signal of the touch point. In addition, the reference signals of multiple touch points or multiple aforementioned background compensation coefficients can be arranged in a matrix according to their positions on the touch panel, or in a table, which is convenient for subsequent acquisition, calculation and further application.
其次,本實施例之訊號處理方法進入步驟S205,當檢測電路以通過虛擬觸控元件之方式連接於觸控點時,由檢測電路取得一反應訊號。此處的觸控點與前述步驟S203中所述之觸控點為同一點。於此步驟中,虛擬觸控元件存在於檢測電路連結到觸控點之線路當中,因此可以由檢測電路取得所述觸控點在被觸摸(此處係指為連接到虛擬觸控元件的情況)時的反應訊號。 Secondly, the signal processing method of this embodiment proceeds to step S205. When the detection circuit is connected to the touch point through the virtual touch element, the detection circuit obtains a response signal. The touch point here is the same as the touch point described in the foregoing step S203. In this step, the virtual touch element exists in the circuit connecting the detection circuit to the touch point, so the detection circuit can obtain that the touch point is being touched (in this case, it is connected to the virtual touch element) ) Response signal.
當取得多個觸控點的反應訊號後,可以計算觸控點通過虛擬觸控元件時的反應訊號(相當於觸控點的模擬觸碰值)之間的差異,並且可以得到一模擬觸碰補償係數,可以據以補償觸控點的觸控訊號。另可將多個觸控點的反應訊號或者多個前述之模擬觸碰補償係數,依其在觸控面板上的位置做成矩陣排列,抑或做成表格,方便後續取得、計算及進一步應用。 After obtaining the response signals of multiple touch points, the difference between the response signals (equivalent to the simulated touch value of the touch point) when the touch point passes through the virtual touch element can be calculated, and a simulated touch can be obtained The compensation coefficient can be used to compensate the touch signal of the touch point. In addition, the response signals of a plurality of touch points or a plurality of the aforementioned analog touch compensation coefficients can be arranged in a matrix according to their positions on the touch panel, or in a table, which is convenient for subsequent acquisition, calculation and further application.
請參照第4圖,其繪示第3圖中步驟S205之詳細流程圖。本實施例中,步驟S205可以例如是包括步驟S202及步驟S204。首先如步驟S202所示,依序設定虛擬觸控元件於不同之多個電容值;接著於步驟S204中,由檢測電路分別取得對應各電容值的反應訊號。以此方式,檢測電路可以利用改變虛擬觸控元件的電容值,取得觸控點在對應不同電容值時的反應訊號。電容值可為正值或負值,用以代表觸控點在不同狀態下(例如有水存在、油存在、手指處碰或手掌處碰)的反應訊號。 Please refer to FIG. 4, which shows a detailed flowchart of step S205 in FIG. 3. In this embodiment, step S205 may include step S202 and step S204, for example. First, as shown in step S202, the virtual touch element is sequentially set to a plurality of different capacitance values; then in step S204, the detection circuit respectively obtains response signals corresponding to the respective capacitance values. In this way, the detection circuit can change the capacitance value of the virtual touch element to obtain the response signal of the touch point when corresponding to different capacitance values. The capacitance value can be a positive value or a negative value, and is used to represent the reaction signal of the touch point in different states (such as the presence of water, the presence of oil, the touch at the finger or the palm).
請繼續參照第3圖,在取得了對應前述觸控點的基準訊號及反應訊號之後,本實施例之訊號處理方法接著可以進行補償觸控訊號的動作,如本實施例之步驟S207及步驟S209所示。 Please continue to refer to FIG. 3, after obtaining the reference signal and the response signal corresponding to the aforementioned touch point, the signal processing method of this embodiment can then perform the action of compensating the touch signal, such as step S207 and step S209 of this embodiment As shown.
於步驟S207中,依據反應訊號與基準訊號計算取得對應所述觸控點之一反應區間。然後在步驟S209中,根據反應區間補償觸控訊號。實際應用上,反應區間對應於各種物質對觸控面板引起之訊號的辨識範圍。當有多個觸控點時,可以依據對應這些觸控點之多個電容值之多個反應訊號與這些觸控點之多個基準訊號,計算取得多個反應區間。 In step S207, a response interval corresponding to the touch point is calculated according to the response signal and the reference signal. Then in step S209, the touch signal is compensated according to the reaction interval. In practical applications, the reaction interval corresponds to the recognition range of signals caused by various substances to the touch panel. When there are multiple touch points, multiple response intervals can be calculated and obtained based on multiple response signals corresponding to multiple capacitance values of these touch points and multiple reference signals of these touch points.
於一實施例中,可以直接將反應區間與一個預設值進行比對,取得觸控點觸控訊號的偏移量,據以進行觸控點觸控訊號的補償。前述預設值可以根據面板製程的偏移量來設定,例如製造一定數量的觸控面板後,因製程差異導致的觸控訊號偏移量為X,可以將X作為前述之預設值。在不同的實施例中,也可以在取得觸控面板所有觸控點的反應訊號後,利用所有反應訊號的平均值或標準差來作為預設值,作為補償觸控訊號的計算基礎。 In an embodiment, the reaction interval can be directly compared with a preset value to obtain the offset of the touch signal of the touch point, so as to compensate the touch signal of the touch point. The aforementioned preset value can be set according to the offset of the panel manufacturing process. For example, after manufacturing a certain number of touch panels, the offset of the touch signal due to the manufacturing process difference is X, and X can be used as the aforementioned preset value. In different embodiments, after obtaining the response signals of all the touch points of the touch panel, the average value or standard deviation of all the response signals can be used as the default value as the basis for calculating the compensation touch signal.
本實施例之訊號處理方法更包括步驟S206,當反應訊號與電容值之變化不相關時,設定觸控點為不良。當使用不同電容值之虛擬觸控元件檢測觸控點,發現觸控點的訊號變化與虛擬觸控元件不相關時,表示無法利用由虛擬觸控元件量測得到的反應訊號來補償校正該觸控點。因此,設定該觸控點為不良觸控點。 The signal processing method of this embodiment further includes step S206. When the response signal is not related to the change of the capacitance value, the touch point is set to be bad. When a virtual touch element with different capacitance values is used to detect a touch point, and it is found that the signal change of the touch point is not related to the virtual touch element, it means that the response signal measured by the virtual touch element cannot be used to compensate and correct the touch point. Handle. Therefore, the touch point is set as a bad touch point.
此外,本實施例之訊號處理方法更包括步驟S208,當反應區間超過一可補償範圍時,設定觸控點為不良。本步驟中,可補償範圍同樣可由因製程差異導致的觸控訊號偏移量來設定,或是取得觸控面板所有觸控點的反應訊號後,利用所有反應訊號的平均值或標準差來設定。當某一個觸控點的反應區間超過可補償範圍時,表示該觸控點的觸控訊號變異過大,將其設定為不良的觸控點。 In addition, the signal processing method of this embodiment further includes step S208. When the reaction interval exceeds a compensable range, the touch point is set to be bad. In this step, the compensable range can also be set by the offset of the touch signal due to the process difference, or after obtaining the response signals of all touch points of the touch panel, the average or standard deviation of all the response signals can be used to set . When the reaction interval of a touch point exceeds the compensable range, it means that the touch signal variation of the touch point is too large, and it is set as a bad touch point.
前述本實施例之觸控訊號之訊號處理方法,是以檢測一個觸控點的基準訊號與反應訊號為例進行說明。在一實施方式中,訊號處理方法可以用來檢測觸控面板上所有觸控點的基準訊號與反應訊號。虛擬觸控元件可以例如是依序連接於各個觸控點,以取得所有觸控點的基準訊號與反應訊號,進而得知整個觸控面板的基準訊號分布狀況,並據以作為補償觸控訊號的計算基礎。並根據所有觸控點的反應訊號,利用所有反應訊號的平均值或標準差來作為預設值,作為補償觸控訊號的計算基礎。 The signal processing method of the touch signal in the foregoing embodiment is described by taking the reference signal and the response signal of a touch point as an example. In one embodiment, the signal processing method can be used to detect the reference signals and response signals of all touch points on the touch panel. For example, the virtual touch element may be sequentially connected to each touch point to obtain the reference signal and the response signal of all touch points, and then to know the distribution of the reference signal of the entire touch panel, and use it as a compensation for the touch signal Basis of calculation. According to the response signals of all touch points, the average or standard deviation of all the response signals is used as the preset value as the basis for calculating the compensation touch signal.
請參照第5圖,其繪示依照本發明又一實施例之訊號處理系統之示意圖。本實施例之訊號處理系統100例如可應用前述實施例之觸控訊號之訊號處理方法,以對於觸控訊號進行補償的動作。訊號處理系統100用以處理一觸控訊號,並且包括一觸控面板110以及一檢測裝置150。觸控面板 110包括至少一觸控點T,用於產生觸控訊號。實際應用上,觸控面板110中包含以矩陣方式排列的多個觸控點T,觸控點T是由平行的多條驅動線D1~Dn及平行的多條感測線S1~Sm相互交錯而形成,用來產生觸控訊號。 Please refer to FIG. 5, which illustrates a schematic diagram of a signal processing system according to yet another embodiment of the present invention. The signal processing system 100 of this embodiment can, for example, apply the signal processing method of the touch signal of the foregoing embodiment to compensate for the touch signal. The signal processing system 100 is used to process a touch signal, and includes a touch panel 110 and a detection device 150. Touch panel 110 includes at least one touch point T for generating a touch signal. In practical applications, the touch panel 110 includes a plurality of touch points T arranged in a matrix. The touch points T are interlaced by multiple parallel driving lines D1~Dn and parallel multiple sensing lines S1~Sm. Formed to generate touch signals.
檢測裝置150用以檢測觸控面板110,並且包括一虛擬觸控元件151、一檢測電路153及一處理單元155。虛擬觸控元件151用以選擇性地連接於觸控點T。本實施例中以驅動第一條驅動線D1,以及經由第一條感測線S1進行感測取得一個觸控點T之觸控訊號為例進行說明。於一實施例中,虛擬觸控元件151為一個電容可調整之觸控電路。當檢測電路153以不通過虛擬觸控元件151之方式連接於觸控點T時,檢測電路153用以取得一基準訊號Vb。 The detection device 150 is used to detect the touch panel 110 and includes a virtual touch element 151, a detection circuit 153 and a processing unit 155. The virtual touch element 151 is used to selectively connect to the touch point T. In this embodiment, the first driving line D1 and the first sensing line S1 are used for sensing to obtain a touch signal of a touch point T as an example. In one embodiment, the virtual touch element 151 is a touch circuit with adjustable capacitance. When the detection circuit 153 is connected to the touch point T without passing through the virtual touch element 151, the detection circuit 153 is used to obtain a reference signal Vb.
請同時參照第5圖及第6圖,第6圖繪示第5圖中虛擬觸控元件151連接於觸控點T時之示意圖。當檢測電路153以通過虛擬觸控元件151之方式連接於觸控點T時,檢測電路153用以取得一反應訊號Vr。 Please refer to FIG. 5 and FIG. 6 at the same time. FIG. 6 shows a schematic diagram when the virtual touch element 151 in FIG. 5 is connected to the touch point T. When the detection circuit 153 is connected to the touch point T through the virtual touch element 151, the detection circuit 153 is used to obtain a response signal Vr.
處理單元155連接於檢測電路153,用以取得基準訊號Vb及反應訊號Vr,並依據反應訊號Vr與基準訊號Vb計算取得一反應區間。處理單元155用以根據前述計算取得之反應區間補償觸控點T之觸控訊號。於一實施例中,可以將反應區間與一預設值進行比對。預設值可以根據面板製程的偏移量來設定。在不同的實施例中,也可以在取得觸控面板110所有觸控點T的反應訊號Vr後,利用其平均值或標準差來作為補償觸控訊號的計算基礎。 The processing unit 155 is connected to the detection circuit 153 to obtain the reference signal Vb and the response signal Vr, and calculate and obtain a reaction interval according to the reaction signal Vr and the reference signal Vb. The processing unit 155 is used to compensate the touch signal of the touch point T according to the response interval obtained by the foregoing calculation. In an embodiment, the reaction interval can be compared with a predetermined value. The preset value can be set according to the offset of the panel manufacturing process. In different embodiments, after obtaining the response signals Vr of all touch points T of the touch panel 110, the average value or the standard deviation may be used as a calculation basis for compensating the touch signals.
在實際應用上,訊號處理系統100並不以取得單一觸控點T為限制,虛擬觸控元件151可依序連接於觸控面板110之所有觸控點T,從而讓 檢測電路可以依序取得所有觸控點T的基準訊號Vb及反應訊號Vr。虛擬觸控元件151可為一個電容可調整之觸控電路,因此虛擬觸控元件151可以分別依序設定於不同的電容值,從而使檢測電路153可以取得對應各電容值之反應訊號Vr。 In practical applications, the signal processing system 100 is not limited to obtaining a single touch point T, and the virtual touch element 151 can be sequentially connected to all touch points T of the touch panel 110, so that The detection circuit can sequentially obtain the reference signal Vb and the response signal Vr of all the touch points T. The virtual touch element 151 can be a touch circuit with adjustable capacitance. Therefore, the virtual touch element 151 can be sequentially set to different capacitance values, so that the detection circuit 153 can obtain the response signal Vr corresponding to each capacitance value.
本實施例中,檢測裝置150之處理單元155可於反應區間超過一可補償範圍時,將觸控點T設定為不良。檢測裝置150之處理單元155更可以於一或多個觸控點T之反應訊號Vr與虛擬觸控元件151之電容值變化不相關時,設定前述一或多個觸控點T為不良。 In this embodiment, the processing unit 155 of the detection device 150 can set the touch point T to be bad when the reaction interval exceeds a compensable range. The processing unit 155 of the detection device 150 can further set the aforementioned one or more touch points T to be defective when the response signal Vr of the one or more touch points T is not related to the change in the capacitance value of the virtual touch element 151.
請參照第7圖,其繪示依照本發明再一實施例之觸控訊號之訊號處理方法之流程圖。首先如步驟S301所示,提供一觸控面板及一檢測電路,觸控面板包括多個觸控點,用於產生觸控訊號。檢測電路包括一虛擬觸控元件。 Please refer to FIG. 7, which illustrates a flowchart of a signal processing method of a touch signal according to yet another embodiment of the present invention. First, as shown in step S301, a touch panel and a detection circuit are provided. The touch panel includes a plurality of touch points for generating touch signals. The detection circuit includes a virtual touch element.
於步驟S303中,在一控制環境中,設定檢測電路於多個不同之量測模式。 In step S303, in a control environment, the detection circuit is set in a plurality of different measurement modes.
其次,如步驟S305所示,當檢測電路連接於各觸控點時,由檢測電路依序取得各觸控點對應於前述多個量測模式時之多個反應訊號。本實施例中,前述之多個量測模式例如為在多個不同的量測頻率下,進行觸控點的觸控訊號量測。舉例來說,在10k至1000k之量測頻率範圍中,以每隔一固定頻率之方式進行量測,藉以取得在各量測頻率時,觸控點所對應的反應訊號。例如以50K的固定頻率,在50K、100K、150K...等等的頻率時各完成一次量測模式的量測。此外,以通過虛擬觸控元件之方式連接於各觸控點時,檢測電路可以將虛擬觸控元件於接地電壓時的訊號,設定一 參考訊號。 Next, as shown in step S305, when the detection circuit is connected to each touch point, the detection circuit sequentially obtains a plurality of response signals when each touch point corresponds to the aforementioned multiple measurement modes. In this embodiment, the aforementioned multiple measurement modes are, for example, measuring the touch signal of the touch point at a plurality of different measurement frequencies. For example, in the measurement frequency range of 10k to 1000k, the measurement is performed at every fixed frequency, so as to obtain the response signal corresponding to the touch point at each measurement frequency. For example, at a fixed frequency of 50K, each measurement mode is completed once at a frequency of 50K, 100K, 150K, etc. In addition, when connected to each touch point by way of a virtual touch element, the detection circuit can set the signal of the virtual touch element at the ground voltage to a Reference signal.
再來,如步驟S307所示,形成一數據表,數據表包含前述之多個反應訊號。換句話說,數據表中儲存有各觸控點在各量測模式中所取得的反應訊號。此外,數據表中亦包括各反應訊號之一可調整範圍,例如+2或-2等。 Next, as shown in step S307, a data table is formed, and the data table includes the aforementioned multiple response signals. In other words, the data table stores the response signals obtained by each touch point in each measurement mode. In addition, the data table also includes an adjustable range of each response signal, such as +2 or -2.
接著,如步驟S309所示,在一操作環境中,讀取一現場量測值,利用現場量測值與參考訊號的關係,從前述多個量測模式中選出一選定模式,並且從數據表中決定出對應此選定模式之多個反應訊號的可調整範圍。本實施例中,控制環境與操作環境不同之處,在於控制環境之一環境潔淨度高於操作環境。 Next, as shown in step S309, in an operating environment, read a field measurement value, using the relationship between the field measurement value and the reference signal, select a selected mode from the aforementioned plurality of measurement modes, and from the data table Determines the adjustable range of multiple response signals corresponding to this selected mode. In this embodiment, the control environment is different from the operating environment in that one of the control environments has a higher environmental cleanliness than the operating environment.
選定模式係有多種可應用之選取方法。本實施例中,量測模式例如是以不同的量測頻率下進行觸控訊號的量測,因此選定模式可應用一跳頻量測方法,從量測模式中決定出較不受雜訊干擾者,作為選定模式。接著從數據表中選出各觸控點在對應此選定模式時的反應訊號。 There are multiple selection methods available for the selected mode. In this embodiment, the measurement mode is, for example, the measurement of the touch signal at different measurement frequencies. Therefore, a frequency hopping measurement method can be applied to the selected mode to determine that the measurement mode is less susceptible to noise interference. As the selected mode. Then select the response signal of each touch point corresponding to the selected mode from the data table.
然後,如步驟S311所示,以反應訊號為基礎補償觸控訊號。於一實施方式中,可以利用所有觸控點為基礎,進行觸控訊號的補償。然而本實施例之技術並不限制於此,訊號處理方法亦可選擇性地以一部分觸控點為基礎,進行觸控訊號的補償,係可節省時間、提升補償觸控訊號的效率。 Then, as shown in step S311, the touch signal is compensated based on the response signal. In one embodiment, all touch points can be used as the basis for compensation of touch signals. However, the technology of this embodiment is not limited to this. The signal processing method can also selectively compensate touch signals based on a part of touch points, which can save time and improve the efficiency of compensating touch signals.
本實施例之訊號處理方法更選擇性地包括步驟S302、步驟S304及步驟S306,步驟S302例如在步驟S301後執行,步驟S304及步驟S06例如在步驟S309之後執行。 The signal processing method of this embodiment more selectively includes step S302, step S304 and step S306. Step S302 is executed after step S301, for example, and step S304 and step S06 are executed after step S309, for example.
在步驟S302中,設定對應各觸控點之一觸控訊號預存值。可以利用已知的製程差異參數或其他已知的量測方式,在控制環境中量測取得與觸控點相關之特性值。數據表中更包含此觸控訊號預存值。在步驟S304中,選擇一部分之觸控點為多個參考點。在步驟S306中,當各參考點之各反應訊號(因為參考點為觸控點,在數據表中會包含有對應參考點之反應訊號)與各觸控訊號預存值之差異小於一門檻值時,取得一校正區間。在步驟S311中,係以反應訊號為基礎,根據校正區間補償觸控訊號。 In step S302, a pre-stored value of a touch signal corresponding to each touch point is set. You can use known process difference parameters or other known measurement methods to measure and obtain characteristic values related to touch points in the control environment. The data table also contains the pre-stored value of this touch signal. In step S304, a part of the touch points is selected as multiple reference points. In step S306, when the difference between each response signal of each reference point (because the reference point is a touch point, the response signal of the corresponding reference point will be included in the data table) and the pre-stored value of each touch signal is less than a threshold To obtain a calibration interval. In step S311, the touch signal is compensated according to the correction interval based on the response signal.
參考點為觸控面板中訊號穩定之點,或不易受到環境因素影響之點。於一實施例中,步驟S304係以一向量內積相似度判別方法定義出參考點。某一觸控點之現場量測值相對一預設向量參考點在各量測模式時具有一第一向量值,所述觸控點之觸控訊號預存值相對預設向量參考點具有一第二向量值。預設向量參考點可以根據實際製程或產品需求進行設定,其可以基於在控制環境中量測取得與觸控點相關之特性值來設定。根據第一向量值及第二向量值之內積餘弦值,判斷反應訊號與觸控訊號預存值之差異。餘弦值愈接近1表示兩者愈接近,亦表示該觸控點愈適合用來作為參考點。據此,對應選擇距離最小者作為實際量測使用之選定量測模式。 The reference point is the point where the signal in the touch panel is stable or is not easily affected by environmental factors. In one embodiment, step S304 defines a reference point by a vector inner product similarity discrimination method. The on-site measurement value of a touch point has a first vector value in each measurement mode relative to a preset vector reference point, and the pre-stored value of the touch signal of the touch point has a value relative to the preset vector reference point The second vector value. The preset vector reference point can be set according to the actual process or product requirements, and it can be set based on measuring and acquiring characteristic values related to the touch point in the control environment. According to the inner product cosine value of the first vector value and the second vector value, the difference between the pre-stored value of the response signal and the touch signal is determined. The closer the cosine value is to 1, the closer the two are, and the more suitable the touch point is as a reference point. According to this, the selected measurement mode corresponding to the one with the smallest distance is used as the actual measurement.
本實施例之觸控訊號之訊號處理方法,係可應用於一訊號處理系統。訊號處理系統用以處理一觸控訊號,並且包括一觸控面板以及一檢測裝置。觸控面板包括多個觸控點,用以產生觸控訊號。檢測裝置用於檢測觸控面板,並且包括一虛擬觸控元件、一檢測電路及一處理單元。虛擬觸控元件用以選擇性地連接於觸控點。 The signal processing method of the touch signal of this embodiment can be applied to a signal processing system. The signal processing system is used to process a touch signal, and includes a touch panel and a detection device. The touch panel includes multiple touch points for generating touch signals. The detection device is used to detect the touch panel, and includes a virtual touch element, a detection circuit, and a processing unit. The virtual touch element is used to selectively connect to the touch point.
與前述根據第5圖及第6圖之訊號處理系統100不同之處,在於 本實施例之訊號處理系統中,檢測電路用以在一控制環境中依序被設定於不同之多個量測模式。當檢測電路連接於各觸控點時,檢測電路依序取得各觸控點對應於量測模式時之多個反應訊號。本實施例中處理單元儲存有包含反應訊號之一數據表。處理單元用以在一操作環境中,讀取一現場量測值,並且利用現場量測值與參考訊號的關係,從量測模式中選出一選定模式,並且從數據表中決定出對應選定模式之反應訊號之可調整範圍,並且以反應訊號為基礎補償觸控訊號。 The difference from the aforementioned signal processing system 100 according to FIGS. 5 and 6 is that In the signal processing system of this embodiment, the detection circuit is used to be sequentially set in different measurement modes in a control environment. When the detection circuit is connected to each touch point, the detection circuit sequentially obtains a plurality of response signals when each touch point corresponds to the measurement mode. In this embodiment, the processing unit stores a data table containing the response signals. The processing unit is used to read a field measurement value in an operating environment, and use the relationship between the field measurement value and the reference signal to select a selected mode from the measurement mode and determine the corresponding selected mode from the data table The adjustable range of the response signal, and compensate the touch signal based on the response signal.
根據本發明前述實施例之觸控訊號之訊號處理方法及應用其之訊號處理系統,利用虛擬觸控元件連接於觸控點以取得反應訊號,進而以反應訊號為計算基礎,據以補償觸控點的觸控輸出訊號。以此方式,不論是因為製程因素導致觸控訊號偏移,或是在不同操作環境中導致觸控訊號偏移的狀況,均可以得到補償。如此係可提升觸控面板偵測觸控訊號的準確性,同時提昇了產品品質。 According to the signal processing method of the touch signal and the signal processing system applying the same according to the foregoing embodiments of the present invention, the virtual touch element is connected to the touch point to obtain the response signal, and then the response signal is used as the calculation basis to compensate for the touch Point touch output signal. In this way, whether the touch signal is shifted due to process factors or the shift of the touch signal in different operating environments can be compensated. In this way, the accuracy of the touch panel in detecting the touch signal can be improved, and the product quality can also be improved.
雖然本發明已以多個實施例揭露如上,然其並非用以限定本發明。任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種更動與潤飾,因此本發明之保護範圍當視後附申請專利範圍所界定者為準。 Although the present invention has been disclosed as a plurality of embodiments, it is not intended to limit the present invention. Anyone who is familiar with this skill can make various modifications and retouching without departing from the spirit and scope of the present invention, so the scope of protection of the present invention shall be deemed to be defined by the scope of the attached patent application.
S101~S105‧‧‧步驟 S101~S105‧‧‧Step

Claims (12)

  1. 一種觸控訊號之訊號處理方法,包括:提供一觸控面板及一檢測電路,該觸控面板包括至少一觸控點,用於產生該觸控訊號,該檢測電路包括一虛擬觸控元件;當該檢測電路以不通過該虛擬觸控元件之方式連接於該觸控點時,由該檢測電路取得一基準訊號;當該檢測電路以通過該虛擬觸控元件之方式連接於該觸控點時,由該檢測電路取得一反應訊號;以及依據該反應訊號與該基準訊號計算取得一反應區間。 A signal processing method for touch signals includes: providing a touch panel and a detection circuit, the touch panel includes at least one touch point for generating the touch signal, and the detection circuit includes a virtual touch element; When the detection circuit is connected to the touch point without passing through the virtual touch element, a reference signal is obtained by the detection circuit; when the detection circuit is connected to the touch point by passing through the virtual touch element At the time, a response signal is obtained by the detection circuit; and a response interval is calculated and obtained based on the response signal and the reference signal.
  2. 如申請專利範圍第1項所述之訊號處理方法,更包括:當該反應區間超過一可補償範圍時,設定該觸控點為不良。 The signal processing method as described in item 1 of the patent application scope further includes: setting the touch point as bad when the reaction interval exceeds a compensable range.
  3. 如申請專利範圍第1項所述之訊號處理方法,其中由該檢測電路取得該反應訊號之該步驟包括:依序設定該虛擬觸控元件於不同之複數個電容值;及由該檢測電路分別取得對應各該電容值之該反應訊號。 The signal processing method as described in item 1 of the patent application scope, wherein the step of obtaining the response signal by the detection circuit includes: sequentially setting the virtual touch element in a plurality of different capacitance values; and the detection circuit separately Obtain the response signal corresponding to each capacitance value.
  4. 如申請專利範圍第3項所述之訊號處理方法,更包括:依據對應該些電容值之該些反應訊號與該基準訊號計算取得複數個該反應區間。 The signal processing method as described in item 3 of the patent application scope further includes: calculating and obtaining a plurality of the reaction intervals based on the reaction signals corresponding to the capacitance values and the reference signal.
  5. 如申請專利範圍第3項所述之訊號處理方法,更包括:當該反應訊號與該些電容值之變化不相關時,設定該觸控點為不良。 The signal processing method as described in item 3 of the patent application scope further includes: when the response signal is not related to the change in the capacitance values, setting the touch point as bad.
  6. 如申請專利範圍第3項所述之訊號處理方法,其中該觸控面板包括複數個該觸控點,該虛擬觸控元件係依序連接於各該觸控點,該方法更包括:依據對應該些觸控點之該些電容值之該些反應訊號與該些觸控點之該些基準訊號計算取得複數個該反應區間。 The signal processing method as described in item 3 of the patent application scope, wherein the touch panel includes a plurality of the touch points, the virtual touch element is sequentially connected to each of the touch points, the method further includes: A plurality of the response intervals are obtained by calculating the response signals of the capacitance values of the touch points and the reference signals of the touch points.
  7. 一種訊號處理系統,用以處理一觸控訊號,包括:一觸控面板,包括至少一觸控點,用以產生該觸控訊號;以及一檢測裝置,用於檢測該觸控面板,該檢測裝置包括:一虛擬觸控元件,用於選擇性地連接於該觸控點;一檢測電路,當以通過該虛擬觸控元件之方式連接於該觸控點時,該檢測電路用以取得一反應訊號,當以不通過該虛擬觸控元件之方式連接於該觸控點時,該檢測電路用以取得一基準訊號;及一處理單元,連接於該檢測電路,用以取得該基準訊號及該反應訊號,並依據該反應訊號與該基準訊號計算取得一反應區間。 A signal processing system for processing a touch signal includes: a touch panel including at least one touch point for generating the touch signal; and a detection device for detecting the touch panel and the detection The device includes: a virtual touch element for selectively connecting to the touch point; and a detection circuit for connecting to the touch point by way of the virtual touch element, the detection circuit is used to obtain a The response signal, when connected to the touch point in a way that does not pass through the virtual touch element, the detection circuit is used to obtain a reference signal; and a processing unit is connected to the detection circuit to obtain the reference signal and The reaction signal is calculated based on the reaction signal and the reference signal to obtain a reaction interval.
  8. 如申請專利範圍第7項所述之訊號處理系統,其中該處理單元更用以於 該反應區間超過一可補償範圍時,設定該觸控點為不良。 The signal processing system as described in item 7 of the patent application scope, wherein the processing unit is further used for When the response interval exceeds a compensable range, the touch point is set to be bad.
  9. 如申請專利範圍第7項所述之訊號處理系統,其中該虛擬觸控元件分別依序設定於不同之複數個電容值,該檢測電路用以分別取得對應各該電容值之該反應訊號。 The signal processing system as described in item 7 of the patent application scope, wherein the virtual touch elements are sequentially set to different plural capacitance values, and the detection circuit is used to obtain the response signals corresponding to the respective capacitance values.
  10. 如申請專利範圍第9項所述之訊號處理系統,其中該處理單元更用於依據對應於該些電容值之該些反應訊號計算取得複數個該反應區間。 The signal processing system as described in item 9 of the patent application scope, wherein the processing unit is further used to calculate and obtain a plurality of the reaction intervals based on the reaction signals corresponding to the capacitance values.
  11. 如申請專利範圍第9項所述之訊號處理系統,其中該處理單元更用以於該反應訊號與該些電容值之變化不相關時,設定該觸控點為不良。 The signal processing system as described in item 9 of the patent application scope, wherein the processing unit is further used to set the touch point to be bad when the response signal is not related to changes in the capacitance values.
  12. 如申請專利範圍第7項所述之訊號處理系統,其中該觸控面板包括複數個該觸控點,該虛擬觸控元件用以依序連接於各該觸控點。 The signal processing system as described in item 7 of the patent application range, wherein the touch panel includes a plurality of the touch points, and the virtual touch element is used to sequentially connect to each of the touch points.
TW107135251A 2018-10-05 2018-10-05 Method for processing touch signal and signal processing system using same TWI698779B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107135251A TWI698779B (en) 2018-10-05 2018-10-05 Method for processing touch signal and signal processing system using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107135251A TWI698779B (en) 2018-10-05 2018-10-05 Method for processing touch signal and signal processing system using same
CN201910420893.8A CN111007964A (en) 2018-10-05 2019-05-20 Signal processing method and signal processing system of touch signal

Publications (2)

Publication Number Publication Date
TW202014856A true TW202014856A (en) 2020-04-16
TWI698779B TWI698779B (en) 2020-07-11

Family

ID=71130758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107135251A TWI698779B (en) 2018-10-05 2018-10-05 Method for processing touch signal and signal processing system using same

Country Status (1)

Country Link
TW (1) TWI698779B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493416B (en) * 2010-01-07 2015-07-21 Novatek Microelectronics Corp Touch sensing system, capacitance sensing apparatus and capacitance sensing method thereof
TWI585660B (en) * 2012-01-06 2017-06-01 新唐科技股份有限公司 Touch sensing apparatus
TWI543051B (en) * 2013-09-18 2016-07-21 義隆電子股份有限公司 Scanning method having adjustable sampling frequency and touch device using the same
TWI503729B (en) * 2014-04-21 2015-10-11

Also Published As

Publication number Publication date
TWI698779B (en) 2020-07-11

Similar Documents

Publication Publication Date Title
CN102959375B (en) Algorithm for detecting activation of a push button
CN103983361A (en) Online network temperature-measuring thermal imager calibration method
JP2014514093A5 (en) Method for calibrating an analyte sensor and sensor system configured to implement the method
CN103884439B (en) The method of the detection environment temperature of electronic installation and the application device
CN103575414A (en) Method for compensating temperature measuring error of thermocouple
TWI543060B (en) Calibration method and capacitive sensing device
TWI596523B (en) Carrier Touch Sensing System Capable of Performing Phase Calibration and Carrier Signal Demodulation
US20170052074A1 (en) Pressure detecting apparatus, method of controlling the pressure detecting apparatus, and program
CN101846572B (en) Method for decreasing basic error of pressure sensor
TW202014856A (en) Method for processing touch signal and signal processing system using same
TW202014857A (en) Method for processing touch signal and signal processing system using same
TW202014858A (en) Method for processing touch signal and signal processing system using same
CN109683028B (en) Electrostatic detection method and device
CN109343076B (en) Distance calibration method and distance measuring device
KR101801023B1 (en) Advanced process control method for semiconductor process using virtual metrology
US20120310592A1 (en) Touch device and detection method thereof
CN103884871A (en) Tachometer correcting value measurement method and device
CN111007964A (en) Signal processing method and signal processing system of touch signal
CN102095668A (en) Method for detecting viscosity of emulsion paint and method for measuring temperature-viscosity correction factor
TW201736814A (en) Pressure measuring method and pressure measuring apparatus
CN107920241B (en) White balance processing method for liquid crystal display television
US20160179282A1 (en) Background signal processing system and background signal processing method
CN110095427A (en) Moisture Meter measurement error method for self-calibrating, device and system, storage medium
CN105865504B (en) Method for calibrating at least one sensor
JP2018132458A (en) Detector and method for detecting substance