TW201928922A - 類比運算電路、半導體裝置及電子機器 - Google Patents

類比運算電路、半導體裝置及電子機器 Download PDF

Info

Publication number
TW201928922A
TW201928922A TW107141383A TW107141383A TW201928922A TW 201928922 A TW201928922 A TW 201928922A TW 107141383 A TW107141383 A TW 107141383A TW 107141383 A TW107141383 A TW 107141383A TW 201928922 A TW201928922 A TW 201928922A
Authority
TW
Taiwan
Prior art keywords
circuit
transistor
film
signal
oxide semiconductor
Prior art date
Application number
TW107141383A
Other languages
English (en)
Other versions
TWI678688B (zh
Inventor
黒川義元
山崎舜平
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW201928922A publication Critical patent/TW201928922A/zh
Application granted granted Critical
Publication of TWI678688B publication Critical patent/TWI678688B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3243Power saving in microcontroller unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Power Sources (AREA)
  • Microcomputers (AREA)
  • Analogue/Digital Conversion (AREA)
  • Logic Circuits (AREA)

Abstract

本發明的一個方式的目的之一是降低類比運算電路的耗電量。本發明的一個方式是一種類比運算電路,包括多個第一電路,其中,第k(k是自然數)上述第一電路的輸出端子與第k+1上述第一電路的輸入端子連接,上述第一電路的每一個包括保持類比信號的記憶體電路、使用上述類比信號進行運算處理的第二電路、控制對上述第二電路供應電力的開關以及控制器,上述第k上述第一電路所包括的上述開關的導通狀態根據上述第k+1上述第一電路所包括的上述控制器而控制,並且,在上述第k+1第一電路所包括的上述第二電路中進行的上述運算處理根據上述第k+1第一電路所包括的上述控制器而開始。

Description

類比運算電路、半導體裝置及電子機器
本發明的一個方式係關於一種使用類比信號進行運算處理的類比運算電路。例如,本發明的一個方式係關於一種動態可重構的類比運算電路。另外,本發明的一個方式係關於一種使用上述類比運算電路的半導體裝置。
注意,本發明的一個方式不侷限於上述技術領域。本說明書等所公開的發明的一個方式的技術領域係關於一種物體、方法或製造方法。或者,本發明的一個方式係關於一種程式(process)、機器(machine)、產品(manufacture)或者組成物(composition of matter)。因此,更具體地,作為本說明書所公開的本發明的一個方式的技術領域的一個例子,可以舉出半導體裝置、顯示裝置、液晶顯示裝置、發光裝置、照明設備、蓄電裝置、記憶體裝置、它們的驅動方法或它們的製造方法。
將從輸入裝置輸入的類比值的資料用於運算處理的類比運算電路能夠直接輸出藉由該運算處理得到的 類比值的資料。因此,因為也可以不將資料轉換為數位值,所以不需要將資料從類比值轉換為數位值所需要的DA轉換電路等。另外,因為能夠進行大規模的資料的即時處理,所以可以降低資料的移動所消耗的電力而被認為有利於低耗電量化。
以下專利文獻1公開了藉由使用利用MOS電晶體的電壓-電流特性的類比運算電路實現比使用數位資料進行運算的情況低耗電量且短時間的運算的液晶顯示裝置。另外,以下專利文獻2公開了一種類比數位混合型運算電路,該類比數位混合型運算電路包括:多個類比運算電路、儲存運算結果的總和值作為電荷量的電容器、將該電荷量轉換為對應的脈衝信號的比較器、將脈衝信號轉換為數位信號的脈衝寬度數位轉換電路以及根據該數位信號計算出累積值的數位運算電路。
[專利文獻]
[專利文獻1]日本專利申請公開第2000-284762號公報
[專利文獻2]日本專利申請公開第2005-122467號公報
雖然類比運算電路與數位運算電路相比有利於將耗電量抑制為低,但是為了實現半導體裝置的低耗電量化而需要進一步降低類比運算電路的耗電量。
鑒於上述技術背景,本發明的一個方式的目的之一是降低類比運算電路的耗電量。或者,本發明的一個方式的目的之一是降低使用該類比運算電路的半導體裝置的耗電量。
另外,本發明的一個方式的目的之一是提供一種新穎的半導體裝置等。注意,這些目的的記載不妨礙其他目的的存在。另外,本發明的一個方式並不需要解決所有上述目的。另外,可以從說明書、圖式、申請專利範圍等的記載得知並抽出上述以外的目的。
根據本發明的一個方式的類比運算電路包括多個第一電路,第k(k是自然數)第一電路的輸出端子與第k+1第一電路的輸入端子連接,第一電路的每一個包括保持類比信號的記憶體電路、使用類比信號進行運算處理的第二電路、控制對第二電路供應電力的開關以及控制器,第k第一電路所包括的開關的導通狀態根據第k+1第一電路所包括的控制器而控制,並且,在第k+1第一電路所包括的第二電路中進行的運算處理根據第k+1第一電路所包括的控制器而開始。
另外,在根據本發明的一個方式的類比運算電路中,開關可以包括電晶體,並且,電晶體可以在氧化物半導體膜中包括通道形成區。
另外,在根據本發明的一個方式的類比運算電路中,氧化物半導體膜可以包括In、Ga及Zn。
根據本發明的一個方式,可以實現類比運算電路的耗電量的降低。或者,根據本發明的一個方式,可以實現使用該類比運算電路的半導體裝置的耗電量的降低。
另外,根據本發明的一個方式,可以提供一種新穎的半導體裝置等。注意,這些效果的記載不妨礙其他效果的存在。另外,本發明的一個方式並不需要具有所有上述效果。另外,可以從說明書、圖式、申請專利範圍等的記載得知並抽出上述以外的效果。
10‧‧‧類比運算電路
11‧‧‧電路
11-k‧‧‧電路
11-m‧‧‧電路
11-1‧‧‧電路
11a‧‧‧電路
11h‧‧‧電路
12‧‧‧記憶體電路
12a‧‧‧記憶體電路
12b‧‧‧記憶體電路
13‧‧‧運算電路
14‧‧‧控制器
15‧‧‧開關
15t‧‧‧電晶體
16‧‧‧電晶體
17‧‧‧電容元件
18‧‧‧延遲電路
18a‧‧‧延遲電路
18b‧‧‧延遲電路
18c‧‧‧延遲電路
19‧‧‧電阻元件
20‧‧‧電容元件
21‧‧‧反相器
21-1‧‧‧反相器
21-2‧‧‧反相器
21-2n‧‧‧反相器
22‧‧‧電晶體
23‧‧‧電晶體
24‧‧‧電晶體
25‧‧‧電晶體
26‧‧‧電晶體
27‧‧‧電晶體
28‧‧‧電晶體
29‧‧‧電晶體
29a‧‧‧電晶體
29b‧‧‧電晶體
30‧‧‧電容元件
31‧‧‧佈線
32‧‧‧佈線
33‧‧‧延遲電路
34‧‧‧延遲電路
35a‧‧‧電路
35b‧‧‧電路
36‧‧‧反相器
37‧‧‧電晶體
38‧‧‧延遲電路
39‧‧‧延遲電路
40‧‧‧AND電路
41‧‧‧電晶體
42‧‧‧電晶體
43‧‧‧電晶體
44‧‧‧電阻元件
45‧‧‧電阻元件
46‧‧‧電阻元件
47‧‧‧電阻元件
48‧‧‧電阻元件
49‧‧‧二極體
50‧‧‧二極體
51‧‧‧電阻元件
52‧‧‧電阻元件
53‧‧‧電阻元件
54‧‧‧電阻元件
55‧‧‧電阻元件
56‧‧‧電阻元件
57‧‧‧電阻元件
58‧‧‧電阻元件
59‧‧‧電阻元件
60‧‧‧記憶單元
61‧‧‧電晶體
62‧‧‧電晶體
63‧‧‧電容元件
64‧‧‧電路
65‧‧‧電晶體
66‧‧‧電晶體
67‧‧‧電晶體
68‧‧‧電晶體
69‧‧‧電晶體
70‧‧‧電晶體
71‧‧‧電容元件
75‧‧‧半導體裝置
76‧‧‧輸入裝置
77‧‧‧類比處理器
78‧‧‧輸出裝置
79‧‧‧類比數位轉換電路
80‧‧‧數位類比轉換電路
81‧‧‧數位處理器
82‧‧‧佈線
83‧‧‧佈線
84‧‧‧佈線
85‧‧‧類比處理器
86‧‧‧I/O介面
87‧‧‧類比記憶體
88‧‧‧電阻元件
89‧‧‧反相器
90‧‧‧電晶體
91‧‧‧絕緣膜
92a‧‧‧氧化物半導體膜
92b‧‧‧氧化物半導體膜
92c‧‧‧氧化物半導體膜
93‧‧‧導電膜
94‧‧‧導電膜
95‧‧‧絕緣膜
96‧‧‧導電膜
97‧‧‧基板
400‧‧‧基板
401‧‧‧元件分離區
402‧‧‧雜質區
403‧‧‧雜質區
404‧‧‧通道形成區
405‧‧‧絕緣膜
406‧‧‧閘極電極
411‧‧‧絕緣膜
412‧‧‧導電膜
413‧‧‧導電膜
414‧‧‧導電膜
416‧‧‧導電膜
417‧‧‧導電膜
418‧‧‧導電膜
420‧‧‧絕緣膜
421‧‧‧絕緣膜
422‧‧‧絕緣膜
430‧‧‧半導體膜
430a‧‧‧氧化物半導體膜
430c‧‧‧氧化物半導體膜
431‧‧‧閘極絕緣膜
432‧‧‧導電膜
433‧‧‧導電膜
434‧‧‧閘極電極
601‧‧‧半導體基板
610‧‧‧元件分離區
611‧‧‧絕緣膜
612‧‧‧絕緣膜
613‧‧‧絕緣膜
625‧‧‧導電膜
626‧‧‧導電膜
627‧‧‧導電膜
634‧‧‧導電膜
635‧‧‧導電膜
636‧‧‧導電膜
637‧‧‧導電膜
644‧‧‧導電膜
651‧‧‧導電膜
652‧‧‧導電膜
653‧‧‧導電膜
654‧‧‧導電膜
655‧‧‧導電膜
661‧‧‧絕緣膜
662‧‧‧閘極絕緣膜
663‧‧‧絕緣膜
701‧‧‧半導體膜
710‧‧‧區域
711‧‧‧區域
721‧‧‧導電膜
722‧‧‧導電膜
731‧‧‧閘極電極
800‧‧‧半導體裝置
801‧‧‧影像感測器
802‧‧‧影像記憶體
803‧‧‧類比處理器
804‧‧‧顯示裝置
805‧‧‧感測器陣列
806‧‧‧驅動電路
807‧‧‧讀出電路
808‧‧‧影像資料
809‧‧‧類比記憶體
810‧‧‧像素
5001‧‧‧外殼
5002‧‧‧外殼
5003‧‧‧顯示部
5004‧‧‧顯示部
5005‧‧‧麥克風
5006‧‧‧揚聲器
5007‧‧‧操作鍵
5008‧‧‧觸控筆
5301‧‧‧外殼
5302‧‧‧外殼
5303‧‧‧鏡子
5304‧‧‧連接部
5401‧‧‧外殼
5402‧‧‧顯示部
5403‧‧‧鍵盤
5404‧‧‧指向裝置
5601‧‧‧外殼
5602‧‧‧外殼
5603‧‧‧顯示部
5604‧‧‧顯示部
5605‧‧‧連接部
5606‧‧‧操作鍵
5701‧‧‧外殼
5702‧‧‧顯示部
5901‧‧‧外殼
5902‧‧‧顯示部
5903‧‧‧相機
5904‧‧‧揚聲器
5905‧‧‧按鈕
5906‧‧‧外部連接部
5907‧‧‧麥克風
在圖式中:圖1是示出類比運算電路的結構例子的圖;圖2是示出電路11的結構例子的圖;圖3是示出記憶體電路的結構例子的圖;圖4A至圖4C是示出控制器及延遲電路的結構例子的圖;圖5是示出運算電路及開關的結構例子的圖;圖6是示出類比運算電路的工作的時序圖;圖7是示出電路11的結構例子的圖;圖8是示出控制器的結構例子的圖;圖9是示出運算電路及開關的結構例子的圖;圖10是示出類比運算電路的工作的時序圖; 圖11是示出運算電路及開關的結構例子的圖;圖12是示出類比處理器的結構例子的圖;圖13A和圖13B是示出運算電路及開關的結構例子的圖;圖14是示出運算電路及開關的結構例子的圖;圖15A和圖15B是示出運算電路及開關的結構例子的圖;圖16是示出類比處理器的結構例子的圖;圖17是示出類比處理器的結構例子的圖;圖18是示出類比記憶體的結構例子的圖;圖19A和圖19B是示出半導體裝置的結構例子的圖;圖20是示出半導體裝置的剖面結構的圖;圖21A至圖21C是示出電晶體的結構的圖;圖22A至圖22C是示出電晶體的結構的圖;圖23是示出半導體裝置的剖面結構的圖;圖24是半導體裝置的結構例子;以及圖25A至圖25F是電子機器的圖。
下面,參照圖式對本發明的實施方式進行詳細說明。但是,本發明不侷限於以下說明,而所屬技術領域的普通技術人員可以很容易地理解一個事實就是其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以 被變換為各種各樣的形式。因此,本發明不應該被解釋為僅侷限在以下所示的實施方式所記載的內容中。
另外,電晶體的源極是指用作活性層的半導體膜的一部分的源極區或與上述半導體膜連接的源極電極。與此同樣,電晶體的汲極是指上述半導體膜的一部分的汲極區或與上述半導體膜連接的汲極電極。另外,閘極是指閘極電極。
電晶體的源極和汲極的名稱根據電晶體的導電型及施加到各端子的電位的高低而互換。一般而言,在n通道型電晶體中,將被施加低電位的端子稱為源極,而將被施加高電位的端子稱為汲極。另外,在p通道型電晶體中,將被施加低電位的端子稱為汲極,而將被施加高電位的端子稱為源極。在本說明書中,儘管為方便起見在一些情況下假定源極和汲極是固定的來描述電晶體的連接關係,但是實際上,源極和汲極的名稱根據上述電位關係而相互調換。
〈類比運算電路的結構例子〉
圖1示出本發明的一個方式的類比運算電路10的結構例子的塊圖。注意,雖然在塊圖中,根據每個功能劃分構成要素而表示為互相獨立的方塊,但是實際上的構成要素難以根據每個功能完全劃分,且一個構成要素可能會涉及多個功能。
類比運算電路10包括多個電路11。圖1例示 出類比運算電路10包括以電路11-1至電路11-m(m是3以上的自然數)表示的m個電路11的情況。並且,一個電路11的輸出端子Dout與後級的另一個電路11的輸入端子Din電連接。並且,一個電路11的輸出端子Rout與後級的另一個電路11的輸入端子Rin電連接。並且,一個電路11的輸出端子Aout與前級的另一個電路11的輸入端子Ain電連接。
明確而言,第k+1(k是m-2以下的自然數)電路11-k+1的輸出端子Dout與第k+2電路11-k+2的輸入端子Din電連接。並且,第k+1電路11-k+1的輸出端子Rout與第k+2電路11-k+2的輸入端子Rin電連接。並且,第k+1電路11-k+1的輸出端子Aout與第k電路11-k的輸入端子Ain電連接。
並且,一個電路11包括記憶體電路(MEM)12、運算電路(OC)13、控制器(CTRL)14、以及開關15。圖2示出電路11的更具體的結構例子。
在圖2所示的電路11中,記憶體電路12具有保持從輸入端子Din輸入的類比信號datain的功能。運算電路13具有使用記憶體電路12所保持的信號datain進行運算處理並生成類比信號dataout的功能。開始上述運算處理的時序根據從輸入端子Rin輸入的信號reqin而確定。信號dataout從輸出端子Dout輸出並作為信號datain輸入到後級電路11的輸入端子Din。
控制器14具有如下功能:根據從輸入端子 Rin輸入的信號reqin而生成用來確定在後級電路11的運算電路13中開始運算處理的時序的信號reqout。信號reqout從輸出端子Rout輸出並作為信號reqin輸入到後級電路11的輸入端子Rin。另外,控制器14具有如下功能:根據從輸入端子Rin輸入的信號reqin而生成用來控制前級電路11的開關15的導通狀態的信號ackout。信號ackout從輸出端子Aout輸出並作為信號ackin輸入到前級電路11的輸入端子Ain。
開關15具有根據從輸入端子Ain輸入的信號ackin而控制對運算電路13供應電力(Power)的功能。
藉由上述結構,在圖1所示的類比運算電路10中,在信號reqin從電路11-k輸入到電路11-k+1時,在電路11-k+1的運算電路13中開始運算處理。並且,因為在信號reqin從電路11-k輸入到電路11-k+1時信號reqin從電路11-k+1輸入到電路11-k+2,所以還在電路11-k+2的運算電路13中開始運算處理。就是說,在圖1所示的類比運算電路10中,從電路11-1到電路11-m依次進行運算電路13中的運算處理。
並且,在圖1所示的類比運算電路10中,在信號reqin被輸入到電路11-k+1時在運算電路13中開始運算處理,與此同時,信號ackout從電路11-k+1輸入到電路11-k。在電路11-k中,在信號ackout作為信號ackin被輸入時由此控制開關15的導通狀態並停止對運算電路13供應電力。就是說,在圖1所示的類比運算電路 10中,能夠從運算電路13中的運算處理結束的電路11依次停止對運算電路13供應電力。
在本發明的一個方式中,因為藉由上述結構而能夠僅在進行運算處理的電路11中供應電力並在其他電路11中停止電力供應,所以能夠將類比運算電路10的耗電量抑制為低。
〈記憶體電路的結構例子〉
接著,對記憶體電路12的結構例子進行說明。圖3示出記憶體電路12的結構例子。
圖3所示的記憶體電路12包括用作開關的電晶體16及電容元件17。電晶體16的導通狀態根據供應到電晶體16的閘極(G)的信號lat的電位而控制。明確而言,在電晶體16中,源極和汲極中的一個相當於輸入端子IN,而源極和汲極中的另一個相當於輸出端子OUT。並且,電容元件17所包括的一對電極中的一個與電晶體16的源極和汲極中的另一個電連接,而另一個與規定電位被供應的佈線電連接。
在記憶體電路12中,在電晶體16根據信號lat的電位導通時,從輸入端子IN輸入的信號datain經過電晶體16供應到電容元件17。並且,在電容元件17中儲存對應於信號datain的電位的電荷,由此信號datain寫入在記憶體電路12中。注意,因為在電容元件17中儲存的電荷根據信號datain的電位而確定,所以能夠在記憶體 電路12中儲存類比信號datain。接著,電晶體16根據信號lat的電位而關閉,由此輸入端子IN與電容元件17不導通。因此,因為儲存在電容元件17中的電荷被保持,所以信號datain保持在記憶體電路12中。並且,保持在記憶體電路12中的信號datain從輸出端子OUT輸出。
注意,為了防止儲存在電容元件17中的電荷經過電晶體16洩漏,而電晶體16的關態電流較佳極小。在具有寬於矽的能帶間隙及低於矽的本質載子密度的半導體膜中形成通道形成區的電晶體的關態電流極小,所以較佳將其用作電晶體16。作為這種半導體,例如可以舉出具有矽的能帶間隙的2倍以上的大能帶間隙的氧化物半導體、氮化鎵等。具有上述半導體的電晶體與一般的使用矽或鍺等半導體形成的電晶體相比,可以使關態電流極低。
〈控制器的結構例子〉
接著,對控制器14的結構例子進行說明。圖4A示出控制器14的結構例子。
圖4A所示的控制器14包括延遲電路18a至延遲電路18c。延遲電路18a至延遲電路18c都具有調整被輸入的信號的延遲時間的功能。明確而言,從圖2所示的電路11的輸入端子Rin輸入的信號reqin輸入到延遲電路18a的輸入端子。延遲電路18a的輸出端子的電位作為信號lat供應到記憶體電路12。並且,延遲電路18a的輸出端子與延遲電路18b的輸入端子及延遲電路18c的輸入 端子電連接。延遲電路18b的輸出端子的電位作為信號reqout從圖2所示的電路11的輸出端子Rout輸出。延遲電路18c的輸出端子的電位作為信號ackout從圖2所示的電路11的輸出端子Aout輸出。
圖4B示出能夠用作延遲電路18a至延遲電路18c的延遲電路18的具體電路結構的一個例子。圖4B所示的延遲電路18包括電阻元件19及電容元件20。電阻元件19所包括的一對端子中的一個相當於輸入端子IN而另一個相當於輸出端子OUT。電容元件20所包括的一對電極中的一個與電阻元件19所包括的一對端子中的另一個電連接,而另一個與規定電位被供應的佈線電連接。
在圖4B所示的延遲電路18中,藉由調整電阻元件19所具有的電阻值和電容元件20所具有的電容值可以調整信號的延遲時間。
圖4C示出延遲電路18的其他具體電路結構的一個例子。圖4C所示的延遲電路18包括以反相器21-1至反相器21-2n表示的2n個反相器21(n是自然數)。並且,反相器21-1的輸入端子相當於延遲電路18的輸入端子IN,反相器21-2n的輸出端子相當於延遲電路18的輸出端子OUT。另外,反相器21-2至反相器21-(2n-1)是以各輸入端子與前級反相器21的輸出端子電連接且各輸出端子與後級反相器21的輸入端子電連接的方式依次電連接著的。
在圖4C所示的延遲電路18中,能夠藉由調 整反相器21的個數調整信號的延遲時間。或者,在圖4C所示的延遲電路18中,能夠藉由調整用於反相器21的電晶體的通道長度調整信號的延遲時間。
〈運算電路和開關的結構例子1〉
接著,對運算電路13和開關15的結構例子進行說明。圖5示出運算電路13和開關15的結構例子。
圖5所示的運算電路13包括:p通道型電晶體22至電晶體24;n通道型電晶體25至電晶體29;以及電容元件30。另外,在圖5中,用作開關15的電晶體15t與運算電路13電連接。
電晶體22和電晶體23具有電流鏡電路的功能。電晶體25至電晶體27具有差動電路的功能。電晶體24和電晶體28具有放大電路的功能。電容元件30具有進行相位補償的功能。並且,電晶體22至電晶體28和電容元件30能夠起到運算放大器的作用。另外,電晶體27和電晶體28都具有電流源的功能。電晶體29具有控制對上述電流源供應信號reqin的功能。
明確而言,電晶體22至電晶體24的源極和汲極中的一個與高位準電位VDD被供應的佈線31電連接。電晶體22的閘極與電晶體23的閘極電連接。電晶體22的源極和汲極中的另一個與電晶體22的閘極電連接。電晶體23的源極和汲極中的另一個與電晶體24的閘極及電容元件30的一個電極電連接。電晶體24的源極和汲極 中的另一個與電容元件30的另一個電極電連接,並且電晶體24的源極和汲極中的另一個的電位作為信號dataout從運算電路13輸出。
並且,電晶體27和電晶體28的源極和汲極中的一個及電晶體15t的源極和汲極中的一個與低位準電位VSS被供應的佈線32電連接。在電晶體29中,源極和汲極中的一個與閘極電連接,且信號reqin供應到上述閘極。電晶體29的源極和汲極中的另一個及電晶體15t的源極和汲極中的另一個與電晶體27及電晶體28的閘極電連接。信號ackin供應到電晶體15t的閘極。
電晶體27的源極和汲極中的另一個與電晶體25和電晶體26的源極和汲極中的一個電連接。電晶體25的源極和汲極中的另一個與電晶體22的源極和汲極中的另一個電連接。電晶體26的源極和汲極中的另一個與電晶體23的源極和汲極中的另一個電連接。電晶體25的閘極和電晶體28的源極和汲極中的另一個與電晶體24的源極和汲極中的另一個電連接。信號datain供應到電晶體26的閘極。
在圖5所示的運算電路13中,電晶體26的閘極相當於運算放大器的非反相輸入端子(+)。並且,電晶體25的閘極相當於運算放大器的反相輸入端子(-)。並且,在圖5所示的運算電路13中,電晶體25的閘極(相當於運算放大器的反相輸入端子(-))與電晶體24的源極和汲極中的另一個及電晶體28的源極和汲極中的另一個 (相當於運算放大器的輸出端子)電連接。因此,圖5所示的運算電路13用作單位增益緩衝器(unity gain buffer)。
並且,在圖5所示的運算電路13中,根據電晶體15t的導通狀態而控制對運算電路13供應電力。明確而言,當電晶體15t關閉時,電晶體27及電晶體28的閘極電壓根據信號reqin的電位與電位VSS之間的電位差而確定,且對應上述閘極電壓的大小的電力供應到運算電路13。另外,當電晶體15t導通時,在電晶體27及電晶體28中源極和汲極中的一個與閘極導通,因此電晶體27及電晶體28都關閉。由此停止對運算電路13供應電力。
〈類比運算電路的工作例子1〉
接著,使用圖6所示的時序圖對包括圖2所示的電路11的類比運算電路10的具體工作的一個例子進行說明。注意,圖6示出將圖3所示的記憶體電路12、圖4A所示的控制器14、圖5所示的運算電路13及電晶體15t適用於類比運算電路10的情況的時序圖。
注意,在圖6所示的時序圖中,信號datain在由斜線表示的期間中具有類比值。並且,在圖6所示的時序圖中,信號dataout在由斜線表示的期間中具有類比值。
如圖6所示那樣,在時刻t1至時刻t2的期間△t中,信號reqin的電位成為高位準,在其他期間中信號 reqin的電位為低位準。並且,在控制器14中根據信號reqin生成信號lat、信號reqout、信號ackout。
明確而言,圖6示出在圖4A所示的控制器14中延遲電路18a中的信號的延遲時間為T1,延遲電路18b中的信號的延遲時間為T2,且延遲電路18c中的信號的延遲時間為T3的情況的時序圖。因此,在控制器14中生成的信號lat的電位在從時刻t1經過延遲時間T1的時刻t3至時刻t4的期間△t中成為高位準,在其他期間中成為低位準。
另外,在控制器14中生成的信號reqout的電位在從時刻t3經過延遲時間T3的時刻t5至時刻t6的期間△t中成為高位準,在其他期間中成為低位準。另外,在控制器14中生成的信號ackout的電位在從時刻t3經過延遲時間T2的時刻t5至時刻t6的期間△t中成為高位準,在其他期間中成為低位準。
注意,圖6示出延遲時間T2與延遲時間T3相同的情況的時序圖。也可以將延遲時間T2與延遲時間T3設定為互相不同的長度。
並且,在信號lat的電位為高位準的時刻t3至時刻t4的期間中,信號datain寫入在記憶體電路12中。並且,寫入了的信號datain供應到運算電路13。
另外,雖然在圖6中未圖示,但是在時刻t1至時刻t6中信號ackin的電位為低位準。因此,電晶體15t關閉。並且,當在時刻t1至時刻t2的期間△t中信號 reqin的電位成為高位準時,在運算電路13中電晶體29導通。由此,信號reqin經過電晶體29供應到電晶體27及電晶體28的閘極,來對運算電路13供應電力。在運算電路13中使用信號datain進行運算處理來生成信號dataout。
注意,因為在控制器14中生成的信號reqout的電位作為信號reqin供應到後級電路11,所以在信號reqout的電位成為高位準時,在後級電路11中也開始對運算電路13供應電力來在運算電路13中進行運算處理。另外,因為在控制器14中生成的信號ackout的電位作為信號ackin供應到前級電路11,所以在信號ackout的電位成為高位準時,在前級電路11中停止對運算電路13供應電力。
注意,較佳將延遲時間T1設定為能夠確保如下時間的長度,該時間為:從信號reqin的電位變為高位準的時刻t1到成為在運算電路13中可以進行運算處理的狀態的時間。較佳將延遲時間T2設定為能夠確保在記憶體電路12中可以保持信號datain的時間的長度。較佳將延遲時間T3設定為能夠確保如下時間的長度,該時間為:在運算電路13中使用信號datain完成運算處理且信號dataout的電位穩定所需要的時間。
較佳將期間△t設定為能夠確保運算電路13中的所有如下時間的長度,該時間為:將用作電流源的電晶體27及電晶體28的閘極的電位設定為高位準所需要的時 間;對記憶體電路12寫入信號datain所需要的時間;以及將用作電流源的電晶體27及電晶體28的閘極的電位設定為低位準所需要的時間。
〈電路11的結構例子〉
接著,對具有與圖2所示的電路11不同的結構的電路11的結構例子進行說明。
圖7所示的電路11包括使用類比信號datain[A]及信號datain[B]進行運算處理的運算電路13。明確而言,圖7所示的電路11包括記憶體電路12a(MEM)、記憶體電路12b(MEM)、運算電路13(OC)、控制器14(CTRL)、開關15、延遲電路33以及延遲電路34。
記憶體電路12a具有根據信號lat[A]保持從輸入端子Din[A]輸入的信號datain[A]的功能。記憶體電路12b具有根據信號lat[B]保持從輸入端子Din[B]輸入的信號datain[B]的功能。運算電路13具有如下功能:使用記憶體電路12a所保持的信號datain[A]和記憶體電路12b所保持的信號datain[B]進行運算處理並生成類比信號dataout。開始上述運算處理的時序根據從輸入端子Rin[A]輸入的信號reqin[A]和從輸入端子Rin[B]輸入的信號reqin[B]而確定。信號dataout從輸出端子Dout輸出並作為信號datain輸入到後級電路11的輸入端子Din。
作為記憶體電路12a和記憶體電路12b的具 體結構,各自可以適用圖3所示的記憶體電路12的結構例子。
控制器14具有根據從輸入端子Rin[A]輸入的信號reqin[A]和從輸入端子Rin[B]輸入的信號reqin[B]而生成信號reqout-pre的功能。延遲電路33具有藉由延遲信號reqout-pre生成用來確定在後級電路11所包括的運算電路13中開始運算處理的時序的信號reqout的功能。信號reqout從輸出端子Rout輸出並作為信號reqin輸入到後級電路11的輸入端子Rin。另外,控制器14具有如下功能:根據從輸入端子Rin[A]輸入的信號reqin[A]和從輸入端子Rin[B]輸入的信號reqin[B]而生成用來控制前級電路11[A]所包括的開關15的導通狀態的信號ackout[A]和用來控制前級電路11[B]所包括的開關15的導通狀態的信號ackout[B]。信號ackout[A]從輸出端子Aout[A]輸出並作為信號ackin輸入到前級電路11[A]的輸入端子Ain。信號ackout[B]從輸出端子Aout[B]輸出並作為信號ackin輸入到前級電路11[B]的輸入端子Ain。
另外,控制器14具有根據信號reqin[A]和信號reqin[B]而分別生成信號lat[A]和信號lat[B]的功能。信號lat[A]被供應到記憶體電路12a,信號lat[B]被供應到記憶體電路12b。
延遲電路34具有藉由延遲從輸入端子Ain輸入的信號ackin生成信號ackin-pos的功能。信號ackin具有確定使輸出端子Rout的電位初始化的時序的功能。並 且,信號ackin-pos具有控制開關15的導通狀態的功能。開關15具有根據信號ackin-pos控制對運算電路13供應電力(Power)的功能。
根據上述結構,信號reqin從圖7所示的電路11輸入到後級電路11,由此在後級電路11的運算電路13中開始運算處理。因此,在使用圖7所示的電路11的類比運算電路中,與圖1所示的類比運算電路10同樣,在多個電路11中依次進行運算電路13中的運算處理。
另外,在信號reqin[A]和信號reqin[B]輸入到圖7所示的電路11時在運算電路13中開始運算處理,與此同時,信號ackout[A]和信號ackout[B]從圖7所示的電路11分別輸入到前級電路11[A]和電路11[B]。在信號ackout[A]和信號ackout[B]分別被輸入前級電路11[A]和電路11[B]時由此控制開關15的導通狀態並停止對運算電路13供應電力。因此,與圖1所示的類比運算電路10同樣,在使用圖7所示的電路11的類比運算電路中,能夠從運算電路13中的運算處理結束的電路11依次停止對運算電路13供應電力。
在本發明的一個方式中,因為藉由上述結構而能夠僅在進行運算處理的電路11中供應電力並在其他電路11中停止電力供應,所以能夠將類比運算電路的耗電量抑制為低。
〈控制器和延遲電路的結構例子〉
接著,對用於圖7所示的電路11的控制器14和延遲電路33的結構例子進行說明。圖8示出控制器14和延遲電路33的結構例子。
圖8所示的控制器14包括:具有根據信號reqin[A]生成信號lat[A]和信號ackout[A]的功能的電路35a;以及具有根據信號reqin[B]生成信號lat[B]和信號ackout[B]的功能的電路35b。另外,控制器14還包括電晶體37、反相器36以及反相器89。
並且,圖8所示的控制器14具有使用信號reqin[A]和信號reqin[B]生成信號reqout-pre的功能。在延遲電路33中藉由延遲信號reqout-pre生成信號reqout。
明確而言,圖8例示出電路35a和電路35b各自包括延遲電路38、延遲電路39、AND電路40以及n通道型電晶體41至電晶體43的情況。
在電路35a中,信號reqin[A]被輸入到延遲電路38的輸入端子和AND電路40的第一輸入端子。另外,延遲電路38的輸出端子與AND電路40的第二輸入端子及延遲電路39的輸入端子電連接。AND電路40的輸出端子的電位作為信號lat[A]被輸出。延遲電路39的輸出端子的電位作為信號ackout[A]被輸出。另外,延遲電路39的輸出端子與電晶體41的閘極及電晶體41的源極和汲極中的一個電連接。電晶體41的源極和汲極中的另一個與電晶體42的閘極電連接。電晶體43的源極和汲極中的一個與低位準的電位被供應的佈線84電連接,源 極和汲極中的另一個與電晶體42的閘極電連接。
在電路35b中,信號reqin[B]被輸入到延遲電路38的輸入端子和AND電路40的第一輸入端子。另外,延遲電路38的輸出端子與AND電路40的第二輸入端子及延遲電路39的輸入端子電連接。AND電路40的輸出端子的電位作為信號lat[B]被輸出。延遲電路39的輸出端子的電位作為信號ackout[B]被輸出。另外,延遲電路39的輸出端子與電晶體41的閘極及電晶體41的源極和汲極中的一個電連接。電晶體41的源極和汲極中的另一個與電晶體42的閘極電連接。電晶體43的源極和汲極中的一個與低位準的電位被供應的佈線84電連接,源極和汲極中的另一個與電晶體42的閘極電連接。
並且,電路35a所包括的電晶體42與電路35b所包括的電晶體42串聯電連接。明確而言,電路35b所包括的電晶體42的源極和汲極中的一個與低位準的電位被供應的佈線82電連接,源極和汲極中的另一個與電路35a所包括的電晶體42的源極和汲極中的一個電連接。電路35a所包括的電晶體42的源極和汲極中的另一個與反相器36的輸入端子電連接。
另外,電路35a所包括的電晶體43的閘極及電路35b所包括的電晶體43的閘極與反相器89的輸入端子電連接。另外,反相器89的輸出端子與電晶體37的閘極電連接。另外,對反相器89的輸入端子供應信號ackin。另外,電晶體37的源極和汲極中的一個與高位準 的電位被供應的佈線83電連接,源極和汲極中的另一個與反相器36的輸入端子電連接。
反相器36的輸出端子的電位作為信號reqout-pre從控制器14被輸出。並且,反相器36的輸出端子與延遲電路33的輸入端子電連接,信號reqout-pre被供應到延遲電路33的輸入端子。延遲電路33的輸出端子的電位作為信號reqout被輸出。
〈運算電路和開關的結構例子2〉
接著,對用於圖7所示的電路11的運算電路13和開關15的結構例子進行說明。圖9示出運算電路13和開關15的結構例子。
與圖5所示的運算電路13同樣,圖9所示的運算電路13包括:p通道型電晶體22至電晶體24;n通道型電晶體25至電晶體28;以及電容元件30。另外,在圖9中,與圖5所示的運算電路13同樣,用作開關15的電晶體15t與運算電路13電連接。並且,圖9所示的運算電路13與圖5所示的運算電路13的不同之處是圖9所示的運算電路13包括n通道型電晶體29a和電晶體29b。
並且,在圖9所示的運算電路13中,與圖5所示的運算電路13同樣,電晶體22和電晶體23具有電流鏡電路的功能。另外,在圖9所示的運算電路13中,與圖5所示的運算電路13同樣,電晶體25至電晶體27 具有差動電路的功能。另外,在圖9所示的運算電路13中,與圖5所示的運算電路13同樣,電晶體24和電晶體28具有放大電路的功能。另外,在圖9所示的運算電路13中,與圖5所示的運算電路13同樣,電容元件30具有進行相位補償的功能。並且,在圖9所示的運算電路13中,與圖5所示的運算電路13同樣,電晶體22至電晶體28和電容元件30能夠起到運算放大器的作用。另外,在圖9所示的運算電路13中,與圖5所示的運算電路13同樣,電晶體27和電晶體28都具有電流源的功能。
並且,電晶體29a具有控制對上述電流源供應信號reqin[A]的功能。另外,電晶體29b具有控制對上述電流源供應信號reqin[B]的功能。
明確而言,各電晶體與電容元件的連接關係與圖5所示的運算電路13大致相同。關於各電晶體與電容元件的連接關係,以下說明圖9所示的運算電路13與圖5所示的運算電路13的不同之處。
在圖9所示的運算電路13中,在電晶體29a中,源極和汲極中的一個與閘極電連接,且信號reqin[A]供應到上述閘極。在電晶體29b中,源極和汲極中的一個與閘極電連接,且信號reqin[B]供應到上述閘極。電晶體29a的源極和汲極中的另一個及電晶體29b的源極和汲極中的另一個與電晶體27及電晶體28的閘極電連接。
並且,電晶體26的閘極相當於運算放大器的 非反相輸入端子(+),信號datain[A]供應到該閘極。另外,電晶體25的閘極相當於運算放大器的反相輸入端子(-),信號datain[B]供應到該閘極。
並且,在圖9所示的運算電路13中,根據電晶體15t的導通狀態而控制對運算電路13供應電力。明確而言,當電晶體15t關閉時,電晶體27及電晶體28的閘極電壓根據信號reqin[A]或信號reqin[B]的電位與電位VSS之間的電位差而確定,且對應上述閘極電壓的大小的電力供應到運算電路13。另外,當電晶體15t導通時,在電晶體27及電晶體28中源極和汲極中的一個與閘極導通,因此電晶體27及電晶體28都關閉。由此停止對運算電路13供應電力。
〈類比運算電路的工作例子2〉
接著,使用圖10所示的時序圖對包括圖7所示的電路11的類比運算電路的具體工作的一個例子進行說明。注意,圖10示出將圖3所示的記憶體電路12用作記憶體電路12a及記憶體電路12b,並將圖8所示的控制器14、圖9所示的運算電路13及電晶體15t適用於圖7所示的電路11的情況的時序圖。
另外,圖10示出在圖8所示的控制器14中延遲電路38的信號的延遲時間為T1,延遲電路39的信號的延遲時間為T2,延遲電路33的信號的延遲時間為T4,且圖7所示的延遲電路34的信號的延遲時間為T3的 情況的時序圖。另外,圖10示出電晶體37為p通道型的情況的時序圖。
注意,在圖10所示的時序圖中,信號datain[A]在由斜線表示的期間中具有類比值。另外,在圖10所示的時序圖中,信號datain[B]在由斜線表示的期間中具有類比值。另外,在圖10所示的時序圖中,信號dataout在由斜線表示的期間中具有類比值。
如圖10所示那樣,當在時刻t1信號reqin[A]的電位從低位準變為高位準時,信號lat[A]的電位在從時刻t1經過延遲時間T1的時刻t2從低位準變為高位準。另外,信號ackout[A]的電位在從時刻t1經過延遲時間T1及延遲時間T2的時刻t3從低位準變為高位準。並且,因為在信號ackout[A]的電位變為高位準時圖7所示的電路11的前級電路11[A]所生成的信號reqout變為低位準,所以輸入到圖7所示的電路11的信號reqin[A]的電位在時刻t3從高位準變為低位準。因此,信號lat[A]的電位在時刻t3從高位準變為低位準。
在信號lat[A]的電位為高位準的時刻t2至時刻t3的期間中,信號datain[A]寫入在記憶體電路12a中。並且,寫入了的信號datain[A]供應到運算電路13。
在從信號ackout[A]的電位從低位準變為高位準的時刻t3經過延遲時間T3的時刻t4,停止從圖7所示的電路11的前級電路11[A]對圖7所示的電路11供應信號datain[A]。並且,信號ackout[A]的電位在從時刻t3經 過延遲時間T1和延遲時間T2的時刻t6從高位準變為低位準。
另外,圖10示出在時刻t4之後信號reqin[B]的電位從低位準變為高位準的情況的時序圖。但是,在本發明的一個方式中,信號reqin[B]的電位從低位準變為高位準的時序不侷限於時刻t4之後,例如也可以為時刻t4之前。
圖10示出在時刻t4之後信號reqin[B]的電位從低位準變為高位準的情況的時序圖。當在時刻t4信號reqin[B]的電位從低位準變為高位準時,信號lat[B]的電位在從時刻t4經過延遲時間T1的時刻t5從低位準變為高位準。另外,信號ackout[B]的電位在從時刻t4經過延遲時間T1及延遲時間T2的時刻t7從低位準變為高位準。並且,因為在信號ackout[B]的電位變為高位準時圖7所示的電路11的前級電路11[B]所生成的信號reqout變為低位準,所以輸入到圖7所示的電路11的信號reqin[B]的電位在時刻t7從高位準變為低位準。因此,信號lat[B]的電位在時刻t7從高位準變為低位準。
在信號lat[B]的電位為高位準的時刻t5至時刻t7的期間中,信號datain[B]寫入在記憶體電路12b中。並且,寫入了的信號datain[B]供應到運算電路13。
在從信號ackout[B]的電位從低位準變為高位準的時刻t7經過延遲時間T3的時刻t8,停止從圖7所示的電路11的前級電路11[B]對圖7所示的電路11供應信 號datain[B]。並且,信號ackout[B]的電位在從時刻t7經過延遲時間T1和延遲時間T2的時刻t10從高位準變為低位準。
並且,在圖8所示的電路35a中,在信號ackout[A]的電位成為高位準時信號ackout[A]經過電晶體41供應到電晶體42的閘極,由此電晶體42導通。即使在信號ackout[A]的電位變為低位準之後,由於電晶體41關閉而電晶體42的閘極的電位也被保持,因此電晶體42保持導通狀態。在圖8所示的電路35b中,在信號ackout[B]的電位成為高位準時信號ackout[B]經過電晶體41供應到電晶體42的閘極,由此電晶體42導通。即使在信號ackout[B]的電位變為低位準之後,由於電晶體41關閉而電晶體42的閘極的電位也被保持,因此電晶體42保持導通狀態。
在圖10所示的時序圖中,在信號ackout[B]的電位變為高位準的時刻t7,電路35a的電晶體42和電路35b的電晶體42都成為導通狀態。因此,在佈線82的低位準的電位被供應到反相器36的輸入端子時反相器36的輸出端子的電位從低位準變為高位準。反相器36的輸出端子的電位作為信號reqout-pre被輸入到延遲電路33。在延遲電路33中藉由延遲信號reqout-pre延遲時間T4生成信號reqout。因此,信號reqout的電位在從信號ackout[B]的電位從低位準變為高位準的時刻t7經過延遲時間T4的時刻t9從低位準變為高位準。
當信號reqout的電位從低位準變為高位準時,在圖7所示的電路11的後級電路11中,控制器14所生成的信號ackout的電位在經過延遲時間T1和延遲時間T2之後從低位準變為高位準。並且,後級電路11所生成的上述信號ackout作為信號ackin被供應到圖7所示的電路11。因此,信號ackin的電位在從時刻t9經過延遲時間T1及延遲時間T2的時刻t11從低位準變為高位準。
當信號ackin的電位從低位準變為高位準時,電晶體37從關閉變為導通。另外,電路35a和電路35b的每一個包括的電晶體43都導通。因此,佈線84的低位準的電位被供應到電路35a和電路35b的每一個包括的電晶體42的閘極,由此上述電晶體42都關閉。
當信號ackin的電位在時刻t11從低位準變為高位準時,在從時刻t11經過延遲時間T3的時刻t12,信號ackin-pos的電位從低位準變為高位準。藉由上述工作,在時刻t12電晶體15t導通而停止對運算電路13供應電力。在運算電路13中使用信號datain[A]和信號datain[B]進行運算處理來生成信號dataout。
並且,當信號ackin的電位在時刻t13從高位準變為低位準時,在從時刻t13經過延遲時間T3的時刻t14,信號ackin-pos的電位從高位準變為低位準。根據上述工作,在時刻t14電晶體15t關閉而開始對運算電路13供應電力。
注意,較佳將延遲時間T1設定為能夠確保如 下時間的長度,該時間為:從信號ackin-pos的電位從低位準變為高位準的時刻t12到成為在運算電路13中可以進行運算處理的狀態的時間。較佳將延遲時間T2設定為能夠確保對記憶體電路12a寫入信號datain[A]所需要的時間以及對記憶體電路12b寫入信號datain[B]所需要的時間的長度。較佳將延遲時間T3設定為能夠確保在記憶體電路12a中可以保持信號datain[A]的時間以及在記憶體電路12b中可以保持信號datain[B]的時間的長度。較佳將延遲時間T4設定為能夠確保如下時間的長度,該時間為:在運算電路13中使用信號datain[A]和信號datain[B]完成運算處理且信號dataout的電位穩定所需要的時間。
〈運算電路和開關的結構例子3〉
接著,對與圖5及圖9所示的運算電路13和開關15的結構不同的運算電路13和開關15的結構例子進行說明。圖11示出運算電路13和開關15的結構例子。
與圖5所示的運算電路13同樣,圖11所示的運算電路13包括:p通道型電晶體22至電晶體24;n通道型電晶體25至電晶體29;以及電容元件30。另外,在圖11中,與圖5所示的運算電路13同樣,用作開關15的電晶體15t與運算電路13電連接。
明確而言,在圖11所示的運算電路13中,各電晶體與電容元件的連接關係與圖5所示的運算電路13大致相同。關於各電晶體與電容元件的連接關係,以 下說明圖11所示的運算電路13與圖5所示的運算電路13的不同之處。
在圖11所示的運算電路13中,電晶體26的閘極相當於運算放大器的非反相輸入端子(+)並與參考電位被供應的佈線電連接。另外,電晶體25的閘極相當於運算放大器的反相輸入端子(-),信號datain供應到該閘極。
〈類比處理器的結構例子〉
接著,作為使用根據本發明的一個方式的類比運算電路10的半導體裝置的一個例子說明類比處理器85的結構例子。
圖12所示的類比處理器85包括類比運算電路10、I/O介面86(I/O)以及類比記憶體87。I/O介面86具有控制從類比處理器85的外部電路的信號的輸入和對外部電路的信號的輸出的功能。類比記憶體87具有儲存藉由在類比運算電路10中進行的運算處理得到的類比資料的功能。
圖16示出部分擴大圖12所示的類比處理器85的圖。類比運算電路10包括多個電路11。多個電路11之間的信號的傳送經路可以預先根據設置在多個電路11之間的佈線等而決定。並且,在類比處理器85中,能夠在不進行運算處理的電路11中停止對運算電路供應電力。圖16示出在所有的電路11中不進行運算處理且停止 對運算電路供應電力的情況。
圖17示意性地示出在幾個電路11中進行運算處理時的類比處理器85的狀況。在圖17中的多個電路11中的電路11a至電路11h中,如箭頭所示那樣依次進行運算處理。在根據本發明的一個方式的類比處理器85中,在進行運算處理電路11中對運算電路供應電力,並且從運算處理結束了的電路11依次停止對運算電路供應電力。
〈類比記憶體的結構例子〉
接著,對圖12所示的類比處理器85所包括的類比記憶體87的結構例子進行說明。
圖18示出類比記憶體87的結構例子。圖18所示的類比記憶體87包括記憶單元60和讀出電路64。記憶單元60包括電晶體61、電晶體62以及電容元件63。電晶體61的閘極與佈線WL電連接。另外,電晶體61的源極和汲極中的一個與類比信號被輸入的佈線BL電連接,源極和汲極中的另一個與電晶體62的閘極電連接。電晶體62的源極和汲極中的一個與佈線BL電連接,源極和汲極中的另一個與佈線RL電連接。電容元件63的一個電極與佈線SL電連接而另一個電極與電晶體62的閘極電連接。
注意,為了防止儲存在電容元件63中的電荷經過電晶體61洩漏,而電晶體61的關態電流較佳極小。 在具有寬於矽的能帶間隙及低於矽的本質載子密度的半導體膜中形成通道形成區的電晶體的關態電流極小,所以較佳將其用作電晶體61。作為這種半導體,例如可以舉出具有矽的能帶間隙的2倍以上的大能帶間隙的氧化物半導體、氮化鎵等。具有上述半導體的電晶體與一般的使用矽或鍺等半導體形成的電晶體相比,可以使關態電流極低。
另外,圖18示出讀出電路64包括n通道型電晶體65至電晶體70以及電容元件71的情況。明確而言,電晶體68及電晶體69的源極和汲極中的一個與低位準的電位被供應的佈線電連接。另外,電晶體68及電晶體69的閘極與偏壓電位(bias)被供應的佈線電連接。電晶體68的源極和汲極中的另一個與佈線RL電連接。電晶體69的源極和汲極中的另一個與電晶體70的閘極電連接。電晶體70的源極和汲極中的一個與佈線RL電連接,源極和汲極中的另一個與電晶體65及電晶體66的閘極電連接。
電晶體65的源極和汲極中的一個與佈線BL及電晶體67的閘極電連接。電晶體66的源極和汲極中的一個與電晶體66的閘極電連接。電晶體67的源極和汲極中的一個與電晶體70的閘極電連接。電晶體65至電晶體67的源極和汲極中的一個與高位準的電位被供應的佈線電連接。電容元件71的一個電極與電晶體70的閘極電連接而另一個電極與電晶體67的閘極電連接。並且,電晶體70的閘極的電位作為輸出信號從輸出端子OUT被輸 出。
在圖18所示的類比記憶體87中,電晶體62和讀出電路64構成電壓跟隨器。並且,該電壓跟隨器用作讀出保持在電晶體62的閘極的類比信號的阻抗轉換器。
〈運算電路和開關的結構例子4〉
接著,對與圖5、圖9以及圖11所示的運算電路13和開關15的結構不同的運算電路13和開關15的結構例子進行說明。圖13A示出用作減法電路的運算電路13和開關15的結構例子。
與圖9所示的運算電路13同樣,圖13A所示的運算電路13包括:p通道型電晶體22至電晶體24;n通道型電晶體25至電晶體28;n通道型電晶體29a及電晶體29b;以及電容元件30。另外,在圖13A中,與圖9所示的運算電路13同樣,用作開關15的電晶體15t與運算電路13電連接。
並且,圖13A所示的運算電路13包括電阻元件88、電阻元件44至電阻元件46。
明確而言,在圖13A所示的運算電路13中,各電晶體與電容元件的連接關係與圖9所示的運算電路13大致相同。關於各元件的連接關係,以下說明圖13A所示的運算電路13與圖9所示的運算電路13的不同之處。
在圖13A所示的運算電路13中,電晶體25的閘極相當於運算放大器的反相輸入端子(-),並且信號datain[B]經過電阻元件88被供應到該閘極。另外,電晶體25的閘極經過電阻元件44與相當於運算放大器的輸出端子的電晶體24的源極和汲極中的另一個及電晶體28的源極和汲極中的另一個電連接。另外,電晶體26的閘極相當於運算放大器的非反相輸入端子(+),並且信號datain[A]經過電阻元件45被供應到該閘極。另外,電晶體26的閘極經過串聯連接的電阻元件45和電阻元件46與參考電位被供應的佈線電連接。
〈運算電路和開關的結構例子5〉
接著,對與圖5、圖9、圖11以及圖13A所示的運算電路13和開關15的結構不同的運算電路13和開關15的結構例子進行說明。圖13B示出用作對數轉換電路的運算電路13和開關15的結構例子。
與圖11所示的運算電路13同樣,圖13B所示的運算電路13包括:p通道型電晶體22至電晶體24;n通道型電晶體25至電晶體29;以及電容元件30。另外,在圖13B中,與圖11所示的運算電路13同樣,用作開關15的電晶體15t與運算電路13電連接。
並且,圖13B所示的運算電路13包括電阻元件47、電阻元件48以及二極體49。
明確而言,在圖13B所示的運算電路13中, 各電晶體與電容元件的連接關係與圖11所示的運算電路13大致相同。關於各元件的連接關係,以下說明圖13B所示的運算電路13與圖11所示的運算電路13的不同之處。
在圖13B所示的運算電路13中,相當於運算放大器的輸出端子的電晶體24的源極和汲極中的另一個及電晶體28的源極和汲極中的另一個與電阻元件48的一個端子電連接,電阻元件48的另一個端子的電位作為信號dataout從運算電路13輸出。另外,電晶體25的閘極相當於運算放大器的反相輸入端子(-),信號datain經過電阻元件47被供應到該閘極。另外,電晶體25的閘極與二極體49的陽極電連接,二極體49的陰極與電阻元件48的另一個端子電連接。
〈運算電路和開關的結構例子6〉
接著,對與圖5、圖9、圖11以及圖13A和圖13B所示的運算電路13和開關15的結構不同的運算電路13和開關15的結構例子進行說明。圖14示出用作反對數轉換電路的運算電路13和開關15的結構例子。
與圖11所示的運算電路13同樣,圖14所示的運算電路13包括:p通道型電晶體22至電晶體24;n通道型電晶體25至電晶體29;以及電容元件30。另外,在圖14中,與圖11所示的運算電路13同樣,用作開關15的電晶體15t與運算電路13電連接。
並且,圖14所示的運算電路13包括電阻元件51、電阻元件52以及二極體50。
明確而言,在圖14所示的運算電路13中,各電晶體與電容元件的連接關係與圖11所示的運算電路13大致相同。關於各元件的連接關係,以下說明圖14所示的運算電路13與圖11所示的運算電路13的不同之處。
在圖14所示的運算電路13中,相當於運算放大器的輸出端子的電晶體24的源極和汲極中的另一個及電晶體28的源極和汲極中的另一個與電阻元件52的一個端子電連接,電阻元件52的另一個端子的電位作為信號dataout從運算電路13輸出。另外,電晶體25的閘極相當於運算放大器的反相輸入端子(-),經過電阻元件51與電阻元件52的另一個端子電連接。另外,電晶體25的閘極與二極體50的陽極電連接,信號datain被供應到二極體50的陰極。
〈運算電路和開關的結構例子7〉
接著,對與圖5、圖9、圖11、圖13A和圖13B以及圖14所示的運算電路13和開關15的結構不同的運算電路13和開關15的結構例子進行說明。圖15A示出用作反相加法電路的運算電路13和開關15的結構例子。
與圖9所示的運算電路13同樣,圖15A所示的運算電路13包括:p通道型電晶體22至電晶體24;n 通道型電晶體25至電晶體28;n通道型電晶體29a及電晶體29b;以及電容元件30。另外,在圖15A中,與圖9所示的運算電路13同樣,用作開關15的電晶體15t與運算電路13電連接。
並且,圖15A所示的運算電路13包括電阻元件53至電阻元件55。
明確而言,在圖15A所示的運算電路13中,各電晶體與電容元件的連接關係與圖9所示的運算電路13大致相同。關於各元件的連接關係,以下說明圖15A所示的運算電路13與圖9所示的運算電路13的不同之處。
在圖15A所示的運算電路13中,電晶體25的閘極相當於運算放大器的反相輸入端子(-),並且信號datain[B]經過電阻元件53被供應到該閘極,信號datain[A]經過電阻元件54被供應到該閘極。另外,電晶體25的閘極經過電阻元件55與相當於運算放大器的輸出端子的電晶體24的源極和汲極中的另一個及電晶體28的源極和汲極中的另一個電連接。另外,電晶體26的閘極相當於運算放大器的非反相輸入端子(+),並與參考電位被供應的佈線電連接。
〈運算電路和開關的結構例子8〉
接著,對與圖5、圖9、圖11、圖13A和圖13B、圖14以及圖15A所示的運算電路13和開關15的結構不同 的運算電路13和開關15的結構例子進行說明。圖15B示出用作非反相加法電路的運算電路13和開關15的結構例子。
與圖9所示的運算電路13同樣,圖15B所示的運算電路13包括:p通道型電晶體22至電晶體24;n通道型電晶體25至電晶體28;n通道型電晶體29a及電晶體29b;以及電容元件30。另外,在圖15B中,與圖9所示的運算電路13同樣,用作開關15的電晶體15t與運算電路13電連接。
並且,圖15B所示的運算電路13包括電阻元件56至電阻元件59。
明確而言,在圖15B所示的運算電路13中,各電晶體與電容元件的連接關係與圖9所示的運算電路13大致相同。關於各元件的連接關係,以下說明圖15B所示的運算電路13與圖9所示的運算電路13的不同之處。
在圖15B所示的運算電路13中,電晶體25的閘極相當於運算放大器的反相輸入端子(-),並與參考電位被供應的佈線電連接。另外,電晶體25的閘極經過電阻元件57與相當於運算放大器的輸出端子的電晶體24的源極和汲極中的另一個及電晶體28的源極和汲極中的另一個電連接。另外,電晶體26的閘極相當於運算放大器的非反相輸入端子(+),並且信號datain[A]經過電阻元件58被供應到該閘極,信號datain[B]經過電阻元件59被供 應到該閘極。
〈半導體裝置的結構例子1〉
接著,對根據本發明的一個方式的半導體裝置的結構例子進行說明。圖19A所示的半導體裝置75包括使用根據本發明的一個方式的類比運算電路的類比處理器77、輸入裝置76以及輸出裝置78。
輸入裝置76具有將從半導體裝置75的外部輸入的資料傳送到類比處理器77的功能。作為輸入裝置76,例如,可以使用鍵盤、滑鼠以及觸控面板等。輸出裝置78具有輸出從類比處理器77輸出的資料的功能。作為輸出裝置78,例如可以使用顯示器、投影儀、印刷機、繪圖機(plotter)、聲音輸出裝置以及記憶體等。
另外,圖19B所示的半導體裝置75包括使用根據本發明的一個方式的類比運算電路的類比處理器77、輸入裝置76、輸出裝置78、類比數位轉換電路79(A/D)、數位類比轉換電路80(D/A)以及數位處理器81。
類比數位轉換電路79具有將從類比處理器77輸出的類比資料轉換為數位資料的功能。數位處理器81使用從類比數位轉換電路79傳送的數位資料進行運算處理並輸出藉由該運算處理得到了的資料。數位類比轉換電路80具有將從數位處理器81輸出的數位資料轉換為類比資料的功能。
另外,圖19B所示的半導體裝置75示出資料從輸入裝置76經過類比處理器77輸出到輸出裝置78的結構的例子。但是,根據本發明的一個方式的半導體裝置75也可以具有資料從輸入裝置76經過數位處理器81輸出到輸出裝置78的結構。
〈半導體裝置的結構例子2〉
接著,對根據本發明的一個方式的半導體裝置的結構例子進行說明。圖24所示的半導體裝置800包括影像感測器801、影像記憶體802、使用根據本發明的一個方式的類比運算電路的類比處理器803以及顯示裝置804。影像感測器801相當於輸入裝置,顯示裝置804相當於輸出裝置。
影像感測器801包括:具備多個包括光電轉換元件及電晶體的像素801的感測器陣列805;控制利用像素801的影像資料808的取得的驅動電路806;以及控制取得了的影像資料808的讀出的讀出電路807。
影像記憶體802包括多個類比記憶體809。類比記憶體809的每一個能夠儲存感測器陣列805所取得的一個幀的影像資料808。
下面,說明影像感測器801的工作。作為第一步驟,在感測器陣列805中取得第一影像資料808。影像資料808既可藉由在各像素810中依次進行曝光依次讀出影像資料808的所謂的捲簾快門方式取得,又可藉由在 各像素810中一齊進行曝光並依次讀出影像資料808的所謂的全域快門方式取得。藉由利用捲簾快門方式取得影像資料808,能夠在讀出某一行的像素810的影像資料808時,在其他行的像素810中進行曝光,由此能夠提高影像資料808的取得的框頻。另外,藉由利用全域快門方式取得影像資料808,即使在被攝體移動的情況下也能夠取得歪斜少的影像資料808。
作為第二步驟,將在感測器陣列805中取得了的第一影像資料808經過讀出電路807儲存在第一類比記憶體809。能夠將類比資料的影像資料808直接儲存在第一類比記憶體809。藉由上述結構,因為不需要將影像資料808從類比資料轉換為數位資料的處理,所以能夠提高影像資料808的取得的框頻。
然後,藉由反復進行第一步驟和第二步驟,能夠將影像資料808儲存在多個類比記憶體809的每一個。
作為第三步驟,在類比處理器803中使用儲存在多個類比記憶體809的影像資料808進行所希望的影像處理。影像處理被進行了的影像資料被傳送到顯示裝置804。
注意,作為上述影像處理之一,可以舉出從多個影像資料808取得焦點模糊少的影像資料808的影像處理。明確而言,作為上述影像處理,計算出各影像資料808的清晰度來選擇清晰度最高的影像資料808,即可。 或者,作為上述影像處理,從各影像資料808抽出清晰度高的區域,將該區域合成而生成一個影像資料808,即可。
另外,作為上述在類比處理器803中進行的影像處理的其他之一,可以舉出從多個影像資料808取得明度最適合的影像資料808的影像處理。明確而言,作為上述影像處理,計算出各影像資料808的最高明度,檢測出最高明度達到飽和值的影像資料808。並且,從多個影像資料808中選擇檢測出了的上述影像資料808以外的影像資料808,即可。
或者,作為上述影像處理之一,計算出各影像資料808的最低明度,檢測出最低明度達到飽和值的影像資料808。並且,從多個影像資料808中選擇檢測出了的上述影像資料808以外的影像資料808,即可。
當按照拍攝用的閃光燈的開燈進行上述第一步驟及第二步驟時,能夠取得對應於最適合的光量照射的時機的影像資料808。
<半導體裝置的剖面結構的例子>
圖20示出本發明的一個方式的類比運算電路的剖面結構的一個例子。圖20示出圖3所示的記憶體電路12所包括的電晶體16和電容元件17以及圖5所示的運算電路13所包括的電晶體26的剖面圖。圖20示出電容元件17以及在氧化物半導體膜中具有通道形成區的電晶體16形 成於在單晶矽基板中具有通道形成區的電晶體26上的例子。
電晶體26可以在非晶、微晶、多晶或單晶的矽或鍺等的半導體膜或半導體基板中具有通道形成區。或者,電晶體26也可以在氧化物半導體膜或氧化物半導體基板中具有通道形成區。當所有電晶體在氧化物半導體膜或氧化物半導體基板中具有通道形成區時,可以不將電晶體16層疊於電晶體26上而在同一個層中形成電晶體16和電晶體26。
當使用矽薄膜形成電晶體26時,作為該薄膜可以使用:利用電漿CVD法等氣相沉積法或濺射法形成的非晶矽;利用雷射退火等處理使非晶矽晶化而形成的多晶矽;或者藉由對單晶矽晶圓注入氫離子等來使表層部剝離而得到的單晶矽等。
形成有電晶體26的半導體基板601例如可以使用矽基板、鍺基板、矽鍺基板等。圖20示出將單晶矽基板用於半導體基板601的例子。
電晶體26利用元件分離法被電隔離。作為元件分離法,可以使用矽的局部氧化(LOCOS:Local Oxidation of Silicon)法或溝槽分離法(STI法:Shallow Trench Isolation)等。圖20示出利用溝槽分離法使電晶體26電隔離時的例子。明確而言,圖20例示出在半導體基板601中利用蝕刻等形成溝槽之後,藉由將包含氧化矽等的絕緣物埋入在該溝槽中而形成元件分離區610,來使 電晶體26元件分離的情況。
在電晶體26上設置有絕緣膜611。在絕緣膜611中形成有開口部。並且,在該開口部中形成有分別電連接到電晶體26的源極和汲極的導電膜625和導電膜626以及電連接到電晶體26的閘極的導電膜627。
並且,導電膜625與形成在絕緣膜611上的導電膜634電連接,導電膜626與形成在絕緣膜611上的導電膜635電連接,導電膜627與形成在絕緣膜611上的導電膜636電連接。
在導電膜634至導電膜636上形成有絕緣膜612。在絕緣膜612中形成有開口部,在該開口部中形成有電連接到導電膜636的導電膜637。導電膜637與形成在絕緣膜612上的導電膜651電連接。
在導電膜651上形成有絕緣膜613。在絕緣膜613中形成有開口部,在上述開口部中形成有電連接到導電膜651的導電膜652。導電膜652與形成在絕緣膜613上的導電膜653電連接。此外,在絕緣膜613上還形成有導電膜644。
在導電膜653及導電膜644上形成有絕緣膜661。在圖20中,在絕緣膜661上形成有電晶體16及電容元件17。
電晶體16包括:絕緣膜661上的包含氧化物半導體的半導體膜701;半導體膜701上的被用作源極或汲極的導電膜721及導電膜722;半導體膜701、導電膜 721及導電膜722上的閘極絕緣膜662;以及位於閘極絕緣膜662上且在導電膜721與導電膜722之間重疊於半導體膜701的閘極電極731。另外,導電膜722在設置於絕緣膜661中的開口部中電連接到導電膜653。
在電晶體16中,在半導體膜701中的重疊於導電膜721的區域與重疊於閘極電極731的區域之間存在有區域710。另外,在電晶體16中,在半導體膜701中的重疊於導電膜722的區域與重疊於閘極電極731的區域之間存在有區域711。藉由以導電膜721、導電膜722及閘極電極731為遮罩對區域710及區域711添加氬、對半導體膜701賦予p型導電型的雜質或者對半導體膜701賦予n型導電型的雜質,可以使區域710及區域711的電阻率低於半導體膜701中的重疊於閘極電極731的區域。
電容元件17包括絕緣膜661上的導電膜654、與導電膜654重疊的閘極絕緣膜662、隔著閘極絕緣膜662與導電膜654重疊的導電膜655。藉由在絕緣膜661上形成導電膜並將其加工為所希望的形狀,可以在形成導電膜722的同時形成導電膜654。藉由在閘極絕緣膜662上形成導電膜並將其加工為所希望的形狀,可以在形成閘極電極731的同時形成導電膜655。
在電晶體16及電容元件17上設置有絕緣膜663。
雖然在圖20中電晶體16在半導體膜701的至少一個表面一側具有閘極電極731即可,但是電晶體 16也可以具有中間夾有半導體膜701的一對閘極電極。
在電晶體16具有中間夾有半導體膜701的一對閘極電極的情況下,可以對一個閘極電極供應用來控制導通狀態或非導通狀態的信號,並對另一個閘極電極施加來自外部的電位。在此情況下,既可以對一對閘極電極施加相同位準的電位,又可以只對另一個閘極電極施加接地電位等固定電位。藉由控制對另一個閘極電極施加的電位位準,可以控制電晶體的臨界電壓。
圖20例示出電晶體16具有單閘極結構的情況,即包括對應於一個閘極電極731的一個通道形成區。但是,電晶體16也可以具有多閘極結構,其中藉由具有彼此電連接的多個閘極電極,在一個活性層中具有多個通道形成區。
<電晶體>
下面,對在氧化物半導體膜中具有通道形成區的電晶體90的結構實例進行說明。
圖21A至圖21C示出在氧化物半導體膜中具有通道形成區的電晶體90的結構的一個例子。圖21A示出電晶體90的俯視圖。注意,在圖21A中,為了明確地示出電晶體90的佈局,省略了各種絕緣膜。此外,圖21B示出沿著圖21A所示的俯視圖的點劃線A1-A2的剖面圖,圖21C示出沿著點劃線A3-A4的剖面圖。
如圖21A至圖21C所示,電晶體90包括:在 形成於基板97上的絕緣膜91上依次層疊的氧化物半導體膜92a及氧化物半導體膜92b;電連接於氧化物半導體膜92b且被用作源極電極或汲極電極的導電膜93及導電膜94;氧化物半導體膜92b、導電膜93及導電膜94上的氧化物半導體膜92c;被用作閘極絕緣膜且位於氧化物半導體膜92c上的絕緣膜95;以及被用作閘極電極、位於絕緣膜95上且與氧化物半導體膜92a至氧化物半導體膜92c重疊的導電膜96。另外,基板97既可以是玻璃基板或半導體基板等,又可以是在玻璃基板或半導體基板上形成有半導體元件的元件基板。
圖22A至圖22C示出電晶體90的具體結構的其他的一個例子。圖22A示出電晶體90的俯視圖。注意,在圖22A中,為了明確地示出電晶體90的佈局,省略了各種絕緣膜。此外,圖22B示出沿著圖22A所示的俯視圖的點劃線A1-A2的剖面圖,圖22C示出沿著點劃線A3-A4的剖面圖。
如圖22A至圖22C所示,電晶體90包括:在絕緣膜91上依次層疊的氧化物半導體膜92a至氧化物半導體膜92c;電連接於氧化物半導體膜92c且被用作源極電極或汲極電極的導電膜93及導電膜94;被用作閘極絕緣膜且位於氧化物半導體膜92c、導電膜93及導電膜94上的絕緣膜95;以及被用作閘極電極、位於絕緣膜95上且與氧化物半導體膜92a至氧化物半導體膜92c重疊的導電膜96。
在圖21A至圖22C中,示出包括層疊的氧化物半導體膜92a至氧化物半導體膜92c的電晶體90的結構。電晶體90所包括的氧化物半導體膜不限於具有包括多個氧化物半導體膜的疊層結構,還可以具有單層結構。
當電晶體90包括氧化物半導體膜92a至氧化物半導體膜92c被依次層疊的半導體膜時,氧化物半導體膜92a及氧化物半導體膜92c為如下氧化物膜:在其構成要素中包含至少一個構成氧化物半導體膜92b的金屬元素,並且其傳導帶底的能量比氧化物半導體膜92b離真空能階近0.05eV以上、0.07eV以上、0.1eV以上或0.15eV以上,且2eV以下、1eV以下、0.5eV以下或0.4eV以下。並且,氧化物半導體膜92b較佳為至少包含銦,因為載子移動率變高。
在電晶體90具有上述結構的半導體膜的情況下,藉由對閘極電極施加電壓,就可以在對半導體膜施加電場時使通道區形成在半導體膜中的傳導帶底的能量最小的氧化物半導體膜92b中。也就是說,因為在氧化物半導體膜92b與絕緣膜95之間設置有氧化物半導體膜92c,因此可以在與絕緣膜95分開的氧化物半導體膜92b中形成通道區。
另外,由於氧化物半導體膜92c在其構成要素中包含至少一個構成氧化物半導體膜92b的金屬元素,因此在氧化物半導體膜92b與氧化物半導體膜92c的介面處不容易發生介面散射。因此,在該介面處載子的移動不 容易被阻礙,所以電晶體90的場效移動率變高。
另外,當在氧化物半導體膜92b與氧化物半導體膜92a的介面處形成介面能階時,由於在介面附近的區域中也會形成通道區,因此電晶體90的臨界電壓變動。但是,由於氧化物半導體膜92a在其構成要素中包含至少一個構成氧化物半導體膜92b的金屬元素,因此在氧化物半導體膜92b與氧化物半導體膜92a的介面處不容易形成介面能階。因此,藉由採用上述結構可以減少電晶體90的臨界電壓等的電特性的偏差。
另外,較佳的是,以不使因氧化物半導體膜間的雜質的存在而在各膜的介面形成有阻礙載子移動的介面能階的方式將多個氧化物半導體膜層疊。這是因為,當被層疊的氧化物半導體膜的膜間存在雜質時,氧化物半導體膜間的傳導帶底的能量失去連續性,於是在介面附近,載子被俘獲或因再結合而消失。藉由減少膜間的雜質,與將作為主成分至少包含相同一種金屬的多個氧化物半導體膜單純地層疊相比,更容易形成連續接合(這裡尤其是指具有傳導帶底的能量在各膜之間連續地變化的U字型井結構的狀態)。
為了形成連續接合,需要使用具備負載鎖定室的多室成膜裝置(濺射裝置)在不使各膜暴露於大氣的情況下連續地層疊。在濺射裝置中的各處理室中,為了儘可能地去除成為氧化物半導體的雜質的水等,較佳為使用如低溫泵的吸附式真空排氣泵進行高真空排氣(5×10-7Pa 至1×10-4Pa左右)。或者,較佳為組合渦輪分子泵與冷阱使氣體不從排氣系統倒流到處理室內。
為了得到高純度的本質氧化物半導體,對各處理室不僅進行高真空排氣,還需要將用於濺射的氣體高度純化。藉由將用作上述氣體的氧氣體或氬氣體的露點設定為-40℃以下,較佳為-80℃以下,更佳為-100℃以下,實現氣體的高度純化,可以儘可能地防止水分等混入氧化物半導體膜。明確而言,當氧化物半導體膜92b是In-M-Zn氧化物(M是Ga、Y、Zr、La、Ce或Nd等),並且用於形成氧化物半導體膜92b的靶材中的金屬元素的原子數比為In:M:Zn=x1:y1:z1時,x1/y1較佳為1/3以上且6以下,更佳為1以上且6以下,z1/y1較佳為1/3以上且6以下,更佳為1以上且6以下。另外,藉由將z1/y1設定為1以上且6以下,作為氧化物半導體膜92b容易形成CAAC-OS膜。作為靶材的金屬元素的原子數比的典型例子,有In:M:Zn=1:1:1、In:M:Zn=3:1:2等。
明確而言,當氧化物半導體膜92a及氧化物半導體膜92c為In-M-Zn氧化物(M為Ga、Y、Zr、La、Ce或Nd)時,在用來形成氧化物半導體膜92a及氧化物半導體膜92c的靶材中的金屬元素的原子數比為In:M:Zn=x2:y2:z2的情況下,較佳的是,x2/y2<x1/y1,z2/y2是1/3以上且6以下,更佳的是1以上且6以下。另外,藉由將z2/y2設定為1以上且6以下,作為氧化物半導體膜92a及氧化物半導體膜92c容易形成CAAC-OS膜。作為 靶材的金屬元素的原子數比的典型例子,有In:M:Zn=1:3:2、In:M:Zn=1:3:4、In:M:Zn=1:3:6、In:M:Zn=1:3:8等。
氧化物半導體膜92a及氧化物半導體膜92c的厚度為3nm以上且100nm以下,較佳為3nm以上且50nm以下。此外,氧化物半導體膜92b的厚度為3nm以上且200nm以下,較佳為3nm以上且100nm以下,更佳為3nm以上且50nm以下。
在三層結構的半導體膜中,氧化物半導體膜92a至氧化物半導體膜92c既可以是非晶又可以是結晶。但是,由於當形成有通道區的氧化物半導體膜92b是結晶時可以對電晶體90賦予穩定的電特性,因此氧化物半導體膜92b較佳是結晶。
注意,通道形成區是指在電晶體90的半導體膜中與閘極電極重疊且被源極電極和汲極電極夾持的區域。另外,通道區是指在通道形成區中電流主要流動的區域。
例如,當作為氧化物半導體膜92a及氧化物半導體膜92c,使用由濺射法形成的In-Ga-Zn氧化物膜時,可以使用In-Ga-Zn氧化物(In:Ga:Zn=1:3:2[原子數比])的靶材形成氧化物半導體膜92a及氧化物半導體膜92c。例如,可以採用如下成膜條件:作為成膜氣體使用30sccm的氬氣體和15sccm的氧氣體,將壓力設定為0.4Pa,並使基板溫度為200℃,DC電力為0.5kW。
另外,當作為氧化物半導體膜92b使用CAAC-OS膜時,較佳為使用包含In-Ga-Zn氧化物(In:Ga:Zn=1:1:1[原子數比])的多晶靶材形成氧化物半導體膜92b。例如,可以採用如下成膜條件:作為成膜氣體使用30sccm的氬氣體和15sccm的氧氣體,將壓力設定為0.4Pa,並使基板溫度為300℃,DC電力為0.5kW。
雖然氧化物半導體膜92a至92c可以利用濺射法形成,但是也可以利用熱CVD法等其他方法形成。作為熱CVD法的例子,可以舉出MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法或ALD(Atomic Layer Deposition:原子層沉積)法。
藉由減少成為電子施體(施體)的水分或氫等雜質且減少氧缺陷來實現高度純化的氧化物半導體(purified Oxide Semiconductor)具有較少的載子發生源,因此該氧化物半導體可以是i型(本質半導體)或無限趨近於i型。因此,在被高度純化的氧化物半導體膜中具有通道形成區的電晶體的關態電流極小且可靠性高。並且,在該氧化物半導體膜中形成有通道形成區的電晶體容易具有正值臨界電壓的電特性(也稱為常關閉(normally-off)特性)。
明確而言,根據各種實驗可以證明在被高度純化的氧化物半導體膜中具有通道形成區的電晶體的關態電流小。例如,通道寬度為1×106μm且通道長度為10μm的元件也可以在源極電極與汲極電極之間的電壓(汲極電 壓)為1V至10V的範圍內獲得關態電流為半導體參數分析儀的測量極限以下,即1×10-13A以下的特性。在此情況下,可知以電晶體的通道寬度標準化的關態電流為100zA/μm以下。此外,在電路中將電容元件與電晶體連接且由該電晶體控制流入電容元件或從電容元件流出的電荷,並藉由使用該電路來測量關態電流。在該測量時,將被高度純化的氧化物半導體膜用於上述電晶體的通道形成區,且根據電容元件的每單位時間的電荷量變化來測量該電晶體的關態電流。其結果是,可知當電晶體的源極電極與汲極電極之間的電壓為3V時,可以獲得更小的關態電流,即幾十yA/μm。由此,將被高度純化的氧化物半導體膜用於通道形成區的電晶體的關態電流比使用具有結晶性的矽的電晶體的關態電流要小得多。
另外,當作為半導體膜使用氧化物半導體膜時,氧化物半導體較佳為至少包含銦(In)或鋅(Zn)。另外,作為降低使用該氧化物半導體的電晶體的電特性的不均勻的穩定劑,除了上述元素以外較佳為還包含鎵(Ga)。此外,作為穩定劑較佳為包含錫(Sn)。此外,作為穩定劑較佳為包含鉿(Hf)。此外,作為穩定劑較佳為包含鋁(Al)。此外,作為穩定劑較佳為包含鋯(Zr)。
在氧化物半導體中,In-Ga-Zn氧化物、In-Sn-Zn氧化物等與碳化矽、氮化鎵或氧化鎵不同,可以藉由濺射法或濕處理製造電特性優良的電晶體,並具有容易量 產等優點。此外,與使用碳化矽、氮化鎵或氧化鎵的情況不同,在使用上述In-Ga-Zn氧化物的情況下,可以在玻璃基板上製造電特性優良的電晶體。此外,還可以應對基板的大型化。
此外,作為其他穩定劑,也可以包含鑭系元素的鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鎦(Lu)中的一種或多種。
例如,作為氧化物半導體,可以使用:氧化銦、氧化鎵、氧化錫、氧化鋅、In-Zn氧化物、Sn-Zn氧化物、Al-Zn氧化物、Zn-Mg氧化物、Sn-Mg氧化物、In-Mg氧化物、In-Ga氧化物、In-Ga-Zn氧化物(也稱為IGZO)、In-Al-Zn氧化物、In-Sn-Zn氧化物、Sn-Ga-Zn氧化物、Al-Ga-Zn氧化物、Sn-Al-Zn氧化物、In-Hf-Zn氧化物、In-La-Zn氧化物、In-Pr-Zn氧化物、In-Nd-Zn氧化物、In-Ce-Zn氧化物、In-Sm-Zn氧化物、In-Eu-Zn氧化物、In-Gd-Zn氧化物、In-Tb-Zn氧化物、In-Dy-Zn氧化物、In-Ho-Zn氧化物、In-Er-Zn氧化物、In-Tm-Zn氧化物、In-Yb-Zn氧化物、In-Lu-Zn氧化物、In-Sn-Ga-Zn氧化物、In-Hf-Ga-Zn氧化物、In-Al-Ga-Zn氧化物、In-Sn-Al-Zn氧化物、In-Sn-Hf-Zn氧化物、In-Hf-Al-Zn氧化物。
注意,例如,In-Ga-Zn氧化物是指包含In、 Ga和Zn的氧化物,而對In、Ga、Zn的比率没有限制。另外,也可以包含In、Ga、Zn以外的金屬元素。In-Ga-Zn氧化物在無電場時的電阻足夠高而能夠充分地降低關態電流且移動率也高。
例如,使用In-Sn-Zn氧化物比較容易得到高移動率。但是,在使用In-Ga-Zn氧化物時,也可以藉由降低塊體內缺陷密度而提高移動率。
另外,在電晶體90中,根據用於源極電極及汲極電極的導電材料,有時源極電極及汲極電極中的金屬會抽出氧化物半導體膜中的氧。此時,氧化物半導體膜中的接觸於源極電極及汲極電極的區域由於氧缺陷的形成而成為n型。因為成為n型的區域被用作源極區或汲極區,所以可以降低氧化物半導體膜與源極電極及汲極電極之間的接觸電阻。因此,藉由形成n型的區域,可以增大電晶體90的移動率及通態電流,從而可以實現使用電晶體90的半導體裝置的高速工作。
源極電極及汲極電極中的金屬所引起的氧的抽出有可能在利用濺射法等形成源極電極及汲極電極時發生,還有可能在形成源極電極及汲極電極之後進行的加熱處理時發生。另外,藉由將容易與氧鍵合的導電材料用於源極電極及汲極電極更容易形成n型的區域。作為上述導電材料,例如可以舉出Al、Cr、Cu、Ta、Ti、Mo、W等。
當將包括層疊的多個氧化物半導體膜的半導 體膜用於電晶體90時,為了增大電晶體90的移動率及通態電流以實現半導體裝置的更高速的工作,n型的區域較佳為到達用作通道區的氧化物半導體膜92b。
絕緣膜91較佳為具有藉由加熱將上述氧的一部分供應到氧化物半導體膜92a至氧化物半導體膜92c的功能。此外,較佳絕緣膜91中的缺陷少,典型的是,藉由ESR測量所得到的起因於矽的懸空鍵的g=2.001的自旋密度較佳為1×1018spins/cm3以下。
由於絕緣膜91具有藉由加熱將上述氧的一部分供應到氧化物半導體膜92a至氧化物半導體膜92c的功能,因此絕緣膜91較佳為氧化物,例如可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿及氧化鉭等。絕緣膜91可以利用電漿CVD(Chemical Vapor Deposition)法或濺射法等形成。
注意,在本說明書中,“氧氮化物”是指在其組成中氧含量多於氮含量的材料,而“氮氧化物”是指在其組成中氮含量多於氧含量的材料。
另外,圖21A至圖22C所示的電晶體90具有如下結構:在形成有通道區的氧化物半導體膜92b的端部中不與導電膜93及導電膜94重疊的端部(換言之,位於不同於導電膜93及導電膜94所在的區域的端部)與導電膜96重疊。在用來形成氧化物半導體膜92b的端部的蝕刻中該端部暴露於電漿時,從蝕刻氣體產生的氯自由基、 氟自由基等容易與構成氧化物半導體的金屬元素鍵合。因此,在氧化物半導體膜的端部中,與該金屬元素鍵合的氧處於容易脫離的狀態,所以容易形成氧缺陷而成為n型。然而,在圖21A至圖22C所示的電晶體90中,由於不與導電膜93及導電膜94重疊的氧化物半導體膜92b的端部與導電膜96重疊,因此藉由控制導電膜96的電位可以控制施加於該端部的電場。因此,可以由供應到導電膜96的電位控制藉由氧化物半導體膜92b的端部流動在導電膜93與導電膜94之間的電流。將這種電晶體90的結構稱為Surrounded Channel(S-Channel:圍繞通道)結構。
明確而言,若採用S-Channel結構,當將使電晶體90關閉的電位供應到導電膜96時,可以使藉由該端部流動在導電膜93與導電膜94之間的關態電流較小。因此,在電晶體90中,即使為了得到大通態電流而縮短通道長度,其結果是,氧化物半導體膜92b的端部的導電膜93與導電膜94之間的長度變短,也可以降低電晶體90的關態電流。因此,在電晶體90中,藉由縮短通道長度,在處於導通狀態時可以得到較大的通態電流,在處於關閉狀態時可以降低關態電流。
明確而言,若採用S-Channel結構,當將使電晶體90導通的電位供應到導電膜96時,可以使藉由該端部流動在導電膜93與導電膜94之間的電流較大。該電流有助於電晶體90的場效移動率和通態電流的增大。並且,藉由使氧化物半導體膜92b的端部與導電膜96重 疊,載子不僅在近於絕緣膜95的氧化物半導體膜92b的介面附近流動,還在氧化物半導體膜92b中的較廣的範圍內流動,所以電晶體90中的載子的移動量增加。其結果是,電晶體90的通態電流增大且場效移動率增高,典型的是,場效移動率為10cm2/V.s以上,進一步為20cm2/V.s以上。注意,在此的場效移動率是電晶體的飽和區域中的電流驅動力的指標,即外觀上的場效移動率,而不是作為氧化物半導體膜的物性值的移動率的近似值。
下面說明氧化物半導體膜的結構。
氧化物半導體膜大致分為單晶氧化物半導體膜和非單晶氧化物半導體膜。非單晶氧化物半導體膜包括非晶氧化物半導體膜、微晶氧化物半導體膜、多晶氧化物半導體膜及CAAC-OS(C-Axis Aligned Crystalline Oxide Semiconductor:c軸配向結晶氧化物半導體)膜等。
非晶氧化物半導體膜具有無序的原子排列並不具有結晶成分。其典型例子是在微小區域中也不具有結晶部而膜整體具有完全的非晶結構的氧化物半導體膜。
微晶氧化物半導體膜例如包括1nm以上且小於10nm的尺寸的微晶(也稱為奈米晶)。因此,微晶氧化物半導體膜的原子排列的有序度比非晶氧化物半導體膜高。因此,微晶氧化物半導體膜的缺陷態密度低於非晶氧化物半導體膜。
CAAC-OS膜是包含多個結晶部的氧化物半導體膜之一,大部分的結晶部的尺寸為能夠容納於一邊短於 100nm的立方體內的尺寸。因此,有時包括在CAAC-OS膜中的結晶部的尺寸為能夠容納於一邊短於10nm、短於5nm或短於3nm的立方體內的尺寸。CAAC-OS膜的缺陷態密度低於微晶氧化物半導體膜。在CAAC-OS膜的穿透式電子顯微鏡(TEM:Transmission Electron Microscope)影像中,觀察不到結晶部與結晶部之間的明確的邊界,即晶界(grain boundary)。因此,在CAAC-OS膜中,不容易發生起因於晶界的電子移動率的降低。
根據從大致平行於樣本面的方向觀察的CAAC-OS膜的TEM影像(剖面TEM影像)可知在結晶部中金屬原子排列為層狀。各金屬原子層具有反映形成CAAC-OS膜的面(也稱為被形成面)或CAAC-OS膜的頂面的凸凹的形狀並以平行於CAAC-OS膜的被形成面或CAAC-OS膜的頂面的方式排列。
在本說明書中,“平行”是指在-10°以上且10°以下的角度的範圍中配置兩條直線的狀態。因此也包括-5°以上且5°以下的角度的狀態。另外,“垂直”是指在80°以上且100°以下的角度的範圍中配置兩條直線的狀態。因此也包括85°以上且95°以下的角度的狀態。
另一方面,根據從大致垂直於樣本面的方向觀察的CAAC-OS膜的TEM影像(平面TEM影像)可知在結晶部中金屬原子排列為三角形狀或六角形狀。但是,在不同的結晶部之間金屬原子的排列沒有規律性。
由剖面TEM影像及平面TEM影像可知, CAAC-OS膜的結晶部具有配向性。
使用X射線繞射(XRD:X-Ray Diffraction)裝置對CAAC-OS膜進行結構分析。例如,當利用out-of-plane法分析包括InGaZnO4的結晶的CAAC-OS膜時,在繞射角(2θ)為31°附近時常出現峰值。由於該峰值來源於InGaZnO4結晶的(009)面,由此可知CAAC-OS膜中的結晶具有c軸配向性,並且c軸朝向大致垂直於CAAC-OS膜的被形成面或CAAC-OS膜的頂面的方向。
另一方面,當利用從大致垂直於c軸的方向使X射線入射到樣本的in-plane法分析CAAC-OS膜時,在2θ為56°附近時常出現峰值。該峰值來源於InGaZnO4結晶的(110)面。在此,將2θ固定為56°附近並在以樣本面的法線向量為軸(φ軸)旋轉樣本的條件下進行分析(φ掃描)。當該樣本是InGaZnO4的單晶氧化物半導體膜時,出現六個峰值。該六個峰值來源於相等於(110)面的結晶面。另一方面,當該樣本是CAAC-OS膜時,即使在將2θ固定為56°附近的狀態下進行φ掃描也不能觀察到明確的峰值。
由上述結果可知,在具有c軸配向性的CAAC-OS膜中,雖然a軸及b軸的方向在結晶部之間不同,但是c軸都朝向平行於被形成面或頂面的法線向量的方向。因此,在上述剖面TEM影像中觀察到的排列為層狀的各金屬原子層相當於與結晶的ab面平行的面。
注意,結晶部在形成CAAC-OS膜或進行加熱 處理等晶化處理時形成。如上所述,結晶的c軸朝向平行於CAAC-OS膜的被形成面或CAAC-OS膜的頂面的法線向量的方向。由此,例如,當CAAC-OS膜的形狀因蝕刻等而發生改變時,結晶的c軸不一定平行於CAAC-OS膜的被形成面或CAAC-OS膜的頂面的法線向量。
此外,CAAC-OS膜中的結晶度不一定均勻。例如,當CAAC-OS膜的結晶部是由CAAC-OS膜的頂面附近的結晶生長而形成時,有時頂面附近的結晶度高於被形成面附近的結晶度。另外,當對CAAC-OS膜添加雜質時,被添加了雜質的區域的結晶度改變,所以有時CAAC-OS膜中的結晶度根據區域而不同。
注意,當利用out-of-plane法分析包括InGaZnO4結晶的CAAC-OS膜時,除了在2θ為31°附近的峰值之外,有時還在2θ為36°附近觀察到峰值。2θ為36°附近的峰值意味著CAAC-OS膜的一部分中含有不具有c軸配向性的結晶。較佳的是,在CAAC-OS膜中在2θ為31°附近時出現峰值而在2θ為36°附近時不出現峰值。
在使用CAAC-OS膜的電晶體中,起因於可見光或紫外光的照射的電特性的變動小。因此,該電晶體具有高可靠性。
注意,氧化物半導體膜例如也可以是包括非晶氧化物半導體膜、微晶氧化物半導體膜和CAAC-OS膜中的兩種以上的疊層膜。
另外,為了形成CAAC-OS膜,較佳為採用如 下條件。
藉由減少成膜時的雜質的混入,可以抑制雜質所導致的結晶狀態的破損。例如,降低存在於處理室內的雜質(氫、水、二氧化碳及氮等)的濃度即可。另外,降低成膜氣體中的雜質濃度即可。明確而言,使用露點為-80℃以下,較佳為-100℃以下的成膜氣體。
此外,藉由增高成膜時的基板加熱溫度使濺射粒子在到達基板之後發生濺射粒子的遷移。明確而言,在將基板加熱溫度設定為100℃以上且740℃以下,較佳為200℃以上且500℃以下的狀態下進行成膜。藉由增高成膜時的基板加熱溫度,當平板狀或顆粒狀的濺射粒子到達基板時,在基板上發生遷移,於是濺射粒子的平坦的面附著到基板。
另外,較佳的是,藉由增高成膜氣體中的氧比例並對電力進行最佳化,來減輕成膜時的電漿損傷。將成膜氣體中的氧比例設定為30vol.%以上,較佳為100vol.%。
下面,作為靶材的一個例子示出In-Ga-Zn氧化物靶材。
將InOX粉末、GaOY粉末以及ZnOZ粉末以規定的莫耳數比混合,並進行加壓處理,然後在1000℃以上且1500℃以下的溫度下進行加熱處理,由此得到多晶的In-Ga-Zn氧化物靶材。另外,X、Y及Z為任意正數。在此,InOX粉末、GaOY粉末及ZnOZ粉末的規定的莫耳 數比例如為2:2:1、8:4:3、3:1:1、1:1:1、4:2:3、2:1:3或3:1:2。另外,粉末的種類以及混合粉末時的莫耳數比可以根據所製造的靶材適當地改變。尤其是,在使用In:Ga:Zn=2:1:3[莫耳數比]的靶材形成的CAAC-OS膜中,可以提高在一定的範圍中觀察到CAAC-OS的繞射圖案的區域的比例(也稱為CAAC化率),因此可以提高在該CAAC-OS膜中具有通道形成區的電晶體的頻率特性(f特性)。
另外,因為鹼金屬不是構成氧化物半導體的元素,所以是雜質。在鹼土金屬不是構成氧化物半導體的元素的情況下,鹼土金屬也是雜質。尤其是,鹼金屬中的Na在與氧化物半導體膜接觸的絕緣膜為氧化物的情況下擴散到該絕緣膜中而成為Na+。另外,在氧化物半導體膜內,Na斷裂構成氧化物半導體的金屬與氧的鍵合或擠進其鍵合之中。其結果是,例如,產生因臨界電壓漂移到負方向而導致的常導通化、移動率的降低等的電晶體的電特性的劣化,而且還產生特性偏差。明確而言,利用二次離子質譜分析法測量的Na濃度的測定值較佳為5×1016/cm3以下,更佳為1×1016/cm3以下,進一步較佳為1×1015/cm3以下。同樣地,Li濃度的測定值較佳為5×1015/cm3以下,更佳為1×1015/cm3以下。同樣地,K濃度的測定值較佳為5×1015/cm3以下,更佳為1×1015/cm3以下。
在使用包含銦的金屬氧化物的情況下,與氧的鍵能比銦大的矽或碳有時切斷銦與氧的鍵合而形成氧缺 陷。由此,在矽或碳混入到氧化物半導體膜時,與鹼金屬或鹼土金屬同樣,容易發生電晶體的電特性的劣化。因此,較佳為降低氧化物半導體膜中的矽或碳的濃度。明確而言,利用二次離子質譜分析法測量的C濃度的測量值或Si濃度的測量值較佳為1×1018/cm3以下。藉由採用上述結構,可以防止電晶體的電特性的劣化而可以提高半導體裝置的可靠性。
<半導體裝置的剖面結構的例子>
圖23示出本發明的一個方式的類比運算電路的剖面結構的一個例子。圖23示出圖3所示的記憶體電路12所包括的電晶體16和圖5所示的運算電路13所包括的電晶體26的剖面圖。明確而言,在以虛線A1-A2表示的區域中示出電晶體16及電晶體26的通道長度方向上的結構,在以虛線A3-A4表示的區域中示出電晶體16及電晶體26的通道寬度方向上的結構。但是,在本發明的一個方式中,一個電晶體的通道長度方向與其他的電晶體的通道長度方向可以不一致。
另外,電晶體的通道長度方向是指在源極(源極區或源極電極)與汲極(汲極區或汲極電極)之間載子移動的方向,通道寬度方向是指在與基板水準的面內垂直於通道長度方向的方向。
在圖23中示出在氧化物半導體膜中具有通道形成區的電晶體16形成於在單晶矽基板中具有通道形成 區的電晶體26上時的例子。
形成有電晶體26的基板400例如可以使用矽基板、鍺基板、矽鍺基板等。在圖23中示出將單晶矽基板用於基板400時的例子。
電晶體26利用元件分離法被電隔離。作為元件分離法,可以採用溝槽分離法(STI法)等。在圖23中示出利用溝槽分離法使電晶體26電隔離時的例子。具體地,在圖23中示出如下例子:在基板400中利用蝕刻等形成溝槽之後,將包含氧化矽等的絕緣物埋入在該溝槽中,然後藉由對該絕緣物進行蝕刻等來去除其一部分而形成元件分離區401,以使電晶體26元件分離。
注意,在電晶體26具有與相鄰的電晶體相同的極性的情況下,不一定必須要進行相鄰的電晶體之間的元件分離。此時,可以減小佈局面積。
另外,在位於溝槽以外的區域的基板400的凸部中設置有電晶體26的雜質區402及雜質區403以及夾在雜質區402與雜質區403之間的通道形成區404。再者,電晶體26包括覆蓋通道形成區404的絕緣膜405以及隔著絕緣膜405與通道形成區404重疊的閘極電極406。
在電晶體26中,藉由使通道形成區404中的凸部的側部及上部隔著絕緣膜405與閘極電極406重疊,可以使包括通道形成區404的側部及上部的較廣的範圍中流過載子。由此,可以縮小電晶體26在基板上所占的面 積,並可以增加電晶體26中的載子的移動量。其結果,電晶體26可以在增大通態電流的同時提高場效移動率。尤其是,當W表示通道形成區404中的凸部的通道寬度方向上的長度(通道寬度),並且,T表示通道形成區404中的凸部的膜厚度時,當膜厚T對通道寬度W的縱橫比較高時,載子流過的範圍變得更寬,因此可以使電晶體26的通態電流更大並使場效移動率更高。
當將塊狀半導體基板用於電晶體26時,縱橫比較佳為0.5以上,更佳為1以上。
電晶體26上設置有絕緣膜411。絕緣膜411中形成有開口部。並且,上述開口部中形成有分別與雜質區402、雜質區403電連接的導電膜412、導電膜413以及與閘極電極406電連接的導電膜414。
導電膜412與形成於絕緣膜411上的導電膜416電連接,導電膜413與形成於絕緣膜411上的導電膜417電連接,導電膜414與形成於絕緣膜411上的導電膜418電連接。
導電膜416至導電膜418上設置有絕緣膜420。絕緣膜420上設置有具有防止氧、氫、水的擴散的阻擋效果的絕緣膜421。絕緣膜421的密度越高越緻密或者懸空鍵越少化學性質上越穩定,阻擋效果越高。作為具有防止氧、氫、水的擴散的阻擋效果的絕緣膜421,例如可以採用氧化鋁、氧氮化鋁、氧化鎵、氧氮化鎵、氧化釔、氧氮化釔、氧化鉿、氧氮化鉿等。另外,作為具有防 止氫及水的擴散的阻擋效果的絕緣膜421,例如可以採用氮化矽、氮氧化矽等。
絕緣膜421上設置有絕緣膜422,絕緣膜422上設置有電晶體16。
電晶體16在絕緣膜422上包括:含有氧化物半導體的半導體膜430;與半導體膜430電連接的用作源極電極或汲極電極的導電膜432及導電膜433;覆蓋半導體膜430的閘極絕緣膜431;以及隔著閘極絕緣膜431與半導體膜430重疊的閘極電極434。另外,絕緣膜420至絕緣膜422中設置有開口部,導電膜433在上述開口部中與導電膜418連接。
在圖23中,雖然電晶體16只要在半導體膜430的至少一個表面一側具有閘極電極434即可,但是還可以具有隔著絕緣膜422與半導體膜430重疊的另一個閘極電極。
當電晶體16具有一對閘極電極時,可以對一個閘極電極供應用來控制導通狀態或非導通狀態的信號,並對另一個閘極電極施加來自外部的電位。在該情況下,可以對一對閘極電極施加相同位準的電位,也可以只對另一個閘極電極施加接地電位等固定電位。藉由控制對另一個閘極電極施加的電位位準,可以控制電晶體的臨界電壓。
圖23例示出電晶體16具有單閘極結構的情況,即包括對應於一個閘極電極434的一個通道形成區。 但是,電晶體16也可以具有多閘極結構,其中藉由具有彼此電連接的多個閘極電極,在一個活性層中具有多個通道形成區。
如圖23所示,電晶體16的半導體膜430包括依次層疊於絕緣膜422上的氧化物半導體膜430a至氧化物半導體膜430c。但是,在本發明的一個方式中,電晶體16所具有的半導體膜430也可以由單層的金屬氧化物膜構成。
<電子機器的例子>
根據本發明的一個方式的半導體裝置可以用於顯示裝置、個人電腦或具備儲存介質的影像再現裝置(典型的是,能夠再現儲存介質如數位影音光碟(DVD:Digital Versatile Disc)等並具有可以顯示其影像的顯示器的裝置)中。另外,作為可以使用根據本發明的一個方式的半導體裝置的電子機器,可以舉出行動電話、包括可攜式遊戲機的遊戲機、可攜式資訊終端、電子書閱讀器終端、視頻攝影機、數位相機等影像拍攝裝置、護目鏡型顯示器(頭戴式顯示器)、導航系統、音頻再生裝置(汽車音響系統、數位聲訊播放機等)、影印機、傳真機、印表機、多功能印表機、自動櫃員機(ATM)、自動販賣機以及醫療設備等。在圖25A至圖25F中示出這些電子機器的具體例子。
圖25A示出一種可攜式遊戲機,其包括外殼 5001、外殼5002、顯示部5003、顯示部5004、麥克風5005、揚聲器5006、操作鍵5007以及觸控筆5008等。可以將根據本發明的一個方式的半導體裝置用於可攜式遊戲機的各種積體電路。注意,雖然圖25A所示的可攜式遊戲機包括兩個顯示部即顯示部5003和顯示部5004,但是可攜式遊戲機所具有的顯示部的數量不限於兩個。
圖25B示出可攜式資訊終端,其包括第一外殼5601、第二外殼5602、第一顯示部5603、第二顯示部5604、連接部5605以及操作鍵5606等。可以將根據本發明的一個方式的半導體裝置用於可攜式資訊終端的各種積體電路。第一顯示部5603設置在第一外殼5601中,第二顯示部5604設置在第二外殼5602中。並且,第一外殼5601和第二外殼5602由連接部5605連接,由連接部5605可以改變第一外殼5601和第二外殼5602之間的角度。第一顯示部5603的影像也可以根據連接部5605所形成的第一外殼5601和第二外殼5602之間的角度切換。此外,也可以將附加有位置輸入功能的顯示裝置用於第一顯示部5603和第二顯示部5604中的至少一個。位置輸入功能可以藉由在顯示裝置中設置觸控面板而附加。或者,還可以藉由將被稱為光感測器的光電轉換元件設置在顯示裝置的像素部中來附加位置輸入功能。
圖25C示出筆記本式個人電腦,其包括外殼5401、顯示部5402、鍵盤5403、指向裝置5404等。可以將根據本發明的一個方式的半導體裝置用於筆記本式個人 電腦的各種積體電路。
圖25D是手鏡,其包括第一外殼5301、第二外殼5302、鏡子5303、連接部5304等。第一外殼5301和第二外殼5302由連接部5304連接,由連接部5304可以改變第一外殼5301和第二外殼5302之間的角度。將照明設備用於第一外殼5301及第二外殼5302。該照明設備具有面發光的發光元件。該發光元件的發光狀態/非發光狀態也可以根據連接部5304所形成的第一外殼5301和第二外殼5302之間的角度切換。可以將根據本發明的一個方式的半導體裝置用於用來控制照明設備的工作的各種積體電路。
圖25E是手鐲形狀的顯示裝置,其包括具有曲面的外殼5701及顯示部5702等。可以將根據本發明的一個方式的半導體裝置用於用來控制顯示部5702中的顯示裝置的工作的各種積體電路。
圖25F是行動電話,在具有曲面的外殼5901中設置有顯示部5902、麥克風5907、揚聲器5904、相機5903、外部連接部5906以及操作按鈕5905。可以將根據本發明的一個方式的半導體裝置用於用來控制顯示部5902中的顯示裝置的工作的各種積體電路。
<其他>
例如在本說明書等中,作為電晶體可以使用各種結構的電晶體。因此,不限制所使用的電晶體的種類。作為電 晶體的一個例子,可以使用具有單晶矽的電晶體或者具有以非晶矽、多晶矽或微晶(也稱為奈米晶、半非晶(semi-amorphous))矽等為代表的非單晶半導體膜的電晶體等。或者,可以使用這些半導體的薄膜的薄膜電晶體(TFT)等。當使用TFT時,具有各種優點。例如,因為可以在比使用單晶矽時低的溫度下進行製造,所以可以實現製造成本的降低或製造裝置的大型化。由於可以使製造裝置變大,所以可以在大型基板上製造。或者,由於製造溫度低,所以可以使用耐熱性低的基板。
另外,在製造微晶矽的情況下,當使用催化劑(鎳等)時,結晶性進一步提高,從而可以製造電特性良好的電晶體。此時,僅藉由進行加熱處理而無需進行雷射照射,就可以提高結晶性。但是,不使用催化劑(鎳等)也可以製造多晶矽或微晶矽。
另外,作為晶體管的一個例子,可以使用包括化合物半導體(例如,SiGe、GaAs等)或者氧化物半導體(例如,Zn-O、In-Ga-Zn-O、In-Zn-O、In-Sn-O(ITO)、Sn-O、Ti-O、Al-Zn-Sn-O(AZTO)、In-Sn-Zn-O)等的晶體管。或者,可以使用這些化合物半導體或氧化物半導體的薄膜的薄膜電晶體等。由此,可以降低製造溫度,所以例如可以在室溫下製造電晶體。其結果,可以在低耐熱性的基板,例如塑膠基板或薄膜基板等上直接形成電晶體。此外,不僅將這些化合物半導體或氧化物半導體用於電晶體的通道部,並且還可以用於其他用途。
另外,作為電晶體的一個例子,可以使用藉由噴墨法或印刷法形成的電晶體等。由此,這種電晶體可以在室溫下形成、以低真空度形成或者在大型基板上形成。如此,不使用遮罩(標線片(reticule))也可以形成電晶體,所以可以較容易地改變電晶體的佈局。或者,由於不需要光阻劑,所以可以減少材料費用,並減少製程數量。並且,因為可以只在需要的部分上形成膜,所以與在整個面上形成膜之後進行蝕刻的製造方法相比,不浪費材料,從而可以降低成本。
另外,作為電晶體的一個例子,可以使用具有有機半導體或碳奈米管的電晶體等。由此,可以在能夠彎曲的基板上形成電晶體。使用具有有機半導體或碳奈米管的電晶體的裝置能抗衝擊。
注意,作為電晶體,除此之外還可以使用各種結構的電晶體。例如,作為電晶體,可以使用MOS型電晶體、接面電晶體、雙極電晶體等。藉由作為電晶體使用MOS型電晶體,可以減小電晶體尺寸。因此,可以安裝多個電晶體。藉由作為電晶體使用雙極電晶體,可以使大電流流過。因此,電路可以高速地工作。此外,也可以將MOS型電晶體和雙極電晶體形成在一個基板上。藉由採用這種結構,可以實現低功耗、小型化、高速工作等。
例如,在本說明書等中,當明確地記載為“X與Y連接”時,包括:X與Y電連接的情況;X與Y在功能上連接的情況;以及X與Y直接連接的情況。因 此,還包括圖式或文章所示的連接關係以外的連接關係,而不侷限於規定的連接關係例如圖式或文章所示的連接關係。
在此,X和Y都是目標物(例如,裝置、元件、電路、佈線、電極、端子、導電膜、層等)。
作為X與Y電連接的情況的一個例子,例如可以在X與Y之間連接一個以上的能夠電連接X與Y的元件(例如,開關、電晶體、電容元件、電感器、電阻元件、二極體、顯示元件、發光元件、負載等)。另外,開關具有控制開啟和關閉的功能。換言之,藉由使開關處於導通狀態(開啟狀態)或非導通狀態(關閉狀態)來控制為是否使電流流過。或者,開關具有選擇並切換電流路徑的功能。
作為X與Y在功能上連接的情況的一個例子,例如可以在X與Y之間連接一個以上的能夠在功能上連接X與Y的電路(例如,邏輯電路(反相器、NAND電路、NOR電路等)、信號轉換電路(DA轉換電路、AD轉換電路、伽瑪校正電路等)、電位位準轉換電路(電源電路(升壓電路、降壓電路等)、改變信號的電位位準的位準轉移電路等)、電壓源、電流源、切換電路、放大電路(能夠增大信號振幅或電流量等的電路、運算放大器、差動放大電路、源極隨耦電路、緩衝電路等)、信號產生電路、記憶體電路、控制電路等)。注意,例如,即使在X與Y之間夾有其他電路,當從X輸出的信號傳送到Y 時,也可以說X與Y在功能上是連接著的。
此外,當明確地記載為“X與Y電連接”時,包括:X與Y電連接(換言之,以中間夾有其他元件或其他電路的方式連接X與Y)的情況;X與Y在功能上連接(換言之,以中間夾有其他電路的方式在功能上連接X與Y);以及X與Y直接連接(換言之,以中間不夾有其他元件或其他電路的方式連接X與Y)的情況。換言之,當明確記載為“電連接”時,與只明確記載為“連接”的情況相同。
注意,例如,可以以後面的表達方式來表示如下情況:電晶體的源極(或第一端子等)藉由Z1(或沒有藉由Z1)與X電連接,電晶體的汲極(或第二端子等)藉由Z2(或沒有藉由Z2)與Y電連接的情況以及電晶體的源極(或第一端子等)與Z1的一部分直接連接,Z1的另一部分與X直接連接,電晶體的汲極(或第二端子等)與Z2的一部分直接連接,並且,Z2的另一部分與Y直接連接的情況。
例如,可以將上述情況表示為“X、Y、電晶體的源極(或第一端子等)與電晶體的汲極(或第二端子等)相互電連接,按X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)及Y的順序電連接”。或者,可以表示為“電晶體的源極(或第一端子等)與X電連接,電晶體的汲極(或第二端子等)與Y電連接,按X、電晶體的源極(或第一端子等)、電晶體 的汲極(或第二端子等)及Y的順序電連接”。或者,可以表示為“X藉由電晶體的源極(或第一端子等)及汲極(或第二端子等)與Y電連接,按X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)及Y依次連接”。藉由使用與這些例子相同的表達方法規定電路結構中的連接順序,可以區別電晶體的源極(或第一端子等)與汲極(或第二端子等)而決定技術範圍。注意,這種表達方法只是一個例子而已,不侷限於上述表達方法。在此,X、Y、Z1及Z2都是目標物(例如,裝置、元件、電路、佈線、電極、端子、導電膜、層等)。
另外,即便獨立的構成要素在電路圖上相互電連接,有時一個構成要素也兼具有多個構成要素的功能。例如,當佈線的一部分兼作電極時,一個導電膜兼具有佈線和電極的兩個構成要素的功能。因此,本說明書中的“電連接”的範疇內還包括這種一個導電膜兼具有多個構成要素的功能的情況。
另外,在一個實施方式中描述的內容(也可以是其一部分的內容)可以應用於、組合於或者替換成在該實施方式中描述的其他內容(也可以是其一部分的內容)和/或在一個或多個其他實施方式中描述的內容(也可以是其一部分的內容)。
注意,在實施方式中描述的內容是指在各實施方式中利用各種圖式說明的內容或在說明書的文章中所記載的內容。
另外,藉由在一個實施方式中示出的圖式(也可以是其一部分)與該圖式的其他部分、在該實施方式中示出的其他圖式(也可以是其一部分)和/或在一個或多個其他實施方式中示出的圖式(也可以是其一部分)組合,可以構成更多圖式。
另外,可以構成不包括說明書中的圖式或文章所未規定的內容的發明的一個方式。另外,當有某一個值的數值範圍的記載(上限值和下限值等)時,藉由任意縮小該範圍或者去除該範圍的一部分,可以構成去除該範圍的一部分的發明的一個方式。由此,例如,可以規定習知技術不包括在本發明的一個方式的技術範圍內。
作為具體例子,在記載有包括第一至第五電晶體的電路的電路圖。在該情況下,可以將該電路不包含第六電晶體的情況規定為發明。也可以將該電路不包含電容元件的情況規定為發明。再者,可以將該電路不包含具有特定連接結構的第六電晶體的情況規定為發明。還可以將該電路不包含具有特定連接結構的電容元件的情況規定為發明。例如,可以將不包括其閘極與第三電晶體的閘極連接的第六電晶體的情況規定為發明。例如,可以將不包括其第一電極與第三電晶體的閘極連接的電容元件的情況規定為發明。
作為其他具體例子,在關於某一個值,例如記載有“某一個電壓較佳為3V以上且10V以下”。在該情況下,例如,可以將不包括該電壓為-2V以上且1V以下 的情況規定為發明的一個方式。例如,可以將不包括該電壓為13V以上的情況規定為發明的一個方式。例如,可以將該電壓為5V以上且8V以下的情況規定為發明。例如,可以將該電壓大約為9V的情況規定為發明。例如,可以將該電壓是3V以上且10V以下但不是9V的情況規定為發明。注意,即使記載有“某一個值較佳為某個範圍”、“某一個值最好滿足某個條件”,也不侷限於該記載。換而言之,“較佳”、“最好”等的記載並不一定規定該值。
作為其他具體例子,在關於某一個值,例如記載有“某一個電壓較佳為10V”。在該情況下,例如,可以將不包括該電壓為-2V以上且1V以下的情況規定為發明的一個方式。例如,可以將不包括該電壓為13V以上的情況規定為發明的一個方式。
作為其他具體例子,在關於某一個物質的性質,例如記載有“某一個膜為絕緣膜”。在該情況下,例如,可以將不包括該絕緣膜為有機絕緣膜的情況規定為發明的一個方式。例如,可以將不包括該絕緣膜為無機絕緣膜的情況規定為發明的一個方式。例如,可以將不包括該膜為導電膜的情況規定為發明的一個方式。例如,可以將不包括該膜為半導體膜的情況規定為發明的一個方式。
作為其他具體例子,在關於某一個層疊結構,例如記載有“在A膜與B膜之間設置有某一個膜”。在該情況下,例如,可以將不包括該膜為四層以上的疊層 膜的情況規定為發明。例如,可以將不包括在A膜與該膜之間設置有導電膜的情況規定為發明。
此外,各種各樣的人可以實施在本說明書等中記載的發明的一個方式。但是,有時多數人參與該發明的實施。例如,關於收發系統,A公司製造銷售發送器,而B公司製造銷售接收器。作為另一個例子,關於具有電晶體及發光元件的發光裝置,A公司製造銷售形成有電晶體的半導體裝置。而且,B公司購買該半導體裝置,在該半導體裝置中形成發光元件,而完成發光裝置。
在此情況下,可以構成可對A公司和B公司中的兩者主張侵犯專利的發明的一個方式。換而言之,可以構成僅A公司所實施的發明的一個方式,作為發明的另一個方式,也可以構成僅B公司所實施的發明的一個方式。另外,可對A公司或B公司主張侵犯專利的發明的一個方式明確且可以判斷記載於本說明書等中。例如,關於收發系統,即使在本說明書等中沒有僅包含發送器的結構的記載或僅包含接收器的結構的記載,也可以僅由發送器構成發明的一個方式,還可以僅由接收器構成發明的其他的一個方式,這些發明的一個方式明確且可以判斷記載於本說明書等中。作為另一個例子,關於包含電晶體及發光元件的發光裝置,即使在本說明書等沒有僅包含形成有電晶體的半導體裝置的結構的記載或僅包含具有發光元件的發光裝置的結構的記載,也可以僅由形成有電晶體的半導體裝置構成發明的一個方式,還可以僅由具有發光元件 的發光裝置構成發明的一個方式,這些發明的一個方式明確且可以判斷記載於本說明書等中。
另外,在本說明書等中,即使未指定主動元件(電晶體、二極體等)、被動元件(電容元件、電阻元件等)等所具有的所有端子的連接目標,所屬技術領域的普通技術人員有時也能夠構成發明的一個方式。就是說,可以說,即使未指定連接目標,發明的一個方式也是明確的。而且,當指定了連接目標的內容記載於本說明書等中時,有時可以判斷未指定連接目標的發明的一個方式記載於本說明書等中。尤其是在考慮出多個端子連接目標的情況下,該端子的連接目標不必限定在指定的部分。因此,有時藉由僅指定主動元件(電晶體、二極體等)、被動元件(電容元件、電阻元件等)等所具有的一部分的端子的連接目標,能夠構成發明的一個方式。
另外,在本說明書等中,只要至少指定某一個電路的連接目標,所屬技術領域的普通技術人員就有時可以構成發明。或者,只要至少指定某一個電路的功能,所屬技術領域的普通技術人員就有時可以構成發明。就是說,可以說,只要指定功能,發明的一個方式就是明確的。另外,有時可以判斷指定了功能的發明的一個方式記載於本說明書等中。因此,即使未指定某一個電路的功能,只要指定連接目標,就算是所公開的發明的一個方式,而可以構成發明的一個方式。另外,即使未指定某一個電路的連接目標,只要指定其功能,就算是所公開的發 明的一個方式,而可以構成發明的一個方式。
注意,在本說明書等中,可以在某一個實施方式中示出的圖式或者文章中取出其一部分而構成發明的一個方式。從而,在記載有說明某一部分的圖式或者文章的情況下,取出該圖式或者文章的一部分的內容也算是所公開的發明的一個方式,所以能夠構成發明的一個方式。並且,可以說該發明的一個方式是明確的。因此,例如,可以在記載有主動元件(電晶體、二極體等)、佈線、被動元件(電容元件、電阻元件等)、導電層、絕緣層、半導體層、有機材料、無機材料、零件、裝置、工作方法、製造方法等中的一個或多個的圖式或者文章中,可以取出其一部分而構成發明的一個方式。例如,可以從由N個(N是整數)電路元件(電晶體、電容元件等)構成的電路圖中取出M個(M是整數,M<N)電路元件(電晶體、電容元件等)來構成發明的一個方式。作為其他例子,可以從由N個(N是整數)層構成的剖面圖中取出M個(M是整數,M<N)層來構成發明的一個方式。再者,作為其他例子,可以從由N個(N是整數)要素構成的流程圖中取出M個(M是整數,M<N)要素來構成發明的一個方式。作為其他的例子,當從“A包括B、C、D、E或F”的記載中任意抽出一部分的要素時,可以構成“A包括B和E”、“A包括E和F”、“A包括C、E和F”或者“A包括B、C、D和E”等的發明的一個方式。
在本說明書等中,在某一個實施方式中示出 的圖式或文章示出至少一個具體例子的情況下,所屬技術領域的普通技術人員可以很容易地理解一個事實就是由上述具體例子導出該具體例子的上位概念。從而,在某一個實施方式中示出的圖式或文章示出至少一個具體例子的情況下,該具體例子的上位概念也是所公開的發明的一個方式,可以構成發明的一個方式。並且,可以說該發明的一個方式是明確的。
另外,在本說明書等中,至少示於圖式中的內容(也可以是其一部分)是所公開的發明的一個方式,而可以構成發明的一個方式。因此,即使在文章中沒有某一個內容的描述,如果該內容示於圖式中,就可以說該內容是所公開的發明的一個方式,而可以構成發明的一個方式。同樣地,取出圖式的一部分的圖式也是所公開的發明的一個方式,而可以構成發明的一個方式。並且,可以說該發明的一個方式是明確的。
電流源具有即使施加到電流源的兩端的電壓值發生變化也供應固定電流的功能。或者,例如,電流源具有即使與該電流源連接的元件的電位發生變化也對該元件供應恆定電流的功能。
另外,作為與電流源不同的電源,有電壓源。電壓源具有即使流過與該電壓源連接的電路的電流發生變化也供應固定電壓的功能。因此,電壓源和電流源都具有供應電壓和電流的功能,它們的功能的差異在於:在有什麼因素變化時,就供應固定的什麼。電流源具有即使 兩端的電壓發生變化也供應恆定電流的功能。電壓源具有即使電流變化也供應固定電壓的功能。

Claims (5)

  1. 一種類比演算電路,包括:多個第一電路;該多個第一電路之一具有:記憶電路、第二電路、開關、控制器;該記憶電路具有:第一電晶體、電容元件;該記憶電路具有保持類比信號的機能;該第二電路具有利用該類比信號進行演算處理的機能;該開關具有控制向該第二電路的電力供應的機能;該控制器具有藉由控制該第一電晶體的導通狀態,以控制向該記憶電路的該類比信號的輸入的機能;第k(k為自然數)該第一電路的輸出端子,電連接至第k+1該第一電路的輸入端子;第k+1該第一電路所具有的該控制器,具有控制第k該第一電路所具有的該開關的導通狀態的機能。
  2. 一種類比演算電路,包括:多個第一電路;該多個第一電路的各者具有:記憶電路、第二電路、開關、控制器;該記憶電路具有:第一電晶體、電容元件;該記憶電路具有保持類比信號的機能;該第二電路具有利用該類比信號進行演算處理的機能;該開關具有控制向該第二電路的電力供應的機能;該控制器具有藉由控制該第一電晶體的導通狀態,以 控制向該記憶電路的該類比信號的輸入的機能;第k(k為自然數)該第一電路所具有的該第二電路的輸出端子,電連接至第k+1該第一電路所具有的該記憶電路的輸入端子;第k+1該第一電路所具有的該控制器的第一輸出端子,電連接至第k+2該第一電路所具有的該控制器的輸入端子;第k+1該第一電路所具有的該控制器的第二輸出端子,具有控制第k該第一電路所具有的該開關的導通狀態的機能。
  3. 如請求項1或2的類比演算電路,其中,該開關具有第二電晶體;該第二電晶體在氧化物半導體膜具有通道形成區域。
  4. 如請求項3的類比演算電路,其中,該氧化物半導體膜包含In、Ga、及Zn。
  5. 如請求項3的類比演算電路,其中,該第二電路具有第三電晶體;該第三電晶體在通道形成區域具有矽。
TW107141383A 2014-03-14 2015-03-06 類比運算電路、半導體裝置及電子機器 TWI678688B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-051695 2014-03-14
JP2014051695 2014-03-14

Publications (2)

Publication Number Publication Date
TW201928922A true TW201928922A (zh) 2019-07-16
TWI678688B TWI678688B (zh) 2019-12-01

Family

ID=54071002

Family Applications (3)

Application Number Title Priority Date Filing Date
TW107141383A TWI678688B (zh) 2014-03-14 2015-03-06 類比運算電路、半導體裝置及電子機器
TW104107239A TWI650742B (zh) 2014-03-14 2015-03-06 類比運算電路、半導體裝置及電子機器
TW108140855A TWI702583B (zh) 2014-03-14 2015-03-06 類比運算電路、半導體裝置及電子機器

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW104107239A TWI650742B (zh) 2014-03-14 2015-03-06 類比運算電路、半導體裝置及電子機器
TW108140855A TWI702583B (zh) 2014-03-14 2015-03-06 類比運算電路、半導體裝置及電子機器

Country Status (6)

Country Link
US (2) US10222848B2 (zh)
JP (5) JP6357531B2 (zh)
KR (2) KR102367788B1 (zh)
DE (1) DE112015001241T5 (zh)
TW (3) TWI678688B (zh)
WO (1) WO2015136401A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170118479A1 (en) * 2015-10-23 2017-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10305460B2 (en) 2016-02-23 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Data comparison circuit and semiconductor device
JP2018129046A (ja) * 2017-02-08 2018-08-16 株式会社半導体エネルギー研究所 Aiシステム
US11062679B2 (en) * 2019-09-06 2021-07-13 Sony Semiconductor Solutions Corporations Imaging devices and imaging apparatuses, and methods for the same
CN114568037A (zh) * 2019-10-17 2022-05-31 株式会社半导体能源研究所 半导体装置
WO2022120329A1 (en) * 2020-12-03 2022-06-09 Analog Devices, Inc. Logarithmic current to voltage converters
CN115811307A (zh) * 2021-09-15 2023-03-17 株式会社东芝 半导体装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2314664A (en) * 1996-06-27 1998-01-07 Sharp Kk Address generator,display and spatial light modulator
US6097360A (en) * 1998-03-19 2000-08-01 Holloman; Charles J Analog driver for LED or similar display element
JP3373784B2 (ja) 1998-06-30 2003-02-04 株式会社東芝 ビデオカメラ装置
JP3256738B2 (ja) * 1998-08-17 2002-02-12 広島大学長 非線形演算回路
US6590549B1 (en) * 1998-12-30 2003-07-08 Texas Instruments Incorporated Analog pulse width modulation of video data
JP2000284762A (ja) 1999-03-31 2000-10-13 Seiko Epson Corp 液晶表示装置及び電子機器
JP4181837B2 (ja) * 2002-09-18 2008-11-19 キヤノン株式会社 演算回路およびこれを用いたニューラルネットワーク
US6744395B1 (en) 2002-11-27 2004-06-01 International Business Machines Corporation Power-scalable asynchronous architecture for a wave-pipelined analog to digital converter
JP2004343163A (ja) 2003-05-13 2004-12-02 Kawasaki Microelectronics Kk パイプライン型a/d変換回路
WO2005038645A2 (en) 2003-10-16 2005-04-28 Canon Kabushiki Kaisha Operation circuit and operation control method thereof
JP4272967B2 (ja) 2003-10-16 2009-06-03 キヤノン株式会社 演算回路およびその動作制御方法
JP4620944B2 (ja) 2003-10-16 2011-01-26 キヤノン株式会社 積和演算回路及びその方法
JP4082384B2 (ja) * 2004-05-24 2008-04-30 セイコーエプソン株式会社 シフトレジスタ、データ線駆動回路、走査線駆動回路、電気光学装置、および電子機器
JP2005354627A (ja) 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd パイプラインa/d変換器
KR100605150B1 (ko) 2004-06-24 2006-07-31 주식회사 세텍코리아 아데노바이러스 사멸 방법
EP1770676B1 (en) 2005-09-30 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP4829695B2 (ja) 2006-06-16 2011-12-07 パナソニック株式会社 A/d変換器
US7768865B2 (en) * 2008-04-21 2010-08-03 Vikram Bollu Address decoder and/or access line driver and method for memory devices
US8411015B2 (en) * 2008-12-22 2013-04-02 Himax Technologies Limited Operational amplifier, source driver of a display, and method for controlling the operational amplifier thereof
JP5325594B2 (ja) 2009-02-05 2013-10-23 株式会社メガチップス 演算回路
US9070323B2 (en) * 2009-02-17 2015-06-30 Global Oled Technology Llc Chiplet display with multiple passive-matrix controllers
JP5073712B2 (ja) * 2009-06-16 2012-11-14 シャープ株式会社 データ信号線駆動回路、液晶表示装置、および液晶表示装置の駆動方法
JP4930616B2 (ja) 2010-03-26 2012-05-16 エプソンイメージングデバイス株式会社 シフトレジスター、走査線駆動回路、データ線駆動回路、電気光学装置及び電子機器
TWI567735B (zh) 2011-03-31 2017-01-21 半導體能源研究所股份有限公司 記憶體電路,記憶體單元,及訊號處理電路
TWI515707B (zh) 2011-04-25 2016-01-01 群創光電股份有限公司 影像顯示系統、移位暫存器與移位暫存器控制方法
KR101984739B1 (ko) * 2011-11-11 2019-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 신호선 구동 회로 및 액정 표시 장치
JP6151530B2 (ja) 2012-02-29 2017-06-21 株式会社半導体エネルギー研究所 イメージセンサ、カメラ、及び監視システム
US9443471B2 (en) 2012-07-31 2016-09-13 Sharp Kabushiki Kaisha Display device and driving method thereof

Also Published As

Publication number Publication date
US10222848B2 (en) 2019-03-05
JP6896121B2 (ja) 2021-06-30
JP2020115356A (ja) 2020-07-30
TWI678688B (zh) 2019-12-01
JP2021168140A (ja) 2021-10-21
JP6526295B2 (ja) 2019-06-05
WO2015136401A1 (ja) 2015-09-17
TWI702583B (zh) 2020-08-21
KR102367788B1 (ko) 2022-02-24
DE112015001241T5 (de) 2016-11-24
JP6678797B2 (ja) 2020-04-08
JP2018181358A (ja) 2018-11-15
US20190265770A1 (en) 2019-08-29
JP2019169165A (ja) 2019-10-03
KR20210037011A (ko) 2021-04-05
JP6357531B2 (ja) 2018-07-11
TWI650742B (zh) 2019-02-11
TW201539411A (zh) 2015-10-16
KR20160132895A (ko) 2016-11-21
JP7095160B2 (ja) 2022-07-04
JPWO2015136401A1 (ja) 2017-06-08
KR102234840B1 (ko) 2021-04-01
TW202013339A (zh) 2020-04-01
US11137813B2 (en) 2021-10-05
US20170017285A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
TWI678688B (zh) 類比運算電路、半導體裝置及電子機器
TWI670922B (zh) 直流對直流轉換器、半導體裝置以及電子裝置
KR102501338B1 (ko) 반도체 장치, 건강 관리 시스템
TWI695375B (zh) 記憶體裝置及半導體裝置
CN108701480B (zh) 半导体装置
TWI647915B (zh) 位準轉換電路
TWI637484B (zh) 半導體裝置
JP6625328B2 (ja) 半導体装置の駆動方法
US9716182B2 (en) Semiconductor device
JP2015188213A (ja) 半導体装置、及びその駆動方法
JP6298657B2 (ja) 半導体装置
TWI649968B (zh) 半導體裝置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees