TW201908895A - Method and apparatus for health assessment of a transport apparatus - Google Patents

Method and apparatus for health assessment of a transport apparatus Download PDF

Info

Publication number
TW201908895A
TW201908895A TW107115457A TW107115457A TW201908895A TW 201908895 A TW201908895 A TW 201908895A TW 107115457 A TW107115457 A TW 107115457A TW 107115457 A TW107115457 A TW 107115457A TW 201908895 A TW201908895 A TW 201908895A
Authority
TW
Taiwan
Prior art keywords
motion
predetermined
transport device
basic
dynamic performance
Prior art date
Application number
TW107115457A
Other languages
Chinese (zh)
Other versions
TWI794229B (en
Inventor
艾倫 蓋立克
傑羅 摩拉
Original Assignee
美商布魯克斯自動機械公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商布魯克斯自動機械公司 filed Critical 美商布魯克斯自動機械公司
Publication of TW201908895A publication Critical patent/TW201908895A/en
Application granted granted Critical
Publication of TWI794229B publication Critical patent/TWI794229B/en

Links

Landscapes

  • Manipulator (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A method for health assessment of a system including a transport apparatus including registering predetermined operating data embodying at least one dynamic performance variable output by the transport apparatus, determining a base value (CpkBase) characterized by a probability density function of each of the dynamic performance variable output, resolving from the transport apparatus in situ process motion commands of the apparatus controller and defining another predetermined motion set of the transport apparatus, registering predetermined operating data embodying the at least one dynamic performance variable output by the transport apparatus and determining with the processor another value (CpkOther) characterized by the probability density function of each of the dynamic performance variable output by the transport apparatus, and comparing the other value and the base value (CpkBase) for each of the dynamic performance variable output by the transport apparatus respectively corresponding to the predetermined motion base set and the other predetermined motion set.

Description

用於運送裝置的健康評估的方法及裝置Method and apparatus for health assessment of a transport device

相關申請案的交互參照:本專利申請案主張2017年5月5日申請的美國臨時專利申請案第62/502,292號的優先權和權益,其所揭露內容藉由引用全部併入本申請全文。示例性實施例總體上涉及自動化處理系統。CROSS-REFERENCE TO RELATED APPLICATIONS This application is hereby incorporated by reference in its entirety in its entirety the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all all all all all all all all each The exemplary embodiments relate generally to automated processing systems.

1。領域:示例性實施例更具體地係涉及自動化處理系統的健康評估和預測診斷。1. FIELD: Exemplary embodiments relate more specifically to health assessment and predictive diagnosis of automated processing systems.

2。相關發展簡述:由於自動化製造工具(例如用於生產半導體元件的自動化材料處理平台)中使用的機器人操縱器和其他機電元件的故障導致的材料損壞和非計劃停機時間是常見的問題,這通常代表了製造工具的終端用戶的鉅額費用負擔。2. Brief description of related developments: Material damage and unplanned downtime due to failure of robotic manipulators and other electromechanical components used in automated manufacturing tools such as automated material handling platforms for the production of semiconductor components are common problems, which are usually Represents a huge cost burden for end users of manufacturing tools.

已經為工業、汽車和航空航天應用開發了許多健康監測和故障診斷(health-monitoring and fault-diagnostic,HMFD)方法。現有系統典型地實現故障檢測以指示被監測系統中的某些地方發生錯誤,故障隔離以確定故障的確切位置(即故障的組件),以及確定故障大小的故障識別。Many health-monitoring and fault-diagnostic (HMFD) methods have been developed for industrial, automotive and aerospace applications. Existing systems typically implement fault detection to indicate an error in some places in the monitored system, fault isolation to determine the exact location of the fault (ie, the component of the fault), and fault identification to determine the fault size.

該隔離連同該識別任務通常被稱為故障診斷。許多現有系統僅執行故障檢測和隔離階段。This isolation, along with this identification task, is often referred to as fault diagnosis. Many existing systems only perform fault detection and isolation phases.

儘管這些故障診斷方案有助於故障檢測,其中之隔離和自適應恢復,仍然使元件、工具、FAB(例如製造設施/工廠)或其他自動化裝置以有限的或實質上不存在的預測範圍而以實質上地回應方式來運行。預測方法被認知為是嘗試將預測範圍增加到故障診斷系統,例如自動化裝置的數學建模,其中將自動化裝置變數的傳感測量結果與各個變數(例如是從自動化裝置的牛頓動力學模型或類神經網路動力學模型而產生)的分析計算值進行比較,數學模型代表標稱條件。這種方法受到例如信號雜訊和模型誤差等非保守因素的影響,這些因素不可預測地並且不利地影響分析(標稱)值與由傳感測量結果來的值之間的結果差異,並且需要故障診斷系統在處理能力和/或重複/冗餘傳感系統以及資料系統做進一步的投資來解決這種非保守因素。Although these fault diagnosis schemes contribute to fault detection, where isolation and adaptive recovery still allow components, tools, FABs (eg, manufacturing facilities/factories) or other automated devices to have a limited or substantially non-existent prediction range Essentially respond to the way to run. The prediction method is recognized as an attempt to add a prediction range to a fault diagnosis system, such as mathematical modeling of an automated device, in which the sensing measurements of the automation device variables are associated with various variables (eg, Newton dynamics models or classes from automated devices) The calculated values of the neural network dynamics model are compared and the mathematical model represents the nominal condition. This approach is affected by non-conservative factors such as signal noise and model errors that unpredictably and adversely affect the difference in results between the analytical (nominal) value and the value measured by the sensing measurements, and The fault diagnosis system makes further investments in processing capabilities and/or repetitive/redundant sensing systems and data systems to address this non-conservative factor.

存在有提供沒有非保守因素相關的數學建模的故障預測的故障診斷系統將是有利的。It would be advantageous to have a fault diagnosis system that provides fault prediction without mathematical modeling associated with non-conservative factors.

and

儘管將參照附圖來描述所揭露的實施例的態樣,但應理解,所揭露的實施例的態樣可以以許多形式來體現。另外,可以使用任何合適的尺寸、形狀或類型的元素或材料。Although the disclosed embodiments will be described with reference to the drawings, it is understood that the aspects of the disclosed embodiments may be embodied in many forms. In addition, any suitable size, shape or type of element or material may be used.

本文描述的所揭露實施例的態樣提供了一種用於使用可用變數來量化自動化系統(例如在此所描述的那些關於圖1~4E)的健康狀態和預測診斷的方法和裝置,該些可用變數受該自動化系統的任何合適的控制器監測(其中該控制器包括用於實現所揭露的實施例的態樣之非暫時性電腦軟體碼)。健康狀態的度量藉由所揭露的實施例的態樣透過針對所收集的變數的獨特統計資料處理來實現,該所收集的變數獨特地與多個裝置的給定裝置和/或系統相關聯並且獨特地將該多個裝置的給定裝置和/或系統特徵化為一個提供該給定裝置和/或系統的預測診斷的健康狀態量。所揭露的實施例的態樣可以允許自動化系統的控制器使用“基線”(其包括如本文所述之基本值和/或基本運動)的概念來確定被監測的變數(獨特元件的)的統計特性(該獨特元件的獨特特徵),並且促進進一步地將未來的表現與這些基線進行比較。結果,所揭露的實施例的方法和裝置可以允許自動化系統的控制器基於趨勢分析執行預測,允許自動化系統的控制器基於與受監測的自動化系統截然不同的資料來做用於預防性維護的建議。所揭露的實施例的態樣還可以允許對難以確定可接受的和可行的規格的變數進行操作的預期限制的識別。Aspects of the disclosed embodiments described herein provide a method and apparatus for quantifying health status and predictive diagnostics of an automated system, such as those described herein with respect to Figures 1-4E, using available variables, which are available The variables are monitored by any suitable controller of the automated system (wherein the controller includes non-transitory computer software code for implementing aspects of the disclosed embodiments). The measurement of the state of health is achieved by the unique aspect of the disclosed embodiments by unique statistical processing of the collected variables, the collected variables being uniquely associated with a given device and/or system of the plurality of devices and A given device and/or system of the plurality of devices is uniquely characterized as a quantity of health status that provides a predictive diagnosis of the given device and/or system. Aspects of the disclosed embodiments may allow a controller of an automated system to determine the statistics of the monitored variables (of the unique elements) using the concept of "baseline" (which includes basic values and/or basic motions as described herein). Characteristics (a unique feature of this unique component) and facilitate further comparison of future performance with these baselines. As a result, the method and apparatus of the disclosed embodiments may allow the controller of the automated system to perform predictions based on trend analysis, allowing the controller of the automation system to make recommendations for preventive maintenance based on material that is distinct from the monitored automation system. . Aspects of the disclosed embodiments may also allow for the identification of expected limits for operation of variables that are difficult to determine acceptable and feasible specifications.

儘管在此將描述具有三個自由度(theta旋轉、R延伸和Z提昇運動)的半導體機器人(本文也稱為機器人操縱器)之所揭露的實施例的態樣,然在其他態樣,半導體機器人可具有多於或少於三個自由度。仍然在其他態樣中,所揭露的實施例可以應用於具有單一運動(例如機器人運送、裝載端口、對準器、泵、風扇、閥門等)自由度的半導體處理系統的其他組件。還應該理解的是,所揭露的實施例的態樣可以用於任何自動化和/或受電元件或系統(包括,例如,上述裝置和/或元件的組合),該任何自動化和/或受電元件或系統能夠採樣相似的或相關的性能監測資料,其中該性能監測資料獨特地與每個獨特裝置、元件和/或系統相關並且獨特地特徵化該每個獨特裝置、元件和/或系統。Although the embodiment of the disclosed embodiment of a semiconductor robot (also referred to herein as a robotic manipulator) having three degrees of freedom (theta rotation, R extension, and Z lifting motion) will be described herein, in other aspects, the semiconductor The robot can have more or less than three degrees of freedom. In still other aspects, the disclosed embodiments can be applied to other components of a semiconductor processing system having a single motion (eg, robotic transport, load port, aligner, pump, fan, valve, etc.) degrees of freedom. It should also be understood that aspects of the disclosed embodiments can be applied to any automated and/or powered component or system (including, for example, a combination of the above-described devices and/or components), any of the automated and/or powered components or The system is capable of sampling similar or related performance monitoring data, wherein the performance monitoring data uniquely relates to each unique device, component, and/or system and uniquely characterizes each unique device, component, and/or system.

所揭露的實施例的態樣提供基於統計參數歸一化之一種型式的度量,該統計參數允許不同物理意義的變數(例如溫度與最大扭矩)進行直接比較。這樣的比較允許計算這些無關變數對受監測的自動化系統的總體健康狀況的影響。Aspects of the disclosed embodiments provide a metric based on a version of statistical parameter normalization that allows for direct comparison of variables of different physical meanings (eg, temperature versus maximum torque). Such comparisons allow calculation of the effect of these extraneous variables on the overall health of the monitored automation system.

圖1顯示出了根據所揭露的實施例的態樣之用於包含自動化裝置健康評估和預測診斷的自動化裝置之示例性控制器100。所揭露的實施例的態樣可以以硬體或軟體進行操作。例如,所揭露的實施例的態樣可以常駐在組件控制器、指引多個組件的操作的控制器、控制子系統的控制器或系統控制器之中。所揭露的實施例的態樣也可以用專用硬體或軟體來實現。1 shows an exemplary controller 100 for an automated device including an automated device health assessment and predictive diagnostics in accordance with aspects of the disclosed embodiments. Aspects of the disclosed embodiments can operate in hardware or software. For example, aspects of the disclosed embodiments may reside in a component controller, a controller that directs operation of multiple components, a controller of a control subsystem, or a system controller. Aspects of the disclosed embodiments can also be implemented with dedicated hardware or software.

控制器100可以是自動化裝置(例如像是圖3所示的自動化材料處理平台300)的任何合適的控制器,並且可以普遍地包括處理器105、唯讀記憶體110、隨機存取記憶體115、程式儲存器120、用戶介面125和網路介面130。處理器105可以包括內建快取記憶體135並且通常地可操作以從電腦程式產品,舉例來說電腦可用介質(例如像是內建快取記憶體135、唯讀記憶體110、隨機存取記憶體115和程式儲存器120)來讀取資訊和程式。The controller 100 can be any suitable controller of an automated device, such as the automated material processing platform 300 shown in FIG. 3, and can generally include a processor 105, a read-only memory 110, and a random access memory 115. The program storage 120, the user interface 125, and the network interface 130. The processor 105 can include built-in cache memory 135 and is generally operable to access a computer program product, such as a computer usable medium (eg, such as built-in cache memory 135, read only memory 110, random access). The memory 115 and the program storage 120) read information and programs.

在開啟電源時,處理器105可以開始操作在唯讀記憶體110中找到的程式,並且在初始化之後,可以將來自程式儲存器120的指令加載到隨機存取記憶體115並且在那些程式的控制下操作。經常使用的指令可以暫時地儲存在內建快取記憶體135中。唯讀記憶體110和隨機存取記憶體115都可以利用半導體科技或任何其他適當的材料和技術。程式儲存器120可以包括磁碟片、電腦硬碟、光碟(CD)、數位通用光碟(DVD),光碟(optical disk)、晶片、半導體或能夠以電腦可讀程式碼的形式來儲存程式的任何其他裝置。When the power is turned on, the processor 105 can start operating the program found in the read-only memory 110, and after initialization, the instructions from the program memory 120 can be loaded into the random access memory 115 and controlled in those programs. Under the operation. Frequently used instructions can be temporarily stored in the built-in cache memory 135. Both read-only memory 110 and random access memory 115 may utilize semiconductor technology or any other suitable materials and techniques. The program storage 120 may include a magnetic disk, a computer hard disk, a compact disk (CD), a digital compact disk (DVD), an optical disk, a chip, a semiconductor, or any computer capable of storing a program in the form of a computer readable code. Other devices.

內建快取記憶體135、唯讀記憶體110、隨機存取記憶體115和程式儲存器120單獨或以任何組合的形式可以包括操作系統程式。操作系統程式可以補充有可選的即時操作系統,以改善由功能控制器100提供的資料的質量並且允許功能控制器100提供保證回應時間。The built-in cache memory 135, the read-only memory 110, the random access memory 115, and the program storage 120 may include an operating system program alone or in any combination. The operating system program can be supplemented with an optional real-time operating system to improve the quality of the material provided by the function controller 100 and to allow the function controller 100 to provide a guaranteed response time.

具體而言,單獨或以任何組合的形式的內建快取記憶體135、唯讀記憶體110、隨機存取記憶體115和程式儲存器120可以包括用於致使處理器105執行根據以下本文所描述之所揭露的實施例之態樣的故障診斷和故障預測的程式。網路介面130通常可以適用於提供控制器100與其他控制器或其他系統之間的介面。網路介面130可以操作為從一個或多個附加功能控制器接收資料並將資料傳遞到相同或其他的功能控制器。網路介面130還可以提供至可以提供遠程監視和診斷服務的全球診斷系統的介面。In particular, the built-in cache 135, the read-only memory 110, the random access memory 115, and the program storage 120, either alone or in any combination, may be included to cause the processor 105 to perform according to the following text. A program for troubleshooting and fault prediction of the disclosed embodiments. Network interface 130 may generally be adapted to provide an interface between controller 100 and other controllers or other systems. The network interface 130 is operable to receive data from one or more additional function controllers and to communicate the data to the same or other function controllers. The network interface 130 can also provide an interface to a global diagnostic system that can provide remote monitoring and diagnostic services.

通信網路190可以包括公共交換電話網路(PSTN)、網際網路、無線網路、有線網路、區域網路(LAN)、廣域網路(WAN)、虛擬專用網路(VPN)等,並且還可以包括其他類型的網路,包括X.25、TCP/IP、ATM等。Communication network 190 may include a public switched telephone network (PSTN), an internet, a wireless network, a wired network, a local area network (LAN), a wide area network (WAN), a virtual private network (VPN), and the like, and Other types of networks may also be included, including X.25, TCP/IP, ATM, and the like.

控制器100可以包括具有顯示器140的用戶介面125和例如像是鍵盤155或滑鼠145的輸入裝置。用戶介面可以在處理器105的控制下由用戶介面控制器150操作,並且可以向用戶提供圖形用戶介面以可視化健康監測和故障診斷的結果。用戶介面也可用於指導維修人員來完成故障排除例行工作或維修程序。另外,用戶介面控制器還可以提供用於與其他功能控制器、外部網路、另一個控制系統或主機進行通信的連接或介面155。The controller 100 can include a user interface 125 having a display 140 and an input device such as a keyboard 155 or a mouse 145. The user interface can be operated by the user interface controller 150 under the control of the processor 105 and can provide a graphical user interface to the user to visualize the results of health monitoring and troubleshooting. The user interface can also be used to instruct maintenance personnel to perform troubleshooting routines or repair procedures. In addition, the user interface controller can also provide a connection or interface 155 for communicating with other function controllers, external networks, another control system, or host.

用於製造半導體元件的示例性材料處理平台被圖解地描繪在圖2,連同對表1中所列出的主要組件的解釋性說明,其中所揭露的實施例的態樣可以在該半導體元件中實現。圖2的材料處理平台的一種或多種控制器可以包括如本文關於圖1所描述的控制器。An exemplary material processing platform for fabricating semiconductor components is illustrated diagrammatically in FIG. 2, along with an illustrative description of the main components listed in Table 1, wherein aspects of the disclosed embodiments may be in the semiconductor component achieve. One or more controllers of the material processing platform of FIG. 2 may include a controller as described herein with respect to FIG.

表1:圖2的自動化材料處理平台300(也稱為處理工具)的解釋性說明。 Table 1: An explanatory illustration of the automated material handling platform 300 (also referred to as a processing tool) of Figure 2.

自動化材料處理平台300具有大氣部分301、真空部分302和一個或多個處理模組303。The automated material handling platform 300 has an atmospheric portion 301, a vacuum portion 302, and one or more processing modules 303.

大氣部分301可以包括外殼304、一個或多個裝載端口305、一個或多個機器人操縱器306、一個或多個基底對準器307和風扇過濾器單元308。其還可以包括一個或多個電離單元(未顯示出)。真空部分可以包括真空室309、一個或多個負載鎖310、一個或多個機器人操縱器311、一個或多個真空泵312和多個狹縫閥313,它們通常位於大氣部分301與負載鎖310的交界面、介於負載鎖310與真空室309之間以及介於真空室309與處理模組303之間。The atmospheric portion 301 can include a housing 304, one or more loadports 305, one or more robotic manipulators 306, one or more substrate aligners 307, and a fan filter unit 308. It may also include one or more ionization units (not shown). The vacuum portion may include a vacuum chamber 309, one or more load locks 310, one or more robotic manipulators 311, one or more vacuum pumps 312, and a plurality of slit valves 313, which are typically located at atmospheric portion 301 and load lock 310 The interface is between the load lock 310 and the vacuum chamber 309 and between the vacuum chamber 309 and the processing module 303.

平台的操作由監控大氣部分控制器315的工具控制器314、真空部分控制器316和一個或多個處理控制器317協調。大氣部分控制器315負責一個或多個裝載端口控制器318、一個或多個大氣機器人控制器319、一個或多個對準器控制器320和風扇過濾器單元控制器321。裝載端口控制器318、大氣機器人控制器319和對準器控制器320中的每一個依次負責一個或多個電動機控制器322。真空部分控制器316負責一個或多個真空機器人控制器323,控制真空泵312並操作狹縫閥313。處理控制器317的作用取決於在處理模組303中執行的操作。The operation of the platform is coordinated by a tool controller 314 that monitors the atmospheric portion controller 315, a vacuum portion controller 316, and one or more processing controllers 317. The atmospheric portion controller 315 is responsible for one or more load port controllers 318, one or more atmospheric robot controllers 319, one or more aligner controllers 320, and a fan filter unit controller 321 . Each of load port controller 318, atmospheric robot controller 319, and aligner controller 320 is in turn responsible for one or more motor controllers 322. The vacuum section controller 316 is responsible for one or more vacuum robot controllers 323, controls the vacuum pump 312, and operates the slit valve 313. The role of the processing controller 317 depends on the operations performed in the processing module 303.

在某些情況下,將兩個或更多控制層合併到一個控制器中可能很實用。例如,大氣機器人控制器319和相應的電動機控制器322可以組合在單個集中式機器人控制器中,或者大氣部分控制器315可以與大氣機器人控制器319組合以消除對兩個單獨的控制器單元的需求。In some cases, it may be useful to combine two or more control layers into one controller. For example, the atmospheric robot controller 319 and the corresponding motor controller 322 can be combined in a single centralized robot controller, or the atmospheric portion controller 315 can be combined with the atmospheric robot controller 319 to eliminate the pair of separate controller units. demand.

可以在圖2的自動化材料處理平台300中採用五軸直接驅動機器人操縱器400,其中一個或更多個大氣機器人操縱器306和真空機器人操縱器311係實質上類似於機器人操縱器400。圖3提供了一個這樣的機器人操縱器400的簡化示意圖。主要組件的解釋性註釋在表2中列出。在一個態樣中,所揭露的實施例的態樣可以在機器人操縱器400內實現;然而,應該理解的是,雖然所揭露的實施例的態樣是針對機器人操縱器進行描述的,但是所揭露的實施例的態樣可以在自動化材料操作平台300的任何合適的自動化部分中實現,該自動化材料操作平台300包括但不限於運送機器人,裝載端口,對準器,泵,風扇,閥等等,注意到圖8A中的控制器800是對用於上述中任何一個自動化設備的控制器的一般性表示。注意到機器人操縱器400被繪示為僅用於示例性目的的五軸直接驅動機器人操縱器,並且在其他方面,機器人操縱器(或包括所揭露實施例的態樣之處理工具的其他自動化部分)可以具有任何適當數量的驅動軸,具有任意合適的自由度以及具有直接或間接驅動系統。A five-axis direct drive robotic manipulator 400 may be employed in the automated material processing platform 300 of FIG. 2, wherein one or more of the atmospheric robotic manipulator 306 and the vacuum robotic manipulator 311 are substantially similar to the robotic manipulator 400. A simplified schematic of one such robotic manipulator 400 is provided in FIG. Explanatory notes for the main components are listed in Table 2. In one aspect, aspects of the disclosed embodiments can be implemented within the robotic manipulator 400; however, it should be understood that while the aspects of the disclosed embodiments are described with respect to robotic manipulators, Aspects of the disclosed embodiments can be implemented in any suitable automated portion of automated material handling platform 300, including but not limited to shipping robots, load ports, aligners, pumps, fans, valves, and the like. It is noted that the controller 800 of Figure 8A is a general representation of a controller for any of the automated devices described above. It is noted that the robotic manipulator 400 is illustrated as a five-axis direct drive robotic manipulator for exemplary purposes only, and in other aspects, the robotic manipulator (or other automated portion of the processing tool including aspects of the disclosed embodiments) It can have any suitable number of drive shafts, with any suitable degree of freedom, and with direct or indirect drive systems.

表2:圖3的機器人操縱器400的解釋性說明。 Table 2: An explanatory illustration of the robotic manipulator 400 of FIG.

參照圖3,機器人操縱器400係圍繞從圓形安裝凸緣402懸置的開放圓柱形方塊架401而建構。方塊架401包括具有線性軸承404的垂直導軌403以經由滾珠螺桿機構407對由無刷DC電動機406驅動的載運器405提供引導。載運器405容納配備有光學編碼器410、411的一對同軸無刷DC電動機408、409。上電動機408驅動連接到機器人手臂的第一連桿414的中空外軸412。下電動機409連接到同軸內軸413,該同軸內軸413經由皮帶驅動器415耦合到第二連桿416。第一連桿414容納無刷DC電動機417A,該無刷DC電動機417A經由兩級皮帶配置418A、419A驅動上端接器420A。採用另一個DC無刷電動機417B和兩級皮帶驅動器418B、419B來致動下端接器420B。每個級418A、418B、419A和419B被設計成在輸入和輸出滑輪之間具有1:2的比率。基底421A和421B藉由真空致動邊緣接觸夾持器、表面接觸吸取夾持器或被動夾持器之用具來分別保持附接到端接器420A和420B。Referring to FIG. 3, the robotic manipulator 400 is constructed around an open cylindrical block 401 suspended from a circular mounting flange 402. The block 401 includes a vertical rail 403 having a linear bearing 404 to provide guidance to the carrier 405 driven by the brushless DC motor 406 via the ball screw mechanism 407. Carrier 405 houses a pair of coaxial brushless DC motors 408, 409 equipped with optical encoders 410, 411. The upper motor 408 drives a hollow outer shaft 412 that is coupled to the first link 414 of the robotic arm. The lower motor 409 is coupled to a coaxial inner shaft 413 that is coupled to the second link 416 via a belt drive 415. The first link 414 houses a brushless DC motor 417A that drives the upper terminator 420A via a two-stage belt configuration 418A, 419A. The lower terminator 420B is actuated using another DC brushless motor 417B and two stage belt drivers 418B, 419B. Each stage 418A, 418B, 419A, and 419B is designed to have a ratio of 1:2 between the input and output pulleys. Substrates 421A and 421B remain attached to terminators 420A and 420B, respectively, by vacuum actuating edge contact holders, surface contact suction grippers, or passive gripper tools.

在整篇正文中,第一連桿414、第二連桿416、上端接器420A和下端接器420B也分別被稱為上臂、前臂、端接器A和端接器B。A點,B點和C點分別表示肩關節、肘關節和腕關節的旋轉耦合。點D表示參考點,其指示相應端接器上的基底中心的期望位置。Throughout the text, first link 414, second link 416, upper terminator 420A, and lower terminator 420B are also referred to as upper arm, forearm, terminator A, and terminator B, respectively. Point A, point B and point C represent the rotational coupling of the shoulder joint, the elbow joint and the wrist joint, respectively. Point D represents a reference point that indicates the desired position of the center of the substrate on the corresponding terminator.

範例機器人操縱器的控制系統可以是分佈式的。它包括電源供應器429、主控制器422和電動機控制器423A、423B和423C。主控制器422負責監督任務和軌跡規劃。每個電動機控制器423A、423B和423C執行一個或兩個電動機的位置和電流反饋迴路。在圖3中,控制器423A控制電動機408和409,控制器423B控制電動機417A和417B,並且控制器423C控制電動機406。除了執行反饋迴路之外,電動機控制器還收集例如電動機電流、電動機位置和電動機速度等資料,並將資料魚貫傳輸到主控制器。電動機控制器423A、423B和423C通過高速通信網路425連接到主控制器。由於接頭A是無限旋轉接頭,所以通信網路425係透過滑環426路由。附加的電子單元424A和424B可分別用於支撐端接器420A和420B的邊緣接觸夾持器。The control system of the example robotic manipulator can be distributed. It includes a power supply 429, a main controller 422, and motor controllers 423A, 423B, and 423C. The main controller 422 is responsible for supervising tasks and trajectory planning. Each of the motor controllers 423A, 423B, and 423C performs a position and current feedback loop of one or two motors. In FIG. 3, controller 423A controls motors 408 and 409, controller 423B controls motors 417A and 417B, and controller 423C controls motor 406. In addition to performing the feedback loop, the motor controller collects data such as motor current, motor position, and motor speed, and transmits the data to the main controller. Motor controllers 423A, 423B, and 423C are coupled to the main controller via a high speed communication network 425. Since connector A is an infinitely rotating joint, communication network 425 is routed through slip ring 426. Additional electronics units 424A and 424B can be used to support the edge contact holders of terminators 420A and 420B, respectively.

現在參考圖4A~4E,圖3的機器人操縱器400可以包括任何合適的臂連桿機構。臂連桿機構的合適實例可以在,例如2009年8月25日公佈的美國專利號7,578,649,1998年8月18日公佈的5,794,487,2011年5月24日公佈的7,946,800,2002年11月26日公佈的6,485,250,2011年2月22日公佈的7,891,935,2013年4月16日公佈的8,419,341和2011年11月10日申請的名稱為“Dual Arm Robot”的美國專利申請號13/293,717和13/861,693,2013年9月5日申請的名稱為“Linear Vacuum Robot with Z Motion and Articulated Arm”,其所揭露內容全部通過引用併入本文。在所揭露的實施例的態樣中,每個運送單元模組104的至少一個傳遞臂、吊桿臂143和/或線性滑軌144可以從常規SCARA臂315(選擇性順應關節式機器人臂)(圖4C)類型的設計衍生而來,其包括上臂315U、帶驅動的前臂315F和帶約束的端接器315E,或者可以從伸縮臂或任何其他合適的臂設計,例如笛卡爾直線滑動臂314(圖4B)。運送臂的合適實例可以在例如2008年5月8日申請的名稱為“Substrate Transport Apparatus with Multiple Movable Arms Utilizing a Mechanical Switch Mechanism”的美國專利申請號12/117,415以及2010年1月19日公佈的美國專利號7,648,327,其所揭露內容通過引用整體併入本文。運送臂的操作可以彼此獨立(例如,每個臂的延伸/縮回係獨立於其他臂),可以通過空轉開關操作,或者可以以任何合適的方式可操作地連接,使得臂共享至少一個共同的驅動軸。還有在其他態樣中,運送臂可以具有任何其他期望的佈置,例如蛙腿臂316(圖4A)配置,跳蛙臂317(圖4E)配置,雙對稱臂318(圖4D)配置等。合適的運送臂的例子可以在2001年5月15日公佈的美國專利6,231,297,1993年1月19日公佈的5,180,276,2002年10月15日公佈的6,464,448,2001年5月1日公佈的6,224,319,1995年9月5日公佈的美國專利5,447,409,2009年8月25日公佈的美國專利7,578,649,1998年8月18日公佈的5,794,487,2011年5月24日公佈的7,946,800,2002年11月26日公佈的6,485,250,2011年2月22日公佈的7,891,935和於2011年11月10日申請的名稱為”Dual Arm Robot“的美國專利申請號13/293,717以及於2011年10月11日申請的名稱為”Coaxial Drive Vacuum Robot“的13/270,844中找到。其全部內容通過引用併入本文。Referring now to Figures 4A-4E, the robotic manipulator 400 of Figure 3 can include any suitable arm linkage mechanism. Suitable examples of arm linkages are, for example, U.S. Patent No. 7,578,649, issued August 25, 2009, 5,794,487, issued on August 18, 1998, 7,946,800, issued on May 24, 2011, November 26, 2002 U.S. Patent Application Nos. 13/293, 717 and 13/, entitled "Dual Arm Robot", filed on Apr. 22, 2011, issued on Jul. 22, 2011, issued to 861, 693, filed on September 5, 2013, entitled "Linear Vacuum Robot with Z Motion and Articulated Arm", the disclosure of which is incorporated herein by reference in its entirety. In the aspect of the disclosed embodiment, at least one transfer arm, boom arm 143, and/or linear slide 144 of each transport unit module 104 can be from a conventional SCARA arm 315 (selectively compliant articulated robot arm) The design of the type (Fig. 4C) is derived from an upper arm 315U, a driven front arm 315F and a constrained terminator 315E, or may be designed from a telescopic arm or any other suitable arm, such as a Cartesian linear sliding arm 314. (Fig. 4B). A suitable example of a transport arm can be found in, for example, U.S. Patent Application Serial No. 12/117,415, filed on May 8, 2008, entitled "Substrate Transport Apparatus with Multiple Movable Arms Utilizing a Mechanical Switch Mechanism" Patent No. 7,648,327, the disclosure of which is incorporated herein in its entirety by reference. The operation of the transport arms can be independent of each other (eg, the extension/retraction of each arm is independent of the other arms), can be operated by an idle switch, or can be operatively coupled in any suitable manner such that the arms share at least one common Drive shaft. Also in other aspects, the transport arm can have any other desired arrangement, such as a frog leg arm 316 (Fig. 4A) configuration, a frog arm 317 (Fig. 4E) configuration, a dual symmetrical arm 318 (Fig. 4D) configuration, and the like. Examples of suitable transport arms are U.S. Patent 6,231,297, issued May 15, 2001, 5,180,276, issued Jan. 19, 1993, 6,464,448 issued on October 15, 2002, and 6,224,319, issued on May 1, 2001. US Patent 5,447,409, issued September 5, 1995, US Patent 7, 578,649, published on August 25, 2009, 5,794,487, published on August 18, 1998, 7,946,800, published on May 24, 2011, November 26, 2002 Published on 6, 485, 250, 7,891,935, published on February 22, 2011, and US Patent Application No. 13/293, 717, filed on November 10, 2011, entitled "Dual Arm Robot", and on November 11, 2011, the name of the application is "Coaxial Drive Vacuum Robot" found in 13/270,844. The entire content of this is incorporated herein by reference.

仍然參考圖2~4E,本文描述的機器人操縱器306、311、400在空間中的點之間運送基底S(參見圖4A和4B),例如圖5A所示的基底保持站STN1~STN6。為了完成基底S的運送,運動控制演算法在自動化材料處理平台300的任何合適的控制器中運行,例如機器人控制器(也稱為機器人操縱器控制器)319、323、422、423A~423C、810(參見圖2、3和8A),其連接到機器人操縱器306、311、400。運動控制演算法定義在空間中期望的基底路徑,並且位置控制迴路計算期望的控制扭矩(或力)以應用於負責移動空間中的各個機器人自由度的每個機器人致動器。Still referring to Figures 2 through 4E, the robotic manipulators 306, 311, 400 described herein transport the substrate S (see Figures 4A and 4B) between points in space, such as the substrate holding stations STN1 - STN6 shown in Figure 5A. To complete the transport of the substrate S, the motion control algorithm operates in any suitable controller of the automated material processing platform 300, such as a robot controller (also known as a robotic manipulator controller) 319, 323, 422, 423A-423C, 810 (see Figures 2, 3 and 8A), which is coupled to the robotic manipulators 306, 311, 400. The motion control algorithm defines a desired base path in space, and the position control loop calculates a desired control torque (or force) to apply to each of the robot actuators responsible for the individual robot degrees of freedom in the mobile space.

機器人操縱器306、311、400(其可以被稱為自動化系統)被期望以執行連續傳輸基底S的重複性任務,並且機器人操縱器受到與處理這種基底相關的環境條件的影響。具有如同所揭露的實施例的態樣提供的方法和裝置隨時間監測機器人操縱器(或自動化材料處理平台300的任何其他自動化設備)的性能並且確定(預測診斷)各個機器人操縱器306、311、400是否能夠在期望參數內操作,以便處理其主要任務,例如在基底保持站STN1~STN6之間攜帶和運送基底是有益的。Robotic manipulators 306, 311, 400 (which may be referred to as automated systems) are desired to perform the repetitive tasks of continuously transporting substrate S, and the robotic manipulators are subject to environmental conditions associated with processing such substrates. Having methods and apparatus as provided by aspects of the disclosed embodiments monitors the performance of a robotic manipulator (or any other automated device of automated material processing platform 300) over time and determines (predicts diagnostics) individual robotic manipulators 306, 311, Whether 400 can operate within the desired parameters to handle its primary tasks, such as carrying and transporting substrates between substrate holding stations STN1 - STN6, is beneficial.

根據所揭露的實施例的態樣,例如針對機器人操縱器306、311、400所做的健康評估係藉由產生基本統計特徵(例如,運行於典型的環境條件中之給定變數的行為之基線或統計表示)來加以執行,該基本統計特徵針對機器人操縱器306、311、400的一組基本移動/運動(術語移動和運動在本文中可互換使用)820、820A、820B、820C(參見圖8A)特徵化由機器人操縱器306、311、400輸出的每個動態性能變數。基本統計特徵係藉由利用可通信地耦合到諸如控制器319、323、422、423A、423B、423C、810等之自動化材料處理平台300的任何合適的控制器的記錄系統801R(其可以由任何合適的記憶體形成或存在於任何合適的記憶體中,例如儲存器801)來,例如,記錄預定操作資料而產生,該預定操作資料體現了由機器人操縱器306、311、400所輸出的至少一個動態性能變數,其中該預定操作資料實現了預定基本運動之預定運動基本組。In accordance with aspects of the disclosed embodiments, for example, health assessments for robotic manipulators 306, 311, 400 are performed by generating basic statistical characteristics (eg, baselines of behaviors for a given variable operating in typical environmental conditions). Or statistically performed to perform a set of basic movements/motions (the terms movement and motion are used interchangeably herein) 820, 820A, 820B, 820C for the robotic manipulators 306, 311, 400 (see figure) 8A) Characterize each dynamic performance variable output by the robotic manipulators 306, 311, 400. The basic statistical characteristics are by utilizing any suitable controller of the recording system 801R that is communicatively coupled to the automated material processing platform 300, such as controllers 319, 323, 422, 423A, 423B, 423C, 810, etc. (which may be by any Suitable memory is formed or present in any suitable memory, such as reservoir 801, for example, by recording predetermined operational data that reflects at least the output of robotic manipulators 306, 311, 400. A dynamic performance variable, wherein the predetermined operational data implements a predetermined set of motion basics for a predetermined basic motion.

每個動態性能變數對於自動化系統(例如機器人操縱器306、311、400)是特定的,其可以在一組不同的自動化系統中(例如形成自動化材料處理平台300的自動化系統的組),從中獲得動態性能變數。這樣,由於每個動態性能變數對於(自動化系統的組的)自動化系統中之相應的一個為特定的,所以相應的自動化系統的基本統計特徵與相應的自動化系統相互結伴。例如,位於自動化材料處理平台300的大氣部分301中的機器人操縱器306具有相對的基本統計特徵,並且位於真空部分302中的機器人操縱器311具有相對的基本統計特徵。如果機器人操縱器311被放置在大氣部分301中,則機器人操縱器311的基本統計特徵在被置於大氣部分301內時仍然可以應用於機器人操縱器311。在一個態樣中,基本統計特徵係與位在記憶體和/或自動化系統的控制器中之相對的自動化系統相關。此外,每個機器人操縱器可具有影響相對機器人操縱器的基本統計特徵的獨特操作特性。例如,機器人操縱器311和另一個機器人操縱器可以被製造為同一品牌和型號的機器人操縱器。然而,由於,例如存在於機器人驅動系統和臂結構中的製造公差,機器人操縱器311的基本統計特徵可能不適用於其他類似的機器人操縱器,反之亦然。因此,每個機器人操縱器的基本統計特徵與相應的機器人操縱器相互結伴(例如,機器人操縱器311的基本統計特徵Cpkbase 與機器人操縱器311一起移動並且對其是獨特的,並且機器人操縱器306的基本統計特徵Cpkbase 與機器人操縱器306一起移動並且對其來說是獨特的)。於是,每個裝置,例如機器人操縱器311,是獨特的,並且預定運動基本組820、820A~820C的每個預定基本移動501、502、503的每個歸一化值或基本統計特徵/值Cpkbase 和用於其他預定運動組830、830A~830C的每個映射的原位過程移動501’、502’、503’的每個其他的值Cpkother 是只與獨特的裝置獨特地相關,並且確定的性能惡化率(例如由線性趨勢模型LTM-見圖11所指出的)只與獨特的裝置獨特地相關。Each dynamic performance variable is specific to an automated system (eg, robotic manipulators 306, 311, 400) that can be obtained from a set of different automation systems, such as a group of automated systems that form an automated material handling platform 300. Dynamic performance variables. Thus, since each dynamic performance variable is specific to a respective one of the automation systems (of the group of automation systems), the basic statistical characteristics of the respective automation system are associated with the respective automation system. For example, the robotic manipulator 306 located in the atmospheric portion 301 of the automated material handling platform 300 has opposing basic statistical features, and the robotic manipulator 311 located in the vacuum portion 302 has relatively basic statistical features. If the robot manipulator 311 is placed in the atmospheric portion 301, the basic statistical characteristics of the robot manipulator 311 can still be applied to the robot manipulator 311 when placed in the atmospheric portion 301. In one aspect, the basic statistical characteristics are related to the relative automation system located in the controller of the memory and/or automation system. In addition, each robotic manipulator can have unique operational characteristics that affect the underlying statistical characteristics of the robotic manipulator. For example, the robotic manipulator 311 and another robotic manipulator can be manufactured as robotic manipulators of the same make and model. However, due to manufacturing tolerances such as those found in robotic drive systems and arm structures, the basic statistical characteristics of robotic manipulator 311 may not be applicable to other similar robotic manipulators, and vice versa. Thus, the basic statistical characteristics of each robotic manipulator are associated with the respective robotic manipulator (eg, the basic statistical feature C pkbase of the robotic manipulator 311 moves with the robotic manipulator 311 and is unique to it, and the robotic manipulator The basic statistical feature C pkbase of 306 moves with the robotic manipulator 306 and is unique to it). Thus, each device, such as robotic manipulator 311, is unique and each normalized value or basic statistical feature/value of each predetermined basic movement 501, 502, 503 of predetermined motion basic groups 820, 820A-820C C pkbase other for each group of a predetermined motion in situ mapping process 830,830A ~ 830C mobile 501 ', 502', 503 'of each of the other values C pkother only uniquely associated with the unique device, and The determined rate of performance degradation (eg, as indicated by the linear trend model LTM - see Figure 11) is uniquely related to unique devices.

在一個態樣,系統(例如圖3中所示的自動化材料處理平台300)包括或者以其他方式設置有多個不同的相互連接的獨特裝置(例如對準器307、機器人操縱器306、風扇過濾器單元308等在表1中列出的並且在圖2中顯示出的),以及例如運送裝置311,其中來自多個不同的獨特裝置App(i)(在圖2A中被圖表示地表示為App1~Appn)的每個不同的獨特裝置具有不同的對應的用於預定運動基本組820、820A~820C的每個基本移動501、502、503的歸一化值CpkBasei (其包括CpkBase(1-n) ),以及用於其他預定運動組830、830A~830C的每個映射的原位過程移動501’、502’、503’的其他歸一化值CpkOtheri ,該其他預定運動組830、830A~830C獨特地與不超過於來自該多個不同的獨特裝置App(i)的該些不同的對應的獨特裝置App1~Appn相關聯。在一個態樣,來自多個不同的獨特裝置App(i)的每個(或至少一個)不同的獨特裝置App1~Appn具有與不同的獨特裝置App1~Appn中的另一個共同的配置。例如,機器人操縱器306可以具有與機器人操縱器311共同的配置。在其他態樣,來自多個不同的獨特裝置App(i)的每個(或至少一個)不同的獨特裝置App1~Appn具有與來自不同的獨特裝置App(i)的另一個不同的配置。例如,對準器307具有與機器人操縱器306不同的配置。In one aspect, a system (such as the automated material processing platform 300 shown in FIG. 3) includes or otherwise is provided with a plurality of different interconnected unique devices (eg, aligner 307, robotic manipulator 306, fan filter) Units 308 and the like are listed in Table 1 and shown in Figure 2), and for example, a transport device 311, wherein from a plurality of different unique devices App(i) (represented in Figure 2A as Each of the different unique devices of App1 to Appn has different corresponding normalized values C pkBasei for each of the basic movements 501, 502, 503 of the predetermined motion basic groups 820, 820A to 820C (which includes C pkBase( 1-n) ), and other normalized values C pkOtheri of the in-situ process movements 501 ', 502 ', 503 ′ for each of the other predetermined motion groups 830 , 830A - 830C , the other predetermined motion groups 830 830A-830C uniquely associated with the different corresponding unique devices App1 - Appn from no more than the plurality of different unique devices App(i). In one aspect, each (or at least one) different unique device App1 - Appn from a plurality of different unique devices App(i) has a configuration common to the other of the different unique devices App1 - Appn. For example, the robotic manipulator 306 can have a configuration in common with the robotic manipulator 311. In other aspects, each (or at least one) different unique device App1 - Appn from a plurality of different unique devices App(i) has a different configuration than the one from a different unique device App(i). For example, aligner 307 has a different configuration than robotic manipulator 306.

可以直接測量每個自動化裝置和/或系統的動態性能變數(即連續監測變數)或從可用測量結果(即導出變數)中導出。動態性能變數的例子包括:Dynamic performance variables (ie, continuous monitoring variables) for each automation device and/or system can be directly measured or derived from available measurement results (ie, derived variables). Examples of dynamic performance variables include:

機械或電功率;Mechanical or electrical power;

機械功;Mechanical work;

機器人端接器加速度;Robot terminator acceleration;

電動機PWM工作週期:電動機的PWM工作週期是在任何給定時間提供給每個電動機相位的輸入電壓的百分比。健康監測和故障診斷系統可以使用在每個電動機相位的工作週期;Motor PWM duty cycle: The PWM duty cycle of the motor is the percentage of the input voltage supplied to each motor phase at any given time. Health monitoring and fault diagnosis systems can be used at the duty cycle of each motor phase;

電動機電流:電動機電流表示流過每個電動機的三相中的每一相的電流。電動機電流可被以絕對值的方式或以最大電流百分比的方式獲得。如果以絕對值的方式獲得,則它的單位為安培。電動機電流值可以被反過來藉由使用電動機扭矩-電流關係而被使用來計算電動機扭矩;Motor Current: Motor current represents the current flowing through each of the three phases of each motor. The motor current can be obtained in absolute value or as a percentage of maximum current. If obtained in absolute terms, its unit is amps. The motor current value can be reversed by using the motor torque-current relationship to calculate the motor torque;

實際位置,速度和加速度:這些是每個電動機軸的位置、速度和加速度。對於旋轉軸,位置、速度和加速度值分別以度、度/秒和度/秒2 為單位。對於平移軸,位置、速度和加速度值分別以毫米、毫米/秒2 和毫米/秒2 為單位;Actual position, speed and acceleration: These are the position, velocity and acceleration of each motor shaft. For the rotary axis, the position, velocity and acceleration values are in degrees, degrees/seconds and degrees/second 2 respectively . For the translation axis, the position, velocity and acceleration values are in mm, mm / s and 2 mm / sec 2 units;

期望的位置、速度和加速度:這些是命令電動機的控制器所具有的位置、速度和加速度值。這些屬性與上面的實際位置、速度和加速度具有相似的單位;Desired position, speed and acceleration: These are the position, velocity and acceleration values that the controller of the command motor has. These attributes have similar units to the actual position, velocity, and acceleration above;

位置和速度追蹤誤差:這些是各個期望值和實際值之間的差異。這些屬性與上面的實際位置、速度和加速度具有相似的單位;Position and speed tracking error: These are the differences between the various expected and actual values. These attributes have similar units to the actual position, velocity, and acceleration above;

安定時間:這是自動化裝置和/或系統用於決定位置和速度追蹤誤差於運動結束時在指定窗口內所花的時間;Settling time: This is the time taken by the automation device and/or system to determine the position and speed tracking error in the specified window at the end of the movement;

編碼器類比和絕對位置輸出:電動機位置由編碼器決定,編碼器輸出兩種類型的信號-類比信號和絕對位置信號。類比信號是以mVolts為單位的正弦和餘弦信號。絕對位置信號是非揮發性整數值,其指示類比正弦週期的數量或已經過去的類比正弦週期的整數倍。通常情況下,數位輸出在電源開啟時讀取,此後軸位置僅由類比信號確定;Encoder analogy and absolute position output: The motor position is determined by the encoder, which outputs two types of signal-analog signals and absolute position signals. The analog signal is a sine and cosine signal in mVolts. The absolute position signal is a non-volatile integer value that indicates the number of analog sinusoidal cycles or an integer multiple of the analogous sinusoidal period that has elapsed. Normally, the digital output is read when the power is turned on, after which the axis position is determined only by the analog signal;

夾持器狀態:這是夾持器的狀態-打開或關閉。在真空致動邊緣接觸夾持器的情況下,它是一個或多個感測器的受阻/未受阻狀態;Gripper status: This is the state of the gripper - open or closed. Where the vacuum actuated edge contacts the holder, it is a blocked/unblocked state of one or more of the sensors;

真空系統壓力:這是由真空感測器測量的真空度。這是一個類比感測器,其輸出藉由類比數位轉換器進行數位化。在吸取夾持器的情況下,真空度指示晶圓是否被夾持;Vacuum system pressure: This is the degree of vacuum measured by the vacuum sensor. This is an analog sensor whose output is digitized by an analog digital converter. In the case of sucking the gripper, the degree of vacuum indicates whether the wafer is clamped;

基底存在感測器狀態:在被動夾持端接器中,晶圓存在感測器輸出是二進制輸出。在真空致動邊緣接觸夾持端接器中,晶圓存在是從兩個或更多個感測器的輸出狀態來確定,每個感測器都是二進制的;The substrate presence sensor state: In a passive clamp terminator, the wafer presence sensor output is a binary output. In a vacuum actuated edge contact clamp terminator, wafer presence is determined from the output states of two or more sensors, each sensor being binary;

映射器感測器狀態:這是映射器感測器的狀態-在任何給定情況下為受阻或未受阻;Mapper sensor state: This is the state of the mapper sensor - blocked or unimpeded in any given case;

基底映射器/對準器檢測器光強度:這是由基底映射器或對準器的光檢測器檢測到的光的強度的量度。該信號通常以整數值形式提供(例如,其範圍可以為0~1024);Basemapper/Aligner Detector Light Intensity: This is a measure of the intensity of light detected by the photodetector of the substrate mapper or aligner. The signal is typically provided as an integer value (eg, it can range from 0 to 1024);

基底映射器感測器位置擷取資料:這是映射器感測器改變狀態的機器人軸位置值的陣列;Basemapper sensor position capture data: This is an array of robot axis position values for which the mapper sensor changes state;

真空閥狀態:這是真空閥的指令狀態。它具體指出了操作真空閥的電磁圈是否應該通電;Vacuum valve status: This is the command status of the vacuum valve. It specifically points out whether the electromagnetic coil that operates the vacuum valve should be energized;

保險絲輸出端子的電壓:監控電動機控制電路中每個保險絲輸出端子的電壓。熔斷保險絲導致低輸出端子電壓;Voltage at the fuse output terminal: Monitors the voltage at each fuse output terminal in the motor control circuit. Fusing the fuse results in a low output terminal voltage;

基底對準資料:這是對準器所報告的基底的對準基準的基底偏心向量和角定位;Substrate alignment data: this is the substrate eccentricity vector and angular positioning of the alignment reference of the substrate reported by the aligner;

外部基底感測器轉換時的位置資料:在某些情況下,工具的大氣和真空部分可能配備了光學感測器,用於檢測由機器人攜帶的基底的前緣和後緣。對應於這些事件的機器人位置資料被用於機器人端接器上的基底的偏心率的即時識別;Location data when the external substrate sensor is switched: In some cases, the atmospheric and vacuum portions of the tool may be equipped with optical sensors for detecting the leading and trailing edges of the substrate carried by the robot. The robot position data corresponding to these events is used for the instant identification of the eccentricity of the base on the robot terminator;

基底循環時間:這是自動化裝置和/或系統對於單個基底被工具處理所花費的時間,通常在穩定流動條件下測量;Substrate cycle time: This is the time it takes for an automated device and/or system to be processed by a tool for a single substrate, typically measured under steady flow conditions;

小環境壓力:這是由工具的大氣部分中的壓力感測器所測得的壓力。Small ambient pressure: This is the pressure measured by the pressure sensor in the atmospheric part of the tool.

連續監測變數的具體例子包括:Specific examples of continuous monitoring variables include:

表3:連續監測變數 Table 3: Continuous monitoring variables

其中T1和T2是機器人操縱器驅動旋轉軸(可能有多於或少於兩個旋轉驅動軸);Z是機器人驅動Z軸;CPU是機器人控制器(例如控制器319、323、422、423A~423C、800)。風扇0、風扇1是機器人操縱器的各種風扇;theta是機器人操縱器臂的旋轉;以及R是機器人操縱器臂的延伸。Where T1 and T2 are robot manipulators that drive the rotary axis (possibly with more or less than two rotary drive axes); Z is the robot drive Z axis; CPU is the robot controller (eg controllers 319, 323, 422, 423A ~ 423C, 800). Fan 0, fan 1 are various fans of the robot manipulator; theta is the rotation of the robot manipulator arm; and R is the extension of the robot manipulator arm.

衍生變數的具體示例包括:Specific examples of derived variables include:

表4:衍生變數 Table 4: Derived Variables

這些動態性能變數是從原始或直接測量值,例如電動機位置、速度、加速度和控制扭矩計算得出的。These dynamic performance variables are calculated from raw or direct measurements such as motor position, speed, acceleration, and control torque.

預定運動基本組820、820A~820C的預定基本移動501、502、503包括至少一個定義基本運動類型的共同基本移動(例如,形成基線的移動,並且其是從足夠的樣本移動所創建的,該些足夠的樣本移動係被收集以定義統計上地有意義的批次)的統計表徵數量。例如,用於各別的基本移動501、502、503(例如,基本移動501具有運動基本組820A,基本移動502具有運動基本組820B,基本移動503具有運動基本組820C)的(每個)運動基本組820、820A~820C(參見圖8A)係實質上地為基於給定的收斂準則而足以提供統計上有意義的標準偏差的移動Nmin (見圖6)(例如樣本大小)之最小數量,進而針對特定機器人操縱器306、311、400來特徵化運動基本組(或移動組)820、820A~820C。這樣,每個動態性能變數係特定於相應的機器人操縱器306、311、400並由其輸出。The predetermined basic movements 501, 502, 503 of the predetermined motion basic groups 820, 820A-820C include at least one common basic movement defining a basic motion type (eg, a motion forming a baseline, and which is created from sufficient sample movement, the A sufficient number of sample movements are collected to define a statistically significant number of statistically significant batches. For example, for each of the basic movements 501, 502, 503 (eg, the basic movement 501 has a motion basic group 820A, the basic movement 502 has a motion basic group 820B, and the basic movement 503 has a motion basic group 820C) (each) motion the basic group 820,820A ~ 820C (see FIG. 8A) based substantially for a given convergence criterion based on the statistical amount sufficient to provide a meaningful standard deviation mobile N min (see FIG. 6) (e.g. sample size) the minimum number, The motion basic groups (or mobile groups) 820, 820A-820C are then characterized for specific robotic manipulators 306, 311, 400. Thus, each dynamic performance variable is specific to and output by the respective robotic manipulators 306, 311, 400.

相應的預定運動基本組820、820A~820C的預定基本移動501、502、503包括多個不同的基本運動類型,其中每一個基本運動類型都由運送裝置306、311、400以對於每個基本運動類型產生共同運動的統計特徵數量的效果。每個不同的基本運動類型具有不同的對應的至少一個扭矩命令特徵和位置命令特徵,該扭矩命令特徵和位置命令特徵定義與每個基本運動類型相關的不同的共同運動。在一個態樣中,預定基本運動組820、820A~820C可以是一個或多個移動/運動類型。例如,基本運動組820、820A~820C中的各個運動501、502、503可以是簡單的移動或複雜的(例如混合的)移動,該些移動係以定義相應移動的扭矩和位置命令來進行特徵化。The predetermined basic movements 501, 502, 503 of the respective predetermined motion basic sets 820, 820A-820C comprise a plurality of different basic motion types, each of which is carried by the transport means 306, 311, 400 for each basic motion The type produces the effect of the number of statistical features of the common motion. Each of the different basic motion types has a different corresponding at least one torque command feature and a position command feature that define different common motions associated with each of the basic motion types. In one aspect, the predetermined basic motion groups 820, 820A-820C may be of one or more motion/motion types. For example, each of the basic motion groups 820, 820A-820C may be simple moving or complex (eg, mixed) movements that are characterized by torque and position commands that define respective movements. Chemical.

簡單的移動是兩點之間的直線移動(如圖5C中所示從點0到點1)或沿兩點之間的圓弧移動(如圖5C中所示從點1到點2)沿著機器人操縱器306、311、400的theta軸、延伸軸或Z軸中的一個(例如,單一移動自由度)。A simple movement is a linear movement between two points (from point 0 to point 1 as shown in Figure 5C) or along a circular arc between two points (from point 1 to point 2 as shown in Figure 5C). One of the theta axis, the extension axis, or the Z axis of the robotic manipulators 306, 311, 400 (eg, a single degree of freedom of movement).

如圖5B所示,複合或混合移動是其中多於兩個簡單移動被混合在一起的移動,圖5B示例了移動從點0延伸到點2,並且具有與點1相鄰的混合路徑,該路徑混合來自點0到點1及點1到點2的兩條直線移動,沿著機器人操縱器306、311、400的theta軸、延伸軸或Z軸中的至少兩個(例如,兩個或更多個以上的移動自由度)。As shown in FIG. 5B, the composite or hybrid movement is a movement in which more than two simple movements are mixed together, and FIG. 5B illustrates that the movement extends from point 0 to point 2 and has a mixing path adjacent to point 1, which The path mixes two linear movements from point 0 to point 1 and point 1 to point 2, along at least two of the theta, extension or Z axis of the robotic manipulators 306, 311, 400 (eg, two or More than one degree of freedom of movement).

運動基本組820、820A~820C中的每一個還可以藉由該組內的移動的位置(例如移動的起點和終點)、該組內的移動的負載參數(例如機器人操縱器306、311、400為加載(攜帶基底)或未加載(未攜帶基底))和/或移動的初始位置和/或最終位置處的動態條件(例如運動/停止、停止/停止、停止/運動、運動/運動等)。例如,參考圖5B中的複雜移動,動態條件點0係停止的並且點2處的動態條件係停止的。參照圖5C中的兩個簡單移動,點0處的動態條件係停止的並且點1處的動態條件為正在移動;而點2的動態條件係停止的。如上所述,儘管移動類型係以關於機器人操縱器臂運動的一個、兩個或三個自由度進行描述,但應該理解,移動類型可以包括以任何合適數量的自由度或者單個自由度所產生的移動(例如配合使用真空泵、基底對準器等)。Each of the motion basic groups 820, 820A-820C can also be moved by the location within the group (eg, the starting and ending points of the movement), the load parameters of the movement within the group (eg, the robotic manipulators 306, 311, 400) Dynamic conditions (eg motion/stop, stop/stop, stop/motion, motion/motion, etc.) at the initial position and/or final position for loading (carrying the substrate) or not loading (not carrying the substrate) and/or moving . For example, referring to the complex movement in Figure 5B, the dynamic condition point 0 is stopped and the dynamic condition at point 2 is stopped. Referring to the two simple movements in Figure 5C, the dynamic condition at point 0 is stopped and the dynamic condition at point 1 is moving; the dynamic condition of point 2 is stopped. As described above, although the type of movement is described in terms of one, two or three degrees of freedom with respect to robotic manipulator arm movement, it should be understood that the type of movement may include any suitable number of degrees of freedom or a single degree of freedom. Move (for example, using a vacuum pump, a substrate aligner, etc.).

每種移動類型都會影響統計地特徵化每個移動類型的最小移動次數Nmin 。例如,每個動態性能變數或運動類型可以以歷史方式表示為:Minimum number of moving each transfer type will affect statistically characterizing each mobile type N min. For example, each dynamic performance variable or type of motion can be represented historically as:

其中s是表5至表7中所提供的基本移動/運動信號。信號s0 至sn 是具有純量輸出的信號並且應該能夠跨越不同的模板移動(其也可以被稱為基本移動)進行比較,即跨越不同移動類型比較相關於基線的電動機能量。信號sn+1 到sn+1+mi 是來自表8的向量輸出信號,且不能在不同模板移動類型間進行比較,其係用i來表示。Where s is the basic motion/motion signal provided in Tables 5 through 7. The signals s 0 to s n are signals with a scalar output and should be able to be compared across different stencil movements (which may also be referred to as basic movements), ie comparing the motor energy associated with the baseline across different movement types. The signals s n+1 to s n+1+mi are vector output signals from Table 8 and cannot be compared between different template motion types, which are denoted by i.

表5:帶有純量輸出之關於基本移動的衍生信號(每個電動機) Table 5: Derived signals for basic movement with scalar output (per motor)

表6:帶有純量輸出之關於基本移動的衍生信號(每個臂或端接器) Table 6: Derived signals for basic movement with scalar output (per arm or terminator)

表7:帶有純量輸出之關於基本移動的衍生系統信號 Table 7: Derivative system signals for basic movement with scalar output

表8:帶有向量輸出之關於基本移動的衍生信號 Table 8: Derived signals with basic output for basic movement

這些向量輸出信號在沿著軌跡的每次時間採樣處都有信號,因此這些信號的數量在不同的移動之間不同,並且在一個時間採樣中之一次移動與另一次移動對評估而言是沒有任何物理意義的。基本移動(類型)索引由i表示,並且給定之索引的歷史紀錄由j表示。These vector output signals have signals at each time sample along the trajectory, so the number of these signals differs between different movements, and one movement in one time sample and another movement are not evaluated. Any physical meaning. The basic mobile (type) index is denoted by i, and the history of the given index is denoted by j.

在這個例子中最後一個受評估的基本移動是The last basic movement evaluated in this example is

並且在這個例子中第三個最後受評估的基本移動是And the third last evaluated basic move in this example is

參照圖5A~5C所示,基本移動,例如相應的一組基本移動820、820A~820C中的基本移動501、502、503也可以被稱為模板移動。基本移動501、502、503是沿著獨特路徑的重複移動。基本移動501、502、503可以由簡單移動或如上所述的複雜移動所組成。Referring to Figures 5A-5C, the basic movements, e.g., the basic movements 501, 502, 503 of the respective set of basic movements 820, 820A-820C, may also be referred to as template movements. The basic movements 501, 502, 503 are repeated movements along a unique path. The basic movements 501, 502, 503 can consist of simple movements or complex movements as described above.

為了評估系統性能下降和性能趨勢,特徵資料沿著關於基線的基本移動的獨特路徑進行分析。基本移動501、502、503可以在理論上和/或經驗上定義。例如,理論基本移動是基於期望的設計配置和處理工具的處理來解決操作中的預期移動,然後在原位過程工具安裝之前或之後的任何時間被執行。To assess system performance degradation and performance trends, the profile is analyzed along a unique path to the basic movement of the baseline. The basic movements 501, 502, 503 can be defined theoretically and/or empirically. For example, the theoretical basic movement is based on the desired design configuration and processing of the processing tool to resolve the expected movement in operation, and then executed at any time before or after the in-situ process tool installation.

可以從原位過程移動命令產生經驗性基本移動,作為期望發生共同性之移動,以產生足夠的統計特性而具有安定於如圖6中所示的預定收斂界限變化率之間的有意義的統計值(其中圖6中的Nmin 是基於給定的收斂準則而足以提供統計上有意義的標準偏差的最小移動數量(例如樣本大小))。經驗性基本移動的產生可以是一個兩部分流程(類似地應用於基本統計特徵的經驗產生)。例如,產生經驗性基本移動可以包括:存取原位移動命令直方圖700(參見圖7)並且利用命令(例如,扭矩、位置、邊界參數、命令軌跡路徑(包括速度和移動持續時間)、負載狀況等)識別原位移動,該命令映射到基本移動501、502、503(例如,原位移動與基本移動匹配在可配置容許偏差內);以及針對所映射的動作從任何合適的記錄系統801R的記錄表840存取由相應的機器人操縱器306、311、400輸出的的每個動態性能變數,該記錄系統801R記錄預定的操作資料,該操作資料體現了至少一個由機器人操縱器輸出的動態性能變數來實現對另一個預定運動組830(詳如下述)的確定。An empirical basic movement can be generated from the in-situ process movement command as the movement of the desired common occurrence to produce sufficient statistical characteristics with meaningful statistical values that are stable between predetermined convergence limit rate of change as shown in FIG. (where N min in Figure 6 is the minimum amount of movement (eg, sample size) sufficient to provide a statistically significant standard deviation based on a given convergence criterion). The generation of empirical basic movement can be a two-part process (similar to the empirical generation of basic statistical features). For example, generating an empirical basic movement may include accessing an in-situ movement command histogram 700 (see FIG. 7) and utilizing commands (eg, torque, position, boundary parameters, command trajectory paths (including speed and movement duration), load The condition, etc.) identifies the in-situ movement, the command mapping to the base movement 501, 502, 503 (eg, the home position movement is within the configurable tolerance of the base movement match); and from any suitable recording system 801R for the mapped action The record table 840 accesses each dynamic performance variable output by the respective robotic manipulators 306, 311, 400, which records predetermined operational data that reflects at least one dynamic output by the robotic manipulator The performance variable is used to determine the determination of another predetermined motion group 830 (as detailed below).

經驗性基本移動的產生可以以接近即時地執行、在背景運行並且存取記錄表840而不存取自動化材料處理平台300的控制器319、323、422、423A、423B、423C、800和相關聯的雙向通信/資料頻道。原位移動命令直方圖700包括由機器人操縱器控制器(例如控制器319、323、422、423A、423B、423C、800)命令的運動,該機器人操縱器控制器包括由相應的機器人操縱器306、311、400所實現的原位過程運動。原位移動命令直方圖700可以在例如機器人操縱器控制器(例如控制器319、323、422、423A、423B、423C、810)或自動化材料處理平台300的任何其它合適的控制器的任何合適的記錄表700R(參見圖8A)中記錄。如本文所描述,機器人操縱器控制器分解來自記錄表700R中的運動直方圖700的周期性存取的映射運動。The generation of empirical basic movements can be performed in near-immediate execution, running in the background, and accessing the record table 840 without accessing the controllers 319, 323, 422, 423A, 423B, 423C, 800 of the automated material processing platform 300 and associated Two-way communication / data channel. The in-situ movement command histogram 700 includes motion commanded by a robotic manipulator controller (eg, controllers 319, 323, 422, 423A, 423B, 423C, 800) that is included by a respective robotic manipulator 306 In-situ process motion achieved by 311, 400. The home position movement command histogram 700 can be any suitable one of, for example, a robotic manipulator controller (eg, controller 319, 323, 422, 423A, 423B, 423C, 810) or any other suitable controller of the automated material processing platform 300. Recorded in the record table 700R (see Fig. 8A). As described herein, the robotic manipulator controller decomposes the mapping motion from the periodic access of the motion histogram 700 in the record table 700R.

例如,還是參照圖8A,運動分解器800從機器人操縱器306、311、400(參見圖2和圖3)分解機器人控制器319、323、422、423A~423C、810的原位過程運動命令(其中由運送裝置實現的原位過程運動501’、502’、503’(參見圖5A)映射到預定運動基本組(詳如下述)的預定基本運動501、502、503(其中每一個定義相應的模板運動,使得原位過程運動映射到各自的模板運動之上)),並且用映射的原位過程運動501’、502’、503’定義機器人控制器319、323、422、423A~423C、810的另一個預定運動組(詳如下述)。例如,原位過程運動501’映射到基本運動501,原位過程運動502’映射到基本運動502,並且原位過程運動503’映射到基本動作503。請注意,以類似於上述的方式,每個原位過程運動501’~503’係由扭矩命令和來自裝置控制器的位置命令中的至少一個加以特徵化,其中扭矩命令和位置命令中的至少一個特徵化機器人操縱器306、311、400的至少一個運動自由度中的原位過程運動。For example, still referring to FIG. 8A, the motion resolver 800 decomposes the in-situ process motion commands of the robot controllers 319, 323, 422, 423A-423C, 810 from the robotic manipulators 306, 311, 400 (see FIGS. 2 and 3) ( The in-situ process motions 501', 502', 503' (see FIG. 5A) implemented by the transport device are mapped to predetermined basic motions 501, 502, 503 of a predetermined set of motion basics (described in detail below) (each of which defines a corresponding The template motion causes the in-situ process motion to map onto the respective template motion) and defines the robot controllers 319, 323, 422, 423A-423C, 810 with the mapped in-situ process motions 501 ', 502', 503' Another scheduled exercise group (details as described below). For example, the in-situ process motion 501' maps to the base motion 501, the home position process motion 502' maps to the base motion 502, and the home position process motion 503' maps to the base motion 503. Note that in a manner similar to that described above, each of the in-situ process motions 501'-503' is characterized by at least one of a torque command and a position command from the device controller, wherein at least one of the torque command and the position command An in-situ process motion in at least one degree of freedom of motion of the characterization robotic manipulators 306, 311, 400.

運動分解器800可以被包括在機器人控制器319、323、422、423A~423C、800中以作為模組,運動分解器800可以是可通信地耦合到機器人控制器319、323、422、423A~423C、810的遠端處理器或者運動分解器800可以是與機器人控制器319、323、422、423A~423C、810可通信地鏈接的不同處理器。The motion resolver 800 can be included in the robot controllers 319, 323, 422, 423A-423C, 800 as a module, and the motion resolver 800 can be communicably coupled to the robot controllers 319, 323, 422, 423A~ The remote processor or motion resolver 800 of 423C, 810 may be a different processor communicatively linked to the robot controllers 319, 323, 422, 423A-423C, 810.

運動分解器800迭代所有的原位過程移動501’、502’、503’以識別那些具有由,例如,圖6所示之標準偏差收斂所確定的所需的最小移動次數Nmin 的原位過程移動501’、502’、503’。例如,如上所述,為了創建基線(例如,建立基本移動501、502、503),必須收集足夠的樣本以定義具有統計意義的批次。創建基線所需的樣本數量取決於正被分析的變數的物理性質。例如,定義機器人操縱器306、311、400的給定運動軸的機械功的典型(平均值和標準偏差)統計量比執行相同運動的同一軸的峰值控制扭矩花費更長的時間。為了糾正這種情況,基於對收集的資料的統計分析來定義基線的大小。例如,可以在基線資料收集至其值安定在一定界限(如圖6所示)內的某個點的期間計算標準偏差。在圖6中,給定變數的標準偏差係對照著樣本大小進行繪製。隨著樣本量的增加,標準偏差趨於在一定的界限內收斂。根據實際資料組,這些界限可以被先驗定義或被計算,例如在當圖的變化率低於約+/- 10%變化時;然而,任何合適的收斂方法和/或變化的百分比均可使用。The motion resolver 800 iterates through all of the in-situ process movements 501 ', 502 ', 503 ' to identify those in-situ processes having the minimum number of movements N min required by, for example, the standard deviation convergence shown in FIG. Move 501', 502', 503'. For example, as described above, in order to create a baseline (eg, establish basic movements 501, 502, 503), sufficient samples must be collected to define a statistically significant batch. The number of samples required to create a baseline depends on the physical properties of the variable being analyzed. For example, a typical (average and standard deviation) statistic that defines the mechanical work of a given motion axis of the robotic manipulators 306, 311, 400 takes longer than the peak control torque of the same axis that performs the same motion. To correct this situation, the size of the baseline is defined based on a statistical analysis of the collected data. For example, the standard deviation can be calculated during the collection of baseline data to a point whose value is stabilized at a certain limit (as shown in Figure 6). In Figure 6, the standard deviation of a given variable is plotted against the sample size. As the sample size increases, the standard deviation tends to converge within certain limits. Depending on the actual data set, these limits can be defined a priori or calculated, for example, when the rate of change of the graph is less than about +/- 10%; however, any suitable method of convergence and/or percentage change can be used. .

仍然參考圖8A、圖5和圖8B,構成至少所需的最小移動次數Nmin (例如,用於定義基線的移動)的移動可以被稱為預定的運動基本組820。每個基本移動501、502、503具有對於該基本移動501、502、503係獨特的之相應的預定運動基本組820A、820B、820C。用於確定和更新相應預定運動基本組820A、820B、820C的示例性處理流程示例於圖8A和8B中。Still referring to FIGS. 8A, 5, and 8B, the movement constituting at least the required minimum number of movements Nmin (eg, for defining the movement of the baseline) may be referred to as a predetermined motion basic set 820. Each of the basic movements 501, 502, 503 has a respective predetermined set of motion basic groups 820A, 820B, 820C that are unique to the basic movements 501, 502, 503. An exemplary process flow for determining and updating the respective predetermined motion basic groups 820A, 820B, 820C is illustrated in Figures 8A and 8B.

仍然參照圖5、8A和8B,在一個態樣中,一旦運動分解器800識別並分解用於相應基本移動501、502、503的預定運動基本組820A、820B、820C,映射(如上所述)到基本移動501、502、503中相應的一個的原位過程移動501’、502’、503’係包括在相對的預定運動基本組820A、820B、820C之中以更新相對的預定運動基本組820A、820B、820C。在其他態樣,映射到基本移動501、502、503中相對的一個的預定運動基本組820A、820B、820C的原位過程運動501’、502’、503’可以形成與預定的運動基本組820A、820B、820C不同之運動類型組之一個不一樣的組。經更新的預定運動基本組和/或不同組的運動類型組可被稱為另一個預定運動組830。如本文將描述的,用於相應的原位過程移動501’、502’、503’的其他的預定運動基本組830A、830B、830C係與用於相應的基本移動501、502、503的運動基本組820A、820B、820C進行關於正受監測的自動化系統,例如機器人操縱器300,的健康評估和預測診斷的比較(如本文於此之描述)。Still referring to Figures 5, 8A and 8B, in one aspect, once motion resolver 800 identifies and decomposes predetermined motion base sets 820A, 820B, 820C for respective base movements 501, 502, 503, mapping (as described above) In-situ process movements 501 ', 502', 503' to respective ones of the basic movements 501, 502, 503 are included among the opposing predetermined motion basic groups 820A, 820B, 820C to update the relative predetermined motion basic set 820A , 820B, 820C. In other aspects, the in-situ process motions 501', 502', 503' of the predetermined motion base sets 820A, 820B, 820C mapped to the opposite of the base movements 501, 502, 503 may be formed with the predetermined motion base set 820A. 820B, 820C A different group of different sports type groups. The updated predetermined motion basic group and/or the different group motion type group may be referred to as another predetermined motion group 830. As will be described herein, other predetermined motion basic sets 830A, 830B, 830C for respective in-situ process movements 501 ', 502', 503' are basic to motion for respective basic movements 501, 502, 503. Groups 820A, 820B, 820C make a comparison of health assessments and predictive diagnoses of the automated system being monitored, such as robotic manipulator 300 (as described herein).

如上所述,例如機器人操縱器306、311、400(或自動化材料處理平台300的其他合適的自動化設備)的健康評估藉由產生基本統計特徵(例如,操作在典型環境條件下的給定變數的行為的基線或統計表示)而被執行,該基本統計特徵對於機器人操縱器306、311、400的一組基本移動820、820A、820B、820C(參見圖8A)特徵化由機器人操縱器306、311、400輸出的的每個動態性能變數。As noted above, health assessments of, for example, robotic manipulators 306, 311, 400 (or other suitable automation devices of automated material processing platform 300) generate basic statistical characteristics (eg, given variables of a given environmental condition under typical environmental conditions) Performed by a baseline or statistical representation of the behavior, the basic statistical features are characterized by a set of basic movements 820, 820A, 820B, 820C (see FIG. 8A) of the robotic manipulators 306, 311, 400 by the robotic manipulators 306, 311 , each dynamic performance variable of the 400 output.

在一個態樣,使用自動化材料處理平台300的任何合適的處理器810P(其在一個態樣中係實質上地類似於處理器105)擷取/確定基線度量。處理器810P可以被包括在機器人控制器319、323、422、423A~423C、810之中以作為模組,處理器810P可以是可通信地耦合到機器人控制器319、323、422、423A~423C、810(和運動分解器800)的遠端處理器,或者處理器810P可以是與機器人控制器319、323、422、423A~423C、810(和運動分解器800)可通信地鏈接的不同處理器。處理器810P以任何合適的方式耦合到記錄系統801R,而在其他態樣中,處理器810P包括記錄系統801R。In one aspect, any suitable processor 810P (which is substantially similar to processor 105 in one aspect) is used to retrieve/determine baseline metrics using automated material processing platform 300. The processor 810P may be included in the robot controllers 319, 323, 422, 423A-423C, 810 as a module, and the processor 810P may be communicably coupled to the robot controllers 319, 323, 422, 423A-423C The remote processor of 810 (and motion decomposer 800), or processor 810P may be a different process communicatively linked with robot controllers 319, 323, 422, 423A-423C, 810 (and motion decomposer 800) Device. Processor 810P is coupled to recording system 801R in any suitable manner, while in other aspects, processor 810P includes recording system 801R.

基線度量藉由,例如,計算基本統計特徵的機率密度函數(PDF)來擷取/確定,其中機率函數可以表示為:The baseline metric is retrieved/determined by, for example, calculating a probability density function (PDF) of the underlying statistical characteristics, wherein the probability function can be expressed as:

其中μ是資料集平均值,x是動態性能變數,σ是標準偏差。圖9顯示了具有平均值和標準偏差的典型高斯分佈。圖9中還定義了規格上限和下限(分別為USL和LSL)。Where μ is the data set mean, x is the dynamic performance variable, and σ is the standard deviation. Figure 9 shows a typical Gaussian distribution with mean and standard deviation. The upper and lower specification limits (USL and LSL, respectively) are also defined in Figure 9.

相應的機器人操縱器306、311、400(參見圖2和圖3)的每個動態性能變數的基本統計特徵針對每個不同的基本移動類型(移動類型組至基本值)進行歸一化,該基本移動類型針對每個不同的基本移動類型/移動類型組特徵化特定於相應的機器人操縱器306、311、400的每個動態性能變數的標稱/基線。例如,對於預定運動基本組的每個運動而由每個動態性能變數的相應的機率密度函數PDF所特徵化的基本值(例如處理能力指數CpkBase )被確定,其中該動態性能變數係由相應的機器人操縱器306、311、400輸出。The basic statistical characteristics of each dynamic performance variable of the respective robotic manipulators 306, 311, 400 (see Figures 2 and 3) are normalized for each different basic movement type (moving type group to base value), which The basic movement type characterizes the nominal/baseline of each dynamic performance variable specific to the respective robotic manipulators 306, 311, 400 for each different basic movement type/moving type group. For example, a base value (eg, a processing capability index C pkBase ) characterized by a respective probability density function PDF of each dynamic performance variable for each motion of the predetermined motion basic set is determined, wherein the dynamic performance variable is determined by The robot manipulators 306, 311, 400 output.

通常,處理能力指數Cpk 可以被定義為:In general, the processing power index C pk can be defined as:

其中σ是標準偏差,μ是為相應的變數所收集的樣本的平均值。處理能力指數Cpk 可以用作為度量以表示相應的動態性能變數的基線,因為處理能力指數Cpk 擷取了足夠大以提供有意義的統計資料的總體樣本的均值和標準偏差。可以以任何合適的方式來確定上限和下限規格限值USL、LSL,例如藉由將上限和下限規格限值USL、LSL定義為相應的受測量的機器人操縱器306、311、400的測量標準偏差的函數。例如:Where σ is the standard deviation and μ is the average of the samples collected for the corresponding variables. The processing power index C pk can be used as a measure to represent the baseline of the corresponding dynamic performance variable because the processing power index C pk draws the mean and standard deviation of the overall sample that is large enough to provide meaningful statistics. The upper and lower specification limits USL, LSL may be determined in any suitable manner, for example by defining the upper and lower specification limits USL, LSL as the measured standard deviation of the respective measured robotic manipulators 306, 311, 400. The function. E.g:

其中N可以是大於3的整數,使得Cpk 可以是大於1的數。作為一個例子,如果N=6,那麼基線處理能力指數CpkBase 可以被定義為:Where N may be an integer greater than 3 such that C pk may be a number greater than one. As an example, if N=6, then the baseline processing power index C pkBase can be defined as:

在一個態樣,CpkBase 可以被設定為2.0並且理論上地或經驗上地基於+/-6σ的基線的資料組平均μ以識別上限和下限規格限值USL、LSL,使得99.9%的移動樣本被擷取(如圖9和10所示)。在其他態樣中,當限值被很好地建立時,例如峰值扭矩限值、最大安定時間等,則上限和下限規格限值USL、LSL可以在每個信號的基礎上來加以配置。In one aspect, C pkBase can be set to 2.0 and theoretically or empirically based on a +/- 6 sigma baseline data set mean μ to identify upper and lower limit specification limits USL, LSL, such that 99.9% of the moving samples It is captured (as shown in Figures 9 and 10). In other aspects, when the limits are well established, such as peak torque limits, maximum settling times, etc., the upper and lower specification limits USL, LSL can be configured on a per signal basis.

在一個態樣中,亦請參照圖2A,用於每個相對的不同的獨特裝置App1~Appn的相應的歸一化值CpkBase(1-n) 和其他的值CpkOther(1-n) 被記錄在任何合適的控制器中,例如裝置App1~Appn中的相應的一個裝置的控制器。 將與不同的獨特裝置App1~Appn中的相應的一個裝置獨特地相關的歸一化值CpkBase(1-n) 和其他值CpkOther(1-n) 進行比較,以針對各個不同的獨特裝置App1~Appn在裝置的基礎之上於一個裝置上決定相應的性能惡化率(由,例如,相應的線性趨勢模型LTM所指示的,參見圖11),該相應的性能惡化率在本文中將更詳細地描述。例如,每個相應的裝置App1~Appn具有如圖11所示的相應的線性趨勢模型LTM1~LTMn。In one aspect, please also refer to FIG. 2A for the corresponding normalized value C pkBase(1-n) and other values C pkOther(1-n) for each of the relatively different unique devices App1 to Appn. It is recorded in any suitable controller, such as a controller of a corresponding one of the devices App1 to Appn. A normalized value C pkBase(1-n) uniquely associated with a corresponding one of the different unique devices App1 - Appn is compared with other values C pkOther(1-n) for each different unique device App1~Appn determine the corresponding performance degradation rate on a device based on the device (as indicated by, for example, the corresponding linear trend model LTM, see Figure 11), the corresponding performance degradation rate will be more in this paper. describe in detail. For example, each of the respective devices App1 to Appn has a corresponding linear trend model LTM1 to LTMn as shown in FIG.

一旦針對每個測量變數(原始的和派生的)建立了基線度量,在相應的機器人操縱器306、311、400的操作期間對一批量的原位過程移動501’~503’進行採樣。例如,原位過程移動501’、502’、503’係由控制器,例如,控制器319、323、422、423A、423B、423C、810所產生,以識別對受監視的機器人操縱器306、311、400為特定的另一個統計特徵。如上所述,用於原位過程移動的組的每個動態性能變數被映射到相應的基本移動(例如基本移動類型/類型組-參見等式1、2和3)。如上所述,所映射的原位過程運動501’、502’、503’被用於定義相應的機器人操縱器306、311、400的其他的預定運動組830、830A~830C。Once a baseline metric is established for each measurement variable (original and derived), a batch of in-situ process movements 501'-503' are sampled during operation of the respective robotic manipulators 306, 311, 400. For example, in-situ process movements 501 ', 502', 503' are generated by controllers, such as controllers 319, 323, 422, 423A, 423B, 423C, 810, to identify pairs of monitored robotic manipulators 306, 311, 400 are specific statistical features. As described above, each dynamic performance variable of the group for in-situ process movement is mapped to a corresponding basic movement (eg, basic movement type/type group - see equations 1, 2, and 3). As described above, the mapped in-situ process motions 501', 502', 503' are used to define other predetermined motion groups 830, 830A-830C of the respective robotic manipulators 306, 311, 400.

如同基線移動501~503一樣,針對每個不同的原位(另一個)移動類型/類型組(例如,其他預定運動組830、830A~830C),相應的機器人操縱器306、311、400的每個動態性能變數的原位過程移動501’~503’過程(另一個)統計特徵被映射到相應的預定運動基本組820、830A~830C並且被歸一化為原位(另一個)值CpkOther ,該原位(另一個)值CpkOther 對於不同的原位移動類型(其可以是簡單移動或複雜移動)中的每一個特徵化相應的機器人操縱器306、311、400的每個動態性能變數的原位性能。原位(另一個)值CpkOther 是處理能力指數,其係由機器人操縱器306、311、400所輸出的每個動態性能變數的機率密度函數PDF來加以特徵化,該原位(另一個)值CpkOther 實現其他的預定運動組830、830A~830C之所映射的原位過程運動501’~503’。原位(其它的)值CpkOther 參考基線的上限和下限USL、LSL以相對於預定運動基本組來定位其他預定運動組,就如同圖10所示(其中其他的預定運動組被識別為“新批次”並且預定運動基本組被識別為“基線”)。CpkOther 是一個處理能力指數,可以被定義為:As with the baseline movements 501-503, for each different in-situ (other) movement type/type group (eg, other predetermined motion groups 830, 830A-830C), each of the respective robotic manipulators 306, 311, 400 The in-situ process movements 501'-503' of the dynamic performance variables (other) statistical features are mapped to the respective predetermined motion basic groups 820, 830A-830C and normalized to the home position (other) value C pkOther The in-situ (other) value C pkOther characterizes each dynamic performance variable of the respective robotic manipulator 306, 311, 400 for each of a different in-situ movement type (which may be a simple movement or a complex movement) In-situ performance. The in-situ (other) value C pkOther is a processing capability index that is characterized by a probability density function PDF of each dynamic performance variable output by the robotic manipulators 306, 311, 400, which is in situ (another) The value C pkOther implements the mapped in-situ process motions 501'-503' of the other predetermined motion groups 830, 830A-830C. The in-situ (other) values C pkOther reference the upper and lower limits of the baseline USL, LSL to locate other predetermined motion groups relative to the predetermined motion base group, as shown in Figure 10 (where the other predetermined motion groups are identified as "new" The batch "and the predetermined motion basic group is identified as "baseline"). C pkOther is a processing power index that can be defined as:

其中i為受評估的CpkOther 的一個迭代。歸一化的原位(另一個)值CpkOther 針對被監測的每個相應的動態性能變數(例如,針對每個移動類型和橫移類型)與的歸一化基本值CpkBase 進行比較。Where i is an iteration of the evaluated C pkOther . The normalized in-situ (other) value C pkOther is compared to the normalized base value C pkBase for each respective dynamic performance variable being monitored (eg, for each movement type and traverse type).

原位(另一個)值CpkOther 和基本值CpkBase 之間的比較可以由處理器810P或自動化材料處理平台300的任何其他合適的控制器來執行,其中相應的機器人操縱器306、311、400是預定運動基本組820、820A~820C和其他的預定運動組830、830A~830C(以及對應的原位(另一個)值CpkOther 和基本值CpkBase )兩者的共同運送裝置。原位(另一個)值CpkOther 與基本值CpkBase 之間的比較藉由提供追蹤每個動態性能變數偏離或漂移其基線(見圖10)程度的多寡來針對特定裝置(例如相應的機器人操縱器306、311、400)來實現被監測的每個動態性能變數的健康評估。對於每個性能變數所作的健康評估可以被定義為相對於其基線的相對偏差,定義如下:The comparison between the in-situ (other) value C pkOther and the base value C pkBase may be performed by the processor 810P or any other suitable controller of the automated material processing platform 300, wherein the respective robotic manipulators 306, 311, 400 It is a common transport device that pre-determines the motion basic groups 820, 820A-820C and other predetermined motion groups 830, 830A-830C (and corresponding in-situ (other) values C pkOther and base values C pkBase ). The comparison between the in-situ (other) value C pkOther and the base value C pkBase is directed to a particular device (eg, corresponding robot manipulation by providing a measure of how much each dynamic performance variable deviates or drifts its baseline (see Figure 10). The 306, 311, 400) implements a health assessment of each dynamic performance variable being monitored. The health assessment for each performance variable can be defined as the relative deviation from its baseline, defined as follows:

這意味著100%的評估表示原位(另一個)值CpkOther 和基本值CpkBase 之間的完美統計匹配。上面的等式(10)表示對於給定的動態性能變數的評估的一個例子。在其他態樣,可以使用其他的測量評估方法,例如測量超出基線的上限和下限值USL和LSL的發生次數。圖10示例出了根據一給定的動態性能變數之統計,對其進行健康評估計算的一個例子。在圖10所示的例子中,20%的批量資料樣本位於基線範圍之外,則原位(另一個)值CpkOther 使受到處於不利益之地位。This means that a 100% evaluation represents a perfect statistical match between the in-situ (other) value C pkOther and the base value C pkBase . Equation (10) above represents an example of an evaluation of a given dynamic performance variable. In other aspects, other measurement evaluation methods can be used, such as measuring the number of occurrences of the upper and lower limits of the USL and LSL beyond the baseline. Figure 10 illustrates an example of a health assessment calculation based on a given dynamic performance variable. In the example shown in Figure 10, 20% of the bulk data samples are outside the baseline range, and the in-situ (other) value C pkOther is placed in an unfavorable position.

仍然參照圖10,同樣參照圖11和圖12,可以根據原位(另一個)值CpkOther 偏離基本值CpkBase 的程度來定義相應的機器人操縱器306、311、400的每個動態性能變數的健康評估。可以根據規定的閾值來定義變化的程度,例如像是“警告”和“錯誤”,其中“警告”可以指“需要注意”並且“錯誤”可以指“要求立即行動”,其將在下面描述。追蹤原位(另一個)值CpkOther (和基本值CpkBase )的另一個態樣是這樣的一個追蹤提供了趨勢分析,即當相應的動態性能變數預計達到變化程度的不同等級時,可以評估或推知。Still referring to FIG. 10, also referring to FIG. 11 and FIG. 12, each dynamic performance variable of the respective robotic manipulators 306, 311, 400 can be defined according to the extent to which the in-situ (other) value C pkOther deviates from the base value C pkBase . Health assessment. The degree of change can be defined according to a prescribed threshold, such as, for example, "warning" and "error", where "warning" can mean "need to be noted" and "error" can mean "requiring immediate action", which will be described below. Another way to track the in-situ (other) value C pkOther (and the base value C pkBase ) is that such a trace provides a trend analysis that can be evaluated when the corresponding dynamic performance variable is expected to reach a different level of change. Or infer.

確定每個動態性能變數偏離或漂移其基線的量為每個動態性能變數提供趨勢資料TD,其中趨勢資料TD特徵化相應的動態性能變數的惡化趨勢。趨勢資料TD可以被記錄在自動化材料處理平台300的任何合適的暫存器TDR中。圖11繪示出了示例性動態性能變數的示例性趨勢資料圖表;其中來自不同批樣本的預定時間點的原位(另一個)值CpkOther 和基本值CpkBase 的比較之評估A1~An被繪製在圖表上。Determining the amount by which each dynamic performance variable deviates or drifts from its baseline provides a trend data TD for each dynamic performance variable, wherein the trend data TD characterizes the deteriorating trend of the corresponding dynamic performance variable. The trend data TD can be recorded in any suitable register TDR of the automated material processing platform 300. 11 depicts an exemplary trend profile for an exemplary dynamic performance variable; where the evaluation of the in-situ (other) value C pkOther and the base value C pkBase from a predetermined time point of a different batch of samples is evaluated by A1 - An Draw on the chart.

圖11中的斜線表示線性趨勢模型LTM、LTM1~LTMn,其可以以任何合適的方式獲得,例如藉由使用最小平方法;而在其他態樣,可以使用任何合適的趨勢模型。特徵化,例如,機器人操縱器306(或自動化材料處理平台300(參見圖2)的任何其他合適的裝置)的性能惡化趨勢的趨勢資料以及自動化材料處理平台300的數個不同的獨特的裝置App1~Appn(參見圖2A)中的每一個被記錄在自動化材料處理平台300的,例如,任何合適的控制器/處理器(像是,例如,相應的裝置的控制器或工具控制器314或處理器810P)的記錄表之中。在一個態樣,處理器810P結合與運送裝置(例如運送裝置306)相對應的性能惡化趨勢以及自動化材料處理平台300的多個不同的獨特裝置App1~Appn中的每一個,以確定特徵化自動化材料處理平台300的性能惡化的系統性能惡化趨勢。The diagonal lines in Figure 11 represent linear trend models LTM, LTM1 - LTMn, which may be obtained in any suitable manner, such as by using a least squares method; in other aspects, any suitable trend model may be used. Characterization, for example, trending data for performance degradation trends of robotic manipulator 306 (or any other suitable device of automated material handling platform 300 (see FIG. 2)) and several different unique devices App1 of automated material handling platform 300 Each of ~Appn (see FIG. 2A) is recorded on the automated material processing platform 300, for example, any suitable controller/processor (such as, for example, a controller or tool controller 314 of the corresponding device or processing) 810P) in the record table. In one aspect, processor 810P combines performance degradation trends corresponding to shipping devices (eg, shipping device 306) and each of a plurality of different unique devices App1 - Appn of automated material processing platform 300 to determine characterization automation The performance of the material processing platform 300 deteriorates as the system performance deteriorates.

參考線性趨勢模型LTM,這個線性趨勢模型LTM(其可以表示獨特的裝置,像是機器人操縱器306、機器人操縱器311、對準器304、自動化材料處理平台300的電源供應器PS等等其中之一者)可以被用來預測時間twarn 作為用於評估測量之估計的時間(或週期)以達到規定的警告閾值。同樣地,時間terror 可以被估計為達到機器人操縱器306、311、400的操作不被推薦為繼續的點的時間(或週期)。如圖11所示,針對每個不同的獨特裝置App1~Appn確定的線性趨勢模型LTM1~LTMn。線性趨勢模型LTM1~LTMn可以指示系統(例如自動化材料處理平台300)的整體健康狀況以及每個不同的獨特裝置App1~Appn的健康狀況。亦參照圖2,例如,線性趨勢模型LTM1可以對應於電源供應器PS,線性趨勢模型LTM2可以對應於機器人操縱器306,線性趨勢模型LTM3可以對應於機器人操縱器311並且線性趨勢模型LTMn可對應於對準器307。Referring to the linear trend model LTM, this linear trend model LTM (which can represent unique devices such as robotic manipulator 306, robotic manipulator 311, aligner 304, power supply PS of automated material handling platform 300, etc.) One) can be used to predict the time t warn as the estimated time (or period) for evaluating the measurements to reach the specified warning threshold. Likewise, the time t error can be estimated as the time (or period) at which the point at which the operation of the robotic manipulators 306, 311, 400 is not recommended to continue. As shown in FIG. 11, the linear trend models LTM1 to LMn determined for each of the different unique devices App1 to Appn. The linear trend models LTM1 - LTMn may indicate the overall health of the system (eg, automated material handling platform 300) and the health of each of the different unique devices App1 - Appn. Referring also to FIG. 2, for example, the linear trend model LTM1 may correspond to the power supply PS, the linear trend model LTM2 may correspond to the robot manipulator 306, the linear trend model LTM3 may correspond to the robot manipulator 311 and the linear trend model LTMn may correspond to Aligner 307.

如同在圖11和圖12中看到的,趨勢資料TD還可以藉由,例如,任何合適的顯示器140來提供給要被供應至,例如,機器人操縱器306、311、400的操作器的健康評估警告。例如,可以從控制器319、323、422、423A、423B、423C、810分開的或包含在其中的自動化材料處理平台300(例如處理器810P)的任何合適的控制器可以包括趨勢/評估單元870(圖8A),該趨勢/評估單元870被配置以發送預定的信號以向操作器指示機器人操縱器306、311、400的健康評估。在其它態樣,趨勢/評估單元870可以是控制器319、323、422、423A、423B、423C、810之一部分。例如,當趨勢資料TD達到第一預定評估值WS時,處理器810P可以發送或者導致在視覺上以例如黃色顯示“警告”指示,當趨勢資料TD達到第二預定評估值ES(例如,低於第一預定評估值WS)時可以將“錯誤”指示呈現為紅色,並且當趨勢資料高於第一預定評估值WS時,可以以綠色呈現“正常”指示(例如,所有動態性能變數在預定操作限值內)。在其它態樣,自動化系統的操作狀態(例如,正常、警告和錯誤)可以在聽覺上、視覺上或以任何其他適當的方式呈現。As seen in Figures 11 and 12, the trend data TD can also be provided to the health of the operator to be supplied to, for example, the robotic manipulators 306, 311, 400, for example, by any suitable display 140. Evaluation warning. For example, any suitable controller that may be separate from controller 319, 323, 422, 423A, 423B, 423C, 810 or included in automated material processing platform 300 (eg, processor 810P) may include trend/evaluation unit 870 (FIG. 8A), the trend/evaluation unit 870 is configured to transmit a predetermined signal to indicate to the operator the health assessment of the robotic manipulators 306, 311, 400. In other aspects, trend/evaluation unit 870 can be part of controllers 319, 323, 422, 423A, 423B, 423C, 810. For example, when the trend profile TD reaches the first predetermined assessment value WS, the processor 810P may send or cause a "warning" indication to be visually displayed, for example, in yellow, when the trend profile TD reaches a second predetermined assessment value ES (eg, below The "error" indication may be presented in red when the first predetermined evaluation value WS), and may be presented in green when the trend data is higher than the first predetermined evaluation value WS (eg, all dynamic performance variables are in a predetermined operation) Within the limits). In other aspects, the operational state of the automated system (eg, normal, warning, and error) can be presented audibly, visually, or in any other suitable manner.

在一個態樣中,處理器810P匯集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢(例如最低百分比評估)的動態性能變數並且預測具有性能低於預定的性能狀態的運送裝置的發生。例如,可以測量機器人操縱器306、311、400的整體健康狀況,作為在給定的一批資料樣本中受監測的所有動態性能變數中之最差情況評估。例如,設想測量五個動態性能變數Var1~Var5(像是,例如,T1位置_實際、Z加速度_實際,匯流排電動機電壓、T2溫度和用於說明所比較的不同變數的theta指令位置)並且將其與它們各自的基線進行比較,其中結果評估值為:In one aspect, processor 810P aggregates the dynamic performance variables of the at least one dynamic performance variable output by the transport device with the highest degradation trend (eg, the lowest percentage estimate) and predicts the occurrence of the transport device having a performance below a predetermined performance state. . For example, the overall health of the robotic manipulators 306, 311, 400 can be measured as the worst case assessment of all dynamic performance variables monitored in a given batch of data samples. For example, it is envisaged to measure five dynamic performance variables Var1 to Var5 (such as, for example, T1 position_actual, Z acceleration_actual, bus motor voltage, T2 temperature, and theta command position for explaining the different variables being compared) and Compare them to their respective baselines, where the results are evaluated as:

表9:評估值 Table 9: Evaluation values

在上面的例子中,動態性能變數Var5的評估是五個動態性能變數Var1~Var5中的最低評估,並且可以用來表示機器人操縱器306、311、400的總體電流健康評估,該操縱器306、311、400的健康被所有的五個動態性能變數Var1~Var5監測。這可以獨立地從這些動態性能變數Var1~Var5的每一個的物理性質和含義來完成,因為基於這些評估是針對它們各自的基線的相對測量的事實,評估可以直接地在所有的這些實體上進行比較。In the above example, the evaluation of the dynamic performance variable Var5 is the lowest of the five dynamic performance variables Var1 to Var5 and can be used to represent the overall current health assessment of the robotic manipulators 306, 311, 400, the manipulator 306, The health of 311, 400 was monitored by all five dynamic performance variables Var1 - Var5. This can be done independently from the physical properties and meaning of each of these dynamic performance variables Var1 to Var5, since based on the fact that these evaluations are relative measurements of their respective baselines, the assessment can be performed directly on all of these entities. Comparison.

作為上述的性能變數比較的例子,處理器810P將運送裝置306的性能惡化趨勢與多個不同的獨特裝置App1~Appn中的每一個的性能惡化趨勢進行比較,並且確定運送裝置306的性能惡化趨勢或者該多個不同的獨特裝置App1~Appn中的另一個的性能惡化趨勢是否為控制性能惡化趨勢以及控制性能惡化趨勢是否為系統的性能惡化趨勢的決定因素。例如,在時間ts ,用於機器人操縱器306的線性趨勢模型LTM2具有最低評估,其中該最低評估被認為是關於表9所描述的自動化材料處理平台300的整體健康狀況。隨著時間的推移,其他的線性趨勢模型(像是線性趨勢模型LTM1)可能會顯示更快的性能下降率。在這種情況下,例如,可以基於,例如,在時間t0 時的線性趨勢模型LTM1來判斷自動化材料處理平台的總體健康狀況,其中警告是基於在時間twarnLTM1 時的線性趨勢模型LTM1而產生以及錯誤是基於在時間terrorLTM1 時的線性趨勢模型LTM1而產生。As an example of the above-described performance variable comparison, the processor 810P compares the performance deterioration tendency of the transport device 306 with the performance deterioration tendency of each of the plurality of different unique devices App1 to Appn, and determines the performance deterioration tendency of the transport device 306. Or whether the performance deterioration tendency of the other of the plurality of different unique devices App1 to Appn is a determining factor of the control performance deterioration tendency and the control performance deterioration tendency as a performance deterioration tendency of the system. For example, at time t s , the linear trend model LTM2 for the robotic manipulator 306 has a minimum estimate, which is considered to be the overall health of the automated material handling platform 300 described with respect to Table 9. Over time, other linear trend models (like the linear trend model LTM1) may show a faster rate of performance degradation. In this case, for example, the overall health of the automated material handling platform can be determined based on, for example, the linear trend model LTM1 at time t 0 , where the warning is generated based on the linear trend model LTM1 at time t warnLTM1 And the error is generated based on the linear trend model LTM1 at time t errorLTM1 .

儘管自動化材料處理系統的整體健康狀況可由具有在任何給定時間內的最低評估值的線性趨勢模型來確定,但線性趨勢模型還提供了關於哪個裝置App1~Appn是造成系統錯誤或警告的原因或主要的來源的指紋或指示。例如,電源供應器PS可能,例如,藉由不向,例如,機器人操縱器306(對應於線性趨勢模型LTM2)提供足夠的電壓而影響其他的裝置App1~Appn。如圖11所示,警告可能會在時間twarnLTM1 產生以作為電源供應器PS性能惡化的結果。針對機器人操縱器306在性能方面的惡化,於時間twarnLTM2 處可能會產生警告;然而,如果沒有由電源供應器PS向機器人操縱器306所提供之不足的電壓,機器人操縱器306可以正常地運作。這兩個警告指示了電源供應器PS和機器人操縱器306應該被檢查以進行修理,並且暗示了在電源供應器PS的性能惡化和機器人操縱器306的性能惡化之間可能存在一些相關性。While the overall health of an automated material handling system can be determined by a linear trend model with a minimum estimate at any given time, the linear trend model provides information about which device App1 - Appn is causing a system error or warning or The primary source of fingerprints or instructions. For example, the power supply PS may affect other devices App1 - Appn, for example, by not providing sufficient voltage to, for example, the robotic manipulator 306 (corresponding to the linear trend model LTM2). As shown in FIG. 11, a warning may be generated at time t warnLTM1 as a result of deterioration of performance of the power supply PS. For performance degradation of the robotic manipulator 306, a warning may be generated at time twarnLTM2 ; however, if there is no insufficient voltage provided by the power supply PS to the robotic manipulator 306, the robotic manipulator 306 may operate normally. . These two warnings indicate that the power supply PS and the robot manipulator 306 should be checked for repair, and suggest that there may be some correlation between the performance degradation of the power supply PS and the performance degradation of the robotic manipulator 306.

於另一個態樣中,如圖5A和圖8A所示,所揭露的實施例的態樣可以將系統的健康狀況作為聚集的特徵化和健康預測之組合來提供。需要注意的是,系統之聚集的特徵化和健康預測之組合係不同於組合/聚集系統組件之不同的惡化趨勢以確定整個系統的惡化趨勢。例如,聚集的特徵化和健康預測之組合可以被認為類似於確定具有μ個裝置的系統的惡化趨勢,其中系統及其多個裝置被視為單個獨特裝置,同時還單獨地確定如上所述之系統的每個獨特裝置的惡化趨勢。於這個態樣中,如上所述,基本移動501~503和原位過程運動501’~503’與分別的獨特裝置獨特地相關。基本移動501~503和原位過程運動501’~503’對於通用類型的每個不同的裝置可以是不同的(例如機器人操縱器306的基本移動501~503和原位過程運動501’~503’可以不同於機器人操縱器311的基本移動501~503和原位過程運動501’~503’)。可以藉由基本運動組890(參見圖8A)來確定用於獨特系統(例如自動化材料處理平台300)的基本運動組820、820A~820C和其他的預定運動組830、830A~830C,其中基本運動組890的基本運動是藉由組合多個一個或多個基本運動501~503來確定的,其中該多個一個或多個基本運動中的每一個係與獨特裝置(像是如上表1及表2中所描述的那些裝置)獨特地相關,該獨特裝置係通信地連接(例如電源供應器、機器人操縱器、晶圓感測器等)以形成單個聚集運動890AG。單個聚集運動與獨特系統(例如自動化材料處理平台300)和(在單個聚集運動中操作的每個裝置之)μ個相關的組合的關聯動態性能變數獨特地相關聯(例如,),其中S0,μ 是純量值,Sμ+1 是向量值,以便產生系統性能歸一化值並且對於映射的運動產生與μ個裝置的系統獨特地相關的另一個值In another aspect, as shown in Figures 5A and 8A, aspects of the disclosed embodiments can provide the health of the system as a combination of aggregated characterization and health prediction. It should be noted that the combination of characterization and health prediction of the aggregation of the system is different from the different deterioration trends of the combination/aggregation system components to determine the deterioration trend of the entire system. For example, a combination of aggregated characterization and health prediction can be considered similar to determining a deterioration trend for a system with μ devices, where the system and its multiple devices are treated as a single unique device, while also separately determining as described above The deterioration trend of each unique device of the system. In this aspect, as described above, the basic movements 501-503 and the in-situ process motions 501'-503' are uniquely related to the respective unique devices. The basic movements 501 - 503 and the in-situ process motions 501 ' - 503 ' may be different for each different device of the general type (eg, basic movements 501 - 503 of the robotic manipulator 306 and in situ process motions 501 ' - 503 ' It may be different from the basic movements 501 to 503 of the robot manipulator 311 and the in-situ process motions 501' to 503'). The basic motion groups 820, 820A-820C and other predetermined motion groups 830, 830A-830C for a unique system (eg, automated material processing platform 300) may be determined by the basic motion group 890 (see FIG. 8A), where the basic motion The basic motion of group 890 is determined by combining a plurality of one or more basic motions 501-503, wherein each of the plurality of one or more base motions is associated with a unique device (such as Table 1 and Table 1 above). The devices described in 2 are uniquely related, the unique devices being communicatively coupled (eg, a power supply, robotic manipulator, wafer sensor, etc.) to form a single aggregated motion 890AG. A single aggregate motion is uniquely associated with the associated dynamic performance variables of a unique combination of unique systems (eg, automated material processing platform 300) and (for each device operating in a single aggregate motion) (eg, ), where S 0, μ is a scalar value, and S μ+1 is a vector value to produce a system performance normalized value And for the mapped motion to produce another value that is uniquely related to the system of the μ devices .

在一個態樣中,參考圖14,其中一個元件(例如表1和2中列出的元件)於系統(例如自動化材料處理平台300)中被替換的情況下,可能會藉由重複系統健康測定來產生系統的健康測定(圖14方塊1400),其中重複系統健康測定包括(1)重複系統(或者至少被替換元件的裝置)的每個元件的惡化趨勢(如由線性趨勢模型LTM、LTM1~LTMn所指示的)的測定並且結合元件的惡化趨勢以從與,例如,表9(圖14,方塊1401)有關之所描述的惡化趨勢中之控制的一個來確定總體系統健康狀況;(2)確定如上所述(圖14,方塊1402)之組合的聚集的特徵化之新的系統聚集的惡化趨勢;(3)識別替換的元件是否改善或降低了系統的總體惡化趨勢,以及如果新的元件降低了惡化趨勢,則再次替換元件,並且/或著混合和匹配元件以改善總體系統惡化趨勢(圖14,方塊1403)。In one aspect, referring to Figure 14, where one of the components (e.g., the components listed in Tables 1 and 2) is replaced in a system (e.g., automated material handling platform 300), it may be determined by repeating the system health To generate a system of health measurements (block 14 1400 of Figure 14), wherein the repeating system health assay includes (1) a deterioration trend of each component of the repeating system (or at least the device being replaced) (eg, by the linear trend model LTM, LTM1~) The determination of the LTMn) and the deterioration trend of the combined elements determine the overall system health from one of the controlled trends associated with, for example, Table 9 (Fig. 14, block 1401); (2) Determining the deterioration trend of the aggregated characterization of new system aggregates as described above (Fig. 14, block 1402); (3) identifying whether the replaced component improves or reduces the overall deterioration trend of the system, and if new components Reducing the tendency to deteriorate, the components are replaced again, and/or the mixing and matching components are used to improve the overall system degradation trend (Fig. 14, block 1403).

在一個態樣中,權衡惡化趨勢(圖15,方塊1500)的重要性可以由系統(例如工具控制器314)的任何合適的處理器應用到系統的每個元件的線性趨勢模型LTM、LTM1~LTMn。例如,當應用權衡重要性時,工具控制器314可以確定任何一個或更多個元件的惡化趨勢是否正在控制(例如最大程度惡化)或以其他方式顯示在期望故障時間(圖15,方塊1501)的預定時間範圍之外的預測故障時間;或者更多個元件中的任何一個可以以其他方式被識別為第一個被預測為會故障的元件,並且可以在被預測為第一個故障的元件和被預測為最後一個故障的元件(圖15,方塊1502)之間確定一個範圍(例如時間範圍)。過往故障的歷史記錄(如果有的話)也可以被確定並儲存在系統的記憶體中並由工具控制器314來檢視以確定哪些元件(如果有的話)有成為第一個故障之傾向(圖15,方塊1503)。根據上述所做成的確定,可以經由工具控制器314確定元件的故障頻率是否與系統不一致(例如,其他元件的故障頻率)(圖15,方塊1504)。工具控制器314還可以識別與系統性能有關的元件特性(例如,系統是否可用於與故障元件或者不能與故障元件一起工作)(圖15,方塊1505)。在一個態樣中,與系統性能相關的元件特性可以被分類為關鍵的(例如當系統不能在沒有元件的情況下運行)或例行工作(系統可以在沒有元件的情況下運行)。元件特性可以包括但不限於元件的首要性、找到元件之替換的難度、系統內之元件的可及性(元件是否易於可及以替換/難以存取以及難以替換)、元件的封裝(例如,機器人操縱器中的電動機若是故障,則需要更換機器人操縱器,然而如故障者為電源供應器則僅需要更換電源供應器)或可能影響系統停機時間和/或元件替換之可用性的其他因素。In one aspect, the importance of weighing the deterioration trend (Fig. 15, block 1500) can be applied to the linear trend model LTM, LTM1~ of each component of the system by any suitable processor of the system (e.g., tool controller 314). LTMn. For example, when the application balances the importance, the tool controller 314 can determine whether the deterioration trend of any one or more of the components is being controlled (eg, to the greatest extent worse) or otherwise displayed at the desired failure time (FIG. 15, block 1501). The predicted failure time outside the predetermined time range; or any of the more components may be otherwise identified as the first component predicted to be faulty, and may be the component predicted to be the first failure A range (e.g., time range) is determined between the component predicted to be the last fault (Fig. 15, block 1502). The history of past faults (if any) can also be determined and stored in the memory of the system and viewed by tool controller 314 to determine which components, if any, have a tendency to become the first fault ( Figure 15, block 1503). Based on the determination made above, it may be determined via tool controller 314 whether the frequency of failure of the component is inconsistent with the system (e.g., the frequency of failure of other components) (Fig. 15, block 1504). The tool controller 314 can also identify component characteristics related to system performance (eg, whether the system is available for operation with or without the failed component) (FIG. 15, block 1505). In one aspect, component characteristics related to system performance can be classified as critical (eg, when the system cannot operate without components) or routinely (the system can operate without components). Component characteristics may include, but are not limited to, the primacy of the component, the difficulty of finding replacement of the component, the accessibility of components within the system (whether the component is easily accessible for replacement/hard to access, and difficult to replace), the packaging of the component (eg, If the motor in the robotic manipulator fails, the robotic manipulator needs to be replaced. However, if the faulty person is a power supply, only the power supply needs to be replaced) or other factors that may affect the system downtime and/or the availability of component replacement.

對於每個元件的惡化趨勢所給予的權衡重要性可以基於元件的故障頻率和與系統性能有關的元件特性而藉由,例如,工具控制器314來確定。對元件的惡化趨勢進行權衡重要性提高了或減少了元件的惡化趨勢對系統整體的惡化趨勢的影響,其中對整個系統健康之評估是基於系統中每個元件的已進行權衡重要性的惡化趨勢。The trade-off importance given to the deterioration trend of each component can be determined by, for example, the tool controller 314 based on the component's failure frequency and component characteristics associated with system performance. The trade-off of the deteriorating trend of components increases or decreases the impact of component degradation on the overall deterioration of the system, where the assessment of overall system health is based on the deteriorating trend of the trade-offs of each component in the system. .

作為非限制性的例子,對應於剛被替換/修復的元件的線性趨勢模型可以具有比已經服務一段時間的元件較少的權重,使得剛剛被替換/修復的元件對於整個系統的健康狀況的判斷要比已經服務較長一段時間的元件較少的影響。在另一態樣中,可以對線性趨勢模型LTM、LTM1~LTMn進行權衡重要性,使得已知頻繁失效的元件的線性趨勢模型不會影響整個系統在健康狀況上的判斷,或只有限度的影響。在其他態樣中,系統的健康評估可以不包括應用於線性趨勢模型LTM、LTM1~LTMn的任何加權因子。As a non-limiting example, a linear trend model corresponding to an element that has just been replaced/repaired may have less weight than a component that has been serving for a period of time, such that the component that has just been replaced/repaired has a judgment of the health of the entire system. It has less impact than components that have been serving for a long time. In another aspect, the linear trend models LTM, LTM1~LTMn can be weighed so that the linear trend model of components that are known to be frequently ineffective does not affect the overall system's health judgment, or only the impact of the limit. . In other aspects, the health assessment of the system may not include any weighting factors applied to the linear trend models LTM, LTM1 - LTMn.

現在參照圖2、3、5A、8A、8B和13,將根據所揭露的實施例的態樣描述示例性健康評估的操作。使用可通信地耦合到裝置控制器319、323、422、423A~423C、810的記錄系統801R來記錄預定操作資料(圖13,方塊1300)。預定操作資料體現了由運送裝置輸出的至少一個動態性能變數,該預定操作資料實現了預定基本運動的預定運動基本組820、820A、820B、820C。利用,例如,可通信地耦合到記錄系統801R的處理器810P來確定基本值CpkBase (圖13,方塊1310)。基本值CpkBase 是由運送裝置306、311、400針對預定運動基本組820、820A、820B、820C的每個運動而輸出的每個動態性能變數的機率密度函數PDF來加以特徵化。Referring now to Figures 2, 3, 5A, 8A, 8B and 13, the operation of an exemplary health assessment will be described in accordance with aspects of the disclosed embodiments. The predetermined operational data is recorded using a recording system 801R communicatively coupled to the device controllers 319, 323, 422, 423A-423C, 810 (Fig. 13, block 1300). The predetermined operational data embodies at least one dynamic performance variable output by the transport device that implements a predetermined set of basic motions 820, 820A, 820B, 820C of the predetermined basic motion. The base value C pkBase is determined using, for example, a processor 810P communicatively coupled to the recording system 801R (FIG. 13, block 1310). The base value C pkBase is characterized by a probability density function PDF of each dynamic performance variable output by the transport device 306, 311, 400 for each motion of the predetermined motion base set 820, 820A, 820B, 820C.

藉由,例如,可通信地耦合到裝置控制器319、323、422、423A~423C、810的運動分解器800來分解用於原位過程運動501’~503’的命令(圖13,方塊1320)。相應於被分解的原位過程運動命令並由運送裝置306、311、400所實現的原位過程運動501’~503’映射到預定運動基本組820、820A、820B、820C的預定基本運動501~503。運送裝置的另一個預定運動組830、830A、830B、830C與映射的原位過程運動501’~503’一起被定義(圖13,方塊1330)。The commands for the in-situ process motions 501'-503' are decomposed by, for example, the motion resolver 800 communicatively coupled to the device controllers 319, 323, 422, 423A-423C, 810 (FIG. 13, block 1320). ). The in-situ process motions 501'-503' corresponding to the resolved in-situ process motion commands and implemented by the transport devices 306, 311, 400 map to predetermined predetermined motions 501 of the predetermined motion base groups 820, 820A, 820B, 820C. 503. Another predetermined motion group 830, 830A, 830B, 830C of the transport device is defined along with the mapped in-situ process motions 501'-503' (Fig. 13, block 1330).

藉由例如記錄系統801R記錄(圖13,方塊1340)體現了由運送裝置所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現其他的預定運動組。處理器810P確定了另一個值CpkOther (圖13,方塊1350),該值由運送裝置所輸出的每個動態性能變數的機率密度函數PDF來加以特徵化,該另一個值CpkOther 實現了其他預定運動組830、830A~830C的映射的原位過程運動501’~503’。The predetermined operational data of at least one dynamic performance variable output by the transport device is embodied by, for example, recording system 801R recording (Fig. 13, block 1340), which implements the other predetermined motion groups. Processor 810P determines another value C pkOther (Fig. 13, block 1350) that is characterized by a probability density function PDF of each dynamic performance variable output by the transport device, the other value C pkOther implementing the other The mapped in-situ process motions 501'-503' of the motion groups 830, 830A-830C are scheduled.

該另一個值CpkOther 和基本值CpkBase 透過,例如,處理器810P針對由分別地對應於預定運動基本組和其他的預定運動組的運送裝置所輸出的每個動態性能變數來進行比較(圖13,方塊1360),其中運送裝置為預定運動基本組和另一預定運動組兩者的共同運送裝置。運送裝置的健康狀況以基於如上所述的比較來評估,並且任何適當的健康評估通知可以被發送至如上所述之自動化材料處理平台300的操作器。The other value C pkOther and the base value C pkBase are transmitted, for example, the processor 810P compares each dynamic performance variable output by the transport device respectively corresponding to the predetermined motion basic group and the other predetermined motion groups. 13. Block 1360) wherein the transport device is a common transport device for both the predetermined motion base group and the other predetermined motion group. The health of the transport device is evaluated based on the comparison as described above, and any suitable health assessment notifications can be sent to the operator of the automated material handling platform 300 as described above.

根據所揭露的實施例的一個或更多個態樣,一種用於系統的健康評估的方法包括運送裝置:In accordance with one or more aspects of the disclosed embodiments, a method for health assessment of a system includes a transport device:

利用可通信地耦合到裝置控制器的記錄系統記錄體現了由運送裝置所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現預定基本運動之預定運動基本組;Predetermining operational data embodying at least one dynamic performance variable output by the transport device using a recording system communicatively coupled to the device controller, the predetermined operational data achieving a predetermined set of motion basic groups of predetermined basic motions;

利用可通信地耦合到該記錄系統的處理器來確定基本值(CpkBase ),該基本值由運送裝置針對該預定運動基本組的每個運動所輸出的每個動態性能變數的機率密度函數來加以特徵化;A base value (C pkBase ) is determined by a processor communicatively coupled to the recording system, the base value being a probability density function for each dynamic performance variable output by the transport device for each motion of the predetermined motion base set Characterize

利用與裝置控制器可通信地耦合的運動分解器,從運送裝置分解裝置控制器的原位過程運動命令,其中由運送裝置實現的原位過程運動映射到預定運動基本組的預定基本運動,並且用該映射的原位過程運動定義運送裝置的另一個預定運動組;An in-situ process motion command of the device controller is decomposed from the transport device using a motion resolver communicatively coupled to the device controller, wherein the in-situ process motion implemented by the transport device maps to a predetermined basic motion of the predetermined set of motion basics, and Defining another predetermined motion group of the transport device with the mapped in-situ process motion;

利用記錄系統記錄體現了由運送裝置所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現另一預定運動組,並且利用處理器來確定另一個值(CpkOther ),該另一個值由運送裝置所輸出的每個動態性能變數的機率密度函數來加以特徵化,該另一個值(CpkOther )實現另一預定運動組之所映射之原位過程運動;以及Recording system records a predetermined operational profile embodying at least one dynamic performance variable output by the transport device, the predetermined operational data implementing another predetermined set of motions, and utilizing a processor to determine another value (C pkOther ), the other The value is characterized by a probability density function for each dynamic performance variable output by the transport device, the other value (C pkOther ) implementing the mapped in-situ process motion of another predetermined set of motions;

利用處理器來針對由分別地對應於預定運動基本組和另一預定運動組的運送裝置所輸出的每個動態性能變數而將另一個值和基本值(CpkBase )進行比較,其中運送裝置對於預定運動基本組和另一預定運動組兩者為一獨特的運送裝置並且為共同的,並且基於該比較來評估運送裝置的健康狀況。Using the processor to compare another value and a base value (C pkBase ) for each of the dynamic performance variables output by the transport devices respectively corresponding to the predetermined motion base group and the other predetermined motion group, wherein the transport device Both the predetermined motion basic group and the other predetermined motion group are a unique transport device and are common, and the health of the transport device is evaluated based on the comparison.

根據所揭露的實施例的一個或多個態樣,每個預定基本運動定義了模板運動,並且每個原位過程運動實質上地映射到該些模板運動中相對應的一個之上。In accordance with one or more aspects of the disclosed embodiments, each predetermined base motion defines a template motion, and each in situ process motion is substantially mapped onto a corresponding one of the template motions.

根據所揭露的實施例的一個或多個態樣,每個模板運動被來自裝置控制器的扭矩命令和位置命令中的至少一個加以特徵化。In accordance with one or more aspects of the disclosed embodiments, each template motion is characterized by at least one of a torque command and a position command from a device controller.

根據所揭露的實施例的一個或多個態樣,扭矩命令和位置命令中的至少一個將模板運動特徵化於運送裝置的至少一個運動自由度之中。In accordance with one or more aspects of the disclosed embodiments, at least one of the torque command and the position command characterizes the template motion among at least one degree of freedom of movement of the transport device.

根據所揭露的實施例的一個或多個態樣,該方法還包括在裝置控制器的記錄表中記錄由裝置控制器命令的運動直方圖,該運動直方圖包括由運送裝置實現的原位過程運動,並且其中處理器分解了從位於記錄表中的定期存取運動直方圖的映射的運動。In accordance with one or more aspects of the disclosed embodiments, the method further includes recording, in a record table of the device controller, a motion histogram commanded by the device controller, the motion histogram including an in-situ process implemented by the transport device Motion, and wherein the processor decomposes the motion of the mapping from the periodic access motion histograms located in the record table.

根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。In accordance with one or more aspects of the disclosed embodiments, the predetermined basic motion of the predetermined set of motion includes a statistical feature number defining at least one common base motion of the base motion type.

根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括多個不同的基本運動類型,其中每個基本運動類型由運送裝置針對每個基本運動類型在共同運動的統計特徵數量中加以實現。In accordance with one or more aspects of the disclosed embodiments, the predetermined basic motion of the predetermined set of motion includes a plurality of different basic motion types, wherein each of the basic motion types is co-moving by the transport device for each of the basic motion types Implemented in the number of statistical features.

根據所揭露的實施例的一個或多個態樣,不同的基本運動類型中的每一個具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和位置命令特性定義了與每個基本運動類型相應的不同的共同運動。In accordance with one or more aspects of the disclosed embodiments, each of the different basic motion types has a different respective at least one torque command characteristic and a position command characteristic, the torque command characteristic and the position command characteristic defining and each The basic movement types correspond to different common movements.

根據所揭露的實施例的一個或多個態樣,該方法還包括利用記錄系統記錄每個動態性能變數的趨勢資料,其中趨勢資料特徵化了相應的動態性能變數的惡化趨勢。In accordance with one or more aspects of the disclosed embodiments, the method further includes recording, by the recording system, trend data for each of the dynamic performance variables, wherein the trend data characterizes a trend of deterioration of the corresponding dynamic performance variable.

根據所揭露的實施例的一個或多個態樣,該方法進一步包括利用處理器聚集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的運送裝置之事件的發生。In accordance with one or more aspects of the disclosed embodiments, the method further includes utilizing a processor to aggregate a dynamic performance variable having a highest degradation trend of at least one dynamic performance variable output by the transport device, and predicting having a lower than predetermined performance state The performance of the transport device occurs in the event.

根據所揭露的實施例的一個或多個態樣,該方法進一步包括利用處理器基於動態性能變數之聚集向運送裝置的操作器提供關於具有低於預定性能狀態的性能的運送裝置之事件的發生的預測的指示。In accordance with one or more aspects of the disclosed embodiments, the method further includes utilizing a processor to provide an operator of the transport device with an occurrence of an event regarding the transport device having a performance below a predetermined performance state based on the aggregation of the dynamic performance variables. The indication of the forecast.

根據所揭露的實施例的一個或多個態樣,提供了一種用於包括運送裝置的系統的健康評估的方法。該方法包括:In accordance with one or more aspects of the disclosed embodiments, a method for health assessment of a system including a delivery device is provided. The method includes:

利用與裝置控制器可通信地耦合的記錄系統,記錄體現了由運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了被設置為定義預定基本運動的統計特徵的預定運動基本組;Predetermined operational data embodying at least one dynamic performance variable output by the transport device is recorded by a recording system communicatively coupled to the device controller, the predetermined operational data implementing a predetermined motion set to define a statistical characteristic of the predetermined basic motion Basic group

利用可通信地耦合到記錄系統的處理器來確定歸一化值,該歸一化值統計上地特徵化了由運送裝置針對預定運動基本組的每個運動所輸出的每個動態性能變數的標稱性能;A normalized value is determined using a processor communicatively coupled to the recording system, the normalized value statistically characterizing each of the dynamic performance variables output by the transport device for each motion of the predetermined set of motion basics Nominal performance

利用與裝置控制器可通信地耦合的運動分解器,從運送裝置分解裝置控制器的原位過程運動命令,其中由運送裝置所實現的原位過程運動映射到預定運動基本組的預定基本運動,並且利用該映射的原位過程運動定義運送裝置的另一個預定運動組;Determining an in-situ process motion command of the device controller from the transport device using a motion resolver communicatively coupled to the device controller, wherein the in-situ process motion achieved by the transport device maps to a predetermined basic motion of the predetermined set of motion basics, And defining another predetermined motion group of the transport device using the mapped in-situ process motion;

利用記錄系統記錄體現了由運送裝置所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現另一預定運動組,並且利用處理器來確定另一個歸一化值,該另一個歸一化值統計上地特徵化了由運送裝置所輸出的每個動態性能變數的原位過程性能,該另一個歸一化值實現另一預定運動組之所映射之原位過程運動;以及Recording system records a predetermined operational profile embodying at least one dynamic performance variable output by the transport device, the predetermined operational data implementing another predetermined set of motions, and utilizing a processor to determine another normalized value, the other returning The normalized value statistically characterizes the in-situ process performance of each of the dynamic performance variables output by the transport device, the another normalized value effecting the mapped in-situ process motion of another predetermined set of motions;

利用處理器來針對分別地對應於預定基本運動組和另一預定運動組的運送裝置的每個動態性能變數而將另一歸一化值和歸一化值進行比較,並且基於該比較從標稱性能確定運送裝置的性能惡化率,其中該裝置是獨特的,並且該預定運動基本組的每個預定基本運動的每個歸一化值(CpkBase )和該另一預定運動組的每個映射的原位過程運動的每個其他值(CpkOther )是只與該獨特裝置獨特地相關,並且所確定的性能惡化率是只與該獨特裝置獨特相關。Using the processor to compare another normalized value and a normalized value for each dynamic performance variable of the transport device corresponding to the predetermined basic motion group and the other predetermined motion group, respectively, and based on the comparison The performance determines the performance degradation rate of the transport device, wherein the device is unique, and each normalized value (C pkBase ) of each predetermined basic motion of the predetermined motion basic group and each of the other predetermined motion groups Each of the other values of the mapped in-situ process motion (C pkOther ) is uniquely related only to the unique device, and the determined rate of performance degradation is uniquely related only to the unique device.

根據所揭露的實施例的一個或多個態樣,該方法進一步包括向系統提供彼此連接的多個不同的獨特裝置和運送裝置,其中來自多個不同的獨特裝置(i)的每個不同的獨特裝置具有用於預定基本運動組的每個基本運動的不同的對應的歸一化值(CpkBasei )以及用於另一預定運動組的每個映射的原位過程運動的其他歸一化值(CpkOtheri ),該歸一化值(CpkBasei )及該其他歸一化值(CpkOtheri )係至多地與來自該多個不同的獨特裝置之不同的對應的獨特裝置(i)獨特地相關聯。In accordance with one or more aspects of the disclosed embodiments, the method further includes providing the system with a plurality of different unique devices and transport devices connected to each other, wherein each of the plurality of different unique devices (i) is different The unique device has different corresponding normalized values (C pkBasei ) for each basic motion of the predetermined basic motion group and other normalized values of the in-situ process motion for each mapping of another predetermined motion group (C pkOtheri ), the normalized value (C pkBasei ) and the other normalized value (C pkOtheri ) are uniquely related at most to the corresponding unique device (i) from the plurality of different unique devices Union.

根據所揭露的實施例的一個或多個態樣,該方法還包括為每個不同的獨特裝置(i)向分別地耦合到該不同的對應的獨特裝置的控制器記錄該對應的歸一化值(CpkBasei )和其他歸一化值(CpkOtheri ),該對應的歸一化值(CpkBasei )和該其他歸一化值(CpkOtheri )與該不同的對應的獨特裝置(i)獨特地相關,以及針對每個不同的獨特裝置(i),以逐個裝置(i = 1…n)為基礎,從該獨特地相關的歸一化值(CpkBasei )和該不同的獨特裝置(i)的其他歸一化值(CpkOtheri )間之比較來為該不同的獨特裝置(i)確定對應的性能惡化率。In accordance with one or more aspects of the disclosed embodiments, the method further includes recording, for each different unique device (i), the corresponding normalization to a controller that is separately coupled to the different corresponding unique device The value (C pkBasei ) and other normalized values (C pkOtheri ), the corresponding normalized value (C pkBasei ) and the other normalized value (C pkOtheri ) are different from the corresponding unique device (i) unique Relevant, and for each different unique device (i), based on device-by-device (i = 1...n), from this uniquely correlated normalized value (C pkBasei ) and the different unique device (i A comparison between other normalized values (C pkOtheri ) to determine a corresponding performance degradation rate for the different unique device (i).

根據所揭露的實施例的一個或多個態樣,來自該多個不同的獨特裝置的每個不同的獨特裝置與運送裝置具有共同的配置。In accordance with one or more aspects of the disclosed embodiments, each distinct unique device from the plurality of different unique devices has a common configuration with the transport device.

根據所揭露的實施例的一個或多個態樣,來自該多個不同的獨特裝置的每個不同的獨特裝置具有與運送裝置不同的配置。In accordance with one or more aspects of the disclosed embodiments, each distinct unique device from the plurality of different unique devices has a different configuration than the transport device.

根據所揭露的實施例的一個或多個態樣,該方法還包括在控制器的記錄表中記錄特徵化了運送裝置和系統的該多個不同的獨特裝置中的每一個的性能惡化趨勢的趨勢資料。In accordance with one or more aspects of the disclosed embodiments, the method further includes recording, in a record table of the controller, a performance degradation trend characterizing each of the plurality of different unique devices of the transport device and system Trend data.

根據所揭露的實施例的一個或多個態樣,該方法還包括利用處理器結合對應於該運送裝置和該系統的各該多個不同的獨特裝置的該性能惡化趨勢以確定特徵化了該系統的性能惡化的系統性能惡化趨勢。In accordance with one or more aspects of the disclosed embodiments, the method further includes utilizing a processor to combine the performance degradation trends of the plurality of different unique devices corresponding to the transport device and the system to determine that the feature is characterized The performance of the system deteriorates and the performance of the system deteriorates.

根據所揭露的實施例的一個或多個態樣,該方法還包括利用處理器將運送裝置的性能惡化趨勢與該多個不同的獨特裝置中的每一個的性能惡化趨勢進行比較,並且利用處理器來確定運送裝置的性能惡化趨勢或該多個不同的獨特裝置中的另一個的性能惡化趨勢是否為控制性能惡化趨勢以及控制性能惡化趨勢是否對系統的性能惡化趨勢為決定性的。In accordance with one or more aspects of the disclosed embodiments, the method further includes utilizing a processor to compare a performance degradation trend of the transport device with a performance degradation trend of each of the plurality of different unique devices, and utilizing the process The determination of whether the performance deterioration trend of the transport device or the performance deterioration trend of the other of the plurality of different unique devices is a trend of controlling performance deterioration and whether the trend of control performance deterioration is degrading to the performance deterioration trend of the system.

根據所揭露的實施例的一個或多個態樣,每個預定的基本運動定義了模板運動,並且每個原位過程運動實質上地映射到該模板運動中相對應的一個之上。In accordance with one or more aspects of the disclosed embodiments, each predetermined base motion defines a template motion, and each in-situ process motion is substantially mapped onto a corresponding one of the template motions.

根據所揭露的實施例的一個或多個態樣,每個模板運動係由來自裝置控制器的扭矩命令和位置命令中的至少一個來加以特徵化。In accordance with one or more aspects of the disclosed embodiments, each of the template motions is characterized by at least one of a torque command and a position command from a device controller.

根據所揭露的實施例的一個或多個態樣,該至少一個扭矩命令和位置命令於運送裝置的至少一個運動自由度之中特徵化模板運動。In accordance with one or more aspects of the disclosed embodiments, the at least one torque command and position command characterizes template motion among at least one degree of freedom of movement of the transport device.

根據所揭露的實施例的一個或多個態樣,該方法還包括在裝置控制器的記錄表中記錄由裝置控制器命令的運動直方圖,該運動直方圖包括由運送裝置實現的原位過程運動,並且其中處理器分解了從位於記錄表中的定期存取運動直方圖的映射的運動。In accordance with one or more aspects of the disclosed embodiments, the method further includes recording, in a record table of the device controller, a motion histogram commanded by the device controller, the motion histogram including an in-situ process implemented by the transport device Motion, and wherein the processor decomposes the motion of the mapping from the periodic access motion histograms located in the record table.

根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。In accordance with one or more aspects of the disclosed embodiments, the predetermined basic motion of the predetermined set of motion includes a statistical feature number defining at least one common base motion of the base motion type.

根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括多個不同的基本運動類型,其中每個基本運動類型由運送裝置針對每個基本運動類型在共同運動的統計特徵數量中加以實現。In accordance with one or more aspects of the disclosed embodiments, the predetermined basic motion of the predetermined set of motion includes a plurality of different basic motion types, wherein each of the basic motion types is co-moving by the transport device for each of the basic motion types Implemented in the number of statistical features.

根據所揭露的實施例的一個或多個態樣,不同的基本運動類型中的每一個具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和位置命令特性定義了與每個基本運動類型相應的不同的共同運動。In accordance with one or more aspects of the disclosed embodiments, each of the different basic motion types has a different respective at least one torque command characteristic and a position command characteristic, the torque command characteristic and the position command characteristic defining and each The basic movement types correspond to different common movements.

根據所揭露的實施例的一個或多個態樣,該方法還包括利用記錄系統記錄每個動態性能變數的趨勢資料,其中趨勢資料特徵化了相應的動態性能變數的惡化趨勢。In accordance with one or more aspects of the disclosed embodiments, the method further includes recording, by the recording system, trend data for each of the dynamic performance variables, wherein the trend data characterizes a trend of deterioration of the corresponding dynamic performance variable.

根據所揭露的實施例的一個或多個態樣,該方法進一步包括利用處理器聚集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的運送裝置之事件的發生。In accordance with one or more aspects of the disclosed embodiments, the method further includes utilizing a processor to aggregate a dynamic performance variable having a highest degradation trend of at least one dynamic performance variable output by the transport device, and predicting having a lower than predetermined performance state The performance of the transport device occurs in the event.

根據所揭露的實施例的一個或多個態樣,該方法進一步包括利用處理器基於動態性能變數之聚集向運送裝置的操作器提供關於具有低於預定性能狀態的性能的運送裝置之事件的發生的預測的指示。In accordance with one or more aspects of the disclosed embodiments, the method further includes utilizing a processor to provide an operator of the transport device with an occurrence of an event regarding the transport device having a performance below a predetermined performance state based on the aggregation of the dynamic performance variables. The indication of the forecast.

根據所揭露的實施例的一個或多個態樣,一種用於評估包括運送裝置的系統的健康的健康評估裝置,該健康評估裝置包括:In accordance with one or more aspects of the disclosed embodiments, a health assessment device for assessing the health of a system including a delivery device, the health assessment device comprising:

記錄系統,其可通信地耦合到該運送裝置的運送裝置控制器,該記錄系統被配置為:A recording system communicatively coupled to the transport device controller of the transport device, the recording system configured to:

記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了預定基本運動的預定運動基本組,以及Recording predetermined operational data representing at least one dynamic performance variable output by the transport device, the predetermined operational data implementing a predetermined set of motion basics for predetermined basic motion, and

記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了另一個預定運動組;以及Recording predetermined operational data representing at least one dynamic performance variable output by the transport device, the predetermined operational data implementing another predetermined motion group;

運動分解器,其可通信地耦合到該運送裝置控制器,該運動分解器被配置為:A motion resolver communicatively coupled to the carrier controller, the motion resolver configured to:

從該運送裝置分解該裝置控制器的原位過程運動命令,其中由該運送裝置所實現的原位過程運動映射到該預定運動基本組的該預定基本運動,以及Decomposing an in-situ process motion command of the device controller from the transport device, wherein the in-situ process motion achieved by the transport device maps to the predetermined base motion of the predetermined motion base group, and

利用該映射的原位過程運動定義該運送裝置的另一預定運動組;以及Defining another predetermined set of motions of the transport device using the mapped in-situ process motion;

處理器,其可通信地耦合到該記錄系統,該處理器被配置為:A processor communicatively coupled to the recording system, the processor configured to:

確定基本值(CpkBase ),該基本值由運送裝置針對該預定運動基本組的每個運動所輸出的每個動態性能變數的機率密度函數來加以特徵化,以及Determining a base value (C pkBase ) characterized by a probability density function of each dynamic performance variable output by the transport device for each motion of the predetermined motion base set, and

確定另一個值(CpkOther ),該另一個值由運送裝置所輸出的每個動態性能變數的機率密度函數來加以特徵化,該另一個值實現另一預定運動組之所映射之原位過程運動;以及,Another value (C pkOther ) is determined, which is characterized by a probability density function for each dynamic performance variable output by the transport device, the other value implementing a mapped in-situ process of another predetermined motion group Exercise; and,

針對由分別地對應於預定運動基本組和另一預定運動組的運送裝置所輸出的每個動態性能變數而將另一個值和基本值(CpkBase )進行比較,以及Comparing another value to a base value (C pkBase ) for each dynamic performance variable output by the transport device respectively corresponding to the predetermined motion base group and another predetermined motion group, and

基於該比較評估運送工具的健康狀況;Evaluating the health of the delivery tool based on the comparison;

其中運送裝置為預定運動基本組和另一預定運動組兩者的共同運送裝置。Wherein the transport device is a common transport device of both the predetermined motion base group and the other predetermined motion group.

根據所揭露的實施例的一個或多個態樣,每個預定的基本運動定義了模板運動,並且每個原位過程運動實質上地映射到該模板運動中相對應的一個之上。In accordance with one or more aspects of the disclosed embodiments, each predetermined base motion defines a template motion, and each in-situ process motion is substantially mapped onto a corresponding one of the template motions.

根據所揭露的實施例的一個或多個態樣,每個模板運動被來自裝置控制器的扭矩命令和位置命令中的至少一個加以特徵化。In accordance with one or more aspects of the disclosed embodiments, each template motion is characterized by at least one of a torque command and a position command from a device controller.

根據所揭露的實施例的一個或多個態樣,該至少一個扭矩命令和位置命令於運送裝置的至少一個運動自由度之中特徵化模板運動。In accordance with one or more aspects of the disclosed embodiments, the at least one torque command and position command characterizes template motion among at least one degree of freedom of movement of the transport device.

根據所揭露的實施例的一個或多個態樣,該運送裝置控制器包括記錄表,該記錄表被配置為記錄由該裝置控制器命令的運動直方圖,該運動直方圖包括由該運送裝置實現的原位過程運動,並且該處理器被進一步地配置為分解從位於該記錄表中的定期存取的該運動直方圖的映射的運動。In accordance with one or more aspects of the disclosed embodiments, the transport device controller includes a log table configured to record a motion histogram commanded by the device controller, the motion histogram including the transport device The in-situ process motion is implemented, and the processor is further configured to decompose the mapped motion from the motion histogram that is periodically accessed in the record table.

根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。In accordance with one or more aspects of the disclosed embodiments, the predetermined basic motion of the predetermined set of motion includes a statistical feature number defining at least one common base motion of the base motion type.

根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括多個不同的基本運動類型,其中每個基本運動類型由運送裝置針對每個基本運動類型在共同運動的統計特徵數量中加以實現。In accordance with one or more aspects of the disclosed embodiments, the predetermined basic motion of the predetermined set of motion includes a plurality of different basic motion types, wherein each of the basic motion types is co-moving by the transport device for each of the basic motion types Implemented in the number of statistical features.

根據所揭露的實施例的一個或多個態樣,不同的基本運動類型中的每一個具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和位置命令特性定義了與每個基本運動類型相應的不同的共同運動。In accordance with one or more aspects of the disclosed embodiments, each of the different basic motion types has a different respective at least one torque command characteristic and a position command characteristic, the torque command characteristic and the position command characteristic defining and each The basic movement types correspond to different common movements.

根據所揭露的實施例的一個或多個態樣,該記錄系統更進一步地被配置為記錄各該動態性能變數的趨勢資料,其中該趨勢資料特徵化了相應的動態性能變數的惡化趨勢。In accordance with one or more aspects of the disclosed embodiments, the recording system is further configured to record trend data for each of the dynamic performance variables, wherein the trend data characterizes a trend of deterioration of the corresponding dynamic performance variable.

根據所揭露的實施例的一個或多個態樣,該處理器更進一步地被配置為聚集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的運送裝置之事件的發生。In accordance with one or more aspects of the disclosed embodiments, the processor is further configured to aggregate the dynamic performance variable having the highest degradation trend of at least one dynamic performance variable output by the transport device, and predicting having a lower than predetermined The performance state of the performance of the transport device occurs.

根據所揭露的實施例的一個或多個態樣,處理器更進一步地被配置為基於動態性能變數之聚集向運送裝置的操作器提供關於具有低於預定性能狀態的性能的運送裝置之事件的發生的預測的指示。In accordance with one or more aspects of the disclosed embodiments, the processor is further configured to provide an operator of the transport device with an event regarding the transport device having a performance below a predetermined performance state based on the aggregation of the dynamic performance variables. An indication of the prediction that occurred.

根據所揭露的實施例的一個或多個態樣,一種用於評估包括運送裝置的系統的健康的健康評估裝置,該健康評估裝置包括:In accordance with one or more aspects of the disclosed embodiments, a health assessment device for assessing the health of a system including a delivery device, the health assessment device comprising:

記錄系統,其可通信地耦合到該運送裝置的運送裝置控制器,該記錄系統被配置為:A recording system communicatively coupled to the transport device controller of the transport device, the recording system configured to:

記錄體現了由運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料運送裝置實現了被設置為定義預定基本運動的統計特徵的預定運動基本組,以及Recording predetermined operational data embossing at least one dynamic performance variable output by the transport device, the predetermined operational data transport device implementing a predetermined set of motion components set to define statistical characteristics of the predetermined basic motion, and

記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了另一個預定運動組;Recording predetermined operational data representing at least one dynamic performance variable output by the transport device, the predetermined operational data implementing another predetermined motion group;

運動分解器,其可通信地耦合到該運送裝置控制器,該運動分解器被配置為:A motion resolver communicatively coupled to the carrier controller, the motion resolver configured to:

從該運送裝置分解該裝置控制器的原位過程運動命令,其中由該運送裝置所實現的原位過程運動映射到該預定運動基本組的該預定基本運動,以及Decomposing an in-situ process motion command of the device controller from the transport device, wherein the in-situ process motion achieved by the transport device maps to the predetermined base motion of the predetermined motion base group, and

利用該映射的原位過程運動定義運送裝置的另一個預定運動組;以及Defining another predetermined motion group of the transport device using the mapped in-situ process motion;

處理器,其可通信地耦合到該記錄系統,該處理器被配置為:A processor communicatively coupled to the recording system, the processor configured to:

確定歸一化值,該歸一化值統計上地特徵化了由運送裝置針對預定運動基本組的每個運動所輸出的每個動態性能變數的標稱性能,Determining a normalized value that statistically characterizes the nominal performance of each dynamic performance variable output by the transport device for each motion of the predetermined set of motion basics,

確定另一個歸一化值,該另一個歸一化值統計上地特徵化了由運送裝置所輸出的每個動態性能變數的原位過程性能,該另一個歸一化值實現另一預定運動組之所映射之原位過程運動,Determining another normalized value that statistically characterizes the in-situ process performance of each dynamic performance variable output by the transport device, the another normalized value achieving another predetermined motion The in-situ process motion mapped by the group,

針對分別地對應於預定基本運動組和另一預定運動組的運送裝置的每個動態性能變數而將另一歸一化值和歸一化值進行比較,以及Comparing another normalized value to a normalized value for each dynamic performance variable of the transport device corresponding to the predetermined basic motion group and another predetermined motion group, respectively, and

基於該比較,從標稱性能確定運送裝置的性能惡化率;Based on the comparison, the performance degradation rate of the transport device is determined from the nominal performance;

其中該運送裝置為預定基本運動組和另一預定運動組兩者的共同運送裝置。Wherein the transport device is a common transport device for both the predetermined basic motion group and the other predetermined motion group.

根據所揭露的實施例的一個或多個態樣,每個預定的基本運動定義了模板運動,並且每個原位過程運動實質上地映射到該模板運動中相對應的一個之上。In accordance with one or more aspects of the disclosed embodiments, each predetermined base motion defines a template motion, and each in-situ process motion is substantially mapped onto a corresponding one of the template motions.

根據所揭露的實施例的一個或多個態樣,每個模板運動被來自裝置控制器的扭矩命令和位置命令中的至少一個加以特徵化。In accordance with one or more aspects of the disclosed embodiments, each template motion is characterized by at least one of a torque command and a position command from a device controller.

根據所揭露的實施例的一個或多個態樣,該至少一個扭矩命令和位置命令於運送裝置的至少一個運動自由度之中特徵化模板運動。In accordance with one or more aspects of the disclosed embodiments, the at least one torque command and position command characterizes template motion among at least one degree of freedom of movement of the transport device.

根據所揭露的實施例的一個或多個態樣,該運送裝置控制器包括記錄表,該記錄表被配置為記錄由該裝置控制器命令的運動直方圖,該運動直方圖包括由該運送裝置實現的原位過程運動,並且該處理器被進一步地配置為分解從位於該記錄表中的定期存取的該運動直方圖的映射的運動。In accordance with one or more aspects of the disclosed embodiments, the transport device controller includes a log table configured to record a motion histogram commanded by the device controller, the motion histogram including the transport device The in-situ process motion is implemented, and the processor is further configured to decompose the mapped motion from the motion histogram that is periodically accessed in the record table.

根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。In accordance with one or more aspects of the disclosed embodiments, the predetermined basic motion of the predetermined set of motion includes a statistical feature number defining at least one common base motion of the base motion type.

根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括多個不同的基本運動類型,其中每個基本運動類型由運送裝置針對每個基本運動類型在共同運動的統計特徵數量中加以實現。In accordance with one or more aspects of the disclosed embodiments, the predetermined basic motion of the predetermined set of motion includes a plurality of different basic motion types, wherein each of the basic motion types is co-moving by the transport device for each of the basic motion types Implemented in the number of statistical features.

根據所揭露的實施例的一個或多個態樣,不同的基本運動類型中的每一個具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和位置命令特性定義了與每個基本運動類型相應的不同的共同運動。In accordance with one or more aspects of the disclosed embodiments, each of the different basic motion types has a different respective at least one torque command characteristic and a position command characteristic, the torque command characteristic and the position command characteristic defining and each The basic movement types correspond to different common movements.

根據所揭露的實施例的一個或多個態樣,該記錄系統更進一步地被配置為記錄各該動態性能變數的趨勢資料,其中該趨勢資料特徵化了相應的動態性能變數的惡化趨勢。In accordance with one or more aspects of the disclosed embodiments, the recording system is further configured to record trend data for each of the dynamic performance variables, wherein the trend data characterizes a trend of deterioration of the corresponding dynamic performance variable.

根據所揭露的實施例的一個或多個態樣,該處理器更進一步地被配置為聚集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的運送裝置之事件的發生。In accordance with one or more aspects of the disclosed embodiments, the processor is further configured to aggregate the dynamic performance variable having the highest degradation trend of at least one dynamic performance variable output by the transport device, and predicting having a lower than predetermined The performance state of the performance of the transport device occurs.

根據所揭露的實施例的一個或多個態樣,處理器更進一步地被配置為基於動態性能變數之聚集向運送裝置的操作器提供關於具有低於預定性能狀態的性能的運送裝置之事件的發生的預測的指示。In accordance with one or more aspects of the disclosed embodiments, the processor is further configured to provide an operator of the transport device with an event regarding the transport device having a performance below a predetermined performance state based on the aggregation of the dynamic performance variables. An indication of the prediction that occurred.

應該理解的是,前面的描述僅僅是對所揭露實施例的各個態樣之說明。本領域技術人士可以設計出各種替代方案和改良而不背離所揭露的實施例的態樣。因此,所揭露的實施例的態樣旨在涵蓋落入所附申請專利範圍內的所有這些替代方案、改良和變化。此外,不同特徵在相互不同的附屬請求項或獨立請求項中被列舉的單純事實並不表示不能有利地使用這些特徵的組合,這樣的組合仍然在本發明的態樣之範圍內。It should be understood that the foregoing description is only illustrative of various aspects of the disclosed embodiments. Various alternatives and modifications can be devised by those skilled in the art without departing from the scope of the disclosed embodiments. Accordingly, the scope of the disclosed embodiments is intended to cover all such alternatives, modifications and In addition, the mere fact that certain features are recited in mutually different sub-claims or separate claims does not mean that a combination of these features may not be used. Such combinations are still within the scope of the invention.

100‧‧‧控制器100‧‧‧ Controller

105‧‧‧處理器105‧‧‧Processor

110‧‧‧唯讀記憶體110‧‧‧Read-only memory

115‧‧‧隨機存取記憶體115‧‧‧ Random access memory

120‧‧‧程式儲存器120‧‧‧Program memory

125‧‧‧用戶介面125‧‧‧User interface

130‧‧‧網路介面130‧‧‧Network interface

135‧‧‧內建快取記憶體135‧‧‧ built-in cache memory

140‧‧‧顯示器140‧‧‧ display

145‧‧‧滑鼠145‧‧‧ Mouse

150‧‧‧用戶介面控制器150‧‧‧User Interface Controller

155‧‧‧鍵盤155‧‧‧ keyboard

190‧‧‧通信網路190‧‧‧Communication network

300‧‧‧自動化材料處理平台300‧‧‧Automated material processing platform

301‧‧‧大氣部分301‧‧‧Atmospheric part

302‧‧‧真空部分302‧‧‧vacuum part

303‧‧‧處理模組303‧‧‧Processing module

304‧‧‧外殼304‧‧‧Shell

305‧‧‧裝載端口305‧‧‧Load port

306‧‧‧大氣機器人操縱器306‧‧‧Atmospheric robotic manipulator

307‧‧‧基底對準器307‧‧‧Base aligner

308‧‧‧風扇過濾器單元308‧‧‧Fan filter unit

309‧‧‧真空室309‧‧‧vacuum room

310‧‧‧負載鎖310‧‧‧Load lock

311‧‧‧真空機器人操縱器311‧‧‧Vacuum robot manipulator

312‧‧‧真空泵312‧‧‧vacuum pump

313‧‧‧狹縫閥313‧‧‧Slit valve

314‧‧‧工具控制器314‧‧‧Tool Controller

315‧‧‧大氣部分控制器315‧‧‧Atmospheric part controller

316‧‧‧真空部分控制器316‧‧‧Vacuum Part Controller

317‧‧‧處理控制器317‧‧‧Processing controller

318‧‧‧裝載端口控制器318‧‧‧Load port controller

319‧‧‧大氣機器人控制器319‧‧‧Atmospheric robot controller

320‧‧‧對準器控制器320‧‧‧Aligner Controller

321‧‧‧風扇過濾器單元控制器321‧‧‧Fan filter unit controller

322‧‧‧電動機控制器322‧‧‧Motor controller

323‧‧‧真空機器人控制器323‧‧‧Vacuum robot controller

400‧‧‧機器人操縱器400‧‧‧Robot Manipulator

401‧‧‧機器人方塊架401‧‧‧Robot block

402‧‧‧安裝凸緣402‧‧‧Flange

403‧‧‧垂直導軌403‧‧‧Vertical rail

404‧‧‧線性軸承404‧‧‧Linear bearings

405‧‧‧載運器405‧‧‧carrier

406‧‧‧垂直驅動電動機406‧‧‧Vertical drive motor

407‧‧‧滾珠螺桿407‧‧‧Ball screw

408‧‧‧上電動機408‧‧‧Upper motor

409‧‧‧下電動機409‧‧‧ lower motor

410‧‧‧編碼器1410‧‧‧Encoder 1

411‧‧‧編碼器2411‧‧‧Encoder 2

412‧‧‧外軸412‧‧‧External axis

413‧‧‧內軸413‧‧‧ inner shaft

414‧‧‧第一連桿414‧‧‧first link

415‧‧‧皮帶主動桿2415‧‧‧Belt active lever 2

416‧‧‧第二連桿416‧‧‧second connecting rod

417A‧‧‧電動機A417A‧‧‧Motor A

417B‧‧‧電動機B417B‧‧‧Motor B

418A‧‧‧皮帶驅動的第一階段A418A‧‧‧The first stage of belt drive A

418B‧‧‧皮帶驅動的第一階段B418B‧‧‧Belt Drive Phase 1B

419A‧‧‧皮帶驅動的第二階段A419A‧‧‧The second stage of belt drive A

419B‧‧‧皮帶驅動的第二階段B419B‧‧‧The second stage of belt drive B

420A‧‧‧上端接器420A‧‧‧Upper terminator

420B‧‧‧下端接器420B‧‧‧ lower terminator

421A、421B‧‧‧端接器A和B之有效負載421A, 421B‧‧‧ payloads of terminators A and B

422‧‧‧主控制器422‧‧‧Master controller

423A、423B、423C‧‧‧電動機控制器423A, 423B, 423C‧‧‧ motor controller

424A、424B‧‧‧端接器A和B的電子單元424A, 424B‧‧‧ Electronic units for terminators A and B

425‧‧‧通信網路425‧‧‧Communication network

426‧‧‧滑環426‧‧‧Slip ring

428A、428B‧‧‧映射感測器428A, 428B‧‧‧ mapping sensor

429‧‧‧電源供應器429‧‧‧Power supply

430‧‧‧真空泵430‧‧‧vacuum pump

431A、431B‧‧‧閥431A, 431B‧‧‧ valve

432A、432B‧‧‧壓力感測器432A, 432B‧‧‧ Pressure Sensor

433、434A、434B‧‧‧唇形密封 433, 434A, 434B‧‧‧ lip seal

435‧‧‧制動器435‧‧‧ brake

501‧‧‧基本移動1501‧‧‧Basic Mobile 1

502‧‧‧基本移動2502‧‧‧Basic Mobile 2

503‧‧‧基本移動3503‧‧‧Basic Mobile 3

501’、502’、503’‧‧‧原位過程移動501', 502', 503'‧‧‧ in-situ process movement

STN1-STN6‧‧‧基底保持站STN1-STN6‧‧‧Base Station

700‧‧‧原位移動命令直方圖700‧‧‧In-situ movement command histogram

700R‧‧‧記錄表700R‧‧‧record form

800‧‧‧運動分解器800‧‧‧Sports resolver

801‧‧‧資料緩衝器801‧‧‧ data buffer

801R‧‧‧記錄系統801R‧‧‧recording system

810‧‧‧機器人控制器810‧‧‧Robot controller

810P‧‧‧處理器810P‧‧‧ processor

820、820A、820B、820C‧‧‧運動基本組820, 820A, 820B, 820C‧‧‧ sports basic group

830、830A、830B、830C‧‧‧預定運動組830, 830A, 830B, 830C‧‧‧ scheduled sports group

840‧‧‧記錄表840‧‧‧record form

B10、B20、B50、1300、1310、1320、1330、1340、1350、1360、1400、1401、1402、1403、1500、1501、1502、1503、1504、1505‧‧‧方塊B10, B20, B50, 1300, 1310, 1320, 1330, 1340, 1350, 1360, 1400, 1401, 1402, 1403, 1500, 1501, 1502, 1503, 1504, 1505‧‧‧

870‧‧‧趨勢/評估單元870‧‧‧Trend/Evaluation Unit

890‧‧‧基本運動組890‧‧‧Basic Sports Group

890AG‧‧‧單個聚集運動890AG‧‧‧single gathering movement

TDR‧‧‧暫存器TDR‧‧‧ register

A1-An‧‧‧評估A1-An‧‧‧Evaluation

LTM、LTM1-LTMn‧‧‧線性趨勢模型LTM, LTM1-LTMn‧‧‧ linear trend model

CpkBasei‧‧‧歸一化值C pkBasei ‧‧‧ normalized value

App1-Appn‧‧‧獨特的裝置App1-Appn‧‧‧ unique device

CpkOther(1-n)‧‧‧其他的值C pkOther(1-n) ‧‧‧Other values

WS‧‧‧第一預定評估值WS‧‧‧ first scheduled evaluation value

TD‧‧‧趨勢資料TD‧‧ trend data

ES‧‧‧第二預定評估值ES‧‧‧ second scheduled evaluation value

twarn、twarnLTM1、twarnLTM2、terrorLTM1、terror‧‧‧時間t warn , t warnLTM1 , t warnLTM2 , t errorLTM1 , t error ‧‧‧ time

結合附圖,在以下描述中解釋所揭露的實施例之前述的態樣和其他特徵,其中:The foregoing aspects and other features of the disclosed embodiments are explained in the following description in conjunction with the drawings in which:

圖1是用於自動化裝置的控制器的示意圖,例如根據所揭露的實施例的態樣之自動化材料處理平台;1 is a schematic diagram of a controller for an automated device, such as an automated material processing platform in accordance with an embodiment of the disclosed embodiment;

圖2是根據所揭露的實施例的態樣之自動化材料處理平台的示意圖;2 is a schematic illustration of an automated material processing platform in accordance with an embodiment of the disclosed embodiment;

圖2A是根據所揭露的實施例的態樣之包括多個不同的獨特裝置的系統的示意圖;2A is a schematic illustration of a system including a plurality of different unique devices in accordance with aspects of the disclosed embodiments;

圖3是根據所揭露實施例的態樣之自動化材料處理裝置的裝置(例如運送機器人)的示意圖;3 is a schematic illustration of an apparatus (eg, a transport robot) of an automated material processing apparatus in accordance with an embodiment of the disclosed embodiment;

圖4A~4E是根據所揭露的實施例的態樣之圖3的裝置的不同臂配置的示意圖;4A-4E are schematic illustrations of different arm configurations of the device of FIG. 3 in accordance with an aspect of the disclosed embodiment;

圖5A是根據所揭露實施例的態樣之顯示出基本移動和原位過程移動的自動化材料處理平台的一部分的示意圖;5A is a schematic illustration of a portion of an automated material processing platform showing basic movement and in situ process movement in accordance with aspects of the disclosed embodiment;

圖5B和5C是根據所揭露的實施例的態樣之簡單和複雜移動的示意圖;5B and 5C are schematic illustrations of simple and complex movements of aspects in accordance with the disclosed embodiments;

圖6是示例性圖表,其示例出由根據所揭露的實施例的態樣之圖3的裝置所執行的移動樣本的統計收斂;6 is an exemplary diagram illustrating statistical convergence of moving samples performed by the apparatus of FIG. 3 in accordance with aspects of the disclosed embodiments;

圖7是根據所揭露實施例的態樣之示例性移動直方圖;7 is an exemplary moving histogram of an aspect in accordance with an embodiment of the disclosed embodiment;

圖8A是根據所揭露的實施例的態樣之示例性過程流程的示意圖;8A is a schematic diagram of an exemplary process flow in accordance with aspects of the disclosed embodiments;

圖8B是根據所揭露實施例的態樣之圖8A的示例性過程流程的一部分的示意圖;8B is a schematic diagram of a portion of the exemplary process flow of FIG. 8A in accordance with an aspect of the disclosed embodiment;

圖9是根據所揭露實施例的態樣之指示上限和下限的移動樣本的示例性高斯分佈;9 is an exemplary Gaussian distribution of moving samples indicating upper and lower limits of an aspect in accordance with an embodiment of the disclosed embodiment;

圖10是根據所揭露的實施例的態樣之基線值與從原位過程移動所產生的另一個值之間的比較的圖例;10 is a legend of a comparison between a baseline value of a pattern according to an embodiment of the disclosed embodiment and another value resulting from movement from an in situ process;

圖11是根據所揭露的實施例的態樣之關於預測診斷之圖3的裝置的健康評估的應用的示例性圖示;11 is an exemplary illustration of an application of a health assessment of the device of FIG. 3 with respect to predictive diagnosis, in accordance with an aspect of the disclosed embodiment;

圖12是根據所揭露實施例的態樣之健康評估指示的示例性圖示;12 is an exemplary illustration of a health assessment indication in accordance with an aspect of the disclosed embodiment;

圖13是根據所揭露的實施例的態樣之示例性流程圖;13 is an exemplary flow diagram of aspects in accordance with disclosed embodiments;

圖14是根據所揭露實施例的態樣之流程圖;以及14 is a flow chart of aspects in accordance with an embodiment of the disclosure;

圖15是根據所揭露實施例的態樣之流程圖。15 is a flow chart of aspects in accordance with disclosed embodiments.

Claims (42)

一種用於包括運送裝置的系統的健康評估方法,該方法包括:   利用可通信地耦合到裝置控制器的記錄系統記錄體現了由該運送裝置所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現預定基本運動之預定運動基本組;   利用可通信地耦合到該記錄系統的處理器來確定基本值(CpkBase ),該基本值由該運送裝置針對該預定運動基本組的每個運動所輸出的各該動態性能變數的機率密度函數來加以特徵化;   利用與該裝置控制器可通信地耦合的運動分解器,從該運送裝置分解該裝置控制器的原位過程運動命令,其中由該運送裝置實現的該原位過程運動映射到該預定運動基本組的該預定基本運動,並且用該映射的原位過程運動定義該運送裝置的另一個預定運動組;   利用該記錄系統記錄體現了由該運送裝置所輸出的該至少一個動態性能變數的預定操作資料,該預定操作資料實現另一預定運動組,並且利用該處理器來確定另一個值(CpkOther ),該另一個值由該運送裝置所輸出的各該動態性能變數的該機率密度函數來加以特徵化,該另一個值(CpkOther )實現該另一預定運動組之所映射的原位過程運動;以及   利用該處理器來針對由分別地對應於該預定運動基本組和該另一預定運動組的該運送裝置所輸出的各該動態性能變數而將該另一個值和該基本值(CpkBase )進行比較,其中該運送裝置對於該預定運動基本組和該另一預定運動組兩者為一獨特的運送裝置並且為共同的,並且基於該比較來評估該運送裝置的該健康狀況。A health assessment method for a system including a transport device, the method comprising: recording, by a recording system communicatively coupled to the device controller, predetermined operational data embodying at least one dynamic performance variable output by the transport device, Determining operational data to implement a predetermined set of basic motions for a predetermined basic motion; determining, by a processor communicatively coupled to the recording system, a base value (C pkBase ) for each of the predetermined motion basic groups by the transport device Characterizing the probability density function of each of the dynamic performance variables output by the motion; utilizing a motion resolver communicatively coupled to the device controller to decompose the in-situ process motion command of the device controller from the transport device, wherein The in-situ process motion implemented by the transport device maps to the predetermined base motion of the predetermined motion base group, and defines another predetermined motion group of the transport device using the mapped in-situ process motion; recording the embodiment using the recording system The at least one dynamic performance variable output by the transport device Predetermined operation data, the operation data predetermined to achieve a further predetermined set of motion, and determining another value (C pkOther) using the processor, each of the dynamic performance of the other variable by the value of the conveying means the output probability a density function to characterize, the other value (C pkOther ) implementing the mapped in-situ process motion of the other predetermined motion group; and utilizing the processor to respectively correspond to the predetermined motion basic group and the Each of the dynamic performance variables output by the transport device of another predetermined motion group compares the other value with the base value (C pkBase ), wherein the transport device is for the predetermined motion basic group and the other predetermined motion The group is a unique transport device and is common, and the health of the transport device is assessed based on the comparison. 如申請專利範圍第1項之方法,其中該預定基本運動的每一個定義了模板運動,並且每個原位過程運動實質上地映射到該模板運動中相對應的一個之上。The method of claim 1, wherein each of the predetermined basic motions defines a template motion, and each in situ process motion is substantially mapped to a corresponding one of the template motions. 如申請專利範圍第2項之方法,其中該模板運動的每一個被來自該裝置控制器的扭矩命令和位置命令中的至少一個加以特徵化。The method of claim 2, wherein each of the template motions is characterized by at least one of a torque command and a position command from the device controller. 如申請專利範圍第3項之方法,其中該至少一個該扭矩命令和該位置命令於該運送裝置的至少一個運動自由度之中特徵化該模板運動。The method of claim 3, wherein the at least one of the torque command and the position command characterize the template motion among at least one degree of freedom of movement of the transport device. 如申請專利範圍第1項之方法,該方法還包括在該裝置控制器的記錄表中記錄由該裝置控制器命令的運動直方圖,該運動直方圖包括由該運送裝置實現的原位過程運動,並且其中該處理器分解了從位於該記錄表中的定期存取的該運動直方圖的該映射的運動。The method of claim 1, wherein the method further comprises recording, in a record table of the device controller, a motion histogram commanded by the device controller, the motion histogram comprising an in-situ process motion implemented by the transport device And wherein the processor decomposes the motion of the mapping from the motion histogram that is periodically accessed in the record table. 如申請專利範圍第1項之方法,其中該預定運動基本組的該預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。The method of claim 1, wherein the predetermined basic motion of the predetermined motion basic group comprises a statistical feature number defining at least one common basic motion of the basic motion type. 如申請專利範圍第1項之方法,其中該預定運動基本組的該預定基本運動包括多個不同的基本運動類型,其中各該基本運動類型由該運送裝置針對各該基本運動類型在共同運動的統計特徵數量中加以實現。The method of claim 1, wherein the predetermined basic motion of the predetermined motion basic group comprises a plurality of different basic motion types, wherein each of the basic motion types is co-moved by the transport device for each of the basic motion types Implemented in the number of statistical features. 如申請專利範圍第7項之方法,其中該不同的基本運動類型中的每一個具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和該位置命令特性定義了與各該基本運動類型相應的不同的共同運動。The method of claim 7, wherein each of the different basic motion types has a different respective at least one torque command characteristic and a position command characteristic, the torque command characteristic and the position command characteristic defining each The basic movement types correspond to different common movements. 如申請專利範圍第1項之方法,該方法還包括利用該記錄系統記錄各該動態性能變數的趨勢資料,其中該趨勢資料特徵化了相應的動態性能變數的惡化趨勢。The method of claim 1, wherein the method further comprises recording, by the recording system, trend data of each of the dynamic performance variables, wherein the trend data characterizes a deterioration trend of the corresponding dynamic performance variable. 如申請專利範圍第9項之方法,該方法還包括利用該處理器聚集由該運送裝置輸出的該至少一個動態性能變數之具有最高之該惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的該運送裝置之事件的發生。The method of claim 9, the method further comprising: utilizing the processor to aggregate the dynamic performance variable of the at least one dynamic performance variable output by the transport device having the highest deterioration trend, and predicting that the performance is lower than a predetermined performance The state of performance of the event of the transport device occurs. 如申請專利範圍第10項之方法,該方法還包括利用該處理器基於該動態性能變數之該聚集向該運送裝置的操作器提供關於具有低於預定性能狀態的性能的該運送裝置之該事件的發生的預測的指示。The method of claim 10, the method further comprising utilizing the processor to provide the operator of the transport device with the event regarding the transport device having a performance lower than a predetermined performance state based on the aggregation of the dynamic performance variable. An indication of the occurrence of the prediction. 一種用於包括運送裝置的系統的健康評估方法,該方法包括:   利用與裝置控制器可通信地耦合的記錄系統,記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了被設置為定義預定基本運動的統計特徵的預定運動基本組;   利用可通信地耦合到該記錄系統的處理器來確定歸一化值,該歸一化值統計上地特徵化了由該運送裝置針對該預定運動基本組的每個運動所輸出的各該動態性能變數的標稱性能;   利用與該裝置控制器可通信地耦合的運動分解器,從該運送裝置分解該裝置控制器的原位過程運動命令,其中由該運送裝置所實現的原位過程運動映射到該預定運動基本組的該預定基本運動,並且利用該映射的原位過程運動定義該運送裝置的另一個預定運動組;   利用該記錄系統記錄體現了由該運送裝置所輸出的該至少一個動態性能變數的預定操作資料,該預定操作資料實現另一預定運動組,並且利用該處理器來確定另一個歸一化值,該另一個歸一化值統計上地特徵化了由該運送裝置所輸出的各該動態性能變數的原位過程性能,該另一個歸一化值實現該另一預定運動組之該映射的原位過程運動;以及   利用該處理器來針對分別地對應於該預定基本運動組和該另一預定運動組的該運送裝置的各該動態性能變數而將該另一歸一化值和該歸一化值進行比較,並且基於該比較從標稱性能確定該運送裝置的性能惡化率,其中該裝置是獨特的,並且該預定運動基本組的各該預定基本運動的各該歸一化值(CpkBase )和該另一預定運動組的各該映射的原位過程運動的每個其他值(CpkOther )是只與該獨特裝置獨特地相關,並且該確定的性能惡化率只與該獨特裝置獨特地相關。A health assessment method for a system including a transport device, the method comprising: recording, by a recording system communicatively coupled to a device controller, predetermined operational data embodying at least one dynamic performance variable output by the transport device, The predetermined operational data implements a predetermined set of motions set to define statistical features of the predetermined base motion; determining a normalized value using a processor communicatively coupled to the recording system, the normalized value being statistically characterized a nominal performance of each of the dynamic performance variables output by the transport device for each motion of the predetermined set of motion; decomposing the device from the transport device using a motion resolver communicatively coupled to the device controller An in-situ process motion command of the controller, wherein the in-situ process motion implemented by the transport device maps to the predetermined base motion of the predetermined motion base group, and the in-situ process motion of the map is utilized to define another of the transport devices Predetermined motion group; recording using the recording system embodies the output by the transport device a predetermined operational profile of the at least one dynamic performance variable, the predetermined operational profile implementing another predetermined set of motions, and utilizing the processor to determine another normalized value, the another normalized value being statistically characterized An in-situ process performance of each of the dynamic performance variables output by the transport device, the another normalized value effecting the mapped in-situ process motion of the another predetermined set of motions; and utilizing the processor to respectively correspond to Comparing the other normalized value to the normalized value for each of the dynamic performance variables of the predetermined basic motion group and the other predetermined motion group, and determining from the nominal performance based on the comparison a performance degradation rate of the transport device, wherein the device is unique, and each of the predetermined normalized values of the predetermined basic motion group (C pkBase ) and each of the other predetermined motion groups Each of the other values of the in-situ process motion (C pkOther ) is uniquely related only to the unique device, and the determined performance degradation rate is uniquely related only to the unique device. 如申請專利範圍第12項之方法,該方法更包括向該系統提供彼此連接的多個不同的獨特裝置和該運送裝置,其中來自該多個不同的獨特裝置(i)的各該不同的獨特裝置具有用於該預定基本運動組的每個基本運動的不同的對應的歸一化值(CpkBasei )以及用於該另一預定運動組的每個映射的原位過程運動的其他歸一化值(CpkOtheri ),該歸一化值(CpkBasei )及該其他歸一化值(CpkOtheri )係至多地與來自該多個不同的獨特裝置之不同的對應的獨特裝置(i)獨特地相關聯。The method of claim 12, the method further comprising providing the system with a plurality of different unique devices and the transport device connected to each other, wherein the different unique ones from the plurality of different unique devices (i) The device has a different corresponding normalized value (C pkBasei ) for each basic motion of the predetermined basic motion group and other normalization of the in-situ process motion for each mapping of the other predetermined motion group a value (C pkOtheri ), the normalized value (C pkBasei ) and the other normalized value (C pkOtheri ) are uniquely uniquely different from the corresponding unique device (i) from the plurality of different unique devices Associated. 如申請專利範圍第13項之方法,該方法更包括為各該不同的獨特裝置(i)向分別地耦合到該不同的對應的獨特裝置的該控制器記錄該對應的歸一化值(CpkBasei )和該其他歸一化值(CpkOtheri ),該對應的歸一化值(CpkBasei )及該其他歸一化值(CpkOtheri )與該不同的對應的獨特裝置(i)獨特地相關,以及針對各該不同的獨特裝置(i),以逐個裝置(i = 1…n)為基礎,從該獨特地相關的歸一化值(CpkBasei )和該不同的獨特裝置(i)的該其他歸一化值(CpkOtheri )間之比較來為該不同的獨特裝置(i)確定該對應的性能惡化率。The method of claim 13, wherein the method further comprises recording, for each of the different unique devices (i), the corresponding normalized value to the controller separately coupled to the different corresponding unique device (C) pkBasei ) and the other normalized value (C pkOtheri ), the corresponding normalized value (C pkBasei ) and the other normalized value (C pkOtheri ) are uniquely related to the different corresponding unique device (i) And for each of the different unique devices (i), based on the device-by-device (i = 1...n), from the uniquely correlated normalized value (C pkBasei ) and the different unique device (i) A comparison between the other normalized values (C pkOtheri ) determines the corresponding performance degradation rate for the different unique device (i). 如申請專利範圍第13項之方法,其中來自該多個不同的獨特裝置的各該不同的獨特裝置與該運送裝置具有共同的配置。The method of claim 13, wherein each of the different unique devices from the plurality of different unique devices has a common configuration with the transport device. 如申請專利範圍第13項之方法,其中來自該多個不同的獨特裝置的各該不同的獨特裝置具有與該運送裝置不同的配置。The method of claim 13, wherein each of the different unique devices from the plurality of different unique devices has a different configuration than the transport device. 如申請專利範圍第13項之方法,該方法更包括在該控制器的記錄表中記錄趨勢資料,該趨勢資料特徵化了該運送裝置和該系統的各該多個不同的獨特裝置的性能惡化趨勢。The method of claim 13, wherein the method further comprises recording trend data in a record table of the controller, the trend data characterizing performance degradation of the plurality of different unique devices of the transport device and the system trend. 如申請專利範圍第13項之方法,該方法更包括利用該處理器結合對應於該運送裝置和該系統的各該多個不同的獨特裝置的該性能惡化趨勢以確定特徵化了該系統的性能惡化的系統性能惡化趨勢。The method of claim 13, the method further comprising utilizing the processor to combine the performance degradation trend of each of the plurality of different unique devices corresponding to the transport device and the system to determine characteristics of the system. Deteriorating system performance deterioration trend. 如申請專利範圍第13項之方法,該方法更包括利用該處理器將該運送裝置的該性能惡化趨勢與各該多個不同的獨特裝置的該性能惡化趨勢進行比較,並且利用該處理器來確定該運送裝置的該性能惡化趨勢或該多個不同的獨特裝置中的另一個的性能惡化趨勢是否為控制性能惡化趨勢以及控制性能惡化趨勢是否對該系統的性能惡化趨勢為決定性的。The method of claim 13, the method further comprising comparing, by the processor, the performance deterioration trend of the transport device with the performance deterioration trend of each of the plurality of different unique devices, and using the processor It is determined whether the performance deterioration trend of the transport device or the performance deterioration tendency of the other of the plurality of different unique devices is a trend of the control performance deterioration tendency and whether the control performance deterioration tendency is deteriorating the performance deterioration trend of the system. 如申請專利範圍第12項之方法,其中該預定基本運動的每一個定義了模板運動,並且每個原位過程運動實質上地映射到該模板運動中相對應的一個之上。The method of claim 12, wherein each of the predetermined basic motions defines a template motion, and each of the in situ process motions is substantially mapped to a corresponding one of the template motions. 如申請專利範圍第20項之方法,其中該模板運動的每一個被來自該裝置控制器的扭矩命令和位置命令中的至少一個加以特徵化。The method of claim 20, wherein each of the template motions is characterized by at least one of a torque command and a position command from the device controller. 如申請專利範圍第21項之方法,其中該至少一個該扭矩命令和該位置命令於該運送裝置的至少一個運動自由度之中特徵化該模板運動。The method of claim 21, wherein the at least one of the torque command and the position command characterize the template motion among at least one degree of freedom of movement of the transport device. 如申請專利範圍第12項之方法,該方法還包括在該裝置控制器的記錄表中記錄由該裝置控制器命令的運動直方圖,該運動直方圖包括由該運送裝置實現的原位過程運動,並且其中該處理器分解了從位於該記錄表中的定期存取的該運動直方圖的該映射的運動。The method of claim 12, the method further comprising recording, in a record table of the device controller, a motion histogram commanded by the device controller, the motion histogram comprising an in-situ process motion implemented by the transport device And wherein the processor decomposes the motion of the mapping from the motion histogram that is periodically accessed in the record table. 如申請專利範圍第12項之方法,其中該預定運動基本組的該預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。The method of claim 12, wherein the predetermined basic motion of the predetermined motion basic group comprises a statistical feature number defining at least one common basic motion of the basic motion type. 如申請專利範圍第12項之方法,其中該預定運動基本組的該預定基本運動包括多個不同的基本運動類型,其中各該基本運動類型由該運送裝置針對各該基本運動類型在共同運動的統計特徵數量中加以實現。The method of claim 12, wherein the predetermined basic motion of the predetermined motion basic group comprises a plurality of different basic motion types, wherein each of the basic motion types is co-moved by the transport device for each of the basic motion types Implemented in the number of statistical features. 如申請專利範圍第25項之方法,其中各該不同的基本運動類型中具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和位置命令特性定義了與各該基本運動類型相應的不同的共同運動。The method of claim 25, wherein each of the different basic motion types has a different respective at least one torque command characteristic and a position command characteristic, the torque command characteristic and the position command characteristic defining each of the basic motion types Corresponding different common movements. 如申請專利範圍第12項之方法,該方法還包括利用該記錄系統記錄各該動態性能變數的趨勢資料,其中該趨勢資料特徵化了相應的動態性能變數的惡化趨勢。The method of claim 12, the method further comprising recording, by the recording system, trend data of each of the dynamic performance variables, wherein the trend data characterizes a deterioration trend of the corresponding dynamic performance variable. 如申請專利範圍第27項之方法,該方法更包括利用該處理器聚集由該運送裝置輸出的該至少一個動態性能變數之具有最高之該惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的運送裝置之該事件的發生。The method of claim 27, the method further comprising: utilizing the processor to aggregate the dynamic performance variable of the at least one dynamic performance variable output by the transport device having the highest deterioration trend, and predicting that the performance is lower than a predetermined performance The state of performance of the transport device occurs for this event. 如申請專利範圍第28項之方法,該方法進一步包括利用該處理器基於該動態性能變數之該聚集向該運送裝置的操作器提供關於具有低於預定性能狀態的性能的該運送裝置之該事件的發生的預測的指示。The method of claim 28, the method further comprising utilizing the processor to provide the operator of the transport device with the event regarding the transport device having a performance below a predetermined performance state based on the aggregation of the dynamic performance variable. An indication of the occurrence of the prediction. 一種用於評估包括運送裝置的系統的健康的健康評估裝置,該健康評估裝置包括:   記錄系統,其可通信地耦合到該運送裝置的運送裝置控制器,該記錄系統被配置為:     記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了預定基本運動的預定運動基本組,以及     記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了另一個預定運動組;以及   運動分解器,其可通信地耦合到該運送裝置控制器,該運動分解器被配置為:     從該運送裝置分解該裝置控制器的原位過程運動命令,其中由該運送裝置所實現的原位過程運動映射到該預定運動基本組的該預定基本運動,以及     利用該映射的原位過程運動定義該運送裝置的另一預定運動組;以及   處理器,其可通信地耦合到該記錄系統,該處理器被配置為:     確定基本值(CpkBase ),該基本值由該運送裝置針對該預定運動基本組的每個運動所輸出的各該動態性能變數的機率密度函數來加以特徵化,以及     確定另一個值(CpkOther ),該另一個值由該運送裝置所輸出的各該動態性能變數的該機率密度函數來加以特徵化,該另一個值實現該另一預定運動組之該映射之原位過程運動,     針對由分別地對應於該預定運動基本組和該另一預定運動組的該運送裝置所輸出的各該動態性能變數而將該另一個值和該基本值(CpkBase )進行比較,其中該運送裝置對於該預定運動基本組和該另一預定運動組兩者為一獨特的運送裝置並且為共同的,並且     基於該比較來評估該運送裝置的該健康狀況;   其中該運送裝置為該預定運動基本組和該另一預定運動組兩者的共同運送裝置。A health assessment device for assessing the health of a system including a transport device, the health assessment device comprising: a recording system communicatively coupled to a transport device controller of the transport device, the recording system configured to: record embodies At least one predetermined operational data of the dynamic performance variable output by the transport device, the predetermined operational data realizing a predetermined set of motion basics of the predetermined basic motion, and recording predetermined operational data embodying at least one dynamic performance variable output by the transport device The predetermined operational data implements another predetermined motion group; and a motion resolver communicatively coupled to the transport device controller, the motion resolver configured to: decompose the device controller from the transport device in situ a process motion command, wherein an in-situ process motion implemented by the transport device maps to the predetermined base motion of the predetermined motion base group, and another scheduled motion group of the transport device is defined using the mapped in-situ process motion; a processor communicatively coupled to the recording system The processor is configured to: determine a base value (C pkBase ) characterized by a probability density function of each of the dynamic performance variables output by the transport device for each motion of the predetermined motion base group And determining another value (C pkOther ), the another value being characterized by the probability density function of each of the dynamic performance variables output by the transport device, the another value achieving the other predetermined motion group a mapped in-situ process motion for the other value and the base value for each of the dynamic performance variables output by the transport device respectively corresponding to the predetermined motion base group and the other predetermined motion group (C pkBase Comparing, wherein the transport device is a unique transport device for both the predetermined motion basic group and the other predetermined motion group and is common, and the health condition of the transport device is evaluated based on the comparison; The transport device is a common transport device for both the predetermined motion base group and the other predetermined motion group. 如申請專利範圍第30項之裝置,其中該預定基本運動的每一個定義了模板運動,並且每個原位過程運動實質上地映射到該模板運動中相對應的一個之上。The apparatus of claim 30, wherein each of the predetermined basic motions defines a template motion, and each of the in situ process motions is substantially mapped to a corresponding one of the template motions. 如申請專利範圍第31項之裝置,其中該模板運動的每一個被來自該裝置控制器的扭矩命令和位置命令中的至少一個加以特徵化。The device of claim 31, wherein each of the template motions is characterized by at least one of a torque command and a position command from the device controller. 如申請專利範圍第32項之裝置,其中該至少一個該扭矩命令和該位置命令於該運送裝置的至少一個運動自由度之中特徵化該模板運動。The apparatus of claim 32, wherein the at least one of the torque command and the position command characterize the template motion among at least one degree of freedom of movement of the transport device. 如申請專利範圍第30項之裝置,其中該運送裝置控制器包括記錄表,該記錄表被配置為記錄由該裝置控制器命令的運動直方圖,該裝置控制器包括由該運送裝置實現的原位過程運動,並且該處理器被進一步地配置為分解從位於該記錄表中的定期存取的該運動直方圖的該映射的運動。The apparatus of claim 30, wherein the transport device controller includes a record table configured to record a motion histogram commanded by the device controller, the device controller including an original implemented by the transport device The bit process moves and the processor is further configured to decompose the motion of the mapping from the motion histogram that is periodically accessed in the record table. 如申請專利範圍第30項之裝置,其中該預定運動基本組的該預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。The apparatus of claim 30, wherein the predetermined basic motion of the predetermined motion basic group comprises a statistical feature quantity defining at least one common basic motion of the basic motion type. 如申請專利範圍第30項之裝置,其中該預定運動基本組的該預定基本運動包括多個不同的基本運動類型,其中各該基本運動類型由該運送裝置針對各該基本運動類型在共同運動的統計特徵數量中加以實現。The apparatus of claim 30, wherein the predetermined basic motion of the predetermined motion basic group comprises a plurality of different basic motion types, wherein each of the basic motion types is co-moved by the transport device for each of the basic motion types Implemented in the number of statistical features. 如申請專利範圍第36項之裝置,其中各該不同的基本運動類型具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和該位置命令特性定義了與各該基本運動類型相應的不同的共同運動。The apparatus of claim 36, wherein each of the different basic motion types has a different respective at least one torque command characteristic and a position command characteristic, the torque command characteristic and the position command characteristic defining each of the basic motion types Corresponding different common movements. 如申請專利範圍第30項之裝置,其中該記錄系統更進一步地被配置為記錄各該動態性能變數的趨勢資料,其中該趨勢資料特徵化了相應的動態性能變數的惡化趨勢。The apparatus of claim 30, wherein the recording system is further configured to record trend data for each of the dynamic performance variables, wherein the trend data characterizes a deterioration trend of the corresponding dynamic performance variable. 如申請專利範圍第38項之裝置,其中該處理器更進一步地被配置為聚集由該運送裝置輸出的該至少一個動態性能變數之具有最高之該惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的該運送裝置之事件的發生。The apparatus of claim 38, wherein the processor is further configured to aggregate the dynamic performance variable of the at least one dynamic performance variable output by the transport device having the highest trend of deterioration, and predicting having a lower than The occurrence of an event of the transport device that predicts the performance of the performance state. 如申請專利範圍第39項之裝置,其中該處理器更進一步地被配置為基於該動態性能變數之該聚集向該運送裝置的操作器提供關於具有低於預定性能狀態的性能的該運送裝置之該事件的發生的預測的指示。The apparatus of claim 39, wherein the processor is further configured to provide the operator of the transport device with respect to the transport device having performance below a predetermined performance state based on the aggregate of the dynamic performance variables. An indication of the prediction of the occurrence of the event. 一種用於評估包括運送裝置的系統的健康的健康評估裝置,該健康評估裝置包括:   記錄系統,其可通信地耦合到該運送裝置的運送裝置控制器,該記錄系統被配置為:     記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了被設置為定義預定基本運動的統計特徵的預定運動基本組,以及     記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了另一個預定運動組;   運動分解器,其可通信地耦合到該運送裝置控制器,該運動分解器被配置為:     從該運送裝置分解該裝置控制器的原位過程運動命令,其中由該運送裝置所實現的原位過程運動映射到該預定運動基本組的該預定基本運動,以及     利用該映射的原位過程運動定義該運送裝置的另一個預定運動組;以及   處理器,其可通信地耦合到該記錄系統,該處理器被配置為:     確定歸一化值,該歸一化值統計上地特徵化了由該運送裝置針對該預定運動基本組的每個運動所輸出的各該動態性能變數的標稱性能,     確定另一個歸一化值,該另一個歸一化值統計上地特徵化了由該運送裝置所輸出的各該動態性能變數的原位過程性能,該另一個歸一化值實現該另一預定運動組之該映射的原位過程運動,     針對分別地對應於該預定基本運動組和該另一預定運動組的該運送裝置的各該動態性能變數而將該另一歸一化值和該歸一化值進行比較,並且     基於該比較從標稱性能確定該運送裝置的性能惡化率,   其中該運送裝置為該預定基本運動組和該另一預定運動組兩者的共同運送裝置。A health assessment device for assessing the health of a system including a transport device, the health assessment device comprising: a recording system communicatively coupled to a transport device controller of the transport device, the recording system configured to: record embodies At least one predetermined operational data of the dynamic performance variable output by the transport device, the predetermined operational data implementing a predetermined set of motions set to define statistical characteristics of the predetermined basic motion, and recording at least one of the outputs embodied by the transport device a predetermined operational data of the dynamic performance variable, the predetermined operational data implementing another predetermined motion group; a motion resolver communicatively coupled to the transport device controller, the motion resolver configured to: decompose the transport device from the transport device An in-situ process motion command of the device controller, wherein the in-situ process motion implemented by the transport device maps to the predetermined base motion of the predetermined motion base group, and the in-situ process motion using the map defines the transport device Another predetermined motion group; and a processor communicatively coupled to the recording system, the processor configured to: determine a normalized value that is statistically characterized by the transport device The nominal performance of each of the dynamic performance variables output by each motion of the predetermined motion basic set determines another normalized value that statistically characterizes each output by the transport device An in-situ process performance of the dynamic performance variable, the another normalized value implementing the mapped in-situ process motion of the another predetermined set of motions for respectively corresponding to the predetermined base motion group and the further predetermined motion group Each of the dynamic performance variables of the transport device compares the other normalized value with the normalized value and determines a performance degradation rate of the transport device based on the comparison, wherein the transport device is a common transport device for both the predetermined basic motion group and the other predetermined motion group. 如申請專利範圍第41項之裝置,其中該裝置是獨特的,並且該預定運動基本組的各該預定基本運動的各該歸一化值和該另一預定運動組的各該映射的原位過程運動的各其他值是只與該獨特裝置獨特地相關,並且該確定的性能惡化率只與該獨特裝置獨特地相關。The apparatus of claim 41, wherein the apparatus is unique, and each of the predetermined normal motions of the predetermined motion basic group and the normalized value of each of the other predetermined motion groups Each other value of the process motion is uniquely related to only that unique device, and the determined rate of performance degradation is uniquely related to only that unique device.
TW107115457A 2017-05-05 2018-05-07 Method and apparatus for health assessment of a transport apparatus TWI794229B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762502292P 2017-05-05 2017-05-05
US62/502,292 2017-05-05

Publications (2)

Publication Number Publication Date
TW201908895A true TW201908895A (en) 2019-03-01
TWI794229B TWI794229B (en) 2023-03-01

Family

ID=66590051

Family Applications (2)

Application Number Title Priority Date Filing Date
TW112103840A TWI832691B (en) 2017-05-05 2018-05-07 Method and apparatus for health assessment of a transport apparatus
TW107115457A TWI794229B (en) 2017-05-05 2018-05-07 Method and apparatus for health assessment of a transport apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW112103840A TWI832691B (en) 2017-05-05 2018-05-07 Method and apparatus for health assessment of a transport apparatus

Country Status (1)

Country Link
TW (2) TWI832691B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411908B1 (en) * 2000-04-27 2002-06-25 Machinery Prognosis, Inc. Condition-based prognosis for machinery
US20020183971A1 (en) * 2001-04-10 2002-12-05 Wegerich Stephan W. Diagnostic systems and methods for predictive condition monitoring
ATE313833T1 (en) * 2002-10-04 2006-01-15 Siemens Schweiz Ag METHOD FOR MONITORING GOODS
KR101322434B1 (en) * 2005-07-11 2013-10-28 브룩스 오토메이션 인코퍼레이티드 Intelligent condition-monitoring and fault diagnostic system
US7567878B2 (en) * 2005-12-07 2009-07-28 Siemens Corporate Research, Inc. Evaluating anomaly for one class classifiers in machine condition monitoring
SE529676C2 (en) * 2006-03-02 2007-10-23 Abb Ab A method for evaluating an application, an automation system and a control unit
US8494817B1 (en) * 2006-11-30 2013-07-23 Pdf Solutions, Inc. Methods for yield variability benchmarking, assessment, quantification, and localization
WO2008112791A2 (en) * 2007-03-12 2008-09-18 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for generalized performance evaluation of equipment using achievable performance derived from statistics and real-time data
US8352216B2 (en) * 2008-05-29 2013-01-08 General Electric Company System and method for advanced condition monitoring of an asset system
EP2763818B1 (en) * 2011-10-03 2021-12-01 ABB Schweiz AG Condition monitoring of an industrial robot
US20140336791A1 (en) * 2013-05-09 2014-11-13 Rockwell Automation Technologies, Inc. Predictive maintenance for industrial products using big data

Also Published As

Publication number Publication date
TWI794229B (en) 2023-03-01
TW202324011A (en) 2023-06-16
TWI832691B (en) 2024-02-11

Similar Documents

Publication Publication Date Title
CN110799917B (en) Method and device for health assessment of a delivery device
US11650581B2 (en) Intelligent condition monitoring and fault diagnostic system for preventative maintenance
TWI470385B (en) Intelligent condition-monitoring and fault diagnostic system for robotized manufacturing tools
KR20200021538A (en) Transport and Adapter Pendant
US11664265B2 (en) Systems and methods for robotic arm sensing
TWI794229B (en) Method and apparatus for health assessment of a transport apparatus
US11249455B2 (en) Automation system and wear detection controller
JP2019155574A (en) Robot control device, network system, robot parameter derivation method and program