TW201720062A - 具有非線性特性的估量方法 - Google Patents

具有非線性特性的估量方法 Download PDF

Info

Publication number
TW201720062A
TW201720062A TW105124442A TW105124442A TW201720062A TW 201720062 A TW201720062 A TW 201720062A TW 105124442 A TW105124442 A TW 105124442A TW 105124442 A TW105124442 A TW 105124442A TW 201720062 A TW201720062 A TW 201720062A
Authority
TW
Taiwan
Prior art keywords
signal
digital
circuit
sar
analog
Prior art date
Application number
TW105124442A
Other languages
English (en)
Other versions
TWI623201B (zh
Inventor
丹尼爾 洛佩茲狄亞茲
湯馬士 尼德佛里尼格
亞歷山大 卡爾
斯特芬 特勞特曼
Original Assignee
領特公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 領特公司 filed Critical 領特公司
Publication of TW201720062A publication Critical patent/TW201720062A/zh
Application granted granted Critical
Publication of TWI623201B publication Critical patent/TWI623201B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/462Details of the control circuitry, e.g. of the successive approximation register
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/464Non-linear conversion

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

一種電路包括逐次逼近型類比數位轉換器,該轉換器包括回饋支路並且例如根據估量方法來操作。回饋支路被設置成根據預定函數來轉換數位訊號並且進一步將經轉換的數位訊號轉換成類比回饋訊號。例如,該預定函數可以是指數函數。由此,借助非線性特性來將輸入訊號轉換成輸出訊號是可能的。

Description

具有非線性特性的估量方法
本發明的不同實施方式涉及一種包括逐次逼近型類比數位轉換器的電路以及一種混合類比數位轉換器。不同實施方式尤其涉及用於將具有非線性特性的類比輸入訊號轉換成數位輸出訊號的技術。
在各種應用中,在大動態範圍上將作為輸入訊號的類比交流電壓訊號(AC訊號)的功率確定為數位值可以是值得做的。此外,各種技術是已知的,例如峰值檢測或限幅放大器。然而,此類技術具有如下缺點:這些技術並不確定有效值,例如均方根(root mean square, RMS)。因此,此類技術可能尤其與AC訊號的調製技術具有相關性和/或與峰值功率和均值之比(例如,通過峰值因數來描述)具有相關性。
為了確定RMS值,已知首先對AC訊號取平方並且隨後借助對數類比放大器來在類比域中轉換該AC訊號的技術。隨後借助類比數位轉換器(Analog-to-Digital Converter; ADC)來進行類比數位(AD)轉換,以便獲得數位輸出訊號。此外,可以例如使用根據估量方法來操作的ADC;這種ADC通常被稱為逐次逼近型ADC(SAR-ADC)。在此參見Tietze、Schenk、Gamm的“半導體電路技術”第14版(2012),章節17.2.2“具有開關電壓的估量方法”。
然而,用於確定RMS值的這種技術具有如下缺點:由於借助類比放大器在類比域中進行的對數放大,可能存在與邊界條件(例如工藝公差、SAR和供電電壓)的顯著相關性。輸出訊號可能隨後相應地畸變。AD轉換的精度可能下降。
因此,存在對改進的AD轉換技術的需要。特別地,存在對使得能夠可靠且準確地轉換具有帶有大動態範圍的功率曲線的輸入訊號的技術的需要。
此任務通過獨立請求項的特徵來解決。從屬請求項限定各實施方式。
根據一個實施方式,本發明涉及一種電路。該電路包括SAR-ADC。該SAR-ADC包括回饋支路。該回饋支路被設置成根據預定函數來轉換數位訊號並且進一步將經轉換的數位訊號轉換成類比回饋訊號。
根據一個實施方式,本發明涉及一種方法。該方法包括借助SAR-ADC的回饋支路、根據預定函數來轉換數位訊號。該方法進一步包括借助SAR-ADC的回饋支路來將經轉換的數位訊號轉換成類比回饋訊號。
根據一個實施方式,本發明涉及一種混合ADC。該混合ADC包括比較器,該比較器被設置成將類比輸入訊號與回饋訊號相比較並且基於該比較來提供結果訊號。該輸入訊號具有帶有第一區域和第二區域的功率曲線。第一區域對應於比第二區域小的功率。該混合ADC進一步包括SAR寄存器,該SAR寄存器被設置成基於結果訊號來反覆運算地調整數位訊號。該混合ADC被設置成借助非線性特性來轉換具有可識別的靈敏度的輸入訊號的第一區域。
上述特徵和下述特徵不僅可在相應的圖式說明的組合中使用,而且可以在其他組合中或者單獨地使用,而不會脫離本發明的保護範圍。
接下來參照附圖根據優選實施方式來更詳細地闡釋本發明。在附圖中,相同的附圖標記表示相同或相似的元件。這些附圖是本發明的各種實施方式的示意性表示。在附圖中,所示出的元件未必是按比例示出的。更確切地說,在附圖中示出的各種元件被描述成使本領域技術人員能夠理解其功能和一般目的。在附圖中示出的功能性單元和元件之間的連接和耦合也可以被實現為間接連接或耦合。連接或耦合可被有線或無線地實現。功能性單元可被實現為硬體、軟體、或硬體和軟體的組合。
接下來描述涉及類比輸入訊號的AD轉換的技術;由此獲得數位輸出訊號。特別地,AD轉換基於SAR-ADC或估量方法。在此,使用使得能夠對具有大動態範圍的輸入訊號執行特別準確且可靠的AD轉換的技術。動態範圍可以指代輸入訊號的某個特徵參數,例如功率。在此,根據各種實施方式的SAR-ADC被設置成借助非線性特性來轉換輸入訊號的功率曲線的具有大靈敏度的第一區域並且轉換輸入訊號的功率曲線的具有小靈敏度的第二區域。由此可以達成能夠在輸入訊號的功率曲線的大動態範圍上提供具有足夠的或者特別是可識別的靈敏度的輸出訊號。
在各種實施方式中,AD轉換的非線性特性可以適於提供輸入訊號的功率的RMS值。就此而言,尤其可以將對數標度(例如dB標度)轉換成線性標度。這種技術可以尤其在輸入級方面應用於無線電通道的無線傳輸。一個具體應用為根據(電氣和電子工程師協會)IEEE 802.11標準族的無線區域網路(WLAN)傳輸。另一應用領域為借助蜂窩技術(例如通過第三代夥伴專案(3GPP)指定的蜂窩技術)的無線傳輸。又一應用領域為結合物聯網(英文:Internet of Things, IOT)技術的無線傳輸。在此類應用中,輸入訊號的功率通常在大動態範圍內、例如在80-90 dB的範圍內變化。此類技術還可以例如結合WLAN接入點(英語:WLAN Access Point of a Gateway(閘道的WLAN接入點))在“聯網家庭”領域中使用。
在第1圖中示出了包括SAR-ADC 110的電路100。例如,電路100可佈置在單個半導體晶片或經連接晶片上。SAR-ADC 110接收類比輸入訊號182並且輸出數位輸出訊號187。數位輸出訊號187可以例如指示類比輸入訊號182的振幅。數位輸出訊號187可以例如指示輸入訊號182的RMS值。
SAR-ADC 110接收來自檢測器101的輸入訊號182。檢測器101可被設置成例如基於物理測量值181來提供輸入訊號182。
在各種實施方式中,檢測器101例如是乘法器或平方器元件也是可能的,該乘法器或平方器元件改變類比訊號181以獲得輸入訊號182。在各種實施方式中,檢測器101還可實現採樣-保持電路(sample-and-hold)。例如,檢測器101在此方面具有實現低通濾波器的電容器是可能的。替換地或附加地,在各種實施方式中,檢測器101實現積分器也是可能的。由此可以例如達成在特定的時間範圍上對訊號181進行積分並且基於該積分來產生輸入訊號182以及將該輸入訊號182提供給SAR-ADC 110。替換地或附加地,在各種實施方式中,檢測器101實現類比放大器電路也是可能的。例如,檢測器根據工作狀態來使用放大器電路的各種放大係數是可能的。工作狀態的示例包括例如檢測器101的特性、檢測器101的所選動態範圍、以及檢測器101的放大係數。
一般而言,電路100可被設置成轉換各種不同的輸入訊號181。特別地,輸入訊號181可以例如是兆赫茲或千兆赫茲範圍內的交變場(英語:Alternating Current,AC)高頻訊號。例如,輸入訊號181是經調製的高頻訊號是可能的。
SAR-ADC 110將估量方法技術用於AD轉換。特別地,SAR-ADC 110包括比較器111、SAR-寄存器112以及回饋支路120,如從SAR-ADC 110的參考實施方式中已知的那樣。比較器111被設置成將類比輸入訊號182與由回饋支路120提供的類比回饋訊號160相比較並且基於該比較來向SAR寄存器112提供結果訊號183。例如,比較器111可被設置成如果類比輸入訊號182具有大於回饋訊號186的振幅的振幅,則輸出邏輯1。相應地,比較器111可被設置成如果類比輸入訊號182具有小於回饋訊號186的振幅的振幅,則輸出邏輯0。
SAR寄存器112被設置成輸出數位訊號184並且基於由比較器111提供的結果訊號183來反覆運算地調整數位訊號184。如果反覆運算調整結束,即,AD轉換結束,則數位訊號184對應於輸出訊號187。
SAR寄存器112可被設置成在AD轉換過程期間存儲數位訊號184的值。例如,數位訊號184或輸出訊號187可具有預定長度的位元序列(例如,8位元)。例如,可以在AD轉換過程開始時將數位訊號184的初始值設置為0。隨後,可以將最高位元(英語:Most Significant Bit, MSB)設置為1,並且通過比較器借助比較來檢驗:輸入訊號182的振幅是否大於如此調整的數位訊號184的振幅或者是否大於對應於經調整的數位訊號184的類比表示的回饋訊號186的振幅。
根據比較的結果來調整MSB或者將MSB保留為1。隨後,可以將下一位MSB-1設置為1;根據通過比較器111進行的比較的結果來再次將MSB-1調整為0或者保留為1。
反覆運算調整的這個過程可以隨後針對數位訊號184的所有其他位元位置來執行,直至最終確定最低位元(英語:Lowest Significant Bit, LSB)。隨後,可以提供輸出訊號187。
上述基於估量方法的AD轉換是本領域技術人員已知的,從而不必闡述進一步的細節。基於估量方法來操作的傳統SAR-ADC具有將輸入訊號轉換成輸出訊號的AD轉換的非線性特性。特別地,沒有進行數位訊號184的轉換。
SAR-ADC 110還可被設置成根據非線性特性來轉換類比輸入訊號182。以下關於回饋支路120來描述細節。特別地,回饋支路120被設置成導致SAR-ADC 110的非線性特性。特別地,回饋支路120被設置成根據預定函數170來轉換數位訊號184並且進一步將經轉換的數位訊號184轉換成類比回饋訊號186。類比回饋訊號186隨後被轉入比較器111。
詳細地,回饋支路120包括數位邏輯元件113和數位類比(DA)轉換器元件114。數位邏輯元件113在數位域中操作。數位邏輯元件113被設置成根據預定函數170來轉換數位訊號184。DA轉換器元件114被設置成將經轉換的數位訊號185轉換成類比回饋訊號186並且將類比回饋訊號186轉入比較器111。
數位訊號184的轉換導致SAR-ADC 110的非線性特性。根據預定函數170的設計,可以轉變非線性特性。由於呈比較器111、邏輯元件113和SAR寄存器112形式的邏輯既佈置在類比域中又佈置在數位域中,因而SAR-ADC 110也被稱為混合類比數位轉換器。
雖然DA轉換器元件114例如可被設計為線性DA轉換器元件114、即,即使其具有DA轉換的線性特性,但SAR-ADC 110的非線性特性仍可以達成。
通過在數位域中轉換數位訊號184,可以達成SAR-ADC 110的特別穩定且可靠的操作。特別地,在數位域中轉換數位訊號184可以不與溫度或其他外部影響(例如偏移電壓或工藝參數)具有顯著相關性。由此可以達成SAR-ADC 110可靠且穩定地實現非線性特性。此外,可以減少所必需的類比電路技術,例如對數類比放大器可以是不必要的。
在一特定情景中,預定函數170對應於指數函數。在這種情形中,指數型預定函數170導致將具有對數非線性特性的輸入訊號182轉換成輸出訊號187。這可被用於以dB計的線性標度來提供指示輸入訊號182的輸出訊號187。這可以尤其是結合訊號181的RMS值的確定而是值得做的。
例如,RMS值的確定可包括一個兩階段的過程。首先,可借助檢測器101來對訊號181取平方,即與其自身相乘。得到: y=xa
其中x表示訊號181並且y表示輸入訊號182。a是參數,例如,a = 2。a還可以採用其他值,例如在1.5 < a < 2.5的範圍內。
隨後,借助對數非線性特性來確定輸入訊號182的對數;在此,在數位域中借助SAR-ADC 110來確定對數。特別地,通過在數位域中借助邏輯元件113藉由指數型預定函數170來轉換數位訊號184,得到作為AD轉換的非線性特性的對數。隨後,獲得具有位元序列的輸出訊號187,該位元序列的值關於輸入訊號182的RMS值線性變化。
通過在數位域中實現邏輯元件113,可構想邏輯元件113的各種不同的變型。在各種情景中,例如,邏輯元件113包括處理器是可能的,該處理器被設置成基於預定函數170並且基於數位訊號184來計算經轉換的數位訊號185。例如,處理器可以與其中存儲了預定函數的記憶體耦合(第1圖中未示出)。由此,靈活地調整預定函數是可能的。
關於第2圖,示出了關於邏輯元件113的實現的另一情景。在第2圖的情景中,電路100包括與邏輯元件113耦合的記憶體151。記憶體151被設置成存儲查閱資料表(look up table, LUT)。LUT建立預定函數170。邏輯元件113被設置成根據基於LUT的預定函數170來轉換數位訊號184。
例如,用於各種數位訊號184的LUT可以分別包括對應的經轉換的數位訊號185。這意味著,數位訊號184的基於LUT的對應關係的特定位元序列可以被轉換成經轉換的數位訊號185的另一位元序列。存儲在LUT中的對應關係的總量可以隨後建立預定函數170。通過LUT的使用可以在邏輯元件113中相對簡單地實現轉換。特別地,執行特定的計算操作可以是不必要的,並且提供具有相對較大計算能力的相應處理器可以是不必要的。
在各種情景中,LUT不僅僅建立預定函數170。例如,回饋支路120被設置成在第一工作模式中根據預定函數170來轉換數位訊號184並且在第二工作模式中根據另一其他預定函數來轉換數位訊號184是可能的。由此,根據工作模式來改變用來將輸入訊號182轉換成輸出訊號187的SAR-ADC 110的非線性特性是可能的。由此,可以提高關於AD轉換的靈活性。
關於第3圖,示出了關於預定函數170與溫度的相關性的諸方面。特別地,電路100的類比元件的操作與溫度具有顯著相關性是可能的。例如,比較器111具有溫度相關性。替換地或附加地,DA轉換器元件114的操作與溫度具有相關性也是可能的。特別地,檢測器101具有溫度相關性也是可能的。
在第3圖中,示出了其中電路110包括溫度感測器152的情景。溫度感測器152測量電路110的區域中的溫度。隨後,溫度感測器152被設置成提供指示所測得的溫度的控制訊號。預定函數170與所測得的溫度具有相關性也是可能的。例如,在其中通過LUT來建立預定函數170的情景中,用於數位訊號184的特定位元序列的LUT可以具有經轉換的數位訊號185的各種對應的位元序列,其中可以基於所測得的溫度來選擇相應的對應關係。通過設置預定函數170與溫度的相關性,可以減少或者補償溫度對將輸入訊號182轉換成輸出訊號187的影響。特別溫度穩定地提供非線性特性是可能的。
關於第4圖,示出了涉及預定函數170與檢測器101的類型或工作狀態的相關性的諸方面。如從第4圖可見,在此情景中,檢測器101具有與邏輯元件113的耦合。由此,邏輯元件113實現預定函數170與檢測器101的類型和/或檢測器101的工作狀態的相關性是可能的。特別地,如以上描述的,可按特定方式在類比域中通過檢測器101來預調節訊號181,例如對訊號181取平方。通常,根據檢測器101的工作狀態或根據檢測器101的類型,可以改變訊號181的預調節。這裡,相應地調整預定函數170以平衡或補償對訊號181的預調節中的變化可以是值得做的。例如,在其中通過LUT來建立預定函數170的情景中,用於數位訊號184的特定位元序列的LUT具有經轉換的數位訊號185的各種對應的位元序列,其中可以基於檢測器101的類型或檢測器101的工作狀態來選擇相應的對應關係。
關於第5圖,解說了可選擇性地啟動的旁路600的各個方面,該旁路600被設置成繞過數位邏輯元件113。特別地,在第5圖的情景中,回饋支路120包括可選擇性地啟動的旁路600,該旁路600導致在必要時不轉換數位訊號184並且向DA轉換器元件114傳遞該數位訊號184。由此可以達成:根據可選擇性地啟動的旁路600是活躍的還是不活躍的,調整用來將輸入訊號182轉換成輸出訊號187的SAR-ADC 110的非線性特性。由此,例如,可以在輸出訊號187的以dB計的線性標度與對應於SAR-ADC 110的線性特性的線性標度之間進行切換。這意味著,借助旁路600來繞過非線性特性是可能的。由此,根據應用情形以線性或非線性特性來操作SAR-ADC 110是可能的。
在各種情景中,通過相應的硬體來實現旁路600是可能的。例如,可以通過一個或多個開關和專用導體電路來實現旁路600。然而在其他情景中,通過軟體來實現旁路600也是可能的。例如,回饋支路120被設置成在第一工作模式中根據預定函數170來轉換數位訊號184並且在第二工作模式中根據恆等函數來轉換數位訊號184是可能的。恆等函數導致將數位訊號184不經改變(即,相等)地提供給DA轉換器元件114。數位訊號184和經轉換的數位訊號185是相等的。
以上解說了借助SAR-ADC 110的回饋支路120中的數位邏輯元件113來實現SAR-ADC 110用來將輸入訊號182轉換成輸出訊號187的非線性特性的技術。該非線性特性與預定函數170具有相關性。因此,根據具體應用靈活地實現預定函數170可以是值得做的。例如,將預定函數170選擇為指數函數以使得對數地構造非線性特性可以是值得做的。
關於第6圖,示出了涉及預定函數170的各個方面。預定函數170被數位邏輯元件113用於將數位訊號184轉換成經轉換的數位訊號185。例如,如第6圖中示出的預定函數可以是非線性函數。特別地,如第6圖中所示,預定函數170是指數函數是可能的。指數函數可以尤其通過以下相關性來描述: f(x)=exp(x)
其中x表示數位訊號184的值。
指數函數170通常是通過特定斜率來表徵的;例如,在第6圖的情景中,第一預定函數170(實線)具有第一斜率並且第二和第三預定函數(虛線和點線)具有第二斜率,其中第二斜率大於第一斜率。根據應用,可以如此調整將數位訊號184轉換成經轉換的數位訊號185並且由此調整SAR-ADC 110的非線性特性。
通常,指數函數170進一步通過特定的零點偏移來表徵。在第6圖的情景中,第一和第二指數函數170具有第一零點偏移並且第二指數函數170具有第二零點偏移,其中第一零點偏移大於第二零點偏移。根據應用,可以如此調整將數位訊號184轉換成經轉換的數位訊號185並且由此調整SAR-ADC 110的非線性特性。
例如,可以根據由溫度感測器152測得的溫度和/或根據檢測器101的類型和/或根據檢測器101的工作狀態來調整預定函數170的參數,例如斜率或零點偏移。
以下關於第7圖、第8圖和第9圖來示出涉及用來將輸入訊號182轉換成輸出訊號187的非線性特性的諸方面的細節。在第7圖中,輸入訊號182的功率710被示為時間函數(功率曲線700)。如從第7圖可見,輸入訊號182的功率710在多個數量級上延伸的大動態範圍720中變化。功率曲線700相應地包括第一區域711和第二區域712。在此,第一區域711對應於比第二區域712小的輸入訊號182的功率710。
借助在此描述的技術,在整個動態範圍720中進行可靠且準確的AD轉換是可能的。特別地,通過SAR-ADC 110的非線性特性還可以轉換具有大靈敏度AD的第一區域711。
在第8圖中,示出了作為輸入訊號182的功率710的函數的輸出訊號187的值;在此,實線解說非線性特性800並且虛線解說用來將輸入訊號182轉換成輸出訊號187的線性特性800(注意,在第8圖中水準地示出功率軸的對數刻度)。如果用非線性特性800進行AD轉換,則在以dB計的線性標度上提供輸出訊號187(在第8圖中通過實直線示出)。
從第8圖中可見,在線性特性800(虛線)的情形中,僅向第一區域711分配了離散輸出訊號187的單個數字值(在第8圖中通過豎軸上的記號和水準虛線箭頭來表示);因此,用不具有可識別的靈敏度的線性特性800來進行AD轉換。
從第8圖中還可見,在非線性特性800的情形中,向輸入訊號182的功率曲線700的第一區域711分配了關於離散輸出訊號187的更大值範圍(在第8圖中通過豎軸上的記號和水準虛線箭頭來表示);因此,用不具有可識別的靈敏度的線性特性800來進行AD轉換。
詳細來說,第8圖中示出的曲線的斜率對應於用來執行AD轉換的靈敏度;在此,較小(較大)的斜率對應於較小(較大)的靈敏度。在第9圖中,示出了非線性特性800(實線)和線性特性(虛線)的靈敏度900。從第9圖中可見,在非線性特性800的情形中,轉換輸入訊號的第一區域711和輸入訊號182的第二區域712以基本上相同的靈敏度進行轉換。特別地,在整個動態範圍720上以恆定靈敏度900來進行AD轉換。特別地,用來轉換輸入訊號182的第一區域711的靈敏度900相對較大且是可識別的。可識別的靈敏度900可以意味著輸出訊號187關於第一區域711具有足夠數目的資料點。由此,還可以在對應於較小功率的第一區域711中達成AD轉換的高解析度。
在第10圖中,示出了根據各種實施方式的方法的流程圖。該方法包括在SAR ADC 110的回饋支路120中根據預定函數170來轉換數位訊號184(步驟A1)。在此,預定函數170例如是非線性函數,例如特別是指數函數。例如,將數位訊號184轉換成經轉換的數位訊號185可以通過邏輯元件113來執行。在此,邏輯元件113可以例如與存儲LUT的記憶體151耦合。隨後,邏輯元件113在使用LUT的情況下實現將數位訊號184轉換成經轉換的數位訊號185是可能的。
在各種實施方式中,選擇性地執行步驟A1;例如,可以借助旁路600來繞過將數位訊號184轉換成經轉換的數位訊號185。
該方法進一步包括在SAR-ADC 110的回饋支路120中將經轉換的數位訊號185轉換成類比回饋訊號186(步驟A2)。例如,A2可通過DA轉換器元件114來執行。
該方法可以例如進一步包括將回饋訊號186與輸入訊號相比較並且基於該比較來輸出結果訊號183(第10圖中未示出)。
該方法可以進一步包括基於結果訊號183來反覆運算地調整數位訊號184(第10圖中未示出)。
在第11圖中,示出了根據參考實現的已知的SAR-ADC 110,參見Tietze, Schenk, Gamm等人的“半導體電路技術”第14版(2012)章節17.2.2“具有開關電壓的估量方法”。在已知的SAR-ADC 110中,在不進行轉換的情況下將數位訊號184轉入數位類比轉換器元件114。不存在被設置成轉換數位訊號184的邏輯元件113。
總而言之,以上闡述了基於估量方法來實現AD轉換的技術。相應的SAR-ADC包括具有預定函數的回饋支路。例如,該預定函數可以具有指數相關性。與傳統的線性DA轉換器元件相組合,隨後可以實現AD轉換的對數特性。
由此可以獲得各種優點。一個特別優點在於,極大地減少了類比電路技術,該類比電路技術通常特別敏感地對溫度波動、偏移電壓和工藝變化作出反應。特別地,可以在數位域中基於預定函數來進行轉換。
此類技術可以在各種不同領域中得到應用。一個特別的應用領域為確定輸入訊號(例如高頻訊號)的RMS值。
總而言之,以上根據以下示例描述了各個技術:
示例1:一種電路(100),其包括:逐次逼近型類比數位轉換器SAR-ADC(110),其中SAR-ADC(110)包括回饋支路(120),其中回饋支路(120)被設置成根據預定函數(170)來轉換數位訊號(184)並且進一步將經轉換的數位訊號(185)轉換成類比回饋訊號(186)。
示例2:根據示例1的電路(100),其中回饋支路(120)包括數位邏輯元件(113)和數位類比轉換器元件(114),其中數位邏輯元件(113)被設置成根據預定函數(170)來轉換數位訊號(184),其中數位類比轉換器元件(114)被設置成將經轉換的數位訊號(184)轉換成類比回饋訊號(186)。
示例3:根據示例2的電路(100),該電路進一步包括:記憶體(151),其被設置成存儲建立預定函數(170)的查閱資料表,其中數位邏輯元件(113)被設置成根據基於查閱資料表的預定函數(170)來轉換數位訊號(184)。
示例4:根據示例2或3的電路(100),其中回饋支路(120)進一步包括可選擇性地啟動的旁路(600),該旁路被設置成繞過數位邏輯元件(113)。
示例5:根據以上示例之一的電路(100),其中預定函數(170)是非線性函數。
示例6:根據以上示例之一的電路(100),其中預定函數(170)是指數函數。
示例7:根據以上示例之一的電路(100),其中預定函數(170)具有零點偏移。
示例8:根據以上示例之一的電路(100),其中回饋支路(120)被設置成在第一工作模式中根據預定函數(170)來轉換數位訊號(184)並且在第二工作模式中根據另一預定函數(170)來轉換數位訊號(184)。
示例9:根據示例8的電路(100),其中該另一預定函數(170)是恆等函數。
示例10:根據以上示例之一的電路(100),該電路進一步包括:溫度感測器(152),其被設置成向數位邏輯元件(113)輸出控制訊號,其中該控制訊號指示所測得的溫度,其中預定函數(170)與所測得的溫度具有相關性。
示例11:根據以上示例之一的電路(100),該電路進一步包括:檢測器(101),其被設置成向SAR-ADC(110)輸出類比輸入訊號(182)。
示例12:根據示例11的電路(100),其中預定函數(170)與檢測器(101)的類型具有相關性。
示例13:根據示例11或12的電路(100),其中預定函數(170)與檢測器(101)的工作狀態具有相關性。
示例14:根據以上示例之一的電路(100),其中SAR-ADC(110)進一步包括比較器(111),該比較器被設置成將由SAR-ADC(110)接收的類比輸入訊號(182)與回饋訊號(186)相比較並且基於該比較來輸出結果訊號(183)。
示例15:根據示例14的電路(100),其中SAR-ADC(110)進一步包括SAR寄存器(112),該SAR寄存器被設置成基於結果訊號(183)來反覆運算地調整數位訊號(184)。
示例16:根據以上示例之一的電路(100),其中SAR-ADC(110)被設置成借助非線性特性(800)來轉換由SAR-ADC(110)接收的類比輸入訊號(182)。
示例17:一種方法,包括:SAR-ADC(110)的回饋支路(120)根據預定函數(170)來轉換數位訊號(184),SAR-ADC(110)的回饋支路(120)將經轉換的數位訊號(185)轉換成類比回饋訊號(186)。
示例18:根據示例17的方法,其中該方法由根據示例1-16之一的電路(100)來執行。
示例19:一種混合類比數位轉換器(110),包括:比較器(111),其被設置成將類比輸入訊號(182)與回饋訊號(186)相比較並且基於該比較來輸出結果訊號(183),其中輸入訊號(182)具有帶有第一區域(711)和第二區域(712)的功率曲線(700),其中第一區域(711)對應於比第二區域(712)小的功率,SAR寄存器(112),其被設置成基於結果訊號(183)來反覆運算地調整數位訊號(184),其中混合類比數位轉換器(110)被設置成借助非線性特性(800)來轉換輸入訊號(182)的功率曲線(700)的具有可識別的靈敏度(900)的第一區域(711)。
示例20:根據示例19的混合類比數位轉換器(110),其中混合類比數位轉換器(110)被設置成轉換輸入訊號的功率曲線(700)的具有第一靈敏度(900)的第一區域(711)並且轉換輸入訊號(182)的功率曲線(700)的具有第二靈敏度(900)的第二區域(712),其中第一靈敏度(900)基本上等於第二靈敏度(900)。
示例21:根據示例19或20的混合類比數位轉換器(110),其中輸入訊號(182)是高頻訊號。
示例22:根據示例19-21之一的混合類比數位轉換器(110),其中混合類比數位轉換器(110)被設置成借助非線性特性(800)來將輸入訊號(181)的功率曲線(700)從dB標度轉換成線性標度。
示例23:根據示例19-22之一的混合類比數位轉換器(110),其中非線性特性(800)與檢測器(101)的類型具有相關性,
其中檢測器(101)被設置成提供輸入訊號(182)並且輸出回饋訊號(186)。
示例24:根據示例19-23之一的混合類比數位轉換器(110),該混合類比數位轉換器進一步包括:回饋支路(120),其被設置成回饋數位訊號(184)。
示例25:根據示例19-24之一的混合類比數位轉換器(110),其中混合類比數位轉換器(101)佈置在單個半導體晶片或經連接晶片上。
示例26:根據示例19-25之一的混合類比數位轉換器(110),該混合類比數位轉換器進一步包括:繞過非線性特性的旁路(600)。
示例27:根據示例19-26之一的混合類比數位轉換器(110),其中混合類比數位轉換器(110)包括根據示例1-16之一的電路(110)。
當然,上述實施方式的特徵和本發明的各方面可彼此組合。特別地,這些特徵不僅可在所描述的組合中使用,而且可在其他組合中或者單獨地使用,而不會脫離本發明的領域。
以上描述了關於使用非線性特性AD來轉換的輸入訊號的功率的各個方面。在其他情景中,輸入訊號具有借助非線性特性AD來轉換的另一特徵參數的曲線是可能的。其他特徵參數的示例包括例如電壓、場強、光、溫度、磁場。
100‧‧‧電路
101‧‧‧檢測器
110‧‧‧SAR-ADC
111‧‧‧比較器
112‧‧‧SAR寄存器
113‧‧‧數位邏輯元件
114‧‧‧DA轉換器元件
120‧‧‧回饋支路
151‧‧‧記憶體
152‧‧‧溫度感測器
170‧‧‧預定函數
181‧‧‧訊號
182‧‧‧輸入訊號
183‧‧‧結果訊號
184‧‧‧數位訊號
185‧‧‧經轉換的數位訊號
186‧‧‧回饋訊號
187‧‧‧輸出訊號
600‧‧‧旁路
700‧‧‧功率曲線
710‧‧‧功率
711‧‧‧第一區域
712‧‧‧第二區域
720‧‧‧動態範圍
800‧‧‧非線性特性/線性特性
900‧‧‧靈敏度
A1‧‧‧步驟
A2‧‧‧步驟
第1圖解說了根據各種實施方式的電路,其中該電路包括具有回饋支路的SAR-ADC,其中在回饋支路中佈置邏輯元件,該邏輯元件被設置成根據預定函數來轉換數位訊號。 第2圖對應於第1圖,其中邏輯元件被設置成根據預定函數、基於存儲在記憶體中的查閱資料表來轉換數位訊號。 第3圖對應於第2圖,其中該電路進一步具有溫度感測器,其中預定函數具有溫度相關性。 第4圖對應於第2圖,其中預定函數與檢測器的工作狀態具有相關性,該檢測器向SAR-ADC輸出類比輸入訊號。 第5圖對應於第1圖,其中SAR-ADC的回饋支路進一步包括可選擇性地啟動的旁路,該旁路被設置成繞過數位邏輯元件。 第6圖解說了根據各種實施方式的非線性指數型預定函數,其中這些函數通過斜率和零點偏移來表徵。 第7圖解說了輸入訊號的功率曲線,其中該功率曲線具有大動態範圍。 第8圖解說了SAR-ADC的非線性特性。 第9圖解說了SAR-ADC的非線性特性的靈敏度區域。 第10圖是根據各種實施方式的方法的流程圖。 第11圖解說了根據已知的參考實現的SAR-ADC。
100‧‧‧電路
101‧‧‧檢測器
110‧‧‧SAR-ADC
111‧‧‧比較器
112‧‧‧SAR寄存器
113‧‧‧數位邏輯元件
114‧‧‧DA轉換器元件
120‧‧‧回饋支路
151‧‧‧記憶體
170‧‧‧預定函數
181‧‧‧訊號
182‧‧‧輸入訊號
183‧‧‧結果訊號
184‧‧‧數位訊號
185‧‧‧經轉換的數位訊號
186‧‧‧回饋訊號
187‧‧‧輸出訊號

Claims (20)

  1. 一種電路,其包括:   一逐次逼近型類比數位轉換器(SAR-ADC),其中該SAR-ADC包括一回饋支路;   其中該回饋支路被設置成根據一預定函數來轉換一數位訊號並且進一步將一經轉換的數位訊號轉換成一類比回饋訊號。
  2. 如請求項1所述的電路,其中,   該回饋支路包括一數位邏輯元件和一數位類比轉換器元件;   其中該數位邏輯元件被設置成根據該預定函數來轉換該數位訊號;   其中該數位類比轉換器元件被設置成將該經轉換的數位訊號轉換成該類比回饋訊號。
  3. 如請求項2所述的電路,其中,該電路進一步包括:   一記憶體,被設置成存儲建立該預定函數的一查閱資料表;   其中該數位邏輯元件被設置成根據基於該查閱資料表的該預定函數來轉換該數位訊號。
  4. 如請求項2或3所述的電路,其中,該回饋支路進一步包括可選擇性地啟動的一旁路,該旁路被設置成繞過該數位邏輯元件。
  5. 如請求項1所述的電路,其中,該預定函數係非線性函數。
  6. 如請求項1所述的電路,其中,該預定函數係指數函數。
  7. 如請求項1所述的電路,其中,該預定函數具有零點偏移。
  8. 如請求項1所述的電路,其中,該回饋支路被設置成在一第一工作模式中,根據該預定函數來轉換該數位訊號,並且在一第二工作模式中根據另一預定函數來轉換該數位訊號。
  9. 如請求項8所述的電路,其中,該另一預定函數係恆等函數。
  10. 如請求項1所述的電路,其中,該電路進一步包括:   一溫度感測器,被設置成向該數位邏輯元件輸出一控制訊號;   其中該控制訊號指示一所測得的溫度;   其中該預定函數與該所測得的溫度具有相關性。
  11. 如請求項1所述的電路,其中,該電路進一步包括:   一檢測器,被設置成向所述SAR-ADC輸出一類比輸入訊號。
  12. 如請求項11所述的電路,其中,該預定函數與該檢測器的類型具有相關性。
  13. 如請求項12所述的電路,其中,該預定函數與該檢測器的工作狀態具有相關性。
  14. 如請求項1所述的電路,其中,   該SAR-ADC進一步包括一比較器,該比較器被設置成將由該SAR-ADC接收的一類比輸入訊號與該回饋訊號相比較並且基於該比較來輸出一結果訊號。
  15. 如請求項14所述的電路,其中,   該SAR-ADC進一步包括一SAR寄存器,該SAR寄存器被設置成基於該結果訊號來反覆運算地調整該數位訊號。
  16. 如請求項1所述的電路,其中,該SAR-ADC被設置成借助非線性特性來轉換由該SAR-ADC接收的一類比輸入訊號。
  17. 一種方法,包括:   一SAR-ADC的一回饋支路根據一預定函數來轉換一數位訊號,   該SAR-ADC的該回饋支路將一經轉換的數位訊號轉換成一類比回饋訊號。
  18. 如請求項17所述的方法,其中,該方法由如請求項1-16其中之一該電路來執行。
  19. 一種混合類比數位轉換器,包括:   一比較器,其被設置成將一類比輸入訊號與一回饋訊號進行一比較並且基於該比較來輸出一結果訊號;   其中該輸入訊號具有帶有一第一區域和一第二區域的一功率曲線;   其中該第一區域對應於比該第二區域小的功率;   一SAR寄存器,被設置成基於該結果訊號來反覆運算地調整一數位訊號;   其中該混合類比數位轉換器被設置成借助非線性特性來轉換該輸入訊號的該功率曲線的具有可識別的靈敏度的該第一區域。
  20. 如請求項19所述的混合類比數位轉換器,其中,   該混合類比數位轉換器被設置成轉換該輸入訊號的該功率曲線的具有一第一靈敏度的該第一區域並且轉換該輸入訊號的該功率曲線的具有一第二靈敏度的該第二區域;   其中該第一靈敏度實質上等於該第二靈敏度。
TW105124442A 2015-08-05 2016-08-02 具有非線性特性的估量方法 TWI623201B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015112852.7A DE102015112852B4 (de) 2015-08-05 2015-08-05 Wägeverfahren mit nichtlinearer Charakteristik
??102015112852.7 2015-08-05

Publications (2)

Publication Number Publication Date
TW201720062A true TW201720062A (zh) 2017-06-01
TWI623201B TWI623201B (zh) 2018-05-01

Family

ID=56507528

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105124442A TWI623201B (zh) 2015-08-05 2016-08-02 具有非線性特性的估量方法

Country Status (5)

Country Link
US (1) US9673834B2 (zh)
EP (1) EP3128674B1 (zh)
CN (1) CN106452438B (zh)
DE (1) DE102015112852B4 (zh)
TW (1) TWI623201B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171667B (zh) * 2017-06-09 2023-07-28 江西联智集成电路有限公司 逐次逼近型模数转换器及其自检测方法
CN110399977A (zh) * 2018-04-25 2019-11-01 华为技术有限公司 池化运算装置
CN111525921B (zh) * 2020-05-15 2023-09-08 矽力杰半导体技术(杭州)有限公司 用于神经网络中信号转换的系统和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544256A (en) * 1978-09-22 1980-03-28 Komatsu Ltd Programmable a-d converter
JPS5797222A (en) * 1980-12-09 1982-06-16 Canon Inc Nonlinear analog-to-digital converter
US4980634A (en) 1989-08-15 1990-12-25 Analog Devices, Inc. Electric power measuring system
US5920274A (en) * 1997-08-05 1999-07-06 International Business Machines Corporation Image sensor employing non-uniform A/D conversion
US7324598B2 (en) * 2002-07-15 2008-01-29 Intel Corporation Apparatus and method to reduce quantization error
US7015853B1 (en) * 2005-03-09 2006-03-21 Cirrus Logic, Inc. Data converter with reduced differential nonlinearity
US7432839B2 (en) 2007-02-27 2008-10-07 Infineon Technologies Ag ADC with logarithmic response and methods for controlling RF power levels
US7642946B2 (en) * 2008-04-07 2010-01-05 Broadcom Corporation Successive approximation analog to digital converter
EP2296280B1 (en) * 2009-09-10 2012-12-19 Stichting IMEC Nederland Asynchronous SAR ADC
US8736480B1 (en) * 2013-01-11 2014-05-27 Intel Corporation Successive approximation analog-to-digital conversion architectural arrangement for receivers

Also Published As

Publication number Publication date
US9673834B2 (en) 2017-06-06
DE102015112852A1 (de) 2017-02-23
TWI623201B (zh) 2018-05-01
US20170041015A1 (en) 2017-02-09
EP3128674B1 (de) 2021-08-25
BR102016017968A2 (pt) 2017-02-07
CN106452438A (zh) 2017-02-22
CN106452438B (zh) 2019-10-18
EP3128674A1 (de) 2017-02-08
DE102015112852B4 (de) 2021-11-18

Similar Documents

Publication Publication Date Title
CN105229919B (zh) 传递函数调节
JP4842973B2 (ja) 高ダイナミック・レンジを有する閉ループパワー制御
TWI623201B (zh) 具有非線性特性的估量方法
US7548590B2 (en) Method for determining an offset value for a gain of a transmission path, transmission path with adjustable gain, and use of the transmission path
US8761708B2 (en) Direct conversion receiver and calibration method thereof
US9148166B2 (en) Adding predefined offset to coarse ADC residue output to SAR
US7852253B2 (en) Digitally adjustable quantization circuit
US9748966B2 (en) Histogram based error estimation and correction
US20090258640A1 (en) Device power detector
WO2007008409A2 (en) Automatic non-linear phase response calibration and compensation for a power measurement device
US7405683B1 (en) Extending the dynamic range in an energy measurement device
WO2011063330A2 (en) Logarithmic mean-square power detector with servo control loop
US10090854B1 (en) Digital-to-analog converter and method for correcting gain mismatch between a first segment and a second segment of a digital-to-analog converter
CN114696829B (zh) 模数转换电路及流水线模数转换器
JP2000286705A (ja) 一定の微分非線形性を備えるアナログ−デジタル変換装置
JP2005184847A (ja) 送信器内で閉ループ・ゲイン制御を提供する際に利用可能なデジタル検出器
Moosazadeh et al. A calibration technique for pipelined ADCs using self-measurement and histogram-based test methods
Harpe et al. Analog calibration of channel mismatches in time‐interleaved ADCs
US8115543B2 (en) Mixed-signal transmission circuit for switching power amplifiers
JP5106442B2 (ja) カーテシアンループを用いた無線送信装置
JP2005184794A (ja) 自動利得制御装置
KR20120066708A (ko) 온도보상기능을 갖는 홀 집적회로
CN220207791U (zh) 射频测试机及射频测试系统
CN104303420A (zh) 模数转换器
TWI768926B (zh) 訊號強度指標電路與傳輸電路