TW201710960A - Using normalized confidence values for classifying mobile device behaviors - Google Patents

Using normalized confidence values for classifying mobile device behaviors Download PDF

Info

Publication number
TW201710960A
TW201710960A TW105123791A TW105123791A TW201710960A TW 201710960 A TW201710960 A TW 201710960A TW 105123791 A TW105123791 A TW 105123791A TW 105123791 A TW105123791 A TW 105123791A TW 201710960 A TW201710960 A TW 201710960A
Authority
TW
Taiwan
Prior art keywords
behavior
classifier model
computing device
processor
reduced
Prior art date
Application number
TW105123791A
Other languages
Chinese (zh)
Inventor
卡斯安 法瓦茲
維那伊 斯瑞德哈拉
雷賈席 古塔
陳茵
Original Assignee
高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/826,430 external-priority patent/US10089582B2/en
Application filed by 高通公司 filed Critical 高通公司
Publication of TW201710960A publication Critical patent/TW201710960A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/043Distributed expert systems; Blackboards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/552Detecting local intrusion or implementing counter-measures involving long-term monitoring or reporting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • G06N5/022Knowledge engineering; Knowledge acquisition
    • G06N5/025Extracting rules from data

Abstract

Methods and systems for classifying mobile device behavior include generating a full classifier model that includes a finite state machine suitable for conversion into boosted decision stumps and/or which describes all or many of the features relevant to determining whether a mobile device behavior is benign or contributing to the mobile device's degradation over time. A mobile device may receive the full classifier model along with sigmoid parameters and use the model to generate a full set of boosted decision stumps from which a more focused or lean classifier model is generated by culling the full set to a subset suitable for efficiently determining whether mobile device behavior are benign. Results of applying the focused or lean classifier model may be normalized using a sigmoid function, with the resulting normalized result used to determine whether the behavior is benign or non-benign.

Description

使用標準化之信賴值為行動裝置行為分類 Using standardized trust values as mobile device behavior classification 相關申請案 Related application

本申請案為2013年11月26日申請的標題為「Methods and Systems of Using Boosted Decision Stumps and Joint Feature Selection and Pruning Algorithms for the Efficient Classification of Mobile Device Behaviors」之美國專利申請案第14/090,261號的接續部分,其主張2013年9月05日申請的標題為「Methods and Systems of Using Boosted Decision Stumps and Joint Feature Selection and Pruning Algorithms for the Efficient Classification of Mobile Device Behaviors」之美國臨時申請案第61/874,129號、2013年1月2日申請的標題為「On-Device Real-Time Behavior Analyzer」之美國臨時專利申請案第61/748,217號,及2013年1月2日申請的標題為「Architecture for Client-Cloud Behavior Analyzer」之美國臨時專利申請案第61/748,220號的優先權,以上所有申請案之全部內容特此以引用之方式併入。 The present application is filed on November 26, 2013, entitled "Methods and Systems of Using Boosted Decision Stumps and Joint Feature Selection and Pruning Algorithms for the Efficient Classification of Mobile Device Behaviors", U.S. Patent Application Serial No. 14/090,261. The continuation section, which claims U.S. Provisional Application No. 61/874,129, entitled "Methods and Systems of Using Boosted Decision Stumps and Joint Feature Selection and Pruning Algorithms for the Efficient Classification of Mobile Device Behaviors", filed on September 5, 2013. The US Provisional Patent Application No. 61/748,217, entitled "On-Device Real-Time Behavior Analyzer", filed on January 2, 2013, and the title of "Architecture for Client-Cloud" filed on January 2, 2013. The priority of U.S. Provisional Patent Application Serial No. 61/748,220, the entire disclosure of which is incorporated herein by reference.

近幾年,蜂窩式及無線通信技術爆發性地增長。較佳通信、硬體、較大網路及愈加可信賴的協定已促進此增長。因此,無線服務提供者現今能夠向其消費者提供對資訊、資源及通信的前所未有層級之存取。 In recent years, cellular and wireless communication technologies have grown explosively. Better communications, hardware, larger networks, and increasingly trustworthy agreements have contributed to this growth. As a result, wireless service providers are now able to provide their consumers with unprecedented levels of access to information, resources and communications.

為與此等服務促進保持一致,行動電子裝置(例如,蜂巢式電 話、平板電腦、膝上型電腦等)相比之前變得愈加有力且複雜。此複雜性已為惡意軟體、軟體衝突、硬體疵點及其他類似誤差或現象產生新機會,不利地影響行動裝置之長期且連續的效能及功率利用層級。因此,識別及校正可能不利地影響行動裝置之長期且連續的效能及功率利用層級的條件及/或行動裝置行為有益於消費者。 In keeping with the promotion of such services, mobile electronic devices (eg, cellular Words, tablets, laptops, etc.) have become more powerful and complex than before. This complexity has created new opportunities for malware, software conflicts, hardware defects, and other similar errors or phenomena that adversely affect the long-term and continuous performance and power utilization levels of mobile devices. Thus, identifying and correcting conditions and/or mobile device behaviors that may adversely affect the long-term and continuous performance and power utilization levels of the mobile device are beneficial to the consumer.

各種態樣包括在一行動裝置中產生精簡行為分類器模型之方法,該等方法可包括:在該行動裝置之一處理器中接收包括一有限狀態機之一完全分類器模型,及使用該完全分類器模型在該行動裝置中產生一精簡分類器模型。該有限狀態機可包括適合於轉換或表達為複數個強化單層決策樹(boosted decision stump)之資訊,且該等強化單層決策樹中之每一者可包括一測試條件及一加權值。在一態樣中,該方法可進一步包括在該行動裝置中使用該精簡分類器模型以將該行動裝置之一行為分類為良性的或非良性的(亦即,惡意的、效能降級的,等)。 Various aspects include a method of generating a reduced behavior classifier model in a mobile device, the methods comprising: receiving a full classifier model including a finite state machine in a processor of the mobile device, and using the complete The classifier model produces a reduced classifier model in the mobile device. The finite state machine may include information suitable for conversion or expression as a plurality of boosted single layer decision trees, and each of the enhanced single layer decision trees may include a test condition and a weighted value. In one aspect, the method can further include using the reduced classifier model in the mobile device to classify behavior of one of the mobile devices as benign or non-benign (ie, malicious, performance degraded, etc. ).

在一態樣中,基於該完全分類器模型產生該精簡分類器模型可包括將包括於該完全分類器模型中之該有限狀態機轉換成一強化單層決策樹清單,及基於包括於該強化單層決策樹清單中之該等強化單層決策樹而產生該精簡分類器模型。 In one aspect, generating the reduced classifier model based on the full classifier model can include converting the finite state machine included in the full classifier model into a list of enhanced single layer decision trees, and based on the reinforcement list The reduced single-level decision tree in the hierarchical decision tree list produces the reduced classifier model.

在一態樣中,基於該完全分類器模型產生該精簡分類器模型可進一步包括:判定應進行評估以在不消耗該行動裝置之一過度量之處理資源、記憶體資源或能量資源的情況下為一行動裝置行為分類的唯一測試條件之數目;產生一測試條件清單,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的該測試條件插入至該測試條件清單中,直至該測試條件清單可包括該經判定數目個唯一測試條件為止;及產生該精簡分類器模型,以僅 包括測試包括於該所產生之測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹。 In one aspect, generating the reduced classifier model based on the full classifier model can further include: determining that the evaluation should be performed without consuming an excessive amount of processing resources, memory resources, or energy resources of the mobile device The number of unique test conditions for classifying a mobile device behavior; generating a list of test conditions that traverse the enhanced single-level decision tree list in sequence and associated with each successively traversed enhanced single-level decision tree The test condition is inserted into the test condition list until the test condition list can include the determined number of unique test conditions; and the reduced classifier model is generated to only The method includes testing the enhanced single layer decision tree of one of a plurality of test conditions included in the generated test condition list.

在一態樣中,該方法可包括在該行動裝置中使用該精簡分類器模型以將該行動裝置之一行為分類為良性的或非良性的,該操作藉由以下項執行:將所收集之行為資訊應用於該精簡分類器模型中之每一強化單層決策樹;計算將該所收集之行為資訊應用於該精簡分類器模型中之每一強化單層決策樹的結果的一加權平均值;及將該加權平均值與一臨限值進行比較。 In one aspect, the method can include using the reduced classifier model in the mobile device to classify behavior of one of the mobile devices as benign or non-benign, the operation being performed by: collecting the Behavioral information is applied to each of the enhanced single-level decision trees in the reduced classifier model; a weighted average of the results of applying the collected behavioral information to each of the enhanced single-level decision trees in the reduced classifier model is calculated And comparing the weighted average to a threshold.

在一態樣中,基於該完全分類器模型產生該精簡分類器模型可包括:將包括於該完全分類器模型中之該有限狀態機轉換成一強化單層決策樹清單;及基於包括於中該強化單層決策樹清單中之該等強化單層決策樹產生一精簡分類器模型家族,該精簡分類器模型家族包括該精簡分類器模型及複數個額外精簡分類器模型,該複數個額外精簡分類器模型中之每一者包括不同數目個唯一測試條件。 In one aspect, generating the reduced classifier model based on the full classifier model can include: converting the finite state machine included in the full classifier model into a strengthened single layer decision tree list; and based on being included in the The enhanced single-level decision tree in the enhanced single-level decision tree list produces a reduced classifier model family comprising the reduced classifier model and a plurality of additional reduced classifier models, the plurality of additional reduced classifications Each of the model models includes a different number of unique test conditions.

在一態樣中,產生一精簡分類器模型可包括產生複數個精簡分類器模型,其各自包括使用一不同加權值及一不同臨限值測試一第一條件的一單層決策樹。在一態樣中,該方法可包括重新計算與基於該完全分類器模型產生於該行動裝置中之複數個精簡分類器模型中的強化單層決策樹相關聯之臨限值。在一態樣中,該方法可包括重新計算與基於該完全分類器模型產生於該行動裝置中之複數個精簡分類器模型中的強化單層決策樹相關聯之加權值。 In one aspect, generating a reduced classifier model can include generating a plurality of reduced classifier models, each of which includes a single layer decision tree that tests a first condition using a different weight value and a different threshold. In one aspect, the method can include recalculating a threshold associated with the enhanced single-level decision tree in the plurality of reduced classifier models generated in the mobile device based on the full classifier model. In one aspect, the method can include recalculating weighting values associated with the enhanced single-level decision tree in the plurality of reduced classifier models generated in the mobile device based on the full classifier model.

在一態樣中,該方法可包括在一伺服器中產生該完全分類器模型,該產生藉由:在該伺服器中接收關於行動裝置行為之一資訊語料庫,且基於關於行動裝置行為之該資訊語料庫產生該有限狀態機以包括適合於轉換成該複數個強化單層決策樹之資料,以及將該有限狀態機發送至該行動裝置以作為該完全分類器模型。在一態樣中,該複數 個測試條件中之每一者相關聯於識別其相關聯測試條件將使得該行動裝置能夠判定一行動裝置行為是否為良性的一似然性的一機率值,該方法進一步包括:在將該有限狀態機發送至該行動裝置以作為該完全分類器模型之前,基於機率值來組織該有限狀態機中之該等強化單層決策樹。 In one aspect, the method can include generating the full classifier model in a server by: receiving an information corpus about one of the mobile device behaviors in the server, and based on the behavior of the mobile device The information corpus generates the finite state machine to include data suitable for conversion to the plurality of enhanced single layer decision trees, and the finite state machine is sent to the mobile device as the full classifier model. In one aspect, the plural Each of the test conditions is associated with a probability value that identifies that its associated test condition will enable the mobile device to determine whether a mobile device behavior is benign, the method further comprising: The enhanced single layer decision tree in the finite state machine is organized based on the probability value before the state machine sends to the mobile device as the full classifier model.

在另一態樣中,該方法可包括使用S型參數計算一標準化之信賴值且將該標準化之信賴值用於改良式行為分類,其可包括:在該計算裝置之一處理器中自一伺服器接收一完全分類器模型及S型參數;基於該等S型參數判定一標準化之信賴值;及基於該標準化之信賴值為該計算裝置之一裝置行為分類。 In another aspect, the method can include calculating a normalized confidence value using the S-type parameter and using the normalized confidence value for the improved behavior classification, which can include: one in the processor of the computing device The server receives a full classifier model and S-type parameters; determines a standardized trust value based on the S-type parameters; and based on the standardized trust value, a device behavior classification of the computing device.

在一態樣中,該方法可包括:藉由將包括於該完全分類器模型中之一有限狀態機轉換成強化單層決策樹而產生一強化單層決策樹清單;及基於包括於該強化單層決策樹清單中之該等強化單層決策樹而產生一精簡分類器模型家族,其中基於該標準化之信賴值為該計算裝置之該裝置行為分類包括:將一行為向量資訊結構應用於該精簡分類器模型家族中之一第一精簡分類器模型以產生分析結果;及基於該標準化之信賴值來判定是否將該行為向量資訊結構應用於該精簡分類器模型家族中之一第二精簡分類器模型以產生新分析結果。 In one aspect, the method can include: generating a list of enhanced single-level decision trees by converting a finite state machine included in the full classifier model to an enhanced single-level decision tree; and based on the enhancement The enhanced single-level decision tree in the single-level decision tree list produces a reduced classifier model family, wherein the device behavior classification based on the standardized trust value comprises: applying a behavior vector information structure to the A first reduced classifier model in the family of classifier models to generate an analysis result; and determining whether to apply the behavior vector information structure to one of the reduced classifier model families based on the normalized trust value Model to generate new analysis results.

在另一態樣中,該方法可包括:基於該完全分類器模型產生一精簡分類器模型,且基於該標準化之信賴值為該計算裝置之該裝置行為分類可包括:將一行為向量資訊結構應用於該精簡分類器模型以產生分析結果;及使用該等分析結果及該標準化之信賴值以判定該裝置行為係良性抑或非良性的。在另一態樣中,基於基於該完全分類器模型產生該精簡分類器模型可包括:藉由將包括於該完全分類器模型中之一有限狀態機轉換成複數個強化單層決策樹而產生一強化單層決策樹清單;判定應進行評估以在不消耗該計算裝置之一過度量之處理資 源、記憶體資源或能量資源的情況下為該裝置行為分類的唯一測試條件之數目;產生一測試條件清單,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的一測試條件插入至該測試條件清單中,直至該測試條件清單包括該數目個唯一測試條件為止;及產生該精簡分類器模型,以僅包括測試包括於該測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹。 In another aspect, the method can include generating a reduced classifier model based on the full classifier model, and the device behavior classification based on the standardized trust value of the computing device can include: a behavior vector information structure The reduced classifier model is applied to generate an analysis result; and the analysis result and the standardized trust value are used to determine whether the device behavior is benign or non-benign. In another aspect, generating the reduced classifier model based on the full classifier model can include: generating by converting a finite state machine included in the full classifier model into a plurality of enhanced single layer decision trees A list of enhanced single-level decision trees; the decision should be evaluated to consume no excess of the computing device The number of unique test conditions for classifying the behavior of the device in the case of a source, a memory resource, or an energy resource; generating a list of test conditions that traverse the list of enhanced single-level decision trees in order, and will be aligned with each a test condition associated with the traversed enhanced single layer decision tree is inserted into the test condition list until the test condition list includes the number of unique test conditions; and the reduced classifier model is generated to include only the test included in the One of the plurality of test conditions in the test condition list enhances the single-layer decision tree.

在另一態樣中,將該行為向量資訊結構應用於該精簡分類器模型以判定該計算裝置之該裝置行為是否為非良性的可包括:將包括於該行為向量資訊結構中的所收集之行為資訊應用於包括於該精簡分類器模型中之複數個強化單層決策樹中之每一者;計算將該所收集之行為資訊應用於包括於該精簡分類器模型中之該複數個強化單層決策樹中之每一者的一結果之一加權平均值;及將該加權平均值與一臨限值進行比較。 In another aspect, applying the behavior vector information structure to the reduced classifier model to determine whether the device behavior of the computing device is non-benign may include: collecting the information included in the behavior vector information structure The behavior information is applied to each of a plurality of enhanced single-layer decision trees included in the reduced classifier model; calculating the collected behavior information to apply the plurality of reinforcement sheets included in the reduced classifier model A weighted average of one of the results of each of the layer decision trees; and comparing the weighted average to a threshold.

在另一態樣中,該方法可包括:基於該標準化之信賴值產生一經更新之S型參數;及將該經更新之S型參數發送至該伺服器計算裝置。在另一態樣中,該方法可包括:自該伺服器計算裝置接收一經更新之S型參數;基於自該伺服器計算裝置接收之該經更新之S型參數來判定一新的標準化之信賴值;及基於該新的標準化之信賴值為該裝置行為分類。在另一態樣中,接收該完全分類器模型及該等S型參數可包括接收一有限狀態機,該有限狀態機包括適合於表達為各自包括一加權值及一測試條件之兩個或更多個強化單層決策樹的資訊,該測試條件相關聯於識別該測試條件將使得該計算裝置能夠判定該裝置行為是否為良性及非良性中之一者的一似然性的一機率值。 In another aspect, the method can include generating an updated S-type parameter based on the normalized confidence value; and transmitting the updated S-type parameter to the server computing device. In another aspect, the method can include: receiving an updated S-type parameter from the server computing device; determining a new standardized trust based on the updated S-type parameter received from the server computing device The value; and the confidence value based on the new standardization is the device behavior classification. In another aspect, receiving the full classifier model and the S-type parameters can include receiving a finite state machine, the finite state machine comprising two or more suitable for expressing each comprising a weighted value and a test condition Information for a plurality of enhanced single-layer decision trees associated with identifying a probability value that the test condition will enable the computing device to determine whether the device behavior is one of benign and non-benign.

其他態樣可包括一種計算裝置,其包括:用於自一伺服器計算裝置接收一完全分類器模型及S型參數的構件;用於基於該等S型參數判定一標準化之信賴值的構件;及用於基於該標準化之信賴值為一裝 置行為分類的構件。在一態樣中,該計算裝置可包括:用於藉由將包括於該完全分類器模型中之一有限狀態機轉換成強化單層決策樹而產生一強化單層決策樹清單的構件;及用於基於包括於該強化單層決策樹清單中之該等強化單層決策樹而產生一精簡分類器模型家族的構件,其中用於基於該標準化之信賴值為該裝置行為分類的構件包括:用於將一行為向量資訊結構應用於該精簡分類器模型家族中之一第一精簡分類器模型以產生分析結果的構件;及用於基於該標準化之信賴值來判定是否將該行為向量資訊結構應用於該精簡分類器模型家族中之一第二精簡分類器模型以產生新分析結果的構件。 Other aspects can include a computing device comprising: means for receiving a full classifier model and S-type parameters from a server computing device; means for determining a standardized confidence value based on the S-type parameters; And for the reliability value based on the standardization The component of the behavior classification. In one aspect, the computing device can include: means for generating a list of enhanced single-level decision trees by converting a finite state machine included in the full classifier model to an enhanced single-level decision tree; and Means for generating a family of reduced classifier models based on the enhanced single-level decision trees included in the list of enhanced single-level decision trees, wherein the means for classifying the device behavior based on the standardized trust value comprises: a component for applying a behavior vector information structure to the first reduced classifier model of the reduced classifier model family to generate an analysis result; and for determining whether the behavior vector information structure is based on the normalized trust value A second reduced classifier model applied to one of the reduced classifier model families to generate a new analysis result.

在另一態樣中,該計算裝置可包括:用於基於該完全分類器模型產生一精簡分類器模型的構件,且其中用於基於該標準化之信賴值為該裝置行為分類的構件包括:用於將一行為向量資訊結構應用於該精簡分類器模型以產生分析結果的構件;及用於使用該等分析結果及該標準化之信賴值以判定該裝置行為係良性抑或非良性的構件。在另一態樣中,用於基於基於該完全分類器模型產生該精簡分類器模型的構件可包括:用於藉由將包括於該完全分類器模型中之一有限狀態機轉換成複數個強化單層決策樹而產生一強化單層決策樹清單的構件;用於判定應進行評估以在不消耗該計算裝置之一過度量之處理資源、記憶體資源或能量資源的情況下為該裝置行為分類的唯一測試條件之數目的構件;用於產生一測試條件清單的構件,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的一測試條件插入至該測試條件清單中,直至該測試條件清單包括該數目個唯一測試條件為止;及用於產生該精簡分類器模型,以僅包括測試包括於該測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹的構件。在另一態樣中,用於將該行為向量資訊結構應用於該精簡分類器模型以判定該裝置行為是否為非良性的構件可包 括:用於將包括於該行為向量資訊結構中的所收集之行為資訊應用於包括於該精簡分類器模型中之複數個強化單層決策樹中之每一者的構件;用於計算將該所收集之行為資訊應用於包括於該精簡分類器模型中之該複數個強化單層決策樹中之每一者的一結果之一加權平均值的構件;及用於將該加權平均值與一臨限值進行比較的構件。 In another aspect, the computing device can include: means for generating a reduced classifier model based on the full classifier model, and wherein the means for classifying the device behavior based on the standardized trust value comprises: And a component for applying the behavior vector structure to the reduced classifier model to generate an analysis result; and for using the analysis result and the standardized trust value to determine whether the device behavior is benign or non-benign. In another aspect, the means for generating the reduced classifier model based on the full classifier model can include: for converting a finite state machine included in the full classifier model into a plurality of enhancements A single-layer decision tree produces a component that enforces a single-level decision tree list; is used to determine that the device should be evaluated to consume the processing resources, memory resources, or energy resources without consuming an excessive amount of the computing device. a component of the number of unique test conditions of the classification; a component for generating a list of test conditions, the generation traversing the list of enhanced single-level decision trees by sequence, and associating with each of the enhanced single-level decision trees traversed sequentially a test condition is inserted into the test condition list until the test condition list includes the number of unique test conditions; and is used to generate the reduced classifier model to include only a plurality of tests included in the test condition list One of the test conditions enhances the components of the single-level decision tree. In another aspect, the component for applying the behavior vector information structure to the reduced classifier model to determine whether the device behavior is non-benign may include Included: a component for applying the collected behavior information included in the behavior vector information structure to each of a plurality of enhanced single-level decision trees included in the reduced classifier model; The collected behavior information is applied to a component of a weighted average of one of the results of each of the plurality of enhanced single-layer decision trees included in the reduced classifier model; and for using the weighted average with A component that compares the thresholds.

在另一態樣中,該計算裝置可包括用於基於該標準化之信賴值產生一經更新之S型參數的構件;及用於將該經更新之S型參數發送至該伺服器計算裝置的構件。在另一態樣中,該計算裝置可包括:用於自該伺服器計算裝置接收一經更新之S型參數的構件;用於基於該經更新之S型參數判定一新的標準化之信賴值的構件;及用於基於該新的標準化之信賴值為該裝置行為分類的構件。在另一態樣中,用於接收該完全分類器模型及該等S型參數的構件可包括用於接收一有限狀態機的構件,該有限狀態機包括適合於表達為各自包括一加權值及一測試條件之兩個或更多個強化單層決策樹的資訊,該測試條件相關聯於識別該測試條件將使得該計算裝置能夠判定該裝置行為是否為良性及非良性中之一者的一似然性的一機率值。 In another aspect, the computing device can include means for generating an updated S-type parameter based on the normalized confidence value; and means for transmitting the updated S-type parameter to the server computing device . In another aspect, the computing device can include: means for receiving an updated S-type parameter from the server computing device; for determining a new normalized confidence value based on the updated S-type parameter a component; and a component for classifying the behavior of the device based on the new standardized trust value. In another aspect, the means for receiving the full classifier model and the s-type parameters can include means for receiving a finite state machine, the finite state machine comprising means adapted to express each comprising a weighted value and Information of two or more enhanced single-layer decision trees of a test condition associated with identifying that the test condition will enable the computing device to determine whether the device behavior is one of benign and non-benign A probability value of likelihood.

其他態樣可包括一種計算裝置,其包括一處理器,該處理器經處理器可執行指令組態以執行包括以下項之操作:自一伺服器計算裝置接收一完全分類器模型及S型參數;基於該等S型參數判定一標準化之信賴值;及基於該標準化之信賴值為一裝置行為分類。在一態樣中,該處理器可經處理器可執行指令組態以執行進一步包括以下項之操作:藉由將包括於該完全分類器模型中之一有限狀態機轉換成強化單層決策樹而產生一強化單層決策樹清單;及基於包括於該強化單層決策樹清單中之該等強化單層決策樹而產生一精簡分類器模型家族,且該處理器可經處理器可執行指令組態以執行操作,使得基於該標準化之信賴值為該裝置行為分類包括:將一行為向量資訊結構應用於該 精簡分類器模型家族中之一第一精簡分類器模型以產生分析結果;及基於該標準化之信賴值來判定是否將該行為向量資訊結構應用於該精簡分類器模型家族中之一第二精簡分類器模型以產生新分析結果。 Other aspects can include a computing device including a processor configured by processor executable instructions to perform operations comprising: receiving a full classifier model and S-type parameters from a server computing device And determining a standardized trust value based on the S-type parameters; and the trust value based on the standardization is a device behavior classification. In one aspect, the processor is configurable via processor executable instructions to perform operations further comprising: converting a finite state machine included in the full classifier model to an enhanced single layer decision tree Generating a list of enhanced single-level decision trees; and generating a family of reduced classifier models based on the enhanced single-layer decision trees included in the list of enhanced single-level decision trees, and the processor is executable by the processor Configuring to perform an operation such that the trusted value based on the normalization classifies the device behavior includes: applying a behavior vector information structure to the A first reduced classifier model in the family of classifier models to generate an analysis result; and determining whether to apply the behavior vector information structure to one of the reduced classifier model families based on the normalized trust value Model to generate new analysis results.

在另一態樣中,該處理器可經處理器可執行指令組態以執行進一步包括以下項之操作:基於該完全分類器模型產生一精簡分類器模型,且該處理器可經處理器可執行指令組態以執行操作,使得基於該標準化之信賴值為該裝置行為分類包括將一行為向量資訊結構應用於該精簡分類器模型以產生分析結果;及使用該等分析結果及該標準化之信賴值以判定該裝置行為係良性抑或非良性的。 In another aspect, the processor is configurable via processor-executable instructions to perform operations further comprising: generating a reduced classifier model based on the full classifier model, and the processor is Executing an instruction configuration to perform an operation such that the trusted value based on the normalization classifies the device behavior classification by applying a behavior vector information structure to the reduced classifier model to generate an analysis result; and using the analysis result and the reliability of the standardization Value to determine whether the device behavior is benign or non-benign.

在另一態樣中,該處理器可經處理器可執行指令組態以執行操作,使得基於基於該完全分類器模型產生該精簡分類器模型包括:藉由將包括於該完全分類器模型中之一有限狀態機轉換成複數個強化單層決策樹而產生一強化單層決策樹清單;判定應進行評估以在不消耗該計算裝置之一過度量之處理資源、記憶體資源或能量資源的情況下為該裝置行為分類的唯一測試條件之數目;產生一測試條件清單,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的一測試條件插入至該測試條件清單中,直至該測試條件清單包括該數目個唯一測試條件為止;及產生該精簡分類器模型,以僅包括測試包括於該測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹。 In another aspect, the processor is configurable via processor-executable instructions to perform operations such that generating the reduced classifier model based on the full classifier model comprises: being included in the full classifier model A finite state machine converts into a plurality of enhanced single-layer decision trees to generate a list of enhanced single-layer decision trees; the decision should be evaluated to consume processing resources, memory resources, or energy resources that do not consume an excessive amount of the computing device. The number of unique test conditions for classifying the behavior of the device; generating a list of test conditions that traverse the list of enhanced single-level decision trees in order, and associating with each enhanced hierarchical decision tree traversed sequentially a test condition is inserted into the test condition list until the test condition list includes the number of unique test conditions; and the reduced classifier model is generated to include only a plurality of test conditions included in the test condition list One of them enhances the single-layer decision tree.

在另一態樣中,該處理器可經處理器可執行指令組態以執行操作,使得將該行為向量資訊結構應用於該精簡分類器模型以判定該裝置行為是否為非良性的包括:將包括於該行為向量資訊結構中的所收集之行為資訊應用於包括於該精簡分類器模型中之複數個強化單層決策樹中之每一者;計算將該所收集之行為資訊應用於包括於該精簡分類器模型中之該複數個強化單層決策樹中之每一者的一結果之一加權 平均值;及將該加權平均值與一臨限值進行比較。在另一態樣中,該處理器可經處理器可執行指令組態以執行進一步包括以下項之操作:基於該標準化之信賴值產生一經更新之S型參數;及將該經更新之S型參數發送至該伺服器計算裝置。 In another aspect, the processor is configurable via processor-executable instructions to perform operations such that applying the behavior vector information structure to the reduced classifier model to determine whether the device behavior is non-benign includes: The collected behavior information included in the behavior vector information structure is applied to each of a plurality of enhanced single-layer decision trees included in the reduced classifier model; the calculation applies the collected behavior information to Weighting one of the results of each of the plurality of enhanced single-layer decision trees in the reduced classifier model Average; and compare the weighted average to a threshold. In another aspect, the processor is configurable via processor executable instructions to perform operations further comprising: generating an updated S-type parameter based on the normalized confidence value; and updating the S-type The parameters are sent to the server computing device.

在另一態樣中,該處理器可經處理器可執行指令組態以執行進一步包括以下項之操作:自該伺服器計算裝置接收一經更新之S型參數;基於該經更新之S型參數判定一新的標準化之信賴值;及基於該新的標準化之信賴值為該裝置行為分類。在另一態樣中,該處理器可經處理器可執行指令組態以執行操作,使得接收該完全分類器模型及該等S型參數包括接收一有限狀態機,該有限狀態機包括適合於表達為各自包括一加權值及一測試條件之兩個或更多個強化單層決策樹的資訊,該測試條件相關聯於識別該測試條件將使得該計算裝置能夠判定該裝置行為是否為良性及非良性中之一者的一似然性的一機率值。 In another aspect, the processor is configurable via processor executable instructions to perform operations further comprising: receiving an updated S-type parameter from the server computing device; based on the updated S-type parameter Determining a new standardized trust value; and based on the new standardized trust value is the device behavior classification. In another aspect, the processor is configurable via processor-executable instructions to perform operations such that receiving the full classifier model and the S-type parameters includes receiving a finite state machine, the finite state machine including Expressed as information comprising two or more enhanced single-layer decision trees each comprising a weighted value and a test condition, the test condition being associated with identifying the test condition will enable the computing device to determine whether the device behavior is benign and A probability value of a likelihood of one of non-benign.

其他態樣可包括一種上面儲存有處理器可執行軟體指令之非暫時性電腦可讀儲存媒體,該等處理器可執行軟體指令經組態以使得一計算裝置之一處理器執行可包括以下項之操作:自一伺服器計算裝置接收一完全分類器模型及S型參數;基於該等S型參數判定一標準化之信賴值;及基於該標準化之信賴值為一裝置行為分類。在一態樣中,該等儲存之處理器可執行指令可經組態以使得該處理器執行進一步包括以下項之操作:藉由將包括於該完全分類器模型中之一有限狀態機轉換成強化單層決策樹而產生一強化單層決策樹清單;及基於包括於該強化單層決策樹清單中之該等強化單層決策樹而產生一精簡分類器模型家族,其中基於該標準化之信賴值為該裝置行為分類包括:將一行為向量資訊結構應用於該精簡分類器模型家族中之一第一精簡分類器模型以產生分析結果;及基於該標準化之信賴值來判定是否將該行為向量資訊結構應用於該精簡分類器模型家族中之一第二精簡分類器 模型以產生新分析結果。 Other aspects may include a non-transitory computer readable storage medium having processor executable software instructions stored thereon, the processor executable software instructions being configured to cause a processor of a computing device to perform the following items Operation: receiving a full classifier model and S-type parameters from a server computing device; determining a standardized trust value based on the S-type parameters; and determining a device behavior classification based on the standardized trust value. In one aspect, the stored processor-executable instructions are configurable to cause the processor to perform operations further comprising: converting a finite state machine included in the full classifier model to A single-level decision tree is enhanced to generate a list of enhanced single-level decision trees; and a reduced classifier model family is generated based on the enhanced single-layer decision trees included in the list of enhanced single-level decision trees, wherein the trust based on the standardization The value classification of the device includes: applying a behavior vector information structure to the first reduced classifier model of the reduced classifier model family to generate an analysis result; and determining whether the behavior vector is based on the normalized trust value The information structure is applied to one of the reduced classifier model families, the second streamline classifier Model to generate new analysis results.

在另一態樣中,該等儲存之處理器可執行指令可經組態以使得該處理器執行進一步包括以下項之操作:基於該完全分類器模型產生一精簡分類器模型,且該等儲存之處理器可執行指令可經組態以使得該處理器執行操作,使得基於該標準化之信賴值為該裝置行為分類包括:將一行為向量資訊結構應用於該精簡分類器模型以產生分析結果;及使用該等分析結果及該標準化之信賴值以判定該裝置行為係良性抑或非良性的。 In another aspect, the stored processor-executable instructions are configurable to cause the processor to perform operations further comprising: generating a reduced classifier model based on the full classifier model, and storing the The processor-executable instructions are configurable to cause the processor to perform an operation such that the trusted value based on the normalization is a classification of the device behavior comprising: applying a behavior vector information structure to the reduced classifier model to generate an analysis result; And using the results of the analysis and the normalized confidence value to determine whether the device behavior is benign or non-benign.

在另一態樣中,該等儲存之處理器可執行指令可經組態以使得該處理器執行操作,使得基於基於該完全分類器模型產生該精簡分類器模型包括:藉由將包括於該完全分類器模型中之一有限狀態機轉換成複數個強化單層決策樹而產生一強化單層決策樹清單;判定應進行評估以在不消耗該計算裝置之一過度量之處理資源、記憶體資源或能量資源的情況下為該裝置行為分類的唯一測試條件之數目;產生一測試條件清單,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的一測試條件插入至該測試條件清單中,直至該測試條件清單包括該數目個唯一測試條件為止;及產生該精簡分類器模型,以僅包括測試包括於該測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹。 In another aspect, the stored processor-executable instructions are configurable to cause the processor to perform operations such that generating the reduced classifier model based on the full classifier model comprises: A finite state machine in a complete classifier model converts into a plurality of reinforced single-level decision trees to generate a list of enhanced single-layer decision trees; the decision should be evaluated to consume processing resources and memory without consuming excessive amounts of the computing device The number of unique test conditions for classifying the behavior of the device in the case of resources or energy resources; generating a list of test conditions that traverse the list of enhanced single-level decision trees in order, and will be reinforced with each sequentially traversed list a test condition associated with the layer decision tree is inserted into the test condition list until the test condition list includes the number of unique test conditions; and the reduced classifier model is generated to include only the test included in the test condition list One of the plurality of test conditions enhances the single-layer decision tree.

在另一態樣中,該等儲存之處理器可執行指令可經組態以使得該處理器執行進一步包括以下項之操作:基於該標準化之信賴值產生一經更新之S型參數;及將該經更新之S型參數發送至該伺服器計算裝置。在另一態樣中,該等儲存之處理器可執行指令可經組態以使得該處理器執行進一步包括以下項之操作:自該伺服器計算裝置接收一經更新之S型參數;基於該經更新之S型參數判定一新的標準化之信賴值;及基於該新的標準化之信賴值為該裝置行為分類。 In another aspect, the stored processor-executable instructions are configurable to cause the processor to perform operations further comprising: generating an updated S-type parameter based on the normalized confidence value; and The updated S-type parameters are sent to the server computing device. In another aspect, the stored processor-executable instructions are configurable to cause the processor to perform operations further comprising: receiving an updated S-type parameter from the server computing device; The updated S-type parameter determines a new standardized trust value; and the trust value based on the new standardization is the device behavior classification.

其他態樣包括一種行動計算裝置,其具有一處理器,該處理器經處理器可執行指令組態以執行上文描述之該等方法之操作。 Other aspects include a mobile computing device having a processor configured by processor executable instructions to perform the operations of the methods described above.

其他態樣包括一種非暫時性電腦可讀儲存媒體,其上儲存有經組態以使得一行動裝置中之一處理器執行上文描述之該等方法之操作的處理器可執行軟體指令。 Other aspects include a non-transitory computer readable storage medium having stored thereon processor executable software instructions configured to cause a processor of a mobile device to perform the operations of the methods described above.

其他態樣包括一種系統,其包括一行動裝置,該行動裝置包括一裝置處理器及一伺服器,該伺服器經伺服器可執行指令組態以執行包括以下項之操作:接收關於行動裝置行為之一資訊語料庫;基於該資訊語料庫產生一有限狀態機且以包括適合於轉換成各自包括一測試條件及一加權值之複數個強化單層決策樹之資料;及將該有限狀態機發送至該行動裝置以作為一完全分類器模型。在一態樣中,該裝置處理器可經處理器可執行指令組態以執行包括以下項之操作:接收該完全分類器模型;基於該所接收之完全分類器模型在該行動裝置中產生一精簡分類器模型;及使用該精簡分類器模型以將該行動裝置之一行為分類為良性的或非良性的。 Other aspects include a system including a mobile device including a device processor and a server configured via server executable instructions to perform operations including: receiving behavior regarding the mobile device An information corpus; generating a finite state machine based on the information corpus and including data adapted to be converted into a plurality of enhanced single layer decision trees each including a test condition and a weight value; and transmitting the finite state machine to the The mobile device acts as a complete classifier model. In one aspect, the apparatus processor is configurable via processor executable instructions to perform operations comprising: receiving the full classifier model; generating a one in the mobile device based on the received full classifier model Streamlining the classifier model; and using the reduced classifier model to classify behavior of one of the mobile devices as benign or non-benign.

在一態樣系統中,該裝置處理器可經處理器可執行指令組態以執行操作,使得基於該完全分類器模型產生該精簡分類器模型包括:將包括於該完全分類器模型中之該有限狀態機轉換成一強化單層決策樹清單;判定應進行評估以在不消耗該行動裝置之一過度量之處理資源、記憶體資源或能量資源的情況下為該行動裝置之該行為分類;產生一測試條件清單,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的該測試條件插入至該測試條件清單中,直至該測試條件清單包括該經判定數目個唯一測試條件為止;及產生該精簡分類器模型,以僅包括測試包括於該所產生之測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹。 In an aspect system, the device processor is configurable via processor executable instructions to perform an operation such that generating the reduced classifier model based on the full classifier model comprises: including in the full classifier model The finite state machine is converted into a list of enhanced single layer decision trees; the decision should be evaluated to classify the behavior of the mobile device without consuming excessive processing resources, memory resources or energy resources of the mobile device; a test condition list, the generation traversing the enhanced single layer decision tree list in sequence, and inserting the test condition associated with each successively traversed enhanced single layer decision tree into the test condition list until the test The condition list includes the determined number of unique test conditions; and the reduced classifier model is generated to include only one of the plurality of test conditions included in the list of test conditions generated Decision tree.

在一態樣系統中,該裝置處理器可經處理器可執行指令組態以執行操作,使得使用該精簡分類器模型以為該行動裝置之該行為分類包括:將所收集之行為資訊應用於該精簡分類器模型中之每一強化單層決策樹;計算將該所收集之行為資訊應用於該精簡分類器模型中之每一強化單層決策樹的結果的一加權平均值;及將該加權平均值與一臨限值進行比較。在一態樣系統中,該裝置處理器可經處理器可執行指令組態以執行操作,使得基於該完全分類器模型產生該精簡分類器模型包括:將包括於該完全分類器模型中之該有限狀態機轉換成一強化單層決策樹清單;及基於包括於中該強化單層決策樹清單中之該等強化單層決策樹產生一精簡分類器模型家族,該精簡分類器模型家族包括該精簡分類器模型及複數個額外精簡分類器模型,該複數個額外精簡分類器模型中之每一者包括不同數目個唯一測試條件。 In an aspect system, the device processor is configurable via processor executable instructions to perform operations such that using the reduced classifier model to classify the behavior of the mobile device comprises applying the collected behavior information to the Streamlining each of the enhanced single-level decision trees in the classifier model; calculating a weighted average of the results of applying the collected behavior information to each of the enhanced single-level decision trees in the reduced classifier model; and weighting the weighting The average is compared to a threshold. In an aspect system, the device processor is configurable via processor executable instructions to perform an operation such that generating the reduced classifier model based on the full classifier model comprises: including in the full classifier model Converting the finite state machine into a list of enhanced single layer decision trees; and generating a reduced classifier model family based on the enhanced single layer decision trees included in the list of enhanced single layer decision trees, the reduced classifier model family including the streamlining A classifier model and a plurality of additional streamlined classifier models, each of the plurality of additional streamlined classifier models including a different number of unique test conditions.

在一態樣系統中,該裝置處理器可經處理器可執行指令組態以執行操作,使得基於該完全分類器模型產生該精簡分類器模型包括:產生複數個精簡分類器模型,其各自包括使用一不同加權值及一不同臨限值測試一第一條件的一單層決策樹。在一態樣系統中,該裝置處理器可經處理器可執行指令組態以執行進一步包括以下項之操作:重新計算與該複數個精簡分類器模型中之該等強化單層決策樹相關聯的臨限值及加權值。 In an aspect system, the device processor is configurable via processor executable instructions to perform operations such that generating the reduced classifier model based on the full classifier model comprises: generating a plurality of reduced classifier models, each of which includes A single layer decision tree for testing a first condition using a different weighting value and a different threshold. In an aspect system, the device processor is configurable via processor executable instructions to perform operations further comprising: recalculating associated with the enhanced single layer decision trees in the plurality of reduced classifier models Threshold and weighting values.

在一態樣系統中,該伺服器可經伺服器可執行指令組態以執行操作,使得該複數個測試條件中之每一者相關聯於識別其相關聯測試條件將使得該行動裝置能夠判定一行動裝置行為是否為良性的一似然性的一機率值。在一態樣系統中,該伺服器可經伺服器可執行指令組態以執行進一步包括以下項之操作:在將該有限狀態機發送至該行動裝置以作為該完全分類器模型之前,基於機率值來組織該有限狀態機中之該等強化單層決策樹。 In an aspect system, the server can be configured via server executable instructions to perform operations such that each of the plurality of test conditions associated with identifying its associated test condition will enable the mobile device to determine A probability that a mobile device behaves as a benign likelihood. In an aspect system, the server can be configured via server executable instructions to perform operations further comprising: prior to transmitting the finite state machine to the mobile device as the full classifier model, based on probability Values to organize the enhanced single layer decision trees in the finite state machine.

100‧‧‧通信系統 100‧‧‧Communication system

102‧‧‧行動裝置 102‧‧‧Mobile devices

104‧‧‧電話網路 104‧‧‧Phone network

106‧‧‧小區基地台 106‧‧‧Cell base station

108‧‧‧網路操作中心 108‧‧‧Network Operations Center

110‧‧‧網際網路 110‧‧‧Internet

112‧‧‧無線通信鏈路 112‧‧‧Wireless communication link

114‧‧‧伺服器 114‧‧‧Server

116‧‧‧網路伺服器 116‧‧‧Web server

118‧‧‧雲端服務提供者網路 118‧‧‧Cloud Service Provider Network

202‧‧‧行為觀測器模組 202‧‧‧ Behavior Observer Module

204‧‧‧行為分析器模組 204‧‧‧Behavioral Analyzer Module

206‧‧‧外部內容資訊模組 206‧‧‧External Content Information Module

208‧‧‧分類器模組 208‧‧‧ classifier module

210‧‧‧致動器模組 210‧‧‧Actuator Module

300‧‧‧系統 300‧‧‧ system

302‧‧‧雲端模組 302‧‧‧Cloud Module

304‧‧‧模型產生器模組 304‧‧‧Model Generator Module

306‧‧‧訓練資料模組 306‧‧‧ Training Data Module

402‧‧‧精簡模型產生器模組 402‧‧‧Reduced Model Generator Module

404‧‧‧完全模型產生器 404‧‧‧Complete model generator

500‧‧‧方法 500‧‧‧ method

502‧‧‧區塊 502‧‧‧ Block

504‧‧‧區塊 504‧‧‧ Block

506‧‧‧區塊 506‧‧‧ Block

508‧‧‧區塊 508‧‧‧ Block

510‧‧‧區塊 510‧‧‧ Block

511‧‧‧方法 511‧‧‧ method

512‧‧‧區塊 512‧‧‧ Block

514‧‧‧區塊 514‧‧‧ Block

516‧‧‧區塊 516‧‧‧ Block

518‧‧‧區塊 518‧‧‧ Block

520‧‧‧區塊 520‧‧‧ Block

522‧‧‧區塊 522‧‧‧ Block

524‧‧‧方法 524‧‧‧ method

526‧‧‧區塊 526‧‧‧ Block

528‧‧‧區塊 528‧‧‧ Block

529‧‧‧區塊 529‧‧‧ Block

530‧‧‧區塊 530‧‧‧ Block

532‧‧‧區塊 532‧‧‧ Block

534‧‧‧區塊 534‧‧‧ Block

535‧‧‧區塊 535‧‧‧ Block

536‧‧‧區塊 536‧‧‧ Block

540‧‧‧方法 540‧‧‧ method

542‧‧‧區塊 542‧‧‧ Block

544‧‧‧區塊 544‧‧‧ Block

546‧‧‧區塊 546‧‧‧ Block

548‧‧‧區塊 548‧‧‧ Block

550‧‧‧區塊 550‧‧‧ Block

552‧‧‧區塊 552‧‧‧ Block

554‧‧‧區塊 554‧‧‧ Block

556‧‧‧區塊 556‧‧‧ Block

558‧‧‧區塊 558‧‧‧ Block

560‧‧‧區塊 560‧‧‧ Block

562‧‧‧區塊 562‧‧‧ Block

600‧‧‧方法 600‧‧‧ method

602‧‧‧區塊 602‧‧‧ Block

604‧‧‧區塊 604‧‧‧ Block

606‧‧‧區塊 606‧‧‧ Block

608‧‧‧區塊 608‧‧‧ Block

610‧‧‧區塊 610‧‧‧ Block

620‧‧‧實例強化方法 620‧‧‧Instance reinforcement method

622‧‧‧操作 622‧‧‧ operation

624‧‧‧操作 624‧‧‧ operation

626‧‧‧操作 626‧‧‧ operation

628‧‧‧操作 628‧‧‧ operation

700‧‧‧方法 700‧‧‧ method

800‧‧‧強化單層決策樹 800‧‧‧Strengthen single-layer decision tree

802‧‧‧方法 802‧‧‧ method

902‧‧‧適應性篩選模組 902‧‧‧Adaptive screening module

904‧‧‧節流模組 904‧‧‧Throttle Module

906‧‧‧觀測器模式模組 906‧‧‧Observation mode module

908‧‧‧高層級行為偵測模組 908‧‧‧High-level behavior detection module

910‧‧‧行為向量產生器 910‧‧‧ Behavior Vector Generator

912‧‧‧安全緩衝器 912‧‧‧Safety buffer

914‧‧‧空間相關性模組 914‧‧‧ Spatial correlation module

916‧‧‧時間相關性模組 916‧‧‧Time correlation module

1000‧‧‧計算系統 1000‧‧‧Computation System

1002‧‧‧行為偵測器 1002‧‧‧ Behavioral Detector

1004‧‧‧資料庫引擎 1004‧‧‧Database Engine

1006‧‧‧安全緩衝器管理器 1006‧‧‧Security Buffer Manager

1008‧‧‧規則管理器 1008‧‧‧Rules Manager

1010‧‧‧系統健康監視器 1010‧‧‧System Health Monitor

1014‧‧‧環緩衝器 1014‧‧‧ ring buffer

1016‧‧‧篩選規則 1016‧‧‧Filtering rules

1018‧‧‧節流規則 1018‧‧‧ throttle rules

1020‧‧‧安全緩衝器 1020‧‧‧Safety buffer

1100‧‧‧方法 1100‧‧‧ method

1102‧‧‧區塊 1102‧‧‧ Block

1103‧‧‧區塊 1103‧‧‧ Block

1104‧‧‧區塊 1104‧‧‧ Block

1106‧‧‧區塊 1106‧‧‧ Block

1108‧‧‧區塊 1108‧‧‧ Block

1109‧‧‧區塊 1109‧‧‧ Block

1110‧‧‧區塊 1110‧‧‧ Block

1112‧‧‧區塊 1112‧‧‧ Block

1114‧‧‧區塊 1114‧‧‧ Block

1118‧‧‧區塊 1118‧‧‧ Block

1200‧‧‧方法 1200‧‧‧ method

1202‧‧‧區塊 1202‧‧‧ Block

1204‧‧‧區塊 Block 1204‧‧‧

1206‧‧‧區塊 1206‧‧‧ Block

1300‧‧‧方法 1300‧‧‧ method

1302‧‧‧區塊 1302‧‧‧ Block

1304‧‧‧區塊 1304‧‧‧ Block

1306‧‧‧區塊 1306‧‧‧ Block

1308‧‧‧區塊 1308‧‧‧ Block

1310‧‧‧區塊 1310‧‧‧ Block

1400‧‧‧方法 1400‧‧‧ method

1402‧‧‧區塊 1402‧‧‧ Block

1404‧‧‧區塊 1404‧‧‧ Block

1406‧‧‧區塊 1406‧‧‧ Block

1408‧‧‧區塊 Block 1408‧‧‧

1410‧‧‧區塊 1410‧‧‧ Block

1412‧‧‧區塊 1412‧‧‧ Block

1500‧‧‧方法 1500‧‧‧ method

1502‧‧‧區塊 1502‧‧‧ Block

1504‧‧‧區塊 1504‧‧‧ Block

1506‧‧‧區塊 1506‧‧‧ Block

1508‧‧‧區塊 1508‧‧‧ Block

1510‧‧‧區塊 1510‧‧‧ Block

1600‧‧‧方法 1600‧‧‧ method

1602‧‧‧區塊 1602‧‧‧ Block

1604‧‧‧區塊 1604‧‧‧ Block

1606‧‧‧區塊 1606‧‧‧ Block

1608‧‧‧區塊 1608‧‧‧ Block

1610‧‧‧區塊 1610‧‧‧ Block

1612‧‧‧區塊 Block 1612‧‧‧

1700‧‧‧智慧型電話 1700‧‧‧Smart Phone

1702‧‧‧處理器 1702‧‧‧ Processor

1704‧‧‧內部記憶體 1704‧‧‧Internal memory

1706‧‧‧顯示器 1706‧‧‧ display

1708‧‧‧揚聲器 1708‧‧‧Speakers

1710‧‧‧天線 1710‧‧‧Antenna

1712‧‧‧無線收發器 1712‧‧‧Wireless Transceiver

1716‧‧‧聲音編碼/解碼(CODEC)電路 1716‧‧‧Sound Encoding/Decoding (CODEC) Circuit

1800‧‧‧伺服器 1800‧‧‧Server

1801‧‧‧處理器 1801‧‧‧ processor

1802‧‧‧揮發性記憶體 1802‧‧‧ volatile memory

1803‧‧‧磁碟機 1803‧‧‧Disk machine

1804‧‧‧緊密光碟(CD)或DVD光碟機 1804‧‧‧ compact disc (CD) or DVD player

1805‧‧‧網路 1805‧‧‧Network

1806‧‧‧網路存取埠 1806‧‧‧Network access

併入本文中且構成本說明書之部分的隨附圖式說明申請專利範圍之例示性態樣,且連同上文給出的一般描述及下文給出的詳細描述用來解釋申請專利範圍之特徵。 The exemplification of the scope of the claims, which is incorporated in the specification, and the claims

圖1為說明適合於與各種態樣一起使用之實例電信系統之網路組件的通信系統方塊圖。 1 is a block diagram of a communication system illustrating network components of an example telecommunications system suitable for use with various aspects.

圖2為說明態樣行動裝置中之實例邏輯組件及資訊流的方塊圖,該態樣行動裝置經組態以判定特定行動裝置行為係惡意的、效能降級的、可疑的抑或良性的。 2 is a block diagram illustrating example logic components and information flows in an aspect mobile device configured to determine whether a particular mobile device behavior is malicious, performance degraded, suspicious, or benign.

圖3為說明包括網路伺服器之態樣系統中之實例組件及資訊流的方塊圖,該網路伺服器經組態以結合行動裝置工作,以判定特定行動裝置行為係惡意的、效能降級的、可疑的抑或良性的。 3 is a block diagram illustrating example components and information flows in a system including a network server configured to operate in conjunction with a mobile device to determine malicious behavioral degradation of a particular mobile device. , suspicious or benign.

圖4為說明包括行動裝置之態樣系統中之實例組件及資訊流的方塊圖,該行動裝置經組態以在不重新訓練資料、行為向量或分類器模型的情況下用完全分類器模型產生目標型的且精簡的分類器模型。 4 is a block diagram illustrating example components and information flows in a system including a mobile device configured to generate a full classifier model without retraining data, behavior vectors, or classifier models Targeted and streamlined classifier model.

圖5A為說明在行動裝置中產生精簡分類器模型的態樣行動裝置方法之程序流程圖,該精簡分類器模型包括特徵及資料點之子集,該子集包括於自網路伺服器接收之完全分類器模型中。 5A is a program flow diagram illustrating a method of generating a reduced classifier model in a mobile device, the reduced classifier model including a subset of features and data points, the subset being included in a complete receipt from a web server In the classifier model.

圖5B為說明本端地在行動裝置中產生精簡分類器模型之另一態樣行動裝置方法的程序流程圖。 FIG. 5B is a flow chart showing a procedure for another aspect of the mobile device method for generating a reduced classifier model in a mobile device.

圖5C為說明使用以本端方式產生之精簡分類器模型來分類行動裝置之行為之態樣行動裝置方法的程序流程圖。 5C is a program flow diagram illustrating a method of classifying a mobile device using a reduced classifier model generated in a native manner to classify behavior of a mobile device.

圖5D為說明在行動裝置中產生精簡分類器模型之另一態樣行動裝置方法的程序流程圖。 5D is a process flow diagram illustrating another aspect of a mobile device method for generating a reduced classifier model in a mobile device.

圖6A為說明在網路伺服器中產生完全分類器模型之態樣網路伺服器方法的程序流程圖,該完全分類器模型包括適於藉由行動裝置用 於產生更集中且精簡之分類器模型的強化單層決策樹。 6A is a program flow diagram illustrating a method of generating a full classifier model network server in a network server, the full classifier model including being adapted for use with a mobile device An enhanced single-level decision tree that produces a more centralized and streamlined classifier model.

圖6B為根據各種態樣的說明適合於產生強化單層決策樹分類器之實例方法的程序流程圖。 6B is a program flow diagram illustrating an example method suitable for generating a enhanced single layer decision tree classifier, in accordance with various aspects.

圖7為根據一態樣的產生包括強化單層決策樹之分類器模型之實例方法的程序流程圖。 7 is a flow diagram of a program for generating an example method including a classifier model that enforces a single layer decision tree, according to an aspect.

圖8為可由態樣伺服器處理器產生且由行動裝置處理器用以產生精簡分類器模型的實例強化單層決策樹之說明。 8 is an illustration of an example enhanced single layer decision tree that may be generated by an aspect server processor and used by a mobile device processor to generate a reduced classifier model.

圖9為根據一態樣的說明經組態以執行動態及適應性觀測之觀測器模組中之實例邏輯組件及資訊流的方塊圖。 9 is a block diagram illustrating example logic components and information flows in an observer module configured to perform dynamic and adaptive observations, according to an aspect.

圖10為根據另一態樣的說明實施觀測者精靈協助程式之計算系統中之邏輯組件及資訊流的方塊圖。 Figure 10 is a block diagram showing the logic components and information flow in a computing system implementing an Observer Assistant program in accordance with another aspect.

圖11為說明用於對行動裝置執行適應性觀測之態樣方法的程序流程圖。 11 is a flow diagram of a procedure illustrating an aspect method for performing adaptive observations on a mobile device.

圖12至圖16為根據各種態樣的說明使用S型參數計算標準化之信賴值且將標準化之信賴值用於改良式行為分析及分類之方法的程序流程圖。 12 through 16 are flow diagrams of a process for calculating a standardized confidence value using S-type parameters and using standardized normalized values for improved behavioral analysis and classification, in accordance with various aspects.

圖17為適合用於一態樣之行動裝置的組件方塊圖。 Figure 17 is a block diagram of components suitable for use in an aspect of a mobile device.

圖18為適合用於一態樣之伺服器裝置的組件方塊圖。 Figure 18 is a block diagram of components suitable for use in an aspect of a server device.

將參考隨附圖式來詳細地描述各種態樣。在任何可能之處,將貫穿圖式使用相同參考數字來指代相同或相似部分。對特定實例及實施進行之參考為出於說明之目的,且並不意欲限制申請專利範圍之範疇。 Various aspects will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numerals are used to the References to specific examples and implementations are for illustrative purposes and are not intended to limit the scope of the claimed invention.

詞語「例示性」在本文中用以意謂「充當實例、例項或說明」。本文中描述為「例示性」之任何實施未必解釋為比其他實施較佳或有利。 The word "exemplary" is used herein to mean "serving as an instance, instance, or description." Any implementation described herein as "exemplary" is not necessarily to be construed as preferred or advantageous.

概述而言,各種態樣包括用於有效地識別、分類、建立模型、防止及/或校正常常使行動裝置之效能及/或功率利用層級隨時間推移降級之條件及/或行動裝置行為的網路伺服器、行動裝置、系統及方法。網路伺服器可經組態以自中心資料庫(例如,「雲端」)接收關於各種條件、特徵、行為及校正性動作的資訊,且將此資訊用以產生完全分類器模型(亦即,資料或行為模型),該完全分類器模型描述格式或結構中的可藉由行動裝置快速轉換成一或多個精簡分類器模型之大型行為資訊語料庫。 In summary, various aspects include a network for efficiently identifying, classifying, modeling, preventing, and/or correcting conditions and/or mobile device behaviors that often degrade the performance and/or power utilization levels of mobile devices over time. Route server, mobile device, system and method. The web server can be configured to receive information about various conditions, characteristics, behaviors, and corrective actions from a central repository (eg, "cloud") and use this information to generate a full classifier model (ie, Data or behavioral model), the full classifier model describes a large behavioral information corpus in a format or structure that can be quickly converted into one or more reduced classifier models by a mobile device.

在一態樣中,完全分類器模型可為大型行為資訊語料庫之有限狀態機描述或表示。在一態樣中,有限狀態機可包括適合於表達為複數個強化單層決策樹之資訊。舉例而言,有限狀態機可為可表達為一強化單層決策樹家族的資訊結構,該家族之強化單層決策樹集體地識別、描述、測試或評估與判定行動裝置行為是否為良性或隨時間推移促成彼行動裝置之效能降級有關的所有或許多特徵及資料點。網路伺服器可接著將完全分類器模型(亦即,包括有限狀態機及/或強化單層決策樹家族等等的資訊結構)發送至行動裝置。 In one aspect, the full classifier model can be a finite state machine description or representation of a large behavioral information corpus. In one aspect, the finite state machine may include information suitable for expression as a plurality of enhanced single layer decision trees. For example, a finite state machine can be an information structure that can be expressed as a family of enhanced single-layer decision trees that collectively identify, describe, test, or evaluate and determine whether the behavior of the mobile device is benign or The passage of time contributes to all or many of the characteristics and data points associated with the degradation of the performance of the mobile device. The web server can then send the full classifier model (i.e., the information structure including the finite state machine and/or the enhanced single layer decision tree family, etc.) to the mobile device.

行動裝置可經組態以接收完全分類器模型且將其用以產生具有變化之複雜性(或「精簡性」)層級的精簡分類器模型或精簡分類器模型家族。為實現此目的,行動裝置可剔除包括於自網路伺服器接收之完全分類器模型中的穩健的強化單層決策樹家族(在本文中,「完全強化單層決策樹分類器模型)」,以產生包括經減少數目個強化單層決策樹及/或評估有限數目個測試條件的精簡分類器模型。完全強化單層決策樹分類器模型之此剔除可藉由以下操作實現:選擇一強化單層決策樹;識別取決於與選定單層決策樹相同的行動裝置狀態、特徵、行為或條件之所有其他強化單層決策樹(且因此可基於一種判定結果而應用);將取決於相同行動裝置狀態、特徵、行為或條件之選定的及 所有經識別的其他強化單層決策樹包括於精簡分類器模型中;及針對尚未包括於精簡分類器模型中之有限數目個選定強化單層決策樹重複該程序。以此方式,可產生包括取決於有限數目個不同行動裝置狀態、特徵、行為或條件之所有強化單層決策樹的精簡分類器模型。行動裝置可接著使用此本端產生之精簡分類器模型在不消耗其過度量之處理資源、記憶體資源或能量資源的情況下快速地為行動裝置行為分類。 The mobile device can be configured to receive the full classifier model and use it to generate a reduced classifier model or a reduced classifier model family with varying complexity (or "thinness") levels. To achieve this, the mobile device can eliminate the robust enhanced single-layer decision tree family included in the complete classifier model received from the network server (in this article, "fully enhanced single-layer decision tree classifier model"), A reduced classifier model comprising a reduced number of enhanced single layer decision trees and/or a limited number of test conditions is generated. This culling of a fully enhanced single-layer decision tree classifier model can be achieved by selecting an enhanced single-layer decision tree; identifying all other mobile device states, characteristics, behaviors, or conditions that are identical to the selected single-level decision tree. Strengthening a single-layer decision tree (and thus may be applied based on a decision); will depend on the selection of the same mobile device state, characteristics, behavior, or condition All identified other enhanced single-level decision trees are included in the reduced classifier model; and the procedure is repeated for a limited number of selected enhanced single-level decision trees that are not yet included in the reduced classifier model. In this way, a reduced classifier model can be generated that includes all of the enhanced single-layer decision trees that depend on a limited number of different mobile device states, characteristics, behaviors, or conditions. The mobile device can then use the reduced classifier model generated by the local end to quickly classify the mobile device behavior without consuming excessive amounts of processing resources, memory resources, or energy resources.

在一態樣中,行動裝置可使用不同數目個不同行動裝置狀態、特徵、行為或條件來將剔除完全強化單層決策樹分類器模型之操作執行若干次,以便產生具有不同精簡程度之精簡分類器模型家族。用以產生精簡分類器模型之不同行動裝置狀態、特徵、行為或條件的數目愈大,模型將更可能精確地識別惡意或可疑行為,但將消耗更多處理功率。因此,在一態樣中,行動裝置可經組態以常規地應用精簡分類器模型家族之最精簡模型(亦即,基於最少數目個不同行動裝置狀態、特徵、行為或條件之模型)。若由最精簡分類器模型產生之結果係可疑的,則行動裝置處理器可應用更堅固的(亦即,不太精簡的)分類器模型來評估更多裝置狀態、特徵、行為或條件,以判定該行為可被識別為惡意抑或良性的。若由應用彼不太精簡的分類器模型產生之結果仍可疑,則可應用甚至更堅固的(更加不精簡的)分類器模型等等,直至行為被確定地分類為惡意或良性的。 In one aspect, the mobile device can perform the operation of rejecting the fully enhanced single-layer decision tree classifier model several times using different numbers of different mobile device states, features, behaviors, or conditions to produce a reduced classification with different levels of simplification. Family of models. The greater the number of different mobile device states, features, behaviors, or conditions used to generate a reduced classifier model, the more likely the model will accurately identify malicious or suspicious behavior, but will consume more processing power. Thus, in one aspect, the mobile device can be configured to conventionally apply the most compact model of the reduced classifier model family (i.e., a model based on a minimum number of different mobile device states, characteristics, behaviors, or conditions). If the results produced by the most streamlined classifier model are suspicious, the mobile device processor can apply a more robust (ie, less compact) classifier model to evaluate more device states, characteristics, behaviors, or conditions to It is determined that the behavior can be identified as malicious or benign. If the results produced by applying a less compact classifier model are still suspicious, an even more robust (and less compact) classifier model or the like can be applied until the behavior is determined to be classified as malicious or benign.

藉由將關於此等行為及校正性動作之資訊儲存於中心資料庫(亦即,「雲端」)中,且組態行動裝置及網路伺服器以結合彼此工作,從而將儲存於中心資料庫中之資訊用以智慧型地且有效地識別促成每一行動裝置之效能及功率利用層級隨時間推移降級的因素,各種態樣使得行動裝置能夠更加精確且有效地識別行動裝置之效能限制及不合需要的操作條件,且對該等操作條件作出回應。 By storing information about such behaviors and corrective actions in a central repository (ie, "cloud"), and configuring the mobile device and network server to work in conjunction with each other, it will be stored in the central repository. The information is used to intelligently and efficiently identify the factors that contribute to the degradation of the performance and power utilization levels of each mobile device over time. Various aspects enable mobile devices to more accurately and efficiently identify performance limitations and discrepancies of mobile devices. The required operating conditions and respond to such operating conditions.

另外,藉由在網路伺服器中產生包括強化單層決策樹之分類器模型,且將此等分類器/模型發送至行動裝置,各種態樣允許行動裝置藉由在不存取訓練資料或進一步與網路伺服器、中心資料庫或雲端網路/伺服器通信的情況下,以上述方式剔除若干強化單層決策樹,快速且有效地在行動裝置中產生精簡的(或更集中的)分類器模型。此顯著降低行動裝置對網路之依賴性,且進一步改良行動裝置之效能及功率消耗特性。 In addition, by generating a classifier model including an enhanced single-layer decision tree in the web server and transmitting the classifiers/models to the mobile device, the various aspects allow the mobile device to not access the training material or Further communicating with the web server, the central repository, or the cloud network/server, culling a number of enhanced single-layer decision trees in the manner described above, resulting in a streamlined (or more concentrated) of the mobile device quickly and efficiently Classifier model. This significantly reduces the dependence of the mobile device on the network and further improves the performance and power consumption characteristics of the mobile device.

在未來可用或預期若干不同蜂巢式及行動通信服務及標準,其皆可實施且得益於各種態樣。此等服務及標準包括(例如):第三代合作夥伴計劃(3GPP)、長期演進(LTE)系統、第三代無線行動通信技術(3G)、第四代無線行動通信技術(4G)、全球行動通信系統(GSM)、全球行動電信系統(UMTS)、3GSM、通用封包無線電服務(GPRS)、分碼多重存取(CDMA)系統(例如,cdmaOne、CDMA1020TM)、GSM演進增強型資料速率(EDGE)、進階行動電話系統(AMPS)、數位AMPS(IS-136/TDMA)、演進資料最佳化(EV-DO)、數位增強型無線電信(DECT)、微波存取全球互通(WiMAX)、無線區域網路(WLAN)、Wi-Fi保護存取I&II(WPA、WPA2),及整合式數位增強型網路(iden)。此等技術中之每一者涉及(例如)語音、資料、發信、及/或內容訊息之傳輸及接收。應理解,除非在申請專利範圍語言中特定敍述,否則對與個別電信標準或技術相關之術語及/或技術細節的任何參考僅用於說明性目的,且並非意欲將申請專利範圍之範疇限制為特定通信系統或技術。 Several different cellular and mobile communication services and standards are available or expected in the future, all of which can be implemented and benefit from a variety of aspects. These services and standards include, for example: Third Generation Partnership Project (3GPP), Long Term Evolution (LTE) systems, Third Generation Wireless Mobile Telecommunications (3G), Fourth Generation Wireless Mobile Telecommunications (4G), Global Mobile Communications System (GSM), Global Mobile Telecommunications System (UMTS), 3GSM, General Packet Radio Service (GPRS), Code Division Multiple Access (CDMA) systems (eg, cdmaOne, CDMA1020TM), GSM Evolution Enhanced Data Rate (EDGE) ), Advanced Mobile Phone System (AMPS), Digital AMPS (IS-136/TDMA), Evolution Data Optimized (EV-DO), Digital Enhanced Wireless Telecommunications (DECT), Worldwide Interoperability for Microwave Access (WiMAX), Wireless Local Area Network (WLAN), Wi-Fi Protected Access I&II (WPA, WPA2), and integrated digital enhanced network (iden). Each of these technologies involves, for example, the transmission and reception of voice, material, messaging, and/or content messages. It should be understood that any reference to terms and/or technical details relating to individual telecommunication standards or technologies is used for illustrative purposes only, and is not intended to limit the scope of the claims to Specific communication system or technology.

術語「行動計算裝置」與「行動裝置」在本文中可互換地使用,以指代以下項中之任一者或所有:蜂巢式電話、智慧型手機、個人或行動多媒體播放器、個人資料助理(PDA)、膝上型電腦、平板電腦、智慧筆記型電腦、超級本、掌上型電腦、無線電子郵件接收器、 具備多媒體網際網路能力之蜂巢式電話、無線遊戲控制器,及包括記憶體、可程式化處理器(對其而言,效能係重要的),且在電池電力下操作從而電力節約方法有益的類似個人電子器件。雖然各種態樣特別適用於具有有限資源且在電池上執行的諸如智慧型手機之行動計算裝置,但該等態樣通常對包括處理器且執行應用程式之任何電子裝置有用。 The terms "mobile computing device" and "mobile device" are used interchangeably herein to refer to any or all of the following: cellular phones, smart phones, personal or mobile multimedia players, personal data assistants. (PDA), laptop, tablet, smart laptop, ultrabook, palmtop, wireless email receiver, A cellular phone with a multimedia internet capability, a wireless game controller, and a memory, a programmable processor (for which performance is important), and operating under battery power to benefit the power saving method Similar to personal electronic devices. While the various aspects are particularly applicable to mobile computing devices, such as smart phones, that have limited resources and are executed on a battery, such aspects are generally useful for any electronic device that includes a processor and executes an application.

大體而言,行動裝置之效能及功率效率隨時間推移而降級。最近,抗病毒公司(例如,McAfee、Symantec等)已開始行銷旨在減緩此降級的行動抗病毒、防火牆及加密產品。然而,許多此等解決方案依賴於行動裝置上的計算密集型掃描引擎的週期性執行,其可消耗行動裝置之許多處理及電池資源,從而在延長時段內使得行動裝置緩慢或致使該行動裝置無用,及/或以其他方式降級使用者體驗。另外,此等解決方案通常受限於偵測已知病毒及惡意程式碼,且並不解決常常組合的多個複雜因素及/或互動,從而促成行動裝置隨時間推移之降級(例如,當效能降級並非由病毒或惡意程式碼造成時)。出於此等及其他原因,現存的抗病毒、防火牆及加密產品並不提供用於識別可促成行動裝置隨時間推移之降級的眾多因素,用於防止行動裝置降級,或用於將老化的行動裝置有效地復原至其原始條件的適當的解決方案。 In general, the performance and power efficiency of mobile devices degrade over time. Recently, anti-virus companies (eg, McAfee, Symantec, etc.) have begun marketing anti-virus, firewall, and encryption products designed to mitigate this downgrade. However, many of these solutions rely on the periodic execution of a computationally intensive scanning engine on a mobile device that can consume many of the processing and battery resources of the mobile device, thereby causing the mobile device to slow or render the mobile device useless for an extended period of time. And/or otherwise downgrade the user experience. In addition, such solutions are often limited by detecting known viruses and malicious code, and do not address multiple complex factors and/or interactions that are often combined, thereby contributing to the degradation of mobile devices over time (eg, when Downgrade is not caused by viruses or malicious code). For these and other reasons, existing anti-virus, firewall, and encryption products do not provide a number of factors for identifying degradations that can cause a mobile device to degrade over time, to prevent a mobile device from degrading, or to act on aging The device effectively restores the appropriate solution to its original condition.

存在用於藉由使用機器學習技術或建立在計算裝置上執行之程序或應用程式之行為的模型來偵測惡意軟體之各種其他解決方案。然而,許多此等解決方案不適合於用在行動裝置上,此係由於其需要評估一極大型資料語料庫,且受限於評估個別應用程式或程序,或需要行動裝置中之計算密集型程序的執行。同樣,在行動裝置中實施或執行此等解決方案可對行動裝置之反應性、效能或功率消耗特性具有顯著的負面影響及/或使用者可察覺影響。出於此等及其他原因,現存 建立模型及機器學習解決方案並非較適合用於現代行動裝置之複雜又資源受限的系統。 There are various other solutions for detecting malware by using machine learning techniques or models that establish the behavior of programs or applications executing on a computing device. However, many of these solutions are not suitable for use on mobile devices due to their need to evaluate a very large data corpus and are limited to evaluating individual applications or programs, or requiring the execution of computationally intensive programs in mobile devices. . Likewise, implementing or executing such a solution in a mobile device can have a significant negative impact on the responsiveness, performance, or power consumption characteristics of the mobile device and/or a user perceptible impact. For these and other reasons, existing Modeling and machine learning solutions are not suitable for complex and resource-constrained systems of modern mobile devices.

舉例而言,現存的基於機器學習之解決方案可包括:組態計算裝置以使用訓練資料語料庫來推導將輸入視為特徵向量之模型。然而,此解決方案並不產生包括適合於轉換至或表達為複數個強化單層決策樹的有限狀態機(或其他類似資訊結構)的完全分類器模型(或分類器模型家族),該等強化單層決策樹各自包括測試條件及加權值。出於至少此原因,此等解決方案無法藉由行動裝置處理器用以快速且有效地產生包括集中的強化單層決策樹集合之精簡分類器模型,該精簡分類器模型用以快速且有效地識別、分析行動裝置行為及/或為行動裝置行為分類,而不對行動裝置之反應性或效能或功率消耗特性具有顯著的負面或使用者可察覺的影響。 For example, existing machine learning based solutions may include configuring a computing device to use a training material corpus to derive a model that considers the input as a feature vector. However, this solution does not produce a complete classifier model (or class of classifier models) including a finite state machine (or other similar information structure) suitable for conversion to or expression as a plurality of enhanced single-layer decision trees, such enhancements The single layer decision trees each include test conditions and weighting values. For at least this reason, such solutions cannot be used by mobile device processors to quickly and efficiently generate a streamlined classifier model comprising a centralized set of enhanced single-layer decision trees for rapid and efficient identification Analyze mobile device behavior and/or classify mobile device behavior without significant negative or user perceptible impact on the responsiveness or performance or power consumption characteristics of the mobile device.

行動裝置為具有相對有限的處理資源、記憶體資源及能量資源的資源受限之系統。現代的行動裝置亦係複雜系統,且其常常並非可實行,從而無法評估可為惡意的或以其他方式促成行動裝置之效能降級的各種資料流、資料操作(讀取、寫入、資料編碼、資料傳輸等)、程序、組件、行為、或因素(或其組合)中的所有者。出於此等及其他原因,對於使用者、作業系統及/或應用程式(例如,抗病毒軟體等)而言,更加難以精確且有效地識別問題之源及/或對經識別問題提供適當補救措施。因此,行動裝置使用者目前具有極少用於防止行動裝置之效能及功率利用層級隨時間推移之降級的補救措施。 Mobile devices are systems with limited resources for relatively limited processing resources, memory resources, and energy resources. Modern mobile devices are also complex systems, and they are often not practicable, making it impossible to evaluate various data streams, data operations (read, write, data encoding, etc.) that can be malicious or otherwise contribute to the performance degradation of mobile devices. The owner of the data transfer, etc., program, component, behavior, or factor (or combination thereof). For these and other reasons, it is more difficult for users, operating systems and/or applications (eg, anti-virus software, etc.) to accurately and efficiently identify the source of the problem and/or provide an appropriate remedy for the identified problem. Measures. Therefore, mobile device users currently have few remedies for preventing the degradation of the performance of the mobile device and the degradation of the power utilization level over time.

各種態樣包括用於有效地識別、分類、建立模型、阻止及/或校正常常使行動裝置之效能及/或功率利用層級隨時間推移降級之條件及/或行動裝置行為的網路伺服器、行動裝置、系統及方法。 Various aspects include network servers for efficiently identifying, classifying, modeling, blocking, and/or correcting conditions and/or mobile device behaviors that often degrade the performance and/or power utilization levels of mobile devices over time, Mobile devices, systems and methods.

在一態樣中,行動裝置之觀測器程序、精靈協助程式、模組或子系統(在本文中共同稱為「模組」)可在行動裝置系統之各種層級下 用工具配備或協調各種API、暫存器、計數器或其他組件(在本文中,共同稱為「儀測組件」)。觀測器模組可藉由自儀測組件收集行為資訊來不斷(或近乎不斷)地監視行動裝置行為。行動裝置亦可包括分析器模組,且觀測器模組可將所收集之行為資訊傳達(例如,經由記憶體寫入操作、函數調用等)至行動裝置之分析器模組。分析器模組可接收行為資訊,且將其用以產生行為向量,基於行為向量產生空間及/或時間相關性,且使用此資訊判定特定行動裝置行為、子系統、軟體應用程式或程序係良性的、可疑的、惡意的抑或效能降級的。 In one aspect, the mobile device's observer program, sprite assisted program, module or subsystem (collectively referred to herein as "modules") can be used at various levels of the mobile device system. Use tools to coordinate or coordinate various APIs, registers, counters, or other components (collectively referred to herein as "metering components"). The observer module can continuously (or nearly continuously) monitor the behavior of the mobile device by collecting behavioral information from the instrumentation component. The mobile device can also include an analyzer module, and the observer module can communicate the collected behavior information (eg, via a memory write operation, a function call, etc.) to the analyzer module of the mobile device. The analyzer module can receive behavioral information and use it to generate behavioral vectors, generate spatial and/or temporal correlations based on behavioral vectors, and use this information to determine specific mobile device behavior, subsystems, software applications, or program benign , suspicious, malicious, or degraded.

分析器模組可經組態以執行即時行為分析操作,其可包括進行、執行資料、演算法、分類器或行為模型(在本文中共同稱為「分類器模型」)及/或將其應用於所收集之行為資訊,以判定行動裝置行為係良性抑或並非良性(例如,惡意或效能降級)。每一分類器模型可為包括可由行動裝置處理器用以評估行動裝置行為之特定態樣之資訊的行為模型。分類器模型可經預先安裝於行動裝置上,在該行動裝置上進行下載,自網路伺服器接收,產生於該行動裝置中,或其任何組合。分類器模型可藉由使用機器學習及其他類似技術產生。 The analyzer module can be configured to perform immediate behavior analysis operations, which can include performing, executing data, algorithms, classifiers or behavioral models (collectively referred to herein as "classifier models") and/or applying them Information on the behavior collected to determine whether the behavior of the mobile device is benign or not benign (eg, malicious or degraded). Each classifier model can be a behavioral model that includes information that can be used by a mobile device processor to evaluate a particular aspect of a mobile device's behavior. The classifier model can be pre-installed on the mobile device, downloaded on the mobile device, received from the network server, generated in the mobile device, or any combination thereof. The classifier model can be generated by using machine learning and other similar techniques.

每一分類器模型可被分類為完全分類器模型或精簡分類器模型。完全分類器模型可為經產生作為大型訓練資料集之函數的穩健資料模型,其可包括數千個特徵及數十億個輸入項。精簡分類器模型可為由僅包括與判定特定行動裝置行為係良性抑或並非良性(例如,惡意或效能降級)最相關之特徵/輸入項的減少之資料集所產生的更加集中之資料模型。 Each classifier model can be classified as a full classifier model or a reduced classifier model. The full classifier model can be a robust data model that is generated as a function of a large training data set, which can include thousands of features and billions of inputs. The reduced classifier model can be a more focused data model produced by a reduced data set that only includes features/inputs that are most relevant to determining whether a particular mobile device behavior is benign or not benign (eg, malicious or performance degradation).

如上所述,可存在數千個特徵/因素及數十億個資料點需要分析以正確識別行動裝置之降級之原因或源。因此,藉由分析器模組使用之每一分類器模型必須針對極大數目個特徵、因素及資料點進行訓練,以便行動裝置能夠關於特定行動裝置行為係良性抑或並非良性 (例如,惡意或效能降級)制定精確決策。但,因為行動裝置為資源受限之系統,所以該等行動裝置常常並非可實行,分析器模組從而無法評估所有此等特徵、因素及資料點。因此,對於分析器模組而言,應用集中於評估所有特徵、因素及資料點中的將以其他方式在為行動裝置行為分類時需要分析之目標型子集的精簡分類器模型係重要的。 As noted above, there may be thousands of features/factors and billions of data points that need to be analyzed to correctly identify the cause or source of degradation of the mobile device. Therefore, each classifier model used by the analyzer module must be trained for a very large number of features, factors, and data points so that the mobile device can be benign or not benign with respect to the behavior of the particular mobile device. Make precise decisions (for example, malicious or degraded). However, because mobile devices are resource-constrained systems, such mobile devices are often not implementable, and the analyzer module is unable to evaluate all of these features, factors, and data points. Thus, for the analyzer module, the application focuses on evaluating the simplification of the model, which is important for all features, factors, and data points that would otherwise be analyzed when classifying the behavior of the mobile device.

各種態樣包括經組態以結合彼此工作,從而智慧型地且有效地識別與判定行動裝置行為係良性抑或並非良性(例如,惡意或效能降級)最為相關之特徵、因素及資料點的行動裝置及網路伺服器。藉由在網路伺服器中產生包括強化單層決策樹之分類器模型且將此等分類器/模型發送至行動裝置,各種態樣允許行動裝置快速且有效地在行動裝置中產生精簡分類器模型。 Various aspects include mobile devices that are configured to work in conjunction with one another to intelligently and efficiently identify features, factors, and data points that are most relevant to determining whether a mobile device behavior is benign or not benign (eg, malicious or performance degraded). And web server. Various aspects allow a mobile device to quickly and efficiently generate a streamlined classifier in a mobile device by generating a classifier model including a hardened single layer decision tree in a network server and transmitting the classifiers/models to the mobile device model.

在各種態樣中,網路伺服器可經組態以自雲端服務/網路接收與行動裝置行為及在彼等行為期間或特性化彼等行為之狀態、特徵及條件有關的大量資訊。此資訊可呈極大型行動裝置行為向量雲端語料庫的形式。網路伺服器可使用此資訊來產生精確地描述極大型行為向量雲端語料庫的完全分類器模型(亦即,穩健資料/行為模型)。網路伺服器可產生包括可促成若干不同行動裝置中之任一者隨時間推移之降級的所有或大部分特徵、資料點及/或因素的完全分類器模型。 In various aspects, the network server can be configured to receive a large amount of information from the cloud service/network relating to the behavior of the mobile device and during the course of their behavior or characterizing the status, characteristics and conditions of their behavior. This information can be in the form of a very mobile device behavior vector cloud corpus. The web server can use this information to generate a full classifier model (ie, robust data/behavior model) that accurately describes the maximal behavior vector cloud corpus. The web server can generate a full classifier model that includes all or most of the features, data points, and/or factors that can contribute to the degradation of any of a number of different mobile devices over time.

在一態樣中,網路伺服器可產生包括諸如強化單層決策樹或強化單層決策樹家族之有限狀態機表達或表示的完全分類器模型。可經由在行動裝置處理器處應用剔除演算法而快速且有效地剔除、修改此有限狀態機表達或表示或將其轉換成適合於在行動裝置中使用或執行的精簡分類器模型。有限狀態機表達或表示可為包括測試條件、狀態資訊、狀態轉變規則及其他類似資訊之資訊結構。在一態樣中,有限狀態機表達或表示可為包括各自評估或測試行動裝置之行為之條件、特徵、因素或態樣的大型或穩健之強化單層決策樹家族的資訊結構。 In one aspect, the web server can generate a full classifier model that includes finite state machine representations or representations such as enhanced single layer decision trees or enhanced single layer decision tree families. This finite state machine representation or representation can be quickly and efficiently culled, modified, or converted to a reduced classifier model suitable for use or execution in a mobile device by applying a cull algorithm at the mobile device processor. A finite state machine expresses or represents an information structure that includes test conditions, status information, state transition rules, and other similar information. In one aspect, the finite state machine expresses or represents an information structure that is a large or robust enhanced single-layer decision tree family that includes conditions, characteristics, factors, or aspects of behaviors that each evaluates or tests the mobile device.

行動裝置可經組態以自網路伺服器接收完全分類器模型,且使用所接收之完全分類器模型在行動裝置中本端地產生精簡分類器模型(亦即,資料/行為模型)。行動裝置可藉由將包括於所接收之完全分類器模型中之強化單層決策樹集合剔除成識別、測試、評估及/或取決於減少或有限數目個不同行動裝置狀態、特徵、行為或條件的強化單層決策樹子集,來產生此等本端精簡分類器模型。完全強化單層決策樹集合之此剔除可藉由以下操作實現:選擇強化單層決策樹;識別取決於與選定單層決策樹相同的行動裝置狀態、特徵、行為或條件之所有其他強化單層決策樹(且因此可基於一種判定結果而應用);將取決於相同行動裝置狀態、特徵、行為或條件之選定的及所有經識別的其他強化單層決策樹包括於精簡分類器模型中;及針對尚未包括於精簡分類器模型中之減少/有限數目個選定強化單層決策樹重複該程序。藉由使用受試之不同數目個行動裝置狀態、特徵、行為或條件來重複程序,可產生由經評估之狀態、特徵、行為或條件之數目判定的具有不同精簡程度之精簡分類器模型家族。另外,此等精簡分類器模型中之每一者可測試或評估與另一精簡分類器模型相同的特徵或條件中的一些或全部,但使用經指派至經評估之測試結果、特徵或條件之重要性的不同臨限值及/或不同權重。同樣,產生或再生精簡分類器模型之程序可包括重新計算與單層決策樹相關聯之臨限值及/或權重。 The mobile device can be configured to receive the full classifier model from the network server and locally generate a reduced classifier model (ie, data/behavior model) in the mobile device using the received full classifier model. The mobile device may identify, test, evaluate, and/or rely on reducing or a limited number of different mobile device states, characteristics, behaviors, or conditions by culminating the enhanced single layer decision tree set included in the received full classifier model The enhanced single-layer decision tree subset is used to generate these local-level reduced classifier models. This culling of a fully enhanced single-layer decision tree set can be achieved by selecting an enhanced single-layer decision tree; identifying all other enhanced monolayers that depend on the same mobile device state, characteristics, behavior, or condition as the selected single-layer decision tree. a decision tree (and thus may be applied based on a decision result); including selected and all identified other enhanced single-level decision trees depending on the same mobile device state, characteristics, behavior or condition in the reduced classifier model; This procedure is repeated for a reduced/limited number of selected enhanced single layer decision trees that are not yet included in the reduced classifier model. By repeating the procedure using a different number of mobile device states, features, behaviors or conditions under test, a reduced family of classifier models with different degrees of simplification determined by the number of evaluated states, characteristics, behaviors or conditions can be generated. Additionally, each of these reduced classifier models may test or evaluate some or all of the same features or conditions as another reduced classifier model, but using the assigned test results, features, or conditions. Different thresholds of importance and/or different weights. Likewise, the process of generating or regenerating a reduced classifier model can include recalculating thresholds and/or weights associated with a single layer decision tree.

由於此等精簡分類器模型包括必須受試的經減少之狀態、特徵、行為或條件子集(相比於完全分類器模型),因此觀測器及/或分析器模組可使用該等模型來在不消耗行動裝置之過度量之處理資源、記憶體資源或能量資源的情況下快速且精確地判定行動裝置行為係良性的抑或促成行動裝置之效能的降級。如上所述,可常規地應用精簡分類器模型家族之最精簡模型(亦即,基於最少數目個測試條件的精簡分類器模型),直至碰到模型無法分類為良性的或惡意(且因此藉由該 模型分類為可疑)之行為為止,此時可應用更加穩健的(亦即,不太精簡的)精簡分類器模型,以試圖將該行為分類為良性的或惡意的。可應用所產生之精簡分類器模型家族內的甚至更加穩健的精簡分類器模型,直至達成行為之決定性分類為止。以此方式,觀測器及/或分析器模組可藉由將最完整但資源密集之精簡分類器模型之使用限於需要穩健分類器模型來決定性地分類一行為之彼等情境來衝擊效率與精確性之間的平衡。 Since these reduced classifier models include reduced states, features, behaviors, or subsets of conditions that must be tested (as compared to a full classifier model), the observer and/or analyzer modules can use the models to The fast and accurate determination of the behavior of the mobile device is a benign or degraded performance of the mobile device without consuming excessive amounts of processing resources, memory resources or energy resources of the mobile device. As described above, the most compact model of the reduced classifier model family (i.e., the reduced classifier model based on a minimum number of test conditions) can be routinely applied until the model cannot be classified as benign or malicious (and thus by The Until the model is classified as suspicious, a more robust (ie, less concise) streamlined classifier model can be applied in an attempt to classify the behavior as benign or malicious. An even more robust streamlined classifier model within the resulting reduced classifier model family can be applied until a definitive classification of behavior is reached. In this way, the observer and/or analyzer module can impact efficiency and accuracy by limiting the use of the most complete but resource-intensive reduced classifier model to the need for a robust classifier model to definitively classify the behavior of one of the behaviors. The balance between sex.

在各種態樣中,行動裝置可經組態以藉由將有限狀態機表示/表達轉換成強化單層決策樹來產生一或多個精簡分類器模型;將包括於完全分類器模型中之完全強化單層決策樹集合剔除成取決於有限數目個不同行動裝置狀態、特徵、行為或條件之強化單層決策樹之一或多個子集;及使用該或該等強化單層決策樹子集來智慧型地監視、分析行動裝置行為及/或為行動裝置行為分類。強化單層決策樹之使用允許觀測器及/或分析器模組在不與雲端或網路通信的情況下產生且應用精簡資料模型以重新訓練資料,此顯著降低行動裝置對網路伺服器及雲端之依賴性。此消除行動裝置與網路伺服器之間的回饋通信,進一步改良行動裝置之效能及功率消耗特性。 In various aspects, the mobile device can be configured to generate one or more reduced classifier models by converting the finite state machine representation/expression into an enhanced single layer decision tree; to be fully included in the full classifier model The enhanced single-layer decision tree set is culled into one or more subsets of the reinforced single-layer decision tree that depend on a limited number of different mobile device states, features, behaviors, or conditions; and the use of the or a plurality of enhanced single-layer decision tree subsets Intelligently monitor, analyze, and/or classify mobile device behavior. The use of enhanced single-layer decision trees allows the observer and/or analyzer modules to be generated without the need to communicate with the cloud or the network and apply a reduced data model to retrain the data, which significantly reduces the mobile device to the network server and Dependence in the cloud. This eliminates the feedback communication between the mobile device and the network server, further improving the performance and power consumption characteristics of the mobile device.

強化單層決策樹為恰好具有一個節點(且因此一個測試問題或測試條件)及一加權值的一個層級決策樹,且因此較適合用於資料/行為之二進位分類。亦即,將行為向量應用於強化單層決策樹產生二進位回答(例如,是或否)。舉例而言,若藉由強化單層決策樹測試之問題/條件係「短訊息服務(SMS)傳輸之頻率小於每分鐘x個」,則將值「3」應用於強化單層決策樹將產生「是」回答(對於「小於3個」SMS傳輸)或「否」回答(「3個或更多個」SMS傳輸)。 The enhanced single-layer decision tree is a hierarchical decision tree that has exactly one node (and therefore a test problem or test condition) and a weighted value, and is therefore more suitable for data/behavior binary classification. That is, applying a behavior vector to the enhanced single-layer decision tree yields a binary answer (eg, yes or no). For example, if the problem/condition of "single message service (SMS) transmission is less than x per minute" by strengthening the single-layer decision tree test, then applying the value "3" to the enhanced single-layer decision tree will result. "Yes" answer (for "less than 3" SMS transmissions) or "No" for answers ("3 or more" SMS transmissions).

強化單層決策樹係有效的,此係由於其極為簡單且原始(且因此並不需要大量處理資源)。強化單層決策樹亦可極為平行化,且因此 可平行地/同時應用或測試許多單層樹(例如,藉由行動裝置中之多個核心或處理器)。 The enhanced single-layer decision tree is effective because it is extremely simple and primitive (and therefore does not require a lot of processing resources). Enhanced single-layer decision trees can also be extremely parallel, and therefore Many single layer trees can be applied or tested in parallel/simultaneously (eg, by multiple cores or processors in a mobile device).

如下文所述,網路伺服器(或另一計算裝置)可用另一更加複雜的行動裝置行為模型(諸如強化決策樹模型)來產生強化單層決策樹型完全分類器模型。此等複雜模型可使得在複雜分類系統中特性化行動裝置行為的裝置狀態、操作及所監視節點中之完全(或近乎完全)互動集合相關。如上所述,伺服器或其他計算裝置可藉由應用機器學習技術以產生描述自大量行動裝置收集之行動裝置之行為向量之雲端語料庫的模型,來產生完全的複雜分類器模型。作為一實例,強化決策樹分類器模型可經由可測試條件之決策節點追蹤數百條路徑,以達成當前行動裝置行為係惡意抑或良性的判定。可使用若干已知學習及相關性建立模型技術來將此等複雜模型產生於伺服器中。雖然此等複雜模型可藉由學習來自幾百個行動裝置之資料而在精確識別惡意行為方面變得相當有效,但將其應用於特定行動裝置之組態及行為可能需要大量處理,詳言之,在模型涉及複雜的多層決策樹的情況下。由於行動裝置通常資源有限,因此使用此等模型可能影響裝置效能及電池壽命。 As described below, the web server (or another computing device) can generate an enhanced single layer decision tree type full classifier model with another, more sophisticated mobile device behavior model, such as a reinforced decision tree model. Such complex models may correlate device states, operations, and complete (or near-perfect) interaction sets in the monitored nodes in a complex classification system. As noted above, a server or other computing device can generate a fully complex classifier model by applying machine learning techniques to generate a model of a cloud corpus that describes the behavior vectors of mobile devices collected from a large number of mobile devices. As an example, the enhanced decision tree classifier model can track hundreds of paths via decision nodes of testable conditions to achieve a malicious or benign decision of the current mobile device behavior. Several known learning and correlation modeling techniques can be used to generate these complex models in the server. While such complex models can be quite effective in accurately identifying malicious behavior by learning from hundreds of mobile devices, the application to their configuration and behavior of a particular mobile device may require significant processing, in particular In the case where the model involves a complex multi-level decision tree. Since mobile devices typically have limited resources, using these models can affect device performance and battery life.

為呈現更加有利於藉由行動裝置使用之穩健分類器模型,伺服器(例如,雲端伺服器或網路伺服器)或另一計算裝置(例如,行動裝置或將耦接至行動裝置之電腦)可將複雜分類器模型變換成大型強化單層決策樹模型。單層決策樹中所涉及的更加簡單的判定及在平行程序中應用此等分類器模型之能力可使得行動裝置能夠較佳地得益於藉由網路伺服器執行之分析。又,如下文所論述,強化單層決策樹完全分類器模型可藉由行動裝置用以使用下文描述之態樣方法產生精簡分類器模型。 To present a robust classifier model that is more advantageous for use by mobile devices, a server (eg, a cloud server or a network server) or another computing device (eg, a mobile device or a computer that will be coupled to a mobile device) The complex classifier model can be transformed into a large-strength single-level decision tree model. The simpler decisions involved in a single layer decision tree and the ability to apply such classifier models in parallel programs can enable mobile devices to better benefit from analysis performed by a web server. Again, as discussed below, the enhanced single layer decision tree full classifier model can be used by the mobile device to generate a reduced classifier model using the aspect methods described below.

在一態樣中,產生強化單層決策樹完全分類器模型之伺服器或其他計算裝置可藉由遵循下文更詳細描述之態樣程序來達成此目的。 概言之,伺服器或其他計算裝置可在完全複雜分類器模型(例如,強化決策樹模型)內選擇節點,且應用該模型來判定節點預測惡意行為的時間之百分比。換言之,伺服器或其他計算裝置可選擇該節點之一條支路,且遵循連接至彼支路之所有後續節點及路徑,來判定彼支路導致惡意行為之判定的時間之百分率。在一態樣中,此時間之百分率可用以計算節點之「權重」因子。舉例而言,一條支路之後續路徑導致80%時間內為惡意行為結論的決策節點可與加權因子0.8相關聯,指示此單一決策節點為可能為惡意(且因此為可疑)的行為之可信賴指示符。作為另一實例,複雜分類器模型中的分支可同樣導致惡意行為結論之決策節點將在識別惡意行為方面提供極少幫助,且因此可給與極低的加權因子或優先級。 In one aspect, a server or other computing device that produces a robust single-level decision tree full classifier model can accomplish this by following the pattern procedure described in more detail below. In summary, a server or other computing device may select a node within a fully complex classifier model (eg, a reinforced decision tree model) and apply the model to determine the percentage of time that the node predicted malicious behavior. In other words, the server or other computing device may select one of the branches of the node and follow all subsequent nodes and paths connected to the branch to determine the percentage of time that the branch caused the determination of the malicious behavior. In one aspect, the percentage of this time can be used to calculate the "weight" factor of the node. For example, a decision path for a follow-up path of a branch that results in a malicious behavior within 80% of the time can be associated with a weighting factor of 0.8, indicating that the single decision node is trustworthy for a potentially malicious (and therefore suspicious) behavior. indicator. As another example, a branch in a complex classifier model can also result in a decision node for malicious behavior that will provide little help in identifying malicious behavior, and thus can give very low weighting factors or priorities.

在追蹤來自每一決策節點之結果的程序中,若決策節點並非為二進位(亦即,「是」或「否」),則伺服器或其他計算裝置可將多種測試條件應用於每一節點。舉例而言,複雜的分類器模型可容納值之範圍(例如,每分鐘所傳輸之SMS訊息的數目),其中最終結論取決於值。然而,值之範圍不符合單層決策樹之二進位本質。因此,伺服器或其他計算裝置可針對有利於特性化為值之條件的此等節點而開發二進位決策或測試之範圍。舉例而言,伺服器或其他計算裝置可經由複雜的分類器模型產生且測試若干臨限測試或條件,諸如「多於一個」、「多於十個」及「多於100個」。可藉由伺服器基於其自研究複雜模型可達至的結論而識別或選擇此等臨限測試。可接著將每一此類基於臨限之測試視為單一單層決策樹,該單一單層決策樹可經測試以判定其預測性值且因此判定其強化因子。 In the process of tracking the results from each decision node, if the decision node is not binary (ie, "yes" or "no"), the server or other computing device can apply various test conditions to each node. . For example, a complex classifier model can accommodate a range of values (eg, the number of SMS messages transmitted per minute), with the final conclusion depending on the value. However, the range of values does not conform to the binary nature of the single-layer decision tree. Thus, a server or other computing device may develop a range of binary decisions or tests for such nodes that facilitate characterization of the condition. For example, a server or other computing device can generate and test a number of threshold tests or conditions via a complex classifier model, such as "more than one", "more than ten", and "more than 100". These threshold tests can be identified or selected by the server based on its conclusions that are accessible from the study of complex models. Each such threshold-based test can then be considered a single single-level decision tree that can be tested to determine its predictive value and thus its enhancement factor.

藉由經由複雜分類器模型中之所有決策節點遵循此程序,伺服器或其他計算裝置可將複雜的多層決策模型變換成具有大量強化單層決策樹之單層模型。伺服器或其他計算裝置可接著藉由移除值低於臨 限值之單層決策樹以便移除提供極少預測性或分類權益之測試條件來修整該模型(例如,「電力開啟?」)。 By following this procedure through all of the decision nodes in the complex classifier model, the server or other computing device can transform the complex multi-layer decision model into a single layer model with a large number of enhanced single layer decision trees. The server or other computing device can then be removed by the value below A single-level decision tree of limits to trim the model (eg, "power on?") by removing test conditions that provide minimal predictive or categorical benefits.

雖然此等單層樹之所得數目在完全分類器模型中可為大的,但單層樹之二進位本質可促進其應用,尤其在資源受限之處理器中的應用。在一態樣中,伺服器或其他計算裝置可將強化單層決策樹完全分類器模型提供至行動裝置以供該等行動裝置使用。 Although the resulting number of such single-layer trees can be large in a full classifier model, the binary nature of a single-layer tree can facilitate its application, especially in resource-constrained processors. In one aspect, a server or other computing device can provide an enhanced single layer decision tree full classifier model to the mobile device for use by the mobile devices.

產生強化單層決策樹之大型分類器模型的程序可由分析來自許多行動裝置之輸入且產生完全的複雜行為分類器模型之雲端伺服器產生,此係由於此等伺服器將具有處理資源及處理時間完成該分析。然而,如上所述,態樣方法亦可藉由甚至包括該行動裝置之另一計算裝置執行。在此態樣中,伺服器(例如,雲端或網路伺服器)可將完全的複雜行為分類器模型遞送至另一計算裝置,該計算裝置可接著如上文所概述且在下文更詳細概述的處理該模型,以將其變換為強化單層決策樹模型。舉例而言,個人電腦(使用者將該個人電腦耦接其行動裝置)可下載完全的複雜行為分類器模型,且接著執行態樣方法以產生大型強化單層決策樹模型,其中該個人電腦使得該大型強化單層決策樹模型可用於該行動裝置(例如,經由有線或無線資料鏈路)。作為另一實例,行動裝置可下載完全的複雜行為分類器模型,且接著(諸如)在裝置正充電且未被使用之夜晚期間執行態樣方法,以產生被其儲存於記憶體中之大型強化單層決策樹模型。由於藉由伺服器或另一計算裝置實施之程序極為類似,因此態樣方法在下文中更詳細地描述為藉由伺服器執行。然而,彼描述係出於實例之目的且不意欲將態樣方法限於在伺服器上執行,除非在申請專利範圍中特定如此敍述。 The procedure for generating a large classifier model that enforces a single-layer decision tree can be generated by a cloud server that analyzes input from many mobile devices and produces a complete complex behavioral classifier model, since such servers will have processing resources and processing time. Complete the analysis. However, as described above, the aspect method can also be performed by another computing device including even the mobile device. In this aspect, a server (eg, a cloud or network server) can deliver a complete complex behavior classifier model to another computing device, which can then be summarized as outlined above and summarized in more detail below. The model is processed to transform it into a reinforced single-level decision tree model. For example, a personal computer (the user couples the personal computer to its mobile device) can download a full complex behavioral classifier model, and then perform an aspect method to generate a large enhanced single layer decision tree model, where the personal computer makes The large enhanced single layer decision tree model can be used for the mobile device (eg, via a wired or wireless data link). As another example, the mobile device can download a full complex behavioral classifier model and then perform an aspect method, such as during a night when the device is charging and not being used, to generate a large enhancement that is stored in the memory. Single layer decision tree model. Since the procedures implemented by the server or another computing device are very similar, the aspect method is described in more detail below as being performed by a server. However, the description is for the purpose of example and is not intended to limit the manner of the method to the execution on the server unless specifically recited in the claims.

在另一態樣中,行動裝置可經組態在不存取訓練資料且不消耗行動裝置之過度量之處理資源、記憶體資源或能量資源的情況下,藉由選擇在單層決策樹中進行測試之有限數目個因素,使用所接收或自 動產生之強化單層決策樹之大型分類器模型來建置精簡分類器模型。分析器模組可使用選定強化單層決策樹之精簡分類器模型來識別惡意程式碼且將裝置行為分類為惡意或良性。如下方更加全面地描述,行動裝置可藉由以下操作產生精簡分類器模型:判定將被測試的將監視之特徵的數目(例如,15);選擇第一特徵,且將包括彼特徵之測試(例如,臨限測試基於自所監視之特徵獲得之值的所有單層樹)的所有強化單層決策樹合併至精簡分類器;及重複此程序直至精簡分類器模型中解決之特徵的數目為所判定數目為止。此精簡分類器模型中的強化單層決策樹之數目可顯著大於特徵之數目係毫無意義的。 In another aspect, the mobile device can be configured to be selected in a single layer decision tree without accessing the training material and consuming no excessive amounts of processing resources, memory resources, or energy resources of the mobile device. a limited number of factors to test, using received or self A large classifier model that enhances the single-layer decision tree is built to build a simplified classifier model. The analyzer module can use a reduced classifier model of the selected enhanced single-layer decision tree to identify malicious code and classify device behavior as malicious or benign. As described more fully below, the mobile device can generate a reduced classifier model by determining the number of features to be monitored that are to be monitored (eg, 15); selecting the first feature, and including the test of the feature ( For example, all of the enhanced single-level decision trees of the threshold test based on all single-layer trees of values obtained from the monitored features are merged into the reduced classifier; and the procedure is repeated until the number of features resolved in the reduced classifier model is The number of judgments is up. The number of enhanced single-level decision trees in this reduced classifier model can be significantly greater than the number of features is meaningless.

在一態樣中,行動裝置可經組態以接收包括適合於轉換成複數個強化單層決策樹之有限狀態機的完全分類器模型。行動裝置可基於完全分類器模型產生精簡分類器模型,此可藉由將完全分類器模型之有限狀態機轉換成強化單層決策樹,且將此等強化單層決策樹用作精簡分類器模型來實現。 In one aspect, the mobile device can be configured to receive a full classifier model including a finite state machine suitable for conversion to a plurality of enhanced single layer decision trees. The mobile device can generate a reduced classifier model based on the full classifier model by converting the finite state machine of the full classifier model into an enhanced single layer decision tree, and using the enhanced single layer decision tree as a reduced classifier model to realise.

可在多種通信系統(諸如,圖1中所說明之實例通信系統100)內實施各種態樣。典型行動電話網路104包括耦接至網路操作中心108之複數個小區基地台106,該網路操作中心操作以諸如經由電話陸線(例如,POTS網路,圖中未示)及網際網路110連接行動裝置102(例如,蜂巢式電話、膝上型電腦、平板電腦等)與其他網路目的地之間的語音呼叫及資料。行動裝置102與電話網路104之間的通信可經由雙向無線通信鏈路112實現,諸如4G、3G、CDMA、TDMA、LTE及/或其他行動電話通信技術。電話網路104亦可包括耦接至網路操作中心108或位於該網路操作中心內的一或多個伺服器114,該一或多個伺服器提供至網際網路110之連接。 Various aspects can be implemented within a variety of communication systems, such as the example communication system 100 illustrated in FIG. A typical mobile telephone network 104 includes a plurality of cell base stations 106 coupled to a network operations center 108 that operate, such as via a telephone landline (e.g., a POTS network, not shown) and the Internet. Road 110 connects voice calls and data between mobile devices 102 (e.g., cellular phones, laptops, tablets, etc.) and other network destinations. Communication between the mobile device 102 and the telephone network 104 can be accomplished via a two-way wireless communication link 112, such as 4G, 3G, CDMA, TDMA, LTE, and/or other mobile telephone communication technologies. The telephone network 104 can also include one or more servers 114 coupled to the network operations center 108 or located within the network operations center, the one or more servers providing connections to the Internet 110.

通信系統100可進一步包括連接至電話網路104且連接至網際網路110之網路伺服器116。網路伺服器116與電話網路104之間的連接可 經由網際網路110或經由私用網路(如藉由虛線箭頭所說明)。網路伺服器116亦可實施為雲端服務提供者網路118之網路基礎架構內的伺服器。網路伺服器116與行動裝置102之間的通信可經由電話網路104、網際網路110、私用網路(未說明)或其任何組合達成。 Communication system 100 can further include a network server 116 coupled to telephone network 104 and to Internet 110. The connection between the web server 116 and the telephone network 104 can be Via the Internet 110 or via a private network (as illustrated by the dashed arrows). The web server 116 can also be implemented as a server within the network infrastructure of the cloud service provider network 118. Communication between the web server 116 and the mobile device 102 can be accomplished via the telephone network 104, the internet 110, a private network (not illustrated), or any combination thereof.

網路伺服器116可將精簡資料/行為模型發送至行動裝置102,該行動裝置可接收且使用精簡資料/行為模型來識別可疑或效能降級之行動裝置行為、軟體應用程式、程序等。網路伺服器116亦可將分類及建立模型資訊發送至行動裝置102,以替換、更新、產生及/或維持行動裝置資料/行為模型。 The web server 116 can send the reduced profile/behavior model to the mobile device 102, which can receive and use the reduced profile/behavior model to identify suspicious or performance degraded mobile device behavior, software applications, programs, and the like. The web server 116 can also send classification and build model information to the mobile device 102 to replace, update, generate, and/or maintain the mobile device profile/behavior model.

行動裝置102可收集行動裝置102中之行為、狀態、分類、建立模型、成功率及/或統計資訊,且將所收集之資訊發送至網路伺服器116(例如,經由電話網路104)以供分析。網路伺服器116可使用自行動裝置102接收之資訊來更新或優化精簡資料/行為模型或分類/建立模型資訊,以包括另一目標性及/或經減少之特徵子集。 The mobile device 102 can collect behavior, status, classification, model building, success rate, and/or statistical information in the mobile device 102 and send the collected information to the network server 116 (eg, via the telephone network 104) For analysis. The web server 116 can use the information received from the mobile device 102 to update or optimize the reduced data/behavior model or classification/modeling information to include another targeted and/or reduced subset of features.

在一態樣中,行動裝置102可經組態以使用所收集之行為、狀態、分類、建立模型、成功率、及/或統計資訊來產生、更新或優化包括行動裝置102中的另一目標性及/或經減少之特徵子集的精簡分類器模型(或資料/行為模型)。此減少行動裝置與網路伺服器116之間的回饋通信之量,且改良行動裝置102之效能及功率消耗特性。 In one aspect, mobile device 102 can be configured to generate, update, or optimize to include another target in mobile device 102 using the collected behavior, status, classification, model building, success rate, and/or statistical information. A reduced classifier model (or data/behavior model) of a subset of features and/or reduced features. This reduces the amount of feedback communication between the mobile device and the network server 116 and improves the performance and power consumption characteristics of the mobile device 102.

圖2說明經組態以判定特定行動裝置行為、軟體應用程式或程序為惡意/效能降級的、可疑的抑或良性之態樣行動裝置102中之實例邏輯組件及資訊流。在圖2中所說明之實例中,行動裝置102包括行為觀測器模組202、行為分析器模組204、外部內容資訊模組206、分類器模組208及致動器模組210。在一態樣中,分類器模組208可被實施為行為分析器模組204之部分。在一態樣中,行為分析器模組204可經組態以產生一或多個分類器模組208,其中之每一者可包括一或多個分 類器。 2 illustrates example logic components and information flows in a suspicious or benign mobile device 102 configured to determine a particular mobile device behavior, software application or program being malicious/performance degraded. In the example illustrated in FIG. 2, the mobile device 102 includes a behavior observer module 202, a behavior analyzer module 204, an external content information module 206, a classifier module 208, and an actuator module 210. In one aspect, the classifier module 208 can be implemented as part of the behavior analyzer module 204. In one aspect, the behavior analyzer module 204 can be configured to generate one or more classifier modules 208, each of which can include one or more points Classifier.

模組202-210中之每一者可以軟體、硬體或其任何組合實施。在各種態樣中,模組202-210可實施於作業系統之部件內(例如,核內、核空間中、使用者空間中等)、分離程式或應用程式內、特定硬體緩衝器或處理器中,或其任何組合。在一態樣中,模組202-210中之一或多者可被實施為在行動裝置102之一或多個處理器上執行的軟體指令。 Each of the modules 202-210 can be implemented in software, hardware, or any combination thereof. In various aspects, the modules 202-210 can be implemented within components of the operating system (eg, in a core, in a nuclear space, in a user space, in a separate program or application, in a particular hardware buffer or processor). Medium, or any combination thereof. In one aspect, one or more of modules 202-210 can be implemented as software instructions that are executed on one or more processors of mobile device 102.

行為觀測器模組202可經組態以在行動裝置之各種層級/模組處用工具配備或協調應用程式設計介面(API),且在各種層級/模組下經由儀測API監視/觀測行動裝置操作及事件(例如,系統事件、狀態變化等),收集關於所觀測操作/事件的資訊,智慧型地對所收集之資訊濾波,基於經濾波資訊產生一或多個觀測結果,且將所產生觀測結果儲存於記憶體中(例如,儲存於對數檔案中等),及/或將所產生之觀測結果發送至行為分析器模組204(例如,經由記憶體寫入、函數調用等)。 The behavioral observer module 202 can be configured to tool or coordinate application programming interfaces (APIs) at various levels/modules of the mobile device and to monitor/observe actions via instrumentation APIs at various levels/modules Device operations and events (eg, system events, state changes, etc.), collecting information about observed operations/events, intelligently filtering the collected information, generating one or more observations based on the filtered information, and The resulting observations are stored in memory (eg, stored in a log file), and/or the resulting observations are sent to the behavior analyzer module 204 (eg, via memory writes, function calls, etc.).

行為觀測器模組202可藉由收集應用程式框架或執行時間程式庫、系統呼叫API、檔案系統及網路連接子系統操作、裝置(包括感測器裝置)狀態變化,及其他類似事件中的關於程式庫應用程式設計介面(API)呼叫之資訊,來監視/觀測行動裝置操作及事件。行為觀測器模組202亦可監視檔案系統活動性,其可包括搜尋檔名、檔案存取之類別(個人資訊或正常資料檔案),產生或刪除檔案(例如,類型exe、zip等),檔案讀取/寫入/尋找操作,改變檔案權限等。 The behavior observer module 202 can be used to collect application frameworks or execution time libraries, system call APIs, file system and network connection subsystem operations, device (including sensor device) state changes, and other similar events. Information about library application programming interface (API) calls to monitor/observe mobile device operations and events. The behavior observer module 202 can also monitor file system activity, which can include searching for file names, file access categories (personal information or normal data files), generating or deleting files (eg, type exe, zip, etc.), files Read/write/find operations, change file permissions, etc.

行為觀測器模組202亦可監視資料網路活動性,其可包括連接類型、協定、埠數目、連接有裝置之伺服器/用戶端,連接之數目、通信之容量或頻率等。行為觀測器模組202可監視電話網路活動性,其可包括監視所發出、接收或截獲之呼叫或訊息(例如,SMS等)之類型 及數目(例如,經置放之特級呼叫的數目)。 The behavior observer module 202 can also monitor data network activity, which can include connection type, protocol, number of ports, server/client connected to the device, number of connections, capacity or frequency of communication, and the like. The behavior observer module 202 can monitor telephone network activity, which can include monitoring the type of call or message (eg, SMS, etc.) that is sent, received, or intercepted. And the number (for example, the number of premium calls placed).

行為觀測器模組202亦可監視系統資源使用,其可包括監視叉之數目、記憶體存取操作、打開之檔案之數目等。行為觀測器模組202可監視行動裝置之狀態,其可包括監視各種因素,諸如顯示器為開啟抑或關閉的、裝置為鎖定抑或解鎖的、剩餘電池之量、攝影機之狀態等。行為觀測器模組202亦可藉由(例如)監視對關鍵服務之意圖(瀏覽器、合同提供者等)、程序間通信之程度、彈出視窗等來監視程序間通信(IPC)。 The behavior observer module 202 can also monitor system resource usage, which can include the number of monitoring forks, memory access operations, the number of open files, and the like. The behavioral observer module 202 can monitor the status of the mobile device, which can include monitoring various factors, such as whether the display is on or off, the device is locked or unlocked, the amount of remaining battery, the state of the camera, and the like. The behavior observer module 202 can also monitor inter-program communication (IPC) by, for example, monitoring the intent of critical services (browser, contract provider, etc.), the degree of inter-program communication, pop-up windows, and the like.

行為觀測器模組202亦可監視/觀測一或多個硬體組件之驅動器統計及/或狀況,其可包括攝影機、感測器、電子顯示器、WiFi通信組件、資料控制器、記憶體控制器、系統控制器、存取埠、計時器、周邊裝置、無線通信組件、外部記憶體晶片、電壓調節器、振盪器、相位鎖定環路、周邊裝置橋接器及用以支援在行動計算裝置上執行之處理器及用戶端的其他類似組件。 The behavioral observer module 202 can also monitor/observe driver statistics and/or conditions of one or more hardware components, which can include cameras, sensors, electronic displays, WiFi communication components, data controllers, memory controllers System controllers, access ports, timers, peripherals, wireless communication components, external memory chips, voltage regulators, oscillators, phase locked loops, peripheral bridges, and to support execution on mobile computing devices The processor and other similar components of the client.

行為觀測器模組202亦可監視/觀測指示行動計算裝置及/或行動裝置子系統之狀態或狀況的一或多個硬體計數器。硬體計數器可包括處理器/核心之專用暫存器,其經組態以儲存發生於行動計算裝置中之硬體相關活動或事件之計數或狀態。 The behavioral observer module 202 can also monitor/observe one or more hardware counters that indicate the status or condition of the mobile computing device and/or the mobile device subsystem. The hardware counter can include a dedicated register of processors/cores configured to store a count or status of hardware related activities or events occurring in the mobile computing device.

行為觀測器模組202亦可監視/觀測軟體應用程式之動作或操作,自應用程式下載伺服器(例如,Apple®應用程式儲存伺服器)下載之軟體、藉由軟體應用程式使用之行動裝置資訊、呼叫資訊、本文訊息傳遞資訊(例如,SendSMS、BlockSMS、ReadSMS等)、媒體訊息傳遞資訊(例如,ReceiveMMS)、使用者帳戶資訊、位置資訊、攝影機資訊、加速計資訊、瀏覽器資訊、基於瀏覽器之通信的內容、基於語音之通信的內容、短程無線電通信(例如,藍芽、WiFi等)、基於本文之通信的內容、經記錄之音訊檔案的內容、電話簿或連絡人資訊、連絡 人清單等。 The behavior observer module 202 can also monitor/observe the action or operation of the software application, download the software from the application download server (for example, the Apple® application storage server), and use the mobile device information used by the software application. , call information, message delivery information (eg, SendSMS, BlockSMS, ReadSMS, etc.), media messaging information (eg, ReceiveMMS), user account information, location information, camera information, accelerometer information, browser information, browsing-based Content of the communication, content of voice-based communication, short-range radio communication (eg, Bluetooth, WiFi, etc.), content based on communication in this document, content of recorded audio files, phone book or contact information, contact List of people, etc.

行為觀測器模組202可監視/觀測行動裝置之傳輸或通信,其包括以下項:包括語音郵件之通信(VoiceMailComm)、包括裝置識別符之通信(DeviceIDComm)、包括使用者帳戶資訊之通信(UserAccountComm)、包括行事曆資訊之通信(CalendarComm)、包括位置資訊之通信LocationComm)、包括經記錄之音訊資訊的通信(RecordAudioComm)、包括加速計資訊之通信(AccelerometerComm)等等。 The behavior observer module 202 can monitor/observe the transmission or communication of the mobile device, and includes the following items: communication including voicemail (VoiceMailComm), communication including device identifier (DeviceIDComm), communication including user account information (UserAccountComm) ), including communication of calendar information (CalendarComm), communication including location information (LocationComm), communication including recorded audio information (RecordAudioComm), communication including accelerometer information (AccelerometerComm) and so on.

行為觀測器模組202可監視/觀測羅盤資訊之使用及對羅盤資訊之更新/變化、行動裝置設定、電池壽命、迴轉儀資訊、壓力感測器、磁體感測器、螢幕活動性等等。行為觀測器模組202可監視/觀測經傳達至軟體應用程式且自該軟體應用程式傳達之通知(AppNotifications)、應用程式更新等。行為觀測器模組202可監視/觀測關於請求第二軟體應用程式之下載及/或安裝的第一軟體應用程式之條件或事件。行為觀測器模組202可監視/觀測關於使用者驗證之條件或事件,諸如密碼之輸入項等。 The behavioral observer module 202 can monitor/observe the use of compass information and updates/changes to compass information, mobile device settings, battery life, gyroscope information, pressure sensors, magnet sensors, screen activity, and the like. The behavior observer module 202 can monitor/observe notifications (AppNotifications) communicated to the software application and communicated from the software application, application updates, and the like. The behavior observer module 202 can monitor/observe conditions or events regarding the first software application requesting download and/or installation of the second software application. The behavior observer module 202 can monitor/observe conditions or events regarding user authentication, such as password entries.

行為觀測器模組202亦可在行動裝置之多個層級(包括應用程式層級、無線電層級及感測器層級)下監視/觀測條件或事件。應用程式層級觀測可包括:經由臉部識別軟體觀測使用者、觀測社交串流、觀測藉由使用者鍵入之筆記、觀測關於PassBook/Google Wallet/Paypal之使用的事件,等等。應用程式層級觀測亦可包括觀測與虛擬私用網路(VPN)之使用相關的事件及關於以下項的事件:同步化、語音搜尋、語音控制(例如,藉由說出一個字來鎖定/解鎖電話)、語言轉譯器、用於計算之資料的卸載、視訊串流、無使用者活動之攝影機使用、無使用者活動之麥克風使用,等等。 The behavioral observer module 202 can also monitor/observe conditions or events at multiple levels of the mobile device, including application level, radio level, and sensor level. Application level observations may include: observing users via facial recognition software, observing social streams, observing notes typed by the user, observing events regarding the use of PassBook/Google Wallet/Paypal, and the like. Application level observations may also include observing events related to the use of virtual private networks (VPNs) and events related to synchronization, voice search, voice control (eg, by speaking a word to lock/unlock) Telephone), language translator, offloading of data for calculation, video streaming, camera use without user activity, microphone use without user activity, etc.

無線電層級觀測可包括:判定以下項中之任一者或更多者之現 況、存在或量:在建立無線電通信鏈路或傳輸資訊之前的使用者與行動裝置之交互,雙重/多個用戶識別模組(SIM)卡、網際網路無線電、行動電話繫鏈、卸載資料以供計算、裝置狀態通信、用作遊戲控制器或本籍控制器、交通工具通信、行動裝置同步化,等等。無線電層級觀測亦可包括:監視無線電(WiFi、WiMax、藍芽等)用於定位之使用、同級間(p2p)通信、同步化、交通工具間通信,及/或機器間(m2m)。無線電層級觀測可進一步包括監視網路訊務使用、統計或設定檔。 Radio level observations may include determining the presence of any one or more of the following: Condition, presence or quantity: interaction between the user and the mobile device before establishing the radio communication link or transmitting information, dual/multiple subscriber identity module (SIM) cards, internet radio, mobile phone tether, unloading data For computing, device state communication, use as a game controller or home controller, vehicle communication, mobile device synchronization, and the like. Radio level observations may also include: monitoring radio (WiFi, WiMax, Bluetooth, etc.) for positioning use, inter-peer (p2p) communication, synchronization, inter-vehicle communication, and/or inter-machine (m2m). Radio level observations may further include monitoring network traffic usage, statistics, or profiles.

感測器層級觀測可包括:監視磁體感測器或其他感測器以判定行動裝置之使用及/或外部環境。舉例而言,行動裝置處理器可經組態以判定電話係位於皮套中(例如,經由經組態以感測皮套內之磁體的磁體感測器)抑或位於使用者之袋裝中(例如,經由藉由攝影機或光感測器偵測之光的量)。偵測行動裝置位於皮套中可與識別可疑行為有關,(例如)此係由於在行動裝置裝於皮套中時發生的與藉由使用者有效使用相關的活動及功能(例如,拍照或視訊、發送訊息、進行語音呼叫、記錄聲音等)可能為在裝置上執行之違法程序(例如,追蹤或探查使用者)的標識。 Sensor level observations may include monitoring a magnet sensor or other sensor to determine the use of the mobile device and/or the external environment. For example, the mobile device processor can be configured to determine that the phone system is in the holster (eg, via a magnet sensor configured to sense a magnet within the holster) or in a user's pocket ( For example, the amount of light detected by a camera or light sensor). The detection of the mobile device in the holster can be related to the identification of suspicious behavior, for example, due to activities and functions associated with the effective use of the user when the mobile device is installed in the holster (eg, taking a picture or video) , sending a message, making a voice call, recording a sound, etc.) may be an identification of an illegal procedure (eg, tracking or probing a user) performed on the device.

與使用或外部環境相關的感測器層級觀測之其他實例可包括:偵測近場通信(NFC)、自信用卡掃描儀、條碼掃描儀,或行動標籤讀取器收集資訊;偵測通用串列匯流排(USB)充電源之現況;偵測鍵盤或輔助裝置已耦接至行動裝置;偵測行動裝置已耦接至計算裝置(例如,經由USB等);判定LED、閃光燈、手電筒或光源是否已被修改或停用(例如,惡意地停用緊急發信應用程式等);偵測揚聲器或麥克風已打開或供以動力;偵測充電或供電事件;偵測行動裝置正被用作遊戲控制器等等。感測器層級觀測亦可包括:自醫療或保健感測器或自掃描使用者之主體收集資訊;自插入至USB/音訊插口之外部感測 器收集資訊;自觸感或觸覺感測器收集資訊(例如,經由振動器介面等);收集關於行動裝置之熱狀態的資訊等等。 Other examples of sensor level observations associated with the use or external environment may include: detecting near field communication (NFC), self-credit card scanners, barcode scanners, or mobile tag readers to collect information; detecting universal serials Current status of the bus (USB) charging source; the detection keyboard or auxiliary device is coupled to the mobile device; the detecting mobile device is coupled to the computing device (eg, via USB, etc.); determining whether the LED, flash, flashlight or light source is Has been modified or disabled (for example, maliciously disables the emergency messaging application, etc.); detects that the speaker or microphone is turned on or powered; detects charging or power events; the detection mobile device is being used as a game control And so on. Sensor level observations may also include: collecting information from the body of a medical or health sensor or self-scanning user; external sensing from a plug-in to a USB/audio jack Collecting information; collecting information from tactile or tactile sensors (eg, via a vibrator interface, etc.); collecting information about the thermal state of the mobile device, and the like.

為將所監視之因素的數目減少至可管理層級,在一態樣中,行為觀測器模組202可藉由監視/觀測作為可促成行動裝置之降級的所有因素之小子集的行為或因素之初始集合來執行粗略觀測。在一態樣中,行為觀測器模組202可自網路伺服器116及/或雲端服務或網路118中之組件接收行為及/或因素之初始集合。在一態樣中,行為/因素之初始集合可在自網路伺服器116或雲端服務/網路118接收之資料/行為模型中予以指定。在一態樣中,行為/因素之初始集合可在經減少之特徵模型(RFM)中予以指定。 To reduce the number of monitored factors to the manageable level, in one aspect, the behavioral observer module 202 can be monitored/observed as a small subset of the behavior or factors that can contribute to the degradation of the mobile device. The initial set is used to perform rough observations. In one aspect, the behavior observer module 202 can receive an initial set of behaviors and/or factors from the network server 116 and/or components in the cloud service or network 118. In one aspect, the initial set of behaviors/factors can be specified in a data/behavior model received from web server 116 or cloud service/network 118. In one aspect, the initial set of behaviors/factors can be specified in a reduced feature model (RFM).

行為分析器模組204及/或分類器模組208可自行為觀測器模組202接收觀測結果,將所接收資訊(亦即,觀測結果)與自外部內容資訊模組206接收至內容資訊進行比較,且識別與促成(或很可能促成)裝置隨時間推移之降級的所接收觀測結果相關聯的子系統、程序及/或應用程式。 The behavior analyzer module 204 and/or the classifier module 208 can receive the observation result for the observer module 202, and receive the received information (that is, the observation result) and the content information from the external content information module 206. Comparing, and identifying subsystems, programs, and/or applications associated with the received observations that contributed to (or are likely to contribute to) degradation of the device over time.

在一態樣中,行為分析器模組204及/或分類器模組208可包括用於利用有限資訊集合(亦即,粗略觀測)來識別促成或很可能促成裝置隨時間推移之降級,或可以其他方式在裝置上造成問題的行為、程序或程式的智慧。舉例而言,行為分析器模組204可經組態以分析自各種模組(例如,行為觀測器模組202、外部內容資訊模組206等)收集之資訊(例如,呈觀測結果形式),學習行動裝置之正常操作行為,且基於比較之結果產生一或多個行為向量。行為分析器模組204可將所產生之行為向量發送至分類器模組208以供進一步分析。 In one aspect, the behavior analyzer module 204 and/or the classifier module 208 can include means for utilizing a limited set of information (ie, rough observations) to identify a degradation that is or is likely to contribute to the degradation of the device over time, or The wisdom of behaviors, programs, or programs that can cause problems on the device in other ways. For example, the behavior analyzer module 204 can be configured to analyze information collected from various modules (eg, the behavior observer module 202, the external content information module 206, etc.) (eg, in the form of observations), Learning the normal operational behavior of the mobile device and generating one or more behavior vectors based on the results of the comparison. The behavior analyzer module 204 can send the generated behavior vector to the classifier module 208 for further analysis.

分類器模組208可接收行為向量,且將其與一或多個行為模組進行比較,以判定特定行動裝置行為、軟體應用程式或程序為效能降級/惡意的、良性的抑或可疑的。 The classifier module 208 can receive the behavior vector and compare it to one or more behavioral modules to determine whether the particular mobile device behavior, software application, or program is performance degraded/malicious, benign, or suspicious.

當分類器模組208判定行為、軟體應用程式或程序係惡意或效能降級的時,分類器模組208可告知致動器模組210,該致動器模組可執行各種動作或操作以校正判定為惡意或效能降級之行動裝置行為及/或執行操作以復原、處理、隔離或以其他方式修復所識別問題。 When the classifier module 208 determines that the behavior, software application, or program is malicious or degraded, the classifier module 208 can inform the actuator module 210 that the various actions or operations can be performed to correct A mobile device behavior determined to be malicious or degraded and/or performed to recover, process, quarantine, or otherwise repair the identified problem.

當分類器模組208判定行為、軟體應用程式或程序係可疑的時,分類器模組208可告知行為觀測器模組202,該行為觀測器模組可調整其觀測之粒度(亦即,觀測行動裝置行為時的細節層級)及/或改變基於自分類器模組208接收之資訊所觀測的行為(例如,即時分析操作之結果),產生或收集新的或額外的行為資訊,且將新/額外資訊發送至行為分析器模組204及/或分類器模組208,以供進一步分析/分類。行為觀測器模組202與分類器模組208之間的此等回饋通信使得行動裝置102能夠以遞歸方式增大觀測之粒度(亦即,進行更精細或更詳細觀測)或改變所觀測之特徵/行為,直至識別可疑的或效能降級行動裝置行為之源為止,直至達到處理或電池消耗臨限為止,或直至行動裝置處理器判定無法以觀測粒度之進一步增大來識別可疑的或效能降級行動裝置行為之源為止。此等回饋通信亦使得行動裝置102能夠在不消耗行動裝置之過度量之處理資源、記憶體資源或能量資源的情況下調整或修改本端位於行動裝置中之資料/行為模型。 When the classifier module 208 determines that the behavior, software application, or program is suspicious, the classifier module 208 can notify the behavior observer module 202, which can adjust the granularity of its observations (ie, observations). Generate or collect new or additional behavioral information, and/or change the behavior observed based on the information received by the self-classifier module 208 (eg, the results of an immediate analysis operation) The additional information is sent to the behavior analyzer module 204 and/or the classifier module 208 for further analysis/classification. Such feedback communication between the behavioral observer module 202 and the classifier module 208 enables the mobile device 102 to recursively increase the granularity of the observations (ie, to make finer or more detailed observations) or to change the observed features. /behavior until the source of suspicious or degraded mobile device behavior is identified until the processing or battery consumption threshold is reached, or until the mobile device processor determines that the suspicious or performance degradation action cannot be identified with further increase in the observed granularity Until the source of device behavior. These feedback communications also enable the mobile device 102 to adjust or modify the data/behavior model of the local device in the mobile device without consuming excessive amounts of processing resources, memory resources, or energy resources of the mobile device.

在一態樣中,行為觀測器模組202及行為分析器模組204可個別地或集體地提供對計算系統之行為之即時行為分析,以自有限且粗略的觀測識別可疑行為,動態地判定將更詳細觀測之行為,且動態地判定觀測所需之細節層級。以此方式,行為觀測器模組202使得行動裝置102能夠在無需裝置上之大量處理器、記憶體或電池資源的情況下有效地識別問題且防止其出現在行動裝置上。 In one aspect, the behavioral observer module 202 and the behavioral analyzer module 204 can provide an immediate behavioral analysis of the behavior of the computing system, individually or collectively, to identify suspicious behavior from limited and coarse observations, and dynamically determine The behavior of the observations will be observed in more detail and the level of detail required for the observations will be determined dynamically. In this manner, the behavioral observer module 202 enables the mobile device 102 to effectively identify problems and prevent them from appearing on the mobile device without the need for a large amount of processor, memory or battery resources on the device.

圖3及圖4說明包括網路伺服器116之態樣系統300中的實例組件及資訊流,該網路伺服器經組態以結合雲端服務/網路118工作,以在不 消耗行動裝置之過度量之處理資源、記憶體資源或能量資源的情況下智慧型地且有效地識別行動裝置102上的主動惡意或經不充分寫入之軟體應用程式及/或可疑的或效能降級的行動裝置行為。在圖3中所說明之實例中,網路伺服器116包括雲端模組302、模型產生器304模組及訓練資料模組306。行動裝置102包括行為觀測器模組202、分類器模組208及致動器模組210。在一態樣中,分類器模組208可包括於(圖2中所說明之)行為分析器模組204中或作為其部分。在一態樣中,模型產生器304模組可為即時線上分類器。 3 and 4 illustrate example components and information flows in an aspect system 300 including a network server 116 that is configured to work in conjunction with a cloud service/network 118 to Intelligently and efficiently identifying active malicious or underwritten software applications and/or suspicious or performance on the mobile device 102 in the event that an excessive amount of processing resources, memory resources, or energy resources of the mobile device are consumed Degraded mobile device behavior. In the example illustrated in FIG. 3, the network server 116 includes a cloud module 302, a model generator 304 module, and a training data module 306. The mobile device 102 includes a behavior observer module 202, a classifier module 208, and an actuator module 210. In one aspect, the classifier module 208 can be included in or as part of the behavior analyzer module 204 (illustrated in FIG. 2). In one aspect, the model generator 304 module can be a live line classifier.

雲端模組302可經組態以自雲端服務/網路118接收大量資訊,且產生包括可促成行動裝置隨時間推移之降級的所有或大部分特徵、資料點及/或因素的完全或穩健的資料/行為模型。 The cloud module 302 can be configured to receive a large amount of information from the cloud service/network 118 and generate complete or robust information including all or most of the features, data points and/or factors that can cause degradation of the mobile device over time. Data/behavior model.

模型產生器304模組可經組態以基於雲端模組302中所產生之完全模型產生精簡資料/行為模型。在一態樣中,產生精簡資料/行為模型可產生一或多個經減少之特徵模型(RFM),其包括藉由雲端模組302產生之完全模型中所包括的特徵及資料點之子集。在一態樣中,模型產生器304可產生包括初始特徵集合(例如,初始的經減少之特徵模型)之精簡資料/行為模型,該初始特徵集合包括經判定具有使得分類器模組208能夠決定性地判定特定行動裝置行為係良性抑或惡意/效能降級之最高機率的資訊。模型產生器304可將所產生之精簡模型發送至行為觀測器模組202。 The model generator 304 module can be configured to generate a reduced data/behavior model based on the full model generated in the cloud module 302. In one aspect, generating a reduced data/behavior model can result in one or more reduced feature models (RFMs) including a subset of features and data points included in the full model generated by the cloud module 302. In one aspect, model generator 304 can generate a reduced data/behavior model that includes an initial set of features (eg, an initial reduced feature model), the initial set of features including being determined to enable classifier module 208 to be decisive Information on the highest probability that a particular mobile device behavior is benign or malicious/performance degraded. The model generator 304 can send the generated reduced model to the behavior observer module 202.

行為觀測器模組202可基於所接收模型監視/觀測行動裝置行為,產生觀測結果,且將觀測結果發送至分類器模組208。分類器模組208可執行即時分析操作,其可包括將資料/行為模型應用於藉由行為觀測器模組202收集之行為資訊,以判定行動裝置行為係良性的、可疑的抑或惡意/效能降級的。當分類器模組208並不具有充足資訊來分類或決定性地判定行為係良性的或惡意的時,分類器模組208可判定行 動裝置行為係可疑的。 The behavior observer module 202 can monitor/observe the behavior of the mobile device based on the received model, generate an observation, and send the observation to the classifier module 208. The classifier module 208 can perform an immediate analysis operation, which can include applying a data/behavior model to the behavioral information collected by the behavioral observer module 202 to determine whether the mobile device behavior is benign, suspicious, or malicious/performance degraded. of. When the classifier module 208 does not have sufficient information to classify or decisively determine whether the behavior is benign or malicious, the classifier module 208 can determine the row. The behavior of the device is suspicious.

當分類器模組208判定裝置行為係可疑的時,分類器模組208可經組態以將其即時分析操作之結果傳達至行為觀測器模組202。行為觀測器模組202可調整其觀測之粒度(亦即,觀測行動裝置行為時的細節層級)及/或改變基於自分類器模組208接收之資訊觀測的行為(例如,基於即時分析操作之結果),產生或收集新的或額外的行為資訊,且將新/額外資訊發送至分類器模組以供進一步分析/分類(例如,呈新模型形式)。以此方式,行動裝置102可以遞歸方式增大觀測之粒度(亦即,進行更精細或更詳細的觀測)或改變所觀測之特徵/行為,直至識別可疑或效能降級行動裝置行為之源為止,直至達到處理或電池消耗量臨限為止,或直至行動裝置處理器判定無法以觀測粒度之進一步增大來識別可疑或效能降級行動裝置行為之源為止。 When the classifier module 208 determines that the device behavior is suspicious, the classifier module 208 can be configured to communicate the results of its immediate analysis operations to the behavior observer module 202. The behavioral observer module 202 can adjust the granularity of its observations (ie, the level of detail when observing the behavior of the mobile device) and/or change the behavior of the information observations received based on the self-classifier module 208 (eg, based on an immediate analysis operation) As a result, new or additional behavioral information is generated or collected, and new/extra information is sent to the classifier module for further analysis/classification (eg, in the form of a new model). In this manner, the mobile device 102 can recursively increase the granularity of the observations (ie, to make finer or more detailed observations) or change the observed features/behaviors until the source of suspicious or performance-degrading mobile device behavior is identified. Until the processing or battery consumption threshold is reached, or until the mobile device processor determines that the source of suspicious or performance degraded mobile device behavior cannot be identified with a further increase in the observed granularity.

行動裝置102可將其與模型之應用相關聯的操作及/或成功率的結果發送至網路伺服器116。網路伺服器116可基於結果/成功率(例如,經由訓練資料模組306)產生訓練資料以供藉由模型產生器304使用。模型產生器可基於訓練資料產生經更新模型,且將經更新模型發送至行動裝置102。 The mobile device 102 can send the results of its operations and/or success rates associated with the application of the model to the network server 116. Network server 116 may generate training material for use by model generator 304 based on the result/success rate (e.g., via training data module 306). The model generator may generate an updated model based on the training data and send the updated model to the mobile device 102.

在圖4中所說明之實例中,行動裝置102與網路伺服器116之間不存在回饋通信。實情為,行動裝置102包括精簡模型產生器模組402,其經組態以基於產生於完全模型產生器404中且自網路伺服器116接收的完全或更穩健模型,產生集中/目標性行為模型或分類器。亦即,網路伺服器116可經組態以將完全分類器模型發送至行動裝置102,且行動裝置102可經組態以基於完全分類器模型產生精簡分類器模型。此可歸因於在分類器模型中使用(或包括)強化單層決策樹,在不消耗行動裝置中的過度量之處理資源或電池資源的情況下實現。亦即,藉由在網路伺服器116中產生包括強化單層決策樹之分類器模型,且將 此等分類器/模型發送至行動裝置102,各種態樣允許精簡模型產生器模組402藉由在不存取訓練資料或與網路伺服器116或雲端網路/伺服器118進一步通信的情況下剔除包括於完全分類器模型中之若干強化單層決策樹,快速且有效地在行動裝置102中產生精簡(或更集中)的分類器模型。此顯著降低行動裝置對網路通信之依賴性,且進一步改良行動裝置102之效能及功率消耗特性。 In the example illustrated in FIG. 4, there is no feedback communication between the mobile device 102 and the network server 116. Rather, the mobile device 102 includes a reduced model generator module 402 that is configured to generate a centralized/targeted behavioral model based on a full or more robust model generated in the full model generator 404 and received from the web server 116. Or classifier. That is, the web server 116 can be configured to send the full classifier model to the mobile device 102, and the mobile device 102 can be configured to generate a reduced classifier model based on the full classifier model. This can be attributed to the use (or including) of the enhanced single layer decision tree in the classifier model, without consuming excessive amounts of processing resources or battery resources in the mobile device. That is, by generating a classifier model including an enhanced single layer decision tree in the network server 116, and These classifiers/models are sent to the mobile device 102, which allows the reduced model generator module 402 to communicate further by not accessing the training material or communicating with the web server 116 or the cloud network/server 118. A number of enhanced single layer decision trees included in the full classifier model are culled, resulting in a streamlined (or more concentrated) classifier model in the mobile device 102 quickly and efficiently. This significantly reduces the dependence of the mobile device on network communications and further improves the performance and power consumption characteristics of the mobile device 102.

圖5A說明在行動裝置中產生精簡或集中分類器/行為模型之態樣方法500(例如,產生於模型產生器模組402中之模型,等)。方法500可藉由行動裝置中之處理核心執行。 FIG. 5A illustrates an aspect method 500 (eg, a model generated in model generator module 402, etc.) that produces a reduced or centralized classifier/behavior model in a mobile device. Method 500 can be performed by a processing core in a mobile device.

在方法500之區塊502中,處理核心可接收完全分類器模型(其為有限狀態機、強化單層決策樹清單,或其他類似資訊結構或包括有限狀態機、強化單層決策樹清單,或其他類似資訊結構)。在一態樣中,完全分類器模型包括有限狀態機,該有限狀態機包括適合於表達複數個強化單層決策樹之資訊,及/或包括適合於藉由行動裝置轉換成複數個強化單層決策樹之資訊。在一態樣中,有限狀態機可為(或可包括)經排序或優先排序的強化單層決策樹之清單。強化單層決策樹中之每一者可包括測試條件及加權值。 In block 502 of method 500, the processing core may receive a full classifier model (which is a finite state machine, an enhanced single layer decision tree list, or other similar information structure or includes a finite state machine, a reinforced single layer decision tree list, or Other similar information structures). In one aspect, the full classifier model includes a finite state machine including information suitable for expressing a plurality of enhanced single layer decision trees, and/or including suitable for converting to a plurality of enhanced single layers by the mobile device Decision tree information. In one aspect, the finite state machine can be (or can include) a list of enhanced single-level decision trees that are ordered or prioritized. Each of the enhanced single layer decision trees may include test conditions and weighting values.

如上文所論述,強化單層決策樹為恰好具有一個節點(且因此一個測試問題或測試條件)及一加權值的一個層級決策樹,且因此較適合用於資料/行為之二進位分類。此意謂將特徵向量或行為向量應用於強化單層決策樹產生二進位回答(例如,是或否)。舉例而言,若藉由強化單層決策樹測試之問題/條件係「SMS傳輸之頻率小於每分鐘x個」,則將值「3」應用於強化單層決策樹將產生「是」回答(對於「小於3個」SMS傳輸)或「否」回答(「3個或更多個」SMS傳輸)。 As discussed above, the enhanced single-layer decision tree is a hierarchical decision tree that has exactly one node (and therefore a test problem or test condition) and a weighted value, and is therefore more suitable for data/behavior binary classification. This means applying a feature vector or behavior vector to the enhanced single-level decision tree to generate a binary answer (eg, yes or no). For example, if the problem/condition of the single-layer decision tree test is "the frequency of SMS transmission is less than x per minute", applying the value "3" to the enhanced single-layer decision tree will produce a "yes" answer ( Answer for "less than 3" SMS transmissions or "No" ("3 or more" SMS transmissions).

返回至圖5A,在方法500之區塊504中,處理核心可判定應進行評估以在不消耗行動裝置之過度量之處理資源、記憶體資源或能量資 源的情況下將行動裝置行為精確分類為惡意或良性之唯一測試條件之數目。此可包括:判定行動裝置中可用的處理資源、記憶體資源及/或能量資源的量、行動裝置中的測試條件所需之處理資源、記憶體資源或能量資源的量;判定與有待在行動裝置中藉由測試條件而分析或評估之行為或條件相關聯的優先級及/或複雜性;及選擇/判定唯一測試條件之數目,以便衝擊行動裝置中可用的處理資源、記憶體資源或能量資源之消耗、有待自測試條件而達成之行為分類的精確性,與藉由條件測試之行為的重要性或優先級之間的平衡或取捨。 Returning to FIG. 5A, in block 504 of method 500, the processing core may determine that processing resources, memory resources, or energy resources should be evaluated to not consume excessive amounts of mobile devices. The number of unique test conditions that accurately classify the behavior of the mobile device as malicious or benign in the case of the source. This may include determining the amount of processing resources available in the mobile device, the amount of memory resources and/or energy resources, the processing resources required for the test conditions in the mobile device, the amount of memory resources or energy resources; determining and pending action The priority and/or complexity associated with the behavior or condition analyzed or evaluated by the test conditions in the device; and the selection/determination of the number of unique test conditions to impact available processing resources, memory resources or energy in the mobile device The consumption of resources, the accuracy of the classification of behaviors to be achieved from the conditions of the test, and the balance or trade-off between the importance or priority of the behavior by conditional testing.

在區塊506中,處理核心可自開始處遍歷強化單層決策樹清單,以用經判定數目個唯一測試條件填充選定測試條件之清單。在一態樣中,處理核心亦可判定選定測試條件中之每一者的絕對或相對優先值,且以與其在選定測試條件之清單中之對應測試條件關聯之方式儲存絕對或相對優先值。 In block 506, the processing core may traverse the enhanced single layer decision tree list from the beginning to populate the list of selected test conditions with the determined number of unique test conditions. In one aspect, the processing core may also determine an absolute or relative priority value for each of the selected test conditions and store the absolute or relative priority values in a manner associated with their corresponding test conditions in the list of selected test conditions.

在區塊508中,處理核心可產生精簡分類器模型,其包括經包括於完全分類器模型中的測試選定測試條件中之一者的所有強化單層決策樹。在一態樣中,處理核心可產生按重要性或優先值次序包括或表達強化單層決策樹的精簡分類器模型。 In block 508, the processing core may generate a reduced classifier model that includes all of the enhanced single layer decision trees that are included in one of the test selected test conditions included in the full classifier model. In one aspect, the processing core may generate a reduced classifier model that includes or expresses an enhanced single layer decision tree in order of importance or priority value.

在可選區塊510中,可增大唯一測試條件之數目,以便藉由重複針對較大數目測試條件遍歷強化單層決策樹清單(在區塊506中)及產生另一精簡分類器模型(在區塊508中)之操作而產生另一更穩健(亦即,不太精簡)的精簡分類器模型。可重複此等操作以產生精簡分類器模型家族。 In optional block 510, the number of unique test conditions can be increased to traverse the enhanced single layer decision tree list for a larger number of test conditions (in block 506) and to generate another reduced classifier model (in The operation of block 508 results in another, more robust (i.e., less compact) reduced classifier model. These operations can be repeated to produce a family of reduced classifier models.

圖5B說明在行動裝置中產生資料模型之另一態樣方法511。方法511可由行動裝置中之處理核心執行。在方法511之區塊512中,處理核心可接收包括有限狀態機之完全分類器模型。有限狀態機可為包括適合於轉換成複數個強化單層決策樹之資訊的資訊結構。在區塊514 中,處理核心可將包括於完全分類器模型中之有限狀態機轉換成包括測試條件及加權值之強化單層決策樹。 Figure 5B illustrates another aspect of the method 511 of generating a data model in a mobile device. Method 511 can be performed by a processing core in a mobile device. In block 512 of method 511, the processing core can receive a full classifier model including a finite state machine. The finite state machine can be an information structure that includes information suitable for conversion into a plurality of enhanced single layer decision trees. At block 514 The processing core may convert the finite state machine included in the full classifier model into an enhanced single layer decision tree including test conditions and weighting values.

在一態樣中,處理核心亦可計算或判定自區塊512中之有限狀態機產生的強化單層決策樹中之每一者的優先值。處理核心可判定強化單層決策樹之優先級,以便平衡行動裝置之處理資源、記憶體資源或能量資源之消耗、行為分類之精確性等之間的取捨。處理核心亦可基於強化單層決策樹之相關聯加權值、測試條件之相對重要性或經預測重要性等來判定強化單層決策樹之優先級以精確地為行為分類。 In one aspect, the processing core can also calculate or determine the priority value of each of the enhanced single-layer decision trees generated by the finite state machine in block 512. The processing core can determine the priority of the enhanced single-layer decision tree in order to balance the processing resources of the mobile device, the consumption of memory resources or energy resources, the accuracy of the behavior classification, and the like. The processing core may also determine the priority of the enhanced single-layer decision tree to accurately classify the behavior based on the associated weighting values of the enhanced single-layer decision tree, the relative importance of the test conditions, or the predicted importance.

亦在區塊512中,處理核心可產生第一清單(或其他資訊結構),其根據自有限狀態機產生之強化單層決策樹的優先級及/或其重要性次序,包括、引用、識別及/或組織該等強化單層決策樹。舉例而言,處理核心可產生作為經排序清單之第一清單,其包括作為第一項的具有最高優先級之單層樹,繼之以具有第二最高優先值之單層樹等。此重要性之次序亦可考慮到自雲端語料庫聚集之資訊,以及特定於經執行剔除演算法之裝置的資訊。 Also in block 512, the processing core may generate a first manifest (or other information structure) that includes, references, and identifies the priority and/or importance order of the enhanced single-level decision tree generated from the finite state machine. And/or organize these enhanced single-layer decision trees. For example, the processing core may generate a first list as an ordered list that includes the single-level tree with the highest priority as the first item, followed by a single-layer tree with the second highest priority value, and the like. This order of importance can also take into account information gathered from the cloud corpus and information specific to the device performing the culling algorithm.

在區塊516中,處理核心可計算或判定在應用精簡分類器模型時應進行評估的唯一測試條件之數目(亦即,可在強化單層決策樹中進行測試的行動裝置狀態、特徵、行為或條件)。計算或判定唯一測試條件之此數目可能涉及衝擊應用模型所需的行動裝置之處理資源、記憶體資源或能量資源之消耗與精簡分類器模型有待達成的行為分類之精確性之間的平衡或取捨。此判定可包括判定行動裝置中可用的處理資源、記憶體資源及/或能量資源的量,判定與有待分析之行為相關聯的優先級及/或複雜性,及根據行為之優先級及/或複雜性平衡可用資源。 In block 516, the processing core may calculate or determine the number of unique test conditions that should be evaluated when applying the reduced classifier model (ie, the state, characteristics, behavior of the mobile device that can be tested in the enhanced single layer decision tree) Or condition). Calculating or determining the number of unique test conditions may involve a balance or trade-off between the processing resources of the mobile device required to impact the application model, the consumption of memory resources or energy resources, and the accuracy of the classification of the behavior to be achieved by the reduced classifier model. . The determining may include determining the amount of processing resources, memory resources, and/or energy resources available in the mobile device, determining a priority and/or complexity associated with the behavior to be analyzed, and prioritizing the behavior based on the behavior and/or Complexity balances available resources.

在區塊518中,處理核心可產生第二清單,該產生藉由依序遍歷強化單層決策樹之第一清單且將與每一經遍歷之強化單層決策樹相關 聯的測試條件值插入至第二清單中。處理核心可繼續遍歷第一清單且將值插入至第二清單中,直至第二清單之長度等於唯一測試條件的經判定數目為止,或直至第二清單包括所有經判定數目個唯一測試條件為止。 In block 518, the processing core may generate a second manifest that traverses the first list of enhanced single-level decision trees by sequential traversal and will be associated with each traversed enhanced single-level decision tree The combined test condition values are inserted into the second list. The processing core may continue to traverse the first list and insert values into the second list until the length of the second list is equal to the determined number of unique test conditions, or until the second list includes all of the determined number of unique test conditions.

在區塊520中,處理核心可基於包括於第一清單中之強化單層決策樹產生精簡分類器模型。在一態樣中,處理核心可產生精簡分類器模型以僅包括測試包括於第二清單(亦即,在區塊518中產生之測試條件清單)中之測試條件中之一者的強化單層決策樹。 In block 520, the processing core may generate a reduced classifier model based on the enhanced single layer decision tree included in the first listing. In one aspect, the processing core can generate a reduced classifier model to include only the enhanced single layer of one of the test conditions included in the second list (ie, the list of test conditions generated in block 518). Decision tree.

在可選區塊522中,可藉由在區塊518中針對較大數目測試條件遍歷強化單層決策樹清單及在區塊520中產生另一精簡分類器模型的操作,來增大唯一測試條件之數目,以便產生另一更穩健(亦即,不太精簡)的精簡分類器模型。可重複此等操作以產生精簡分類器模型家族。 In optional block 522, the unique test condition can be increased by traversing the enhanced single layer decision tree list for a larger number of test conditions in block 518 and generating another reduced classifier model in block 520. The number is to produce another, more robust (ie, less compact) reduced classifier model. These operations can be repeated to produce a family of reduced classifier models.

圖5C說明使用精簡分類器模型來分類行動裝置之行為的態樣方法524。方法524可藉由行動裝置中之處理核心執行。 FIG. 5C illustrates an aspect method 524 of classifying the behavior of a mobile device using a reduced classifier model. Method 524 can be performed by a processing core in a mobile device.

在方法524之區塊526中,處理核心可執行觀測以自在行動裝置系統之各種層級下儀測的各個組件收集行為資訊。在一態樣中,此可經由如上文參看圖2所述之行為觀測器模組202實現。在區塊528中,處理核心可產生特性化觀測結果、所收集之行為資訊及/或行動裝置行為的行為向量。亦在區塊528中,處理核心可使用自網路伺服器接收之完全分類器模型來產生具有改變之複雜性層級(或「精簡性」)的精簡分類器模型或精簡分類器模型家族。為實現此目的,處理核心可剔除包括於完全分類器模型中之強化單層決策樹家族,以產生包括經減少數目個強化單層決策樹及/或評估有限數目個測試條件的精簡分類器模型。 In block 526 of method 524, the processing core can perform observations to collect behavioral information from various components instrumented at various levels of the mobile device system. In one aspect, this can be accomplished via the behavioral observer module 202 as described above with reference to FIG. In block 528, the processing core may generate behavioral vectors that characterize observations, collected behavioral information, and/or behavior of the mobile device. Also in block 528, the processing core can use the full classifier model received from the web server to generate a reduced classifier model or a reduced classifier model family with varying levels of complexity (or "simplification"). To accomplish this, the processing core may eliminate the enhanced single-layer decision tree family included in the full classifier model to produce a reduced classifier model that includes a reduced number of enhanced single-layer decision trees and/or evaluates a limited number of test conditions. .

在區塊529中,處理核心可選擇精簡分類器模型家族中尚未藉由 行動裝置評估或應用之最精簡分類器(亦即,基於最少數目個不同行動裝置狀態、特徵、行為或條件)。在一態樣中,此可藉由處理核心在經排序分類器模型清單中選擇第一分類器模型來實現。 In block 529, the processing core may select a family of reduced classifier models that have not yet been utilized. The most streamlined classifier for mobile device evaluation or application (ie, based on a minimum number of different mobile device states, characteristics, behaviors, or conditions). In one aspect, this can be accomplished by the processing core selecting the first classifier model in the ordered classifier model list.

在區塊530中,處理核心可將所收集的行為資訊或行為向量應用於選定精簡分類器模型中之每一強化單層決策樹。因為強化單層決策樹係二進位決策,且精簡分類器模型係藉由選擇基於相同測試條件之許多二進位決策而產生,所以可在平行操作中執行將行為向量應用於精簡分類器模型中之強化單層決策樹的程序。替代地,可截短或濾波在區塊530中所應用之行為向量,以僅包括經包括於精簡分類器模型中的有限數目個測試條件參數,由此進一步減少應用模型時的計算工作。 In block 530, the processing core can apply the collected behavioral information or behavior vector to each of the enhanced single-level decision trees in the selected reduced classifier model. Because the enhanced single-layer decision tree is a binary decision, and the reduced classifier model is generated by selecting many binary decisions based on the same test conditions, the behavior vector can be applied to the reduced classifier model in parallel operations. A program that enforces a single-level decision tree. Alternatively, the behavior vector applied in block 530 can be truncated or filtered to include only a limited number of test condition parameters included in the reduced classifier model, thereby further reducing computational effort when applying the model.

在區塊532中,處理核心可計算或判定將所收集之行為資訊應用於分類器模型中之每一強化單層決策樹的結果的加權平均值。在區塊534中,處理核心可將所計算的加權平均值與臨限值進行比較。在判定區塊535中,處理核心可判定此比較之結果及/或藉由應用選定精簡分類器模型產生之結果是否係可疑的。舉例而言,處理核心可判定此等結果是否可用於將行為以高信賴度分類為惡意的或良性的,及是否不將行為處理為可疑的。 In block 532, the processing core may calculate or determine a weighted average of the results of applying the collected behavioral information to each of the enhanced single-level decision trees in the classifier model. In block 534, the processing core can compare the calculated weighted average to the threshold. In decision block 535, the processing core may determine whether the result of the comparison and/or the result produced by applying the selected reduced classifier model is suspicious. For example, the processing core can determine whether such results can be used to classify behaviors as malicious or benign with high confidence, and whether to treat the behavior as suspicious.

若處理核心判定結果係可疑的(例如,判定區塊535=「是」),則處理核心可重複區塊529至534中之操作,以選擇且應用評估更多裝置狀態、特徵、行為或條件,直至該行為以高信賴度被分類為惡意或良性為止的更堅固的(亦即不太精簡的)分類器模型。若處理核心諸如藉由判定行為可以高信賴度被分類為惡意或良性而判定結果並不可疑(例如,判定區塊535=「否」),則在區塊536中,處理核心可使用在區塊534中產生之比較的結果來將行動裝置之行為分類為良性的或可能惡意的。 If the processing core decision result is suspicious (e.g., decision block 535 = "Yes"), the processing core may repeat the operations in blocks 529 through 534 to select and apply to evaluate more device states, characteristics, behaviors, or conditions. Until the behavior is classified as a more robust (ie less concise) classifier model with high reliability as malicious or benign. If the processing core is classified as malicious or benign by high-reliability by determining the behavior, and the determination result is not suspicious (eg, decision block 535 = "No"), then in block 536, the processing core can be used in the region. The result of the comparison generated in block 534 is to classify the behavior of the mobile device as benign or potentially malicious.

在圖5D中所說明之替代性態樣方法540中,上文參考區塊518及520描述之操作可藉由以下操作實現:依序選擇尚未位於精簡分類器模型中之強化單層決策樹;識別取決於與選定單層決策樹相同的行動裝置狀態、特徵、行為或條件之所有其他強化單層決策樹(且因此,可基於一種判定結果而應用);將取決於相同行動裝置狀態、特徵、行為或條件之選定的及所有經識別的其他強化單層決策樹包括於精簡分類器模型中;及將該程序重複等於所判定的測試條件數目的次數。因為取決於與選定強化單層決策樹相同的測試條件之所有強化單層決策樹每次均被添加至精簡分類器模型,所以限制執行此程序之次數將限制包括於精簡分類器模型中之測試條件的數目。 In the alternative aspect method 540 illustrated in FIG. 5D, the operations described above with reference to blocks 518 and 520 can be implemented by sequentially selecting an enhanced single layer decision tree that is not yet located in the reduced classifier model; Identifying all other enhanced single-layer decision trees that depend on the same mobile device state, characteristics, behavior, or condition as the selected single-layer decision tree (and, therefore, may be applied based on a decision result); will depend on the same mobile device state, characteristics The selected, and all identified, enhanced single-level decision trees of the behavior or condition are included in the reduced classifier model; and the program is repeated a number of times equal to the number of test conditions determined. Because all of the enhanced single-layer decision trees that are dependent on the same test conditions as the selected enhanced single-level decision tree are added to the reduced classifier model each time, limiting the number of times the program is executed will limit the tests included in the streamlined classifier model. The number of conditions.

參看圖5D,在區塊542中,處理核心可計算或判定在應用精簡分類器模型時應進行評估的若干唯一測試條件(N個)(亦即,可在強化單層決策樹中進行測試的行動裝置狀態、特徵、行為或條件)。計算或判定此若干唯一測試條件可能涉及衝擊應用模型所需的行動裝置之處理資源、記憶體資源或能量資源之消耗與精簡分類器模型有待達成的行為分類之精確性之間的平衡或取捨。此判定可包括:判定行動裝置中可用的處理資源、記憶體資源及/或能量資源的量,判定與有待分析之行為相關聯的優先級及/或複雜性,且用行為之優先級及/或複雜性平衡可用的資源。 Referring to Figure 5D, in block 542, the processing core can calculate or determine a number of unique test conditions (N) that should be evaluated when applying the reduced classifier model (i.e., can be tested in an enhanced single layer decision tree) Mobile device status, characteristics, behavior or conditions). Calculating or determining the number of unique test conditions may involve a balance or trade-off between the processing resources of the mobile device required to impact the application model, the consumption of memory resources or energy resources, and the accuracy of the classification of the behavior to be achieved by the reduced classifier model. The determining may include determining the amount of processing resources, memory resources, and/or energy resources available in the mobile device, determining a priority and/or complexity associated with the behavior to be analyzed, and prioritizing the behavior and/or Or complexity balances the resources available.

在區塊544中,處理核心可將迴路計數變數之值設定為等於零(0),或以其他方式起始將被執行所判定之數目N次的迴路。在區塊546中,處理核心可選擇包括於強化單層決策樹之完全集合中或自該完全集合產生的強化單層決策樹,且該強化單層決策樹並不包括於精簡分類器模型清單中。在第一次遍及迴路,精簡分類器模型清單中將不存在強化單層決策樹,因此將會選擇第一強化單層決策樹。如在本文中所提及,完全分類器模型可經組態使得完全集合中之第一強化單 層決策樹具有最高機率來識別惡意或良性行為。在區塊548中,處理核心可判定與選定單層決策樹相關聯的測試條件。在區塊550中,處理核心可識別包括於完全分類器模型中或自完全分類器模型產生之所有單層決策樹,其中該完全分類器模型取決於、包括或測試與選定單層決策樹之測試條件相同的測試條件。在區塊552中,處理核心可將選定強化單層決策樹及取決於、包括或測試相同測試條件的所有經識別強化單層決策樹添加至精簡分類器模型清單。 In block 544, the processing core may set the value of the loop count variable equal to zero (0), or otherwise initiate a loop that will be executed a number of times determined. In block 546, the processing core may optionally include an enhanced single layer decision tree generated in or derived from the complete set of enhanced single layer decision trees, and the enhanced single layer decision tree is not included in the list of reduced classifier models in. In the first pass through the loop, there will be no enhanced single-level decision tree in the list of streamlined classifier models, so the first enhanced single-layer decision tree will be selected. As mentioned in this article, the full classifier model can be configured to make the first reinforcement list in the complete set The layer decision tree has the highest probability of identifying malicious or benign behavior. In block 548, the processing core may determine the test conditions associated with the selected single layer decision tree. In block 550, the processing core may identify all single-level decision trees included in the full classifier model or generated from the full classifier model, wherein the full classifier model depends on, includes, or tests with the selected single-layer decision tree Test conditions with the same test conditions. In block 552, the processing core may add the selected enhanced single layer decision tree and all identified enhanced single layer decision trees that depend on, include, or test the same test conditions to the reduced classifier model list.

在區塊554中,處理核心可遞增迴路計數變數之值。在判定區塊556中,處理核心可判定迴路計數變數之值是否大於或等於在區塊542中判定的唯一測試條件之數目N。當處理核心判定迴路計數變數之值並非大於或等於唯一測試條件之數目時(亦即,判定區塊556=「否」),處理核心可重複區塊546至554中之操作。當處理核心判定迴路計數變數之值大於或等於唯一測試條件之數目時(亦即,判定區塊556=「是」),在區塊558中,處理核心可產生包括精簡分類器模型清單中之所有強化單層決策樹的精簡分類器模型。 In block 554, the processing core may increment the value of the loop count variable. In decision block 556, the processing core may determine whether the value of the loop count variable is greater than or equal to the number N of unique test conditions determined in block 542. When the value of the processing core decision loop count variable is not greater than or equal to the number of unique test conditions (i.e., decision block 556 = "No"), the processing core may repeat the operations in blocks 546 through 554. When the value of the processing core decision loop count variable is greater than or equal to the number of unique test conditions (i.e., decision block 556 = "Yes"), in block 558, the processing core may generate a list including the reduced classifier model. A streamlined classifier model for all hardened single-level decision trees.

可多次使用此方法540,藉由改變精簡分類器模型中之唯一測試條件之數目N,來產生具有不同穩健程度或精簡度的精簡分類器模型家族。舉例而言,在可選區塊560中,行動裝置處理器可增大在區塊542中判定的唯一測試條件之數目N,以便產生併入更多測試條件的另一精簡分類器模型。在可選判定區塊562中,處理器可判定增大數目N是否超過測試條件之最大數目(max N)。可基於評定難以分類之行為所要的最大效能損失或資源投資而判定測試條件之最大數目(例如,藉由開發者、服務提供者、使用者或經由演算法)。若增大之數目N小於最大數目max N(亦即,判定區塊562=「否」),則可反覆上述區塊544至560之操作以產生另一精簡分類器模型。一旦精簡分類器模型中已包括最大數目個唯一測試條件(亦即,判定區塊562= 「是」),便可結束產生精簡分類器模型之程序。 This method 540 can be used multiple times to produce a family of reduced classifier models with different degrees of robustness or refinement by varying the number N of unique test conditions in the reduced classifier model. For example, in optional block 560, the mobile device processor can increase the number N of unique test conditions determined in block 542 to produce another reduced classifier model that incorporates more test conditions. In optional decision block 562, the processor can determine if the increased number N exceeds the maximum number of test conditions (max N). The maximum number of test conditions can be determined based on the maximum performance loss or resource investment required to assess the behavior that is difficult to classify (eg, by a developer, service provider, user, or via an algorithm). If the increased number N is less than the maximum number max N (i.e., decision block 562 = "No"), then the operations of blocks 544 through 560 can be repeated to generate another reduced classifier model. Once the reduced classifier model has included the maximum number of unique test conditions (ie, decision block 562 = "Yes", you can end the process of generating a streamlined classifier model.

雖然圖5A、圖5B及圖5D描述藉由重複遍歷強化單層決策樹之完全集合的整個程序來產生精簡分類器模型家族,但可藉由以下操作達成類似結果:以已產生之精簡分類器模型(亦即,在區塊508、520及558中之任一者中產生的模型)開始,且針對所添加之若干測試條件遍歷強化單層決策樹之完全集合,該等所添加之若干測試條件向彼模型添加取決於尚未包括於已產生之精簡分類器模型中之測試條件的強化單層決策樹。 Although FIGS. 5A, 5B, and 5D depict the generation of a reduced classifier model family by repeating the entire procedure of traversing a complete set of enhanced single-layer decision trees, a similar result can be achieved by the following operations: a reduced classifier that has been generated The model (i.e., the model generated in any of blocks 508, 520, and 558) begins and traverses a complete set of enhanced single-level decision trees for a number of test conditions added, a number of tests added The condition adds to the model a strengthened single-level decision tree that depends on the test conditions that have not been included in the generated reduced classifier model.

又,雖然圖5A、圖5B及圖5D描述產生自最精簡至最穩健之精簡分類器模型家族,但亦可僅藉由以最大數目個測試條件(例如,N=max N)開始且每次減小該數目來產生自最穩健至最精簡的精簡分類器模型。 Again, while Figures 5A, 5B, and 5D depict a family of reduced classifier models resulting from the most compact to the most robust, they can also be started by only the maximum number of test conditions (e.g., N = max N). This number is reduced to produce a streamlined classifier model from the most robust to the most streamlined.

圖6A說明在伺服器或雲端中產生完全分類器之態樣方法600。方法600可由耦接至雲端網路之伺服器計算裝置中的處理核心執行。 FIG. 6A illustrates a method 600 of generating a full classifier in a server or cloud. Method 600 can be performed by a processing core in a server computing device coupled to a cloud network.

在區塊602中,處理核心可聚集來自許多行動裝置之行為資料語料庫,包括大量裝置狀態、組態及行為,以及關於是否偵測到惡意行為的資訊。在區塊604中,處理核心可識別可在來自行為資料語料庫之裝置狀態、組態及行為內進行測試之特定二進位問題/測試條件。為特性化所有裝置狀態、組態及行為,通常將識別大量此等二進位問題/測試條件。隨後,在區塊606中,對於每一經識別二進位問題,處理核心可測試資料庫,以判定惡意行為對應於二進位問題之答案中之一者或另一者的次數之百分率或百分比。在區塊608中,處理核心可選擇與惡意行為具有最高對應關係的二進位問題作為具有基於對應關係百分比判定之加權值的第一單層決策樹。在區塊610中,處理核心可強化如下文參看圖6B所述的未正確分類之樣本/測試條件的權重。 In block 602, the processing core may aggregate a corpus of behavioral data from a number of mobile devices, including a large number of device states, configurations, and behaviors, as well as information about whether malicious behavior was detected. In block 604, the processing core can identify specific binary problem/test conditions that can be tested within the device state, configuration, and behavior from the behavioral material corpus. To characterize all device states, configurations, and behaviors, a large number of such binary problem/test conditions will typically be identified. Subsequently, in block 606, for each identified binary problem, the core testable database is processed to determine the percentage or percentage of the number of times the malicious behavior corresponds to one or the other of the answers to the binary question. In block 608, the processing core may select a binary problem that has the highest correspondence with the malicious behavior as the first single layer decision tree having weighting values based on the correspondence percentage determination. In block 610, the processing core may enforce the weighting of the incorrectly classified samples/test conditions as described below with reference to Figure 6B.

假定第一問題之回答係未與惡意行為相關聯之值(例如, 「否」),伺服器之處理核心可接著重複掃描二進位問題之程序,以在此狀況下識別與惡意行為具有最高對應關係的問題。隨後將彼問題設定為模型中之第二二進位問題,其中其加權值基於其對應關係百分比進行判定。伺服器隨後重複掃描二進位問題之程序一一假定第一及問題/測試條件之答案係未與惡意行為相關聯之值(例如,「否」),以在此狀況下識別與惡意行為具有最高對應關係的下一問題/測試條件。彼問題/測試條件隨後為模型中之第三二進位問題/測試條件,其中其加權值基於其對應關係百分比進行判定。經由所有經識別二進位問題/測試條件繼續此程序來建置完整集合。 Assume that the answer to the first question is a value that is not associated with malicious behavior (for example, "No"), the processing core of the server can then repeatedly scan the program of the binary problem to identify the problem with the highest correspondence with malicious behavior in this situation. The problem is then set to the second binary problem in the model, where the weighting value is determined based on the percentage of its correspondence. The server then repeats the process of scanning the binary problem one by one assuming that the first and question/test condition answers are values that are not associated with malicious behavior (eg, "no"), in order to identify and maliciously act the highest in this situation. The next question/test condition for the correspondence. The problem/test condition is then the third binary problem/test condition in the model, where the weighting value is determined based on the percentage of its correspondence. The complete set is built by continuing this procedure via all identified binary problem/test conditions.

在產生二進位問題/測試條件之程序中,伺服器可評估具有一範圍(range)之資料,諸如先前時間間隔內的通信之頻率或通信之數目,且闡述以幫助為行為分類之方式包含範圍的一系列二進位問題/測試條件。因此,一二進位問題/測試條件可能為裝置是否已在先前五分鐘內發送超過零個資料傳輸(其可具有低相關性),第二二進位問題/測試條件可能為裝置是否已在先前五分鐘中發送超過10個資料傳輸(其可具有媒體相關性),且第三問題/測試條件可能為裝置是否已在先前五分鐘內發送超過100個資料傳輸(其可具有高相關性)。 In the process of generating binary problems/test conditions, the server can evaluate data having a range, such as the frequency of communications or the number of communications in a prior time interval, and clarify the manner in which the manner of helping to classify behaviors A series of binary problems/test conditions. Therefore, the one-two carry problem/test condition may be whether the device has sent more than zero data transmissions in the previous five minutes (which may have low correlation), and the second binary problem/test condition may be whether the device is already in the previous five More than 10 data transfers (which may have media dependencies) are sent in minutes, and the third question/test condition may be whether the device has sent more than 100 data transfers (which may have high correlation) within the previous five minutes.

可藉由伺服器在完全分類器集合被發送至行動裝置之前進行問題/測試條件最終集合的一些剔除,以便移除所判定的權重或與惡意行為之相關性小於臨限值的彼等問題/測試條件(例如,在統計上不很重要)。舉例而言,若與惡意行為之相關性約為50/50,則將彼單層決策樹用作幫助回答當前行為係惡意抑或良性之問題的否定回答可能存在極少益處。 Some culling of the final set of problem/test conditions may be performed by the server before the full classifier set is sent to the mobile device in order to remove the determined weights or their relevance to the malicious behavior that is less than the threshold/ Test conditions (for example, not statistically important). For example, if the correlation with malicious behavior is about 50/50, then there may be little benefit in using a single-level decision tree as a negative answer to help answer the question of whether the current behavior is malicious or benign.

圖6B說明根據各種態樣的適合於產生適合於使用之強化決策樹/分類器的實例強化方法620。在操作622中,處理器可產生及/或執行決策樹/分類器,自該決策樹/分類器之執行收集訓練樣本,且基於訓 練樣本產生新分類器模型(h1(x))。訓練樣本可包括自先前行動裝置行為、軟體應用程式或行動裝置中之程序之觀測結果或分析收集的資訊。可基於包括於先前分類器中之問題或測試條件之類型,及/或基於自行為分析器模組204之分類器模組208中的先前資料/行為模型或分類器之執行/應用收集之精確性或效能特性而產生訓練樣本及/或新分類器模型(h1(x))。在操作624中,處理器可強化(或增大)由所產生之決策樹/分類器(h1(x))錯誤分類的項之權重,以產生第二新樹/分類器(h2(x))。在一態樣中,可基於分類器之先前執行或使用(h1(x))的錯誤率產生訓練樣本及/或新分類器模型(h2(x))。在一態樣中,可基於經判定已在分類器之先前執行或使用中促成資料點之錯誤率或錯誤分類的屬性產生訓練樣本及/或新分類器模型(h2(x))。 FIG. 6B illustrates an example enhancement method 620 suitable for generating a robust decision tree/classifier suitable for use, in accordance with various aspects. In operation 622, the processor may generate and/or execute a decision tree/classifier, collect training samples from execution of the decision tree/classifier, and based on the training Practicing the sample produces a new classifier model (h1(x)). Training samples may include information collected from observations or analysis of previous mobile device behaviors, software applications, or programs in mobile devices. The accuracy may be based on the type of problem or test condition included in the previous classifier, and/or based on the prior data/behavior model or classifier execution/application in the classifier module 208 of the analyzer module 204. Training samples and/or new classifier models (h1(x)) are generated for sexual or performance characteristics. In operation 624, the processor may enforce (or increase) the weight of the item misclassified by the generated decision tree/classifier (h1(x)) to generate a second new tree/classifier (h2(x)) . In one aspect, the training samples and/or the new classifier model (h2(x)) may be generated based on previous executions of the classifier or using an error rate of (h1(x)). In one aspect, the training sample and/or the new classifier model (h2(x)) may be generated based on attributes determined to have contributed to the error rate or misclassification of the data points in the previous execution or use of the classifier.

在一態樣中,經錯誤分類之項可基於其相對精確性或有效性進行加權。在操作626中,處理器可強化(或增大)藉由所產生之第二樹/分類器(h2(x))錯誤分類之項的權重,以產生第三新樹/分類器(h3(x))。在操作628中,可反覆624至626之操作以產生「t」數目個新樹/分類器(ht(x))。 In one aspect, misclassified items may be weighted based on their relative accuracy or validity. In operation 626, the processor may enhance (or increase) the weight of the item misclassified by the generated second tree/classifier (h2(x)) to generate a third new tree/classifier (h3(x) )). In operation 628, the operations of 624 through 626 may be repeated to generate a "t" number of new trees/classifiers (ht(x)).

藉由強化或增大藉由第一決策樹/分類器(h1(x))錯誤分類之項的權重,第二樹/分類器(h2(x))可更精確地分類藉由第一決策樹/分類器(h1(x))錯誤分類之實體,但亦可錯誤分類實體中藉由第一決策樹/分類器(h1(x))正確分類的一些實體。類似地,第三樹/分類器(h3(x))可更精確地分類藉由第二決策樹/分類器(h2(x))錯誤分類之實體,且錯誤分類實體中藉由第二決策樹/分類器(h2(x))正確分類的一些實體。亦即,產生樹/分類器家族h1(x)-ht(x)可能不導致整體收斂之系統,但導致可平行執行的若干決策樹/分類器。 The second tree/classifier (h2(x)) can be more accurately classified by the first decision by strengthening or increasing the weight of the item misclassified by the first decision tree/classifier (h1(x)) The tree/classifier (h1(x)) misclassified entities, but may also misclassify entities that are correctly classified by the first decision tree/classifier (h1(x)). Similarly, the third tree/classifier (h3(x)) can more accurately classify the entities misclassified by the second decision tree/classifier (h2(x)), and the second decision is made in the misclassified entity Some entities that are correctly classified by the tree/classifier (h2(x)). That is, the generation tree/classifier family h1(x)-h t (x) may not result in a system of overall convergence, but results in several decision trees/classifiers that can be executed in parallel.

圖7說明產生包括強化單層決策樹之分類器模型的實例方法700,且該實例方法可用以在不消耗行動裝置之過度量之處理資源、 記憶體資源或能量資源的情況下智慧型地且有效地識別行動裝置102上的主動惡意或經不充分寫入之軟體應用程式及/或可疑的或效能降級的行動裝置行為。在方法700之操作1中,網路伺服器中之離線分類器可基於自雲端服務/網路接收之資訊產生完全或穩健的分類器模型。舉例而言,完全分類器可包括測試四十(40)個唯一條件的100個強化單層決策樹。在方法700之操作2中,可將完全分類器模型發送至行動裝置102中之分析器/分類器模組208。在方法700之操作3中,分析器/分類器模組208可基於分析完全分類器模型而產生呈強化單層決策樹形式之精簡資料/行為模型分類器集合。此可藉由執行允許行動裝置執行以下操作之「接合特徵選擇與剔除」操作實現:在無需存取雲端訓練資料的情況下即時產生精簡模型;根據應用動態地重新組態分類器以增強分類精確性;及針對每一分類器指定確定性的複雜性(例如,O(單層樹之#))。「接合特徵選擇與剔除」操作亦可包括執行特徵選擇操作。 7 illustrates an example method 700 of generating a classifier model including a reinforced single-layer decision tree, and the example method can be used to process resources that do not consume excessive amounts of mobile devices, An active or maliciously written software application and/or suspicious or performance degraded mobile device behavior on the mobile device 102 is intelligently and efficiently identified in the case of a memory resource or an energy resource. In operation 1 of method 700, the offline classifier in the network server can generate a full or robust classifier model based on information received from the cloud service/network. For example, a full classifier may include 100 enhanced single layer decision trees that test forty (40) unique conditions. In operation 2 of method 700, the full classifier model can be sent to the analyzer/classifier module 208 in the mobile device 102. In operation 3 of method 700, analyzer/classifier module 208 can generate a reduced data/behavior model classifier set in the form of an enhanced single layer decision tree based on analyzing the full classifier model. This can be achieved by performing the "join feature selection and culling" operation that allows the mobile device to perform the following operations: generating a reduced model in real time without accessing the cloud training data; dynamically reconfiguring the classifier according to the application to enhance classification accuracy And specify deterministic complexity for each classifier (for example, O (single layer tree #)). The "join feature selection and culling" operation may also include performing a feature selection operation.

圖8說明可由態樣伺服器處理器產生且由裝置處理器用以在行動裝置中產生精簡分類器模型的實例強化單層決策樹800。在圖8中所說明之實例中,強化單層決策樹800包括各自包括一問題或一測試條件的複數個決策節點W1-W4(例如,F1、F3、F5),該等決策節點在由處理器執行或進行時可導致一決定性二進位回答(例如,真或假、惡意或良性等)(二者擇一)。每一決策節點W1-W4亦可與加權值相關聯。 8 illustrates an example enhanced single layer decision tree 800 that may be generated by an aspect server processor and used by a device processor to generate a reduced classifier model in a mobile device. In the example illustrated in FIG. 8, the enhanced single layer decision tree 800 includes a plurality of decision nodes W1-W4 (eg, F1, F3, F5) each including a question or a test condition, the decision nodes being processed by Execution or execution may result in a decisive binary answer (eg, true or false, malicious or benign, etc.) (either alternatively). Each decision node W1-W4 can also be associated with a weighted value.

圖8亦說明執行如上文參看圖7所述之「接合特徵選擇與剔除」操作的方法802。方法802可包括:行動裝置之分析器模組判定其需要產生測試兩個唯一條件之精簡分類器,在此狀況下,特徵選擇操作可包括遍歷100個強化單層決策樹構成之清單,直至發現前2個唯一條件(例如,圖8中之F1及F3)為止。分析器/分類器模組208可接著僅僅測試藉由特徵選擇操作識別之條件(例如,F1及F3),此可藉由遍歷100個 強化單層決策樹構成之整個清單且刪除測試一不同條件(例如,F5)的任何單層樹來實現。剩餘的強化單層決策樹(亦即,測試條件「F1」及「F3」之單層樹)可在不重新訓練資料的情況下被用作精簡分類器。分析器/分類器模組208可將行為資訊應用於剩餘強化單層決策樹(亦即,測試條件「F1」及「F3」之單層樹)中之每一者,計算自剩餘單層樹接收之所有答案的加權平均值,且使用加權平均值判定行動裝置行為係惡意的抑或良性的。 Figure 8 also illustrates a method 802 of performing the "join feature selection and culling" operation as described above with reference to Figure 7. The method 802 can include: the analyzer module of the mobile device determines that it needs to generate a reduced classifier that tests two unique conditions, in which case the feature selection operation can include traversing a list of 100 enhanced single-layer decision trees until discovery The first two unique conditions (for example, F1 and F3 in Fig. 8). The analyzer/classifier module 208 can then only test the conditions identified by the feature selection operation (eg, F1 and F3), which can be traversed by 100 Enhance the entire list of single-layer decision trees and remove any single-layer tree that tests a different condition (for example, F5). The remaining enhanced single-layer decision trees (ie, single-layer trees with test conditions "F1" and "F3") can be used as a streamlined classifier without retraining the data. The analyzer/classifier module 208 can apply behavioral information to each of the remaining enhanced single-layer decision trees (ie, the single-layer trees of the test conditions "F1" and "F3"), calculated from the remaining single-layer trees. A weighted average of all answers received, and a weighted average is used to determine whether the mobile device behavior is malicious or benign.

一旦已經由特徵選擇與剔除程序產生強化單層決策樹,便可將選定的單層決策樹用作可與當前裝置狀態、設定及行為進行比較的分類器或行為模型。由於單層決策樹為獨立的二進位測試,因此可平行地執行將觀測行為(其可概括於行為向量中)與模型進行比較之行為分析程序。又,由於單層樹極為簡單(基本上為二進位),因此執行每一單層樹之程序極為簡單,且因此可以較小處理負擔快速實現。每一單層決策樹用加權值產生一回答,且關於行為係惡意抑或良性的最終決策可被判定為所有結果的經加權總和,此亦係一簡單計算。 Once the enhanced single-level decision tree has been generated by the feature selection and culling procedures, the selected single-level decision tree can be used as a classifier or behavioral model that can be compared to current device states, settings, and behaviors. Since the single-layer decision tree is an independent binary test, a behavioral analysis program that compares the observed behavior (which can be summarized in the behavior vector) with the model can be performed in parallel. Also, since the single-layer tree is extremely simple (essentially binary), the procedure for executing each single-layer tree is extremely simple, and thus can be quickly implemented with a small processing load. Each single-level decision tree produces an answer with a weighted value, and the final decision about whether the behavior is malicious or benign can be determined as the weighted sum of all results, which is also a simple calculation.

可基於自行動裝置中之行動裝置行為、軟體應用程式或程序之先前觀測結果或分析所收集的資訊計算與節點相關聯的權重。亦可基於使用多少資料語料庫單元(例如,資料或行為向量之雲端語料庫)來建置強化單層決策樹計算與每一節點相關聯的權重。 The weights associated with the nodes may be calculated based on information collected from the behavior of the mobile device in the mobile device, previous observations of the software application or program, or analysis. It is also possible to build an enhanced single-level decision tree to calculate the weight associated with each node based on how many data corpus units are used (eg, a cloud corpus of data or behavior vectors).

圖9說明根據一態樣的經組態以執行動態及適應性觀測的計算系統之行為觀測器模組202中的實例邏輯組件及資訊流。行為觀測器模組202可包括適應性篩選模組902、節流模組904、觀測器模式模組906、高層級行為偵測模組908、行為向量產生器910及安全緩衝器912。高層級行為偵測模組908可包括空間相關性模組914及時間相關性模組916。 9 illustrates example logic components and information flows in a behavioral observer module 202 of a computing system configured to perform dynamic and adaptive observations in accordance with an aspect. The behavior observer module 202 can include an adaptive screening module 902, a throttle module 904, an observer mode module 906, a high level behavior detection module 908, a behavior vector generator 910, and a security buffer 912. The high-level behavior detection module 908 can include a spatial correlation module 914 and a temporal correlation module 916.

觀測器模式模組906可自各種源接收控制資訊,該等源可包括分 析器單元(例如,上文參看圖2描述之行為分析器模組204)及/或應用程式API。觀測器模式模組906可將關於各種觀測器模式之控制資訊發送至適應性篩選模組902及高層級行為偵測模組908。 The observer mode module 906 can receive control information from various sources, which can include The analyzer unit (e.g., the behavior analyzer module 204 described above with reference to Figure 2) and/or the application API. The observer mode module 906 can send control information about various observer modes to the adaptive screening module 902 and the high level behavioral detection module 908.

適應性篩選模組902可自多個源接收資料/資訊,且智慧型地對所接收資訊濾波,以產生自所接收資訊選擇的資訊之較小子集。可基於自分析器模組或經由API通信之較高層級程序接收的資訊或控制調適此濾波器。經濾波資訊可發送至節流模組904,該節流模組可負責控制自濾波器流動之資訊的量,以確保高層級行為偵測模組908並未被請求或資訊浸沒或過載。 The adaptive screening module 902 can receive data/information from a plurality of sources and intelligently filter the received information to produce a smaller subset of the information selected from the received information. This filter can be adapted based on information or control received from the analyzer module or via a higher level program of API communication. The filtered information can be sent to the throttling module 904, which can be responsible for controlling the amount of information flowing from the filter to ensure that the high level behavioral detection module 908 is not requested or information immersed or overloaded.

高層級行為偵測模組908可自節流模組904接收資料/資訊,自觀測器模式模組906接收控制資訊,且自行動裝置之其他組件接收內容資訊。高層級行為偵測模組908可使用所接收資訊來執行空間及時間相關性,以偵測或識別可使得裝置在次佳層級下執行的高層級行為。空間及時間相關性之結果可被發送至行為向量產生器910,該行為向量產生器可接收相關性資訊且產生描述特定程序、應用程式或子系統之行為的行為向量。在一態樣中,行為向量產生器910可產生行為向量,使得特定程序、應用程式或子系統之每一高層級行為係行為向量之元素。在一態樣中,所產生之行為向量儲存於安全緩衝器912中。高層級行為偵測之實例可包括對以下項的偵測:特定事件之存在、另一事件之量或頻率、多個事件之間的關係,事件出現的次序、某些事件之出現之間的時間差,等等。 The high-level behavior detection module 908 can receive data/information from the throttle module 904, receive control information from the observer mode module 906, and receive content information from other components of the mobile device. The high-level behavior detection module 908 can use the received information to perform spatial and temporal correlation to detect or identify high-level behavior that can cause the device to perform at sub-optimal levels. The results of the spatial and temporal correlations can be sent to a behavior vector generator 910 that can receive the correlation information and generate a behavior vector that describes the behavior of a particular program, application, or subsystem. In one aspect, the behavior vector generator 910 can generate a behavior vector such that each high level behavior of a particular program, application, or subsystem is an element of a behavior vector. In one aspect, the generated behavior vector is stored in secure buffer 912. Examples of high-level behavioral detection may include detection of the existence of a particular event, the amount or frequency of another event, the relationship between multiple events, the order in which events occur, and the occurrence of certain events. Time difference, and so on.

在各種態樣中,行為觀測器模組202可執行適應性觀測且控制觀測粒度。亦即,行為觀測器模組202可動態地識別有待觀測之相關行為,且動態地判定將觀測經識別行為時的細節層級。以此方式,行為觀測器模組202使得系統能夠在各種層級(例如,多個粗略及精細層級)下監視行動裝置之行為。行為觀測器模組202可使得系統能夠調適 要觀測之事項。行為觀測器模組202可使得系統能夠基於可自廣泛多種源獲得的資訊之集中子集而動態地改變正觀測之因素/行為。 In various aspects, the behavioral observer module 202 can perform adaptive observations and control the granularity of observations. That is, the behavioral observer module 202 can dynamically identify the relevant behavior to be observed and dynamically determine the level of detail at which the identified behavior will be observed. In this manner, the behavioral observer module 202 enables the system to monitor the behavior of the mobile device at various levels (eg, multiple coarse and fine levels). The behavior observer module 202 enables the system to adapt Things to observe. The behavior observer module 202 can enable the system to dynamically change the observing factors/behavior based on a concentrated subset of information that can be obtained from a wide variety of sources.

如上文所論述,行為觀測器模組202可基於自多種源接收之資訊執行適應性觀測技術且控制觀測粒度。舉例而言,高層級行為偵測模組908可接收來自節流模組904、觀測器模式模組906之資訊及自行動裝置之其他組件(例如,感測器)接收的內容資訊。作為一實例,執行時間相關性之高層級行為偵測模組908可偵測已使用攝影機,且行動裝置正試圖將圖像上載至伺服器。高層級行為偵測模組908亦可執行空間相關性,以判定當裝置裝於皮套中且附接至使用者皮帶時,行動裝置上之應用程式是否拍照。高層級行為偵測模組908可判定此所偵測之高層級行為(例如,在裝於皮套中時使用攝影機)是否為可接受的或共同的行為,此可藉由將當前行為與行動裝置之過去行為進行比較,及/或存取自複數個裝置的收集資訊(例如自群智(crowd-sourcing)伺服器接收之資訊)來達成。由於在裝於皮套中時拍照且將圖像上載至伺服器係異常行為(如在裝於皮套中之情況下可自所觀測之正常行為判定的),因此在此情況下,高層級行為偵測模組908可將此識別為可能威脅的行為且啟動適當回應(例如,關閉攝影機、發出報警聲等等)。 As discussed above, the behavioral observer module 202 can perform adaptive observation techniques and control the granularity of observation based on information received from a variety of sources. For example, the high-level behavior detection module 908 can receive information from the throttle module 904, the observer mode module 906, and content information received from other components (eg, sensors) of the mobile device. As an example, the high-level behavior detection module 908 that performs time correlation can detect that the camera has been used and the mobile device is attempting to upload the image to the server. The high level behavioral detection module 908 can also perform spatial correlation to determine whether the application on the mobile device is photographed when the device is mounted in the holster and attached to the user's belt. The high-level behavior detection module 908 can determine whether the detected high-level behavior (eg, using a camera when mounted in a holster) is acceptable or common behavior, by making current behavior and actions The past behavior of the device is compared and/or access to information collected from a plurality of devices (eg, information received from a crowd-sourcing server) is achieved. In this case, the high level is due to the abnormal behavior when taking pictures in the holster and uploading the images to the server system (such as the normal behavior observed in the case of being installed in the holster) The behavior detection module 908 can identify this as a potentially threatening behavior and initiate an appropriate response (eg, turn off the camera, sound an alarm, etc.).

在一態樣中,行為觀測器模組202可實施於多個部件中。 In one aspect, the behavioral observer module 202 can be implemented in multiple components.

圖10更詳細地說明實施態樣觀測器精靈協助程式之計算系統1000中的邏輯組件及資訊流。在圖10中所說明之實例中,計算系統1000包括使用者空間中之行為偵測器1002模組、資料庫引擎1004模組及行為分析器模組204,及核空間中之環緩衝器1014、篩選規則1016模組、節流規則1018模組及安全緩衝器1020。計算系統1000可進一步包括觀測器精靈協助程式,其包括使用者空間中之行為偵測器1002及資料庫引擎1004,及核空間中之安全緩衝器管理器1006、規則管理器 1008及系統健康監視器1010。 Figure 10 illustrates in more detail the logical components and information flows in the computing system 1000 implementing the Aspect Observer Assistant. In the example illustrated in FIG. 10, computing system 1000 includes a behavior detector 1002 module in user space, a database engine 1004 module and behavior analyzer module 204, and a ring buffer 1014 in core space. The screening rule 1016 module, the throttle rule 1018 module, and the security buffer 1020. The computing system 1000 can further include an Observer Wizard assistance program including a behavior detector 1002 and a repository engine 1004 in the user space, and a security buffer manager 1006 in the kernel space, a rule manager 1008 and system health monitor 1010.

各種態樣可在包含網路套組(webkit)、SDK、NDK、核、驅動器及硬體之行動裝置上提供跨層級觀測,以便特性化系統行為。可即時進行行為觀測。 Various aspects provide cross-level observations on mobile devices including webkits, SDKs, NDKs, cores, drives, and hardware to characterize system behavior. Behavioral observations can be made immediately.

觀測器模組可執行適應性觀測技術且控制觀測粒度。如上文所論述,存在可促成行動裝置之降級的大量(亦即,數千)因素,且監視/觀測可促成裝置之效能降級的所有不同因素可能不可行。為解決此問題,各種態樣動態地識別有待觀測之相關行為,且動態地判定將觀測所識別行為時的細節層級。 The observer module can perform adaptive observation techniques and control the granularity of observations. As discussed above, there are a large number (i.e., thousands) of factors that can contribute to the degradation of the mobile device, and all of the different factors that can be monitored/observed can contribute to the performance degradation of the device may not be feasible. To solve this problem, various aspects dynamically identify the relevant behaviors to be observed and dynamically determine the level of detail at which the identified behavior will be observed.

圖11說明根據一態樣的用於執行動態及適應性觀測之實例方法1100。在區塊1102中,行動裝置處理器可藉由監視/觀測可促成行動裝置之降級的大量因素/行為之子集來執行粗略觀測。在區塊1103中,行動裝置處理器可基於粗略觀測產生特性化粗略觀測及/或行動裝置行為的行為向量。在區塊1104中,行動裝置處理器可識別可潛在地促成行動裝置之降級的與粗略觀測相關聯之子系統、程序及/或應用程式。此可(例如)藉由將自多個源接收之資訊與自行動裝置之感測器接收之內容資訊進行比較來達成。在區塊1106中,行動裝置處理器可基於粗略觀測執行行為分析操作。在態樣中,作為區塊1103及1104之部分,行動裝置處理器可執行如上文參考圖2至圖10描述之操作中之一或多者。 FIG. 11 illustrates an example method 1100 for performing dynamic and adaptive observations in accordance with an aspect. In block 1102, the mobile device processor can perform coarse observations by monitoring/observing a subset of a number of factors/behaviors that can contribute to the degradation of the mobile device. In block 1103, the mobile device processor can generate a behavior vector that characterizes the coarse observations and/or the behavior of the mobile device based on the coarse observations. In block 1104, the mobile device processor can identify subsystems, programs, and/or applications associated with the coarse observations that can potentially contribute to the degradation of the mobile device. This can be achieved, for example, by comparing information received from multiple sources with content information received from sensors of the mobile device. In block 1106, the mobile device processor can perform a behavior analysis operation based on the coarse observations. In an aspect, as part of blocks 1103 and 1104, the mobile device processor can perform one or more of the operations as described above with reference to Figures 2-10.

在判定區塊1108中,行動裝置處理器可判定是否可基於行為分析之結果識別且校正可疑行為或潛在問題。當行動裝置處理器判定可基於行為分析之結果識別且校正可疑行為或潛在問題時(亦即,判定區塊1108=「是」),在區塊1118中,處理器可啟動程序來校正行為,且返回至區塊1102執行額外的粗略觀測。 In decision block 1108, the mobile device processor can determine whether a suspicious behavior or potential problem can be identified and corrected based on the outcome of the behavioral analysis. When the mobile device processor determines that the suspicious behavior or potential problem can be identified based on the outcome of the behavioral analysis (ie, decision block 1108 = "Yes"), in block 1118, the processor can initiate a procedure to correct the behavior, And returning to block 1102 to perform additional coarse observations.

當行動裝置處理器判定無法基於行為分析之結果識別及/或校正 可疑行為或潛在問題時(亦即,判定區塊1108=「否」),在判定區塊1109中,行動裝置處理器可判定是否存在一問題之似然性。在一態樣中,行動裝置處理器可藉由計算行動裝置遇到潛在問題及/或參與可疑行為的機率來判定存在一問題之似然性,且判定所計算之機率是否大於預定臨限。當行動裝置處理器判定所計算之機率並非大於預定臨限,及/或無存在及/或可檢測可疑行為或潛在問題的似然性時(亦即,判定區塊1109=「否」),處理器可返回至區塊1102以執行額外的粗略觀測。 When the mobile device processor determines that the result of the behavior analysis cannot be identified and/or corrected In the case of suspicious behavior or potential problems (i.e., decision block 1108 = "No"), in decision block 1109, the mobile device processor can determine if there is a likelihood of a problem. In one aspect, the mobile device processor can determine the likelihood of a problem by calculating a probability that the mobile device is experiencing a potential problem and/or participating in a suspicious behavior, and determines if the calculated probability is greater than a predetermined threshold. When the mobile device processor determines that the calculated probability is not greater than a predetermined threshold, and/or does not exist and/or can detect the likelihood of a suspicious behavior or potential problem (ie, decision block 1109 = "No"), The processor can return to block 1102 to perform additional coarse observations.

當行動裝置處理器判定有存在及/或可檢測可疑行為或潛在問題的似然性時(亦即,判定區塊1109=「是」),在區塊1110中,行動裝置處理器可對經識別子系統、程序或應用程式執行更深登錄/觀測或最終登錄。在區塊1112中,行動裝置處理器可對經識別子系統、程序或應用程式執行更深且更詳細的觀測。在區塊1114中,行動裝置處理器可基於更深及更詳細觀測執行進一步及/或更深的行為分析。在判定區塊1108中,行動裝置處理器可再次判定是否可基於更深行為分析之結果而識別且校正可疑行為或潛在問題。當行動裝置處理器判定無法基於更深行為分析之結果而識別且校正可疑行為或潛在問題時(亦即,判定區塊1108=「否」),處理器可重複區塊1110至1114中之操作,直至細節層級足夠精細以識別問題為止,或直至判定無法用額外細節識別問題或不存在問題為止。 When the mobile device processor determines that there is a likelihood of existence and/or detectable suspicious behavior or potential problem (ie, decision block 1109 = "Yes"), in block 1110, the mobile device processor may Identify subsystems, programs, or applications to perform deeper logins/observations or final logins. In block 1112, the mobile device processor can perform deeper and more detailed observations on the identified subsystems, programs, or applications. In block 1114, the mobile device processor can perform further and/or deeper behavioral analysis based on deeper and more detailed observations. In decision block 1108, the mobile device processor can again determine whether the suspicious behavior or potential problem can be identified and corrected based on the results of the deeper behavior analysis. When the mobile device processor determines that the suspicious behavior or potential problem cannot be identified based on the result of the deeper behavior analysis (ie, decision block 1108 = "No"), the processor may repeat the operations in blocks 1110 through 1114, Until the level of detail is fine enough to identify the problem, or until it is determined that the problem cannot be identified with additional detail or there is no problem.

當行動裝置處理器判定可基於更深行為分析之結果而識別且校正可疑行為或潛在問題時(亦即,判定區塊1108=「是」),在區塊1118中,行動裝置處理器可執行操作以校正問題/行為,且處理器可返回至區塊1102以執行額外操作。 When the mobile device processor determines that the suspicious behavior or potential problem can be identified and corrected based on the results of the deeper behavior analysis (ie, decision block 1108 = "Yes"), in block 1118, the mobile device processor can perform the operation. To correct the problem/behavior, and the processor can return to block 1102 to perform additional operations.

在一態樣中,作為方法1100之區塊1102至1118的部分,行動裝置處理器可對系統之行為執行即時行為分析,從而自有限且粗略的觀測 識別可疑行為,動態地判定行為以更詳細地觀測,且動態地判定觀測所需的精密細節層級。此使得行動裝置處理器能夠有效地識別且防止問題發生,而無需使用裝置上的大量處理器資源、記憶體資源或電池資源。 In one aspect, as part of blocks 1102 through 1118 of method 1100, the mobile device processor can perform an immediate behavioral analysis of the behavior of the system for self-limited and coarse observations Identify suspicious behavior, dynamically determine behavior to observe in more detail, and dynamically determine the level of precision detail required for observation. This enables the mobile device processor to effectively identify and prevent problems from occurring without the need to use a large amount of processor resources, memory resources or battery resources on the device.

如上文所論述,各種態樣包括方法及經組態以實施該等方法之計算裝置,其使用基於行為的且機器學習的技術來有效地識別、分類、建模、防止及/或校正常常隨時間推移降級計算裝置之效能、電力利用層級、網路使用層級、安全及/或隱私的條件及行為。為實現此目的,計算裝置可執行即時行為監視及分析操作,其可包括:監視在計算裝置上操作之一或多個軟體應用程式的活動(例如,藉由在硬體、驅動器、核、NDK、SDK及/或網路套組層級下監視API呼叫,等);產生特性化一或多個軟體應用程式之所有所監視活動或其子集的行為向量資訊結構(「行為向量」);將所產生之行為向量應用於機器學習分類器模型(「分類器模型」)以產生行為向量資訊結構分析結果分析結果;及使用分析結果將行為向量(且因此將藉由與所監視活動相關聯之向量及/或軟體應用程式特性化的活動)分類為良性或非良性。 As discussed above, various aspects include methods and computing devices configured to implement such methods that use behavior-based and machine learning techniques to efficiently identify, classify, model, prevent, and/or correct Time lapses downgrades the performance, power utilization level, network usage level, security, and/or privacy conditions and behavior of the computing device. To accomplish this, the computing device can perform an immediate behavior monitoring and analysis operation, which can include monitoring activity of one or more software applications operating on the computing device (eg, by hardware, drive, core, NDK) , monitoring API calls at the SDK and/or network suite level, etc.); generating behavioral vector information structures ("behavior vectors") that characterize all monitored activities or subsets of one or more software applications; The generated behavior vector is applied to a machine learning classifier model ("classifier model") to generate a behavior vector information structure analysis result analysis result; and the behavior result vector is used using the analysis result (and thus will be associated with the monitored activity) Vector and/or software application characterization activities are classified as benign or non-benign.

亦如上文所描述,各種態樣包括在計算裝置中產生分類器模型之方法,其可包括:自伺服器計算裝置接收完全分類器模型;使用完全分類器模型來產生強化單層決策樹清單(例如,藉由將包括於完全分類器模型中之有限狀態機轉換成各自包括一測試條件及一加權值之複數個強化單層決策樹,等等);及基於包括於強化單層決策樹清單中的強化單層決策樹產生精簡分類器模型(或精簡分類器模型家族)。計算裝置可使用此等本端產生且精簡的分類器模型來評估包括於完全分類器模型中之目標性特徵子集,諸如經判定為與分類彼特定計算裝置中之行為最相關的特徵。在一些實施例中,計算裝置可藉由執行包 括以下項之操作來使用精簡分類器模型:將包括於行為向量資訊結構中之行為資訊應用於包括於精簡分類器模型中之強化單層決策樹,計算將所收集之行為資訊應用於精簡分類器模型中之每一強化單層決策樹之結果的加權平均值;及將該加權平均值與一臨限值進行比較,以判定行動裝置之行為是否為非良性的。換言之,將行為向量應用於分類器模型可產生呈介於零(0)與一(1)之間的數值(P)之形式的分析結果。視計算裝置如何進行組態而定,接近於零之值(例如,0.1)可指示表示為行為向量之行為係良性的,且接近於一之值(例如,0.9)可指示該行為係非良性的(或反之亦然)。 As also described above, various aspects include a method of generating a classifier model in a computing device, which can include: receiving a full classifier model from a server computing device; using a full classifier model to generate an enhanced single layer decision tree list ( For example, by converting a finite state machine included in a full classifier model into a plurality of enhanced single layer decision trees each including a test condition and a weighted value, etc.; and based on a list of enhanced single layer decision trees The enhanced single-level decision tree in the middle produces a streamlined classifier model (or a reduced classifier model family). The computing device can use these locally generated and streamlined classifier models to evaluate a subset of the target features included in the full classifier model, such as features that are determined to be most relevant to classifying the behavior in a particular computing device. In some embodiments, the computing device can execute the package The following operations are used to use the reduced classifier model: applying the behavior information included in the behavior vector information structure to the enhanced single-layer decision tree included in the reduced classifier model, and calculating the collected behavior information for the simplified classification A weighted average of the results of each of the enhanced single-level decision trees; and comparing the weighted average to a threshold to determine if the behavior of the mobile device is non-benign. In other words, applying a behavior vector to the classifier model can produce an analysis result in the form of a value (P) between zero (0) and one (1). Depending on how the computing device is configured, a value close to zero (eg, 0.1) may indicate that the behavior expressed as a behavior vector is benign, and a value close to one (eg, 0.9) may indicate that the behavior is non-benign. (or vice versa).

可常規地應用精簡分類器模型家族中之最精簡分類器(亦即,包括最少決策節點或評估最少數目個測試條件之精簡分類器模型),直至碰到模型無法分類為良性或非良性之行為(或行為向量)為止,此時可選擇且應用更穩健(亦即,不太精簡)的精簡分類器模型,從而試圖將行為分類為良性的或惡意的。亦即,為保存資源,計算裝置處理器可首先將行為向量應用於評估所有可用的特徵/因素之小子集(例如,20個特徵)的精簡分類器模型(有時亦被稱作「經減少之特徵模型」或「RFM」),且接著漸進地使用較大分類器模型,直至處理器以高信賴度判定行為係良性或非良性中之一者為止(例如,直至所得數值P小於下部臨限值或大於上部臨限值為止)。 The most streamlined classifiers in the reduced classifier model family (ie, the minimum classifiers or the reduced classifier model that evaluates the minimum number of test conditions) can be routinely applied until the model cannot be classified as benign or non-benign. Until (or the behavior vector), a more robust (ie, less concise) reduced classifier model can be selected and applied at this point in an attempt to classify the behavior as benign or malicious. That is, to preserve resources, the computing device processor may first apply the behavior vector to a reduced classifier model that evaluates a small subset of all available features/factors (eg, 20 features) (sometimes referred to as "reduced" a feature model or RFM, and then progressively use a larger classifier model until the processor determines that the behavior is benign or non-benign with high confidence (eg, until the resulting value P is less than the lower level) The limit is greater than the upper threshold.)

舉例而言,計算裝置可首先將行為向量應用於評估二十個特徵之分類器模型(亦即,應用於RFM-20)。若分析結果小於第一臨限值(例如,P<0.1),則計算裝置可以高信賴度且在無進一步分析的情況下將行為分類為良性的。類似地,若分析結果大於第二臨限值(例如,>0.9),則計算裝置可在無進一步分析的情況下以高信賴度將彼行為分類為非良性的。在另一方面,當分析結果落於第一臨限與第二臨限之間時(例如,P>=0.1∥P<=0.9),計算裝置可能無法以(充分)高信賴度 將行為分類為良性或非良性的。在此狀況下,計算裝置可將行為向量應用於較大分類器模型(例如,RFM-40或評估40個特徵之分類器模型)以產生新的分析結果,且重複如上文所述之操作。計算裝置可重複此等操作,直至分析結果指示行為以高信賴度為良性或非良性為止(例如,直至p<0.1∥P>0.9為止)。 For example, the computing device may first apply the behavior vector to a classifier model that evaluates twenty features (ie, to RFM-20). If the analysis result is less than the first threshold (eg, P < 0.1), the computing device can have high reliability and classify the behavior as benign without further analysis. Similarly, if the analysis result is greater than the second threshold (eg, >0.9), the computing device can classify the behavior as non-benign with high confidence without further analysis. On the other hand, when the analysis result falls between the first threshold and the second threshold (for example, P>=0.1∥P<=0.9), the computing device may not be able to (sufficiently) have high reliability. Classify behavior as benign or non-benign. In this case, the computing device can apply the behavior vector to a larger classifier model (eg, RFM-40 or a classifier model that evaluates 40 features) to generate new analysis results, and repeat the operations as described above. The computing device may repeat such operations until the analysis results indicate that the behavior is benign or non-benign with high reliability (eg, until p < 0.1 ∥ P > 0.9).

雖然上述系統通常係有效的,但數值(P)並非始終為真機率值。因此,此數值(P)可能並非始終精確地表示行為係良性的或非良性之似然性。此係由於為計算P,可能首先需要系統使用諸如以下之公式 來計算信賴值(c):。歸因於良性及非良性應用之獨特行 為,使用此公式之信賴值(c)可群集於非常接近1或非常接近0之兩個極值中之一者周圍。因此,以上公式之使用可產生高度叢集於兩個極值周圍的結果(亦即,所得P值可能非常接近1或非常接近0)。 Although the above system is generally effective, the value (P) is not always a true probability value. Therefore, this value (P) may not always accurately represent the benign or non-benign likelihood of the behavior. This is because, in order to calculate P, it may be necessary first for the system to calculate the trust value (c) using a formula such as the following: . Due to the unique behavior of benign and non-benign applications, the confidence value (c) using this formula can be clustered around one of two extremes that are very close to 1 or very close to zero. Thus, the use of the above formula can produce results that are highly clustered around two extremes (ie, the resulting P value can be very close to 1 or very close to 0).

鑒於此等事實,計算裝置可經組態以使用S型參數(α及β)來計算標準化之信賴值(c^),且使用標準化之信賴值(c^)將行為分類為良性或非良性,以便較佳地判定是否繼續評估該行為(例如,是否選擇更穩健的分類器模型等等)。 In view of these facts, the computing device can be configured to use the S-type parameters (α and β) to calculate the normalized confidence value ( c ^) and classify the behavior as benign or non-benign using a standardized confidence value ( c ^) In order to better determine whether to continue to evaluate the behavior (eg, whether to choose a more robust classifier model, etc.).

在一態樣中,計算裝置可經組態以使用以下公式計算標準化之信賴值(C^): In one aspect, the computing device can be configured to calculate a normalized confidence value (C^) using the following formula:

如上文公式中所示,標準化之信賴值(c^)可由S型參數α及β及原始信賴值(c)界定。計算裝置可經組態以執行操作以實施上文公式,以便計算標準化之信賴值(c^)。計算裝置可使用標準化之信賴值(c^)來判定是否選擇較大或穩健的分類器模型或當前分析結果是否指示行為可以充分高信賴度被分類為良性或非良性。 As shown in the above formula, the normalized confidence value ( c ^) can be defined by the S-type parameters α and β and the original trust value ( c ). The computing device can be configured to perform operations to implement the above formula to calculate a normalized confidence value ( c ^). The computing device can use the normalized confidence value ( c ^) to determine whether to choose a larger or robust classifier model or whether the current analysis results indicate that the behavior can be classified as benign or non-benign with sufficient high confidence.

藉由使用標準化之信賴值(c^),計算裝置可減少經錯誤分類之向量的數目,減少誤報(false positive)之數目,減少漏報(false negative)之數目,且減少行為被分類為可疑的及需要用更穩健分類器模型進一步分析的次數。因此,計算裝置可更精確且有效地為裝置行為分類,較佳地判定行為係良性抑或非良性,及更有效地判定額外分析(諸如選擇及更大或更穩健分類器模型之使用)是否會導致裝置行為的更精確分類。 By using a standardized confidence value ( c ^), the computing device can reduce the number of misclassified vectors, reduce the number of false positives, reduce the number of false negatives, and reduce the behavior to be classified as suspicious. And the number of times that need to be further analyzed with a more robust classifier model. Thus, the computing device can more accurately and efficiently classify device behavior, preferably determine whether the behavior is benign or non-benign, and more effectively determine whether additional analysis (such as selection and use of larger or more robust classifier models) will A more accurate classification of device behavior.

在一些態樣中,計算裝置可經組態以結合自伺服器計算裝置接收新分類器模型,接收經更新或經修正的S型參數α及β。在一些態樣中,計算裝置可經組態以基於歷史資訊(例如,自先前執行、行為模型之先前應用,先前經判定之標準化之信賴值等所收集的)、新資訊、機器學習、內容建模、及在可用資訊、行動裝置狀態、環境條件、網路條件、行動裝置效能、電池消耗位準等中偵測到的變化而更新或修正本端地位於計算裝置上之S型參數α及β。 In some aspects, the computing device can be configured to receive the new classifier model in conjunction with the self-server computing device to receive the updated or modified S-type parameters a and β. In some aspects, the computing device can be configured to be based on historical information (eg, collected from previous executions, previous applications of behavioral models, previously determined standardized confidence values, etc.), new information, machine learning, content Modeling, and updating or correcting the S-type parameter α locally located on the computing device based on changes detected in available information, mobile device status, environmental conditions, network conditions, mobile device performance, battery consumption levels, etc. And β.

在一些態樣中,計算裝置可經組態以將經本端更新或修正之S型參數α及β發送至伺服器計算裝置,該伺服器計算裝置可接收且使用此等參數(例如,藉由用自許多其他裝置接收之其他S型參數群智該等參數)來更新分類器模型及/或在伺服器中產生用於分類器模型的新S型參數α及β。此等回饋通信允許系統不斷優化且調整其用於改良式(例如,更精確、更有效等)行為分類的模型及操作。 In some aspects, the computing device can be configured to transmit the S-type parameters α and β updated or modified by the local end to a server computing device that can receive and use the parameters (eg, by The classifier model is updated with other S-type parameter groups received from many other devices) and/or new S-type parameters α and β for the classifier model are generated in the server. These feedback communications allow the system to continually optimize and adjust its models and operations for improved (eg, more accurate, more efficient, etc.) behavioral classifications.

圖12說明根據一態樣的將標準化之信賴值(c^)用於改良式行為分類之方法1200。在區塊1202中,計算裝置之處理器可自伺服器計算裝置接收完全分類器模型及S型參數(例如,α及β)。在一實施例中,完全分類器模型可包括有限狀態機,其包括適合於表達為複數個強化單層決策樹之資訊。每一強化單層決策樹可包括一測試條件及一加權值,且每一測試條件可與一機率值相關聯,其中該機率值識別其相關 聯測試條件將使得計算裝置能夠判定行為是否為良性與非良性中之一者的似然性。 Figure 12 illustrates a method 1200 for using a standardized confidence value ( c ^) for improved behavior classification, according to an aspect. In block 1202, the processor of the computing device can receive the full classifier model and S-type parameters (eg, alpha and beta) from the server computing device. In an embodiment, the full classifier model can include a finite state machine that includes information suitable for expression as a plurality of enhanced single layer decision trees. Each enhanced single-layer decision tree can include a test condition and a weighted value, and each test condition can be associated with a probability value, wherein the probability value identifying its associated test condition will enable the computing device to determine whether the behavior is benign The likelihood of being one of non-benign.

在區塊1204中,處理器可基於所接收之S型參數判定或計算標準化之信賴值,諸如藉由使用以下公式: In block 1204, the processor can determine or calculate a normalized confidence value based on the received S-type parameter, such as by using the following formula:

在區塊1206中,計算裝置可使用標準化之信賴值為裝置行為分類。舉例而言,在一態樣中,計算裝置可藉由將包括於所接收之完全分類器模型中之有限狀態機轉換成複數個強化單層決策樹來產生強化單層決策樹清單;基於包括於強化單層決策樹清單中之強化單層決策樹來產生精簡分類器模型家族;將行為向量資料/資訊結構應用於分類器模型家族中之第一精簡分類器模型以產生分析結果;及基於標準化之信賴值來判定是否將行為向量資料/資訊結構應用於分類器模型家族中之第二精簡分類器模型以產生新分析結果;及回應於基於標準化之信賴值判定使用更堅固分類器模型將不會增加行為分類之精確性,基於所產生之分析結果將行為分類為良性或非良性中之一者。 In block 1206, the computing device can use the standardized confidence value as the device behavior classification. For example, in one aspect, the computing device can generate a list of enhanced single-level decision trees by converting a finite state machine included in the received full classifier model into a plurality of enhanced single-level decision trees; The enhanced single-level decision tree in the enhanced single-level decision tree list is generated to generate a reduced classifier model family; the behavior vector data/information structure is applied to the first reduced classifier model in the classifier model family to generate analysis results; Standardized trust value to determine whether the behavior vector data/information structure is applied to the second reduced classifier model in the classifier model family to generate new analysis results; and in response to the standardized trust value determination using a more robust classifier model It does not increase the accuracy of the behavioral classification, and classifies the behavior as one of benign or non-benign based on the resulting analysis.

圖13說明根據另一態樣的將標準化之信賴值(c^)用於改良式行為分類之方法1300。在區塊1302中,計算裝置之處理器可自伺服器計算裝置接收完全分類器模型及S型參數。在區塊1304中,處理器可基於所接收之完全分類器模型產生精簡分類器模型。在區塊1306中,處理器可基於所接收之S型參數判定/計算標準化之信賴值。在區塊1308中,處理器可將行為向量資訊結構應用於精簡分類器模型以產生分析結果。在區塊1310中,處理器可使用分析結果及標準化之信賴值來判定計算裝置之行為係良性抑或非良性的。 Figure 13 illustrates a method 1300 of using a standardized confidence value ( c ^) for improved behavior classification, according to another aspect. In block 1302, the processor of the computing device can receive the full classifier model and the S-type parameters from the server computing device. In block 1304, the processor may generate a reduced classifier model based on the received full classifier model. In block 1306, the processor can determine/calculate a normalized confidence value based on the received S-type parameters. In block 1308, the processor can apply a behavior vector information structure to the reduced classifier model to produce an analysis result. In block 1310, the processor can use the analysis results and the normalized confidence values to determine whether the behavior of the computing device is benign or non-benign.

圖14說明根據又一態樣的將標準化之信賴值(c^)用於改良式行為 分類之方法1400。在區塊1402中,計算裝置之處理器可自伺服器計算裝置接收完全分類器模型及S型參數。在區塊1404中,處理器可藉由將包括於所接收之完全分類器模型中之有限狀態機轉換成複數個強化單層決策樹來產生強化單層決策樹清單。在區塊1406中,處理器可基於包括於強化單層決策樹清單中之強化單層決策樹來產生精簡分類器模型家族。在區塊1408中,處理器可基於所接收之S型參數判定/計算用於精簡分類器模型中之一或多者的一或多個標準化之信賴值。舉例而言,在一態樣中,處理器可計算用於精簡分類器模型家族中之所有精簡分類器模型的單個標準化之信賴值。在另一態樣中,處理器可計算用於精簡分類器模型家族中之精簡分類器模型中之每一者的標準化之信賴值。 Figure 14 illustrates a method 1400 for using a standardized confidence value ( c ^) for improved behavior classification, according to yet another aspect. In block 1402, the processor of the computing device can receive the full classifier model and the S-type parameters from the server computing device. In block 1404, the processor may generate an enhanced single layer decision tree list by converting the finite state machine included in the received full classifier model into a plurality of enhanced single layer decision trees. In block 1406, the processor may generate a reduced classifier model family based on the enhanced single layer decision tree included in the enhanced single layer decision tree list. In block 1408, the processor may determine/calculate one or more standardized confidence values for refining one or more of the classifier models based on the received S-type parameters. For example, in one aspect, the processor can calculate a single standardized confidence value for streamlining all of the reduced classifier models in the family of classifier models. In another aspect, the processor can calculate a standardized confidence value for simplifying each of the reduced classifier models in the family of classifier models.

在區塊1408中,處理器可將行為向量資訊結構應用於分類器模型家族中之第一精簡分類器模型以產生分析結果。在區塊1410中,處理器可基於標準化之信賴值(例如,與第一或第二精簡分類器模型相關聯之標準化之信賴值等),判定是否將行為向量資訊結構應用於分類器模型家族中之第二精簡分類器模型以產生新分析結果。 In block 1408, the processor can apply a behavior vector information structure to the first reduced classifier model in the family of classifier models to produce an analysis result. In block 1410, the processor can determine whether to apply the behavior vector information structure to the classifier model family based on the normalized trust value (eg, the normalized trust value associated with the first or second reduced classifier model, etc.) The second is to reduce the classifier model to produce new analysis results.

圖15說明根據又一態樣的將標準化之信賴值(c^)用於改良式行為分類之方法1500。在區塊1502中,計算裝置之處理器可自伺服器計算裝置接收完全分類器模型及S型參數。在區塊1504中,處理器可基於所接收之S型參數判定/計算標準化之信賴值。在區塊1506中,處理器可將行為向量資訊結構應用於分類器模型以產生新分析結果。在區塊1508中,處理器可基於分析結果及/或所判定之標準化之信賴值更新或修正所接收之S型參數。在區塊1510中,處理器可將經更新之S型參數發送至伺服器計算裝置。亦即,在區塊1510中,計算裝置可將經本端更新或修正之S型參數α及β發送至伺服器計算裝置,該伺服器計算裝置可接收且使用此等參數(例如,藉由用自許多其他裝置接收之其 他S型參數群智該等參數)來更新分類器模型及/或在伺服器中產生用於分類器模型的新S型參數α及β。此允許系統不斷優化及調整其用於改良式(例如,更精確、更有效等)行為分類的模型及操作。 Figure 15 illustrates a method 1500 for using a standardized confidence value ( c ^) for improved behavior classification, according to yet another aspect. In block 1502, the processor of the computing device can receive the full classifier model and the S-type parameters from the server computing device. In block 1504, the processor can determine/calculate a normalized confidence value based on the received S-type parameters. In block 1506, the processor can apply a behavior vector information structure to the classifier model to produce a new analysis result. In block 1508, the processor may update or modify the received S-type parameter based on the analysis result and/or the determined normalized confidence value. In block 1510, the processor can send the updated S-type parameters to the server computing device. That is, in block 1510, the computing device can transmit the S-type parameters α and β updated or modified by the local end to the server computing device, which can receive and use the parameters (eg, by using The other S-type parameters received from many other devices are such parameters to update the classifier model and/or to generate new S-type parameters α and β for the classifier model in the server. This allows the system to continually optimize and adjust its models and operations for improved (eg, more accurate, more efficient, etc.) behavioral classifications.

圖16說明根據又一態樣的將標準化之信賴值(c^)用於改良式行為分類之方法1600。在區塊1602中,計算裝置之處理器可自伺服器計算裝置接收完全分類器模型及S型參數。在區塊1604中,處理器可基於所接收之S型參數判定/計算標準化之信賴值。在可選區塊1606中,處理器可將行為向量資訊結構應用於分類器模型以產生新分析結果。在區塊1608中,處理器可自伺服器計算裝置接收經更新之S型參數。在區塊1610中,處理器可基於所接收的經更新之S型參數判定/計算新的標準化之信賴值。在區塊1612中,處理器可諸如藉由以下操作,基於新的標準化之信賴值而分類計算裝置之行為:將行為向量資訊結構應用於分類器模型以產生分析結果;結合新的標準化之信賴值使用先前產生之分析結果;將另一行為向量資訊結構應用於相同或不同分類器模型以產生新分析結果,等等。 Figure 16 illustrates a method 1600 for using a standardized confidence value ( c ^) for improved behavior classification, according to yet another aspect. In block 1602, the processor of the computing device can receive the full classifier model and the S-type parameters from the server computing device. In block 1604, the processor can determine/calculate a normalized confidence value based on the received S-type parameters. In optional block 1606, the processor can apply a behavior vector information structure to the classifier model to produce a new analysis result. In block 1608, the processor can receive the updated S-type parameters from the server computing device. In block 1610, the processor can determine/calculate a new normalized confidence value based on the received updated S-type parameters. In block 1612, the processor can classify the behavior of the computing device based on the new normalized trust value, such as by applying a behavior vector information structure to the classifier model to produce the analysis result; combining the new standardization trust Values use previously generated analysis results; another behavior vector information structure is applied to the same or different classifier models to produce new analysis results, and so on.

各種態樣可實施於多種計算裝置上,其中一實例呈智慧型電話之形式在圖17中進行說明。智慧型電話1700可包括耦接至內部記憶體1704、顯示器1706及揚聲器1708之處理器1702。另外,智慧型電話1700可包括用於發送及接收電磁輻射之天線1710,其可連接至耦接至處理器1702之無線資料鏈路及/或蜂巢式電話/無線收發器1712。智慧型手機1700通常亦包括用於接收使用者輸入之選單選擇按鈕或搖臂開關XX20。 Various aspects can be implemented on a variety of computing devices, an example of which is illustrated in Figure 17 in the form of a smart phone. The smart phone 1700 can include a processor 1702 coupled to the internal memory 1704, the display 1706, and the speaker 1708. Additionally, smart phone 1700 can include an antenna 1710 for transmitting and receiving electromagnetic radiation that can be coupled to a wireless data link and/or cellular telephone/wireless transceiver 1712 that is coupled to processor 1702. The smartphone 1700 also typically includes a menu selection button or rocker switch XX20 for receiving user input.

典型智慧型電話1700亦包括聲音編碼/解碼(編解碼器CODEC)電路1716,其將自麥克風接收之聲音數位化成適合於無線傳輸之資料封包,且將所接收之聲音資料封包解碼以產生經提供至揚聲器以產生聲音的類比信號。又,處理器1702、無線收發器1712及CODEC 1716中 之一或多者可包括數位信號處理器(DSP)電路(圖中未分別展示)。 A typical smart phone 1700 also includes a voice encoding/decoding (codec CODEC) circuit 1716 that digitizes the sound received from the microphone into a data packet suitable for wireless transmission and decodes the received sound data packet to produce a provided To the speaker to produce an analog signal of the sound. Moreover, the processor 1702, the wireless transceiver 1712, and the CODEC 1716 One or more of may include digital signal processor (DSP) circuitry (not shown separately).

態樣方法之部分可在用戶端伺服器架構中予以實現,其中一些處理發生於伺服器中,諸如維持正常操作行為之資料庫,該等資料庫可在執行態樣方法時藉由行動裝置處理器存取。此等態樣亦可實施於多種市購伺服器裝置中的任一者上,諸如,圖18中所說明之伺服器1800。此伺服器1800通常包括耦接至揮發性記憶體1802及大容量非揮發性記憶體(諸如磁碟機1803)之處理器1801。伺服器1800亦可包括耦接至處理器1801之軟碟驅動器、緊密光碟(CD)或DVD光碟機1804。伺服器1800亦可包括耦接至處理器1801之網路存取埠1806,其用於與諸如耦接至其他廣播系統電腦及伺服器之區域網路的網路1805建立資料連接。 Portions of the aspect method can be implemented in a client-side server architecture, some of which occur in the server, such as a database that maintains normal operational behavior, which can be processed by the mobile device when performing the aspect method Access. These aspects can also be implemented on any of a variety of commercially available server devices, such as server 1800 illustrated in FIG. The server 1800 typically includes a processor 1801 coupled to a volatile memory 1802 and a bulk non-volatile memory such as a disk drive 1803. The server 1800 can also include a floppy disk drive, compact disk (CD) or DVD player 1804 coupled to the processor 1801. The server 1800 can also include a network access port 1806 coupled to the processor 1801 for establishing a data connection with a network 1805, such as a local area network coupled to other broadcast system computers and servers.

處理器1702、1801可為可藉由軟體指令(應用程式)組態以執行多種功能(包括下文描述之各種態樣的功能)的任何可程式化微處理器、微電腦或多個處理器晶片。在一些行動裝置中,可提供多個處理器1702,諸如專用於無線通信功能之一個處理器及專用於執行其他應用程式之一個處理器。通常,軟體應用程式可在經存取且載入至處理器1702、1801中之前儲存於內部記憶體1704、1802、1803中。處理器1702、1801可包括足以儲存應用程式軟體指令之內部記憶體。 The processors 1702, 1801 can be any programmable microprocessor, microcomputer or processor chip that can be configured by a software instruction (application) to perform a variety of functions, including the various aspects described below. In some mobile devices, a plurality of processors 1702 may be provided, such as one processor dedicated to wireless communication functions and one processor dedicated to executing other applications. In general, the software application can be stored in internal memory 1704, 1802, 1803 before being accessed and loaded into processors 1702, 1801. The processors 1702, 1801 can include internal memory sufficient to store application software instructions.

術語「效能降級」在本申請案用以指代廣泛多種不合需要的行動裝置操作及特性,諸如較長處理時間、較慢即時反應性、較低電池壽命、私用資料之損失、惡意經濟活動(例如,發送未經授權之特級SMS訊息)、阻斷服務(DoS)、與強佔行動裝置或將電話用於探查或僵屍網路活動相關的操作,等等。 The term "performance degradation" is used in this application to refer to a wide variety of undesirable mobile device operations and features, such as longer processing times, slower immediate response, lower battery life, loss of private data, malicious economic activity. (eg, sending unauthorized premium SMS messages), blocking services (DoS), operations related to compelling mobile devices or using phones for probing or botnet activity, and so on.

用於在可程式化處理器上執行以用於進行各種態樣之操作的電腦程式碼或「程式碼」可以諸如C、C++、C#、Smalltalk、Java、JavaScript、Visual Basic、結構化查詢語言(例如,交易SQL)、Perl之 高階程式化語言或以各種其他程式化語言寫入。如本申請案中使用之儲存在電腦可讀儲存媒體上的程式碼或程式可指代機器語言程式碼(諸如目標程式碼),其格式可由處理器理解。 Computer code or "code" for execution on a programmable processor for performing various aspects of operations such as C, C++, C#, Smalltalk, Java, JavaScript, Visual Basic, Structured Query Language ( For example, trading SQL), Perl High-level stylized languages or written in a variety of other stylized languages. A code or program stored on a computer readable storage medium as used in this application may refer to a machine language code (such as a target code) whose format is understandable by the processor.

許多行動計算裝置作業系統核經組織至使用者空間(其中執行非特許程式碼)及核空間(其中執行特許程式碼)中。此分離在Android®及其他通用公共許可(GPL)環境(其中為核空間之部分的程式碼必須經GPL許可,而在使用者空間中執行之程式碼可不經GPL許可)中尤其重要。應理解,除非另外明確說明,否則本文論述之各種軟體組件/模組可在核空間或使用者空間中實施。 Many mobile computing device operating system cores are organized into user space (where unlicensed code is executed) and core space (where licensed code is executed). This separation is especially important in Android® and other Common Public License (GPL) environments where the code for the portion of the core space must be licensed by the GPL and the code executed in user space is not licensed by the GPL. It should be understood that the various software components/modules discussed herein can be implemented in nuclear space or user space, unless explicitly stated otherwise.

前文方法描述及程序流程式僅提供作為例示性實例,且不意欲要求或暗示必須以呈現之次序進行各種態樣之步驟。如將由熟習此項技術者瞭解,可以任何次序執行前述態樣中之步驟的次序。諸如「其後」、「接著」、「接下來」等等之詞語非意欲限制步驟之次序;此等詞語僅用於導引讀者閱讀該等方法之描述。另外,對呈單數形式之申請專利範圍元素的任何參考(例如,使用冠詞「一」或「該」)不應解釋為將元素限於單數形式。 The above description of the method and the program flow are only provided as illustrative examples, and are not intended to require or imply that the various steps must be performed in the order presented. The order of the steps in the foregoing aspects may be performed in any order, as will be appreciated by those skilled in the art. Words such as "subsequent", "continued", "next" and the like are not intended to limit the order of the steps; these words are only used to guide the reader in reading the description of the methods. In addition, any reference to the element in the singular form of the singular (e.g., the use of the article "a" or "the") is not construed as limiting the element to the singular.

如本申請案中所使用,術語「組件」、「模組」、「系統」、「引擎」、「產生器」、「管理器」及其類似者意欲包括電腦相關實體,諸如(但不限於)硬體、韌體、硬體與軟體之組合、軟體、或執行中軟體,該等電腦相關實體經組態以執行特定操作或功能。舉例而言,組件可為(但不限於)在處理器上執行之程序、處理器、物件、可執行體、執行線緒、程式及/或電腦。借助於說明,在計算裝置上執行之應用程式及該計算裝置兩者皆可被稱作組件。一或多個組件可駐留在程序及/或執行緒內,且組件可定位在一個處理器或核心上且/或分佈在兩個或更多個處理器或核心之間。此外,此等組件可自於其上儲存有各種指令及/或資料結構的各種非暫時性電腦可讀媒體執行。組件可藉助 於本端及/或遠端程序、功能或過程呼叫、電子信號、資料封包、記憶體讀取/寫入,及其他已知網路、電腦、處理器、及/或程序相關通信方法通信。 As used in this application, the terms "component", "module", "system", "engine", "generator", "manager" and the like are intended to include computer-related entities such as, but not limited to Hardware, firmware, a combination of hardware and software, software, or executing software, these computer-related entities are configured to perform specific operations or functions. For example, a component can be, but is not limited to being, a program executed on a processor, a processor, an object, an executable, a thread, a program, and/or a computer. By way of illustration, both an application executing on a computing device and the computing device can be referred to as a component. One or more components can reside within a program and/or a thread, and the components can be located on one processor or core and/or distributed between two or more processors or cores. In addition, such components can be executed from a variety of non-transitory computer readable media having various instructions and/or data structures stored thereon. Components can be used Communicates with local and/or remote program, function or process calls, electronic signals, data packets, memory read/write, and other known network, computer, processor, and/or program related communication methods.

結合本文中揭示之態樣描述的各種說明性邏輯區塊、模組、電路及演算法步驟可被實施為電子硬體、電腦軟體或兩者之組合。為了清楚地說明硬體與軟體之此可互換性,上文已大體在其功能性方面描述了各種說明性組件、區塊、模組、電路及步驟。此功能性實施為硬體抑或軟體取決於特定應用及強加於整個系統上之設計約束。熟習此項技術者可針對每一特定應用而以不同方式實施所描述之功能性,但該等實施決策不應被解釋為引起脫離申請專利範圍之範疇。 The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the aspects disclosed herein can be implemented as an electronic hardware, a computer software, or a combination of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether this functionality is implemented as hardware or software depends on the particular application and design constraints imposed on the overall system. Those skilled in the art can implement the described functionality in various ways for each particular application, but such implementation decisions should not be construed as causing the scope of the application.

結合本文中所揭示之態樣而描述的用以實施各種說明性邏輯、邏輯區塊、模組及電路之硬體可藉由以下各者來實施或執行:通用處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA)或其他可程式化邏輯裝置、離散閘或電晶體邏輯、離散硬體組件,或其經設計以執行本文中所描述之功能的任何組合。通用處理器可為多處理器,但在替代方案中,處理器可為任何習知之處理器、控制器、微控制器或狀態機。處理器亦可被實施為計算裝置之組合,例如DSP與多處理器之組合、複數個多處理器、結合DSP核心之一或多個多處理器,或任何其他此類組態。可替代地,可藉由特定於給定功能之電路執行一些步驟或方法。 The hardware described in connection with the aspects disclosed herein for implementing the various illustrative logic, logic blocks, modules, and circuits may be implemented or executed by: general purpose processors, digital signal processors ( DSP), Special Application Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or designed to perform the purposes herein Any combination of features described. A general purpose processor may be a multi-processor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. The processor can also be implemented as a combination of computing devices, such as a combination of a DSP and a multi-processor, a plurality of multi-processors, one or more multi-processors in conjunction with a DSP core, or any other such configuration. Alternatively, some steps or methods may be performed by circuitry that is specific to a given function.

在一或多個例示性態樣中,所描述之功能可在硬體、軟體、韌體或其任何組合中實施。若實施於軟體中,則該等功能可作為一或多個處理器可執行指令或程式碼而儲存於非暫時性電腦可讀儲存媒體或非暫時性處理器可讀儲存媒體上。本文揭示之方法或演算法之步驟可以體現於處理器可執行軟體模組中,該處理器可執行軟體模組可駐留於非暫時性電腦可讀或處理器可讀儲存媒體上。非暫時性電腦可讀或 處理器可讀儲存媒體可為可由電腦或處理器存取之任何儲存媒體。借助於實例但非限制,此類非暫時性電腦可讀或處理器可讀媒體可包括RAM、ROM、EEPROM、快閃記憶體、CD-ROM或其他光碟儲存裝置、磁碟儲存裝置或其他磁性儲存裝置,或可用於以指令或資料結構形式儲存所要程式碼且可由電腦存取之任何其他媒體。如本文中所使用之磁碟及光碟包括光碟(CD)、雷射光碟、光學光碟、數位影音光碟(DVD)、軟碟及藍光光碟,其中磁碟通常以磁性方式再生資料,而光碟用雷射以光學方式再生資料。以上各者之組合亦包括在非暫時性電腦可讀及處理器可讀媒體之範疇內。另外,方法或演算法之操作可作為程式碼及/或指令中之一者或任何組合或集合而駐留在可併入至電腦程式產品中之非暫時性處理器可讀媒體及/或電腦可讀媒體上。 In one or more exemplary aspects, the functions described can be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more processor-executable instructions or code on a non-transitory computer readable storage medium or non-transitory processor readable storage medium. The methods or algorithms disclosed herein may be embodied in a processor executable software module that resides on a non-transitory computer readable or processor readable storage medium. Non-transitory computer readable or The processor readable storage medium can be any storage medium that can be accessed by a computer or processor. By way of example and not limitation, such non-transitory computer readable or processor readable medium may include RAM, ROM, EEPROM, flash memory, CD-ROM or other optical disk storage device, disk storage device or other magnetic A storage device, or any other medium that can be used to store the desired code in an instruction or data structure and accessible by a computer. Disks and optical discs as used herein include compact discs (CDs), laser discs, optical compact discs, digital audio and video discs (DVDs), floppy discs and Blu-ray discs, in which the discs are usually magnetically regenerated and the discs are regenerated. The optical reproduction of the data. Combinations of the above are also included in the context of non-transitory computer readable and processor readable media. In addition, the operations of the method or algorithm may reside as one or any combination or collection of code and/or instructions in a non-transitory processor readable medium and/or computer that can be incorporated into a computer program product. Read the media.

提供對所揭示態樣之前述描述,以使得任一熟習此項技術者能夠製造或使用申請專利範圍。對於熟習此項技術者而言,對此等態樣之各種修改將易於顯而易見,且可在不背離申請專利範圍之範疇的情況下將本文中所界定之一般原理應用於其他態樣。因此,本發明並不意欲受限於本文中所展示之實施例,而是應符合與以下申請專利範圍及本文中所揭示之原理及新穎特徵一致的最廣範疇。 The previous description of the disclosed aspects is provided to enable any person skilled in the art to make or use the scope of the claims. Various modifications to the above-described aspects will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other aspects without departing from the scope of the invention. Therefore, the present invention is not intended to be limited to the embodiments shown herein, but the scope of the invention is to be accorded

1400‧‧‧方法 1400‧‧‧ method

1402‧‧‧區塊 1402‧‧‧ Block

1404‧‧‧區塊 1404‧‧‧ Block

1406‧‧‧區塊 1406‧‧‧ Block

1408‧‧‧區塊 Block 1408‧‧‧

1410‧‧‧區塊 1410‧‧‧ Block

1412‧‧‧區塊 1412‧‧‧ Block

Claims (30)

一種分析一計算裝置中之行為的方法,其包含:在該計算裝置之一處理器中自一伺服器計算裝置接收一完全分類器模型及S型參數;基於該等S型參數判定一標準化之信賴值;及基於該標準化之信賴值為該計算之一裝置行為分類。 A method of analyzing behavior in a computing device, comprising: receiving a full classifier model and S-type parameters from a server computing device in a processor of the computing device; determining a normalization based on the S-type parameters The trust value; and the trust value based on the standardization is a device behavior classification of the calculation. 如請求項1之方法,其進一步包含:藉由將包括於該完全分類器模型中之一有限狀態機轉換成強化單層決策樹而產生一強化單層決策樹清單;及基於包括於該強化單層決策樹清單中之該等強化單層決策樹而產生一精簡分類器模型家族,其中基於該標準化之信賴值為該裝置行為分類包含:將一行為向量資訊結構應用於該精簡分類器模型家族中之一第一精簡分類器模型以產生分析結果;及基於該標準化之信賴值來判定是否將該行為向量資訊結構應用於該精簡分類器模型家族中之一第二精簡分類器模型以產生新分析結果。 The method of claim 1, further comprising: generating a list of enhanced single-level decision trees by converting a finite state machine included in the full classifier model into an enhanced single-level decision tree; and based on the enhancement The enhanced single-level decision tree in the single-level decision tree list generates a reduced classifier model family, wherein the device based on the standardized trust value comprises: applying a behavior vector information structure to the reduced classifier model a first streamlined classifier model of the family to generate an analysis result; and determining whether to apply the behavior vector information structure to the second reduced classifier model of the reduced classifier model family based on the normalized trust value to generate New analysis results. 如請求項1之方法,其進一步包含基於該完全分類器模型產生一精簡分類器模型,其中基於該標準化之信賴值為該計算裝置之該裝置行為分類包含:將一行為向量資訊結構應用於該精簡分類器模型以產生分析結果;及使用該等分析結果及該標準化之信賴值以判定該計算裝置之該裝置行為係良性抑或非良性的。 The method of claim 1, further comprising generating a reduced classifier model based on the full classifier model, wherein the device behavior classification based on the standardized trust value comprises: applying a behavior vector information structure to the The classifier model is streamlined to produce an analysis result; and the results of the analysis and the normalized confidence value are used to determine whether the device behavior of the computing device is benign or non-benign. 如請求項3之方法,其中基於該完全分類器模型產生該精簡分類 器模型包含:藉由將包括於該完全分類器模型中之一有限狀態機轉換成複數個強化單層決策樹而產生一強化單層決策樹清單;判定應進行評估以在不消耗該計算裝置之一過度量之處理資源、記憶體資源或能量資源的情況下為該裝置行為分類的唯一測試條件之數目;產生一測試條件清單,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的一測試條件插入至該測試條件清單中,直至該測試條件清單包括該數目個唯一測試條件為止;及產生該精簡分類器模型,以僅包括測試包括於該測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹。 The method of claim 3, wherein the reduced classification is generated based on the full classifier model The model includes: generating a list of enhanced single-level decision trees by converting one of the finite state machines included in the full classifier model into a plurality of enhanced single-layer decision trees; the decision should be evaluated to not consume the computing device The number of unique test conditions for classifying the behavior of the device in the case of an excessive amount of processing resources, memory resources, or energy resources; generating a list of test conditions that traverse the list of enhanced single-level decision trees in sequence, and Inserting a test condition associated with each of the sequentially traversed enhanced single-level decision trees into the test condition list until the test condition list includes the number of unique test conditions; and generating the reduced classifier model to It includes only those enhanced single-level decision trees that test one of the plurality of test conditions included in the list of test conditions. 如請求項3之方法,其中將該行為向量資訊結構應用於該精簡分類器模型以判定該計算裝置之該裝置行為是否為非良性的包含:將包括於該行為向量資訊結構中的所收集之行為資訊應用於包括於該精簡分類器模型中之複數個強化單層決策樹中之每一者;計算將該所收集之行為資訊應用於包括於該精簡分類器模型中之該複數個強化單層決策樹中之每一者的一結果之一加權平均值;及將該加權平均值與一臨限值進行比較。 The method of claim 3, wherein applying the behavior vector information structure to the reduced classifier model to determine whether the device behavior of the computing device is non-benign comprises: the collected information to be included in the behavior vector information structure The behavior information is applied to each of a plurality of enhanced single-layer decision trees included in the reduced classifier model; calculating the collected behavior information to apply the plurality of reinforcement sheets included in the reduced classifier model A weighted average of one of the results of each of the layer decision trees; and comparing the weighted average to a threshold. 如請求項1之方法,其進一步包含:基於該標準化之信賴值產生一經更新之S型參數;及將該經更新之S型參數發送至該伺服器計算裝置。 The method of claim 1, further comprising: generating an updated S-type parameter based on the normalized confidence value; and transmitting the updated S-type parameter to the server computing device. 如請求項1之方法,其進一步包含: 自該伺服器計算裝置接收一經更新之S型參數;基於自該伺服器計算裝置接收之該經更新之S型參數來判定一新的標準化之信賴值;及基於該新的標準化之信賴值為該計算裝置之該裝置行為分類。 The method of claim 1, further comprising: Receiving, from the server computing device, an updated S-type parameter; determining a new standardized trusted value based on the updated S-type parameter received from the server computing device; and the trusted value based on the new standardization The device behavior classification of the computing device. 如請求項1之方法,其中接收該完全分類器模型及該等S型參數包含接收一有限狀態機,該有限狀態機包括適合於表達為各自包括一加權值及一測試條件之兩個或更多個強化單層決策樹的資訊,該測試條件相關聯於識別該測試條件將使得該計算裝置能夠判定該計算裝置之該裝置行為是否為良性及非良性中之一者的一似然性的一機率值。 The method of claim 1, wherein receiving the full classifier model and the s-type parameters comprises receiving a finite state machine, the finite state machine comprising two or more suitable for expressing each comprising a weighted value and a test condition Information for a plurality of enhanced single-layer decision trees associated with identifying a likelihood that the test condition will enable the computing device to determine whether the device behavior of the computing device is one of benign and non-benign A probability value. 一種計算裝置,其包含:用於自一伺服器計算裝置接收一完全分類器模型及S型參數的構件;用於基於該等S型參數判定一標準化之信賴值的構件;及用於基於該標準化之信賴值為該計算裝置之一裝置行為分類的構件。 A computing device comprising: means for receiving a full classifier model and S-type parameters from a server computing device; means for determining a standardized confidence value based on the S-type parameters; and for The standardized confidence value is a component of the device behavior classification of one of the computing devices. 如請求項9之計算裝置,其進一步包含:用於藉由將包括於該完全分類器模型中之一有限狀態機轉換成強化單層決策樹而產生一強化單層決策樹清單的構件;及用於基於包括於該強化單層決策樹清單中之該等強化單層決策樹而產生一精簡分類器模型家族的構件;其中用於基於該標準化之信賴值為該計算裝置之該裝置行為分類的構件包含:用於將一行為向量資訊結構應用於該精簡分類器模型家族中之一第一精簡分類器模型以產生分析結果的構件;及 用於基於該標準化之信賴值來判定是否將該行為向量資訊結構應用於該精簡分類器模型家族中之一第二精簡分類器模型以產生新分析結果的構件。 The computing device of claim 9, further comprising: means for generating a list of enhanced single-level decision trees by converting a finite state machine included in the full classifier model to an enhanced single-level decision tree; and Means for generating a family of reduced classifier models based on the enhanced single-level decision trees included in the list of enhanced single-level decision trees; wherein the confidence value based on the normalization is the device behavior classification of the computing device The component includes: a component for applying a behavior vector information structure to the first reduced classifier model of the reduced classifier model family to generate an analysis result; and A means for determining whether to apply the behavior vector information structure to the second reduced classifier model of the reduced classifier model family to generate a new analysis result based on the normalized trust value. 如請求項9之計算裝置,其進一步包含用於基於該完全分類器模型產生一精簡分類器模型的構件,且其中用於基於該標準化之信賴值為該裝置行為分類的構件包含:用於將一行為向量資訊結構應用於該精簡分類器模型以產生分析結果的構件;及用於使用該等分析結果及該標準化之信賴值以判定該計算裝置之該裝置行為係良性抑或非良性的構件。 The computing device of claim 9, further comprising means for generating a reduced classifier model based on the full classifier model, and wherein the means for classifying the device behavior based on the standardized trust value comprises: A behavior vector information structure is applied to the reduced classifier model to generate a component of the analysis result; and means for using the analysis result and the normalized confidence value to determine whether the device behavior of the computing device is benign or non-benign. 如請求項11之計算裝置,其中用於基於該完全分類器模型產生該精簡分類器模型的構件包含:用於藉由將包括於該完全分類器模型中之一有限狀態機轉換成複數個強化單層決策樹而產生一強化單層決策樹清單的構件;用於判定應進行評估以在不消耗該計算裝置之一過度量之處理資源、記憶體資源或能量資源的情況下為該裝置行為分類的唯一測試條件之數目的構件;用於產生一測試條件清單的構件,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的一測試條件插入至該測試條件清單中,直至該測試條件清單包括該數目個唯一測試條件為止;及用於產生該精簡分類器模型,以僅包括測試包括於該測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹的構件。 The computing device of claim 11, wherein the means for generating the reduced classifier model based on the full classifier model comprises: for converting a finite state machine included in the full classifier model into a plurality of enhancements A single-layer decision tree produces a component that enforces a single-level decision tree list; is used to determine that the device should be evaluated to consume the processing resources, memory resources, or energy resources without consuming an excessive amount of the computing device. a component of the number of unique test conditions of the classification; a component for generating a list of test conditions, the generation traversing the list of enhanced single-level decision trees by sequence, and associating with each of the enhanced single-level decision trees traversed sequentially a test condition is inserted into the test condition list until the test condition list includes the number of unique test conditions; and is used to generate the reduced classifier model to include only a plurality of tests included in the test condition list One of the test conditions enhances the components of the single-level decision tree. 如請求項11之計算裝置,其中用於將該行為向量資訊結構應用於 該精簡分類器模型以判定該裝置行為是否為非良性的構件包含:用於將包括於該行為向量資訊結構中的所收集之行為資訊應用於包括於該精簡分類器模型中之複數個強化單層決策樹中之每一者的構件;用於計算將該所收集之行為資訊應用於包括於該精簡分類器模型中之該複數個強化單層決策樹中之每一者的一結果之一加權平均值的構件;及用於將該加權平均值與一臨限值進行比較的構件。 The computing device of claim 11, wherein the behavior vector information structure is applied to The reduced classifier model to determine whether the device behavior is non-benign comprises: applying the collected behavior information included in the behavior vector information structure to a plurality of reinforcement sheets included in the reduced classifier model a component of each of the hierarchical decision trees; one of a result of calculating the applied behavior information to each of the plurality of enhanced single-level decision trees included in the reduced classifier model a component of the weighted average; and means for comparing the weighted average to a threshold. 如請求項9之計算裝置,其進一步包含:用於基於該標準化之信賴值產生一經更新之S型參數的構件;及用於將該經更新之S型參數發送至該伺服器計算裝置的構件。 The computing device of claim 9, further comprising: means for generating an updated S-type parameter based on the normalized confidence value; and means for transmitting the updated S-type parameter to the server computing device . 如請求項9之計算裝置,其進一步包含:用於自該伺服器計算裝置接收一經更新之S型參數的構件;用於基於該經更新之S型參數判定一新的標準化之信賴值的構件;及用於基於該新的標準化之信賴值為該計算裝置之該裝置行為分類的構件。 The computing device of claim 9, further comprising: means for receiving an updated S-type parameter from the server computing device; means for determining a new standardized trusted value based on the updated S-type parameter And means for classifying the behavior of the device based on the new standardized confidence value. 如請求項9之計算裝置,其中用於接收該完全分類器模型及該等S型參數的構件包含用於接收一有限狀態機的構件,該有限狀態機包括適合於表達為各自包括一加權值及一測試條件之兩個或更多個強化單層決策樹的資訊,該測試條件相關聯於識別該測試條件將使得該計算裝置能夠判定該計算裝置之該裝置行為是否為良性及非良性中之一者的一似然性的一機率值。 The computing device of claim 9, wherein the means for receiving the full classifier model and the s-type parameters comprises means for receiving a finite state machine, the finite state machine comprising means adapted to express a weighting value each And information of two or more enhanced single-layer decision trees of a test condition associated with identifying the test condition to enable the computing device to determine whether the device behavior of the computing device is benign or non-benign One of the probability values of one likelihood. 一種計算裝置,其包含:一處理器,其經處理器可執行指令組態以執行包含以下項之 操作:自一伺服器計算裝置接收一完全分類器模型及S型參數;基於該等S型參數判定一標準化之信賴值;及基於該標準化之信賴值為該計算裝置之一裝置行為分類。 A computing device comprising: a processor configured by processor executable instructions to perform the Operation: receiving a full classifier model and S-type parameters from a server computing device; determining a standardized trust value based on the S-type parameters; and determining a device behavior classification based on the standardized trust value. 如請求項17之計算裝置,其中該處理器經處理器可執行指令組態以執行進一步包含以下項之操作:藉由將包括於該完全分類器模型中之一有限狀態機轉換成強化單層決策樹而產生一強化單層決策樹清單;及基於包括於該強化單層決策樹清單中之該等強化單層決策樹而產生一精簡分類器模型家族,且其中該處理器經處理器可執行指令組態以執行操作,使得基於該標準化之信賴值為該裝置行為分類包含:將一行為向量資訊結構應用於該精簡分類器模型家族中之一第一精簡分類器模型以產生分析結果;及基於該標準化之信賴值來判定是否將該行為向量資訊結構應用於該精簡分類器模型家族中之一第二精簡分類器模型以產生新分析結果。 The computing device of claim 17, wherein the processor is configured via processor-executable instructions to perform operations further comprising: converting a finite state machine included in the full classifier model to an enhanced single layer Generating a list of enhanced single-level decision trees by the decision tree; and generating a family of reduced classifier models based on the enhanced single-layer decision trees included in the list of enhanced single-level decision trees, wherein the processor is Executing an instruction configuration to perform an operation such that the confidence value based on the normalization is a classification of the device behavior comprises: applying a behavior vector information structure to one of the first reduced classifier models in the reduced classifier model family to generate an analysis result; And determining whether to apply the behavior vector information structure to one of the second reduced classifier models in the reduced classifier model family to generate a new analysis result based on the normalized trust value. 如請求項17之計算裝置,其中:該處理器經處理器可執行指令組態以執行進一步包含以下項之操作:基於該完全分類器模型產生一精簡分類器模型,且該處理器經處理器可執行指令組態以執行操作,使得基於該標準化之信賴值為該計算裝置之該裝置行為分類包含:將一行為向量資訊結構應用於該精簡分類器模型以產生分析結果;及使用該等分析結果及該標準化之信賴值以判定該計算裝置之該裝置行為係良性抑或非良性的。 The computing device of claim 17, wherein: the processor is configured via processor executable instructions to perform operations further comprising: generating a reduced classifier model based on the full classifier model, and the processor is processor Executable instructions are configured to perform operations such that the trusted behavior based on the normalization is a classification of the device behavior of the computing device comprising: applying a behavior vector information structure to the reduced classifier model to generate an analysis result; and using the analysis The result and the normalized confidence value are used to determine whether the device behavior of the computing device is benign or non-benign. 如請求項19之計算裝置,其中該處理器經處理器可執行指令組態以執行操作,使得基於該完全分類器模型產生該精簡分類器模型包含:藉由將包括於該完全分類器模型中之一有限狀態機轉換成複數個強化單層決策樹而產生一強化單層決策樹清單;判定應進行評估以在不消耗該計算裝置之一過度量之處理資源、記憶體資源或能量資源的情況下為該裝置行為分類的唯一測試條件之數目;產生一測試條件清單,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的一測試條件插入至該測試條件清單中,直至該測試條件清單包括該數目個唯一測試條件為止;及產生該精簡分類器模型,以僅包括測試包括於該測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹。 The computing device of claim 19, wherein the processor is configured by the processor executable instructions to perform an operation such that generating the reduced classifier model based on the full classifier model comprises: by being included in the full classifier model A finite state machine converts into a plurality of enhanced single-layer decision trees to generate a list of enhanced single-layer decision trees; the decision should be evaluated to consume processing resources, memory resources, or energy resources that do not consume an excessive amount of the computing device. The number of unique test conditions for classifying the behavior of the device; generating a list of test conditions that traverse the list of enhanced single-level decision trees in order, and associating with each enhanced hierarchical decision tree traversed sequentially a test condition is inserted into the test condition list until the test condition list includes the number of unique test conditions; and the reduced classifier model is generated to include only a plurality of test conditions included in the test condition list One of them enhances the single-layer decision tree. 如請求項19之計算裝置,其中該處理器經處理器可執行指令組態以執行操作,使得將該行為向量資訊結構應用於該精簡分類器模型以判定該計算裝置之該裝置行為是否為非良性的包含:將包括於該行為向量資訊結構中的所收集之行為資訊應用於包括於該精簡分類器模型中之複數個強化單層決策樹中之每一者;計算將該所收集之行為資訊應用於包括於該精簡分類器模型中之該複數個強化單層決策樹中之每一者的一結果之一加權平均值;及將該加權平均值與一臨限值進行比較。 The computing device of claim 19, wherein the processor is configured by the processor-executable instructions to perform an operation such that the behavior vector information structure is applied to the reduced classifier model to determine whether the device behavior of the computing device is non- Benign inclusion: applying the collected behavior information included in the behavior vector information structure to each of a plurality of enhanced single-level decision trees included in the reduced classifier model; calculating the collected behavior The information is applied to a weighted average of one of the results of each of the plurality of enhanced single layer decision trees included in the reduced classifier model; and the weighted average is compared to a threshold. 如請求項17之計算裝置,其中該處理器經處理器可執行指令組態以執行進一步包含以下項之操作: 基於該標準化之信賴值產生一經更新之S型參數;及將該經更新之S型參數發送至該伺服器計算裝置。 The computing device of claim 17, wherein the processor is configured via processor executable instructions to perform operations further comprising: Generating an updated S-type parameter based on the normalized confidence value; and transmitting the updated S-type parameter to the server computing device. 如請求項17之計算裝置,其中該處理器經處理器可執行指令組態以執行進一步包含以下項之操作:自該伺服器計算裝置接收一經更新之S型參數;基於該經更新之S型參數判定一新的標準化之信賴值;及基於該新的標準化之信賴值為該計算裝置之該裝置行為分類。 The computing device of claim 17, wherein the processor is configured via processor executable instructions to perform operations further comprising: receiving an updated S-type parameter from the server computing device; based on the updated S-type The parameter determines a new standardized confidence value; and the confidence value based on the new standardization is the device behavior classification of the computing device. 如請求項17之計算裝置,其中該處理器經處理器可執行指令組態以執行操作,使得接收該完全分類器模型及該等S型參數包含接收一有限狀態機,該有限狀態機包括適合於表達為各自包括一加權值及一測試條件之兩個或更多個強化單層決策樹的資訊,該測試條件相關聯於識別該測試條件將使得該處理器能夠判定該裝置行為是否為良性及非良性中之一者的一似然性的一機率值。 The computing device of claim 17, wherein the processor is configured by the processor-executable instructions to perform operations such that receiving the full classifier model and the S-type parameters comprises receiving a finite state machine, the finite state machine including Expressed as information for two or more enhanced single-layer decision trees each including a weighted value and a test condition associated with identifying the test condition that will enable the processor to determine whether the device behavior is benign And a probability value of one of the non-benign ones. 一種非暫時性電腦可讀儲存媒體,其上儲存有經組態以使得一計算裝置之一處理器執行包含以下項之操作的處理器可執行軟體指令:自一伺服器計算裝置接收一完全分類器模型及S型參數;基於該等S型參數判定一標準化之信賴值;及基於該標準化之信賴值為該計算裝置之一裝置行為分類。 A non-transitory computer readable storage medium having stored thereon processor executable software instructions configured to cause a processor of a computing device to perform an operation comprising: receiving a complete classification from a server computing device And a s-type parameter; determining a standardized trust value based on the s-type parameters; and the reliance value based on the standardization is a device behavior classification of the computing device. 如請求項25之非暫時性電腦可讀儲存媒體,其中該等儲存之處理器可執行指令經組態以使得該處理器執行進一步包含以下項之操作:藉由將包括於該完全分類器模型中之一有限狀態機轉換成強化單層決策樹而產生一強化單層決策樹清單;及 基於包括於該強化單層決策樹清單中之該等強化單層決策樹而產生一精簡分類器模型家族;其中基於該標準化之信賴值為該計算裝置之該裝置行為分類包含:將一行為向量資訊結構應用於該精簡分類器模型家族中之一第一精簡分類器模型以產生分析結果;及基於該標準化之信賴值來判定是否將該行為向量資訊結構應用於該精簡分類器模型家族中之一第二精簡分類器模型以產生新分析結果。 The non-transitory computer readable storage medium of claim 25, wherein the stored processor executable instructions are configured to cause the processor to perform operations further comprising: including by the full classifier model One of the finite state machines is transformed into an enhanced single layer decision tree to produce a list of enhanced single layer decision trees; Generating a reduced classifier model family based on the enhanced single layer decision trees included in the enhanced single layer decision tree list; wherein the device based on the standardized trust value comprises: a behavior vector An information structure is applied to one of the first reduced classifier models in the reduced classifier model family to generate an analysis result; and determining whether the behavior vector information structure is applied to the reduced classifier model family based on the normalized trust value A second streamlined classifier model to generate new analysis results. 如請求項25之非暫時性電腦可讀儲存媒體,其中:該等儲存之處理器可執行指令經組態以使得該處理器執行進一步包含以下項之操作:基於該完全分類器模型產生一精簡分類器模型,及該等儲存之處理器可執行指令經組態以使得該處理器執行操作,使得基於該標準化之信賴值為該裝置行為分類包含:將一行為向量資訊結構應用於該精簡分類器模型以產生分析結果;及使用該等分析結果及該標準化之信賴值以判定該計算裝置之該裝置行為係良性抑或非良性的。 The non-transitory computer readable storage medium of claim 25, wherein: the stored processor executable instructions are configured to cause the processor to perform operations further comprising: generating a streamline based on the full classifier model The classifier model, and the stored processor-executable instructions are configured to cause the processor to perform operations such that the trusted value based on the normalization is a classification of the device behavior comprising: applying a behavior vector information structure to the reduced classification The model is used to generate an analysis result; and the analysis results and the normalized confidence value are used to determine whether the device behavior of the computing device is benign or non-benign. 如請求項27之非暫時性電腦可讀儲存媒體,其中該等儲存之處理器可執行指令經組態以使得該處理器執行操作,使得基於該完全分類器模型產生該精簡分類器模型包含:藉由將包括於該完全分類器模型中之一有限狀態機轉換成複數個強化單層決策樹而產生一強化單層決策樹清單;判定應進行評估以在不消耗該計算裝置之一過度量之處理資源、記憶體資源或能量資源的情況下為該裝置行為分類的唯一 測試條件之數目;產生一測試條件清單,該產生藉由依序遍歷該強化單層決策樹清單,且將與每一經依序遍歷之強化單層決策樹相關聯的一測試條件插入至該測試條件清單中,直至該測試條件清單包括該數目個唯一測試條件為止;及產生該精簡分類器模型,以僅包括測試包括於該測試條件清單中之複數個測試條件中之一者的彼等強化單層決策樹。 The non-transitory computer readable storage medium of claim 27, wherein the stored processor executable instructions are configured to cause the processor to perform an operation such that generating the reduced classifier model based on the full classifier model comprises: Generating a list of enhanced single-level decision trees by converting one of the finite state machines included in the full classifier model into a plurality of enhanced single-layer decision trees; the decision should be evaluated to avoid excessive consumption of the computing device The uniqueness of the device's behavior when processing resources, memory resources, or energy resources a number of test conditions; generating a list of test conditions by sequentially traversing the list of enhanced single-level decision trees, and inserting a test condition associated with each of the sequentially traversed enhanced single-level decision trees into the test condition In the list, until the list of test conditions includes the number of unique test conditions; and generating the reduced classifier model to include only those of the plurality of test conditions included in the test condition list Layer decision tree. 如請求項25之非暫時性電腦可讀儲存媒體,其中該等儲存之處理器可執行指令經組態以使得該處理器執行進一步包含以下項之操作:基於該標準化之信賴值產生一經更新之S型參數;及將該經更新之S型參數發送至該伺服器計算裝置。 The non-transitory computer readable storage medium of claim 25, wherein the stored processor executable instructions are configured to cause the processor to perform an operation further comprising: generating an updated based on the normalized confidence value An S-type parameter; and transmitting the updated S-type parameter to the server computing device. 如請求項25之非暫時性電腦可讀儲存媒體,其中該等儲存之處理器可執行指令經組態以使得該處理器執行進一步包含以下項之操作:自該伺服器計算裝置接收一經更新之S型參數;基於該經更新之S型參數判定一新的標準化之信賴值;及基於該新的標準化之信賴值為該計算裝置之該裝置行為分類。 The non-transitory computer readable storage medium of claim 25, wherein the stored processor executable instructions are configured to cause the processor to perform an operation further comprising: receiving an update from the server computing device S-type parameter; determining a new standardized trust value based on the updated S-type parameter; and determining the device behavior classification of the computing device based on the new standardized trust value.
TW105123791A 2015-08-14 2016-07-27 Using normalized confidence values for classifying mobile device behaviors TW201710960A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/826,430 US10089582B2 (en) 2013-01-02 2015-08-14 Using normalized confidence values for classifying mobile device behaviors

Publications (1)

Publication Number Publication Date
TW201710960A true TW201710960A (en) 2017-03-16

Family

ID=56511920

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105123791A TW201710960A (en) 2015-08-14 2016-07-27 Using normalized confidence values for classifying mobile device behaviors

Country Status (5)

Country Link
EP (1) EP3335160A1 (en)
JP (1) JP2018533105A (en)
CN (1) CN107924492A (en)
TW (1) TW201710960A (en)
WO (1) WO2017030672A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658372B (en) * 2017-12-12 2019-05-01 財團法人資訊工業策進會 Abnormal behavior detection model building apparatus and abnormal behavior detection model building method thereof
TWI670677B (en) * 2017-06-13 2019-09-01 大陸商北京嘀嘀無限科技發展有限公司 Systems and methods for recommending an estimated time of arrival

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6795529B2 (en) * 2018-02-15 2020-12-02 Kddi株式会社 Communication analysis method and system
CN108491720B (en) * 2018-03-20 2023-07-14 腾讯科技(深圳)有限公司 Application identification method, system and related equipment
CN109582776B (en) * 2018-12-04 2021-07-09 北京羽扇智信息科技有限公司 Model generation method and device, electronic device and storage medium
CN110298402A (en) * 2019-07-01 2019-10-01 国网内蒙古东部电力有限公司 A kind of small target deteection performance optimization method
CN112131607B (en) * 2020-09-25 2022-07-08 腾讯科技(深圳)有限公司 Resource data processing method and device, computer equipment and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130066815A1 (en) * 2011-09-13 2013-03-14 Research In Motion Limited System and method for mobile context determination
US9491187B2 (en) * 2013-02-15 2016-11-08 Qualcomm Incorporated APIs for obtaining device-specific behavior classifier models from the cloud
US9652362B2 (en) * 2013-12-06 2017-05-16 Qualcomm Incorporated Methods and systems of using application-specific and application-type-specific models for the efficient classification of mobile device behaviors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670677B (en) * 2017-06-13 2019-09-01 大陸商北京嘀嘀無限科技發展有限公司 Systems and methods for recommending an estimated time of arrival
TWI658372B (en) * 2017-12-12 2019-05-01 財團法人資訊工業策進會 Abnormal behavior detection model building apparatus and abnormal behavior detection model building method thereof

Also Published As

Publication number Publication date
EP3335160A1 (en) 2018-06-20
WO2017030672A1 (en) 2017-02-23
CN107924492A (en) 2018-04-17
JP2018533105A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US10089582B2 (en) Using normalized confidence values for classifying mobile device behaviors
KR101826865B1 (en) Methods and systems of using boosted decision stumps and joint feature selection and culling algorithms for the efficient classification of mobile device behaviors
KR101848576B1 (en) Methods and systems of using application-specific and application-type-specific models for the efficient classification of mobile device behaviors
US9609456B2 (en) Methods, devices, and systems for communicating behavioral analysis information
EP3191960B1 (en) Methods and systems for aggregated multi-application behavioral analysis of mobile device behaviors
US9324034B2 (en) On-device real-time behavior analyzer
US20170024660A1 (en) Methods and Systems for Using an Expectation-Maximization (EM) Machine Learning Framework for Behavior-Based Analysis of Device Behaviors
US20170046510A1 (en) Methods and Systems of Building Classifier Models in Computing Devices
US20160078362A1 (en) Methods and Systems of Dynamically Determining Feature Sets for the Efficient Classification of Mobile Device Behaviors
US20130304677A1 (en) Architecture for Client-Cloud Behavior Analyzer
US20160232353A1 (en) Determining Model Protection Level On-Device based on Malware Detection in Similar Devices
TW201710960A (en) Using normalized confidence values for classifying mobile device behaviors