TW201518767A - Lens module - Google Patents

Lens module Download PDF

Info

Publication number
TW201518767A
TW201518767A TW103122754A TW103122754A TW201518767A TW 201518767 A TW201518767 A TW 201518767A TW 103122754 A TW103122754 A TW 103122754A TW 103122754 A TW103122754 A TW 103122754A TW 201518767 A TW201518767 A TW 201518767A
Authority
TW
Taiwan
Prior art keywords
lens
lens module
focal length
conditional expression
following conditional
Prior art date
Application number
TW103122754A
Other languages
Chinese (zh)
Other versions
TWI534464B (en
Inventor
Il-Yong Park
Yong-Joo Jo
Ju-Hwa Son
Jin-Hwa Jung
Jae-Hyun Baik
Ho-Sik You
Phil-Ho Jung
Kyu-Min Chae
Original Assignee
Samsung Electro Mech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mech filed Critical Samsung Electro Mech
Publication of TW201518767A publication Critical patent/TW201518767A/en
Application granted granted Critical
Publication of TWI534464B publication Critical patent/TWI534464B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

A lens module may include a first lens having positive refractive power, a second lens having positive refractive power, a third lens having refractive power, a fourth lens having positive refractive power, a fifth lens having negative refractive power, and a sixth lens having negative refractive power and having one or more inflection points formed on an image-side surface thereof. An overall focal length of the lens module f and a focal length of the first lens f1 may satisfy the following Conditional Expression: [Conditional Expression] 1.0 < f1/f < 2.0.

Description

透鏡模組 Lens module 【相關申請案之交叉參考】[Cross-Reference to Related Applications]

本申請案主張2013年11月8日向韓國智慧財產局申請的韓國專利申請案第10-2013-0135248號、2014年1月23日向韓國智慧財產局申請的韓國專利申請案第10-2014-0008210號以及2014年2月27日向韓國智慧財產局申請的韓國專利申請案第10-2014-0023269號的優先權,此等專利申請案的揭露內容的全文是以引用方式併入本文中。 This application claims Korean Patent Application No. 10-2013-0135248, filed on November 8, 2013 with the Korea Intellectual Property Office, and Korean Patent Application No. 10-2014-0008210, filed with the Korea Intellectual Property Office on January 23, 2014. The priority of the Korean Patent Application No. 10-2014-0023269 filed on Jan. 27, 2014, to the Korean Intellectual Property Office, the entire disclosure of which is hereby incorporated by reference.

本揭露內容是關於一種具有包含六個或大於六個透鏡的光學系統(optical system)的透鏡模組。 The present disclosure relates to a lens module having an optical system comprising six or more lenses.

通常,用於行動通信終端機(mobile communications terminal)的攝影機(camera)包含透鏡模組以及成像器件(imaging device)。 Generally, a camera for a mobile communications terminal includes a lens module and an imaging device.

此透鏡模組通常包含多個透鏡且包含光學系統,光學系 統包含多個透鏡,以捕獲待投影至成像器件上的主體(subject)的影像。在此方面,使用諸如電荷耦合器件(charge coupled device,CCD)或類似者的器件作為成像器件,且此成像器件通常具有(例如)1.4微米或大於1.4微米的像素大小(pixel size)。 The lens module usually includes a plurality of lenses and includes an optical system, an optical system The system includes a plurality of lenses to capture an image of a subject to be projected onto the imaging device. In this regard, a device such as a charge coupled device (CCD) or the like is used as the imaging device, and this imaging device typically has a pixel size of, for example, 1.4 μm or more.

然而,根據行動通信終端機以及安裝於行動通信終端機中的攝影機模組的大小的逐漸減低,成像器件的像素大小已減低至(例如)1.12微米或小於1.12微米。因此,對於開發一種具有(例如)為2.3或小於2.3的低光圈數(F No.)的透鏡模組,在此低光圈數下,即使在上述條件下亦可在由透鏡模組捕獲的影像中實施高解析度(high degree of resolution)是有所需求的。 However, according to the gradual decrease in the size of the mobile communication terminal and the camera module installed in the mobile communication terminal, the pixel size of the imaging device has been reduced to, for example, 1.12 micrometers or less. Therefore, for developing a lens module having a low aperture number (F No.) of, for example, 2.3 or less, at this low aperture number, an image captured by the lens module can be obtained even under the above conditions. The implementation of high degree of resolution is desirable.

本揭露內容的一些實施例可提供一種透鏡模組,透鏡模組能夠在由透鏡模組捕獲的影像中實施高解析度。 Some embodiments of the present disclosure may provide a lens module that is capable of performing high resolution in images captured by a lens module.

根據本揭露內容的一些實施例,一種透鏡模組可包含:第一透鏡,具有正折射能力(positive refractive power);第二透鏡,具有正折射能力;第三透鏡,具有折射能力(refractive power);第四透鏡,具有正折射能力;第五透鏡,具有負折射能力(negative refractive power);以及第六透鏡,具有負折射能力,且具有形成於第六透鏡的像側表面(image-side surface)上的一或多個反曲點(inflection point)。 According to some embodiments of the present disclosure, a lens module may include: a first lens having a positive refractive power; a second lens having a positive refractive power; and a third lens having a refractive power a fourth lens having a positive refractive power; a fifth lens having a negative refractive power; and a sixth lens having a negative refractive power and having an image-side surface formed on the sixth lens One or more inflection points on the ).

根據本揭露內容的一些實施例,一種透鏡模組可包含:第一透鏡,具有折射能力,且具有凸面物側表面(convex object-side surface);第二透鏡,具有折射能力,且具有凸面物側表面以及凸 面像側表面;第三透鏡,具有折射能力,且具有凸面物側表面;第四透鏡,具有折射能力;第五透鏡,具有折射能力;以及第六透鏡,具有折射能力,且具有非球面形狀(aspherical shape),在非球面形狀中,兩個或大於兩個反曲點形成於第六透鏡的物側表面上,且兩個或大於兩個反曲點形成於第六透鏡的像側表面上。 According to some embodiments of the present disclosure, a lens module may include: a first lens having refractive power and having a convex object-side surface; a second lens having refractive power and having a convex surface Side surface and convex a surface side surface; a third lens having refractive power and having a convex side surface; a fourth lens having refractive power; a fifth lens having refractive power; and a sixth lens having refractive power and having an aspherical shape (aspherical shape), in the aspherical shape, two or more inflection points are formed on the object side surface of the sixth lens, and two or more inflection points are formed on the image side surface of the sixth lens on.

10‧‧‧第一透鏡 10‧‧‧ first lens

20‧‧‧第二透鏡 20‧‧‧second lens

30‧‧‧第三透鏡 30‧‧‧ third lens

40‧‧‧第四透鏡 40‧‧‧Fourth lens

50‧‧‧第五透鏡 50‧‧‧ fifth lens

60‧‧‧第六透鏡 60‧‧‧ sixth lens

70‧‧‧紅外線截止濾光片 70‧‧‧Infrared cut filter

80‧‧‧影像感測器 80‧‧‧Image Sensor

100‧‧‧透鏡模組 100‧‧‧ lens module

CT6‧‧‧第六透鏡沿著光軸的厚度 CT6‧‧‧The thickness of the sixth lens along the optical axis

Pt1‧‧‧第一凹面點處的厚度 Thickness at the first concave point of Pt1‧‧

Pt2‧‧‧第一凸面點處的厚度 Thickness at the first convex point of Pt2‧‧

Pt3‧‧‧第二凸面點 Pt3‧‧‧second convex point

ST‧‧‧光圈 ST‧‧‧ aperture

自結合隨附圖式而採取的以下實施方式,將更清晰地理解本揭露內容的以上與其他態樣、特徵以及其他優點,在圖式中:圖1為根據本揭露內容的第一例示性實施例的透鏡模組的組態圖。 The above and other aspects, features and other advantages of the present disclosure will be more clearly understood from the following description taken in conjunction with the accompanying drawings in which: FIG. A configuration diagram of a lens module of an embodiment.

圖2為說明圖1所說明的透鏡模組的光學像差特性(optical aberration characteristic)的曲線圖。 FIG. 2 is a graph illustrating optical aberration characteristics of the lens module illustrated in FIG. 1. FIG.

圖3為顯示圖1所說明的透鏡的特性的表格。 FIG. 3 is a table showing the characteristics of the lens illustrated in FIG. 1.

圖4為顯示圖1所說明的透鏡模組的非球面表面係數(aspherical surface coefficient)的表格。 4 is a table showing an aspherical surface coefficient of the lens module illustrated in FIG. 1.

圖5為根據本揭露內容的第二例示性實施例的透鏡模組的組態圖。 FIG. 5 is a configuration diagram of a lens module according to a second exemplary embodiment of the present disclosure.

圖6為說明圖5所說明的透鏡模組的光學像差特性的曲線圖。 Fig. 6 is a graph for explaining optical aberration characteristics of the lens module illustrated in Fig. 5.

圖7為顯示圖5所說明的透鏡的特性的表格。 Fig. 7 is a table showing the characteristics of the lens illustrated in Fig. 5.

圖8為顯示圖5所說明的透鏡模組的非球面表面係數的表格。 Figure 8 is a table showing aspherical surface coefficients of the lens module illustrated in Figure 5.

圖9為根據本揭露內容的第三例示性實施例的透鏡模組的組態圖。 9 is a configuration diagram of a lens module in accordance with a third exemplary embodiment of the present disclosure.

圖10為說明圖9所說明的透鏡模組的光學像差特性的曲線 圖。 Figure 10 is a graph showing the optical aberration characteristics of the lens module illustrated in Figure 9 Figure.

圖11為顯示圖9所說明的透鏡的特性的表格。 Figure 11 is a table showing the characteristics of the lens illustrated in Figure 9.

圖12為顯示圖9所說明的透鏡模組的非球面表面係數的表格。 Figure 12 is a table showing aspherical surface coefficients of the lens module illustrated in Figure 9.

圖13為說明第六透鏡的凹面點(concave point)以及凸面點(convex point)的部分放大圖。 Fig. 13 is a partially enlarged view showing a concave point and a convex point of the sixth lens.

在下文中,將參看隨附圖式來詳細地描述本揭露內容的實施例。然而,可以許多不同形式來體現本揭露內容,且不應將本揭露內容認作限於本文所闡明的實施例。更確切地說,提供此等實施例,使得本揭露內容將透徹且完整,且將向於本領域具有知識者充分地傳達本揭露內容的範疇。在圖式中,可出於清楚起見而誇示元件的形狀以及尺寸,且將自始至終使用相同圖式元件符號以表示相同或類似元件。如此實施方式以及隨附申請專利範圍中所使用,單數形式「一」以及「所述」意欲亦包含複數形式,除非上下文另有清晰指示。 In the following, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. However, the disclosure may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and the scope of the disclosure will be fully conveyed by those skilled in the art. The shapes and dimensions of the elements may be exaggerated for clarity, and the same drawing element symbols are used throughout to indicate the same or similar elements. The singular forms "a", "the" and "the"

在例示性實施例的描述中,第一透鏡是指最靠近物側的透鏡,且第六透鏡是指最靠近像側的透鏡。另外,術語「前方(front)」是指自透鏡模組朝向物體(object)的方向,而術語「後方(rear)」是指自透鏡模組朝向影像感測器(image sensor)的方向。此外,每一透鏡的第一表面是指物側上的表面(或物側表面),且每一透鏡的第二表面是指像側上的表面(或像側表面)。另外,在本說明書中,曲率半徑(radius of curvature)、厚度(thickness)、 貫通透鏡(Through-the-Lens,TTL)計量距離(metering distance)(或OAL)、SL、2Y、光學系統的總焦距(overall focal length)以及每一透鏡的焦距(focal length)的單位可按毫米(mm)計。然而,上述物理性質的單位並不限於此情形。此外,透鏡的厚度、透鏡間間隔、貫通透鏡(或OAL)以及SL為基於透鏡的光軸(optical axis)而量測的距離。另外,在透鏡形狀描述中,透鏡的一個表面為凸面的意義為對應透鏡表面的光軸部分凸起,且透鏡的一個表面為凹面的意義為對應透鏡表面的光軸部分凹入。因此,在將透鏡的一個表面描述為凸面的狀況下,透鏡的邊緣部分可為凹入。同樣地,在將透鏡的一個表面描述為透鏡的一個表面為凹面的狀況下,透鏡的邊緣部分可為凸起。此外,在以下實施方式中,術語「反曲點」是指曲率半徑在不與光軸相交的部分中改變的點。 In the description of the exemplary embodiments, the first lens refers to the lens closest to the object side, and the sixth lens refers to the lens closest to the image side. In addition, the term "front" refers to the direction from the lens module toward the object, and the term "rear" refers to the direction from the lens module toward the image sensor. Further, the first surface of each lens refers to a surface (or an object side surface) on the object side, and the second surface of each lens refers to a surface (or an image side surface) on the image side. In addition, in the present specification, radius of curvature, thickness, Through-the-Lens (TTL) metering distance (or OAL), SL, 2Y, the total focal length of the optical system, and the focal length of each lens can be Millimeter (mm) meter. However, the unit of the above physical properties is not limited to this case. Further, the thickness of the lens, the inter-lens spacing, the through lens (or OAL), and the SL are distances measured based on the optical axis of the lens. Further, in the description of the lens shape, the one surface of the lens is convex to mean that the optical axis portion of the lens surface is convex, and the one surface of the lens is concave so that the optical axis portion of the corresponding lens surface is concave. Therefore, in a case where one surface of the lens is described as a convex surface, the edge portion of the lens may be concave. Likewise, in a case where one surface of the lens is described as a surface of the lens which is concave, the edge portion of the lens may be a convex. Further, in the following embodiments, the term "recurve point" means a point at which the radius of curvature changes in a portion that does not intersect the optical axis.

圖1為根據本揭露內容的第一例示性實施例的透鏡模組的組態圖;圖2為說明圖1所說明的透鏡模組的光學像差特性的曲線圖;圖3為顯示圖1所說明的透鏡的特性的表格;圖4為顯示圖1所說明的透鏡模組的非球面表面係數的表格;圖5為根據本揭露內容的第二例示性實施例的透鏡模組的組態圖;圖6為說明圖5所說明的透鏡模組的光學像差特性的曲線圖;圖7為顯示圖5所說明的透鏡的特性的表格;圖8為顯示圖5所說明的透鏡模組的非球面表面係數的表格;圖9為根據本揭露內容的第三例示性實施例的透鏡模組的組態圖;圖10為說明圖9所說明的透鏡模組的光學像差特性的曲線圖;圖11為顯示圖9所說明的透鏡的特性的表格;圖12為顯示圖9所說明的透鏡模組的非球面表面係數的表格;且圖13為說明第六透鏡的凹面點以及凸面點的部分放 大圖。 1 is a configuration diagram of a lens module according to a first exemplary embodiment of the present disclosure; FIG. 2 is a graph illustrating optical aberration characteristics of the lens module illustrated in FIG. 1; a table showing the characteristics of the lens; FIG. 4 is a table showing the aspherical surface coefficients of the lens module illustrated in FIG. 1; FIG. 5 is a configuration of the lens module according to the second exemplary embodiment of the present disclosure. Figure 6 is a graph illustrating the optical aberration characteristics of the lens module illustrated in Figure 5; Figure 7 is a table showing the characteristics of the lens illustrated in Figure 5; Figure 8 is a lens module illustrated in Figure 5 A table of aspherical surface coefficients; FIG. 9 is a configuration diagram of a lens module according to a third exemplary embodiment of the present disclosure; and FIG. 10 is a graph illustrating optical aberration characteristics of the lens module illustrated in FIG. Figure 11 is a table showing the characteristics of the lens illustrated in Figure 9; Figure 12 is a table showing the aspherical surface coefficients of the lens module illustrated in Figure 9; and Figure 13 is a view showing the concave and convex surfaces of the sixth lens Part of the point Big picture.

根據本揭露內容的透鏡模組可包含光學系統,光學系統包含六個或多於六個透鏡。舉例而言,透鏡模組可包含第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡以及第六透鏡。然而,透鏡模組並不限於僅包含六個透鏡,且在必要時可更包含其他組件或額外的一或多個透鏡。舉例而言,透鏡模組可包含用於控制光量的光圈(stop)。此外,透鏡模組可更包含使紅外線截止的紅外線截止濾光片(infrared cut-off filter)。另外,透鏡模組可更包含將入射通過光學系統的主體的影像轉換成電信號(electrical signal)的影像感測器(亦即,成像器件)。另外,透鏡模組可更包含調整透鏡之間間隔的間隔維持構件(interval maintaining member)。除了六個透鏡以外,一或多個透鏡亦可配置於第一透鏡前方,配置於第六透鏡後方,或配置於第一透鏡與第六透鏡之間。 A lens module in accordance with the present disclosure may comprise an optical system comprising six or more than six lenses. For example, the lens module may include a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens. However, the lens module is not limited to only including six lenses, and may further include other components or additional one or more lenses as necessary. For example, the lens module can include a stop for controlling the amount of light. In addition, the lens module may further include an infrared cut-off filter that cuts off the infrared rays. In addition, the lens module may further include an image sensor (ie, an imaging device) that converts an image incident on the body of the optical system into an electrical signal. In addition, the lens module may further include an interval maintaining member that adjusts the interval between the lenses. In addition to the six lenses, one or more lenses may be disposed in front of the first lens, behind the sixth lens, or between the first lens and the sixth lens.

組態光學系統的第一透鏡至第六透鏡可由塑膠(plastic)形成。此外,第一透鏡至第六透鏡中的至少一者可具有非球面表面(aspherical surface)。另外,第一透鏡至第六透鏡可分別具有至少一個非球面表面。亦即,第一透鏡至第六透鏡的第一表面以及第二表面中的至少一者可為非球面。此處,每一透鏡的非球面表面可由方程式1表示。 The first to sixth lenses of the configuration optical system may be formed of plastic. Further, at least one of the first to sixth lenses may have an aspherical surface. In addition, the first to sixth lenses may each have at least one aspherical surface. That is, at least one of the first surface and the second surface of the first to sixth lenses may be aspherical. Here, the aspherical surface of each lens can be expressed by Equation 1.

在方程式1中,c指示曲率(curvature),k指示圓錐常數(conic constant),r指示自非球面表面上的任一點至光軸的距離, 且常數A、B、C、D、E、F、G、H以及J順序地指示4階非球面係數、6階非球面係數、8階非球面係數、10階非球面係數、12階非球面係數、14階非球面係數、16階非球面係數、18階非球面係數以及20階非球面係數。此外,Z為非球面表面的與光軸相隔距離r的點的高度。 In Equation 1, c indicates curvature, k indicates a conic constant, and r indicates the distance from any point on the aspheric surface to the optical axis. And the constants A, B, C, D, E, F, G, H, and J sequentially indicate 4th-order aspherical coefficients, 6th-order aspherical coefficients, 8th-order aspherical coefficients, 10th-order aspherical coefficients, and 12th-order aspherical surfaces. Coefficient, 14th-order aspherical coefficient, 16th-order aspherical coefficient, 18th-order aspherical coefficient, and 20th-order aspherical coefficient. Further, Z is the height of a point of the aspherical surface that is separated from the optical axis by a distance r.

包含第一透鏡至第六透鏡的光學系統可具有為2.4或小於2.4的光圈數。在此狀況下,可使主體清晰地成像。舉例而言,根據本揭露內容的透鏡模組即使在低照明條件(例如,100勒克司(lux)或小於100勒克司)下亦可清晰地捕獲主體的影像。 The optical system including the first to sixth lenses may have an aperture number of 2.4 or less. In this case, the subject can be clearly imaged. For example, a lens module in accordance with the present disclosure can clearly capture an image of a subject even under low lighting conditions (eg, 100 lux or less than 100 lux).

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式(Conditional Expression):[條件式]1.0<f1/f<2.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following Conditional Expression: [Conditional Formula] 1.0<f1/f<2.0

此處,f為透鏡模組的總焦距,且f1為第一透鏡的焦距。以上條件式可指示用於使第一透鏡的折射能力最佳化的數值條件(numerical condition)。舉例而言,在f1/f低於以上條件式的下限值(lower limit value)的狀況下,由於第一透鏡具有強折射能力,故第二透鏡至第五透鏡的光學設計(optical design)可受到限制。在f1/f大於以上條件式的上限值(upper limit value)的狀況下,由於第一透鏡具有弱折射能力,故可難以使透鏡模組小型化。 Here, f is the total focal length of the lens module, and f1 is the focal length of the first lens. The above conditional expression may indicate a numerical condition for optimizing the refractive power of the first lens. For example, in the case where f1/f is lower than the lower limit value of the above conditional expression, the optical design of the second lens to the fifth lens is due to the strong refractive power of the first lens. Can be restricted. In the case where f1/f is larger than the upper limit value of the above conditional expression, since the first lens has a weak refractive power, it is difficult to downsize the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]V1-V3>25.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional formula: [Conditional Formula] V1-V3>25.0

此處,V1為第一透鏡的阿貝數(Abbe number),且V3為第三透鏡的阿貝數。 Here, V1 is the Abbe number of the first lens, and V3 is the Abbe number of the third lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]n4>1.6 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional expression] n4>1.6

此處,n4為第四透鏡的折射率(refractive index)。 Here, n4 is a refractive index of the fourth lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]V1-V5>25.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] V1-V5>25.0

此處,V1為第一透鏡的阿貝數,且V5為第五透鏡的阿貝數。 Here, V1 is the Abbe number of the first lens, and V5 is the Abbe number of the fifth lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]0.5<f2/f<1.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] 0.5 < f2 / f < 1.5

此處,f2為第二透鏡的焦距,且f為透鏡模組的總焦距。 Here, f2 is the focal length of the second lens, and f is the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]2.0<|f5/f|<100 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] 2.0<|f5/f|<100

此處,f5為第五透鏡的焦距,且f為透鏡模組的總焦距。 Here, f5 is the focal length of the fifth lens, and f is the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]OAL/f<1.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional formula: [Conditional formula] OAL/f<1.5

此處,OAL為自第一透鏡的物側表面至影像表面(image surface)或影像感測器的距離,且f為透鏡模組的總焦距。 Here, the OAL is the distance from the object side surface of the first lens to the image surface or the image sensor, and f is the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]1.0<f1/f2<2.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] 1.0<f1/f2<2.5

此處,f1為第一透鏡的焦距,且f2為第二透鏡的焦距。 Here, f1 is the focal length of the first lens, and f2 is the focal length of the second lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]0.3<|f2/f3|<2.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] 0.3<|f2/f3|<2.0

此處,f2為第二透鏡的焦距,且f3為第三透鏡的焦距。 Here, f2 is the focal length of the second lens, and f3 is the focal length of the third lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]BFL/f>0.2 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] BFL/f>0.2

此處,BFL為自第六透鏡的像側表面至影像表面的距離,且f為透鏡模組的總焦距。 Here, the BFL is the distance from the image side surface of the sixth lens to the image surface, and f is the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]D1/f>0.01 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] D1/f>0.01

此處,D1為第一透鏡與第二透鏡之間的氣隙(air gap),且f為透鏡模組的總焦距。 Here, D1 is an air gap between the first lens and the second lens, and f is the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]r1/f>0.3 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression] r1/f>0.3

此處,r1為第一透鏡的物側表面的曲率半徑,且f為透鏡模組的總焦距。 Here, r1 is the radius of curvature of the object side surface of the first lens, and f is the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]r6/f>0.3 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression] r6/f>0.3

此處,r6為第三透鏡的像側表面的曲率半徑,且f為透鏡模 組的總焦距。 Here, r6 is the radius of curvature of the image side surface of the third lens, and f is a lens mode The total focal length of the group.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]EPD/2/f1>0.1 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] EPD/2/f1>0.1

此處,EPD/2為入瞳(entrance pupil)的大小(單位:毫米),f1為第一透鏡的焦距。 Here, EPD/2 is the size of the entrance pupil (unit: mm), and f1 is the focal length of the first lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|f3/f|<2.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|f3/f|<2.0

此處,f3為第三透鏡的焦距,且f為透鏡模組的總焦距。以上條件式可指示用於使第三透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, f3 is the focal length of the third lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the third lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]f4/f>3.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression] f4/f>3.0

此處,f4為第四透鏡的焦距,且f為透鏡模組的總焦距。以上條件式可指示用於使第四透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, f4 is the focal length of the fourth lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the fourth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|f5/f|>3.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|f5/f|>3.0

此處,f5為第五透鏡的焦距,且f為透鏡模組的總焦距。以上條件式可指示用於使第五透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, f5 is the focal length of the fifth lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the fifth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|f6/f|<6.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|f6/f|<6.0

此處,f6為第六透鏡的焦距,且f為透鏡模組的總焦距。以上條件式可指示用於使第六透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, f6 is the focal length of the sixth lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the sixth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]OAL/f1>0.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional formula] OAL/f1>0.5

此處,OAL為自第一透鏡的物側表面至影像表面的距離,且f1為第一透鏡的焦距。以上條件式可指示用於使第一透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, OAL is the distance from the object side surface of the first lens to the image surface, and f1 is the focal length of the first lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the first lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]0<OAL/f2<1.7 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional formula] 0 < OAL / f2 < 1.7

此處,OAL為自第一透鏡的物側表面至影像表面的距離,且f2為第二透鏡的焦距。以上條件式可指示用於使第二透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, OAL is the distance from the object side surface of the first lens to the image surface, and f2 is the focal length of the second lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the second lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|OAL/f3|>1.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional]|OAL/f3|>1.0

此處,OAL為自第一透鏡的物側表面至影像表面的距離,且f3為第三透鏡的焦距。以上條件式可指示用於使第三透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, OAL is the distance from the object side surface of the first lens to the image surface, and f3 is the focal length of the third lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the third lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]0<OAL/f4<0.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression] 0 < OAL / f4 < 0.5

此處,OAL為自第一透鏡的物側表面至影像表面的距離,且f4為第四透鏡的焦距。以上條件式可指示用於使第四透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, OAL is the distance from the object side surface of the first lens to the image surface, and f4 is the focal length of the fourth lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the fourth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|OAL/f5|<0.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|OAL/f5|<0.5

此處,OAL為自第一透鏡的物側表面至影像表面的距離,且f5為第五透鏡的焦距。以上條件式可指示用於使第五透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, OAL is the distance from the object side surface of the first lens to the image surface, and f5 is the focal length of the fifth lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the fifth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|OAL/f6|>0.2 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|OAL/f6|>0.2

此處,OAL為自第一透鏡的物側表面至影像表面的距離,且f6為第六透鏡的焦距。以上條件式可指示用於使第六透鏡的折射能力的量值相對於透鏡模組的總焦距最佳化的條件。 Here, OAL is the distance from the object side surface of the first lens to the image surface, and f6 is the focal length of the sixth lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the sixth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|f3/f4|<0.3 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|f3/f4|<0.3

此處,f3為第三透鏡的焦距,且f4為第四透鏡的焦距。以上條件式可指示用於使第四透鏡的折射能力的量值相對於第三透鏡的折射能力最佳化的條件。 Here, f3 is the focal length of the third lens, and f4 is the focal length of the fourth lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the fourth lens with respect to the refractive power of the third lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|f4/f5|<0.7 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|f4/f5|<0.7

此處,f4為第四透鏡的焦距,且f5為第五透鏡的焦距。以上條件式可指示用於使第五透鏡的折射能力的量值相對於第四透鏡的折射能力最佳化的條件。 Here, f4 is the focal length of the fourth lens, and f5 is the focal length of the fifth lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the fifth lens with respect to the refractive power of the fourth lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]1.5<f5/f6<6.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] 1.5<f5/f6<6.0

此處,f5為第五透鏡的焦距,且f6為第六透鏡的焦距。以上條件式可指示用於使第六透鏡的折射能力的量值相對於第五透鏡的折射能力最佳化的條件。 Here, f5 is the focal length of the fifth lens, and f6 is the focal length of the sixth lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the sixth lens with respect to the refractive power of the fifth lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|f1/f3|<3.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|f1/f3|<3.0

此處,f1為第一透鏡的焦距,且f3為第三透鏡的焦距。以上條件式可指示用於使第三透鏡的折射能力的量值相對於第一透鏡的折射能力最佳化的條件。舉例而言,在第三透鏡具有大於以上條件式的上限值的值|f1/f3|的狀況下,可難以校正色度光學像差(chromatic optical aberration)。 Here, f1 is the focal length of the first lens, and f3 is the focal length of the third lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the third lens with respect to the refractive power of the first lens. For example, in the case where the third lens has a value |f1/f3| greater than the upper limit value of the above conditional expression, it may be difficult to correct chromatic optical aberration.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]0<f1/f4<1.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] 0<f1/f4<1.5

此處,f1為第一透鏡的焦距,且f4為第四透鏡的焦距。以上 條件式可指示用於使第四透鏡的折射能力的量值相對於第一透鏡的折射能力最佳化的條件。舉例而言,在第四透鏡具有大於以上條件式的上限值的值f1/f4的狀況下,可難以校正色度光學像差。 Here, f1 is the focal length of the first lens, and f4 is the focal length of the fourth lens. the above The conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the fourth lens with respect to the refractive power of the first lens. For example, in the case where the fourth lens has a value f1/f4 larger than the upper limit value of the above conditional expression, it may be difficult to correct the chromaticity optical aberration.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|f1/f5|<1.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|f1/f5|<1.5

此處,f1為第一透鏡的焦距,且f5為第五透鏡的焦距。以上條件式可指示用於使第五透鏡的折射能力的量值相對於第一透鏡的折射能力最佳化的條件。舉例而言,在第五透鏡具有等於或大於1.5的值|fl/f5|的狀況下,可難以校正色度光學像差。 Here, f1 is the focal length of the first lens, and f5 is the focal length of the fifth lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the fifth lens with respect to the refractive power of the first lens. For example, in the case where the fifth lens has a value |fl/f5| equal to or greater than 1.5, it may be difficult to correct the chromaticity optical aberration.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|f1/f6|<1.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|f1/f6|<1.5

此處,f1為第一透鏡的焦距,且f6為第六透鏡的焦距。以上條件式可指示用於使第六透鏡的折射能力的量值相對於第一透鏡的折射能力最佳化的條件。舉例而言,在第六透鏡具有等於或大於1.5的值|f1/f6|的狀況下,可難以校正色度光學像差。 Here, f1 is the focal length of the first lens, and f6 is the focal length of the sixth lens. The above conditional expression may indicate a condition for optimizing the magnitude of the refractive power of the sixth lens with respect to the refractive power of the first lens. For example, in the case where the sixth lens has a value |f1/f6| equal to or greater than 1.5, it may be difficult to correct the chromaticity optical aberration.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]0<r2/f<1.2 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression] 0 < r2 / f < 1.2

此處,r2為第一透鏡的像側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第一透鏡的像側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r2 is the radius of curvature of the image side surface of the first lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the image side surface of the first lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下 條件式:[條件式]0.4<r3/f<1.2 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following Conditional formula: [Conditional formula] 0.4 <r3/f<1.2

此處,r3為第二透鏡的物側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第二透鏡的物側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r3 is the radius of curvature of the object side surface of the second lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the object side surface of the second lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|r4/f|<10.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|r4/f|<10.0

此處,r4為第二透鏡的像側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第二透鏡的像側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r4 is the radius of curvature of the image side surface of the second lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the image side surface of the second lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]r5/f>1.3 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression] r5/f>1.3

此處,r5為第三透鏡的物側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第三透鏡的物側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r5 is the radius of curvature of the object side surface of the third lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the object side surface of the third lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]r6/f>0.4 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression] r6/f>0.4

此處,r6為第三透鏡的像側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第三透鏡的像側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r6 is the radius of curvature of the image side surface of the third lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the image side surface of the third lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下 條件式:[條件式]|r7/f|>1.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following Conditional expression: [conditional expression]|r7/f|>1.0

此處,r7為第四透鏡的物側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第四透鏡的物側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r7 is the radius of curvature of the object side surface of the fourth lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the object side surface of the fourth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|r8/f|>0.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|r8/f|>0.5

此處,r8為第四透鏡的像側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第四透鏡的像側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r8 is the radius of curvature of the image side surface of the fourth lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the image side surface of the fourth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|r9/f|>0.3 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|r9/f|>0.3

此處,r9為第五透鏡的物側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第五透鏡的物側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r9 is the radius of curvature of the object side surface of the fifth lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the object side surface of the fifth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]|r10/f|>0.4 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression]|r10/f|>0.4

此處,r10為第五透鏡的像側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第五透鏡的像側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r10 is the radius of curvature of the image side surface of the fifth lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the image side surface of the fifth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下 條件式:[條件式]0<r11/f<0.5 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following Conditional expression: [conditional expression] 0 < r11 / f < 0.5

此處,r11為第六透鏡的物側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第六透鏡的物側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r11 is the radius of curvature of the object side surface of the sixth lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the object side surface of the sixth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]0<r12/f<0.4 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [conditional expression] 0 < r12 / f < 0.4

此處,r12為第六透鏡的像側表面的曲率半徑,且f為透鏡模組的總焦距。以上條件式可指示用於使第六透鏡的像側表面的形狀相對於透鏡模組的總焦距最佳化的條件。 Here, r12 is the radius of curvature of the image side surface of the sixth lens, and f is the total focal length of the lens module. The above conditional expression may indicate a condition for optimizing the shape of the image side surface of the sixth lens with respect to the total focal length of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]2.0<D1/D2<5.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional formula: [Conditional Formula] 2.0<D1/D2<5.0

此處,D1為第一透鏡與第二透鏡之間的氣隙,且D2為第二透鏡與第三透鏡之間的氣隙。 Here, D1 is an air gap between the first lens and the second lens, and D2 is an air gap between the second lens and the third lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]D2/D3>0.08 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] D2/D3>0.08

此處,D2為第二透鏡與第三透鏡之間的氣隙,且D3為第三透鏡與第四透鏡之間的氣隙。 Here, D2 is an air gap between the second lens and the third lens, and D3 is an air gap between the third lens and the fourth lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]D3/D4<2.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] D3/D4<2.0

此處,D3為第三透鏡與第四透鏡之間的氣隙,且D4為第四透鏡與第五透鏡之間的氣隙。 Here, D3 is an air gap between the third lens and the fourth lens, and D4 is an air gap between the fourth lens and the fifth lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]D4/D5>5.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] D4/D5>5.0

此處,D4為第四透鏡與第五透鏡之間的氣隙,且D5為第五透鏡與第六透鏡之間的氣隙。 Here, D4 is an air gap between the fourth lens and the fifth lens, and D5 is an air gap between the fifth lens and the sixth lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]V4/30+V5/30<2.0 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional formula: [Conditional Formula] V4/30+V5/30<2.0

此處,V4為第四透鏡的阿貝數,且V5為第五透鏡的阿貝數。 Here, V4 is the Abbe number of the fourth lens, and V5 is the Abbe number of the fifth lens.

以上條件式可指示用於使能夠容易地製造第四透鏡以及第五透鏡的條件。舉例而言,由於滿足以上條件式的第四透鏡以及第五透鏡具有高折射率,故此等透鏡可具有大曲率半徑。在具有如上文所描述的曲率半徑的透鏡中,由於製造公差(manufacturing tolerance)小,故可容易地製造此透鏡。另外,由於具有如上文所描述的曲率半徑的透鏡可減低透鏡間距離,故此透鏡可有利於使透鏡模組小型化。 The above conditional expression may indicate conditions for enabling the fourth lens and the fifth lens to be easily manufactured. For example, since the fourth lens and the fifth lens satisfying the above conditional expression have a high refractive index, the lenses may have a large radius of curvature. In the lens having the radius of curvature as described above, since the manufacturing tolerance is small, the lens can be easily manufactured. In addition, since the lens having the radius of curvature as described above can reduce the distance between the lenses, the lens can facilitate miniaturization of the lens module.

在根據本揭露內容的例示性實施例的透鏡模組中,第六透鏡可具有非球面形狀,在非球面形狀中,兩個或大於兩個反曲點形成於第六透鏡的物側表面上,及/或兩個或大於兩個反曲點形成於第六透鏡的像側表面上。 In the lens module according to an exemplary embodiment of the present disclosure, the sixth lens may have an aspherical shape in which two or more inversion points are formed on the object side surface of the sixth lens And/or two or more than two inflection points are formed on the image side surface of the sixth lens.

在根據本揭露內容的例示性實施例的透鏡模組中,第六透鏡的物側表面的邊緣或周邊部分可為凸面。 In the lens module according to an exemplary embodiment of the present disclosure, an edge or a peripheral portion of the object side surface of the sixth lens may be a convex surface.

在根據本揭露內容的例示性實施例的透鏡模組中,第六透鏡的像側表面的邊緣或周邊部分可為凸面。 In the lens module according to the exemplary embodiment of the present disclosure, an edge or a peripheral portion of the image side surface of the sixth lens may be a convex surface.

在根據本揭露內容的例示性實施例的透鏡模組中,第六透鏡可具有非球面形狀,在非球面形狀中,四個反曲點可形成於第六透鏡的物側表面上。 In the lens module according to an exemplary embodiment of the present disclosure, the sixth lens may have an aspherical shape in which four inflection points may be formed on the object side surface of the sixth lens.

在根據本揭露內容的例示性實施例的透鏡模組中,第六透鏡可具有非球面形狀,在非球面形狀中,六個反曲點可形成於第六透鏡的物側表面上。 In the lens module according to an exemplary embodiment of the present disclosure, the sixth lens may have an aspherical shape, and in the aspherical shape, six inflection points may be formed on the object side surface of the sixth lens.

在根據本揭露內容的例示性實施例的透鏡模組中,第六透鏡可具有非球面形狀,在非球面形狀中,四個反曲點可形成於第六透鏡的像側表面上。 In the lens module according to an exemplary embodiment of the present disclosure, the sixth lens may have an aspherical shape in which four inflection points may be formed on the image side surface of the sixth lens.

在根據本揭露內容的例示性實施例的透鏡模組中,第六透鏡可具有非球面形狀,在非球面形狀中,六個反曲點可形成於第六透鏡的像側表面上。 In the lens module according to the exemplary embodiment of the present disclosure, the sixth lens may have an aspherical shape in which six inflection points may be formed on the image side surface of the sixth lens.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式中的一或多者:[條件式]0.03<IP611/2Y<0.04 A lens module according to an exemplary embodiment of the present disclosure may satisfy one or more of the following conditional expressions: [Conditional Formula] 0.03<IP611/2Y<0.04

[條件式]0.20<IP612/2Y<0.30 [Conditional formula] 0.20<IP612/2Y<0.30

[條件式]0.27<IP613/2Y<0.48 [Conditional formula] 0.27<IP613/2Y<0.48

此處,IP611為自第六透鏡的光軸至形成於第六透鏡的物側表面上的反曲點當中的形成於最靠近光軸的位置中的反曲點的半徑,IP612為自第六透鏡的光軸至形成於第六透鏡的物側表面上的反曲點當中的形成於第二靠近光軸的位置中的反曲點的半徑,IP613為自第六透鏡的光軸至形成於第六透鏡的物側表面上的反 曲點當中的形成於第三靠近光軸的位置中的反曲點的半徑,且2Y為影像表面的對角線長度(diagonal length)。 Here, the IP 611 is a radius from an optical axis of the sixth lens to an inflection point formed in a position closest to the optical axis among the inflection points formed on the object side surface of the sixth lens, IP612 is from the sixth The radius of the optical axis of the lens to the inflection point formed in the second position near the optical axis among the inflection points formed on the object side surface of the sixth lens, IP613 is from the optical axis of the sixth lens to The opposite of the object side surface of the sixth lens The radius of the inflection point formed in the third position near the optical axis among the curved points, and 2Y is the diagonal length of the image surface.

以上條件式可指示用於使第六透鏡的物側表面的形狀最佳化的條件。舉例而言,滿足以上條件式中的一或多者的第六透鏡可改良光學像差及/或解析度。 The above conditional expression may indicate conditions for optimizing the shape of the object side surface of the sixth lens. For example, a sixth lens that satisfies one or more of the above conditional expressions may improve optical aberrations and/or resolution.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式中的一或多者:[條件式]0.03<IP621/2Y<0.06 A lens module according to an exemplary embodiment of the present disclosure may satisfy one or more of the following conditional expressions: [Conditional Formula] 0.03<IP621/2Y<0.06

[條件式]0.25<IP622/2Y<0.46 [Conditional formula] 0.25<IP622/2Y<0.46

[條件式]0.38<IP623/2Y<0.43 [Conditional formula] 0.38<IP623/2Y<0.43

此處,IP621為自第六透鏡的光軸至形成於第六透鏡的像側表面上的反曲點當中的形成於最靠近光軸的位置中的反曲點的半徑,IP622為自第六透鏡的光軸至形成於第六透鏡的像側表面上的反曲點當中的形成於第二靠近光軸的位置中的反曲點的半徑,IP623為自第六透鏡的光軸至形成於第六透鏡的像側表面上的反曲點當中的形成於第三靠近光軸的位置中的反曲點的半徑,且2Y為影像表面的對角線長度。 Here, IP621 is a radius from an optical axis of the sixth lens to an inflection point formed in a position closest to the optical axis among the inflection points formed on the image side surface of the sixth lens, IP622 is from the sixth The radius of the optical axis of the lens to the inflection point formed in the second position close to the optical axis among the inflection points formed on the image side surface of the sixth lens, IP623 is from the optical axis of the sixth lens to The radius of the inflection point formed in the third position near the optical axis among the inflection points on the image side surface of the sixth lens, and 2Y is the diagonal length of the image surface.

以上條件式可指示用於使第六透鏡的像側表面的形狀最佳化的條件。舉例而言,滿足以上條件式中的一或多者的第六透鏡可改良光學像差及/或解析度。 The above conditional expression may indicate a condition for optimizing the shape of the image side surface of the sixth lens. For example, a sixth lens that satisfies one or more of the above conditional expressions may improve optical aberrations and/or resolution.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式中的一或多者:[條件式]0.08<IP611/L61ER<0.11 A lens module according to an exemplary embodiment of the present disclosure may satisfy one or more of the following conditional expressions: [Conditional Formula] 0.08<IP611/L61ER<0.11

[條件式]0.54<IP612/L61ER<0.76 [Conditional formula] 0.54<IP612/L61ER<0.76

[條件式]0.97<IP613/L61ER<0.99 [Conditional formula] 0.97<IP613/L61ER<0.99

此處,IP611為自第六透鏡的光軸至形成於第六透鏡的物側表面上的反曲點當中的形成於最靠近光軸的位置中的反曲點的半徑,IP612為自第六透鏡的光軸至形成於第六透鏡的物側表面上的反曲點當中的形成於第二靠近光軸的位置中的反曲點的半徑,IP613為自第六透鏡的光軸至形成於第六透鏡的物側表面上的反曲點當中的形成於第三靠近光軸的位置中的反曲點的半徑,且L61ER為第六透鏡的物側表面上的使入射光折射的有效區域(effective region)的半徑。 Here, the IP 611 is a radius from an optical axis of the sixth lens to an inflection point formed in a position closest to the optical axis among the inflection points formed on the object side surface of the sixth lens, IP612 is from the sixth The radius of the optical axis of the lens to the inflection point formed in the second position near the optical axis among the inflection points formed on the object side surface of the sixth lens, IP613 is from the optical axis of the sixth lens to Among the inflection points on the object side surface of the sixth lens, the radius of the inflection point formed in the third position close to the optical axis, and L61ER is the effective area on the object side surface of the sixth lens that refracts the incident light The radius of the effective region.

以上條件式可指示用於使第六透鏡的物側表面的形狀以及大小最佳化的條件。舉例而言,以上條件式可指示用於使第六透鏡的有效大小(例如,有效半徑)相對於第六透鏡的形狀最佳化的條件。滿足以上條件式中的一或多者的第六透鏡可有利於透鏡模組的小型化。 The above conditional expression may indicate conditions for optimizing the shape and size of the object side surface of the sixth lens. For example, the above conditional expression may indicate a condition for optimizing the effective size (eg, effective radius) of the sixth lens with respect to the shape of the sixth lens. The sixth lens that satisfies one or more of the above conditional expressions can contribute to miniaturization of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式中的一或多者:[條件式]0.09<IP621/L62ER<0.13 A lens module according to an exemplary embodiment of the present disclosure may satisfy one or more of the following conditional expressions: [Conditional Formula] 0.09<IP621/L62ER<0.13

[條件式]0.85<IP622/L62ER<0.89 [Conditional formula] 0.85<IP622/L62ER<0.89

[條件式]0.94<IP623/L62ER<0.99 [Conditional formula] 0.94<IP623/L62ER<0.99

此處,IP621為自第六透鏡的光軸至形成於第六透鏡的像側表面上的反曲點當中的形成於最靠近光軸的位置中的反曲點的半徑,IP622為自第六透鏡的光軸至形成於第六透鏡的像側表面上的反曲點當中的形成於第二靠近光軸的位置中的反曲點的半徑,IP623為自第六透鏡的光軸至形成於第六透鏡的像側表面上的反 曲點當中的形成於第三靠近光軸的位置中的反曲點的半徑,且L62ER為第六透鏡的像側表面上的使入射光折射的有效區域的半徑。 Here, IP621 is a radius from an optical axis of the sixth lens to an inflection point formed in a position closest to the optical axis among the inflection points formed on the image side surface of the sixth lens, IP622 is from the sixth The radius of the optical axis of the lens to the inflection point formed in the second position close to the optical axis among the inflection points formed on the image side surface of the sixth lens, IP623 is from the optical axis of the sixth lens to The opposite of the image side surface of the sixth lens The radius of the inflection point formed in the third position near the optical axis among the curved points, and L62ER is the radius of the effective area on the image side surface of the sixth lens that refracts the incident light.

以上條件式可指示用於使第六透鏡的像側表面的形狀以及大小最佳化的條件。舉例而言,以上條件式可指示用於使第六透鏡的有效大小(例如,有效半徑)相對於第六透鏡的形狀最佳化的條件。滿足以上條件式中的一或多者的第六透鏡可有利於透鏡模組的小型化。 The above conditional expression may indicate conditions for optimizing the shape and size of the image side surface of the sixth lens. For example, the above conditional expression may indicate a condition for optimizing the effective size (eg, effective radius) of the sixth lens with respect to the shape of the sixth lens. The sixth lens that satisfies one or more of the above conditional expressions can contribute to miniaturization of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式中的一或多者:[條件式]1.02<Pt1/CT6<1.25 A lens module according to an exemplary embodiment of the present disclosure may satisfy one or more of the following conditional expressions: [Conditional Formula] 1.02<Pt1/CT6<1.25

[條件式]1.15<Pt2/CT6<1.43 [Conditional formula] 1.15<Pt2/CT6<1.43

[條件式]1.02<Pt3/CT6<1.36 [Conditional formula] 1.02<Pt3/CT6<1.36

[條件式]0.79<Pt1/Pt2<0.97 [Conditional formula] 0.79<Pt1/Pt2<0.97

[條件式]0.83<Pt1/Pt3<1.12 [Conditional formula] 0.83<Pt1/Pt3<1.12

[條件式]0.94<Pt2/Pt3<1.27 [Conditional formula] 0.94<Pt2/Pt3<1.27

此處,CT6為第六透鏡沿著光軸的厚度(或六透鏡的中心處的厚度),Pt1為第一凹面點處的厚度,Pt2為第一凸面點處的厚度,且Pt3為第二凸面點。 Here, CT6 is the thickness of the sixth lens along the optical axis (or the thickness at the center of the six lenses), Pt1 is the thickness at the first concave point, Pt2 is the thickness at the first convex point, and Pt3 is the second Convex point.

以上條件式可指示用於使第六透鏡的折射能力的分佈最佳化的條件。舉例而言,滿足以上條件式中的一或多者的第六透鏡可將入射光均一地投影於影像表面上。此外,滿足以上條件式中的一或多者的第六透鏡可減低球面光學像差(spherical optical aberration)。 The above conditional expression may indicate conditions for optimizing the distribution of the refractive power of the sixth lens. For example, a sixth lens that satisfies one or more of the above conditional expressions can uniformly project incident light onto the image surface. Further, the sixth lens that satisfies one or more of the above conditional expressions can reduce spherical optical aberration.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式中的一或多者:[條件式]2.52<L61ER<2.72 A lens module according to an exemplary embodiment of the present disclosure may satisfy one or more of the following conditional expressions: [Conditional Formula] 2.52<L61ER<2.72

[條件式]2.68<L62ER<3.10 [Conditional formula] 2.68<L62ER<3.10

此處,L61ER為第六透鏡的物側表面上的使入射光折射的有效區域的半徑,且L62ER為第六透鏡的像側表面上的使入射光折射的有效區域的半徑。 Here, L61ER is a radius of an effective region of the object side surface of the sixth lens that refracts incident light, and L62ER is a radius of an effective region of the image side surface of the sixth lens that refracts incident light.

以上條件式可為用於使第六透鏡的大小最佳化的條件。舉例而言,滿足以上條件式中的一或多者的第六透鏡可有利於透鏡模組的小型化。 The above conditional expression may be a condition for optimizing the size of the sixth lens. For example, the sixth lens that satisfies one or more of the above conditional expressions may facilitate miniaturization of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式中的至少一者:[條件式]0.86<L11ER<1.30 A lens module according to an exemplary embodiment of the present disclosure may satisfy at least one of the following conditional expressions: [Conditional Formula] 0.86<L11ER<1.30

[條件式]0.74<L12ER<1.23 [Conditional formula] 0.74<L12ER<1.23

此處,L11ER為第一透鏡的物側表面中的使入射光折射的有效區域的半徑,且L12ER為第一透鏡的像側表面中的使入射光折射的有效區域的半徑。 Here, L11ER is a radius of an effective region of the object side surface of the first lens that refracts incident light, and L12ER is a radius of an effective region of the image side surface of the first lens that refracts incident light.

以上條件式可為用於使第一透鏡的大小最佳化的條件。舉例而言,滿足以上條件式中的一或多者的第一透鏡可有利於透鏡模組的小型化。 The above conditional expression may be a condition for optimizing the size of the first lens. For example, the first lens that satisfies one or more of the above conditional expressions may facilitate miniaturization of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式中的至少一者:[條件式]0.73<L21ER<1.30 A lens module according to an exemplary embodiment of the present disclosure may satisfy at least one of the following conditional expressions: [Conditional Formula] 0.73<L21ER<1.30

[條件式]0.70<L22ER<1.12 [Conditional formula] 0.70<L22ER<1.12

此處,L21ER為第二透鏡的物側表面中的使入射光折射的有效區域的半徑,且L22ER為第二透鏡的像側表面中的使入射光折射的有效區域的半徑。 Here, L21ER is a radius of an effective region of the object side surface of the second lens that refracts incident light, and L22ER is a radius of an effective region of the image side surface of the second lens that refracts incident light.

以上條件式可為用於使第二透鏡的大小最佳化的條件。舉例而言,滿足以上條件式中的一或多者的第二透鏡可有利於透鏡模組的小型化。 The above conditional expression may be a condition for optimizing the size of the second lens. For example, a second lens that satisfies one or more of the above conditional expressions may facilitate miniaturization of the lens module.

根據本揭露內容的例示性實施例的透鏡模組可滿足以下條件式:[條件式]0.70<L31ER<1.11 The lens module according to an exemplary embodiment of the present disclosure can satisfy the following conditional expression: [Conditional Formula] 0.70<L31ER<1.11

[條件式]0.74<L32ER<1.17 [Conditional formula] 0.74<L32ER<1.17

此處,L31ER為第三透鏡的物側表面中的使入射光折射的有效區域的半徑,且L32ER為第三透鏡的像側表面中的使入射光折射的有效區域的半徑。 Here, L31ER is a radius of an effective region of the object side surface of the third lens that refracts incident light, and L32ER is a radius of an effective region of the image side surface of the third lens that refracts incident light.

以上條件式可為用於使第三透鏡的大小最佳化的條件。舉例而言,滿足以上條件式中的一或多者的第三透鏡可有利於透鏡模組的小型化。 The above conditional expression may be a condition for optimizing the size of the third lens. For example, a third lens that satisfies one or more of the above conditional expressions may facilitate miniaturization of the lens module.

接下來,將描述組態光學系統的第一透鏡至第六透鏡的例示性實施例。 Next, an exemplary embodiment of the first to sixth lenses configuring the optical system will be described.

第一透鏡可具有折射能力。舉例而言,第一透鏡可具有正折射能力。第一透鏡的第一表面(或物側表面)可為凸面,且第一透鏡的第二表面(或像側表面)可為凹面。舉例而言,第一透鏡可具有朝向物側為凸面的彎月面形狀(meniscus shape)。第一透鏡的第一表面以及第二表面中的至少一者可為非球面。舉例而言,第一透鏡的兩個表面可為非球面。第一透鏡可由具有高透光 率(high light transmissivity)及/或高可加工性(high workability)的材料形成。舉例而言,第一透鏡可由塑膠形成。然而,第一透鏡的材料並不限於塑膠。舉例而言,第一透鏡可由玻璃形成。 The first lens can have refractive power. For example, the first lens can have a positive refractive power. The first surface (or object side surface) of the first lens may be a convex surface, and the second surface (or image side surface) of the first lens may be a concave surface. For example, the first lens may have a meniscus shape that is convex toward the object side. At least one of the first surface and the second surface of the first lens may be aspherical. For example, the two surfaces of the first lens can be aspherical. The first lens can have high light transmission Material formation with high light transmissivity and/or high workability. For example, the first lens can be formed from plastic. However, the material of the first lens is not limited to plastic. For example, the first lens can be formed from glass.

第二透鏡可具有折射能力。舉例而言,第二透鏡可具有正折射能力。此外,第二透鏡的折射能力強於第一透鏡的折射能力。舉例而言,第二透鏡的焦距可短於第一透鏡的焦距(亦即,可滿足以下條件式:|f1|>|f2|)。第二透鏡的兩個表面可為凸面。第二透鏡的第一表面以及第二表面中的至少一者可為非球面。舉例而言,第二透鏡的兩個表面可為非球面。第二透鏡可由具有高透光率及/或高可加工性的材料形成。舉例而言,第二透鏡可由塑膠形成。然而,第二透鏡的材料並不限於塑膠。舉例而言,第二透鏡可由玻璃形成。 The second lens can have refractive power. For example, the second lens can have a positive refractive power. Further, the refractive power of the second lens is stronger than the refractive power of the first lens. For example, the focal length of the second lens may be shorter than the focal length of the first lens (ie, the following conditional expression may be satisfied: |f1|>|f2|). Both surfaces of the second lens may be convex. At least one of the first surface and the second surface of the second lens may be aspherical. For example, the two surfaces of the second lens can be aspherical. The second lens may be formed of a material having high light transmittance and/or high processability. For example, the second lens can be formed from plastic. However, the material of the second lens is not limited to plastic. For example, the second lens can be formed from glass.

第三透鏡可具有折射能力。舉例而言,第三透鏡可具有負折射能力。此外,第三透鏡的折射能力強於第五透鏡的折射能力。舉例而言,第三透鏡的焦距可短於第五透鏡的焦距(亦即,可滿足以下條件式:|f5|>|f3|)。第三透鏡的第一表面可為凸面,且第三透鏡的第二表面可為凹面。舉例而言,第三透鏡可具有朝向物側凸起的彎月面形狀,或朝向物側凸起的平凸形狀(plano-convex shape)。第三透鏡的第一表面以及第二表面中的至少一者可為非球面。舉例而言,第三透鏡的兩個表面可為非球面。第三透鏡可由具有高透光率及/或高可加工性的材料形成。舉例而言,第三透鏡可由塑膠形成。然而,第三透鏡的材料並不限於塑膠。舉例而言,第三透鏡可由玻璃形成。另外,第三透鏡可由具有高折射率的材料形成。舉例而言,第三透鏡可由折射率為1.60 或大於1.60的材料形成(在此狀況下,第三透鏡的阿貝數可為30或小於30)。由於由如上文所描述的材料形成的第三透鏡可具有相對大的曲率半徑,故可容易地製造第三透鏡。此外,若第三透鏡是由如上文所描述的材料中的至少一者形成,則製造公差可小,且可減低透鏡模組的製造缺陷率(manufacturing defect rate)。另外,由如上文所描述的材料中的至少一者形成的第三透鏡可減低透鏡間距離,且可有利於使透鏡模組小型化。此外,第三透鏡的直徑可小於第一透鏡以及第二透鏡的直徑。舉例而言,第三透鏡的有效直徑(例如,有效光實質上入射以藉此被折射的部分的直徑)可小於第一透鏡以及第二透鏡的有效直徑。 The third lens may have refractive power. For example, the third lens can have a negative refractive power. Further, the refractive power of the third lens is stronger than the refractive power of the fifth lens. For example, the focal length of the third lens may be shorter than the focal length of the fifth lens (that is, the following conditional expression may be satisfied: |f5|>|f3|). The first surface of the third lens may be convex and the second surface of the third lens may be concave. For example, the third lens may have a meniscus shape that is convex toward the object side, or a plano-convex shape that is convex toward the object side. At least one of the first surface and the second surface of the third lens may be aspherical. For example, the two surfaces of the third lens may be aspherical. The third lens may be formed of a material having high light transmittance and/or high processability. For example, the third lens can be formed of plastic. However, the material of the third lens is not limited to plastic. For example, the third lens can be formed from glass. In addition, the third lens may be formed of a material having a high refractive index. For example, the third lens can have a refractive index of 1.60 Or a material larger than 1.60 is formed (in this case, the Abbe number of the third lens may be 30 or less). Since the third lens formed of the material as described above can have a relatively large radius of curvature, the third lens can be easily fabricated. Further, if the third lens is formed of at least one of the materials as described above, the manufacturing tolerance can be small, and the manufacturing defect rate of the lens module can be reduced. Additionally, the third lens formed from at least one of the materials as described above may reduce the inter-lens distance and may facilitate miniaturization of the lens module. Further, the diameter of the third lens may be smaller than the diameters of the first lens and the second lens. For example, the effective diameter of the third lens (eg, the diameter of the portion of the effective light that is substantially incident to be thereby refracted) can be less than the effective diameter of the first lens and the second lens.

第四透鏡可具有折射能力。舉例而言,第四透鏡可具有正折射能力。第四透鏡的第一表面可為凹面,且第四透鏡的第二表面可為凸面。舉例而言,第四透鏡可具有朝向像側凸起的彎月面形狀,或朝向像側凸起的平凸形狀。第四透鏡的第一表面以及第二表面中的至少一者可為非球面。舉例而言,第四透鏡的兩個表面可為非球面。第四透鏡可由具有高透光率及/或高可加工性的材料形成。舉例而言,第四透鏡可由塑膠形成。然而,第四透鏡的材料並不限於塑膠。舉例而言,第四透鏡可由玻璃形成。舉例而言,第四透鏡可由具有高折射率的材料形成。舉例而言,第四透鏡可由折射率為1.60或大於1.60的材料形成(在此狀況下,第四透鏡的阿貝數可為30或小於30)。由於由如上文所描述的材料形成的第四透鏡可具有相對大的曲率半徑,故可容易地製造第四透鏡。此外,由於在由如上文所描述的材料形成的第四透鏡中,製造公差小,故可減低透鏡模組的製造缺陷率。另外,由於由如 上文所描述的材料形成的第四透鏡可減低透鏡間距離,故第四透鏡可有利於使透鏡模組小型化。 The fourth lens can have refractive power. For example, the fourth lens can have a positive refractive power. The first surface of the fourth lens may be a concave surface, and the second surface of the fourth lens may be a convex surface. For example, the fourth lens may have a meniscus shape that is convex toward the image side, or a plano-convex shape that is convex toward the image side. At least one of the first surface and the second surface of the fourth lens may be aspherical. For example, the two surfaces of the fourth lens may be aspherical. The fourth lens may be formed of a material having high light transmittance and/or high processability. For example, the fourth lens can be formed of plastic. However, the material of the fourth lens is not limited to plastic. For example, the fourth lens may be formed of glass. For example, the fourth lens may be formed of a material having a high refractive index. For example, the fourth lens may be formed of a material having a refractive index of 1.60 or greater than 1.60 (in this case, the Abbe number of the fourth lens may be 30 or less). Since the fourth lens formed of the material as described above can have a relatively large radius of curvature, the fourth lens can be easily fabricated. Further, since the manufacturing tolerance is small in the fourth lens formed of the material as described above, the manufacturing defect rate of the lens module can be reduced. In addition, due to The fourth lens formed by the material described above can reduce the distance between the lenses, so the fourth lens can facilitate miniaturization of the lens module.

第五透鏡可具有折射能力。舉例而言,第五透鏡可具有正折射能力或負折射能力。第五透鏡的第一表面可為凹面,且第五透鏡的第二表面可為凸面。舉例而言,第五透鏡可具有朝向像側凸起的彎月面形狀。第五透鏡的第一表面以及第二表面中的至少一者可為非球面。舉例而言,第五透鏡的兩個表面可為非球面。第五透鏡可由具有高透光率及/或高可加工性的材料形成。舉例而言,第五透鏡可由塑膠形成。然而,第五透鏡的材料並不限於塑膠。舉例而言,第五透鏡可由玻璃形成。另外,第五透鏡可由具有高折射率的材料形成。舉例而言,第五透鏡可由折射率為1.60或大於1.60的材料形成(在此狀況下,第五透鏡的阿貝數可為30或小於30)。由如上文所描述的材料中的至少一者形成的第五透鏡可具有相對大的曲率半徑,且可被容易地製造。此外,若第五透鏡是由如上文所描述的材料中的至少一者形成,則製造公差可小,且可減低透鏡模組的製造缺陷率。另外,由如上文所描述的材料中的至少一者形成的第五透鏡可減低透鏡間距離,且可有利於使透鏡模組小型化。 The fifth lens may have refractive power. For example, the fifth lens may have a positive refractive power or a negative refractive power. The first surface of the fifth lens may be a concave surface, and the second surface of the fifth lens may be a convex surface. For example, the fifth lens may have a meniscus shape that is convex toward the image side. At least one of the first surface and the second surface of the fifth lens may be aspherical. For example, the two surfaces of the fifth lens may be aspherical. The fifth lens may be formed of a material having high light transmittance and/or high workability. For example, the fifth lens can be formed of plastic. However, the material of the fifth lens is not limited to plastic. For example, the fifth lens may be formed of glass. In addition, the fifth lens may be formed of a material having a high refractive index. For example, the fifth lens may be formed of a material having a refractive index of 1.60 or greater than 1.60 (in this case, the Abbe number of the fifth lens may be 30 or less). The fifth lens formed by at least one of the materials as described above may have a relatively large radius of curvature and may be easily manufactured. Further, if the fifth lens is formed of at least one of the materials as described above, the manufacturing tolerance can be small, and the manufacturing defect rate of the lens module can be reduced. Additionally, the fifth lens formed from at least one of the materials as described above may reduce the inter-lens distance and may facilitate miniaturization of the lens module.

第六透鏡可具有折射能力。舉例而言,第六透鏡可具有正折射能力或負折射能力。第六透鏡的第一表面可為凸面,且第六透鏡的第二表面可為凹面。此外,第六透鏡可具有至少一個反曲點或反折點(turning point)形成於第六透鏡的至少一個表面上的形狀。舉例而言,第六透鏡的第二表面可在第六透鏡的中心處或在光軸上為凹面,且朝向第六透鏡的邊緣或周邊部分漸變為凸 面。第六透鏡的第一表面以及第二表面中的至少一者可為非球面。舉例而言,第六透鏡的兩個表面可為非球面。第六透鏡可由具有高透光率及/或高可加工性的材料形成。舉例而言,第六透鏡可由塑膠形成。然而,第六透鏡的材料並不限於塑膠。舉例而言,第六透鏡可由玻璃形成。 The sixth lens may have refractive power. For example, the sixth lens may have positive refractive power or negative refractive power. The first surface of the sixth lens may be convex and the second surface of the sixth lens may be concave. Further, the sixth lens may have a shape in which at least one inflection point or a turning point is formed on at least one surface of the sixth lens. For example, the second surface of the sixth lens may be concave at the center of the sixth lens or on the optical axis, and may be convex toward the edge or the peripheral portion of the sixth lens. surface. At least one of the first surface and the second surface of the sixth lens may be aspherical. For example, the two surfaces of the sixth lens may be aspherical. The sixth lens may be formed of a material having high light transmittance and/or high processability. For example, the sixth lens can be formed of plastic. However, the material of the sixth lens is not limited to plastic. For example, the sixth lens may be formed of glass.

同時,在根據一些例示性實施例的透鏡模組中,透鏡可經安置成使得透鏡的有效半徑自第一透鏡朝向第三透鏡減少且自第四透鏡朝向第六透鏡增加。在如上文所描述而組態的光學系統中,投影於影像感測器上的光量可增加,使得可改良透鏡模組的解析度。 Meanwhile, in the lens module according to some exemplary embodiments, the lens may be disposed such that the effective radius of the lens decreases from the first lens toward the third lens and increases from the fourth lens toward the sixth lens. In an optical system configured as described above, the amount of light projected onto the image sensor can be increased such that the resolution of the lens module can be improved.

此外,如上文所描述而組態的透鏡模組的一些例示性實施例可改良造成影像品質劣化的光學像差。另外,如上文所描述而組態的透鏡模組的一些例示性實施例可改良解析度。另外,如上文所描述而組態的透鏡模組的一些例示性實施例不僅方便輕巧,且有利於減低製造成本。 Moreover, some illustrative embodiments of lens modules configured as described above may improve optical aberrations that cause image quality degradation. Additionally, some illustrative embodiments of lens modules configured as described above may improve resolution. Additionally, some illustrative embodiments of lens modules configured as described above are not only convenient and lightweight, but also beneficial in reducing manufacturing costs.

將參看圖1至圖4來描述根據本揭露內容的第一例示性實施例的透鏡模組。 A lens module according to a first exemplary embodiment of the present disclosure will be described with reference to FIGS. 1 through 4.

根據本例示性實施例的透鏡模組100可包含光學系統,光學系統包含第一透鏡10、第二透鏡20、第三透鏡30、第四透鏡40、第五透鏡50以及第六透鏡60。透鏡模組100可更包含紅外線截止濾光片70及影像感測器80。此外,根據本例示性實施例的透鏡模組100可具有為約2.2的光圈數以及為約70.5度的視野(field of view,FOV)。另外,在根據本例示性實施例的透鏡模組100中,第三透鏡30至第五透鏡50中的全部的折射率約為1.640以及阿貝 數約為23.3。 The lens module 100 according to the present exemplary embodiment may include an optical system including a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, and a sixth lens 60. The lens module 100 further includes an infrared cut filter 70 and an image sensor 80. Further, the lens module 100 according to the present exemplary embodiment may have a number of apertures of about 2.2 and a field of view (FOV) of about 70.5 degrees. In addition, in the lens module 100 according to the present exemplary embodiment, all of the third lens 30 to the fifth lens 50 have a refractive index of about 1.640 and Abbe. The number is approximately 23.3.

在本例示性實施例中,第一透鏡10可具有正折射能力。此外,第一透鏡10的第一表面(或物側表面)可為凸面,且第一透鏡10的第二表面(或像側表面)可為凹面。第二透鏡20可具有正折射能力。此外,第二透鏡20的兩個表面可為凸面。第三透鏡30可具有負折射能力。此外,第三透鏡30的第一表面可為凸面,且第三透鏡30的第二表面可為凹面。第四透鏡40可具有正折射能力。此外,第四透鏡40的第一表面可為凹面,且第四透鏡40的第二表面可為凸面。第五透鏡50可具有負折射能力。此外,第五透鏡50的第一表面可為凹面,且第五透鏡50的第二表面可為凸面。第六透鏡60可具有負折射能力。此外,第六透鏡60的第一表面可為凸面,且第六透鏡60的第二表面可為凹面。另外,第六透鏡60可具有一或多個反曲點。舉例而言,第六透鏡60可具有形成於第六透鏡60的第二表面上的反曲點。同時,第四透鏡40可經安置成靠近第三透鏡30。舉例而言,第四透鏡40與第三透鏡30之間的氣隙可小於第四透鏡40與第五透鏡50之間的氣隙。 In the present exemplary embodiment, the first lens 10 may have a positive refractive power. Further, the first surface (or object side surface) of the first lens 10 may be a convex surface, and the second surface (or image side surface) of the first lens 10 may be a concave surface. The second lens 20 may have a positive refractive power. Further, both surfaces of the second lens 20 may be convex. The third lens 30 may have a negative refractive power. Further, the first surface of the third lens 30 may be convex, and the second surface of the third lens 30 may be concave. The fourth lens 40 may have a positive refractive power. Further, the first surface of the fourth lens 40 may be a concave surface, and the second surface of the fourth lens 40 may be a convex surface. The fifth lens 50 may have a negative refractive power. Further, the first surface of the fifth lens 50 may be a concave surface, and the second surface of the fifth lens 50 may be a convex surface. The sixth lens 60 may have a negative refractive power. Further, the first surface of the sixth lens 60 may be a convex surface, and the second surface of the sixth lens 60 may be a concave surface. Additionally, the sixth lens 60 can have one or more inflection points. For example, the sixth lens 60 may have an inflection point formed on the second surface of the sixth lens 60. At the same time, the fourth lens 40 may be disposed close to the third lens 30. For example, the air gap between the fourth lens 40 and the third lens 30 may be smaller than the air gap between the fourth lens 40 and the fifth lens 50.

根據本例示性實施例的透鏡模組100可包含一或多個光圈ST。舉例而言,光圈ST可安置於第二透鏡20與第三透鏡30之間。然而,光圈ST可安置於第一透鏡10前方,安置於第一透鏡10與第二透鏡20之間,或安置於第三透鏡30與第六透鏡60之間的任何地方。 The lens module 100 according to the present exemplary embodiment may include one or more apertures ST. For example, the aperture ST may be disposed between the second lens 20 and the third lens 30. However, the aperture ST may be disposed in front of the first lens 10, disposed between the first lens 10 and the second lens 20, or disposed anywhere between the third lens 30 and the sixth lens 60.

如上文所描述而組態的透鏡模組可具有圖2所說明的光學像差特性,且可具有圖3以及圖4所說明的透鏡特性。出於 參考起見,圖3為顯示曲率半徑、每一透鏡的厚度以及透鏡間距離、折射率、透鏡的阿貝數的表格,且圖4為顯示透鏡的非球面表面值的表格。 The lens module configured as described above may have the optical aberration characteristics illustrated in FIG. 2 and may have the lens characteristics illustrated in FIGS. 3 and 4. Out of For reference, FIG. 3 is a table showing the radius of curvature, the thickness of each lens, and the distance between lenses, the refractive index, and the Abbe number of the lens, and FIG. 4 is a table showing the aspherical surface values of the lenses.

將參看圖5至圖8來描述根據本揭露內容的第二例示性實施例的透鏡模組。 A lens module according to a second exemplary embodiment of the present disclosure will be described with reference to FIGS. 5 through 8.

根據本例示性實施例的透鏡模組100可包含光學系統,光學系統包含第一透鏡10、第二透鏡20、第三透鏡30、第四透鏡40、第五透鏡50以及第六透鏡60。透鏡模組100可更包含紅外線截止濾光片70及/或影像感測器80。此外,根據本例示性實施例的透鏡模組100可具有為約2.3的光圈數以及為約70.2度的視野。另外,在根據本例示性實施例的透鏡模組100中,第三透鏡30至第五透鏡50中的全部的折射率約為1.640以及阿貝數約為23.3。 The lens module 100 according to the present exemplary embodiment may include an optical system including a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, and a sixth lens 60. The lens module 100 may further include an infrared cut filter 70 and/or an image sensor 80. Further, the lens module 100 according to the present exemplary embodiment may have a number of apertures of about 2.3 and a field of view of about 70.2 degrees. Further, in the lens module 100 according to the present exemplary embodiment, all of the third lens 30 to the fifth lens 50 have a refractive index of about 1.640 and an Abbe number of about 23.3.

在本例示性實施例中,第一透鏡10可具有正折射能力。此外,第一透鏡10的第一表面(或物側表面)可為凸面,且第一透鏡10的第二表面(或像側表面)可為凹面。第二透鏡20可具有正折射能力。此外,第二透鏡20的兩個表面可為凸面。第三透鏡30可具有負折射能力。此外,第三透鏡30的第一表面可為凸面,且第三透鏡30的第二表面可為凹面。第四透鏡40可具有正折射能力。此外,第四透鏡40的第一表面可為凹面,且第四透鏡40的第二表面可為凸面。第五透鏡50可具有負折射能力。此外,第五透鏡50的第一表面可為凹面,且第五透鏡50的第二表面可為凸面。第六透鏡60可具有負折射能力。此外,第六透鏡60的第一表面可為凸面,且第六透鏡60的第二表面可為凹面。另 外,第六透鏡60可具有一或多個反曲點。舉例而言,第六透鏡60可具有形成於第六透鏡60的第二表面上的反曲點。同時,第四透鏡40可經安置成靠近第三透鏡30。舉例而言,第四透鏡40與第三透鏡30之間的氣隙可小於第四透鏡40與第五透鏡50之間的氣隙。 In the present exemplary embodiment, the first lens 10 may have a positive refractive power. Further, the first surface (or object side surface) of the first lens 10 may be a convex surface, and the second surface (or image side surface) of the first lens 10 may be a concave surface. The second lens 20 may have a positive refractive power. Further, both surfaces of the second lens 20 may be convex. The third lens 30 may have a negative refractive power. Further, the first surface of the third lens 30 may be convex, and the second surface of the third lens 30 may be concave. The fourth lens 40 may have a positive refractive power. Further, the first surface of the fourth lens 40 may be a concave surface, and the second surface of the fourth lens 40 may be a convex surface. The fifth lens 50 may have a negative refractive power. Further, the first surface of the fifth lens 50 may be a concave surface, and the second surface of the fifth lens 50 may be a convex surface. The sixth lens 60 may have a negative refractive power. Further, the first surface of the sixth lens 60 may be a convex surface, and the second surface of the sixth lens 60 may be a concave surface. another Additionally, the sixth lens 60 can have one or more inflection points. For example, the sixth lens 60 may have an inflection point formed on the second surface of the sixth lens 60. At the same time, the fourth lens 40 may be disposed close to the third lens 30. For example, the air gap between the fourth lens 40 and the third lens 30 may be smaller than the air gap between the fourth lens 40 and the fifth lens 50.

根據本例示性實施例的透鏡模組100可包含一或多個光圈ST。舉例而言,光圈ST可安置於第二透鏡20與第三透鏡30之間。然而,光圈ST可安置於第一透鏡10前方,安置於第一透鏡10與第二透鏡20之間,或安置於第三透鏡30與第六透鏡60之間的任何地方。 The lens module 100 according to the present exemplary embodiment may include one or more apertures ST. For example, the aperture ST may be disposed between the second lens 20 and the third lens 30. However, the aperture ST may be disposed in front of the first lens 10, disposed between the first lens 10 and the second lens 20, or disposed anywhere between the third lens 30 and the sixth lens 60.

如上文所描述而組態的透鏡模組可具有圖6所說明的光學像差特性,且可具有圖7以及圖8所說明的透鏡特性。出於參考起見,圖7為顯示曲率半徑、每一透鏡的厚度以及透鏡間距離、折射率、透鏡的阿貝數的表格,且圖8為顯示透鏡的非球面表面值的表格。 The lens module configured as described above may have the optical aberration characteristics illustrated in FIG. 6 and may have the lens characteristics illustrated in FIGS. 7 and 8. For reference, FIG. 7 is a table showing the radius of curvature, the thickness of each lens, and the distance between lenses, the refractive index, the Abbe number of the lens, and FIG. 8 is a table showing the aspherical surface values of the lenses.

將參看圖9至圖12來描述根據本揭露內容的第三例示性實施例的透鏡模組。 A lens module according to a third exemplary embodiment of the present disclosure will be described with reference to FIGS. 9 through 12.

根據本例示性實施例的透鏡模組100可包含光學系統,光學系統包含第一透鏡10、第二透鏡20、第三透鏡30、第四透鏡40、第五透鏡50以及第六透鏡60。透鏡模組100可更包含紅外線截止濾光片70及/或影像感測器80。此外,根據本例示性實施例的透鏡模組100可具有為約2.2的光圈數以及為約70.2度的視野。另外,在根據本例示性實施例的透鏡模組100中,第三透鏡30至第五透鏡50中的全部的折射率約為1.640以及阿貝數約 為23.3。 The lens module 100 according to the present exemplary embodiment may include an optical system including a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, a fifth lens 50, and a sixth lens 60. The lens module 100 may further include an infrared cut filter 70 and/or an image sensor 80. Further, the lens module 100 according to the present exemplary embodiment may have a number of apertures of about 2.2 and a field of view of about 70.2 degrees. In addition, in the lens module 100 according to the present exemplary embodiment, all of the third lens 30 to the fifth lens 50 have a refractive index of about 1.640 and an Abbe number. It is 23.3.

在本例示性實施例中,第一透鏡10可具有正折射能力。此外,第一透鏡10的第一表面(或物側表面)可為凸面,且第一透鏡10的第二表面(或像側表面)可為凹面。第二透鏡20可具有正折射能力。此外,第二透鏡20的兩個表面可為凸面。第三透鏡30可具有負折射能力。此外,第三透鏡30的第一表面可為凸面,且第三透鏡30的第二表面可為凹面。第四透鏡40可具有正折射能力。此外,第四透鏡40的第一表面可為凹面,且第四透鏡40的第二表面可為凸面。第五透鏡50可具有負折射能力。此外,第五透鏡50的第一表面可為凹面,且第五透鏡50的第二表面可為凸面。第六透鏡60可具有負折射能力。此外,第六透鏡60的第一表面可為凸面,且第六透鏡60的第二表面可為凹面。另外,第六透鏡60可具有一或多個反曲點。舉例而言,第六透鏡60可具有形成於第六透鏡60的第二表面上的反曲點。同時,第四透鏡40可經安置成靠近第三透鏡30。舉例而言,第四透鏡40與第三透鏡30之間的氣隙可小於第四透鏡40與第五透鏡50之間的氣隙。 In the present exemplary embodiment, the first lens 10 may have a positive refractive power. Further, the first surface (or object side surface) of the first lens 10 may be a convex surface, and the second surface (or image side surface) of the first lens 10 may be a concave surface. The second lens 20 may have a positive refractive power. Further, both surfaces of the second lens 20 may be convex. The third lens 30 may have a negative refractive power. Further, the first surface of the third lens 30 may be convex, and the second surface of the third lens 30 may be concave. The fourth lens 40 may have a positive refractive power. Further, the first surface of the fourth lens 40 may be a concave surface, and the second surface of the fourth lens 40 may be a convex surface. The fifth lens 50 may have a negative refractive power. Further, the first surface of the fifth lens 50 may be a concave surface, and the second surface of the fifth lens 50 may be a convex surface. The sixth lens 60 may have a negative refractive power. Further, the first surface of the sixth lens 60 may be a convex surface, and the second surface of the sixth lens 60 may be a concave surface. Additionally, the sixth lens 60 can have one or more inflection points. For example, the sixth lens 60 may have an inflection point formed on the second surface of the sixth lens 60. At the same time, the fourth lens 40 may be disposed close to the third lens 30. For example, the air gap between the fourth lens 40 and the third lens 30 may be smaller than the air gap between the fourth lens 40 and the fifth lens 50.

根據本例示性實施例的透鏡模組100可包含一或多個光圈ST。舉例而言,光圈ST可安置於第二透鏡20與第三透鏡30之間。然而,光圈ST可安置於第一透鏡10前方,安置於第一透鏡10與第二透鏡20之間,或安置於第三透鏡30與第六透鏡60之間的任何地方。 The lens module 100 according to the present exemplary embodiment may include one or more apertures ST. For example, the aperture ST may be disposed between the second lens 20 and the third lens 30. However, the aperture ST may be disposed in front of the first lens 10, disposed between the first lens 10 and the second lens 20, or disposed anywhere between the third lens 30 and the sixth lens 60.

如上文所描述而組態的透鏡模組可具有圖10所說明的光學像差特性,且可具有圖11以及圖12所說明的透鏡特性。出 於參考起見,圖11為顯示曲率半徑、每一透鏡的厚度以及透鏡間距離、折射率、透鏡的阿貝數的表格,且圖12為顯示透鏡的非球面表面值的表格。 The lens module configured as described above may have the optical aberration characteristics illustrated in FIG. 10 and may have the lens characteristics illustrated in FIGS. 11 and 12. Out For reference, FIG. 11 is a table showing the radius of curvature, the thickness of each lens, and the distance between lenses, the refractive index, and the Abbe number of the lens, and FIG. 12 is a table showing the aspherical surface values of the lenses.

上述例示性實施例可具有表格1中說明的光學特性。此外,上述例示性實施例可滿足表格2至表格4的左側垂直欄上說明的條件式。 The above exemplary embodiments may have the optical characteristics described in Table 1. Further, the above exemplary embodiment can satisfy the conditional expressions described on the left vertical column of Tables 2 to 4.

以下表格5展示第六透鏡的有效半徑,以及形成於第六透鏡的物側表面以及像側表面上的反曲點的位置。 Table 5 below shows the effective radius of the sixth lens, and the positions of the object side surface formed on the sixth lens and the inflection point on the image side surface.

以下表格6展示形成於第六透鏡上的凸面點以及凹面點處的厚度。 Table 6 below shows the convex points formed on the sixth lens and the thickness at the concave points.

根據本揭露內容的一些例示性實施例,可實施高解析度。 According to some exemplary embodiments of the present disclosure, high resolution may be implemented.

雖然上文已展示以及描述例示性實施例,但對於本領域具有知識者將顯而易見,在不脫離如由隨附申請專利範圍界定的本揭露內容的精神以及範疇的情況下,可進行修改以及變化。 While the exemplifying embodiments have been shown and described, it will be understood by those skilled in the art that modifications and changes can be made without departing from the spirit and scope of the disclosure as defined by the appended claims. .

10‧‧‧第一透鏡 10‧‧‧ first lens

20‧‧‧第二透鏡 20‧‧‧second lens

30‧‧‧第三透鏡 30‧‧‧ third lens

40‧‧‧第四透鏡 40‧‧‧Fourth lens

50‧‧‧第五透鏡 50‧‧‧ fifth lens

60‧‧‧第六透鏡 60‧‧‧ sixth lens

70‧‧‧紅外線截止濾光片 70‧‧‧Infrared cut filter

80‧‧‧影像感測器 80‧‧‧Image Sensor

100‧‧‧透鏡模組 100‧‧‧ lens module

ST‧‧‧光圈 ST‧‧‧ aperture

Claims (39)

一種透鏡模組,包括:第一透鏡,具有正折射能力;第二透鏡,具有正折射能力;第三透鏡,具有折射能力;第四透鏡,具有正折射能力;第五透鏡,具有負折射能力;以及第六透鏡,具有負折射能力,且具有形成於所述第六透鏡的像側表面上的一或多個反曲點,其中所述透鏡模組的總焦距f以及所述第一透鏡的焦距f1滿足以下條件式:[條件式]1.0<f1/f<2.0。 A lens module comprising: a first lens having positive refractive power; a second lens having positive refractive power; a third lens having refractive power; a fourth lens having positive refractive power; and a fifth lens having negative refractive power And a sixth lens having a negative refractive power and having one or more inflection points formed on an image side surface of the sixth lens, wherein a total focal length f of the lens module and the first lens The focal length f1 satisfies the following conditional expression: [conditional expression] 1.0 < f1/f < 2.0. 如申請專利範圍第1項所述的透鏡模組,其中所述第一透鏡的物側表面為凸面,且所述第一透鏡的像側表面為凹面。 The lens module according to claim 1, wherein the object side surface of the first lens is a convex surface, and the image side surface of the first lens is a concave surface. 如申請專利範圍第1項所述的透鏡模組,其中所述第二透鏡的物側表面為凸面,且所述第二透鏡的像側表面為凸面。 The lens module of claim 1, wherein the object side surface of the second lens is a convex surface, and the image side surface of the second lens is a convex surface. 如申請專利範圍第1項所述的透鏡模組,其中所述第三透鏡的物側表面為凸面,且所述第三透鏡的像側表面為凹面。 The lens module according to claim 1, wherein the object side surface of the third lens is a convex surface, and the image side surface of the third lens is a concave surface. 如申請專利範圍第1項所述的透鏡模組,其中所述第四透鏡的物側表面為凹面,且所述第四透鏡的像側表面為凸面。 The lens module according to claim 1, wherein the object side surface of the fourth lens is a concave surface, and the image side surface of the fourth lens is a convex surface. 如申請專利範圍第1項所述的透鏡模組,其中所述第五透鏡的物側表面為凹面,且所述第五透鏡的像側表面為凸面。 The lens module according to claim 1, wherein the object side surface of the fifth lens is a concave surface, and the image side surface of the fifth lens is a convex surface. 如申請專利範圍第1項所述的透鏡模組,其中所述第六透鏡的物側表面為凸面,且所述第六透鏡的所述像側表面為凹面。 The lens module according to claim 1, wherein the object side surface of the sixth lens is a convex surface, and the image side surface of the sixth lens is a concave surface. 如申請專利範圍第1項所述的透鏡模組,其中所述第六透鏡具有一或多個反曲點形成於所述第六透鏡的物側表面上的形狀。 The lens module according to claim 1, wherein the sixth lens has a shape in which one or more inflection points are formed on an object side surface of the sixth lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]V1-V3>25.0其中V1為所述第一透鏡的阿貝數,且V3為所述第三透鏡的阿貝數。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional formula] V1-V3>25.0, wherein V1 is an Abbe number of the first lens, and V3 is The Abbe number of the third lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]n4>1.6其中n4為所述第四透鏡的折射率。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [Conditional Formula] n4>1.6 wherein n4 is a refractive index of the fourth lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]V1-V5>25.0其中V1為所述第一透鏡的阿貝數,且V5為所述第五透鏡的阿貝數。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional formula] V1-V5>25.0, wherein V1 is an Abbe number of the first lens, and V5 is The Abbe number of the fifth lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]0.5<f2/f<1.5其中f2為所述第二透鏡的焦距,且f為所述透鏡模組的所述總焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression] 0.5 < f2 / f < 1.5, where f2 is a focal length of the second lens, and f is The total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式: [條件式]2.0<|f5/f|<100其中f5為所述第五透鏡的焦距,且f為所述透鏡模組的所述總焦距。 The lens module of claim 1, wherein the lens module satisfies the following conditional formula: [Conditional Formula] 2.0<|f5/f|<100 where f5 is the focal length of the fifth lens, and f is the total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]OAL/f<1.5其中OAL為自所述第一透鏡的物側表面至影像表面的距離,且f為所述透鏡模組的所述總焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional formula] OAL/f<1.5, wherein OAL is from the object side surface of the first lens to the image surface The distance, and f is the total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]1.0<f1/f2<2.5其中f1為所述第一透鏡的所述焦距,且f2為所述第二透鏡的焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression] 1.0 < f1/f2 < 2.5, where f1 is the focal length of the first lens, and F2 is the focal length of the second lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]0.3<|f2/f3|<2.0其中f2為所述第二透鏡的焦距,且f3為所述第三透鏡的焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression] 0.3 <|f2/f3|<2.0, where f2 is a focal length of the second lens, and F3 is the focal length of the third lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]BFL/f>0.2其中BFL為自所述第六透鏡的所述像側表面至影像表面的距離,且f為所述透鏡模組的所述總焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional formula] BFL/f>0.2, wherein the BFL is from the image side surface of the sixth lens to The distance of the image surface, and f is the total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡 模組滿足以下條件式:[條件式]D1/f>0.01其中D1為所述第一透鏡與所述第二透鏡之間的氣隙,且f為所述透鏡模組的所述總焦距。 The lens module of claim 1, wherein the lens The module satisfies the following conditional expression: [Conditional Formula] D1/f>0.01 where D1 is an air gap between the first lens and the second lens, and f is the total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]r1/f>0.3其中r1為所述第一透鏡的物側表面的曲率半徑,且f為所述透鏡模組的所述總焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional formula] r1/f>0.3, where r1 is a radius of curvature of an object side surface of the first lens, And f is the total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]r6/f>0.3其中r6為所述第三透鏡的像側表面的曲率半徑,且f為所述透鏡模組的所述總焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression] r6/f>0.3, where r6 is a radius of curvature of an image side surface of the third lens, And f is the total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]EPD/2/f1>0.1其中EPD/2為入瞳的大小,且f1為所述第一透鏡的所述焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional formula] EPD/2/f1>0.1, wherein EPD/2 is the size of the entrance pupil, and f1 is Said focal length of the first lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]|f3/f|<2.0其中f3為所述第三透鏡的焦距,且f為所述透鏡模組的所述總焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression]|f3/f|<2.0, where f3 is a focal length of the third lens, and f is The total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡 模組滿足以下條件式:[條件式]f4/f>3.0其中f4為所述第四透鏡的焦距,且f為所述透鏡模組的所述總焦距。 The lens module of claim 1, wherein the lens The module satisfies the following conditional expression: [Conditional Formula] f4/f>3.0 where f4 is the focal length of the fourth lens, and f is the total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]|f5/f|>3.0其中f5為所述第五透鏡的焦距,且f為所述透鏡模組的所述總焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression]|f5/f|>3.0, where f5 is a focal length of the fifth lens, and f is The total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]|f6/f|<6.0其中f6為所述第六透鏡的焦距,且f為所述透鏡模組的所述總焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression]|f6/f|<6.0, where f6 is a focal length of the sixth lens, and f is The total focal length of the lens module. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]OAL/f1>0.5其中OAL為自所述第一透鏡的物側表面至影像表面的距離,且f1為所述第一透鏡的所述焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional formula] OAL/f1>0.5, wherein the OAL is from the object side surface of the first lens to the image surface The distance, and f1 is the focal length of the first lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]0<OAL/f2<1.7其中OAL為自所述第一透鏡的物側表面至影像表面的距離,且f2為所述第二透鏡的焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional formula] 0 < OAL / f2 < 1.7 wherein OAL is from the object side surface of the first lens to The distance of the image surface, and f2 is the focal length of the second lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]|OAL/f3|>1.0其中OAL為自所述第一透鏡的物側表面至影像表面的距離,且f3為所述第三透鏡的焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression] | OAL / f3 | > 1.0 wherein OAL is from the object side surface of the first lens to The distance of the image surface, and f3 is the focal length of the third lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]0<OAL/f4<0.5其中OAL為自所述第一透鏡的物側表面至影像表面的距離,且f4為所述第四透鏡的焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression] 0 < OAL / f4 < 0.5, wherein OAL is from the object side surface of the first lens to The distance of the image surface, and f4 is the focal length of the fourth lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]|OAL/f5|<0.5其中OAL為自所述第一透鏡的物側表面至影像表面的距離,且f5為所述第五透鏡的焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [Conditional Formula]|OAL/f5|<0.5 wherein OAL is from the object side surface of the first lens to The distance of the image surface, and f5 is the focal length of the fifth lens. 如申請專利範圍第1項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:[條件式]|OAL/f6|>0.2其中OAL為自所述第一透鏡的物側表面至影像表面的距離,且f6為所述第六透鏡的焦距。 The lens module according to claim 1, wherein the lens module satisfies the following conditional expression: [conditional expression]|OAL/f6|>0.2 wherein OAL is from the object side surface of the first lens to The distance of the image surface, and f6 is the focal length of the sixth lens. 一種透鏡模組,包括:六個透鏡,自物側至像側按次序包括第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡以及第六透鏡,其中: 所述第一透鏡以及所述第二透鏡具有正折射能力,所述第五透鏡包括凹面物側表面以及凸面像側表面,所述第六透鏡在所述第六透鏡的中心處朝向所述物側為凸面且朝向所述像側為凹面,所述第六透鏡的物側表面具有至少兩個反曲點,且所述透鏡模組滿足以下條件式:1.0<f1/f<2.0其中f為所述透鏡模組的總焦距,且f1為所述第一透鏡的焦距。 A lens module includes: six lenses, including a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens in order from the object side to the image side, wherein: The first lens and the second lens have a positive refractive power, the fifth lens includes a concave side surface and a convex image side surface, and the sixth lens faces the object at a center of the sixth lens The side is convex and concave toward the image side, the object side surface of the sixth lens has at least two inflection points, and the lens module satisfies the following conditional formula: 1.0<f1/f<2.0, where f is The total focal length of the lens module, and f1 is the focal length of the first lens. 如申請專利範圍第32項所述的透鏡模組,其中所述第三透鏡與所述第四透鏡之間的距離短於所述第四透鏡與所述第五透鏡之間的距離。 The lens module of claim 32, wherein a distance between the third lens and the fourth lens is shorter than a distance between the fourth lens and the fifth lens. 如申請專利範圍第32項所述的透鏡模組,更包括安置於所述第二透鏡與所述第三透鏡之間的光圈。 The lens module of claim 32, further comprising an aperture disposed between the second lens and the third lens. 如申請專利範圍第32項所述的透鏡模組,其中:所述第一透鏡以及所述第三透鏡包括凸面物側表面以及凹面像側表面,所述第二透鏡包括雙凸表面,所述第四透鏡包括凹面物側表面以及凸面像側表面,且所述第六透鏡的像側表面具有至少一個反曲點。 The lens module of claim 32, wherein: the first lens and the third lens comprise a convex side surface and a concave image side surface, and the second lens comprises a biconvex surface, The fourth lens includes a concave side surface and a convex image side surface, and the image side surface of the sixth lens has at least one inflection point. 如申請專利範圍第32項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:|f1/f3|<3.0其中f1為所述第一透鏡的所述焦距,且f3為所述第三透鏡 的焦距。 The lens module according to claim 32, wherein the lens module satisfies the following conditional expression: |f1/f3|<3.0, where f1 is the focal length of the first lens, and f3 is the Third lens The focal length. 如申請專利範圍第32項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:0<f1/f4<1.5其中f1為所述第一透鏡的所述焦距,且f4為所述第四透鏡的焦距。 The lens module of claim 32, wherein the lens module satisfies the following conditional formula: 0 < f1/f4 < 1.5, where f1 is the focal length of the first lens, and f4 is the The focal length of the fourth lens. 如申請專利範圍第32項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:|f1/f5|<1.5其中f1為所述第一透鏡的所述焦距,且f5為所述第五透鏡的焦距。 The lens module of claim 32, wherein the lens module satisfies the following conditional expression: |f1/f5|<1.5, where f1 is the focal length of the first lens, and f5 is the The focal length of the fifth lens. 如申請專利範圍第32項所述的透鏡模組,其中所述透鏡模組滿足以下條件式:|f1/f6|<1.5其中f1為所述第一透鏡的所述焦距,且f6為所述第六透鏡的焦距。 The lens module of claim 32, wherein the lens module satisfies the following conditional expression: |f1/f6|<1.5, where f1 is the focal length of the first lens, and f6 is the The focal length of the sixth lens.
TW103122754A 2013-11-08 2014-07-02 Lens module TWI534464B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20130135248 2013-11-08
KR1020140008210A KR101452150B1 (en) 2013-11-08 2014-01-23 Lens module
KR1020140023269A KR101606974B1 (en) 2013-11-08 2014-02-27 Lens module

Publications (2)

Publication Number Publication Date
TW201518767A true TW201518767A (en) 2015-05-16
TWI534464B TWI534464B (en) 2016-05-21

Family

ID=51998059

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103122754A TWI534464B (en) 2013-11-08 2014-07-02 Lens module

Country Status (2)

Country Link
KR (3) KR101452150B1 (en)
TW (1) TWI534464B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579586B (en) * 2015-05-21 2017-04-21 先進光電科技股份有限公司 Optical image capturing system
TWI585485B (en) * 2015-05-19 2017-06-01 先進光電科技股份有限公司 Optical image capturing system
US9857564B2 (en) 2016-03-30 2018-01-02 Ability Opto-Electronics Technology Co. Ltd. Optical image capturing system
TWI623788B (en) * 2016-02-05 2018-05-11 先進光電科技股份有限公司 Optical image capturing system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101719876B1 (en) * 2014-11-11 2017-03-24 삼성전기주식회사 Optical system
CN107608057B (en) * 2017-11-07 2023-12-01 浙江舜宇光学有限公司 Image pickup lens group
US10908389B2 (en) 2017-11-09 2021-02-02 Samsung Electro-Mechanics Co., Ltd. Telescopic optical imaging system
KR102041698B1 (en) * 2017-11-09 2019-11-06 삼성전기주식회사 Optical Imaging System
CN117991479B (en) * 2024-04-03 2024-06-07 宁波永新光学股份有限公司 Laser radar receiving optical lens

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211321A (en) * 1996-02-06 1997-08-15 Konica Corp Retrofocus type lens
JP2001255461A (en) 2000-01-07 2001-09-21 Konica Corp Zoom lens
KR100616646B1 (en) 2004-12-27 2006-08-28 삼성전기주식회사 Inner Zoom Lens System
JP5095443B2 (en) 2008-02-28 2012-12-12 富士フイルム株式会社 Image reading lens and image reading apparatus
KR101499969B1 (en) * 2008-10-10 2015-03-18 엘지이노텍 주식회사 Imaging Lens and Camera Moudule including the same
JP5426313B2 (en) 2009-10-15 2014-02-26 日立マクセル株式会社 Imaging lens system
CN102985865B (en) * 2010-07-16 2015-03-11 柯尼卡美能达株式会社 Image capture lens
CN201974571U (en) 2011-01-27 2011-09-14 大立光电股份有限公司 Image capturing lens assembly
TWI439720B (en) * 2011-03-11 2014-06-01 Largan Precision Co Ltd Image capturing lens assembly
TWI432823B (en) 2011-06-10 2014-04-01 Largan Precision Co Ltd Image capturnig lens assembly
TWI435138B (en) 2011-06-20 2014-04-21 Largan Precision Co Optical imaging system for pickup

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585485B (en) * 2015-05-19 2017-06-01 先進光電科技股份有限公司 Optical image capturing system
TWI579586B (en) * 2015-05-21 2017-04-21 先進光電科技股份有限公司 Optical image capturing system
TWI623788B (en) * 2016-02-05 2018-05-11 先進光電科技股份有限公司 Optical image capturing system
US9977223B2 (en) 2016-02-05 2018-05-22 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US9857564B2 (en) 2016-03-30 2018-01-02 Ability Opto-Electronics Technology Co. Ltd. Optical image capturing system
TWI620950B (en) * 2016-03-30 2018-04-11 先進光電科技股份有限公司 Optical image capturing system

Also Published As

Publication number Publication date
KR101606974B1 (en) 2016-03-28
TWI534464B (en) 2016-05-21
KR20150053682A (en) 2015-05-18
KR101452150B1 (en) 2014-10-22
KR101504062B1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
CN107065143B (en) Lens module
KR101681383B1 (en) Lens module
TWI534463B (en) Lens module
TWI534464B (en) Lens module
KR101709838B1 (en) Lens module
CN108333722B (en) Lens module
TWI679446B (en) Lens module
TWI648553B (en) Optical system
KR101681384B1 (en) Lens module
KR101681387B1 (en) Lens module
KR101740772B1 (en) Lens module
TWI622793B (en) Lens module
US9310585B2 (en) Lens module
KR101659140B1 (en) Lens module
KR20160011467A (en) Optical system
KR102004800B1 (en) Lens module
KR20150135860A (en) Optical system
KR101719881B1 (en) Lens module